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Abstract 

Surface parameterization has been widely studied and it has been playing a critical role in 

many geometric processing tasks in graphics, computer-aided design, visualization, vision, 

physical simulation and etc. Regular domains, such as polycubes, are favored due to their 

structural regularity and geometric simplicity. This thesis focuses on studying the surface 

parameterization over regular domains, i.e. polycubes, and develops effective computation 

algorithms. Firstly, the motivation for surface parameterization and polycube mapping is 

introduced. Secondly, we briefly review existing surface parameterization techniques, 

especially for extensively studied parameterization algorithms for topological disk surfaces 

and parameterizations over regular domains for closed surfaces. Then we propose a polycube 

parameterization algorithm for closed surfaces with general topology. We develop an 

efficient optimization framework to minimize the angle and area distortion of the mapping. 

Its applications on surface meshing, inter-shape morphing and volumetric polycube mapping 

are also discussed.  
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Chapter 1 Introduction 

1.1 Motivations and Thesis Scope 

A parameterization of a surface can be viewed as a one-to-one mapping from the 

surface to a specific domain. In general, the parametric domain itself is a surface and 

therefore constructing a parameterization means mapping one surface to another.  Usually, 

the surfaces are either represented or approximated by triangular meshes, hence the mappings 

are piecewise linear. Computing the parameterization of 3D shapes (surfaces/solids) on 

specific domains is an important problem in shape modeling, which can facilitate many 

computer graphics and geometric processing tasks, including texture mapping, data fitting, 

re-parameterization of spline surfaces, physical simulation, and repair of CAD models. 

Regular domains, including polycubes, are among the most favorable parametric 

domains by researchers due to their simplicity and regularity, which reduces the complexity 

to build models and to do simulations. However, parameterizations almost always introduce 

angle or area distortion. And a good mapping favored by applications is the one which 

minimizes these distortions to some extent.  

Polycube is the surface of a solid consist of a few solid cubes (see Figure 1.1). Polycube 

mapping was first introduced by [1]. It parameterizes a closed surface onto a polycube 

domain. A polycube has the same topology of the given surface, and it is usually constructed 

to approximate the geometry of the surface. Therefore, the surface parameterization on a 

polycube domain often has much smaller distortion than that on a planar domain. Meanwhile, 

the polycube domain still possesses great regularity; each sub-patch is a rectangle; transitions 

between adjacent patches are simple rotation and translation except on corner points. Due to 

these advantages, the polycube mapping has been used in many graphics and shape modeling 
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applications such as texture mapping [1] and synthesis [2], shape morphing [3], spline 

construction [4] [5], and volumetric matching [6] [7]. 

 

Figure 1.1. A model and its polycube. 

a) is Rockarm, whose genus=1. (b) is the polycube for it with the same genus. 

Intuitively, on one hand, the more cubes one uses to construct the polycube, the better 

the domain can approximate the original model, which brings the parameterization very small 

area and angle distortion. However, corner points are singularity points of the 

parameterization. They are undesirable in many tasks such as spline construction [4] [5], 

physics-based simulations [8], etc. On the other hand, if one uses fewer cubes to construct a 

simpler domain with fewer corner points, the parameterization will possess larger distortion 

due to the dissimilarity of geometric structures between the model and the domain shape. 

Therefore, when a fundamental question is asked: What is the optimal polycube domain? A 
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reasonable answer can be an optimized balance between the singularity number and mapping 

distortion. More specifically, we try to solve the following problem: given a surface   and a 

budget   of the singularity point number, what is the optimal shape of the polycube domain   

so that the parameterization 𝑓     has the least distortion and   has no more than 

  corners? 

Now the optimal polycube maps can be formulated as solving            𝑓   for a 

given shape  , where energy function   is defined on any mapping 𝑓       and   is a 

polycube with   corners. Since the domain   is part of the optimization, it is extremely 

difficult. We restrict our optimization to a subspace of this problem, which we call a 

topology-preserving polycube mapping. Specifically, given an initial polycube domain 

      , the topology of the polycube   is defined by its dual graph (see Figure 1.2) 

          .                contains nodes corresponding to rectangle sub-patches 

    .    is a set of edges: an edge               , if    and    are adjacent to each other. 

We say two polycubes             and             are topologically equivalent, if 

their dual graphs    and    are isomorphic. 

Therefore, given an initial polycube  , our goal is to find the optimal polycube    and 

the mapping 𝑓 that minimizes distortion     𝑓 , in the same topological equivalence class 

(without changing the structure of its dual graph). 

The quality of surface parameterization is measured by distortions, including angle 

distortion and area distortion. To some extent, the distortion reveals the stretching of the 

parameterization. How to obtain a low-distortion parameterization becomes the focus of the 

past and recent researchers. Therefore, efficient and robust algorithms for establishing low-

distortion parameterization are demanded. In this thesis, the focus will be the establishment 

of low-distortion surface parameterizations over polycube domains. 
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Figure 1.2. Part of the dual graph  

It is corresponding to one facet (red node) and its neighboring facets(blue nodes). 

1.2 Related Work 

1.2.1 Surface Parameterization 

Theories and technologies in surface parameterization have been widely studied and 

they have been playing a critical role in many geometric processing tasks in graphics, CAGD, 

visualization, vision, medical imaging, physical simulation, and etc. Many effective 

techniques have been developed to solve the parameterization under different distortion 

metrics with different boundary conditions. A thorough review is beyond the scope of this 

paper, and we refer to three great surveys/tutorials of surface mapping and their applications 

in [9] [10], and [11]. One widely used scalar function used for constructing low-distorted 

surface parameterization is the harmonic function. The discrete harmonic map was first 

proposed by Pinkall and Polthier [12] and introduced to the computer graphics field by Eck et 

al. [13]. By discretizing the energy defined in [12], Desbrun et al. [14] constructed free 
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boundary harmonic maps. Harmonic maps are preferable due to at least two important 

reasons: (1) it is meaningful from physics' point of view. A harmonic map minimizes the 

Dirichlet energy and leads to a minimal surface [12]; (2) it can be easily discretized and 

efficiently calculated from the computational aspect. A discrete harmonic map can be 

approximated either through FEM analysis of the harmonic energy [13], or via mimicking the 

mean value property of harmonic functions [15]. The computation of discrete harmonic 

mapping can be written as the optimization of a quadratic energy and be efficiently solved as 

a sparse linear system. 

1.2.2 Polycube Mapping 

As a useful parametric domain, polycube maps have been studied in many different 

shape modeling applications. Tarini et al. invented the concept of polycube map and applied 

it to the texture mapping and synthesis [1]. Fan et al. extended it to generate cross 

parameterization and morphing by mapping surfaces to polycubes then composing the map 

by finding the correspondence between them [3]. In these approaches, polycube maps are 

computed by extrinsic methods such as projections. Wang et al. introduced an intrinsic 

method for polycube maps and built splines representation on the polycube parametric 

domain [4]. Compared with extrinsic methods, the intrinsic approach reduced the mapping 

distortion significantly.  

Later, Wang et al. developed user controllable polycube maps for manifold spline 

construction [5]. Both approaches required much user involvement in polycube design. Lin et 

al. presented an automatic polycube mapping approach, but the bijectivity was not guaranteed 

[16]. After that, He et al. presented a divide-and-conquer approach for automatic polycube 

map construction [17]. In that paper, the bijectivity was guaranteed and the mapping had 

shown low angle and area distortion. Then, Han et al. applied volumetric polycube maps to 
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construct hexahedral shell mesh [18]. Recently, Xia et al. introduced an editable polycube 

mapping, based on a divide-and-conquer strategy, which gave much more control over the 

quality of the induced subdivision surface and made processing of large models with complex 

geometry and topology feasible [19]. 

1.3 Thesis Contribution 

In this thesis, surface parameterization over one regular domain is introduced, i.e. 

polycube mapping. Considering the singularity and the distortion simultaneously, we propose 

an iterative framework to compute the optimal polycube mapping, whose corner points, or 

singularity points, is constrained by the given budget. Based on harmonic mapping, a 

topology preserving optimization algorithm is employed to lower the combined angle and 

area distortion, with the help from efficient polycube mapping updating and a derivative-free 

solver [20]. This thesis proposes the problem to obtain optimal polycube mapping and reveals 

the way to obtain the solution. The experiment results indicate these parameterization and 

optimization approaches are effective and efficient. 

