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Abstract

General purpose processors were once designed with the major goal of maximizing perfor-

mance. As power consumption has grown, with the advent of multi-core processors and the

rising importance of embedded and mobile devices, the importance of designing efficient and

low cost architectures has increased. This dissertation focuses on reducing the complexity

of the front end of the processor, mainly branch predictors. Branch predictors have also

been designed with a focus on improving prediction accuracy so that performance is maxi-

mized. To accomplish this, the predictors proposed in the literature and used in real systems

have become increasingly complex and larger, a trend that is inconsistent with the antici-

pated trend of simpler and more numerous cores in future processors. Much of the increased

complexity in many recently proposed predictors is used to select a part of history most

correlated to a branch. This makes them costly, if not impossible to implement practically.

We suggest that the complex decisions do not have to be made in hardware at prediction

or run time and can be moved offline. High accuracy can be achieved by making complex

prediction decisions in a one-time profile run instead of using complex hardware. We apply

these techniques to Spotlight, our own low cost, low complexity branch predictor. A static

analysis step determines, for each branch, the history segment yielding the highest accuracy.

This information is placed in unused instruction space. Spotlight achieves higher accuracy

than other implementation-simple predictors such as Gshare and YAGS and matches or out-

performs the two complex neural predictors that we compare it to. To ensure timely access,

we evaluate using a hardware table (called a BIT) to store profile bits after they are extracted

from instructions, and the accuracy of using this table. The drawback of a BIT is its size. We

introduce a novel technique, preloading that places data for an instruction in prior blocks

on the path to the instruction. By doing so, it is able to significantly reduce the size of the

x



BIT needed for good performance. We discuss other applications of preloading on the front

end other than branch predictors.
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Chapter 1
Introduction

Modern processors were traditionally designed with a focus on maximizing performance

(minimizing overall execution time) on a single core. However, as the power consumed by

these processors has grown and multiple cores are placed on a single chip, the importance of

designing individual cores with low cost (in terms of area) and low complexity has increased.

Even though the number of transistors per chip is expected to continue to grow exponentially,

since processors with hundreds of cores are expected in the future, it is important that the

cost of each core (in terms of the hardware occupied) be kept as low as possible. Low

complexity hardware is important because the total power consumption that is acceptable

per processor has essentially peaked and generally speaking, more complex solutions dissipate

more power and energy.

The front end of the processor is the part responsible for fetching instructions into the

core. It comprises of the instruction cache, the branch predictor, the jump predictor and

either a branch target buffer or a basic block table. This dissertation is mainly focused on

the branch predictor, although the techniques we develop could easily be used for all other

parts of the front end.

Branch predictors are an important component in the design of modern processors. Branches

are instructions whose outcomes determine which of two possible paths a program can take

and therefore, which instruction should be fetched next. Since the instruction fetch unit

needs the branch outcome in the same cycle that a branch is fetched and computing the

actual outcome takes many clock cycles, branch predictors are used to make an early predic-

tion and avoid program stalls. However, a mispredicted branch results in the incorrect fetch

of many instructions along the wrong program path. This results in reduced performance

because clock cycles that could otherwise be spent fetching correct path instructions are

1



wasted. Further, the energy spent in the fetch, decode and execution of these wrong path

instructions is also wastted [23]. Therefore, highly accurate branch predictors are important

in achieving both high instruction throughput and low energy consumption.

While branch predictors can improve execution time and reduce wasted energy by min-

imizing the number of wrong path instructions that are processed, the predictor itself can

be costly and complex. Early branch predictors were simple in terms of their hardware

complexity. For example, the bimodal predictor consists of a single table of two bit satu-

rating counters. A branch uses its program counter (PC) bits to access an individual entry

and makes a prediction based on a single bit of the counter’s value. The Gshare predictor

uses a similar table of saturating counters but indexes the table using a combination of PC

and branch history bits, called the global branch outcome history. Other predictors such

as YAGS[4] deliver higher accuracy at slightly greater complexity but are still relatively

simple. However, in order to continue the trend towards higher accuracy, the branch pre-

dictors proposed in literature and those used in real systems started becoming larger and

more complex over time. A new class of predictors that have been proposed in recent years

provide extremely high accuracy but require complex hardware and are unable to deliver

single cycle predictions without using techniques that may require even further complexity.

For example, neural based predictors such as the Hashed Perceptron [34] and the Path-based

Neural [11] require complex computations and many table lookups that result in a latency

of several cycles per prediction if clock frequencies are to be preserved. These approaches

requiring complex hardware are counter to the widely anticipated trend in future multi-cores

of simpler and more numerous cores and the need for low-cost hardware. Further, a single

cycle latency is difficult to achieve without using either a faster first-level primary predictor

whose prediction may be reversed later by the main branch predictor or other complicated

schemes like ahead pipelining [12, 24, 28, 34].

These complex predictors can be seen as doing two things: discovering correlations be-

tween a branch outcome and some kind of history, and using such correlations to make a

2



prediction. Since these correlations are determined primarily by program structure (as op-

posed to program input), it might be possible to discover such correlations in advance and

then deliver this information to a much leaner predictor, one that would not need hardware

to discover correlations.

Profile-based branch predictors are hybrid static/dynamic schemes that use some informa-

tion determined before program execution to aid in the prediction process. A well designed

profile-based branch predictor could have the potential to attain high accuracy with simple

hardware by performing the more variable, data dependent parts of the decision making

process in the flexible hardware while offloading the less variant, data independent parts of

the process to software that runs before program execution. The performance of the neural

predictors suggest that complex computations are difficult to avoid if higher prediction accu-

racy is to be achieved. While these computations may not be avoidable, they may not have

to be done at prediction time or even at run time. Instead, the complexity can be moved

from hardware to software using profiling. Typically, profiling involves performing an initial

training run on a representative training input in order to collect some general information

(such as the percentage of times that a given branch is taken) about the program and us-

ing this information to assist in the decision making process during the actual execution of

the program. In branch predictors, profiling has the potential to reduce the complexity of

the on-chip hardware without sacrificing accuracy by moving some of the complexity of the

branch prediction process to an offline, software step.

One important question is how to place the profiled data needed by the hardware. The

simplest approach would be ISA (Instruction Set Architecture) based, where the format of

branch instructions is extended so that they have a designated field for profiled data. A less

costly approach that can avoid extending the instruction is to modify the format of existing

branch instructions so that free space due to underused or unused bits (such as some bits in

the branch displacement field) are used to store profile bits. Custom carry-only instructions

can be added to the ISA, but in order avoid increasing the code size, the preferred method

3



would be to use special versions of existing instructions. Free space can be used, not just

within a single branch instruction but other instructions within the control block of the

branch instruction. This is more complicated but increases the amount of profiled data bits

that may be stored.

The other major challenge is the placement of the data obtained during profiling in a

manner that allows it to be accessed easily and quickly enough to make an on-time predic-

tion. The most cost effective and obvious way of placing profiled data would be within the

instruction of the branch being predicted. However, waiting for an instruction within the

block being predicted to be decoded to extract the data is not feasible, since by then it is too

late for the front end of the processor to access the data (a branch needs to be predicted in

the same cycle that it is fetched). For profiled data to be accessed in time, the information

has to be placed within instructions in prior branches or control blocks (a control block is a

block of instructions which contain the branch instruction) in the instruction stream. This

can provide enough of a head start so that the data is ready to be used by the time the

branch being predicted is fetched. But in which previous control block (or blocks) do we

place data for the current branch, and what happens if more than one branch wants to use

a given block? We refer to this key problem of where profiled information should be placed

in an optimal manner as the placement problem.

Our investigation started with a profile-based predictor called Spotlight [38]. A low-cost,

single-cycle version was developed and characterized, in particular in a search for low cost

configurations. The main focus of the investigation was to develop methods of delivering

profile information to a predictor, including Spotlight, shortly before the need for this infor-

mation, without requiring large tables and without increasing instruction fetch bandwidth.
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Chapter 2
Background and Related Work

Branch instructions control the flow of programs by determining which instructions should

be fetched after the branch to continue program execution. In order to prevent stalling the

fetch of instructions, the fetch unit needs the outcome of a branch in the same cycle that the

branch is fetched. Since it is not possible to compute the actual branch outcome in the same

cycle that it is fetched, branch predictors are used to predict the branch outcome. After a

branch is fetched, it needs to be decoded and executed before its actual outcome is determined

and this process can take many cycles. An incorrect prediction can be corrected after the

branch executes, but this results in the time between the fetch and execution of the branch

being wasted fetching, decoding and executing other instructions which will later have to be

squashed. The result is not only a waste of clock cycles (and hence a loss of performance)

but also a waste of energy due to the processing of unnecessary instructions. In addition to

predicting the direction of the branch, the target of the branch (which instruction is fetched

next) is also predicted in processors. The focus in this dissertation is on branch direction

prediction.

Branch prediction is a widely studied topic, but we will concentrate on certain aspects of

earlier work. We look at how predictors became increasingly more complex as higher accuracy

was sought as a means to drive performance improvement. We also look at how the more

complex predictors use complex pipelining schemes in order to achieve on-time prediction

without sacrificing clock frequency. We also focus on the fact that much of the complexity

of these predictors is directed towards finding the part of history that is most correlated to

a branch. We look at how previous profile-based predictors use profiling to do some parts of

the prediction that would normally be done in hardware.
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2.1 Early, Low Complexity Branch Predictors

The Bimodal predictor is the simplest, hardware based branch predictor both in terms of

concept and hardware complexity. A branch instruction accesses an entry in a Branch History

Table (BHT) using its program counter (PC) bits. Each table entry is a two-bit saturating

counter (range of possible values are ≥ 0 and ≤ 3) that is incremented on a taken branch and

decremented on a not-taken branch. A prediction is made based on the entry’s value, a value

≥ 2 results in a taken prediction while a lower value results in a not-taken prediction. The

bimodal predictor can be seen as a majority predictor, where a branch’s predicted outcome

is based on whether its recent history indicates that it is mostly taken or mostly not-taken.

. The Local predictor uses two table lookups. The first table is indexed using the branch

PC bits of the branch being predicted and contains the most recent branch outcomes. The

value in this first table is used to index a Pattern History Table (PHT) of two-bit saturating

counters. The PHT is similar to the BHT but stores a history of local branch patterns. The

local predictor’s name is derived from the fact that it predicts a branch’s outcome based on

the recent local history of that branch. The Gshare predictor has almost the same hardware

complexity as the Bimodal predictor, but is conceptually more sophisticated. It uses a PHT

which is indexed using the most recent set of global branch outcomes (as opposed to the per

instruction local history of Bimodal and Local) stored in a global history register (GHR).

The GHR is exclusive OR’d with branch PC bits to reduce conflicts in the PHT table.

Gshare exploits the idea that a branch’s outcome is correlated to other branches preceding it

in the instruction stream and delivers higher accuracy compared to Bimodal, despite having

similar hardware complexity. The drawback with Gshare is the amount of table conflicts

(called aliasing) in the PHT that occur when multiple branches access the same PHT entry.

The Bi-Mode branch predictor [16] converts destructive aliasing with neutral aliasing by

dividing the PHT into three equal parts. Two direction PHTs (called taken and not taken)

are indexed using branch PC and global history bits, with the goal being to use one PHT

for branches which are mostly taken and the other for branches which are mostly not-taken.
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A choice PHT indexed with just the branch PC bits is used to decide which of the two

direction PHTs to use. Since only the direction PHT selected by the choice PHT is updated,

destructive aliasing is reduced. The YAGS branch predictor [4] mitigates the aliasing problem

by using a bimodal component combined with two choice PHTs that operate similarly to

the PHT in Gshare. One choice PHT is used for branches that are biased taken and the

other for biased not-taken branches. The bimodal component is first accessed to determine

the bias of a branch, and this bias determines which of the two choice PHTs is accessed. A

branch that is biased taken will check the not-taken choice PHT, Instead of providing an

actual prediction, the choice PHTs indicate whether a branch disagrees with its bias. Since

branches will agree most often with their bias, the amount of conflict in the choice PHTs is

significantly lower compared to the PHT in Gshare.

