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Abstract 

Malware diagnosis is one of today’s most popular topics of machine learning. Instead of 

simply applying all the classical classification algorithms to the problem and claim the highest 

accuracy as the result of prediction, which is the typical approach adopted by studies of this kind, 

we stick to the Support Vector Machine (SVM) classifier and based on our observation of some 

principles of learning, characteristics of statistics and the behavior of SVM, we employed a 

number of the potential preprocessing or ensemble methods including rescaling, bagging and 

clustering that may enhance the performance to the classical algorithm. 

We implemented the idea of rescaling by iteratively magnifying the attributes used by the 

support vectors of SVM and eliminating those unused ones from the training data examples until 

a maximum accuracy is achieved. Our study of bagging and clustering focused on the situation 

where only examples of malware are available and one-class SVM is used. For both methods, a 

group of models is built using part of the training data instead of building one model with the 

whole training data set. We also compared the effect of two possible coordination approaches for 

the sub-models acquired in the training process, namely, voting and one positive to be positive. 

Results of experiments showed that when utilized together with appropriate coordination 

methods, ensemble methods can effectively decrease both the cases where malware is labeled as 

clean or clean software is classified as malware, which are formally known as false-negative and 

false-positive errors in our context respectively.
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Chapter1 

Introduction 
 

Malware, which is the abbreviation of malicious software, is a class of malicious code that 

includes worms, computer viruses, Trojan horse, etc. The purpose and effect of malware is to 

disrupt the normal functionality of computer system, gather and modify essential information, or 

to acquire illegal control of certain computer system [1]. Nowadays, with the development of the 

computer theory and technology, malware is no longer necessarily be a whole software; it could 

be a small section of code, scripts, or active content embedded in its carrier software, document 

or email.  On the other hand, some of the malware can reproduce themselves, mark themselves 

as system files and even do self-propagation via the Internet, making it even more difficult to 

detect and identify them. As a result of this, static analysis of code is no longer enough to tell the 

malware from clean software. One of the most popular topics in the field of machine learning is 

classification which could be applied to the diagnosis of software if we consider malware as 

positive example and clean software as the negative example. Although we can direct apply 

some of the existed classification algorithms to this problem and some of them do perform 

already very well, we still like to explore the effects of some of the training techniques on this 

topic, which is the focus of this thesis. 

Rescaling is based on the fact that only a proportion of the attributes provided in the training 

data are useful for classifiers while other attributes may even act as noise in this process [2]. 

Hence, one possible enhancement is to selectively allow part of the attributes to be used and 

eliminate those useless ones. One question of this approach is how to find and choose the useful 

attributes. In our implementation, this task is performed by parsing the SVM (Support Vector 

Machine) model stored in the form of plain text file; calculate the normalized weight according 

to each support vector; rescale the training data with these weights. The process of rescaling is 



2 
 

iterative and it will not stop until a maximum accuracy of prediction is reached. In our 

experiment, we use the n-gram approach to transform the encoded malware behavior into 

attributes for the SVM classifier, then we choose a group of data that are the most difficult to 

classify among the whole data set and compared the rescaling approach with the direct training 

approach on it [3]. According to the results generated in the experiment, we come to the 

conclusion that rescaling does effectively increase the accuracy of classification even if the data 

set is intrinsically complex. 

Bagging [14] and clustering are two ensemble methods [4] we studied in the context of one-

class SVM [5], that is, instead of being given the information of both the malware and clean 

software, we only have examples of malware. With bagging [14], we repeatedly sample a fixed 

proportion from the training data set, build a group of sub-models and make predictions with 

each one of them; for clustering, we conducted a bottom-up hierarchical clustering along with 

the greedy approach for selecting the candidates in each iteration, the clustering process 

terminates when all the clusters have merged into one final cluster that contains all the training 

examples. Apart from the two ensemble methods, we also studied two coordination approaches 

for reconciling the various predictions made by different models. Namely, they are voting [6] 

