
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2012

Ensemble Methods for Malware Diagnosis Based
on One-class SVMs
Xing An
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
An, Xing, "Ensemble Methods for Malware Diagnosis Based on One-class SVMs" (2012). LSU Master's Theses. 2294.
https://digitalcommons.lsu.edu/gradschool_theses/2294

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2294?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

ENSEMBLE METHODS FOR MALWARE DIAGNOSIS BASED ON ONE-

CLASS SVMS

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science

in

The Department of Computer Science

by

Xing An

B.E. Wuhan University 2008

May 2013

ii

Acknowledgements

 Sincere thanks to my major professor Dr. Jian Zhang, for his patient guidance throughout the

process leading up to the completion of the thesis. I would also like to thank my committee

members Dr. Jianhua Chen and Dr. Seung-Jong Park for their guidance and support. In addition,

I want to extend my gratitude to all those in the Department of Computer Science for the help I

acquired in my study and research.

I want to thank Mr. Hung-Te Lin for providing a tutorial in my mother tongue that helped me

a lot in my initial study of LIBSVM and Mr. Zheng Lu for doing the proofreading of the thesis.

 I wish to also thank my parents and grandparents for their eternal love, encouragement and

support.

iii

Table of Contents

Acknowledgements ... ii

Abstract ... v

1. Introduction ... 1

2. Background ... 4

2.1 SVM ... 4

2.2 Bagging .. 6

2.3 Clustering ... 7

2.4 Rescaling .. 7

2.5 N-gram ... 8

2.6 State of Art ... 8

3. Rescaling ... 9

3.1 Basic Information of Data .. 9

3.2 Multi-grams .. 12

3.3 Rescaling .. 13

4. Ensemble Methods .. 21

4.1 Bagging .. 21

4.2 Clustering ... 22

4.3 Coordination Methods .. 24

4.4 Parameters Settings .. 26

4.5 System Design .. 28

4.6 Result and Discussion .. 30

5. Conclusion and Future Work .. 34

iv

Bibliography ... 35

Vita .. 37

v

Abstract

Malware diagnosis is one of today’s most popular topics of machine learning. Instead of

simply applying all the classical classification algorithms to the problem and claim the highest

accuracy as the result of prediction, which is the typical approach adopted by studies of this kind,

we stick to the Support Vector Machine (SVM) classifier and based on our observation of some

principles of learning, characteristics of statistics and the behavior of SVM, we employed a

number of the potential preprocessing or ensemble methods including rescaling, bagging and

clustering that may enhance the performance to the classical algorithm.

We implemented the idea of rescaling by iteratively magnifying the attributes used by the

support vectors of SVM and eliminating those unused ones from the training data examples until

a maximum accuracy is achieved. Our study of bagging and clustering focused on the situation

where only examples of malware are available and one-class SVM is used. For both methods, a

group of models is built using part of the training data instead of building one model with the

whole training data set. We also compared the effect of two possible coordination approaches for

the sub-models acquired in the training process, namely, voting and one positive to be positive.

Results of experiments showed that when utilized together with appropriate coordination

methods, ensemble methods can effectively decrease both the cases where malware is labeled as

clean or clean software is classified as malware, which are formally known as false-negative and

false-positive errors in our context respectively.

1

Chapter1

Introduction

Malware, which is the abbreviation of malicious software, is a class of malicious code that

includes worms, computer viruses, Trojan horse, etc. The purpose and effect of malware is to

disrupt the normal functionality of computer system, gather and modify essential information, or

to acquire illegal control of certain computer system [1]. Nowadays, with the development of the

computer theory and technology, malware is no longer necessarily be a whole software; it could

be a small section of code, scripts, or active content embedded in its carrier software, document

or email. On the other hand, some of the malware can reproduce themselves, mark themselves

as system files and even do self-propagation via the Internet, making it even more difficult to

detect and identify them. As a result of this, static analysis of code is no longer enough to tell the

malware from clean software. One of the most popular topics in the field of machine learning is

classification which could be applied to the diagnosis of software if we consider malware as

positive example and clean software as the negative example. Although we can direct apply

some of the existed classification algorithms to this problem and some of them do perform

already very well, we still like to explore the effects of some of the training techniques on this

topic, which is the focus of this thesis.

Rescaling is based on the fact that only a proportion of the attributes provided in the training

data are useful for classifiers while other attributes may even act as noise in this process [2].

Hence, one possible enhancement is to selectively allow part of the attributes to be used and

eliminate those useless ones. One question of this approach is how to find and choose the useful

attributes. In our implementation, this task is performed by parsing the SVM (Support Vector

Machine) model stored in the form of plain text file; calculate the normalized weight according

to each support vector; rescale the training data with these weights. The process of rescaling is

2

iterative and it will not stop until a maximum accuracy of prediction is reached. In our

experiment, we use the n-gram approach to transform the encoded malware behavior into

attributes for the SVM classifier, then we choose a group of data that are the most difficult to

classify among the whole data set and compared the rescaling approach with the direct training

approach on it [3]. According to the results generated in the experiment, we come to the

conclusion that rescaling does effectively increase the accuracy of classification even if the data

set is intrinsically complex.