2.2 Predictors with Greater Complexity

While the previously mentioned predictors understandably increase in complexity and size

as accuracy increases, they are still relatively simple and practical relatively low-cost im-

plementations of these predictors is possible. However, more recently proposed predictors,

while delivering improvement in accuracy, have become so complex that practical implemen-

tations are difficult. Even if implemented, these predictors are extremely costly (in terms

of hardware budgets and energy consumed) and cannot deliver on-time single cycle predic-

tions without using even more complex hardware mechanisms. Seznec [25, 27] analyzes the

O-GEHL predictor. This predictor can explore very long history lengths up to 128 bits but

needs to compute the sum of M items to make prediction. Recent work using perceptrons

improve predictor accuracy by using longer global histories without exponentially increasing

hardware size. The idea of neural branch prediction was originally introduced by Vintan and

Iridon [39]. Jiménez et al. [10] propose a dynamic Perceptron predictor that exploits long

branch histories by increasing hardware table size linearly with the history length. A hash

function of the branch address is used to select a single perceptron from a table and an
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output is computed by using the dot product of the perceptron and global branch history.

However, the global perceptron has to determine the hash of the branch address and the

dot product of the perceptron and global branch history, a process that can take up to 4

cycles even in an efficient circuit level implementation of the predictor [14]. To counter this

problem, Jiménez [11] proposes the Path-based Neural Predictor which computes a running

sum along the path leading up to each branch. This makes it possible for the latency to be

reduced from four to two cycles. However, the Path-based neural predictor is extremely com-

plex in its use of anywhere between 14 and 34 weight tables to make a prediction. Tarjan et

al. [34] improve on the linear scaling of previous perceptron predictors by assigning multiple

branches to a single weight in their Hashed Perceptron scheme. This predictor is able to out-

perform the path based neural predictor, hence demonstrating that the one-to-one mapping

between weights and branch history bits that is used in other Perceptron predictors is not

necessary. The neural approaches to branch prediction obtain high accuracy but are clearly

very complex (especially when compared to simple predictors like Gshare) and difficult to

implement with a single cycle latency because of the need for relatively complex calculations

before arriving at a prediction. The Alpha EV6 [26] solves the latency issue by using a simple

quick predictor which is backed up by a larger and more accurate predictor.

Another approach to solving the latency problem is to use ahead pipelining [12, 24, 28, 34],

where the computation required to make a prediction in a particular cycle is started several

cycles earlier using the information available in the earlier cycle. However, these schemes do

not mitigate the complexity of the hardware itself and in fact add to the complexity. There

can also be a significant drop in accuracy when the “ideal” one-cycle latency versions of these

predictors are compared to the pipelined versions. Furthermore, Tarjan et. al [34] point out

that pipelined versions of branch predictors will need to checkpoint intermediate predictor

data to account for the recovery process after a branch misprediction. The amount of data

that needs to be checkpointed is dependent both on the complexity of the predictor and on

8



the number of pipelined stages that the predictor uses to make a prediction. In [34], Tarjan

et. al note that Perceptron-based predictors need to checkpoint a significant amount of data.

2.3 Improving Prediction Accuracy by Determining

Most Useful History Segment
2.3.1 Dynamically (at Run Time)

In addition to O-GEHL and the Neural predictors, many other predictors also seek to improve

accuracy by determining which part of branch history is useful. Juan et al. [8] propose

Dynamic History Length fitting, where the length of the GHR used is varied dynamically

until one that works best for the code in execution is found. Ever et. al [3] explore global

histories up to a size of 32, were up to three of the most important branches over this

history length are selected using an oracle mechanism for use in a hypothetical predictor.

Their results indicate that considering longer global histories up to 20 bits can improve

performance. Thomas et al. [36] use run-time data flow information to identify correlated

branches over a long global history. An Affector Register File (ARF) contains dataflow

information for every architectural register. Each entry in the ARF is a bit vector, where a

bit represents whether a branch in the global history affected the architectural register. For

each branch, an Affector Branch Bitmap is created by combining the affector registers of the

branch’s source operands and this bitmap is combined with the GHR to form the predictor

index. Their technique uses 64 bits of GHR which are hashed down to the required number

of index bits by using a fold and XOR hash.

2.3.2 Using Profiling

The O-GEHL, Neural-based, Variable Length Path Predictor and the ARF predictor spend

a lot of hardware resources to determine which part of prior branch history is useful. Pre-

liminary work has shown that this cost can be vastly reduced by using profiling (instead of

hardware) to make this decision and by designing an efficient mechanism to place profiled

data within the instruction stream. Tarlescu et al. propose the Elastic History Buffer (EHB)

[35] predictor where the length of history used to predict a branch can vary and is determined
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using profiled data. Stark et al. [33] propose Variable Length Path Branch Prediction which

use profiling to select one of N hash functions for indexing a prediction table, where a hash

function k ∈ {1, 2, . . . , N} uses the target address of the k most recent branches to produce

the hash. Similar to this proposal, they also propose storing profiled information in branch

instructions, caching this data at runtime in a table and organizing this table so that entries

store data for downstream branches. However, they only suggest such an approach and do

not simulate or analyze the accuracy, costs and challenges that such a scheme poses. Further,

computing several hash functions and selecting amongst them involves complex hardware

because each of these hash functions requires several rotations and XOR’s to be performed

on different target addresses in each cycle.

2.4 Other Profile Based Predictors

In addition to the predictors mentioned above, profiling has been used by others to aid

in branch prediction. McFarling and Hennessy [19] investigated two static based branch

prediction schemes, the first of which predicts all branches in a program the same way and

the second one which predicts individual static branches in a program the same way, with

the predictions determined by profiling. They reported accuracies greater than 60% for the

former technique and accuracies greater than 80% for the latter technique. Chang et al.

[2] use profiling to classify branches based on their dynamic taken rates. Profiled data is

used to predict highly biased branches statically. This allows them to optimize the hardware

predictor by reducing PHT conflicts between highly biased and mixed direction branches.

Sprangle et al. [32] propose the Agree predictor and investigate a version of the predictor

that uses profiled data to set a bias bit in the branch instruction. PHT conflicts which are

harmful are reduced by updating PHT entries based on whether a branch agrees or disagrees

with its hint bit, instead of taken and not taken rates. Path profiling techniques collect

information on the paths taken during the execution of a program. Jiménez et al. [9] use

path profiling to assign paths to PHT entries so that similarly biased paths are mapped to
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the same PHT entry. Each branch has an inversion bit which may be set during profiling if

two paths with different biases map to the same PHT entry. During the actual run of the

program, a branch’s outcome is inverted before it is recorded in the global history register if

its inversion bit is set. Young et al. [43] propose static correlated branch prediction which uses

path profiling to increase the accuracy of static branch prediction by duplicating program

blocks and encoding information about the path taken to reach a particular block. Most of

these previously proposed profile-based predictors ideally assume that profiled information

can be obtained directly from the branch instruction in time for a prediction. This is clearly

an impractical assumption which we discard in this work.
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Chapter 3
Profile Based Branch Prediction

The previous chapter has an overview of the history of profile based branch predictors. This

chapter takes a detailed look at some of these predictors, including our proposed Spotlight

Branch Predictor [38] and discusses why these predictors can be useful.

3.1 Benefits of Profile Based Predictors

At first glance, it seems obvious that improvements in branch prediction accuracy cannot

be achieved without increasing the complexity and size of the prediction hardware. This is

the case when one considers the evolution of branch predictors discussed in the background

chapter. Predictors such as the Neural-based predictors and O-GEHL are very accurate but

so complex that practical implementations of those predictors are extremely costly if not

impossible.

Another requirement for a processor with a branch predictor is a mechanism for mispredic-

tion recovery. When a misprediction is detected, the processor has to squash all subsequent

instructions and restore the state of the front end back to what it was just after the mispre-

dicted branch. The amount of state that has to be saved and the complexity of the recovery

is dependent on the complexity of the predictor itself. This is another reason for increased

complexity in neural predictors compared to simpler predictors.

We observed that these predictors use a significant amount of hardware resources trying

to identify which parts of history are most correlated and useful in predicting a branch. For

example, the Perceptron predictors assign weights to different Sections of the global history

and these weights are trained to determine the most useful parts of this history. Not only

do you need multiple tables of multiple-bit entries to store these weights, the complexity of

these schemes is high because of the need to add several non-positive integers. If those table
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values could be pre-computed and then loaded when needed, then a complex part of the

predictor could be eliminated.

We suggest that while it may not be possible to get much improvement in accuracy without

increasing complexity, some of the complexity can be moved away from the hardware to an

offline step done in software before program execution. Higher prediction accuracies can

be achieved with relatively simple hardware if this can be done successfully. This is the

motivation behind the Spotlight predictor, one of the main contributions of this dissertation.

Many profile-based predictors such as the Agree Predictor have been proposed. These

predictors use profiled data to replace some of the decision making that is normally done

in hardware, and so achieve improvements compared to the non-profile based predictors of

comparable hardware complexity. The Spotlight predictor is a robust profile-based predictor

which uses aggressive profiling to make complex decisions away from the hardware. Specifi-

cally, profiling is used to precisely select the Section of history that is most correlated to the

predicted branch. We show that this approach can reduce predictor complexity, since the

complex predictors perform this aspect of prediction in hardware and also show that high

accuracy can be achieved despite the simpler hardware. In the next two Sections we describe

the Agree and Elastic History Buffer predictors and show how the Spotlight predictor is a

natural next step in the evolution of profile-based predictors.

3.2 Static Branch Predictors

Static branch predictor schemes predict branches without using any hardware. One option

is to predict individual static branches the same way (always taken or always not taken) for

all dynamic instances of the branch during program execution. This technique can deliver

reasonably high accuracy, greater than 80%, as reported by McFarling and Hennessy [19].

Young et al. [43] propose a static scheme that improves accuracy by using compiler based

techniques such as path profiling, duplicating program blocks and encoding path information

about the path taken to a branch. In such a scheme, a static branch may be predicted either
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taken or not taken depending on the encoded information. As discussed in Section 2.4, Chang

et. Al [2] use static prediction but only for branches that are highly biased. This enables

them to make better use of the hardware scheme, Gshare, by reducing PHT conflicts. Some

ISA’s such as the Sparc V9 [41] have hint bits associated with branch instructions that could

be used in a static prediction based branch predictor. While a static scheme seems attractive,

at best an accuracy of 90% can be attained.

3.3 The Agree Predictor

The basic Agree predictor [32] is shown in Figure 3.1 and has been used in real systems such

as the HP-PA 2700 [17, 37]. In terms of hardware complexity, the predictor is almost identical

to a Gshare predictor. The only addition is a single XOR gate that XOR’s the outcome from

the rest of the prediction scheme with a predicted biasing bit (shown in the oval). Sprangle

et. al [32] simulate two versions of the Agree predictor, one version in which the biasing

bit is determined by the direction a branch takes during its first occurance, and another

version in which it is selected using profiling by looking at whether a static branch is mostly

taken or not-taken. The base predictor for Agree is Gshare, which is described in Section 2.1.

While Gshare increments or decrements the two-bit saturating counters in the PHT based

on whether a branch is taken or not taken, the Agree scheme modifies the counters based

on whether a branch agrees or disagrees with its own bias. Consider two branches that both

map to the same PHT entry, with one of these branches being mostly taken and the other

mostly not-taken. In a traditional Gshare, the two branches may fight for the entry. That

will be the case if the two colliding branches have approximately the same frequency and

access the entry alternatively. When this occurs, the mostly taken branch pushes the counter

to the maximum while the mostly not-taken branch pushes it towards the minimum. The

result is that neither of these colliding branches are predicted as accurately as they would

be if they each had a unique entry. The Agree scheme mitigates this problem because the

PHT entries indicate whether a branch agrees or disagrees with its bias, instead of indicating
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the absolute outcome of the branch. As such, both the mostly taken and mostly not taken

branch are expected to, by definition, agree with their bias most of the time. While there

will still be conflicts when the actual outcome of one branch does not agree with its bias, the

number of conflicts are greatly reduced. As a result, the Agree scheme can improve on the

accuracy of the base Gshare predictor by using profiling and a small increase in the hardware

itself, particularly at smaller PHT sizes (since there are more collisions at smaller sizes).

The Agree predictor is simpler than other predictors such as YAGS [4] and Bi-Mode

[16], both of which reduce destructive aliasing in the PHT. Both of these predictors reduce

destructive aliasing by dividing the PHT into multiple parts. One table is similar to Bimodal

in that it is indexed using just the branch PC and essentially determines the biasing bit for

these predictors. Two additional tables, direction PHTs, are indexed using a combination of

branch PC and global history bits. One direction PHT is a taken PHT and the other is a

not-taken PHT. The relative simplicity of the Agree predictor is due to its use of profiled

data (or easy to determine information such as the direction a branch takes during its first

occurance). The advantage of these other predictors is that they can deal with situations

where the bias of a significant number of branches flips back and forth. In contrast, a flip

from one direction to another would reduce prediction accuracy for a while (compared to

YAGS) if only one PHT is used, as in the Agree predictor.