(final prediction is decided by the majority prediction of the sub-models) and one positive to be 

positive (as long as one of the sub-models claims an examples to be positive, the final prediction 

says positive). In our experiment, we studied the comparison of bagging, clustering and the 

traditional method under all the possible combinations of parameter settings. The result of our 

study implies that in the context of one-class SVM, ensemble methods with appropriate 

coordination do decrease both false-negative errors (malware is mistakenly labeled as clean) and 

false-positive errors [7]. (clean software is marked as malware). 
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This thesis is organized as follows: Chapter 2 explains the basic concepts and tools we used in 

our experiments such as SVM and n-gram, which is the foundation of further discussion of our 

work. Chapter 3 focuses on the rescaling methods. Implementation of the theory, settings and 

process of the experiment along with the results are shown. Chapter 4 describes our study of the 

ensemble methods, namely bagging and clustering, Chapter 5 summarizes our work and provides 

a brief outline for the future task to be carried out. 
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Chapter 2  

Background 
 

2.1    SVM 

Support Vector Machines (SVMs) are supervised learning models with associated learning 

algorithms that analyze data and recognize patterns, used for classification and regression 

analysis [8]. An SVM model maps examples as points in a way such that examples of different 

classes are divided by a gap that is as wide as possible. Upcoming examples are then mapped 

into that same space and predicted as belonging to one of the categories according to which side 

of the gap they fall on.  

    Formally, the input for SVM is a training set D in the form [9]: 

  {(     )|          {         
  

 

Here, yi is the class label of the point Xi. And the goal of learning is: 

Minimize:  ||W|| 

subject to (for any i = 1, 2, 3, …, n): 

  (      )    

 

    As there is a chance that no hyperplane can separate the two classes thoroughly, we need to 

introduce a slack variable ξ to tolerate some mislabeled examples. By using the Lagrange 

multiplier, the problem is transformed to: 
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The dual form is: 

To Maximize: 
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subject to (for any i = 1, 2, …, n) 
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In addition to performing linear classification, SVMs can efficiently perform non-linear 

classification using kernel trick, implicitly mapping their inputs into high-dimensional feature 

spaces. For example, the Gaussian radial basis function (rbf) [10] is: 

 (     )     ||     ||
 
 

Multi-class prediction is also enabled by using either one-to-one to one-to-multiple approach. 

 

 

Figure 2.1 Support Vector Machine 
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The one-class SVM can be considered as a two-class SVM where all the training data are of 

the first class while the second class is originally only composed of the origin point [11]. The 

basic idea of the one-class SVM is to map the input data into a high dimensional feature space 

using a certain kernel function and constructs a decision function to accurately tell the data of 

one class from the other with the maximum gap. 

As SVM is one of the most popular and accurate classifier, there are already a number of 

implementations, such as looms, Weka [27], TinySVM [28], etc; The one we use in our study is 

LIBSVM [12], which is developed and maintained by Dr. Chi-Jen Lin’s research group in the 

National Taiwan University. Currently, LIBSVM provides multiple programming languages 

such as C++, Python, Matlab and Java, which is our choice. 

In LIBSVM, There are mainly 3 types of parameters for the SVM classifier: svm type, kernel 

type and value of C (and Gamma). For the study of rescaling, we use c-svc as the svm type, 

linear kernel as the kernel type; for the study of ensemble methods, we choose one-class svm as 

the svm type and rbf kernel as the kernel type. In both study, we use cross validation to decide 

the value of C (and Gamma), that is, we exhaustively calculate the accuracy for all the possible 

values of C, and choose the one that produces the highest accuracy [13]. 

2.2    Bagging 

The idea of bagging was first proposed by Leo Breiman in 1994 [14]. It is a machine learning 

ensemble algorithm that can improve the classification and regression models in terms of 

stability and classification accuracy. Bagging can also help avoid overfitting by reducing the 

variance. 
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The process of bagging is to uniformly sample a subset Di from the training set D of size n 

with replacement for m times, build m models with each individual subset of training data, and 

generate the final prediction of examples using some coordination approach [15]. 

2.3    Clustering 

    The goal of clustering is to assign a set of examples into some clusters, so examples in each 

cluster are more similar to each other than those in other clusters [16]. 

In our study, we use a bottom-up hierarchical clustering approach. That is, during each 

iteration, we always merge a pair of clusters whose distance is the shortest among all the 

candidates. The clustering stops when all the clusters have merged into one [17]. 

2.4    Rescaling 

    The theoretical basis of rescaling is that the objective function consists of two terms that 

compete with each other: (1) the goodness-of-fit (to be maximized), and (2) the number of 

variables (to be minimized). And the process of rescaling could be represented in the following 

way:  

    1. Train a regular linear SVM. 

    2. Re-scale the input variables by multiplying them by the absolute values of the components 

of the weight vector w obtained. 