Bagging [14] and clustering are two ensemble methods [4] we studied in the context of one-

class SVM [5], that is, instead of being given the information of both the malware and clean

software, we only have examples of malware. With bagging [14], we repeatedly sample a fixed

proportion from the training data set, build a group of sub-models and make predictions with

each one of them; for clustering, we conducted a bottom-up hierarchical clustering along with

the greedy approach for selecting the candidates in each iteration, the clustering process

terminates when all the clusters have merged into one final cluster that contains all the training

examples. Apart from the two ensemble methods, we also studied two coordination approaches

for reconciling the various predictions made by different models. Namely, they are voting [6]

(final prediction is decided by the majority prediction of the sub-models) and one positive to be

positive (as long as one of the sub-models claims an examples to be positive, the final prediction

says positive). In our experiment, we studied the comparison of bagging, clustering and the

traditional method under all the possible combinations of parameter settings. The result of our

study implies that in the context of one-class SVM, ensemble methods with appropriate

coordination do decrease both false-negative errors (malware is mistakenly labeled as clean) and

false-positive errors [7]. (clean software is marked as malware).

3

This thesis is organized as follows: Chapter 2 explains the basic concepts and tools we used in

our experiments such as SVM and n-gram, which is the foundation of further discussion of our

work. Chapter 3 focuses on the rescaling methods. Implementation of the theory, settings and

process of the experiment along with the results are shown. Chapter 4 describes our study of the

ensemble methods, namely bagging and clustering, Chapter 5 summarizes our work and provides

a brief outline for the future task to be carried out.

4

Chapter 2

Background

2.1 SVM

Support Vector Machines (SVMs) are supervised learning models with associated learning

algorithms that analyze data and recognize patterns, used for classification and regression

analysis [8]. An SVM model maps examples as points in a way such that examples of different

classes are divided by a gap that is as wide as possible. Upcoming examples are then mapped

into that same space and predicted as belonging to one of the categories according to which side

of the gap they fall on.

 Formally, the input for SVM is a training set D in the form [9]:

 {()| {

Here, yi is the class label of the point Xi. And the goal of learning is:

Minimize: ||W||

subject to (for any i = 1, 2, 3, …, n):

 ()

 As there is a chance that no hyperplane can separate the two classes thoroughly, we need to

introduce a slack variable ξ to tolerate some mislabeled examples. By using the Lagrange

multiplier, the problem is transformed to:

{

|| ||

 ∑

∑ ()

∑

The dual form is:

To Maximize:

5

 () ∑

∑ ()

subject to (for any i = 1, 2, …, n)

0 ≤ ≤ C,

∑

In addition to performing linear classification, SVMs can efficiently perform non-linear

classification using kernel trick, implicitly mapping their inputs into high-dimensional feature

spaces. For example, the Gaussian radial basis function (rbf) [10] is:

 () || ||

Multi-class prediction is also enabled by using either one-to-one to one-to-multiple approach.

Figure 2.1 Support Vector Machine

6

The one-class SVM can be considered as a two-class SVM where all the training data are of

the first class while the second class is originally only composed of the origin point [11]. The

basic idea of the one-class SVM is to map the input data into a high dimensional feature space

using a certain kernel function and constructs a decision function to accurately tell the data of

one class from the other with the maximum gap.

As SVM is one of the most popular and accurate classifier, there are already a number of

implementations, such as looms, Weka [27], TinySVM [28], etc; The one we use in our study is

LIBSVM [12], which is developed and maintained by Dr. Chi-Jen Lin’s research group in the

National Taiwan University. Currently, LIBSVM provides multiple programming languages

such as C++, Python, Matlab and Java, which is our choice.

In LIBSVM, There are mainly 3 types of parameters for the SVM classifier: svm type, kernel

type and value of C (and Gamma). For the study of rescaling, we use c-svc as the svm type,

linear kernel as the kernel type; for the study of ensemble methods, we choose one-class svm as

the svm type and rbf kernel as the kernel type. In both study, we use cross validation to decide

the value of C (and Gamma), that is, we exhaustively calculate the accuracy for all the possible

values of C, and choose the one that produces the highest accuracy [13].

2.2 Bagging

The idea of bagging was first proposed by Leo Breiman in 1994 [14]. It is a machine learning

ensemble algorithm that can improve the classification and regression models in terms of

stability and classification accuracy. Bagging can also help avoid overfitting by reducing the

variance.

7

The process of bagging is to uniformly sample a subset Di from the training set D of size n

with replacement for m times, build m models with each individual subset of training data, and

generate the final prediction of examples using some coordination approach [15].

2.3 Clustering

 The goal of clustering is to assign a set of examples into some clusters, so examples in each

cluster are more similar to each other than those in other clusters [16].