3.4 The Elastic History Buffer Predictor

The Elastic History Buffer (EHB) [35] belongs to the class of predictors that chooses, on

a per-branch basis, the part of the outcome history to use, effectively taking correlation

into account. The basic idea is that the amount of correlated history needed to predict a

branch accurately varies on a per branch basis. Some branches require longer histories to be

predicted accurately (for example, consider a branch inside a loop that correlates to branches

outside). Other branches require a much shorter history, and using longer histories will only

hurt accuracy. This is because more history often means that more PHT entries are used, all

15



GHR

011010101111011

n =15 

XOR

Pattern
History
Table

bias bit XOR
pred

Branch PC bits

Additional hardware
compared to Gshare

FIGURE 3.1: The Agree Predictor

GHR

011010101111011
Section of GHR
to be selected

n = 15 

section_length=4
mask size
Mask Generator 00001111 

AND

XOR

Pattern
History
Table

pred

00001011

Branch PC bits

Additional hardware
compared to Gshare

FIGURE 3.2: The Elastic History Buffer Pre-
dictor

of which must adjust to the branch. Further, because of the greater number of PHT entries

used, there is a greater chance of collision with other branches. The combined phenomenon

due to these two factors is called warmup.

The EHB determines a custom GHR history length for each static branch in the program.

This is determined during profile runs by testing a range of lengths for each static branch

and selecting the one that works best (is the most accurate). The hardware for this scheme

is shown in Figure 3.2, with Section length representing the history length. Once again, the

complexity does not increase much compared to the base predictor (the addition to the base

predictor is shown in the oval). The only addition is a mask function that selects the lowest

N bits of the GHR, where N is the history length mentioned above.

The EHB is another scheme that significantly improves on the accuracy of the baseline

predictor without a major increase in complexity. It does so by removing the complexity of

determining the most related correlated global history using profiling, instead of the hard-

ware. The dynamic history length fitting scheme of Juan et al. [8] is similar, but determines

this correlation in hardware. This is done dynamically by computing the number of mis-

predictions over program intervals and dynamically adjusting the length at the end of each

interval based on the current number of mispredictions and the minimum encountered until
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that point. This requires a misprediction table, with a size equal to the number of bits used

in indexing the PHT. Two pointers are needed, one pointing to the entry in the table rep-

resenting the segment that has the minimum misprediction count and another pointing to

the entry representing the segment with the current misprediction count. Two counters are

also needed, one of which counts the number of mispredictions for the current interval and

another that counts the total number of predictions in the current interval (to determine

when an interval starts and ends).

3.5 The Spotlight Branch Predictor

The basic motivation for our Spotlight predictor [38] is that the segment of the GHR that

best correlates with the predicted branch can range widely both in terms of its distance

from the predicted branch (its starting point) and the length of the segment from this

starting point. The ability to vary the starting point makes Spotlight a logical improvement

over EHB. Spotlight focuses on finding the best correlated region that gives the highly

accurate predictors such as the neural predictors their accuracy. Figure 3.3 shows the basic

structure of the Spotlight predictor along with an example prediction. We refer to this

version of Spotlight as Spotlight-Direct. The predictor uses an n bit global history register
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FIGURE 3.3: Spotlight Direct

as its first level of history. For each prediction that needs to be made, a start bit and a
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Section length is provided to the predictor. The start bit represents the starting point of

the GHR Section that will be used for a prediction, and the Section length represents the

length of this Section. The start bit and Section length are used to perform a combination

of shift and mask logical operations on the global history so that a particular Section of

the GHR is selected (spotlighted). The example in the figure shows how a GHR Section

starting at the 7th bit with a length of 4 bits is selected. The selected segment of the GHR

is XOR’d with the branch PC and this result is used to index a pattern history table (PHT)

of two-bit saturating counters. The start bit and the Shift operator are what distinguishes

Spotlight from the EHB. Hence, the Spotlight predictor can use GHR bits starting at any

point between 0 and n− 1 with any length between 0 and the log2 size of the PHT.

The cost of determining the start bit and Section length dynamically in a pure hardware

scheme would be extremely high and might suffer from long warmup times. Spotlight avoids

these issues by determining this information using profiling. The methods used for profiling,

analysis and discovery will be covered in the next chapter.

Instead of using the PHT counters in the traditional Gshare approach, we use the Agree

scheme [32]. A bias is stored with each branch and the PHT counter for that branch indicates

whether its outcome is expected to agree or disagree with its bias. Since Spotlight already

uses profiled information to make predictions, the cost of including the Agree scheme is

minimal while providing some performance benefit to the predictor.

When comparing Spotlight to Agree and EHB shown previously, we can clearly see Spot-

light as the next step in the evolution of profile based predictors. Spotlight combines both

the benefits of Agree and EHB but provides a further improvement in terms of its ability to

select a GHR segment of any length starting not just at the most recent branch, but at a

point earlier in the code. As such, it is capable of looking further into history than the EHB.

In terms of hardware, it is slightly more complex than the EHB due to the additional shift

operation, but the overall complexity is still simple compared to more complex schemes such
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as Neural predictors. Because of its simplicity, Spotlight is also able to perform well at very

small PHT sizes.

3.6 Summary

This chapter describes the potential benefits of profile based predictors, particularly in the

context of the trend in computer architecture of simpler, more numerous cores. The profile

based predictors here are simple compared to the baseline predictor (Gshare) that does not

use profiling. These predictors have the potential to significantly outperform the baseline

predictor with minimal additional hardware by moving the complexity offline. We will see

that a significant advantage of profile based predictors is that they perform particularly

well at smaller hardware budgets. This has the potential to make them suitable for future

processors, where a large number of cores is expected and as such, the hardware cost of each

core needs to be kept low. Another advantage of profile-based predictors is their flexibility.

By making significant decisions in software, it is possible to implement various profile based

predictors on the same hardware. For example, the Spotlight hardware shown in Figure 3.3

can be used as an Agree predictor by setting the start bit to 0 and Section length to log2 of

the PHT size. It can be used to implement the EHB by setting the start bit to 0. The choice

of which predictor works best can be determined by the compiler based on an understanding

of the program. Spotlight can be seen as a superset of EHB and Agree, so an architecture

with Spotlight can be used to implement any of these three predictors based on what the

compiler thinks is appropriate. Further, improved prediction techniques can be implemented

and deployed with just a software update.
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Chapter 4
Instruction Profiling in the Real World,
Profiling, Analysis and Annotation (PAA)

As discussed in the previous chapter, the various profile based branch predictors need typical

branch behavior data, information that is typically collected using profiling. Spotlight uses

profile-collected data to determine a start bit, a Section length and a biasing bit, collectively

called a configuration, for each branch; it also needs to choose a program-wide default predic-

tor. This will be the fall back configuration for a branch which does not have custom profiled

data available (Section 4.2 describes how it is obtained). The EHB requires a section length,

and the original Agree predictor is the simplest, requiring a single biasing bit per branch.

The profiling, analysis, and annotation (PAA) steps cover the process of extracting this type

of information for a program and preparing an executable based on it. The simulator we use

models a general purpose processor, and the benchmarks we use are typically executed on

this type of processor. However, due to the current importance of embedded systems, we

describe how PAA would be implemented for both a general purpose and embedded system.

The PAA process starts with a program’s executable and possibly a set of training data

(training data can be omitted using dynamic PAA, in which live data is used). The process

finishes with an annotated binary.

In the profile step, a Control Transfer Instruction (CTI) trace is extracted for some sam-

pling of the program’s execution. CTI’s refer to branch, jump, call and return instructions.

The trace consists of the PC and outcome (taken or not taken) of each dynamic branch. In

the analysis step the trace is analyzed to determine the configuration for each branch and

to choose a default predictor. Finally, in the annotation step the configuration data is used

to prepare an annotated version of the original program executable. The annotated version

includes carry instructions which carry and deliver branch configurations to the BIT. If a

carry instruction were inserted for each branch there would be a significant increase in code
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size, since branches can make up more than one out of every ten instructions. Instead the

configuration data, which amounts to just 10 or 11 bits for the Spotlight configurations de-

scribed so far, will be carried by variants of existing instructions which perform their original

function but also carry the data. When such an instruction is decoded the configuration data

will be loaded into the BIT, for use the next time the branch is encountered. Each of these

steps is elaborated on in the Sections that follow.

PAA can be performed using commonplace code development tools and techniques since

it is a form of feedback-directed optimization; that will be called Build PAA. Two Dynamic

PAA systems will be described. Both, by sampling execution, impose a light load on the

program. Development Dynamic PAA is for use within a development environment, allow

the tracing of programs for which compiler profiling techniques would interfere too much

with execution for a meaningful run. The end product of development dynamic PAA is an

annotated binary for placement on the targeted system. The more interesting scheme, though

feasible and of benefit for fewer systems, is Live Dynamic PAA in which PAA is performed

continuously in the target system itself.

4.1 Profiling and Sampling

Profiling can be used to collect all kinds of information about a running program. For brevity,

the term profiling used here will specifically refer to the process of extracting a CTI trace

from a running program. For build-PAA, profiling will be done in a specially instrumented

build prepared for this purpose. That build will be prepared using compiler options similar

to those used for other sorts of profiling that have been standard features of compilers for

some time (used for feedback-directed compiler optimization and as a programmer’s aid).

The build will have code at each basic block appending CTI outcomes to a trace file, though

efficiently buffering this data to reduce overhead. The build would be run on training data,

followed by a second build in which analysis of the trace will determine where to use carry

instructions and what they should carry.
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Such a trace collection scheme is not suitable for live PAA, and might even be too cumber-

some or too slow for collecting data on a development system. The dynamic PAA schemes

rely on sampling of a running program to reduce impact on its execution. Sampling is the

repeated collection of trace data during at least one execution of a program. The duration

of a sample will be kept short to minimize impact and avoid the need to immediately write

the trace buffer. The time between samples is made long enough to avoid disturbing the

program, and the number of samples, which might be collected over several runs, is made

large enough to be significant.

Trace collection can be scheduled by setting a timer interrupt for some appropriate time.

When the interrupt occurs trace collection would start by continuing execution with a func-

tional simulator that recorded the trace, or special hardware would be set to collecting the

trace information into a hardware buffer for later harvesting. At the end of the sample the

timer would be set for the next sample. Even the best functional simulators are several times

slower than native code, and so any system with real-time constraints would need hardware

support. Each sample would append more CTIs to the trace collected for a program, eventu-

ally there would be enough for profile analysis. By limiting trace size and relying on hardware

support this sampling can be made as unobtrusive as necessary. Tracing techniques, of which

there are many, have been employed for decades and a detailed discussion is beyond the scope

of this paper.

4.2 Analysis of Profiled Information

For the Analysis step, the trace data collected in the Profiling step is analyzed by predictor

specific code to generate carry data for the Annotation step. This Section describes how this

step is carried out for the Spotlight predictor.

Consider a Spotlight system using a GHR of length n and a PHT of size P = 2p entries,

with n > p. The number of distinct configurations for each branch, denoted C, is 1 + (n −

p)p +
∑p

i=0(p − i), where the first term is the bimodal (zero GHR bits) configuration, the
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second term considers all GHR segments of lengths [1, p] starting at positions [0, n − p],

and the last term considers segments near the end of the GHR (for which there are fewer

lengths to explore because longer ones would exceed the GHR length). Simplifying, we get

C = 1 + np+ p
2
(1− p) or a size complexity of O(np).

Let B denote the number of static branches in a program. The goal of profile analysis

is to choose the configuration for each one of these that minimizes the number of branch

mispredictions. Because of PHT collisions the choice of a configuration for one branch can

affect the accuracy of another, so an exhaustive search would have to consider the branch

prediction accuracy for an entire program execution on each of CB configurations, much

much too large. With the assumption that PHT collisions do not occur, one can choose

a configuration for each branch separately, selecting the one that minimizes the number

of mispredictions. That reduces the search space to CB = O(npC). The time for such a

profile analysis would be O(npT ), where T is the time needed to analyze the performance

of one predictor over the other, which is feasible. If a PHT were provided for each branch

the amount of space needed would be O(Bnp2p), which is large. The approach we use here

for profile analysis reduces the amount of space and roughly accounts for PHT collisions as

described below.