    3. Iterate the first 2 steps until convergence [18]. 

    The main variation of different implementation of this algorithm lies in step2 that is how to 

choose the weight vectors from the training model. In our study, we directly make use of the 

model built by the SVM training process by only allowing the attributes appear in the supporting 

vectors to be involved in the next iteration; further details of the approach will be discussed in 

the following chapters.  
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2.5    N-gram 

    An n-gram is a contiguous sequence of n items from a given sequence of text or speech. The 

n-gram model can be used to predict the next item in such a sequence in the form of a (n - 1)-

order Markov model, and it is widely used in fields like computational biology, data compression 

and natural language processing. Two of the advantage of the n-gram model is its simplicity and 

the ability to scale up [19]. 

    For example, the DNA section: ...AGTCCAGGT... will produce the following sequences: AG, 

GT, TC, CC, CA, AG, GG, GT when being applied to the 2-gram model; and produce AGT, 

GTC, TCC, CCA, CAG, AGG, GGT when using 3-gram [20]. 

2.6    State of Art 

    Siddiqui et al. used data-mining techniques to detect Trojans [21]. They mined n-grams from 

the body of Trojans and used these as features. Their dataset they used contains  

3000 Trojans and 1722 clean examples. Random Forest and Principal Component Analysis 

algorithms were used for the purpose of feature selection, and the Random Forest algorithm and 

SVM for classification. Their method could accurately predict 94% of the new Trojans. 

    Schultz et al. presented a data-mining framework to detect new executables [22]. They used 

4266 programs of which 3265 were malicious and 1001 were clean. They applied three kinds of 

algorithms: an inductive rule-based learner, a probabilistic predictor, and a multi-classifier. By 

porting the classification algorithms into a signature-based detection algorithm, 97.76% of the 

malwares could be detected.  

Ye et al. presented an objective-oriented association mining system to detect malware with an 

accuracy of 92% [23].   
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Chapter 3 

Rescaling 

3.1    Basic Information of Data 

The original data was provided by the Laboratory for Dependable Distributed Systems at 

University of Mannheim at the following web site: http://pi1.informatik.uni-

mannheim.de/malheur/#appset. In general, there are 24 classes of malwares in total, the name of 

each class and number of examples could be found in Table 3.1: 

Table 3.1 Malware Class Names and Numbers 

Malware Class Name Number of Example 

ADULTBROWSER 262 

ALLAPLE 300 

BANCOS 48 

CASINO 140 

DORFDO 65 

EJIK 168 

FLYSTUDIO 33 

LDPINCH 43 

LOOPER 209 

MAGICCASINO 174 

PODNUHA 300 

POISON 26 

PRONDIALER 98 

RBOT 101 

ROTATOR 300 

SALITY 85 

SPYGAMES 139 

SWIZZOR 78 

VAPSUP 45 

VIKING_DLL 158 

VIKING_DZ 68 

VIRUT 202 

WOIKOINER 50 

ZHELATIN 41 

 

    The malware behavior was extracted using CWSandbox. There are 3131 examples in total, 

and for each example, the research group at University of Mannheim provided 3 formats of 

http://pi1.informatik.uni-mannheim.de/malheur/%23appset
http://pi1.informatik.uni-mannheim.de/malheur/%23appset
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malware behavior description, namely, CWSandbox version and in the MIST encoding version, 

which is the version we use. A snapshot of the file format is provided in Figure 3.1. 

 

Figure 3.1 Snapshot of the File Format 

    From the second line until the end of the file, each line is actually a record of a system call 

made by the malware at run time, the type of the call is encoded into the first two integers in 

each line, where the first integer is the major operation code while the second is the minor 

operation code, and according to our experiment, the accuracy obtained by only considering the 

major code is higher than that when also taking the minor code into consideration. Hence, in the 

following study, only the major code is used. As there are 20 kinds of operations in total, we 

could achieve a unique index for each n-gram attribute using the following formula: 

        ∑         
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    Here, Xi is the ith value in a single gram, in other words, the index is calculated as the 

weighted sum of each individual attribute in the gram. It is not hard to figure out that if a 

malware has n1 operations in total, the corresponding n2-gram training example will have (n1 - n2) 

attributes. 

    The first experiment we conducted in our study was to find out the relationship between the 

value of n for n-gram and the accuracy of prediction. To perform this task, we simple use the 

traditional SVM classifier without any modification to check the different accuracy that could be 

achieved when using different proportion of training data and value of n.  