1.4 Organization 

There are four chapters in this thesis. Chapter 1 is a brief introduction of surface 

parameterization over regular domain and its applications. Chapter 2 mainly gives a review of 

some approaches of surface parameterization and the measurement of distortion metrics. 

Chapter 3 presents the algorithm to establish polycube mapping and optimization preserving 

the topology of given shapes. Chapter 4 is the summary of the whole thesis. 
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Chapter 2 Surface Parameterization and 

Distortions 

Surface parameterization finds a better way to represent the geometric model for 

applications. However, distortions always exist in the surface parameterization. In this 

chapter, the thesis is going to introduce the parameterization of surface patches on planar 

domain, and the parameterization of closed surface over regular domain. Then it will review 

the measurement of the distortions, which indicates the quality of the parameterization. It will 

focus on reviewing the theories and the concepts.  

2.1 General Goals 

Establishing a parameterization for given shapes means attaching a coordinate system 

to it. There are many possible applications based on such a coordinate system. One of the 

main applications of surface parameterization is texture mapping. Figure 2.1 shows an 

example of a parameterization implemented using harmonic mapping, through which the 

female image pixels are attached to the 3D model Venus.  

 

Figure 2.1. Texture mapping as one application of parameterization (harmonic 

mapping).  

Highlighted region of a 3D model in (a) is parameterized to a planar polygon (b). (c) is a 

2D image. Texture (c) is mapped to highlighted region through parameterization in (d). 
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The parameterization is used to put the surface into one-to-one correspondence with an 

image, stored in the 2D domain. It is possible to map an existing image onto the 3D model, or 

to define the parametric space image by directly painting the model. 

Another class of applications is remeshing. The coordinate system defined by the 

parameterization facilitates transforming from a mesh representation into another one. This is 

of great importance for modeling and simulation tasks, which use representations that are 

completely different from the dense triangulated meshes constructed from 3D scanners and 

their bundled reconstruction software. Figure 2.2 (in [7]) illustrates remeshing from a 

triangular mesh Chinese Horse (not shown in the figure) to a quad-mesh via a polycube 

mapping. We can see in the zoom-in region that the elements of the mesh are regular squares 

rather than triangles. 

 

Figure 2.2. Remeshing Chinese horse 

It is via a polycube mapping with input as triangular mesh (not shown) and output as 

quad-mesh. 

Generally, surfaces with complicated topology, especially high genus surface (whose 

genus  ), are first decomposed to patches, which is a topological disc. Then these patches 
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are related by parameterizations on planar domain. However, there exists discontinuity along 

the cutting boundary. Therefore surfaces are preferred to map to the domain with the same 

genus. Regular shapes, including polycubes, provide a more natural domain without cutting 

for the closed surfaces whose genus is zero. 

In summary, a parameterization of a 3D surface is a mapping putting a surface in one-

to-one correspondence with a 2D domain. This notion plays an important role in geometry 

processing since it makes it possible to transform complex 3D modeling problem into a 2D 

space where problems are simpler to solve. However, this transformation always introduces 

some distortion, which will make this reduction from 3D space to 2D space inaccurate. The 

next sub-chapters discretize the notion of parameterization into a context of a piecewise 

linear triangle mesh. Then surface parameterization over regular domains, i.e. polycubes, will 

be presented. At the end of this chapter, the measurement of distortion will be introduced. 

2.2 Triangular Mesh Representation 

Before introducing the notion of parameterization of surfaces, the representation of 

surfaces in triangle mesh has to be presented first. Let us denote points in    by           

and points in    by        . An edge is then defined as the convex hull of (or 

equivalently the line segment between) two distinct points and a triangle or face as the 

convex hull of three non-collinear points.  

A mesh    is defined as            , where               is a set of vertices, 

            is a set of edges, and              is a set of faces. In vertex set  , 

         are the interior points, and              are boundary points, if any. A mesh is 

called triangular mesh, if all the faces in   are triangles. Figure 2.3 is a triangle mesh model 

Bunny. 



 

10 

 

 

Figure 2.3. Triangle mesh model Bunny. 

Each triangle face is a linear segment of a piecewise linear surface representation. 

Every point   in the interior of a triangle            can be written as a barycentric 

combination [21] of the corner points: 

                                     

Therefore, a mapping from a 3D triangle              to a 2D triangle   

           as in Figure 2.4, where            , can be defined as a linear 

transformation  𝑓    . This is also a trivial case of surface parameterization. 

The ideal parameterization, which is distortion-free mapping, is called isometric 

mapping. Isometric mapping preserves the length of the edge, preserving both the angle and 
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the area. Therefore, the angle distortion and area distortion vanish in isometric mapping. 

However, as is well known, this ideal mapping only exists in very special cases. Therefore, 

researchers have been trying to either minimize the angle distortion or the area distortion, or 

some combination of angle and area distortion. The parameterization free of angle distortion 

is called conformal mapping, and the one free of area distortion is called equiareal mapping. 

For more details, we refer to [9] for a good survey. 

 

Figure 2.4. Triangle map 𝒇 from 3D triangle T to 2D triangle t. 

2.3 Parameterization of Surface Patches on Planar Domain 

Usually, a parameterization 𝑓 of triangle mesh    is uniquely determined by specifying 

the parameter points      𝑓     for each vertex      and requiring that 𝑓 is continuous 

and linear for each triangle. In this setting,    𝑓    is the linear triangle map from a 3D 

surface triangle              to parameter triangle             , see Figure 2.6. The 

parameter domain   is the union of all parameter triangles. Sometimes, the parameter triangle 

need not be planar, therefore the parameterization 𝑓 is not necessarily a linear map, e.g. the 

parameter triangle   could be a spherical triangle as in Figure 2.5. 
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Figure 2.5. Spherical triangle (Courtesy Wikipedia). 

A simple idea for establishing a parameterization of a triangle mesh, which is a 

topological disc (i.e. genus = 0 and there is one boundary), is based on the following physical 

model. Imagine that the edges of the triangle mesh are springs connected at the vertices. If we 

fix the boundary of this spring network somewhere in the plane, then the interior network will 

relax in the energetically most efficient configuration, and we can simply assign the positions 

where the joints of the network have come to rest as parameter points. 

  
 

 
∑ ∑

 

 
            

    

 

   

 

where          is the spring constant of the spring between     and   , with respect to the 

unknown parameter position           in triangle   for the interior points and    

        [     ]         . The partial derivative of   with respect to    is 

  

   
 ∑           
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Figure 2.6. Parameterization of a triangle mesh, a topological disc. 

(a) is a 3D mesh as input. (b) is the parameterized mesh in 2D space. 

and the minimum of   is obtained if  

∑      

    

 ∑      

    

 

Holds for all        . This is equivalent to saying that each interior parameter point    is 

an affine combination of its neighbors, 

   ∑ 𝝀    

    

 

Equation 1 

with normalized coefficients 

𝝀 j  
𝑫  

∑ 𝑫 𝑘𝑘   

  

Equation 2 

that obviously sum to 1. 

 By separating the parameter points for the interior and the boundary vertices in the 

sum on the right hand side of  Equation 2 we get 

   ∑      

        

 ∑      
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and see that computing the coordinates    and    of the interior parameter points    requires 

to solve the linear equations 

𝑨𝑼  𝑼̅        𝑨𝑽  𝑽 ̅   

Equation 3 

Where             and             are the column vectors of unknown coordinates, 

 ̅    ̅     ̅   and  ̅    ̅     ̅   are the column vectors of with coefficients 

 ̅  ∑      

        

        ̅  ∑      

        

 

and   (   ), where         and        , is the     matrix with elements 

    {
          𝑓    

          𝑓     

                    

 

Methods for efficiently solving these systems include direct solvers and iterative solvers, e.g.  

Cholesky decomposition and conjugate gradient approach [10] [22].  

2.3.1 Barycentric Mapping 

The question remains how to choose the spring constants      in the spring model, or 

more generally, the normalized coefficients     in Equation 1. The most naïve choice of these 

spring constants is      , which is called barycentric mapping. It is one of the most widely 

used methods to establish a parameterization of triangular meshes. This method could date 

back to 1960’s, based on Tutte’s Barycentric mapping theorem in graph theory [21]. 