In our study, we use a bottom-up hierarchical clustering approach. That is, during each

iteration, we always merge a pair of clusters whose distance is the shortest among all the

candidates. The clustering stops when all the clusters have merged into one [17].

2.4 Rescaling

 The theoretical basis of rescaling is that the objective function consists of two terms that

compete with each other: (1) the goodness-of-fit (to be maximized), and (2) the number of

variables (to be minimized). And the process of rescaling could be represented in the following

way:

 1. Train a regular linear SVM.

 2. Re-scale the input variables by multiplying them by the absolute values of the components

of the weight vector w obtained.

 3. Iterate the first 2 steps until convergence [18].

 The main variation of different implementation of this algorithm lies in step2 that is how to

choose the weight vectors from the training model. In our study, we directly make use of the

model built by the SVM training process by only allowing the attributes appear in the supporting

vectors to be involved in the next iteration; further details of the approach will be discussed in

the following chapters.

8

2.5 N-gram

 An n-gram is a contiguous sequence of n items from a given sequence of text or speech. The

n-gram model can be used to predict the next item in such a sequence in the form of a (n - 1)-

order Markov model, and it is widely used in fields like computational biology, data compression

and natural language processing. Two of the advantage of the n-gram model is its simplicity and

the ability to scale up [19].

 For example, the DNA section: ...AGTCCAGGT... will produce the following sequences: AG,

GT, TC, CC, CA, AG, GG, GT when being applied to the 2-gram model; and produce AGT,

GTC, TCC, CCA, CAG, AGG, GGT when using 3-gram [20].

2.6 State of Art

 Siddiqui et al. used data-mining techniques to detect Trojans [21]. They mined n-grams from

the body of Trojans and used these as features. Their dataset they used contains

3000 Trojans and 1722 clean examples. Random Forest and Principal Component Analysis

algorithms were used for the purpose of feature selection, and the Random Forest algorithm and

SVM for classification. Their method could accurately predict 94% of the new Trojans.

 Schultz et al. presented a data-mining framework to detect new executables [22]. They used

4266 programs of which 3265 were malicious and 1001 were clean. They applied three kinds of

algorithms: an inductive rule-based learner, a probabilistic predictor, and a multi-classifier. By

porting the classification algorithms into a signature-based detection algorithm, 97.76% of the

malwares could be detected.

Ye et al. presented an objective-oriented association mining system to detect malware with an

accuracy of 92% [23].

9

Chapter 3

Rescaling

3.1 Basic Information of Data

The original data was provided by the Laboratory for Dependable Distributed Systems at

University of Mannheim at the following web site: http://pi1.informatik.uni-

mannheim.de/malheur/#appset. In general, there are 24 classes of malwares in total, the name of

each class and number of examples could be found in Table 3.1:

Table 3.1 Malware Class Names and Numbers

Malware Class Name Number of Example

ADULTBROWSER 262

ALLAPLE 300

BANCOS 48

CASINO 140

DORFDO 65

EJIK 168

FLYSTUDIO 33

LDPINCH 43

LOOPER 209

MAGICCASINO 174

PODNUHA 300

POISON 26

PRONDIALER 98

RBOT 101

ROTATOR 300

SALITY 85

SPYGAMES 139

SWIZZOR 78

VAPSUP 45

VIKING_DLL 158

VIKING_DZ 68

VIRUT 202

WOIKOINER 50

ZHELATIN 41

 The malware behavior was extracted using CWSandbox. There are 3131 examples in total,

and for each example, the research group at University of Mannheim provided 3 formats of

http://pi1.informatik.uni-mannheim.de/malheur/%23appset
http://pi1.informatik.uni-mannheim.de/malheur/%23appset

10

malware behavior description, namely, CWSandbox version and in the MIST encoding version,

which is the version we use. A snapshot of the file format is provided in Figure 3.1.

Figure 3.1 Snapshot of the File Format

 From the second line until the end of the file, each line is actually a record of a system call

made by the malware at run time, the type of the call is encoded into the first two integers in

each line, where the first integer is the major operation code while the second is the minor

operation code, and according to our experiment, the accuracy obtained by only considering the

major code is higher than that when also taking the minor code into consideration. Hence, in the

following study, only the major code is used. As there are 20 kinds of operations in total, we

could achieve a unique index for each n-gram attribute using the following formula:

 ∑

11

 Here, Xi is the ith value in a single gram, in other words, the index is calculated as the

weighted sum of each individual attribute in the gram. It is not hard to figure out that if a

malware has n1 operations in total, the corresponding n2-gram training example will have (n1 - n2)

attributes.

 The first experiment we conducted in our study was to find out the relationship between the

value of n for n-gram and the accuracy of prediction. To perform this task, we simple use the

traditional SVM classifier without any modification to check the different accuracy that could be

achieved when using different proportion of training data and value of n.

 The process of the experiment could be described in Figure 3.2:

Figure 3.2 Process of Deciding Value of n

 That is for each possible combination of the parameters, we run the system 40 times and the

arithmetic average of the 40 results is used as the final accuracy for each combination.