    The process of the experiment could be described in Figure 3.2: 

 

Figure 3.2 Process of Deciding Value of n 

    That is for each possible combination of the parameters, we run the system 40 times and the 

arithmetic average of the 40 results is used as the final accuracy for each combination. 

The result of this process is shown in Table 3.2: 

    It is easy to come to the conclusion that for any given training percentage, the accuracy 

decreases monotonically when the value of n increases. As a result of this observation, we stick 

to the value of 2 in our later settings. 
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Table 3.2 Result of Different Choices of Training Percentage and Value of n 

Training percentage Value of n Accuracy 

10 2 95.528 

10 3 93.802 

10 4 92.854 

10 5 90.356 

10 6 89.562 

10 7 88.751 

30 2 97.024 

30 3 95.652 

30 4 94.152 

30 5 93.241 

30 6 91.478 

30 7 89.540 

50 2 98.757 

50 3 96.823 

50 4 95.652 

50 5 93.447 

50 6 92.548 

50 7 90.612 

 

3.2    Multi-grams 

    Our first attempt to increase the accuracy is to involve multiple choices of n for the n-gram 

when building the model, with the thought that there is a chance for each gram to make up the 

deficiency of others [24]. For example, instead of using 2-gram or 3-gram solely, we can train a 

model with 2-gram and 3-gram simultaneously (noted as 2, 3-gram), take the DNA section 

example we used in the previous chapter again: 

...AGTCCAGGT... will produce the following sequences: AG, GT, TC, CC, CA, AG, GG, GT, 

AGT, GTC, TCC, CCA, CAG, AGG, GGT when using 2,3 gram, which is the union of 

sequences produced by 2-gram and 3-gram respectively. However, after we tried to verify the 

idea with only a few combinations(the result is shown in Table 3.3, the training percentage is 

10%), the thought was proved to be wrong, since instead of achieving an accuracy higher than 
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each individual choice of n, the multi-gram approach cannot work better than the best individual 

choice, namely, when n = 2. 

Table 3-3 Result of Multi-gram Experiment 

Combination of Values of n Accuracy 

2, 3 94.074 

2, 4 93.323 

2, 3, 4 93.252 

2, 5 93.137 

2, 6 92.772 

2, 7 92.034 

 

3.3    Rescaling 

3.3.1    Algorithm 

    As we have mentioned in the introduction to LIBSVM, the model of the SVM generated from 

the training process is actually stored in a plain text file, a snapshot of which is provided as 

Figure 3.3; As a result of this, we could easily parse the model generated by the SVM classifier: 

     

 

Figure 3.3 A Snapshot of the SVM Model 

    The first 7 lines contain the basic information and parameters of the obtained model, such as 

type, kernel type, number of classes, labels of classes, etc. From the 9
th

 line, every line descripts 



14 
 

a supporting vector used by the model, for example, the 10
th

 line could be parsed as a supporting 

vector whose weight is approximately 1.14 * 10
-6

, and it contains the attribute 275, 276, 282 with 

the value of 0.043468, 0.025437 and 0.018839 respectively. 

  For the sake of simplicity, we first focus on the situation where only two classes are involved. 

However, it is not easy to find such two classes, since even the traditional SVM could make a 

very accurate prediction on this data set according to the results shown in Table 3.2. To perform 

this task, instead of simply noting the accuracy of prediction, we also maintain a confusion table 

to discover the root of misprediction. The confusion table of an execution of the 7-gram 

execution is shown in Figure 3.4. 

 

Figure 3.4 Confusion Table 
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    From the above figure, we learned that the classes with label 7 and 16 are the hardest to 

predict: more than half of the examples of class 7 are predicted as other classes while a lot of 

examples that do not belong to class 16 are predicted to be of this kind. As a result of this, we 

use these two classes in our study of rescaling, and we stick to 7-gram since in this case, the 

result of the traditional training process has the largest potential to be improved. 

        As mentioned earlier, our main idea of rescaling is to iteratively build a model with the 

attributes used by the support vectors; by pushing other attributes to 0, the selected attributes are 

actually rescaled to be larger. The training process will terminate once the accuracy begins to 

decrease, then we go back to the last iteration, and use this model as the finally trained 

model.(Figure 3.5): 

 

Figure 3.5 Pseudocode of Rescaling 
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3.3.2    System Design 

(1) Flowchart 

After the user input the selected parameters through the user interface (shown in Figure 3.6), 

the system will begin running. The flowchart of the system, especially with regard to the 

difference of training process in different methods is shown in Figure 3.7.  