Floater applied this idea to construct parameterizations [23]. The idea consists of first 

fixing the vertices on the boundary of a convex polygon. Then the coordinates at the internal 

vertices are found by solving Equation  3. Another choice for the spring constant is that 

         , where    denotes the number of one-ring neighbors of vertex   (i.e. its valence). 
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However, these weights do not take the mesh geometry into consideration, such as angles and 

edge lengths, and therefore introduce large distortions not favored by most applications. For 

this reason, the next sub-chapter presents a way to minimize some distortions. 

2.3.2 Conformal and Harmonic Mappings 

Conformal mapping is related to formalism of complex analysis.  It plays a particular 

role in complex and Riemannian geometry and has many nice properties. For the moment, 

consider the case of mappings from a planar region   to the plane. Such a mapping can be 

viewed as a function of a complex variable,   𝑓   . Locally, a conformal map is simply 

any function  𝑓, which is analytic in a neighborhood of a point  , and such that 𝑓      . A 

conformal mapping 𝑓 satisfies the Cauchy-Riemann equations, with        as well as  

      , which are 

𝝏𝒗

𝝏𝒙
  

𝝏 

𝝏𝒚
  

𝝏𝒗

𝝏𝒚
 

𝝏 

𝝏𝒙
 . 

Equation 4 

Now notice that by differentiating these equations with respect to   and  , we obtain two 

Laplace equations 

   
   

   
 

   

   
      

   

   
 

   

   
   

 Any mapping                 which satisfies these two Laplace equations is called 

harmonic mapping. Therefore a conformal mapping is also harmonic and we have the 

implications 

Isometric   conformal    harmonic 

 The big advantage of harmonic mapping over conformal mapping is that the former is 

easier to compute, at least approximately. After choosing a suitable boundary mapping, the 

harmonic mapping can be obtained by solving a system of linear equations. 
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Surface parameterization on planar domain is a well-studied field. Since isometric 

mapping only exists for developable surfaces, i.e. surface with zero Gaussian Curvature. 

Applications show different tolerance to the distortions, including angle distortion, area 

distortion and stretch. Table 2-1 gives a summary of recent literature regarding the distortions, 

boundary freedom, bijectivity and optimization complexity.  

2.4 Parameterization of Closed Surface over Regular Domains 

Lots of parameterization applications require inter-surface mapping between different 

models.  Pair-wise mapping between models can be employed to transfer different properties, 

including textures, deformation and animation. Blending and morphing, as well as mesh 

completion and repair, can also utilize pair-wise mapping. The most common way for pair-

wise mapping is to parameterize both objects on a common base domain. Parameterizations 

over planar domain usually require cutting in the models and introduce discontinuities and 

large distortions along the cutting boundaries. Therefore, it is worthwhile to parameterize the 

closed surface to a domain with the same genus. Regular domains including polycubes and 

spheres provide natural base domains for the closed surfaces due to their regularity and 

simplicity. In this sub-chapter, recent work on surface parameterization of closed surface over 

regular domains, including polycubes and spheres, will be reviewed.  

2.4.1 Polycube Mapping 

As a useful parametric domain, polycube maps have been studied in many different 

shape modeling applications. Tarini et al. invented the concept of polycube map and applied 

it to the texture mapping and synthesis [1]. Fan et al. extended it to generate cross 

parameterization and morphing by mapping surfaces to polycubes then composing the map 

by finding the correspondence between them [3]. In these approaches, polycube maps are 

computed by extrinsic methods such as projections. Wang et al. introduced an intrinsic 
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method for polycube maps and built splines representation on the polycube parametric 

domain [4]. Compared with extrinsic methods, the intrinsic approach reduced the mapping 

distortion significantly. 

Table 2-1. Summary of parameterizations on planar domain. 

LSCM: Least Square Conformal Mapping; DCP: Discrete Conformal 

Parameterization ;ABF: Angle Based Flattening; MIPS: Most Isometric 

Parameterizations; MDS: Multi-Dimensional Scaling. 

Method Distortion 

minimized 

Boundary Bijectivity Complexity 

Uniform [21] None Fixed, convex Yes Linear 

Harmonic [13] Angles Fixed, convex No Linear 

Shape preserving [23] Angles Fixed, convex Yes Linear 

Mean-value [15] Angles Fixed, convex Yes Linear 

LSCM/DCP [14] [24] Angles& 

Area 

Free No Linear 

ABF/ABF++ [25] [26] Angles Free Locally no flips Nonlinear 

Linear ABF [27] Angles Free Locally no flips Linear  

MIPS [28] Angles Free Yes Nonlinear 

Circle patterns [29] Angles Free Locally no flips Nonlinear 

Stretching minimizing [30] Distance Free Yes Nonlinear 

MDS [31] Distance Free No Nonlinear 

Degener et al. [32] Areas Free Yes Nonlinear  

Later, Wang et al. developed user controllable polycube maps for manifold spline 

construction [5]. Both approaches required much user involvement in polycube design. Lin at 

al. presented an automatic polycube mapping approach [16], but the bijectivity was not 

guaranteed. Recently, He et al. presented a divide-and-conquer approach for automatic 

polycube map construction [17]. In that paper, the bijectivity was guaranteed and the 
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mapping had shown low angle and area distortion. Han et al. applied volumetric polycube 

maps to construct hexahedral shell mesh [18]. 

Xia et al. introduces an editable polycube mapping [19], based on a divide-and-conquer 

strategy, which gives much more control over the quality of the induced subdivision surface 

and makes processing of large models with complex geometry and topology feasible. 

2.4.2 Spherical Mapping 

Spherical mapping is the parameterization 𝑓     , where the target surface    is a 

unit sphere. The big advantage of the sphere domain over the planar one is that it allows for 

seamless, continuous parameterization of genus-0 models, e.g. brains and etc. Meanwhile, an 

important fact is that, according to [33], harmonic mapping 𝑓    , is equivalent to 

conformal mapping if   is a genus-zero surface and   is a unit sphere. This means that 

harmonic mapping dealing with sphere-like surface are free of angle distortion. Haker et al. 

first parameterizes the given genus-zero surface onto the plane using harmonic mapping after 

cutting the input surface by using one triangle as a boundary [34]. Then they employ 

stereographic projection, a conformal mapping, to map the result to the sphere. The choice of 

the boundary triangle heavily affects the result. This approach works quite well in practice, 

but there is no theoretical guarantee since the stereographic projection is bijective on in 

continuous case, and can produce flip-overs in the discrete case [10]. Later, Gu and Yau 

avoided cutting the sphere by an Gauss-Seidel iterations approximating a harmonic map (and 

therefore conformal) [35]. They considered a mapping solving the non-linear equations 

∑    ( 𝒗 
 𝑓(𝒗 )  𝑓 𝒗  )    𝒗  𝒗   

    𝒗  

 

where   𝒗   {𝒗 |      (𝒗  𝒗 )     and  𝒗 
    denote the perpendicular projection of 

any point   on the unit sphere. They began with an initial guess and then moved one vertex at 
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a time, first computing the Euclidean coordinates for it using the barycentric coordinates [13], 

and then projecting the vertex to the unit sphere. Many other researchers, as in [27] [37] [38], 

also had used similar strategy based on Gauss-Seidel iterative extension of planar barycentric 

methods. Unfortunately, Saba et al. [39] later proved that projected Gauss-Seidel iterations 

decrease the residual for only a finite number of iterations. After approaching a bijective 

solution, the residual increases and the system collapses to a degenerate solution. In other 

words, this method is unstable. 

Afterwards, a method involving linear equations was proposed by Gotsman et al. [40] 

generalizing planar barycentric mapping to spherical case. A theorem by Colin de Verdiere 

described in this paper guarantees a valid spherical embedding if certain conditions hold for 

the coefficient matrix of the linear equations. Later, Saba et al. [39] provided a scheme to 

efficiently solve this system, by providing a good initial guess and a robust solver. 

An efficient and bijective alternative is suggested by multi-resolution techniques. These 

methods obtain an initial guess by simplifying the model until it becomes a tetrahedron, 

trivially embed it on the sphere, and then progressively insert the vertices until the mesh 

recovers original size [41] [42]. Praun and Hoppe [42] alternated the refining progressively 

with local relaxation of single vertex position, which minimizes the stretch metric of the 

parameterization and maintains a valid embedding. 