The result of this process is shown in Table 3.2:

 It is easy to come to the conclusion that for any given training percentage, the accuracy

decreases monotonically when the value of n increases. As a result of this observation, we stick

to the value of 2 in our later settings.

12

Table 3.2 Result of Different Choices of Training Percentage and Value of n

Training percentage Value of n Accuracy

10 2 95.528

10 3 93.802

10 4 92.854

10 5 90.356

10 6 89.562

10 7 88.751

30 2 97.024

30 3 95.652

30 4 94.152

30 5 93.241

30 6 91.478

30 7 89.540

50 2 98.757

50 3 96.823

50 4 95.652

50 5 93.447

50 6 92.548

50 7 90.612

3.2 Multi-grams

 Our first attempt to increase the accuracy is to involve multiple choices of n for the n-gram

when building the model, with the thought that there is a chance for each gram to make up the

deficiency of others [24]. For example, instead of using 2-gram or 3-gram solely, we can train a

model with 2-gram and 3-gram simultaneously (noted as 2, 3-gram), take the DNA section

example we used in the previous chapter again:

...AGTCCAGGT... will produce the following sequences: AG, GT, TC, CC, CA, AG, GG, GT,

AGT, GTC, TCC, CCA, CAG, AGG, GGT when using 2,3 gram, which is the union of

sequences produced by 2-gram and 3-gram respectively. However, after we tried to verify the

idea with only a few combinations(the result is shown in Table 3.3, the training percentage is

10%), the thought was proved to be wrong, since instead of achieving an accuracy higher than

13

each individual choice of n, the multi-gram approach cannot work better than the best individual

choice, namely, when n = 2.

Table 3-3 Result of Multi-gram Experiment

Combination of Values of n Accuracy

2, 3 94.074

2, 4 93.323

2, 3, 4 93.252

2, 5 93.137

2, 6 92.772

2, 7 92.034

3.3 Rescaling

3.3.1 Algorithm

 As we have mentioned in the introduction to LIBSVM, the model of the SVM generated from

the training process is actually stored in a plain text file, a snapshot of which is provided as

Figure 3.3; As a result of this, we could easily parse the model generated by the SVM classifier:

Figure 3.3 A Snapshot of the SVM Model

 The first 7 lines contain the basic information and parameters of the obtained model, such as

type, kernel type, number of classes, labels of classes, etc. From the 9
th

 line, every line descripts

14

a supporting vector used by the model, for example, the 10
th

 line could be parsed as a supporting

vector whose weight is approximately 1.14 * 10
-6

, and it contains the attribute 275, 276, 282 with

the value of 0.043468, 0.025437 and 0.018839 respectively.

 For the sake of simplicity, we first focus on the situation where only two classes are involved.

However, it is not easy to find such two classes, since even the traditional SVM could make a

very accurate prediction on this data set according to the results shown in Table 3.2. To perform

this task, instead of simply noting the accuracy of prediction, we also maintain a confusion table

to discover the root of misprediction. The confusion table of an execution of the 7-gram

execution is shown in Figure 3.4.

Figure 3.4 Confusion Table

15

 From the above figure, we learned that the classes with label 7 and 16 are the hardest to

predict: more than half of the examples of class 7 are predicted as other classes while a lot of

examples that do not belong to class 16 are predicted to be of this kind. As a result of this, we

use these two classes in our study of rescaling, and we stick to 7-gram since in this case, the

result of the traditional training process has the largest potential to be improved.

 As mentioned earlier, our main idea of rescaling is to iteratively build a model with the

attributes used by the support vectors; by pushing other attributes to 0, the selected attributes are

actually rescaled to be larger. The training process will terminate once the accuracy begins to

decrease, then we go back to the last iteration, and use this model as the finally trained

model.(Figure 3.5):

Figure 3.5 Pseudocode of Rescaling

16

3.3.2 System Design

(1) Flowchart

After the user input the selected parameters through the user interface (shown in Figure 3.6),

the system will begin running. The flowchart of the system, especially with regard to the

difference of training process in different methods is shown in Figure 3.7.

Figure 3.6 User Interface of the Rescaling System

(2) Class diagram

 The whole system can be seen as two parts: the SVM classifier contained in the LIBSVM

library and the data processing and file manipulator part developed by us. It’s nontrivial to

mention that although the original LIBSVM package could perform the calculation of

classification, we modified it a little to adapt to our needs in the experiment, especially to allow

some kinds of return values for the methods.

 We mainly designed and implemented 6 classes, there relationships in the form of class

diagram are shown in Figure 3.8.

17

Figure 3.7 Flow Chart of The Rescaling system

18

Figure 3.8 A Partial Class Diagram of the Rescaling System

 The functions of these classes are:

DataScanner reads the original data file we obtained from the internet using the n-gram rules

and translate it into the data file that could be parsed by SVM;

19

FileGenerator split the data into training data and testing data according to the proportion of

traning data;

 RandomIndicesGenerator generates the random indices we need to do the random sampling;

 Classifier is actually the core of the system, it calls other components of the system to

complete the classification job and do the record task;

 Recorder calls FileGenerator to update and rewrite the training data during each iteration of

the training process.