 

Figure 3.6 User Interface of the Rescaling System 

(2) Class diagram 

    The whole system can be seen as two parts: the SVM classifier contained in the LIBSVM 

library and the data processing and file manipulator part developed by us. It’s nontrivial to 

mention that although the original LIBSVM package could perform the calculation of 

classification, we modified it a little to adapt to our needs in the experiment, especially to allow 

some kinds of return values for the methods. 

    We mainly designed and implemented 6 classes, there relationships in the form of class 

diagram are shown in Figure 3.8. 
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Figure 3.7 Flow Chart of The Rescaling system 



18 
 

 

Figure 3.8 A Partial Class Diagram of the Rescaling System 

  The functions of these classes are: 

DataScanner reads the original data file we obtained from the internet using the n-gram rules 

and translate it into the data file that could be parsed by SVM; 
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FileGenerator split the data into training data and testing data according to the proportion of 

traning data; 

    RandomIndicesGenerator generates the random indices we need to do the random sampling; 

    Classifier is actually the core of the system, it calls other components of the system to 

complete the classification job and do the record task; 

    Recorder calls FileGenerator to update and rewrite the training data during each iteration of 

the training process. 

    Model Parser is only used when rescaling is enabled, it parses the text of the SVM model and 

store the information of the support vectors into a hashtable; 

3.3.3 Result and Discussion 

    We compared the accuracy of the rescaling training method and the traditional training 

method with training percentage of 10%, 30% and 50%.  

    For each setting of parameters,  the system runs 40 times and the arithmetic average of each 

running is our final result, which is shown in Table 3-4: 

Table 3.4 Comparison between Rescaling and Traditional Training Methods 

 

Training Percentage 

Accuracy 

Traditional Rescaling 

10 68.762 80.265 

30 77.053 89.743 

50 88.634 96.227 

 

 

As the two classes we choose in this phase of experiment only have 33 and 84 examples 

respectively, if we sample the training set by percentage, there is a chance that the number of one 

class will be too small for training. Instead, we can create a training set of the size 20, with 10 

examples from each set. Again, the system runs 40 times and the arithmetic average of each 

running is our final result, which is shown in Table 3-5: 
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Table 3.5   Comparison between Traditional and Rescaling Training Method (2) 

Method of Training Accuracy 

Traditional 82.423 

Rescaling 92.371 

 

From the above experiments, we can learn that: 

(1) Rescaling effectively magnifies the useful information contained in the given data and to 

some extent, could eliminate the noise from the data. 

(2) When we do not have enough data for training or there is a large unbalance between the 

numbers of examples of each class of data, sampling by absolute number works better 

than sampling by percentage. In our experiment, the second sampling strategy only 

samples less than 20% of the training data but achieves a higher accuracy than using 30% 

of the data for training use. 

(3) Our experiment shows that rescaling does enhance the effectiveness of training process, 

however, currently the result is only derived from a certain group of data, and more 

experiments are needed to further validate the effectiveness of the method. 

  



21 
 

Chapter 4 

Ensemble Methods     
 

    We have briefly described the basic concepts of bagging and clustering earlier, here we are 

providing the detailed implementations of the two methods, experiment settings and the results 

we got through these work. The dataset we use contains 3683 entries of examples, where 3663 

examples are malware (labeled as positive) and 20 are clean (label as negative). As we are 

focusing on one-class SVM, all the negative examples are preserved as testing data. 

4.1    Bagging  

    Instead of building one model with all the training data, we randomly pick up a fixed 

percentage of training data and build a model with this subset of training data [14][25]; by 

repeating this process for certain times, we will achieve a set of models, it is nontrivial to point 

out that overlapping is allowed between subsets. Later in this chapter, we will discuss how to 

coordinate these models and predict a testing example. In our study, experiments on bagging was 

done on the Matlab platform since most of the operations involved in bagging can be 

transformed to basic mathematical manipulations.  