From a different perspective, Sheffer et al. [43]  generalized the planar angle-based 

parameterization to spheres using combined angle and area distortion from the planar version 

in [26]. This paper tried to minimize a quadratic energy function subject to non-linear 

constraints. It is very time-consuming the solve the optimization, which makes their approach 

only work on very small models. As a regular domain, polycube has its own advantages over 

other regular domains like spheres due to its planarity of its facets. In this thesis, we will 

focus on the polycube domains. 
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2.5 Distortion Metrics 

As a piecewise linear mapping, surface parameterization over planar domain introduces 

some distortion to angles and areas, which is unfavorable for applications. However, the ideal 

parameterization, i.e. isometric mapping, is very rare and only exists in very special cases, e.g. 

mapping from a bounded planar region to a cylinder. Researchers explore different ways to 

minimize these distortions. 

Pinkall and Polthier in [12] and Eck et al. in [13] considered the Dirichlet energy of a 

given mapping   

      
 

 
∫‖  ‖  

as a measure of deformation. Considering a linear atomic map  𝑓 𝑓 𝒙   𝒙   , as in 

Figure 2.4, the discrete Dirichlet energy  is the                of the coefficient matrix   

   𝑓        
                          

        
 

where       are the angles in   and       are the edge length in  . For derivations and 

details, we refer to [28].    𝑓  can also be viewed as the discrete harmonic energy on one 

triangle. 

For area distortion on the atomic map 𝑓, it is directly formulated as  

      𝑓  
       

       
 

       

       
 

considering the penalty for very large or tiny parameter triangle  . Obviously, for an 

isometric mapping, the value    𝑓        𝑓   . However, many other distortion 

metrics, such as         in [30], are used in different applications. For more details, 

please refer to [22]. 



 

21 

 

2.6 Summary of Literature Review 

As described above, the distortions almost always exist in surface parameterizations. 

Many distortion metrics and the optimization algorithms to minimize the distortion have been 

proposed by the researchers. As a result, different surface parameterization approaches have 

been proposed. A detailed coverage of the surface parameterization techniques and 

formulation of the distortion metrics is out of the scope of this thesis. We refer to [9] [10] [22] 

for excellent surveys on this topic. 
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Chapter 3 Polycube Mapping and 

Optimization 

A polycube domain   is composed of a set of rectangular patches     . A polycube 

map is therefore composed of a set of rectangle maps. In the chapter, we shall use the 

harmonicity and area distortion to measure the mapping quality and optimize the domain 

shape as well as the mapping. 

3.1 Overview 

Ideally, given a metric, we shall simultaneously optimize the polycube domain   as 

well as the mapping 𝒇       to minimize the distortion   𝒇 . We can formulate this as 

minimizing    𝒙 𝒚    𝒙  𝒙    𝒙   𝒚  𝒚    𝒚   , with the constraints that 

 𝒙     𝒙     𝒙    is a point on  , and  𝒚     𝒚     𝒚    is the corresponding corner point on 

the polycube  , for        . 

Directly solving this nonlinear optimization is highly expensive. As will be discussed 

shortly in Chapter 3.4 Optimization, the derivatives of   over 𝒚 can be computed efficiently, 

but the derivatives of   over 𝒙 could not be computed in practice. Without derivatives of the 

object function, this optimization with complicated constraints is difficult even for 

moderately large  . To make full use of the partial derivative information of the objective 

function, we iteratively do the optimization over 𝒙 (for optimal polycube corner mapping) 

and 𝒚  (for optimal polycube domain shape) separately. Hence, gradient based nonlinear 

optimization methods using the derivatives of  
𝝏 

𝝏𝒚
  can be developed to efficiently optimize 

the sub-problem   𝒙 𝒚  for fixed  𝒙. Meanwhile, a derivative-free optimization algorithm is 

developed to optimize the sub-problem   𝒙 𝒚  for fixed 𝒚. During each iteration, when the 

shape of every rectangle and the mappings of its four corner points are determined, we can 
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compute/update the mapping efficiently (see Chapter 3.3 Mapping and Chapter 3.4 

Optimization). The proposed iterative polycube mapping optimization framework therefore 

has the following three steps (illustrated in Figure 3.1). 

 

Figure 3.1. Algorithm overview. 

(a) original surface with eight corner points(red). (b)(c) initial polycube domain and 

mapping. (d)(e) optimized polycube domain and mapping. The harmonic energy with 

area distortion term is reduced from 5.4414 to 4.7812. (f) the optimized polycube 

mapping with eight new corner points(blue) with a lower harmonic energy of 4.5961. 

(g)(h) final optimized domain and optimized mapping after two iterations. The grid 

quality is improved. 

1. Initial Polycube Domain Construction (Chapter 3.2 Polycube Construction). Given a 

budget number of corner points, an initial polycube domain is constructed either 

automatically or manually, meeting the corner point budgets; then the corner point 

mapping and the initial polycube mapping are computed. 

2. Optimizing Polycube Domain Shapes (Chapter 3.4 Optimization). Preserving the 

topology of the polycube, the scaling of sub-patches is optimized so that mapping 

energy is minimized. 

3. Optimizing Polycube Mapping (Chapter 3.4 Optimization).   
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Table 3-1. Algorithm for optimal polycube mapping 

Algorithm 1: Optimal Polycube Mapping. 

Input : surface S , corner point number n; 

Output : polycube mapping 𝒇       ; 

1. Construct an initial polycube   , whose corner point number   ; 

2. Compute an initial mapping 𝒇             ; 

3.Repeat 

4.      ; 

5.Optimize the polycube domain   , s.t. distortion of mapping 𝒇    is 

minimized; 

6.Optimize the polycube map 𝒇        ; 

7.until             ; 

8.Perform a global smoothing. 

The framework is formulated in Table 3-1. Note that in our iterative process, we keep on 

optimizing scaling factors of sub-patches and the corner points. Then (1) polycube domain 

optimization takes corner points decided by the current mapping 𝒇  as the input and solve 

scaling of sub-patches to reduce mapping distortion; and (2) polycube mapping optimization 

uses the scaled polycube      as the target domain and optimizes the location of corner 

points. This iterative refinement converges when the polycube domain shape    does not 

change any longer. 

3.2 Polycube Construction 

The initial polycube can be constructed manually [1] [4] or automatically [16] [17]. We 

also use a simple voxelization algorithm (Chapter 3.2.1) to generate the polycube. Since this 

initial polycube and maps (Chapter 3.3) will be optimized to minimize the distortion, a simple, 

efficient, and adaptive (to different corner budgets) scheme such as this voxelization 
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algorithm is sometimes enough. The following optimization framework is general, and can 

optimize an initial polycube mapping constructed via different methods. 

3.2.1 Construct Polycube via Voxelization 

Given a solid object  , supposing its boundary surface is represented by a triangle 

mesh      𝑽         where 𝑽        V are vertex, edge, and face sets, we construct a 

polycube domain    𝑽        , and corresponding corner points mapping using a 

voxelization algorithm. Figure 3.2 illustrates a polycube construction example of a Buddha 

model through voxelization. 

 

Figure 3.2. Voxelization for polycube construction. 

We use an octree to represent the object.  The subdivision starts from a rectangular 

bounding box. Each cell (rectangular cuboid) can be labeled as inside or outside. Then we 

remove all interior faces that are shared by two inside cells, and finally merge all inside cells 

to one polycube   . The remaining faces form the boundary surface of  . We further merge 
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these remaining faces to a set of big rectangle facets of the polycube. Iteratively, we merge 

two adjacent faces if the result remains a planar convex polygon. After merging, only 

rectangle facets are left. The vertices of these rectangles are called corner points, denoted as 

𝑽  . And the edges of the rectangles form the connectivity of the corner points    . For each 

corner 𝒗  𝑽  , we use the simple projection method [1] to find its corresponding points on 

 . Without ambiguity, we also call these corresponding points corner points on  , denoted as 

𝑽  ; they will be mapped to corners in the initial polycube mapping. The voxelization 

algorithm is simple, automatic and efficient. Moreover, the octree's depth can be adaptively 

decided by the number of corner points. 

Voxelization approaches sometimes provide unnecessary zigzagged domain shapes 

when the geometry of the object is not well aligned with principal axes, which can be 

undesirable. Then other polycube domain construction algorithms (e.g. [1] [4] [16] [17] may 

be used to construct the initial mapping, and our subsequent optimization paradigm can still 

be applied to refine the domain shape and improve mapping quality. 