 Model Parser is only used when rescaling is enabled, it parses the text of the SVM model and

store the information of the support vectors into a hashtable;

3.3.3 Result and Discussion

 We compared the accuracy of the rescaling training method and the traditional training

method with training percentage of 10%, 30% and 50%.

 For each setting of parameters, the system runs 40 times and the arithmetic average of each

running is our final result, which is shown in Table 3-4:

Table 3.4 Comparison between Rescaling and Traditional Training Methods

Training Percentage

Accuracy

Traditional Rescaling

10 68.762 80.265

30 77.053 89.743

50 88.634 96.227

As the two classes we choose in this phase of experiment only have 33 and 84 examples

respectively, if we sample the training set by percentage, there is a chance that the number of one

class will be too small for training. Instead, we can create a training set of the size 20, with 10

examples from each set. Again, the system runs 40 times and the arithmetic average of each

running is our final result, which is shown in Table 3-5:

20

Table 3.5 Comparison between Traditional and Rescaling Training Method (2)

Method of Training Accuracy

Traditional 82.423

Rescaling 92.371

From the above experiments, we can learn that:

(1) Rescaling effectively magnifies the useful information contained in the given data and to

some extent, could eliminate the noise from the data.

(2) When we do not have enough data for training or there is a large unbalance between the

numbers of examples of each class of data, sampling by absolute number works better

than sampling by percentage. In our experiment, the second sampling strategy only

samples less than 20% of the training data but achieves a higher accuracy than using 30%

of the data for training use.

(3) Our experiment shows that rescaling does enhance the effectiveness of training process,

however, currently the result is only derived from a certain group of data, and more

experiments are needed to further validate the effectiveness of the method.

21

Chapter 4

Ensemble Methods

 We have briefly described the basic concepts of bagging and clustering earlier, here we are

providing the detailed implementations of the two methods, experiment settings and the results

we got through these work. The dataset we use contains 3683 entries of examples, where 3663

examples are malware (labeled as positive) and 20 are clean (label as negative). As we are

focusing on one-class SVM, all the negative examples are preserved as testing data.

4.1 Bagging

 Instead of building one model with all the training data, we randomly pick up a fixed

percentage of training data and build a model with this subset of training data [14][25]; by

repeating this process for certain times, we will achieve a set of models, it is nontrivial to point

out that overlapping is allowed between subsets. Later in this chapter, we will discuss how to

coordinate these models and predict a testing example. In our study, experiments on bagging was

done on the Matlab platform since most of the operations involved in bagging can be

transformed to basic mathematical manipulations.

 Apart from the training process, we also need to output the training data read by Matlab into

plain text file in order to guarantee the accordance of sequence of data: In order to compare the

two different ensemble methods, we want to make sure that the result of experiment will not be

affected by the variance of the possible training data, that is, in each iteration, the same sample of

training data and testing data should be used by bagging and clustering. As we always run the

bagging system before the clustering system, this task is performed each time Matlab reads

training data from the original data file.

22

4.2 Clustering

 We realize that commercial anti-virus software not only labels software as malicious or

normal but also label malwares with proper types that they should belong to. By making use of

this observation, we also try to involve the similar idea in our work: we try to group the training

examples into clusters, and then we gradually merge smaller clusters into larger ones, build a

model if the newly generated cluster is large enough. Finally we will end up with a cluster that

contains all the training examples. To be more specific, we maintain a list of clusters. Initially,

every training example is a cluster by itself, and in each iteration, we merge the two clusters

whose distance is the smallest, delete them from the list and add the new cluster into the list,

besides, as long as the size of the new cluster is greater or equal than a preset threshold, we add it

to our final list that contains only the clusters we will use to build model with.

 The distance between two clusters c1 and c2 is defined as:

 ()
∑ ∑ ()

 Here, m is the number of clusters in c1, n is the number of clusters in c2,

distance (ei, ej) is the distance between two examples ei and ej, which can be calculated using

the following process (Figure 4.1):

Figure 4.1 Calculation of Distance

23

 Based on the above analysis, we can use a greedy approach to merge all the examples into one

cluster, that is: in each iteration, we always merge the two clusters whose distance is the shortest

into one larger cluster. The idea is shown in Figure 4.2:

Figure 4.2 Pseudocode for Clustering

 Unlike bagging, we use Java to implement the system for clustering, since all the data

structures involved in the study are provided intrinsically by the Java library.

24

4.3 Coordination Methods

 Both of the techniques will create a bunch of models, each of which will make its own

prediction, hence a new problem is aroused—how to make a final decision given these individual

predictions. In our work, we have studied the following two coordination approaches:

(1) Voting: The prediction of every single model is equally counted: we maintain a counter

whose initial value is 0, and any prediction that labels a testing case as positive increases

the counter by 1 while negative predictions decrease it by 1; after calculating all the

predictions, if the counter is positive, then the testing case is positive, and vice versa. The

corresponding flowchart is provided in Figure 4.3.