    Apart from the training process, we also need to output the training data read by Matlab into 

plain text file in order to guarantee the accordance of sequence of data: In order to compare the 

two different ensemble methods, we want to make sure that the result of experiment will not be 

affected by the variance of the possible training data, that is, in each iteration, the same sample of 

training data and testing data should be used by bagging and clustering. As we always run the 

bagging system before the clustering system, this task is performed each time Matlab reads 

training data from the original data file. 
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4.2    Clustering 

    We realize that commercial anti-virus software not only labels software as malicious or 

normal but also label malwares with proper types that they should belong to. By making use of 

this observation, we also try to involve the similar idea in our work: we try to group the training 

examples into clusters, and then we gradually merge smaller clusters into larger ones, build a 

model if the newly generated cluster is large enough. Finally we will end up with a cluster that 

contains all the training examples. To be more specific, we maintain a list of clusters. Initially, 

every training example is a cluster by itself, and in each iteration, we merge the two clusters 

whose distance is the smallest, delete them from the list and add the new cluster into the list, 

besides, as long as the size of the new cluster is greater or equal than a preset threshold, we add it 

to our final list that contains only the clusters we will use to build model with. 

    The distance between two clusters c1 and c2 is defined as: 

         (     )  
∑ ∑         (        ) 

 
    

 
   

   
 

    Here, m is the number of clusters in c1, n is the number of clusters in c2, 

distance (ei, ej) is the distance between two examples ei and ej, which can be calculated using 

the following process (Figure 4.1): 

 

Figure 4.1 Calculation of Distance 
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    Based on the above analysis, we can use a greedy approach to merge all the examples into one 

cluster, that is: in each iteration, we always merge the two clusters whose distance is the shortest 

into one larger cluster. The idea is shown in Figure 4.2: 

 

Figure 4.2 Pseudocode for Clustering 

    Unlike bagging, we use Java to implement the system for clustering, since all the data 

structures involved in the study are provided intrinsically by the Java library. 
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4.3    Coordination Methods 

    Both of the techniques will create a bunch of models, each of which will make its own 

prediction, hence a new problem is aroused—how to make a final decision given these individual 

predictions. In our work, we have studied the following two coordination approaches: 

(1) Voting: The prediction of every single model is equally counted: we maintain a counter 

whose initial value is 0, and any prediction that labels a testing case as positive increases 

the counter by 1 while negative predictions decrease it by 1; after calculating all the 

predictions, if the counter is positive, then the testing case is positive, and vice versa. The 

corresponding flowchart is provided in Figure 4.3. 

 

Figure 4.3 Mechanism of Voting 

(2) One positive to be positive: as the name suggests, as long as any one of the built models 

predicts an entry of testing data as positive then we label it as positive. It’s not hard to 
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learn that this approach will effective lower down the chance of false-negative error but 

could result in more false-positive error. Again, a flowchart (Figure 4.4) is plotted to help 

understanding the idea. 

 

Figure 4.4 Mechanism of the One Positive to Be Positive Approach 

    By combining the two techniques and labeling strategies, there are four different approaches to 

the problem, and in our work, together with the traditional learning process, we have compared 

all these five different approaches: 

(1) Build a model directly according to the training data. 

(2) Training with bagging and labeling using voting. 

(3) Training with bagging while one positive to be positive. 
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(4) Training with clustering and labeling using voting.  

(5) Training with clustering while one positive to be positive. 

4.4    Parameters Settings 

    In our experiment, apart from the parameters for LIBSVM we discussed earlier, we have four 

parameters for the training process: 

(1) Number of bags: this parameter indicates how many bags are created during the training 

process; possible values of this parameter are 20, 40, 60, 80, and 100. 

(2) Number of training examples: the number of examples to be used in the training process. 

Possible values are inclusively between 50 and 300, with an interval of 50. Given the fact 

that there are 3383 examples in total, the percentage of training is strictly less than 10%, 

which is able to simulate the condition that there may not be enough training samples. 

(3) Percentage of bagging: what proportion of training samples are used in each bag. Values 

for this parameter are 70%, 80% and 90%. 

(4) Threshold for clustering: this value indicates the minimum size of a cluster that could be 

added into the final list of cluster that will be used to build a model. 

    The process of our experiment can be describes as: 

(1) Transform the information of malwares and normal softwares that are initially binary 

into .mat files that could be processed by Matlab. 

(2) Perform the (1) ~ (3) approaches described above using the Matlab implementation of 

SVM with all possible combinations of the 3 parameters we mentioned previously. In 

order to guarantee the consistency of training data, we also output the sequence of 

training data and testing data of each execution for the next step. The parameters for 

libsvm are: one-class for the type and radial basis function (rbf) for the kernel type. 
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(3) Perform the (4) ~ (5) approaches using the Java implementation of SVM with 50 and 100 

training examples, thresholds of 20%, 40%, 60% and 80% of the total number of training 

examples respectively, the input is given by the sequence generated in the last step. 