Since the predictor can select any part and any length of the GHR and the GHR can be

larger than the PHT address, our profiling algorithm has to explore each of the C distinct

configurations. While the reader may be concerned about the exhaustive nature of this

method, profiling is only a one-time step that would take several hours per program and

can be done in an unobtrusive way when the system is not busy. Heuristic methods may

be possible, such as testing coarser regions in an initial phase and finer regions in a second

phase. We did not see the need for such methods because the speed of profiling was not an

issue, the longest profiling simulation for the training inputs took about 10 hours with most

benchmarks finishing much faster.
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During profiling, a single PHT is instantiated for each combination of start bit, sb, and

section length, sl. The log size of an individual PHT is determined by the function

min[min pc bits, sl]. The minimum number of PC bits, min pc bits, is used for the PHTs

to reduce conflicts between branches when the GHR segment for that PHT is very short.

The PHTs are indexed using the XOR of a particular GHR segment and the PC of the

branch being predicted. In this way, there is one PHT for each GHR segment and this

PHT tracks the performance of that segment throughout the profiling benchmark. When a

branch instruction is executed during the profile run, every PHT provides a prediction for

that branch. The prediction of each PHT is compared to the actual outcome of the branch

and prediction accuracy data is collected for the branch over all PHTs (and hence over all

possible GHR segments).

At the end of the profiling run, we have the prediction accuracy over all of the C configu-

rations for each static branch that was executed during profiling. Since each PHT represents

a specific combination of sb and sl, we can select the sb and sl for a branch based on the

most accurate PHT for that branch during the profile step. The biasing bit required for the

Agree mechanism is straightforward to obtain, since it simply indicates whether a branch is

taken or not-taken most of the time. The default configuration is also selected for a bench-

mark in this step. This is done based on whether the Gshare configuration or the Bimodal

configuration performs better for branches which do not have a BIT entry.

4.3 Storing Configuration Information in Carry

Instructions

Branches’ configurations will be carried by special implementation dependent instructions

that duplicate the functionality of existing instructions except that part of immediate fields

and unused fields will be used to hold configurations. The obvious place to put the data is

in the block with the branch, but as we will see in later chapters, there are reasons to put

it upstream in previous blocks leading to the branch. The predictor hardware will extract
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the configurations from such instructions and write them into the BIT. There are many such

candidate instructions, consider for example immediate ADDs. An ISA might leave 16 or

more bits for an immediate but in typical code the fraction of immediate ADDs that use

numbers representable in four or fewer bits is large. If the ISA has a free opcode in the format

used for an ADD, that could be used for an implementation-dependent version with a four-

bit immediate field and with the remainder of the “old” field used to carry configuration

information. One would define enough of these implementation-dependent instructions to

carry the configuration data needed by Spotlight.

Configuration data for a branch would be carried by instructions either in the branch’s

basic block or in previous blocks leading up to the branch. If there was not enough space in the

block a fallback configuration would be used for the branch. If the configuration information

is sufficiently small, a single instruction will have enough space to store it. Fortunately,

Spotlight (as described at this point) enjoys this advantage. This eliminates the need for

complex hardware to combine configuration information spread over several instructions,

and only one or two new instructions are needed.

An analysis of the ability of an ISA to support carry instructions was performed for SPARC

V9 [41]. Branch instructions have a 19- or 22-bit displacement field (the 19-bit displacement

is in instructions that can access one of several condition code registers). The format used

for branch instructions encodes five types of branches, a non-branch, and two unused in-

structions. Those unused instructions can be borrowed for branch instructions that have,

say, a 12-bit displacement and 10 bits of Spotlight storage. Two implementation-dependent

instructions are defined, one for integer branches, and one for floating-point branches. The

integer branch replaces both SPARC Bicc (branch integer condition code) and BPcc (branch

integer condition code with prediction). The floating-point branch replaces SPARC FBfcc

and FBPfcc. Other RISC ISAs are likely to have similar carrying capabilities.

This approach is the simplest to implement, but configuration data cannot be stored for

branches that need a displacement larger than 12 bits. These will use the original branch

25



instruction and the default configuration. In Section 6.7, we show that such branches are

rare and do not impact overall prediction accuracy even in benchmarks where they do occur.

4.4 Build PAA and Dynamic PAA

As explained earlier PAA can be performed at build time or dynamically.

Build PAA is less convenient for general purpose processors. This is because the PAA

system needs to know the exact implementation, so that it knows the characteristics of the

Spotlight (or other) branch predictor and so that it knows what kind of carry instructions are

available. This condition exists for embedded systems, where code is compiled just for that

system. Since the exact implementation is known anyway, build PAA is not a problem for

embedded systems. In contrast, when developing for general purpose processors, the exact

implementation is not known. One might compile for an ISA variation that 99.9% of the

customers have, so that they can all run the code, but optimize for a newer implementation

that only 50% have, so that those customers who need it will see the best performance.

Because customers will have different implementations Build PAA cannot be used unless

one shipped multiple builds, one for each implementation. That is feasible for smaller codes,

like math or graphics libraries, but would be too large for a major application.

Development Dynamic PAA is more suitable for general purpose processors and less suit-

able for embedded systems since fewer of them would be able to host the tracing code. This

is because embedded systems have less memory, might not have disk storage, and because

even occasional tracing might interfere with real-time requirements (these are requirements

that must be completed by a deadline). Despite these issues, there are several reasons to per-

form PAA dynamically. In dynamic PAA traces are collected using a lightly intrusive tracing

system, and analysis is performed by a program independent of the compiler. Development

dynamic PAA is used by developers after the build, but before the system is deployed. We ex-

pect that this will be the most common type of PAA, since it is more flexible than build-PAA

and because live dynamic PAA is only appropriate for certain larger systems.
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Live Dynamic PAA would be suitable for general purpose processors but is the least

suitable for embedded systems. This is because it might change the behavior of running

code (for example, a change in branch prediction accuracy would change how fast the code

executes), which could compromise real-time requirements. Live dynamic PAA is a post-

deployment technique where steps would be performed periodically within the system itself,

providing annotated binaries that are adapted to the data to which the system is actually

exposed. This is appropriate only for systems with re-writable storage and that are large

enough to host the analysis code. This form of Live Dynamic PAA can tune execution for the

case where, say, input data varies based on where a system is installed (the annotated binary

would adapt and remain unchanged within a particular system), or the case where input data

changes slowly over time (perhaps over hours), slowly enough so that the PAA could produce

an annotated binary for the input data. Because of the way the binary is annotated, it would

be possible to replace the text (machine instruction) portion of an executing image with one

that has been annotated differently, so long as individual instructions change atomically.

Spotlight can adapt even if data varies more quickly. Live dynamic PAA would identify

phases of execution, and PAA runs would be performed on distinct phases, producing phase-

specific binaries. When a phase used to prepare a binary re-occurs, the binary would be used,

avoiding the significant delay needed for the PAA process. It is not necessary that a phase

be particularly long. As described above the dynamic profiling system samples execution,

and samples can be collected over many different occurrences of a phase, until enough data

is collected.

Researchers have investigated many techniques for detecting phases of execution [15, 21,

30, 31]. For Spotlight, phase boundaries need to be based on changes in input data character

that affect branch bias and correlation. At one extreme, hardware can provide a hash of

branch outcomes and addresses, for periodic collection by a monitoring system. At the other

extreme an application-specific method can be developed. Application programmers would

insert new API calls that would identify to the OS phase related information.
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Chapter 5
Modifying Profile Based Predictors For Low
Latency

The previous chapter suggests that profiled data can be stored within program instructions

called carry instructions. Jiménez and Lin [9] point out that prior research either assumes or

suggests that the profiled data for a given branch instruction should be stored in free space

available within that instruction [2, 17, 32, 33, 37]. However, as they further suggest, it is not

possible to decode instructions in the same cycle as they are fetched in high clock frequency

modern processors. Since the processor must predict a branch in the same clock cycle that

it is fetched, a single cycle prediction cannot be made if we rely on obtaining information

from the decoded branch instruction as is assumed in chapter 3 for all of the profile-based

predictors. It is still possible to use such a predictor in a real implementation that involves

an overriding prediction scheme as is done in the Alpha EV6 [26] processor. In this scheme, a

simple primary branch predictor (such as Bimodal) will be used to supply an initial prediction

that may then be overridden later by a more accurate predictor like Spotlight. However,

such a scheme increases complexity and sacrifices accuracy. In this chapter, we discuss how

Spotlight and other profile-based predictors such as EHB and Agree can be augmented to

obtain lower latency predictions, including single cycle predictions.

5.1 Reducing the Latency of Profile Based Predictors

with a Hardware Table for Profiled Data

In a modern processor, multiple cycles can elapse between when an instruction is fetched

and when the processor starts decoding the instruction. Therefore, a branch predictor cannot

rely on extracting data from a decoded branch instruction if it is to deliver a single cycle

prediction for that branch. If we are to obtain profiled information in time, a profile based

branch predictor will have to access the data from a hardware structure instead of the decoded

branch. This concept is shown for Spotlight in Figure 5.1. When a branch first occurs in a
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program (such as instruction 0x1000 in the figure), profiled information will not be available

for it and it will use the default configuration. At the same time, the branch will write its

information into a hardware structure called the Branch Information Table (BIT) for future

use. When the same branch eventually re-executes, the profiled data will be available from

the table and can be supplied to the rest of the predictor after being read from the table.

We refer to the version of the predictor shown in Figure 5.1 as BIT-Direct.
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E
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FIGURE 5.1: Spotlight BIT-Direct: Using a hardware structure to store profiled data

5.2 Attaining Single Cycle Latency by Storing Data

Upstream

While using a BIT as shown in Figure 5.1 will provide a low latency implementation of

Spotlight, there is no guarantee that the latency of the predictor will be just one cycle. This

is because the predictor has to perform a table lookup in the the BIT, followed by some

combinational logic before accessing the PHT to make a prediction. It is unlikely that all of

this work could be performed in a single cycle. To achieve single cycle latency, we suggest

pipelining the predictor. The concept of how pipelining is achieved is shown in Figure 5.2.

The left side of the figure shows the program flow in terms of basic blocks. A basic block is

a block of instructions where every instruction is guaranteed to execute each time the block

executes (this means that a block contains a maximum of one branch). Consider a branch
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that needs to be predicted in cycle c. The figure shows a block that is fetched in cycle c− 1.

In this cycle, there are two possibilities for what block (and for our purposes, the branch

within that block) will be fetched in cycle c, depending on whether the block from cycle c−1

contains a branch that is taken or not-taken. If the prediction process starts in cycle c− 1,

we need to account for both possibilities since we do not know which block will eventually

be fetched in cycle c. As such, the BIT entry for cycle c − 1 stores data for both possible

branches.

t n 

t n 

add ...
...
bl …

or ...
...
bg …
 

and ...
… 
bl …
 

add...
… 
beq …
  

sub...
… 
bl …
   

cycle c – 1: This block fetched.
Two possible blocks for cycle c.
Branch data for both possible 
blocks fetched.

taken section           not-taken section
                               start section agree    start section agree 

bit     length                bit    length
BIT entry
for c-1 block

FIGURE 5.2: Spotlight BIT-Upstream: BIT use for single cycle prediction
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The hardware to achieve this is showed in Figure 5.3 [38]. Profiled information is first

obtained from a decoded instruction and then stored in the Branch Information Table (BIT).

As described above, a branch in the BIT will not store profiled information for its own use

but will instead store information about the next branch in the control flow of the program. A

branch prediction is derived as follows. A branch that needs to be predicted in cycle c will use

data retrieved from the BIT in cycle c−1 using the lower bits of the PC of the branch being

predicted in cycle c−1. The information for both branches in the BIT entry is read and shift

and mask operations are performed as described in Section 3.5 (with minor modifications)

to two separate copies of the GHR. As can be seen in Figure 5.3, one GHR represents the

taken path following the branch in cycle c− 1 and the other represents the not-taken path.