3.3 Mapping 

Given the initial polycube  , corner point correspondences 𝑽   𝑽  , and cube edges 

   , we compute an initial polycube mapping 𝒇       as follows. Denote the position of 

each vertex 𝒗  on   as    𝒙  𝒙  𝒙   and its image on the polycube as 𝑼  𝒇    

             ; also denote three components of the vector function 𝒇 as 𝒇  𝒇 , and 𝒇 . 

A discrete harmonic parameterization [13]  is a bijective map from   to a 2D (u,v)-

domain,       𝑫       𝑫      such that the discrete harmonic energies of both   and 

𝒗  components are minimized. When the target planar domain 𝑫  is convex, and a 

diffeomorphic boundary mapping is given, the harmonic mapping   is bijective. Therefore, 
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we can decompose   to multiple patches, each of which will be mapped to a rectangle facet 

   on  . 

The harmonic energy of a mapping function on  -th ( =0,1,2) component is defined as 

     
 

 
 ∑ ∑    (𝑓

       𝑓     )
 

          

 

Equation 3.5 

where       is the set of all 1-ring neighboring vertices of 𝒗 .     
 

 
                is 

the well-known cotangent weight [13] defined on the edge [𝒗  𝒗 ]    , where     and     

are two angles opposite to the edge  𝒗  𝒗  . 

For each polycube edge in [𝒗   𝒗  ]      𝒗   𝒗   𝑽  , we trace curves to connect 

their corresponding points 𝒗   𝒗   𝑽   using shortest paths following algorithms 

introduced in [44]. After this, the harmonic mapping computation is straightforward. 

We parameterize these traced paths to polycube edges using the arc-length 

parameterization. On each facet of the polycube, corner and edge mapping decides the 

boundary condition and the interior mapping can be computed by solving two sparse linear 

systems [13]. 

3.4 Optimization 

Following Algorithm in Table 3-1, after constructing the initial polycube mapping, we 

are going to iteratively optimize the polycube domain shape and the polycube mapping. 

3.4.1 Polycube Domain Optimization 

Given a polycube mapping 𝑓       𝑓           defined on a set of topological 

rectangle patches on   . We want to find the optimal re-scaled    so that mapping distortion is 
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minimized. We use a distortion energy   composed of the harmonic energies    𝑓    

      and an area-stretching term   𝑓 . 

    ∑ 𝑘
 

  

 ∑ ∑
 

 
    (𝑓       𝑓 (  ))

 

       

 

  

   

Equation 3.6 

  ∑ ∑
( (𝑼  𝑼  𝑼 ))

 

           
           

   

Equation 3.7 

                

Equation 3.8 

where             and   𝑼  𝑼  𝑼   denote the original area of triangle            and the 

area of its image under the mapping;  𝑘 is a facet of polycube and        is a triangle on this 

facet;   is a weighting factor balancing the harmonic and area-stretching terms. 

When optimizing the polycube shape, we restrict our re-scaling on    such that (1) it 

preserves the total area of the polycube, and (2) it doesn't increase the number of corner 

points. Specifically, we divide the polycube   into different rectangular facets in each 

coordinate plane (see Figure 3.2). 

First, we sort the coordinates of all corner points in three axes, and denote them as 

{   
   },                  .We translate the left-bottom of the polycube to the Origin, so 

that any   
   . 

Then supposing a facet  𝑘 is perpendicular to the    coordinate axis, we (1) denote the 

coordinate of  𝑘  in    axis as   
 , and (2) on each patch perpendicular to   , denote its 

corresponding coordinates as    
        

     and     
        

    . The superscript indicates the 
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corresponding axis (     , or   ), so     actually denotes           3. In our following 

derivations, the addition of superscripts denotes their addition         3. 

 

Figure 3.2. Definition of polycube coordinates and parameters. 

Now we can denote the length of each segment in         as     
      

    
 ; and 

adjacent facets (faces connected by a same polycube edge) should share a same 

corresponding scaling factor  , to prevent the increase of corner points. 

Therefore, supposing a rectangle domain  𝑘 is perpendicular to the axis             , 

we denote the two corresponding segment lengths of the rectangle as       𝑘 ,       𝑘  

their initial lengths as      ̃  𝑘 ,     ̃  𝑘 , initial harmonic energies as      ̃  𝑘 ,     ̃  𝑘 , 

and initial area stretching energy as     
̃ . These constants     ̃  𝑘 ,     ̃  𝑘 , 

     ̃  𝑘 ,     ̃  𝑘 ,    
̃   are determined by the initial mapping. Then the harmonic energy 
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of all sub-patches that are perpendicular to   , with respect to the their scalings can be written 

as: 

  
    

         
    

         
   ∑         𝑘  

   𝑘
   ̃           𝑘  

   𝑘
   ̃  

  

 

Equation 3.9 

where   𝑘
   ̃  and  𝑘

   ̃ are constants decided by the initial mapping: 

 𝑘
   ̃  (

   

   ̃

     ̃    𝑘   
)   𝑘

   ̃  (
   

   ̃

     ̃    𝑘   
)    

Considering all three axes, the global harmonic energy of the polycube mapping is: 

  ({  
    

 }                    )    
 (  
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 )   
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 )   

Equation 3.10 

The area stretching term of the mapping is: 

  
 ({  

    
 }                    )  ∑(       𝑘   

     𝑘 )
 

  𝑘̃  

  

  

Equation 3.11 

where   𝑘̃ is a constant decided by the initial mapping: 

 𝑘
   ̃  (

   
̃

     ̃    𝑘  
   ̃  𝑘  

 
). 

Finally, we have the entire distortion energy: 

 ({  
    

 })        

Equation 3.12 
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subject to the constraints: 

{
 
 
 

 
 
 

  
    

 

  
    

    
 

  
    

    
 

 
  

                     .

∑      𝑘  
     𝑘      ̃

  

 

Equation 3.13 

where     ̃  ∑    ̃  𝑘    ̃  𝑘   
 the last equation preserves the total area of the polycube 

domain. Figure 3.3 shows an example of an optimized polycube for the Beethoven model 

based on the initial polycube mapping. The original polycube (b) is re-scaled to (d); as the 

grid texture mapping visualized, the distortion of the original mapping (a) reduces when the 

polycube shape changes (f); as in the zoom-in view (e), the angle distortion is smaller than 

that in (c). 

 

Figure 3.3. Polycube domain optimization. 

(a)-(c) shows the initial polycube domain and mapping. (d)-(f) shows the optimized 

polycube domains. Note the improvement of the checkerboard texture mapping 

between (c) and (e). 
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In order to solve the energy      
    

    in Equation 3.12 subject to constraints in 

Equation 3.13, we will strictly enforce all the bounds and linear constraints, and put the last 

nonlinear constraint as a penalty term   (   
       𝑘  

     𝑘       ̃)
 
 in the objective 

function. As a result, this optimization problem could be formulated as minimization of a 

nonlinear function with bound and linear constraints, i.e., 

         𝒙   .  .    𝒙     𝒙  𝒙       𝒙      

Equation 3.14 

where 𝒙     is the vector of variables {  
    

 }              ,    and       are 

the bound constraints, and   is an   by   matrix with      denoting the linear constraints. 

Although the objective function is continuously differentiable, the dimension   of our 

reformulated problem generally can be large, and the explicit computation of the Hessian is 

difficult. Hence, first order method, which only requires gradient information, is preferred. 

To solve Equation 3.14, we employ the following non-monotone gradient projection 

algorithm, which is also an iterative algorithm: given the starting 𝒙 , our algorithm takes the 

following iterations 

𝒙𝑘   𝒙𝑘   𝑘 𝑘 

Equation 3.15 

where   is the iteration number,  𝑘 is a stepsize and  𝑘 is the searching direction defined as 

 𝑘    (𝒙𝑘  
 

 𝑘
   𝑘)  𝒙𝑘. 

Here,    is the projection on the feasible set  ,  𝑘   𝑓 𝒙𝑘 and  𝑘
       is the so called 

Barzilai-Borwein [45] step-size parameter generated by satisfying a quasi-Newton property,  

 𝑘
               

‖     𝑘   𝒚𝑘  ‖  

Equation 3.16 



 

33 

 

where   𝑘   𝒙𝑘  𝒙𝑘  , 𝒚𝑘    𝑘     𝑘  ,    𝑘   𝑘 , and     is a positive constant. 