     The flowchart (Figure 4.5) for the above description is provided below: 

 

Figure 4.5: Flowchart of study of Bagging (left) and Clustering (right) 
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4.5    System Design 

4.5.1    Class Design 

Here, we only provide the design sketches of the clustering system since the bagging part is 

conducted on Matlab where only scripts are used. Apart from the classes built in the libsvm 

library, we have the following 5 classes in the class diagram (Figure 4.6).  

 

Figure 4.6 Class Diagram of the Clustering System 
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    The functions of the 5 classes are: 

    The Recorder class reads the text file that contains the training data written by Matlab and 

transform the file into the format that could be read by libsvm. 

(1) The Example class simulates an example of data, it implements the method to calculate the 

distance between two examples. 

(2) The Cluster class simulates a cluster of example, it implements all the behavior of the 

cluster and clustering process. 

(3) The Main class is the core of the system, it calls the above modules together with the 

libsvm library  to conduct the experiment; it also write the result of each iteration of 

execution into the file for future use. 

(4) The Constants class is a utility that records the unmodified constants of the system; namely, 

the number of examples and the number of attributes. 

4.5.2    I/O Cost 

As a well-known principle in computer science, I/O operation is often expensive. Hence we 

should always try to minimize it. In our study, we cannot decrease the necessary I/O 

manipulation brought by reading and writing data, but we can try to minimize the cost involved 

in the communication between the two phases of the experiment. With this goal in mind, 

together with the fact that the original training data is actually a sparse matrix, we came to the 

method that only the non-zero attributes of examples should be written into the plain text by 

Matlab as the training data for clustering. The above process is shown in Figure 4.7: 
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Figure 4.7 Process of writing training data 

4.6    Result and Discussion 

    The result of bagging and clustering is shown in Table 4.1 and Table 4.2 respectively: 

As mentioned earlier, the bagging part was conducted first on the matlab platform with the help 

of the libsvm package, then output the training data and testing data sequentially into plain text 

files; after that, the clustering part was made on the Java platform by parsing the text files and 

calling the svm algorithm to perform the calculation. The result of both parts are in the form of 

accuracy of prediction. 
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    To guarantee consistency, we maintain the same parameter settings for both experiments, 

namely, we use the same number of training examples, percentage of training and coordination 

methods in both situation. Consequently, we could derive a very direct understating of their 

performances in our context. 