Figure 4.3 Mechanism of Voting

(2) One positive to be positive: as the name suggests, as long as any one of the built models

predicts an entry of testing data as positive then we label it as positive. It’s not hard to

25

learn that this approach will effective lower down the chance of false-negative error but

could result in more false-positive error. Again, a flowchart (Figure 4.4) is plotted to help

understanding the idea.

Figure 4.4 Mechanism of the One Positive to Be Positive Approach

 By combining the two techniques and labeling strategies, there are four different approaches to

the problem, and in our work, together with the traditional learning process, we have compared

all these five different approaches:

(1) Build a model directly according to the training data.

(2) Training with bagging and labeling using voting.

(3) Training with bagging while one positive to be positive.

26

(4) Training with clustering and labeling using voting.

(5) Training with clustering while one positive to be positive.

4.4 Parameters Settings

 In our experiment, apart from the parameters for LIBSVM we discussed earlier, we have four

parameters for the training process:

(1) Number of bags: this parameter indicates how many bags are created during the training

process; possible values of this parameter are 20, 40, 60, 80, and 100.

(2) Number of training examples: the number of examples to be used in the training process.

Possible values are inclusively between 50 and 300, with an interval of 50. Given the fact

that there are 3383 examples in total, the percentage of training is strictly less than 10%,

which is able to simulate the condition that there may not be enough training samples.

(3) Percentage of bagging: what proportion of training samples are used in each bag. Values

for this parameter are 70%, 80% and 90%.

(4) Threshold for clustering: this value indicates the minimum size of a cluster that could be

added into the final list of cluster that will be used to build a model.

 The process of our experiment can be describes as:

(1) Transform the information of malwares and normal softwares that are initially binary

into .mat files that could be processed by Matlab.

(2) Perform the (1) ~ (3) approaches described above using the Matlab implementation of

SVM with all possible combinations of the 3 parameters we mentioned previously. In

order to guarantee the consistency of training data, we also output the sequence of

training data and testing data of each execution for the next step. The parameters for

libsvm are: one-class for the type and radial basis function (rbf) for the kernel type.

27

(3) Perform the (4) ~ (5) approaches using the Java implementation of SVM with 50 and 100

training examples, thresholds of 20%, 40%, 60% and 80% of the total number of training

examples respectively, the input is given by the sequence generated in the last step.

 The flowchart (Figure 4.5) for the above description is provided below:

Figure 4.5: Flowchart of study of Bagging (left) and Clustering (right)

28

4.5 System Design

4.5.1 Class Design

Here, we only provide the design sketches of the clustering system since the bagging part is

conducted on Matlab where only scripts are used. Apart from the classes built in the libsvm

library, we have the following 5 classes in the class diagram (Figure 4.6).

Figure 4.6 Class Diagram of the Clustering System

29

 The functions of the 5 classes are:

 The Recorder class reads the text file that contains the training data written by Matlab and

transform the file into the format that could be read by libsvm.

(1) The Example class simulates an example of data, it implements the method to calculate the

distance between two examples.

(2) The Cluster class simulates a cluster of example, it implements all the behavior of the

cluster and clustering process.

(3) The Main class is the core of the system, it calls the above modules together with the

libsvm library to conduct the experiment; it also write the result of each iteration of

execution into the file for future use.

(4) The Constants class is a utility that records the unmodified constants of the system; namely,

the number of examples and the number of attributes.

4.5.2 I/O Cost

As a well-known principle in computer science, I/O operation is often expensive. Hence we

should always try to minimize it. In our study, we cannot decrease the necessary I/O

manipulation brought by reading and writing data, but we can try to minimize the cost involved

in the communication between the two phases of the experiment. With this goal in mind,

together with the fact that the original training data is actually a sparse matrix, we came to the

method that only the non-zero attributes of examples should be written into the plain text by

Matlab as the training data for clustering. The above process is shown in Figure 4.7:

30

Figure 4.7 Process of writing training data

4.6 Result and Discussion

 The result of bagging and clustering is shown in Table 4.1 and Table 4.2 respectively:

As mentioned earlier, the bagging part was conducted first on the matlab platform with the help

of the libsvm package, then output the training data and testing data sequentially into plain text

files; after that, the clustering part was made on the Java platform by parsing the text files and

calling the svm algorithm to perform the calculation. The result of both parts are in the form of

accuracy of prediction.

31

 To guarantee consistency, we maintain the same parameter settings for both experiments,

namely, we use the same number of training examples, percentage of training and coordination

methods in both situation. Consequently, we could derive a very direct understating of their

performances in our context.