Hence, the proposed   𝑘
  , when    , obtained from Equation 3.16, is 

 𝑘
      {

 𝑘  
 𝒚𝑘  

 𝑘  
  𝑘  

   } 

Equation 3.17 

and   
   can be arbitrarily defined as a positive number and we set   

   ‖  𝒙  ‖  and 

         in practice. This BB initial step-size (Equation 3.17) has been extensively studied 

recently and been shown to perform much better than steepest descent type gradient 

projection methods [46] [47]. However, to maintain the efficiency, the step-size  𝑘  in 

(Equation 3.15) must be obtained by a non-monotone line search. In our experiments, we use 

the non-monotone line search developed in  [48] [49] . 

3.4.2 Polycube Mapping Optimization 

In previous subsection, we fix the corner point mapping 𝑓      𝑓      to optimize 

the shape of polycube domain. We further reduce the mapping distortion by moving vertices 

    (without ambiguity, we also call them corner points) over  . Any 2-dimensional manifold 

  can be parameterized to an atlas      }, and locally any point on                  can 

be represented as a 2D coordinate         on a local planar chart. We construct local 

parameterization           by mapping the C-ring neighboring regions (in our experiments, 

we set     ) of each initial corner point      to a unit disc    . Any neighboring points 

on the domain     are continuously parameterized.  Let   be the number of the corner points 

       . The optimization will be conducted on all charts             simultaneously by 

searching the optimal   corner points, represented as coordinates                       , 

where    𝑘     𝑘  corresponds to         on chart  𝑘. 
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This problem is formulated as minimizing the distortion energy   of the map 𝑓 decided 

by the corner maps: 

                    𝑓       𝑓       𝑓      𝑓   

Equation 3.18 

the harmonic energies and area stretching of function 𝑓 are defined following Equation 3.6 

and Equation 3.7. 

For polycube mapping with   corner points, the dimension of this optimization 

problem is   . 𝑓 is determined by these    parameters, and can be efficiently computed 

(Chapter 3.4.2.1), but since we need to retrace the shortest paths as the sub-patch boundaries, 

we do not have the closed form for 𝑓 or its derivative. Therefore, we use a derivative-free 

optimizer (Chapter 3.4.2.2) to solve this problem. 

As indicated in Algorithm 1, we iteratively perform domain optimization (Chapter 3.4.1) 

and mapping optimization (this sub-chapter) until the polycube domain does not change. 

Despite the optimization of both the domain shape and the corner mapping, the angle 

distortion near the sub-region boundary (e.g. polycube corners, edges) can be large due to the 

usage of harmonic mapping with fixed boundary. We perform a smoothing process to further 

reduce the distortion. Smooth transition functions [50] can be easily computed between 

adjacent polycube faces, then parameterization/smoothing can be computed on a flattened 

domain covering this boundary region. We adopt the smoothing algorithm of [51]  to refine 

the map near polycube corner/edge regions. 

Figure 3.4 illustrates an iteration of domain mapping optimization on a Beethoven 

model. Corners in (a) are adjusted to new positions (f). Meanwhile, the mapping distortion 

energy reduces, which can also be visualized in the zoom-in regions (d,e vs b,c). If we 



 

35 

 

perform an aforementioned smoothing, the distortion near the boundary region can be further 

reduced (f,g).  

 

Figure 3.4. Polycube mapping optimization. 

(a) is the model before mapping optimization. (b,c) zoom in to show the distortion 

before this step. (d,e) illustrate the distortion after mapping optimization. (g,f) show 

distortion after the smoothing post-process. (h) is model after smoothing. The corner 

points are shown in green. With the smoothing, distortion and discontinuity across sub-

region boundaries significantly reduces. 

Figure 3.5 shows an iteration of our polycube map optimization on the horse model; the 

initial horse mapping (a) on a polycube with 60 corner points is optimized; the resultant 

mapping (b) has smaller angular and area distortion. 

3.4.2.1 Efficient Mapping Re-computation 

The typical computation for harmonic surface mapping on each rectangle sub-patch 

involves solving two systems of linear equations. This can be time consuming when we need 

to re-compute it and re-evaluate its distortion in every step during the optimization. Since the 

boundary condition of the mapping always changes gradually, we can utilize a more efficient 

linear equation updating algorithm CHOLMOD [52]  to accelerate the mapping 

recomputation. 
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Figure 3.5. Mapping optimization of the Horse model on a polycube  

There are 60 corner points. The lower row shows the moving of corner points: (a) 

before optimization, (b) after optimization. 

Mapping on each sub-patch is harmonic, so the coefficient matrix is sparse, symmetric 

and positive definite. This special property makes it feasible to utilize Cholesky 

decomposition to solve and update the linear systems very quickly. Initially, we pre-compute 

the shortest paths between all pairs of vertices using the Floyd-Warshall algorithm and store 

predecessor matrices on shortest paths. This takes       preprocessing time, where   is the 

number of vertices. During each iteration, when corner points are replaced by some of their 

neighboring points, between each pair of corners, we retrace corresponding shortest paths in 

     time where   is the number of vertices on this path. The coefficient matrix only 

changes slightly (a few rows and columns proportional to the number of mutable boundary 

conditions due to the change of corner points). This infers an efficient solution-update 

algorithm. Davis and Hager [52] proposed an approach of dynamic supernodal sparse 

Cholesky update and downdate, which produces a solution for the newly update linear system 
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without repeatedly computing the coefficient matrix and solving the system. After an initial 

Cholesky decomposition at a cost of      , the decomposition can be updated in     , 

where   is the number of changed entries in Cholesky factor, which is typically much 

smaller than the size of the mesh, leading to efficient harmonic mapping update. The similar 

approach was introduced to graphics and shape modeling [53] for dynamically updating 

harmonic fields design. 

With this efficient mapping update technique, we can re-evaluate the objective function 

for a given vector of new planar coordinates for corner points on  . Since the 

parameterization (and therefore the corner selection) is continuous, we dynamically split each 

corresponding triangle (where each parametric corner point locates) into three and update the 

accumulated energy accordingly. 

3.4.2.2 Derivative-free Optimization Algorithm 

The objective function (Equation 3.18) can be reformulated in the following format 

     𝒙  ∑      𝑓 
  𝒙   .  .     𝒙    

 

   

 

Equation 3.19 

where 𝒙                  are the bound constraints, and           is the sign in 

front of the squares of 𝑓          . The main difficulty of solving this problem is that the 

explicit derivatives are not available. We develop a trust region based derivative-free 

algorithm in spirit similar to the approach proposed in [20]. Our algorithm does not require 

the derivative information of the objective function, nor does it explicitly approximate the 

derivative. Instead, at each iteration, it builds a local quadratic model of the objective 

function by multivariate interpolation in combination with trust region techniques. More 

specifically, at each iteration, the algorithm adaptively chooses a set of interpolation points 
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 𝑘 , with         𝑘             ⁄ , where   is the iteration number and   𝑘  is 

the cardinality of   𝑘. Our algorithm takes the following major steps: 

Step 0 (Initialization) Set up initial starting guess 𝒙 , trust region radius    and 

sampling points   . Build initial trust region model on    and set    . 

Step 1 (Criticality step) Choose a base point 𝒚𝑘   𝑘  and calculate the gradient of 

our model. If the gradient is sufficiently small, stop.  Otherwise, make sure the model 

is well-posed [20] in a trust region with radius proportional to the norm of model 

gradient. 

Step 2 (Step Calculation) Solve the following trust region sub-problem : 

         .  . ‖ ‖   𝑘    𝒙𝑘      

Equation 3.20 

where  𝑘(d) is a local quadratic model of   𝒙  in a trust region with radius  𝑘. Here, 

‖ ‖ is the 2-norm. 

Step 3 (Acceptance of the trial step) Compute the ratio of actual and predicted 

function reduction 

 𝑘  
  𝒙𝑘    𝒙𝑘   𝑘 

 𝑘     𝑘  𝑘 
  

where  𝑘  is the minimizer of (Equation 3.20). If  𝑘   , then 𝒙𝑘   𝒙𝑘   𝑘  ; 

otherwise, 𝒙𝑘   𝒙𝑘. 

Step 4 (Trust region radius update)} Update trust region radius by 

 𝑘   

{
 
 

 
 

 

 
‖ 𝑘‖                     𝑓  𝑘   . 