Table 4.1 Result of bagging and Comparison with the Traditional Approach 

# 

of 

bag 

# 

of 

train 

% 

of 

bagging 

Traditional bagging 

False 

Negative 

False 

Positive 

One positive 

to be positive 

Voting 

   False 

Negative 

False 

Positive 

False 

Negative 

False 

Positive 

20 50 70 0.170426 0.050000 0.074869 0.050000 0.408898 0.050000 

20 50 90 0.173595 0.050000 0.079255 0.050000 0.402837 0.050000 

20 100 70 0.130817 0.097500 0.078136 0.050000 0.191440 0.050000 

20 100 90 0.120516 0.050000 0.065114 0.050000 0.135069 0.050000 

20 200 70 0.058345 0.097500 0.022192 0.145000 0.092882 0.050000 

20 200 90 0.071686 0.142500 0.021152 0.147500 0.072567 0.050000 

20 300 70 0.036679 0.097500 0.016176 0.477500 0.048231 0.050000 

20 300 90 0.020726 0.060000 0.011418 0.152500 0.032233 0.060000 

40 50 70 0.212109 0.050000 0.071810 0.050000 0.466468 0.050000 

40 50 90 0.198671 0.050000 0.066634 0.050000 0.397191 0.050000 

40 100 70 0.118861 0.050000 0.054042 0.100000 0.164875 0.050000 

40 100 90 0.116756 0.050000 0.054701 0.097500 0.135897 0.050000 

40 200 70 0.030884 0.145000 0.012388 0.387500 0.084204 0.050000 

40 200 90 0.072322 0.097500 0.018409 0.145000 0.067153 0.050000 

40 300 70 0.021618 0.050000 0.007196 0.657500 0.030672 0.050000 

40 300 90 0.023476 0.145000 0.012266 0.145000 0.036411 0.107500 

60 50 70 0.208276 0.047500 0.057265 0.050000 0.417465 0.050000 

60 50 90 0.224177 0.050000 0.065513 0.050000 0.405563 0.050000 

60 100 70 0.142057 0.050000 0.060904 0.050000 0.197193 0.050000 

60 100 90 0.123940 0.050000 0.050954 0.050000 0.134143 0.050000 

60 200 70 0.042997 0.192500 0.020214 0.287500 0.090990 0.097500 

60 200 90 0.091366 0.050000 0.025744 0.050000 0.080075 0.050000 

60 300 70 0.024978 0.052500 0.007434 0.810000 0.039102 0.050000 

60 300 90 0.018867 0.145000 0.009709 0.257500 0.028115 0.112500 

80 50 70 0.204802 0.050000 0.069582 0.050000 0.517963 0.045000 

80 50 90 0.240368 0.050000 0.062068 0.050000 0.445931 0.050000 

80 100 70 0.133764 0.050000 0.054252 0.050000 0.180382 0.050000 

80 100 90 0.163458 0.050000 0.055571 0.097500 0.154070 0.050000 

80 200 70 0.040658 0.050000 0.022004 0.135000 0.103018 0.050000 

80 200 90 0.086457 0.192500 0.013067 0.240000 0.069275 0.050000 

80 300 70 0.020146 0.092500 0.006587 0.745000 0.046209 0.060000 

80 300 90 0.020056 0.145000 0.008043 0.145000 0.032337 0.050000 
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Table 4.2 Result of Clustering 

 

Threshold 

 

number of 

training 

clustering 

One positive 

to be positive 

Voting 

  False 

Negative 

False 

Positive 

False 

Negative 

False 

Positive 

20 50 0.103312 0.050000 0.565217 0.050000 

20 100 0.056879 0.050000 0.495378 0.050000 

20 200 0.039573 0.050000 0.456505 0.050000 

20 300 0.035127 0.050000 0.425244 0.050000 

40 50 0.100371 0.050000 0.466533 0.050000 

40 100 0.056988 0.050000 0.391410 0.050000 

40 200 0.039946 0.050000 0.347988 0.050000 

40 300 0.035084 0.050000 0.322273 0.050000 

60 50 0.104034 0.050000 0.398762 0.050000 

60 100 0.059326 0.050000 0.329310 0.050000 

60 200 0.039269 0.050000 0.288754 0.050000 

60 300 0.034733 0.050000 0.263793 0.050000 

80 50 0.102442 0.050000 0.208747 0.050000 

80 100 0.057985 0.050000 0.152316 0.050000 

80 200 0.039511 0.050000 0.135846 0.050000 

80 300 0.034633 0.050000 0.117286 0.050000 

 

From the above result, we can conclude that: 

(1) As is in accordance with a general principle in Machine learning, more training example 

will lead to higher accuracy. 

(2) Although occasionally suffer from a higher chance of false-positive error, one positive to 

be positive approach performs better than voting in general. 

(3) Higher threshold for clustering will result in higher accuracy for voting. 

(4) In general, bagging performs better than clustering in dealing with false-negative error 

while clustering wins when it comes to false-positive error. 

(5) As we only have 20 negative examples (clean software), but have over 3000 positive 

examples (malware), if we assign the same weight for false-negative and false-positive 
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errors, we can come to the conclusion that bagging with one positive to be positive 

coordination method produces the best accuracy among all the 5 approaches. 

(6) We need to verify our idea with more negative examples in our future work when they 

are available. 
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Chapter    5 

Conclusion and Future Work 
 

   In general, we have studied the effect of two approaches of learning on the topic of malware 

classification: rescaling and ensemble methods with one-class SVM: 

Rescaling is an iterative process the idea of which is to selectively magnify some of the 

attributes of the training data and squeezing others to discover the useful information contained 

in the training data set and filter the noise-like interruption. In our implementation, we select 

features via parsing the SVM model and we showed that rescaling can effectively improve the 

accuracy of prediction model.  

Both bagging and clustering can reduce the error rate of false-negative error without or with 

trivial rise of chances of false-positive error in the context of one-class SVM if appropriate 

coordination method is applied with them, especially when the amount of training data is very 

limited. 

Future work can include: verify our ideas with more sets of data; perform experiments with 

more ensemble methods; integrate all the experiment environments into one platform. 
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