Table 4.1 Result of bagging and Comparison with the Traditional Approach

of

bag

of

train

%

of

bagging

Traditional bagging

False

Negative

False

Positive

One positive

to be positive

Voting

 False

Negative

False

Positive

False

Negative

False

Positive

20 50 70 0.170426 0.050000 0.074869 0.050000 0.408898 0.050000

20 50 90 0.173595 0.050000 0.079255 0.050000 0.402837 0.050000

20 100 70 0.130817 0.097500 0.078136 0.050000 0.191440 0.050000

20 100 90 0.120516 0.050000 0.065114 0.050000 0.135069 0.050000

20 200 70 0.058345 0.097500 0.022192 0.145000 0.092882 0.050000

20 200 90 0.071686 0.142500 0.021152 0.147500 0.072567 0.050000

20 300 70 0.036679 0.097500 0.016176 0.477500 0.048231 0.050000

20 300 90 0.020726 0.060000 0.011418 0.152500 0.032233 0.060000

40 50 70 0.212109 0.050000 0.071810 0.050000 0.466468 0.050000

40 50 90 0.198671 0.050000 0.066634 0.050000 0.397191 0.050000

40 100 70 0.118861 0.050000 0.054042 0.100000 0.164875 0.050000

40 100 90 0.116756 0.050000 0.054701 0.097500 0.135897 0.050000

40 200 70 0.030884 0.145000 0.012388 0.387500 0.084204 0.050000

40 200 90 0.072322 0.097500 0.018409 0.145000 0.067153 0.050000

40 300 70 0.021618 0.050000 0.007196 0.657500 0.030672 0.050000

40 300 90 0.023476 0.145000 0.012266 0.145000 0.036411 0.107500

60 50 70 0.208276 0.047500 0.057265 0.050000 0.417465 0.050000

60 50 90 0.224177 0.050000 0.065513 0.050000 0.405563 0.050000

60 100 70 0.142057 0.050000 0.060904 0.050000 0.197193 0.050000

60 100 90 0.123940 0.050000 0.050954 0.050000 0.134143 0.050000

60 200 70 0.042997 0.192500 0.020214 0.287500 0.090990 0.097500

60 200 90 0.091366 0.050000 0.025744 0.050000 0.080075 0.050000

60 300 70 0.024978 0.052500 0.007434 0.810000 0.039102 0.050000

60 300 90 0.018867 0.145000 0.009709 0.257500 0.028115 0.112500

80 50 70 0.204802 0.050000 0.069582 0.050000 0.517963 0.045000

80 50 90 0.240368 0.050000 0.062068 0.050000 0.445931 0.050000

80 100 70 0.133764 0.050000 0.054252 0.050000 0.180382 0.050000

80 100 90 0.163458 0.050000 0.055571 0.097500 0.154070 0.050000

80 200 70 0.040658 0.050000 0.022004 0.135000 0.103018 0.050000

80 200 90 0.086457 0.192500 0.013067 0.240000 0.069275 0.050000

80 300 70 0.020146 0.092500 0.006587 0.745000 0.046209 0.060000

80 300 90 0.020056 0.145000 0.008043 0.145000 0.032337 0.050000

32

Table 4.2 Result of Clustering

Threshold

number of

training

clustering

One positive

to be positive

Voting

 False

Negative

False

Positive

False

Negative

False

Positive

20 50 0.103312 0.050000 0.565217 0.050000

20 100 0.056879 0.050000 0.495378 0.050000

20 200 0.039573 0.050000 0.456505 0.050000

20 300 0.035127 0.050000 0.425244 0.050000

40 50 0.100371 0.050000 0.466533 0.050000

40 100 0.056988 0.050000 0.391410 0.050000

40 200 0.039946 0.050000 0.347988 0.050000

40 300 0.035084 0.050000 0.322273 0.050000

60 50 0.104034 0.050000 0.398762 0.050000

60 100 0.059326 0.050000 0.329310 0.050000

60 200 0.039269 0.050000 0.288754 0.050000

60 300 0.034733 0.050000 0.263793 0.050000

80 50 0.102442 0.050000 0.208747 0.050000

80 100 0.057985 0.050000 0.152316 0.050000

80 200 0.039511 0.050000 0.135846 0.050000

80 300 0.034633 0.050000 0.117286 0.050000

From the above result, we can conclude that:

(1) As is in accordance with a general principle in Machine learning, more training example

will lead to higher accuracy.

(2) Although occasionally suffer from a higher chance of false-positive error, one positive to

be positive approach performs better than voting in general.

(3) Higher threshold for clustering will result in higher accuracy for voting.

(4) In general, bagging performs better than clustering in dealing with false-negative error

while clustering wins when it comes to false-positive error.

(5) As we only have 20 negative examples (clean software), but have over 3000 positive

examples (malware), if we assign the same weight for false-negative and false-positive

33

errors, we can come to the conclusion that bagging with one positive to be positive

coordination method produces the best accuracy among all the 5 approaches.

(6) We need to verify our idea with more negative examples in our future work when they

are available.

34

Chapter 5

Conclusion and Future Work

 In general, we have studied the effect of two approaches of learning on the topic of malware

classification: rescaling and ensemble methods with one-class SVM:

Rescaling is an iterative process the idea of which is to selectively magnify some of the

attributes of the training data and squeezing others to discover the useful information contained

in the training data set and filter the noise-like interruption. In our implementation, we select

features via parsing the SVM model and we showed that rescaling can effectively improve the

accuracy of prediction model.