In order to reduce aliasing, each BIT entry is associated with a tag. If there is a tag miss,

the default GHR is selected instead of the custom GHR for both paths. The default GHR

has a starting bit value of 0 and a Section length that is either 0 (if the default predictor

is bimodal) or log2 of the PHT size (if the default predictor is Gshare). The prediction for

cycle c− 1 is available at the beginning of cycle c and can hence be used to select between

the two copies of the GHR available in this cycle. One of these copies is selected and used

to index the PHT. If PHT access in cycle c is on the critical path, the PHT can be indexed

earlier using both copies of the GHR and one of the two predictions obtained can be selected

after the PHT access.

This scheme is described as BIT-Upstream (SingleTag) [38] because only one tag, which

is based on the PC of the branch in cycle c− 1, is stored in the BIT. An alternative would

be to perform tag checking in cycle c using the PC of the branch in that cycle. This is likely

to increase prediction accuracy but also increases the workload in cycle c, hence making

it more difficult to achieve single cycle access. We call this second scheme BIT-Upstream

(DoubleTag) [38] since the BIT would need to store two tags per entry, one for the taken

path and one for the not-taken path from that entry.
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Chapter 6
Evaluating Performance of Spotlight Schemes

6.1 Experimental Framework
6.1.1 Simulator Configuration

For all experiments in this dissertation, we use an extensively modified version of the RSIM

[22] simulator. The simulator does detailed timing simulation of a dynamically scheduled

superscalar processor and memory system. It implements a subset of the SPARC V9 ISA

[41]. The system configuration details are shown in Table 6.1.

6.1.2 Benchmarks

The results reported in this paper are obtained using 11 benchmarks from the SPEC 2000

integer benchmark suite. These benchmarks are gzip, swim, vpr, gcc, mcf, crafty, parser,

perlbmk, gap, bzip2 and twolf. The benchmark eon is not simulated because it is not available

for our simulator. These benchmarks are chosen because they reflect common programs run

on general purpose processors and suffer from branch mispredictions.

6.1.3 Benchmark Sampling

We use the full training inputs provided by SPEC to perform profiling. Full training in-

puts can be used because profiling is done in functional simulation mode and is hence very

fast. The data collection runs are done using SPEC reference inputs in the detailed timing

simulation mode of RSIM. We use a tool based on the Simpoint multiple simulation point

methodology [30] to generate a set of weighted samples that are selected over the entire

duration of each benchmark. Each sample has 100 million instructions and a 10 million

instruction warm up period is used prior to each sample.

6.2 Set of Experiments

We compare the accuracies of different versions of the Spotlight predictor. Specifically, we

compare Spotlight-Direct, the version of the predictor described in chapter 3 and illustrated
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TABLE 6.1: Simulator Configuration

Issue Width 6-way
ROB Size 256
Minimum Branch Mispred. Penalty 18 cycles
Branch Pred. Table Update Method At Commit
L1 Cache 64 KiB data, 4-way set associative, 2 cycles latency
L2 Cache 4 MB data, 8-way set associative, 16 cycles latency
Main Memory Latency 200 cycles

in Figure 3.3 and the BIT versions of Spotlight described in chapter 5. For the Spotlight-BIT

predictors, we measure the impact of the BIT size on accuracy. We compare the accuracy of

Spotlight to other branch predictors such as Gshare, the profile-based EHB, as well as two

highly accurate predictors with simple design, the YAGS predictor and a Gshare-Bimodal

Hybrid predictor. We also evaluate the Hashed Perceptron and the Path-based Neural, two

very high accuracy but implementation-complex predictors which compute the sum of several

non-positive numbers that are looked up from several tables. The Hashed Perceptron does

5 table lookups and computes their sum to make a prediction, while the Path-based neural

can do between 14 and 34 table lookups per prediction. Since Spotlight requires storing

profiled data in instructions, we evaluate the amount of free opcode bits that are available in

branch instructions of real programs to store this data. Finally, we analyze the performance

of Spotlight to get an insight into why the predictor works well.

The experiments are done over a wide range of total predictor storage sizes. For the

Spotlight-BIT configurations, the size of the BIT is included in the total size of the predictor.

Each entry stores a 4 or 6 bit tag as well as the start bit and section length. For BIT-

Upstream, an entry stores this information for two branches. We use a maximum GHR

history length of 32 during the profiling step, i.e., Spotlight can select subsets of a 32 bit

GHR. For the relevant competing predictors, we explore their design space to find the best

configuration at a given size. Table 6.2 shows the main configuration settings used for the

simulated predictors. The settings for Spotlight Direct and EHB are not shown because they
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TABLE 6.2: Predictor Configurations

Size Spotlight BIT Hybrid Hashed Perceptron Path Neural
BIT Lg PHT Lg PHT Lg Bmdl Lg Wt.T Lg Num.T’s Hist. Ln Wt.T Lg Hist. Ln

2 kB 10 12 12 11 10 5 28 7 20
6kB 10 14 14 12 11 5 44 8 26
10kB 10 15 15 12 12 5 48 9 28
40kB 11 17 17 14 14 5 56 10 34

consist of just one table, the PHT. As such, the Lg size of the PHT is straightforward to

determine for a given target size.
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FIGURE 6.1: Average misprediction for different BIT Sizes

6.3 Impact of BIT Size on Spotlight’s Accuracy

To show the impact of BIT size on the Spotlight predictor, Figures 6.1 - 6.4 show the impact

of varying the size of the BIT on misprediction rates for the Spotlight BIT-Direct scheme.

Figure 6.1 shows that as the size of the BIT increases, the average misprediction rate

consistently decreases as expected. This is the case across all PHT sizes, although the im-

provement is smaller with larger PHT sizes. The difference between the smallest and largest

BIT size is significant, suggesting that larger BIT’s are needed to achieve the best possible

performance. Figures 6.2 - 6.4 show that the impact varies significantly across benchmarks.

For five benchmarks (gzip, vpr, mcf, gap, bzip2), the impact of increasing BIT is minimal

on misprediction rate. However, benchmarks like perlbmk, parser and crafty are more signif-
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icantly impacted by increasing the size of the BIT. For perlbmk, every increase in BIT size

results in a proportional decrease in misprediction rate. Generally, programs with large ker-

nels will be impacted more significantly while the impact on programs with smaller kernels

is likely to be minimal. For the larger PHT sizes (Figures 6.3 - 6.4), the impact of increasing

BIT size is not significantly different from that for the smallest size.
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6.4 Accuracy of Various Spotlight Predictors

This Section compares the accuracy of Spotlight-Direct (Figure 3.3) with the BIT based

configurations described in chapter 5. The Spotlight-Direct predictor assumes that profiled

data is always available in a timely manner after being decoded from a branch instruc-

tion while the BIT based predictors store profiled data in a hardware structure called the

BIT. Since Spotlight uses the Agree scheme for its PHT update, we also evaluate a version

of Spotlight called Spotlight-Direct (No Agree) to evaluate the contribution of the Agree

scheme to Spotlight’s performance benefits. The PHT in this predictor is updated using the

traditional Gshare method. The misprediction rates for these predictors are shown in Fig-

ure 6.5. For this figure (and Figures 6.6 - 6.9), we simulate all PHT sizes in the range Lg

10− 18. The BIT configuration plots are shifted to the right because the size of the BIT is

included. Spotlight-Direct is smallest since it does not use a BIT, and BIT-Direct is smaller

than BIT-Upstream because it stores data for only one branch per entry. To compare the

misprediction rate of two predictors, we have to compare the corresponding points. We can

see from Figure 6.5 that the two Spotlight BIT-Upstream configurations are almost identical

in accuracy to Spotlight BIT-Direct for most sizes. This shows that pipelining the predictor

resulted in no loss in accuracy on average. We also see that the performance difference be-
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tween the SingleTag and DoubleTag schemes is minor. The performance drop compared to

Spotlight-Direct is larger but becomes less significant starting at a PHT Size Lg of 12. As the

PHT size increases, the BIT becomes an increasingly smaller component (see Table 6.2 for

specific BIT sizes) of the overall size and the points in the BIT configuration plots start ap-

proaching the Spotlight Direct plot. These results indicate that single cycle prediction can be

achieved without sacrificing much accuracy, but the cost of the BIT is significant at smaller

PHT sizes. As one might expect, the gap between Spotlight-Direct and Spotlight-Direct (No

Agree) declines as the PHT size increases. The difference is more significant at smaller sizes

but becomes minor starting at a size of 1 kB. This indicates that while Spotlight benefits

due to Agree, the benefit becomes smaller with increasing PHT size and is not responsible

for most of Spotlight’s performance benefits. e

6.5 Misprediction Rates

Figures 6.6 - 6.9 show the average and per benchmark misprediction rates for the various

predictors over the 11 SPEC integer benchmarks.

From Figure 6.6, it can be seen that Spotlight-Direct outperforms Gshare, EHB and Hybrid

for all sizes simulated. This predictor achieves an average reduction in misprediction rate of
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FIGURE 6.6: Average misprediction rates for various branch predictors
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about 19% over Gshare, 9% over EHB and 13% over Hybrid at a size of 8 kB, with smaller

budgets providing more significant improvements for Spotlight. We also simulated the YAGS

branch predictor, but the data is not shown here because its performance is very close to the

Hybrid predictor. Even with the size of the BIT factored in, the Spotlight BIT-Upstream

predictor is able to outperform Gshare at all sizes and the Gshare-Bimodal Hybrid branch

predictors at a size of 5KB. It starts outperforming EHB Direct at a size of 11 kB, even

though comparing the two predictors is unreasonable since the version of EHB simulated

here is similar to Spotlight Direct in that it ideally assumes that profiled data is always

available at no cost in a single cycle. Spotlight-Direct outperforms the Path-based Neural

predictor, which is remarkable considering the far greater complexity of that predictor (it

uses between 14 and 34 tables). It stops outperforming the Hashed Perceptron predictor

starting at a size of 10 kB but like the Path-based Neural, this predictor is more complex

in its design and is also one of the most accurate predictors that have been proposed in the

literature. The fact that Spotlight-Direct is very competitive with the Hashed Perceptron at

all sizes suggests that it could be used in a system with an overriding prediction mechanism

similar to the Alpha EV6 [26]. In such a system, a first-level predictor (such as a small

bimodal predictor) would need to make a primary prediction that may be overridden by a

Spotlight predictor which waits for profiled information from the decoded branch instruction.

We must note that the version of the Hashed Perceptron and Path-based Neural that we

simulated are ideal versions that assume that all computations can be done in the same

cycle (we assume that all table lookups and the sum of non-positive numbers are done in

that cycle).

Per benchmark data is shown in Figures 6.7 - 6.9 at approximate sizes of 2 kB, 8 kB and

32 kB. Spotlight Direct works well at sizes smaller than 2 kB, but since the minimum size

for the Path Based Neural is almost 2 kB, this is the lowest size shown. We can see that

the performance benefit provided by Spotlight occurs over a broad range of benchmarks. It

outperforms Gshare, Hybrid and EHB for almost all benchmarks and sizes and outperforms
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40



the Path Based Neural predictor in most benchmarks for all sizes. As observed in Figure 6.8

and 6.9, the Hashed Perceptron outperforms Spotlight at sizes of 8 kB and 32 kB. The figures

however slightly exaggerate its improvement over Spotlight because the sizes used here are

the closest to our target sizes and not exact. For example, the closest configuration to 32 kB

for Hashed Perceptron is actually 40 kB. Similarly, some of the Path Neural configurations

are slightly below the target sizes.

6.6 Practicality of the Various Spotlight Predictors

As mentioned above, the Spotlight Direct predictor can be used in an overriding prediction

scheme where a primary predictor provides an initial prediction. Because this scheme needs

to extract data from a decoded instruction, it will take a few cycles to provide a prediction. A

branch that is mispredicted by the primary predictor but is correctly predicted by Spotlight

will hence incur a small misprediction penalty. The Spotlight BIT-Direct predictor does

not have to wait for the decoded instruction, but since it requires two table lookups and

some combinational logic, it will take more than one cycle to deliver a prediction. It could

also be used in an overriding prediction scheme, but the latency of the predictor will be 2

cycles, much lower than that for Spotlight Direct. The Spotlight BIT-Upstream predictor

is capable of providing single cycle predictions and hence does not need to be in a system

with a primary predictor. However, the size of the BIT needed to maximize accuracy is a

significant component of the overall predictor size at smaller PHT sizes (this is also true to

a lesser extent for Spotlight BIT-Direct). As such, this scheme is more likely to be chosen

by designers if the overall hardware budget for branch prediction is greater than 10 kB. For

embedded systems, a large BIT is clearly not a practical option because of size concerns.