    
 

 
 𝑘 ‖ 𝑘‖             𝑓  .   𝑘   . 

     𝑘  ‖ 𝑘‖             𝑓   𝑘   .           

 

If  𝑘    . , form  𝑘   from  𝑘  by merging new point 𝒙𝑘  . Set       1, go to 

Step 1. 
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Step 5 (Model improvement) This step applies only when  𝑘   . . In this case, 

before shrinking the trust region radius, make sure the model is well-posed [20] in the 

current trust region.  Set       1, go to Step 1. 

One critical advantage of this algorithm is using the least Frobenius norm updating 

strategy [48] to update the quadratic model (Equation 3.20). Hence, to build our quadratic 

model, we only need      (in our experiments,     ) function evaluations, while normally  

                   number of valuations are required for building a fully quadratic 

model (Note,              could be much bigger than      for relatively large  ). In 

addition, at each iteration, only one new function evaluation is required to update the local 

quadratic model. 

Therefore, our approach is usually more efficient [55] [20] than other widely used 

strategies in derivative-free optimization, such as using finite-difference to approximate 

derivatives [50] or some direct search methods [57]. Global convergence of the algorithm as 

well as the good local geometry of the set of interpolation points are guaranteed by trust 

region techniques [20] [48]. 

3.5 Applications 

We also demonstrate an application of our polycube mapping framework in multiple 

objects mapping.  

3.5.1 Intersurface Mapping among Multiple Objects via Polycube 

Polycube can be used as a canonical base domain for multiple objects (preferably, these 

objects have the same topology and similar geometry). Our framework can be used to 

generate such a common regular domain, and multiple objects are parameterized onto this 

single polycube with low distortion. 
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Multiple shapes can be analyzed, processed, and integrated over this single domain. 

Supposing we have a set of models             to be integrated, we construct a common 

polycube   using   . We also compute initial mapping 𝑓  between   and each           . 

Then simultaneously, we optimize   and the mapping 𝑓         using the above proposed 

framework. The final polycube domain   is the one that minimizes the total distortion of 

multiple polycube parameterization       𝑓  . The final polycube is an optimal domain 

for all these models. Inter-surface mapping between two models    and    can be composed 

and optimized over this domain as 𝑓              𝑓 
    𝑓 . We visualize our optimal 

polycube and the mapping results using inter-object morphing by linearly interpolating them 

over the common polycube domain. 

Specifically, we construct initial polycube   for    and use projection to determine 

corner points mapping. However, this simple projection approach does not work well when 

we map   to other models           , especially when    is not geometrically similar to  . 

Especially for this situation (when we want to map a surface to a dissimilar polycube), we 

compute the initial polycube mapping in the following more robust way (Note that any other 

suitable polycube mapping approach can also be used to generate initial 𝑓 ). We partition   

and each    consistently (i.e. the segmentation of   and    has the isomorphic dual graph); 

then compute the mapping 𝑓         by merging all individual sub-region mappings. Such 

an approach based on canonical pants decomposition is introduced in [58]. We briefly recap 

the basic idea, and refer readers to [58] for details. The pants patch is a genus-0 surface with 

3 boundaries. Any surface (except for a few trivial cases) can be decomposed into a set of 

pants patches, including   handle patches and a base patch, where   is the genus. The base 

patch is then further iteratively partitioned into a set of pants patches.  
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Finally, every pants patch is decomposed into two sub-patches, each of which can be 

parameterized on a regular planar hexagon. Therefore, the global surface mapping between 

two objects is composed by parameterizations of sub-patches on these hexagonal domains. 

This approach can easily and robustly handle the surface mapping between two objects with 

arbitrary topology and feature points, therefore it is suitable here for generating initial 

mapping 𝑓        . Figure 3.6 shows an example of using the above approach to construct 

optimal common polycube for the horse and the cow. Individually optimal polycubes for the 

horse and cow are shown in (b) and (c), and initial polycube maps are visualized in (a) and 

(d); the optimal common polycube is shown in (f). Specifically, a compromise can be seen in 

the neck region. The final common polycube mappings are visualized in (e) and (g). 

 

Figure 3.6. Common polycube mapping for multiple models. 

Initial polycube maps of the horse and cow are as (a) and (d); individually-optimal 

polycube domains are shown in (b) and (c); the common optimal polycube domain is 

shown in (f); and the final common optimal polycube mapping of both models are as (e) 

and (g). Note: the common polycube balances both individually-optimal polycubes, see 

the neck region. 

3.5.1 Volumetric Polycube Parameterization 

Solid volumetric data have richer contents than the surfaces. When the data processing 

and analysis are related to material, intensity, or any other structural information defined over 
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the whole 3D region of the objects, we need to consider the shape as 3-manifold and study 

the volumetric mapping. It is a natural generalization of surface mapping, which facilitates 

similar applications when solid data are prevalent: matching, meshing, spline construction 

and etc. Polycube mapping, as the boundary surface mapping of volumetric parameterization, 

induces the volumetric polycube parameterization, which can be applied to feature alignment 

and remeshing.  

 

Figure 3.7. Heterogeneous volumetric mapping (boundary surface mapping). 

This volumetric mapping is between head-skull-brain and polycube-sphere. (a) The 

extracted and cleaned volumetric shape has three salient iso-surfaces: head, skull, and 

brain. A target domain (d) is generated to test the efficacy of our mapping with 

constraints of iso-surface. (d) has a sphere, a polycube skull, and a cube inside, 

corresponding to three iso-layers in (a). (b) and (c) show the 30% and 60% morphing 

from (a) to (d) by linear interpolation. 

In real scenarios, volumetric data usually contain different materials and densities, or 

have salient structure inside its interior region (see Figure 3.7a). These information or 

structures are usually meaningful and should be considered. Therefore, a scheme that can 
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properly handle heterogeneous structure is worthwhile, so that we will be able to align or 

match similar material/intensity when necessary. 

 

Figure 3.8. Heterogeneous volumetric mapping (volumetric mapping). 

(e)(g) show cross sections on the polycube-sphere domain. (f)-(i) show corresponding 

cross-section on the head-skull-brain model. The point clouds in (e)-(i) are the sampled 

feature points on these iso-surfaces (e)(g), and their images (f)-(i) of volumetric mapping. 

The color-encoding in (f)(h) visualizes the mapping via transferred distance field of 

(e)(g). In (j), the brain iso-surface and its fitting, green points are images of sampled 

points on the interior cube in (e).   

Figure 3.7 and Figure 3.8 show an example of a volumetric mapping over the 

heterogeneous data head-skull-brain model, which has three salient iso-surfaces: the outer 

boundary is a genus-zero (head) surface, and the interior skull iso-surface is genus-two, 

within which there is a genus-zero (brain) surface. The polycube domain is generated to test 

the efficacy of our mapping on heterogeneous 3D data with iso-surface constraints.The outer 

head boundary surface is mapped onto s sphere boundary, the skull iso-surface is constrained 

on the polycube skull, while the brain iso-surface is mapped to s small cube inside. Locations 
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of the feature points in (g-i) demonstrate that the iso-surface constraints are precisely fitted, 

and the volumetric mapping align the feature surface very well. More volumetric polycube 

mapping results are in Figure 3.9. 

 

Figure 3.9. Mapping between solid objects and polycubes.  

Polycubes (a,e) are mapped to two-torus (b) and kitten (f), respectively. Color-encoded 

distance field of (c,g) are transferred under the mapping to (d, h). 

A direct application for volumetric mapping is hex-mesh generation. Regular mesh 

structure is highly desirable for finite element and physically based deformation/simulations, 

because regular meshes provide great efficiency for geometry processing and physically 

based simulation [7]. Given an 3D solid data  , we first compute the polycube mapping 

𝑓       , where    and    is the boundary surface of   and  , respectively, then 

volumetric polycube mapping 𝑓    . With 𝑓 we can transfer the regular structure on   to 

 . Figure 3.10 illustrates an example of using a unit solid cube to remesh the solid David 

head. We compute the volumetric mapping 𝑓       from the cube to the David head. 

Then 𝑓     is a solid with the hex connectivity of    and the head shape of    , and it is the 

remeshed David head, as illustrated in (c)(d). More hex remeshing examples are also 

illustrated in Figure 3.11. 