Both bagging and clustering can reduce the error rate of false-negative error without or with

trivial rise of chances of false-positive error in the context of one-class SVM if appropriate

coordination method is applied with them, especially when the amount of training data is very

limited.

Future work can include: verify our ideas with more sets of data; perform experiments with

more ensemble methods; integrate all the experiment environments into one platform.

35

Bibliography

[1] http://en.wikipedia.org/wiki/Malware

[2] Eric MJolsness, David H.Sharp, Bradley K. Alpert. Scaling, Machine Learning, and

Genetic Neural Nets. Advances in Applied Mathematics 10, 137-163 (1989)

[3] http://pi1.informatik.uni-mannheim.de/malheur/#appset

[4] David Opitz, Richard Maclin. Popular Ensemble Methods: An Empirical Study. Journal of

Artificial Intelligence Research 11 (1999) 169-198

[5] Yunqiang Chen, Xiang Zhou, Thomas S. Huang. One-class SVM for Learning in

Image Retrieval. IEEE Int'l Conf. on Image Processing 2001

[6] Eric Bauer, Ron Kohavi. An Empirical Comparison of Voting Classification Algorithms:

Bagging, Boosting, and Variants. Machine Learning, vv, 1–38 (1998)

[7] http://robotics.stanford.edu/~ronnyk/glossary.html

[8] Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.

Kluwer Academic Publishers, Boston.

[9] Simon Tong, Daphne Koller. Support Vector Machine Active Learning with Applications to

Text Classification. Journal of Machine Learning Research (2001)

 45-66

[10] http://www.cs.cornell.edu/courses/cs578/2006fa/slides_sigir03_tutorial-modified.v3.pdf

[11] Hwanjo Yu. SVMC: Single-Class Classification with Support Vector Machines.

International Joint Conferences on Artificial Intelligence 2003

[12] C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

[13] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order

information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005.

[14] Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123–140.

[15] LIU, Y., and X. YAO, 1999. Ensemble Learning via Negative Correlation. Neural

 Networks, 12(10), 1399–1404.

36

[16] R. Sibson (1973). SLINK: an optimally efficient algorithm for the single-link cluster method.

The Computer Journal (British Computer Society) 16 (1): 30–34.

[17] D. Defays (1977). An efficient algorithm for a complete link method. The Computer Journal

(British Computer Society) 20 (4): 364–366.

[18] Isabelle Guyon, Andre Elisseeff. An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research 3 (2003) 1157-1182.

[19] Peter Náther. N-gram based Text Categorization. Diploma thesis. Faculty of Mathematics,

Physics and Informatics, Institue of Informatics, Comenius University

[20] Z. Volkovicha , V. Kirzhnerb, A. Bolshoyb et al. The Method of N-grams in Large-scale

Clustering of DNA Texts. Pattern Recognition Society. 2005

[21] M. Siddiqui, M. C. Wang, and J. Lee, Detecting trojans using data mining techniques. in

IMTIC, ser. Communications in Computer and Information Science, D. M. A. Hussain, A.

Q. K. Rajput, B. S. Chowdhry, and Q. Gee, Eds., vol. 20. Springer, 2008, pp. 400–411.

[22] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining Methods for Detection of

New Malicious Executables. IEEE Symposium on Security and Privacy. Washington, DC,

USA: IEEE Computer Society, 2001.

[23] Y. Ye, D. Wang, T. Li, and Ye. Imds: Intelligent malware detection system. Proccedings of

ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD 2007),

2007.

[24] Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Text Classification Improved

Through Multigram Models. CIKM '06: Proceedings of the 15th ACM international

conference on Information and knowledge management.

[25] Aslam Javed A, Popa Raluca A. and Rivest Ronald L. (2007). On Estimating the Size and

Confidence of a Statistical Audit. Proceedings of the Electronic Voting Technology

Workshop (EVT '07), Boston, MA, August 6, 2007.

[26] Jason Weston. Leave-One-Out Support Vector Machines. International Joint Conferences on

Artificial Intelligence.Vol.2.1999.

[27] Mark Hall, Eibe Frank, Geoffrey Holmes, et. al. The WEKA Data Mining Software.

SIGKDD Explorations. Volume 11, Issue1.

[28] http://chasen.org/~taku/software/TinySVM/

37

Vita

Xing An was born and raised up in Wuhan, China. He received his bachelor’s and master’s

degree in engineering from Wuhan University in 2008. Thereafter, he came to LSU and began to

work under the supervision of Dr. Jian Zhang with research focus on machine learning. He will

receive his master’s degree in May 2013 and plans to continue his study towards his doctorate

upon graduation.

	Louisiana State University
	LSU Digital Commons
	2012

	Ensemble Methods for Malware Diagnosis Based on One-class SVMs
	Xing An
	Recommended Citation

	tmp.1483774927.pdf.JTpWZ