These processors could use the BIT predictors with a smaller BIT (perhaps with 32 or 64

entries) by trading some accuracy for size and practicality. As we saw in Figures 6.2 - 6.4,

the amount of accuracy lost will depend on the benchmark. Benchmarks with larger kernels

will be more significantly impacted while the impact of benchmarks with smaller kernels is
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likely to be minimal. We must note that even in benchmarks that are more significantly

impacted by BIT size (such as perlbmk), the Spotlight configurations at the smallest BIT

size are still more accurate than the corresponding Gshare configuration.

6.7 Evaluating Limited Branch Carry Space

As discussed in chapter 4, one way to store profiled information is in modified branch in-

structions using a technique called opcode borrowing. We suggest that the simplest way to

handle branches whose displacement is too large is to prevent them from using a profiled

configuration (they will use the default configuration). While this technique is restrictive and

is not the only option, we show here that it does not impact misprediction rates.
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FIGURE 6.10: Fraction of branches with sufficiently small offsets

Recall that Spotlight needs a start bit, section length and a biasing bit. The start bit

representation for the Spotlight predictor evaluated in this chapter requires 5 bits (log2 of

32) and the biasing bit is represented by a single bit. The section length might either require

4 or 5 bits for representation, depending on the PHT Size of the target system (the number

of bits will be log2 of the section length). Therefore, the total number of bits required for

representing a Spotlight configuration will either 10 or 11 bits. Figure 6.10 shows the ratio

of dynamic branches that have adequately small displacements and can use the modified
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branch instructions. We can see that for most benchmarks, almost all branches have small

enough displacements (indicated by a ratio of 1). In benchmarks like perlbmk and bzip2 and

crafty, there is a drop off for the largest PHT size of 18. This is most likely because a PHT

size of 18 requires an extra bit of storage compared to the other sizes because of the need

to encode any number between 0 and 18. The lowest ratio is for crafty for PHT Size Lg 14,

where 85.5% of branches can use the smaller displacement instruction. Figure 6.11 shows

the performance of Spotlight BIT-Direct considering this limitation. In the limited space

configuration mentioned in this figure, branches that have displacements that are too large

will use the original branch instruction and the default predictor configuration. The results

demonstrate that limiting the amount of space available has virtually no impact on the

misprediction rate for any of the benchmarks. While it is difficult to see the exact numbers

in the figure, there is no increase in misprediction rate for most benchmarks and sizes. In

cases where there is an impact, it is no greater than 0.03% in almost all of those cases. The

only exception is crafty at PHT Size Lg 10, which sees a still minor drop of 0.14%.
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6.8 Impact of Training Input Data on Spotlight’s

Accuracy

As mentioned above, we saw in Figures 6.7 - 6.9 that Spotlight does well over a broad range

of benchmarks. This result may seem surprising at first given that Spotlight relies on profiled

information and either an inaccurate poorly designed training input or varying input data

could impact its accuracy. It is beyond the scope of this paper to show that profiling is a

robust and accurate technique. However, we note that profiling is used successfully by nearly

all general-purpose compilers, such as gcc, and the evaluation and generation of accurate

profiles has been widely studied in literature. For example, Wall [40] notes in early work that

real profiles generated from different runs are very effective and are often nearly as good as

perfect profiles. Hsu et al. [43] claim that profile data from training inputs can be used to

reliably predict branch directions. We expect Spotlight to be even less sensitive to training

data since it relies on using a set of correlated branches and does not depend on the actual

branch outcomes or input data to make predictions.

To evaluate how sensitive Spotlight is to training data, we simulate Spotlight using three

different sets of training inputs for a few benchmarks. Each benchmark is evaluated using a

perfect input, the training input and an arbitrary reference input. For the arbitrary reference
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input, an arbitrarily selected input is used for training and a different input is used for the

reference run (for example, we train with gcc-ref-integrate and evaluate with gcc-ref-expr).

For the perfect input case, the same input that is used for training is also used for the

reference run. The results are shown in Figure 6.12 for three different predictor sizes. We

would expect the perfect input to be most accurate, followed by the training input and the

arbitrary-ref input. The accuracy of Spotlight does not vary significantly for gcc and gzip

across the three training inputs (the biggest difference in accuracy is about 0.15% for gcc).

The results for bzip2 are interesting. The training input under-performs even the arbitrary

reference input while the arbitrary reference input is almost as accurate as the perfect input.

This would seem to indicate that the training input for bzip2 is poorly designed. Fang et al.

[5] observe that the SPEC 2000 bzip2 training input does not touch a lot of the code that

reference inputs touch and this may be a factor. However, despite this limitation, Spotlight

does very well for bzip2 compared to other branch predictors (see Figures 6.7 - 6.9). This

result suggests that Spotlight can be an effective branch predictor even for benchmarks that

do not have very accurate training data.
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6.9 Explaining the Performance of Spotlight

We can gain an understanding of why Spotlight does well by looking at Figures 6.13 -

6.16. The data shows how frequently various Sections of the GHR are used for the various

benchmarks for PHT sizes of Lg 10 and Lg 14. The pie charts demonstrate the average use

for each configuration.

In the key listed on the right hand side, the first value describes the starting bit of GHR

segments and the second value describes the section length. For example, the segments that

comprise the ≤ 10 - ≤ 7 bar are those GHR configurations that have starting bit less than

10 and section length greater than 7. The segment 0 − 0 is one that uses no GHR bits

and is essentially a bimodal configuration (the difference between the two is PHT collisions

in Spotlight). The segment 0 − max size is the configuration that would be used for all

predictions in a Gshare predictor and represents the default configuration. We define short

segments as those with section length ≤ 7.

The pie charts show a lot of diversity in the Spotlight configuration used. The most

common configuration used is the 0− 0 bimodal configuration and this configuration along

with the default GHR configuration of 0 − max size is used in about 50% of all dynamic

branch predictions for both PHT sizes. These results suggest that Spotlight partly works
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like the Gshare-Bimodal Hybrid predictor even though unlike the actual Hybrid predictor,

it does not have separate bimodal and chooser tables. We also see that the remaining 50%

comprises a very diverse set of GHR segments. They include significant amounts of short

segments (section length ≤ 7) starting at 0, long segments starting at 0, short segments

starting at other values and so on. Short GHR segments are very common, for a PHT size of

10 they represent 36% of all dynamic prediction and for a PHT size of 14, they represent 21%

of all dynamic predictions. Segments that start further from the current branch (non-zero

starting bit) add up to approximately 37% of all dynamic predictions.

The per benchmark data in Figures 6.14 and 6.16 demonstrate a diverse use of GHR

segments. For example, in Figure 6.16, gzip uses a significant ratio of ≤ 10 - ≤ 7 segments

while this segment is rarely used in gap. Swim uses a high percentage of > 20 segments in

both figures, while most other benchmarks use them rarely. After the bimodal configuration,

the ≤ 10 - ≤ 7 configuration is the most commonly used.
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Chapter 7
Preloading - A Technique for Delivering
Profiled Data to Hardware Without Using
Large Tables
Consider the situation where, in some pre-processing step, some statically chosen data has

been determined for each static instruction in some subset of program instructions, an in-

struction in the subset is called a benefiting instruction. This data is needed by the front end

at a time in which the address of the benefiting instruction is available, and so it might be re-

trieved from some PC-indexed Benefiting Instruction Table (BIT). Suppose further that this

custom data can be carried by program instructions, not necessarily the benefiting instruc-

tion, and preloaded into the table soon after the carry instruction is decoded. A placement

is an assignment of statically chosen data to carry instructions. The placement problem, the

subject of this chapter, is finding a placement that realizes high BIT hit ratio, but more

importantly, high performance, using a very small BIT.

The preloading technique described in general above can be specifically applied to the

Spotlight branch predictor. Let us define the ideal case as the situation where data for the

benefiting instructions, BIs (in Spotlight’s case, the benefiting instructions are the branch

instructions that need non-default GHR segments), is always available in a timely manner to

the hardware. Although we only use profiled data in this dissertation, the data delivered to

the hardware may be derived by other means. Hence the term statically chosen will be used

instead of profiled for generality purposes. As mentioned previously, statically chosen data

cannot be extracted directly from the BI if it is to become available on time for the BI’s

use at the front end of the processor. In general, a structure such as a Benefiting Instruction

Table (BIT, like the Branch Information Table described in chapter 5) can be used to store

the statically chosen data (after extracting it from either the BI or an instruction in the

prior control block) during the first instance of a BI, and this table (as opposed to the

instruction itself) can be used to obtain statically chosen data for subsequent executions of
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the BI. A specific application of this BIT based technique was described in chapter 5 and

evaluated in chapter 6 for the Spotlight branch predictor. The results in chapter 6 show that

there are two potential drawbacks to this approach. Firstly, since the BIT is required to store

data for a large number of BIs, the number of entries needed and hence the overall size of

the BIT can be very high. This is contradictory to our goal of designing low-cost predictors.

Secondly, even a BIT of reasonable size will suffer a loss in accuracy compared to the ideal

case because of BIT misses during the first instance of the BI and during instances when

the entry of a BI is overwritten by other BIs (i.e., aliasing occurs). This issue may be an

even bigger factor in real world applications than in the SPECcpu benchmarks shown in the

previous Section. This is because SPECcpu programs have been criticized for having very

small kernels compared to real world applications, and the data for these smaller kernels can

fit easily within smaller predictor tables.

We will show that both of these problems can be mitigated by taking a different approach.

In the previous chapters, we assume that when a BIT entry is written, the entry will rarely

be overwritten. This makes it necessary to maintain a large BIT. But what if we maintain

a BIT with the expectation that a written entry will be used within a short period of time

by the BI? Clearly, this could drastically reduce the size of the table needed. This can be

achieved by a techniques that we call preloading. The basic idea is to place the statically

chosen data (which we will refer to as preload data) for a BI several control blocks back in

the program control flow. When this previous block or instruction is reached, the process of

extracting the preload data from the instruction and placing it in the BIT begins. We define

the location that carries the data for a BI as a preload site, PLS. A PLS can either be

a specific instruction in a previous block, or data may be spread over multiple instructions

in that block. If the data is placed sufficiently early in the code, it will be preloaded into

the BIT by the time the BI being predicted is fetched. However, since there can be many

paths to a branch, the data for an individual BI will typically have to be preloaded into

multiple PLSs if it is to be available for most dynamic predictions of the BI. Therefore,
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it is obviously impossible to preload for all or even most typical instances of the BI. The

minimum distance from aBI where its preload data can be placed in a PLS in order to ensure

that it is available in the BIT on time is defined as the minimum preload distance, pls min.

Depending on how the front end groups instructions, the distance may either be measured in

terms of instructions or basic blocks (we use blocks in this dissertation). We will demonstrate

that this problem of distributing the data for the BI’s amongst the limited number of PLS’s

in the most optimal manner, the Placement Problem, is a global optimization problem. The

next Section illustrates the placement problem and preloading for a branch predictor. This is

followed by a formulation of the placement problem and an explanation of what is required

to solve the problem.

7.1 Illustrating The Placement Problem for a Branch

Predictor

In Figure 7.1, each node represents a control block which might contain a branch instruction

and the arrows represent the program data flow. Block A1 can take one of two possible paths

either to block B1 or B2. Block B1 may lead to either block C1 or C2 and so on. Consider the

case where we want to predict a branch in D1. The preload data for D1 may be placed in a

block that is on the path to this block (C1, B1 or A1). If the data is placed sufficiently ahead

(the closest it can be placed is the minimum preload distance, pls min), it would be possible

to extract the data from the block or instruction and place it in the BIT in enough time

for the branch in D1 to access it. With this approach, a branch only needs to access a BIT

entry which was written a few cycles earlier, not necessarily one that was written during a

previous instance of the branch or several hundred cycles earlier. Hence it would be possible

to use a very small BIT and keep the overall size of the branch predictor small. Despite using

a smaller BIT, this approach has the potential to deliver higher accuracy compared to the

previously mentioned approach. This is because the loss in accuracy that occurs with the
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previous approach during the first instance of a branch or due to aliasing in the BIT is no

longer a major factor (some aliasing could still occur in the BIT).