3.6 Experimental Results 

We compare the property of our polycube mapping framework with existing methods 

and list them in  
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Table 3-2. Our method generates the optimal polycube within the same topological 

class, and the complexity of the polycube is flexibly bounded by the given number of 

singularities. We test our optimization framework on a few 3D shapes. Figure 3.12 shows the 

optimization on Bimba and Max-Planck. The texture-mapped rectangular grids become 

closer to squares, indicating the reducing of angle distortion. 

 

Figure 3.10. Hex remeshing of the solid David head. 

(a) The original mesh structure of the David head. (b) A simple cube domain that the 

hexahedral mesh is generated upon. (c) The remesh David and (d) a cross-section to 

show the interior structure. 

 

Figure 3.11. Hex remeshing.  

(a) illustrates a hex-remeshed solid two-torus. The hex mesh on the polycube for 

remeshing solid kitten is shown in (b). The remeshed kitten is illustrated in (c)(d). (e)-(h) 

show the hex-remeshing for a solid Chinese horse model. 
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Figure 3.12. Polycube mapping of Bimba and Max-Planck. 

(a,d) initial mapping, (b,e) optimized mapping. The texture mappings of grids show the 

reduction of angle distortions after the optimization. (c,f) initial polycube (in upper row) 

and optimized polycube (in lower row) domains. 

 

Table 3-2. Comparisons of different polycube mapping methods. 

PC Constr., Opt. PC, Sing. Control,  Common PC indicate whether polycube construction 

can be automatic, whether polycube shape is optimal, whether polycube complexity can 

be controlled by the given restriction on singularity number, and whether it can be used 

to construct a canonical domain for multiple objects, respectively. 

Methods PC Constr. Opt. PC Sing. Control Common PC 

Tarini[33] Manual No Manual No 

Wang[34] Manual No Manual No 

Wang[35] Manual No Manual No 

Lin[24] Auto. No No No 

He[18] Auto. No Yes No 

Ours Auto. Yes Yes  Yes 

 

Figure 3.13 shows a common polycube parameterization for multiple objects. We 

parameterize the horse, cow, and goat onto an optimized common polycube domain. (a-c) 

visualize the geometry represented on the polycube parameterization (using the connectivity 

of the polycube), then we can easily interpolate them and generate a ``mixed creature''. (d) 

shows an interpolated shape with                        3      . Features of 

horse, goat, and cow can be seen on the final interpolated shape. 
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Figure 3.13. Integration of multiple objects over a common polycube domain. 

The horse (a), goat (b), and cow (c) are blended in this polycube domain. Features from 

the original models can still be seen in the interpolated shape (e.g. the mouth and neck 

of the horse, ears of the goat, and the tail of the cow). 

The quality of polycube mapping can be measured by area distortion       and angle 

distortion        [32]. 

          
            

           
 

           

            
 

        
                          

            
 

The closer the values of        and         is to 1, the better the quality of polycube 

mapping we get. The statistics and performance of our test cases are reported in Table 3-3. 

Intuitively, the more complicated the polycube domain is used, the more freedom we 

have to optimize its shape. And generally when the polycube is closer to the original model, 

we can get a less distorted/stretched polycube mapping. Figure 3.14 illustrates an example on 

the Beethoven model. When only one cube is used as the parameterization domain, the 

distortion is larger (a,b), compared with the mapping constructed on a more complicated 
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polycube domain (c,d). On the other hand, a more complicated polycube domain indicates 

more corner points (singularities) [4] and potentially more-distorted parameterization across 

sub-region boundaries. 

Table 3-3. Runtime table 

   (number of triangles);    number of corner points,       
  and      

  are angle and 

area distortions before optimization;         and       are distortions after optimization; 

   and    is the execution time for domain optimization and mapping optimization (in 

seconds). 

Models #  #        
       

                     

Isis 5K 8 1.261 1.429 1.134 1.385 0.52 112 

Beethoven 21K 20 1.387 1.563 1.215 1.236 7.74 504 

Max-Planck 10K 8 1.104 1.477 1.060 1.395 1.36 33 

Bimba 30K 20 1.292 1.243 1.283 1.209 10.62 744 

horse 16K 60 1.352 1.302 1.258 1.229 11.72 1842 

cow 39K 60 1.198 1.210 1.191 1.161 21.21 2898 

goat 21K 60 1.359 1.304 1.241 1.190 10.83 2032 

We also adjust the weighting factor   in Equation 3.8 to see different mapping results. 

Table 3-4 shows the different angle and area distortion under different settings.    .  was 

used when we perform our other experiments. 

Figure 3.15 illustrates this mapping result. When the area term is emphasized, a more 

uniform but less conformal mapping is obtained (a,b); when   is small, the angle distortion is 

reduced (c,d). 

Table 3-4. Testing different weighting on the area-stretching term. 

       and       are the corresponding angle and area distortion. (  in Equation 3.8) 

  0.1 0.5 1.0 1.5 

       1.219 1.235 1.253 1.264 

      1.380 1.316 1.292 1.281 
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Figure 3.14. Different initial corner budgets. 

With increase of the initial budget (from 8 to 20), the mapping quality is improved 

(from a,b to c,d). 

 

Figure 3.15. Different weighting factors. 

(a,b) Area-stretching term       , (c,d)     .   . 
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Chapter 4 Conclusion 

4.1 Work Completed 

Surface parameterization is a broad field and parameterization over regular domains, 

like polycube, attracts lots of attention of the researchers in recent years. Since Tarini et al. 

first introduced the concept of polycube mapping [1], much work has been done to improve 

polycube mapping. People were trying intrinsic approaches since the work of [4] rather than 

extrinsic approaches. Besides automation, researchers are trying to control the singularities 

and maintain a low-distortion parameterization independently. Unfortunately, the fact is we 

are going to have lower distortion mapping if the polycube domain approximates the input 

model more accurately, which means more corner points, or singularity points, are needed. 

Obviously, a balance has to be achieved. This thesis proposes a question: what is the 

optimal polycube mapping given a singularity budget? Then it brings forward a solution. In 

this thesis, we consider the distortion and the singularity simultaneously. First of all, an initial 

polycube domain is constructed automatically for the input model, whose corner point 

number is constrained by the budget of singularities. After that, the polycube domain is 

optimized to have a polycube mapping with optimal distortion. Then the best corner point 

candidates are found through an optimization searching for minimized mapping distortion via 

local parameterization. The polycube domain optimization and mapping optimization run in 

an iterative way until the parameterization with no lower distortion can be obtained. During 

the optimization process, a fast approach to re-compute the parameterization and an efficient 

optimization solver is required. Following the strategies of [53], we utilize CHOLMOD [52] 

and create a fast polycube mapping updating scheme. Therefore, we do not have to 

recompute polycube mapping from scratch, which costs       each time. Moreover, we also 
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employ an efficient derivative-free solver to achieve the optimal polycube mapping since 

there is no close form for the objective function and it is difficult to obtain the derivatives of 

the objective function. We also apply this approach to common polycube domain for multiple 

objects, where the total distortion of all the polycube mappings among the objects is 

optimized. Experiments and demos have demonstrated the effectiveness of our approach. 

4.2 Ongoing Work 

Although this thesis proposes the new concepts of optimal polycube mapping and 

presents an effective solution, there exist some parts which can be improved in the future. For 

example, we adopt a simple polycube construction technique based on the octree and 

projection. It would not successful to extract the sub-patch information for complex models. 

What’s more, allowing the alignment of feature points in the polycube mapping can benefit 

many graphics applications such as morphing and registration. However, this is challenging 

and has not been well discussed/solved in existing polycube mapping literature. 

Within our current framework, on a sub-patch, directly enforcing the harmonic mapping 

to map an interior feature point to a specific position on the polycube domain may cause local 

flip-over around the feature point. One possible approach is to simply add feature alignment 

as a soft constraint in the mapping optimization step, such that feature matching errors are 

penalized like the angle-distortion and area-distortion terms. To enforce a hard constraint on 

feature matching, additional domain partitioning to make the features on the sub-patch 

boundary can be another solution. There are many problems here to explore. 

Our research in spherical mapping is still in progress. We are developing a multi-

resolution optimization approach to minimize energies defined on spherical meshes. The 

multi-resolution model representation has been implemented and we are now searching for an 

efficient way to insert and update new vertices into the existing optimized coarse mesh.  
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