A1

BBBBBBBB1 B2

C1 C2

D2

C3 C4

D3 D4D1 D2

E1

FIGURE 7.1: Control flow diagram indicating different paths to a branch

The challenge with this approach has to do with the placement of this preload data amongst

the PLS’s. Specifically, in which previous block or blocks do we place the preload data for a

given branch (a BI as described previously). The issue is complicated by the fact that there

may be many possible paths to a given branch. This implies that the data for a branch may

have to be placed in more than one PLS. More importantly, it also implies that two or more

branches may be competing for one available spot in a PLS, and the branches not chosen

for that spot may suffer a loss in accuracy due to the unavailability of preload data. On the

other hand, there will be many branches that are not BIs (because they do not benefit at all

from preload data), and a subset of these BIs will only get a small benefit by using preload

data. Therefore, the total number of BI’s that need to be placed to achieve close to ideal

performance will be fewer than the number of PLSs in the program.

Consider Figure 7.1 again. Let us assume that the minimum distance that preload data can

be placed at, pls min, is 2, i.e., the data must be placed at least two control blocks ahead in

order to be extracted in time. Assuming that the figure represents the entire program, data

for any branches in the C blocks may only be placed in block A1. If there is a branch in each
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of the four C blocks, those blocks will all compete for the single spot at A1. Assuming that

all these blocks benefit from using preload data, 3 out of 4 C blocks will suffer a performance

loss compared to the ideal case. Similarly, the four D blocks compete with each other for

the slot in B1 but may also compete with the four C blocks for the slot in A1. On the other

hand, block E1 can be reached by taking multiple paths through the program. Since it can

be reached from either C1, C2 or B2, it may be necessary to place its data in each of these

three blocks.

Define the preload horizon for a dynamic execution of a branch to be a sequence of blocks

from distance XXX to distance pls min. A set of preload sites is said to fully cover a branch

if at least one is in the preload horizon for every dynamic execution of the branch. In sum-

mary, there are three issues and cases to consider for a BI branch.

1. There exists a PLS or set of PLSs, any of which fully covers the branch. This is the most

efficient case in terms of the amount of data that needs to be preloaded, since placing the

data in any of these PLS(’s) ensures that the branch will always have preload data available.

2. None of the PLS’s fully cover the branch, i.e, the minimum set of preload sites needed to

fully cover a branch has more than one element. This necessitates placing the data in multi-

ple PLSs, and is hence wasteful in terms of the amount of data that needs to be preloaded

to get good performance.

3. In general, while there are usually many PLSs where a branch’s data can be placed,

many of these PLSs will see competition for their placement slot from multiple branches.
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The number of placement sites needed to cover a branch can vary widely. Suppose data

is to be placed d blocks back, and assume all blocks end with branches. In the worst case

2d placement sites are needed to cover the branch. However, because of code reconvergence,

the average number is much smaller.

Hence, the efficient placement of preload data is a significant challenge if low-cost profile-

based predictors are to be built. For each branch, we must decide at which preload sites

its data needs to be placed at and how this can be done in an intelligent manner so that

overall prediction accuracy is close to the ideal case. This requires choosing among multiple

branches that are competing for a single slot in a PLS and determining at how many PLSs

we should place data when there are many unique paths to a branch, as described in case 2

above.

7.2 Defining the Placement Problem

In addition to the terms defined earlier, we define some other key terms.

A static instruction, s, is a single instruction in a program, with each static instruction

having its own address (program counter). An execution of a program can have multiple

dynamic instances of the same static instruction.

A static program, S, is a set of instructions (for brevity, instruction will be used for a static

instruction), the instructions will be denoted sj, 0 ≤ j < N .

An execution, e, is a sequence of static instructions, (ε0, ε1, . . . , εT−1), εj ∈ S for 0 ≤ j < T .

A path, e, is a subsequence of E. Call path e an entry path if it is a prefix of E. Path e

leads to instruction i if the last element of e is i.
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Let B denote the set of possible preload sites or PLS’s in a program, and let I denote

the set of statically chosen BI’s in the program for which preloading is required.

An assignment is a two-tuple (b, i) indicating that placement site b ∈ B carries preload

data for an instruction i ∈ I. Assignment (b, φ) indicates that placement site b is not occu-

pied.

A placement, denoted P , is a mapping B → I ∪ {φ}. For notational convenience it will

be represented by the set of elements P = {(b,P(b))|b ∈ I}. That is (b, i) ∈ P indicates that

placement site b carries data for instruction i and (b, φ) ∈ P indicates that placement site b

does not carry data.

A real-valued performance measure will be associated with each placement. For our pur-

poses, it is chosen to be a good estimate of branch predictor performance as described in the

following equation.

Perf(P) =
∑
i∈I

∑
e∈E(i)


ProbCorrPredhit(e, i), if e/i;

ProbCorrPredmiss(e, i), otherwise,

where:

e is a path to a BI, E(i) is the set of all paths to a BI i,

e/i indicates that the data for a BI i was found in the path e and not overwritten before

the BIT was read,

ProbCorrPredhit(e, i) for a branch predictor, the probability of a correct prediction when a

BI i is on path e and is able to access its preload data,

ProbCorrPredmiss(e, i) for a branch predictor, tthe probability of a correct prediction when

a BI i is not able to access its preload data because the data is not on the path e for two

possible reasons.
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i. All PLS’s on the path are taken by other BI’s and therefore unavailable for i.

ii. A PLS is available for i but the BIT entry needed by the PLS chosen for i is occupied

by the PLS for another BI.

For preloading applications that do not involve branch predictors, the probability of a correct

prediction will be replaced by another probability.

The equation above indicates that for each dynamic instance of a BI, two possible per-

formances are possible. One is the performance expected if preload data for the BI is found

on the path to the instruction (and is hence available for a prediction), and the other is

the performance expected when preload data is not available for the instruction. Note that

benefiting instructions, BIs, will be chosen such that it is expected that the probability

(and hence the performance achieved) when preload data is used (ProbCorrPredhit) will be

greater than the probability when preload data is not used.

7.3 Finding a Good Placement

Before explaining why the placement problem is a global optimization problem, we discuss

the basic approach to solving the placement problem in this Section. The solution involves

finding a set of placements P0, P1, . . . , Pj. The initial placement P0 can either be empty or

be initalized to some configuration. At each iteration j, the task is to find a placement Pj

starting with placement Pj−1 .

Let P0 be an arbitrary placement, possibly empty, P = {(b, φ)|b ∈ B}, or possibly in an

autocarry state, P = {(b, b)|b ∈ I} (assuming I ⊆ B).

1. At iteration j, choose some b ∈ B and i2 ∈ I, and let placement candidate Q =

Pj−1 − (b, i1) + (b, i2), where (b, i1) ∈ Pj−1. That is, replace (b, i1) with (b, i2).

2. Evaluate the performance of Q and compare to Perf(Pj−1).
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3. Based on the difference either Pj = Pj−1 or Pj = Q.

4. Proceed to the next iteration, j + 1.

The above is intended to provide a general understanding of the placement problem, but

there some challenges to evaluating Perf() in an implementation of the algorithm.

1. An approach that will consider all solutions will evaluate Perf() IB times. It is clearly

impractical to do this. For example, even for a small program with 5 PLS’s and 5 BI’s,

Perf() will have to be evaluated 3125 times.

2. The straightforward approach for each computation of Perf() will re-evaluate all placement

pairs (assignments). This is because a new assignment (or set of assignments) could displace

any of the existing assignments.

3. Because of the limited size of the BIT (or similar structure) used to hold placement

data, it is possible that a new placement can undermine an existing placement because the

two BI’s share the same BIT entry. This can occur even though the two BIs are assigned

to different PLSs. While the equation above accounts for this, determining cases where this

occurs is not trivial.

A practical evaluation scheme therefore needs to overcome the following challenges:

i. An approach that will limit the number of times Perf() is evaluated.

ii. An approach provide a quick way of computing or estimating Perf().

ii. Say that the evaluation described above has to compare Q1 = (b2, i4) with Q2 = (b2, i5).

Lets assume that Q1 will be chosen over Q2. This will be due to the expectation that Q1
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will benefit more from a placement at b2 than Q2. However, it is still possible that Q2 is the

better choice, perhaps because the BI in Q1 can easily be placed at other PLSs than b2.

We can say that Q1 is a local optimal solution but not a global optimal solution in this case

(local vs. global optimal will be discussed in detail in the next Section).

iii. When an assignment is made, the scheme will have to consider the issue described in 3.

That is, it will have to consider how making an assignment may result in a BIT conflict,

even if we have two assignments that are made to two different PLS’s.

Hence, we need to find a way of evaluating cost that does not involve reevaluating all

placement pairs for each new placement. We also need to do the placement in a manner

that approaches a global optimal solution, where a placement is done considering not just

the benefit of placing a branch at a location but the harm that the placement causes other

branches which lose out on the location. One approach to limiting the number of branches

that we need to evaluate for a placement site is to consider only branches which are within

a maximum path distance pls max from a control block. This would eliminate the need to

explore all possible branches for a given site.

7.4 Simulated Annealing - A Metaheuristic for the

Global Optimization roblem

The task of finding an optimal placement of the PLS’s for all the BI’s in a program is a

global optimization problem. We explain why and define the Placement problem in the next

two Sections. First, we explain what a global optimization problem is and provide background

on simulated annealing, a generic metaheuristic for solving the global optimization problem.

7.4.1 Global Optimization

Global optimization usually involves optimizing a given function f of many variables, with

the optimization typically being a minimization of the function. Functions representing real-

life problems often have several local minima and maxima, but a single global minimum and
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maximum. While finding a local optimum can be achieved with simple heuristics, finding

the global maximum is difficult and can be a NP-Complete problem. We will illustrate these

concepts with the commonly known Traveling Salesman problem and describe a simulated

annealing based solution.

7.4.2 The Traveling Salesman Problem

This problem involves a salesman who has to travel through a given set of cities in the most

cost effective manner. It can be represented by a graph with the nodes representing cities

and weighted, non-negative edges that represent the cost of traveling between two cities. The

global optimum solution is one that finds the least costly way of covering all nodes without

touching any node more than once, and returns to the source node. It can be found using

backtracking but this direct solution is exhaustive (complexity of O(n!) iterations).

7.4.3 Applying Simulated Annealing to the Traveling Salesman
Problem

Simulated annealing is a stochastic method, i.e., it uses probabilistic methods in the algo-

rithm. The solution arrived at by simulated annealing may or may not be globally optimal

but is likely to be better than a local optimal solution. The name is derived from the phys-

ical annealing process, where heating a material causes atoms to be displaced from their

initial positions, allowing them to move around randomly. The heating is followed by a slow

cooling process that gives the atoms the opportunity to move to more stable, lower energy

configurations than they were in initially. The goal is to create a smoother piece of metal by

increasing crystal sizes and reducing the defects in the material. As such, the temperature

T of the system is initially at a high level and gradually decreases.

To solve the Traveling Salesman problem, the algorithm starts at an initial high temper-

ature and an initial energy level and state. A sequence of moves (node traversals) are made

at the temperature and the system moves to a new state. The new state may either be

accepted or rejected based on the following probability function. The temperature is lowered
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by a fixed amount for each node traversal or based on the energy not reaching a new low for

some number of iterations. The equation below is also called the Metropolis Criterion [18].

Prob(E− > E′,T) = e−(E
′−E)/kT

where:

k - A constant,

E - The energy of the current state,

E ′ - The energy of the new state,

T - The temperature of the new state.

In this analogy, the energy level at a state is simply the total travel cost mentioned in

the previous Section. Depending on the solution, the algorithm stops until either a specified

temperature is reached or a specified performance criterion is met. There are three important

characteristics of the probability function.

1. The greater the reduction in energy between the old and new state, the more likely it

is that a new state is accepted.

2. The probability of a move from a lower to a higher energy state is non-zero.

3. The probability of accepting a higher energy state solution decreases as the temperature

decreases.

These characteristics demonstrate how the algorithm differs from greedy solutions and is

capable of finding global optimal solutions. While the system is generally likely to accept

“better” (local optimal) solutions because of 1, it avoids getting stuck at these solutions

because of 2. As the number of steps in the algorithm increases (the temperature decreases)

as specified by 3, the less likely it is that a higher energy state is accepted. As such, the
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algorithm will initially accept worse states almost at random but this becomes increasingly

less likely with decreases in temperature, i.e., it starts approaching a greedy solution.

7.5 Modeling the Placement Problem as a Simulated

Annealing Problem

From the Traveling Salesman (TS) problem, we see that simulated annealing needs a state

(solution) space, an energy function for determining the quality of a solution, a method for

determining the set of alternative (neighbor) paths that can replace the current solution,

a probability function for determining if a new state should be accepted and a range of

decreasing temperature values called an annealing schedule. The table below provides a

summary and the equivalent criteria that we use to model the placement problem.

TABLE 7.1: Modeling Traveling Salesman vs. Modeling Placement Problem for Simulated
Annealing

Traveling Salesman Preload Placement

Solution Space All paths through graph All possible placements over all branches, |I||B|
Energy Func. Total weight of edges on path Benefit (mispreds avoided) vs. default,
Alternate solns. Paths starting at adjacent nodes Other PLS’s where the BI can be placed.
Prob. Func. Based on difference in energy Based on difference in energy

The solution space for the TS problem is all possible graph paths that cover all the nodes

in the graph. For the Placement problem, it is any combination of placements for the static

program branches (it does not have to cover all branches or even all placement sites), i.e., IB.

The energy function for TS is the combined weight of the graph edges through a path covering

all nodes. For the Placement problem, it is the unrealized potential that is left over due to

branches that have not been placed for this state. For TS, the set of alternative solutions

(neighbor paths) for a given node are all the alternative paths other than the current one

that can be taken from this node. For the Placement problem, the set of alternative solutions

is any other PLS where a given BI may be placed. Since this can be very large, we limit the

neighbor set to branches that are a certain distance from the placement site. The fundamental

idea behind the probability function does not vary as it is generally based on the difference
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in performance (energy) between two states. Similarly, the annealing schedule is a discrete

set of declining temperatures and as such, the concept does not change and its not listed in

the table above.
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Chapter 8
Implementing Preloading for a Processor
Front End

The previous chapter explained the preloading technique, the Placement problem that needs

to be solved to achieve preloading and gave a general overview of the simulated annealing

solution that will be used to solve the Placement problem. This chapter provides a detailed

explanation of how preloading would be implemented in real system and how it is accom-

plished in a processor simulator. The simulated annealing solution is explained in detail,

including practical issues that arise.

8.1 Steps in Implementing Preloading

This Section will provide a step by step explanation of how preloading is implemented in our

simulator and how it would be implemented in a real system. Preloading will be accomplished

within the PAA system described in chapter 4. As described in that chapter, the profile step

generates a CTI trace for some sampling of the program’s execution. The analysis step

analyzes the trace to determine configurations for each branch (or other BI’s as described

in the previous chapter). The annotation step uses the configuration data to prepare an

annotated version of the original program executable. In our simulator, we do not create

an annotated binary and decode a new instruction, but we do check if an instruction would

have been annotated, and we only mark an instruction as annotated if there is enough carry

space available. The profile step for preloading will determine the PC and outcome of each

dynamic branch as described previously, but will also need to determine path information

for each branch. The major additions that need to be made to implement preloading occur

in the analysis step. The profile step and the additions to the analysis step will be described

in the following subsections.
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8.1.1 Profile Step - Obtaining Trace / Path Data

As described in the beginning of the previous chapter, there can be many paths to a BI

and therefore, the data for an individual BI may have to be placed in multiple PLSs to

cover most typical instances of the BI. To accomplish this, the profile step not only has to

store the PC and outcome of the target BI but also information about the different paths

taken to the BI. It does this by recording the distinct paths, or traces, that reach each BI

starting from some number of blocks before the BI. The concept of traces is illustrated in

the Figure 8.1, which shows (in dashed lines format) two traces for the same BI, E1. Trace

1 goes through blocks (E1, D2, C1, B1, A1) and Trace 2 goes through (E1, D4, C4, B2,

A1). Note that these two traces have two blocks in common. For our simulator, traces are

stored as an array of blocks. The length of a trace recorded and stored is limited to a certain

trace length, tr len, otherwise the number of distinct traces will be extremely high.

A1

BBBBBBBB1 B2

C1 C2

D2

C3 C4

D3 D4D1 D2

E1
bl

bl - 1

bl - 2

bl - 3

bl - 4

Trace 1
Trace 2

FIGURE 8.1: Control flow diagram indicating different paths to a branch

The main concern with storing traces is whether the amount of data collected for the traces

in a program will be prohibitively large. For example, if we have a program with 1000 static

branches and the trace length stored is 18 blocks, we can have a maximum of 217 ∗ 1000 or

131, 072, 000 traces. However for the benchmarks we have analyzed, the number of distinct

traces per branch is much smaller than this maximum, and so the size of the trace data
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TABLE 8.1: Per Block Trace Data

Data Stored Explanation
Start PC The PC of the first instruction in the block
CTI PC The PC of branch or other CTI in the block
CTI Type Branch, Jump, Call or Return
Branch Outcome If CTI is branch, its outcome

collected is maneagable. If trace storage size is a problem for other benchmarks, multiple

traces will have common element(s), which can further reduce the overall storage required

(if a tree representation is used as described below).

Another issue is how the code determines whether a discovered trace is new or an instance

of a previously discovered trace. This distinction is made by computing a hash of the start

PC and branch outcomes of all the blocks in the trace and doing a lookup for the hash into

a sorted table of existing hashes.

A better overall approach would be to store all the traces for a particular branch in a

tree representation instead of representing each trace as an array of blocks. This would not

only make it easy to distinguish between new and existing traces, but reduce the amount

of storage required. We took the latter approach in our simulator because it was easier to

implement and time and space were not constraints. A real system would likely take the

former approach.

Call a trace placed if the BIT data for the BI at the end of the trace is placed in a PLS

within that trace, at a distance greater than or equal to the minimum preload distance,

pls min. Consider Figure 8.1 again. The block with the target BI for Trace 1 is labeled bl.

The second to last block, bl− 1, would be where data is stored in the Upsteam configuration

described in chapter 5 and shown in Figures 5.2 - 5.3. The information recorded and stored in

the trace for each of these blocks is shown in Table 8.1. There is some additional information

about the trace as a whole which is also needs to be recorded, such as the number of

occurences of the trace (a use count) and the number of times the BI at the end of the

trace is taken.
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8.1.2 Analysis Step - Obtaining Per Branch Preload Data

This step is identical to the Analysis of Profiled Information Section described in chapter 4.

The data collected in the Profile Step is analyzed by predictor specific code to generate per

branch configuration (start bit, section length and biasing bit for Spotlight). See Section 4.2

in chapter 4 for details on how analysis is performed.

8.1.3 Analysis Step - Setting Up Traces for Preloading

This step involves computing and setting up the traces collected so that the Placement

Problem can be solved and preloading can be accomplished. It can be divided into two

parts, determining data that is common for all the traces that lead to the same BI and

determining data that is unique to each individual trace. These two parts are described here

for Spotlight.

To begin with, the analysis determines whether the instruction in the block at the end of a

set of traces contains a BI. For Spotlight, a BI exists if there is a branch in this block and if a

non-default configuration has been computed and stored (as described above) for this block.

If this is the case, the block containing the BI is called a Benefiting Block, BB. For each BB,

the predicted benefit for the BI within the BB is computed. This is the expected benefit in

accuracy that the BI would have compared to the accuracy if the default configuration is

used. For example, if a BI was predicted with 95% accuracy using the default configuration

and with 98% accuracy using a special configuration, the predicted benefit for the BI is 3%.

Since Spotlight also uses the Agree mechanism, the overall expected benefit is computed

by adding the expected benefit from Agree to the expected benefit from the non-default

configuration. For example, a BI which is biased 95% in one direction (either taken or not

taken) will have a high agree benefit while a BI that is only 70% biased will have a lower

benefit.

After this per BI data is determined, computations need to be made for the traces that

lead to these BIs. The benefits described above are weighted for each trace based on the
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frequency of the trace. If a trace has an overall benefit of x and occurs n times, its expected

benefit is xn if the trace is placed, since the total number mispredictions that we would

expect to eliminate will be xn. Other per trace information includes whether a trace has

been placed or not and a hash of the starting block addresses of all the blocks in the trace.

As described in chapter 5 and illustrated in Figure 5.3, a single cycle latency version of

Spotlight and other profile based branch predictors will most likely need to store the data

for a branch that is fetched in cycle c in the BIT entry corresponding to cycle c − 1. We

refer to this block corresponding to the BIT entry as the BIT Block. For example, consider

Trace 1 in Figure 8.1. The preload data for branch E1 in Figure 8.1 may be placed in the

BIT entry corresponding to the D2 block (D2 is the BIT Block). Similarly, each trace will

have a fixed BIT Block in which the preload data for its BI can be placed. The BIT entry

and index into the BIT for the BIT Block of each trace is also computed and stored. The

BIT index is the lowest log2BITSize bits of the instruction PC at the beginning of the

BIT Block. Lets assume that the PC of the first instruction in block D2 is 0x124F and the

log2 size of the BIT is 8. For Trace 1, the corresponding BIT index is 0x4F (the lowest four

bits of the first instruction in block D2). Note that the least significant bits of the PC are

ignored if instructions are aligned, the example used here assumes non aligned instructions

for simplicity. If a tag field is used in the BIT, the tag bits will also need to be stored. These

bits are the next lowest bits after the index (if four tag bits are used, 0x2 are the tag bits).

Once the traces have been initialized, we are ready to begin the simulated annealing

process and place data for BIs into PLSs.

8.1.4 Analysis Step - Implementing Simulated Annealing

The simulated annealing process starts with a set of traces, and ends with the preload data

for these traces being placed in the available PLSs. Since there are a limited number of

PLSs for all the traces that need to be placed, the goal of the process is to selectively

place the most important traces (those that provide the most benefit) so that the maximum
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performance can be achieved. The step by step process by which this is achieved is described

here.

1. After the initial set up described above, all the unplaced traces are sorted and ranked in

order of the expected overall benefit. The idea is to place the most important traces first, and

continue placing traces in decreased order of importance. An initial unrealized score potential

is also computed, the equivalent of the energy value described in the previous chapter (see

Table 7.1). This is the sum of the potential benefit (in terms of reduced mispredictions)

that would be achieved if all branches in the program are placed. Consistent with simulated

annealing concepts, the goal of the process is to minimize this unrealized score.

2. The unplaced trace with the highest score is selected. For this discussion, the BI of the

trace will be called the placement candidate. A BB is defined as a basic block that contains

a BI. The goal of this step is to select one of the PLSs leading to the block containing the

placement candidate for further consideration. Starting with this highest ranked trace, for

each unplaced trace, the PLSs starting with the closest PLS to the placement candidate is

considered by performing an estimate of the placement score that will be achieved by placing

at that PLS. From the example used in the previous Section, PLS block C1 will be the first

site evaluated when considering Trace 1 (assuming a minimum preload distance, pls min of

1), followed by B1 and A1. Note that block D2 is not a potential PLS during simulated

annealing because of the Upstream mechanism described above.

Fully evaluating the benefit of a placement site is computationally expensive, so the eval-

uation is done in two passes, the quick estimate for each placement site in a trace (described

here), and then a more thorough estimate for the best placement site found. The estimate

is the change in unrealized score potential that would be achieved by placing the placement

candidate in the PLS. If the BI for another trace is currently placed in the PLS, this BI

is a potential victim, and the score must be adjusted accordingly. Specifically, we would ex-

pect that the estimated change in unrealized score will be negative (good) for the placement

candidate because it now has an additional PLS and the estimate will be positive (bad) for
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the victim because it loses a PLS. Returning to our example, lets say that PLS C1 is being

evaluated for the placement candidate in E1. Further, assume that PLS C1 is currently

assigned to hold data for BB F2 (not shown in Figure 8.1). The BI in F2 is a potential

victim if its data must be displaced from C1 to make room for the placement candidate in

E1. Therefore,

Overall Change in Score = Change in Score (C1, E1)

+ Change in Score (C1, F2)

where:

(A,B) indicates that PLS A will place data for BI B.

As described in the previous chapter, simulated annealing is a stochastic method. It is

necessary to adjust this reduction in score by a random factor (called an annealing factor),

so that the algorithm avoids getting stuck at locally optimal solutions (see Section 7.4.3). The

relative score for a particular PLS is either increased or decreased based on the annealing

factor. This would make it possible to select a PLS with a lower estimated benefit over one

with a higher estimated benefit. Further, we also adjust the score by a distance factor. This

makes it more likely that the algorithm will select a PLS closer to the BB compared to one

further away. After the score is computed for all the potential PLSs (for example, C1, B1,

and A1) up to a maximum distance, the PLS with the highest expected reduction in score

is selected for the next step.

Recall that a trace has a fixed BIT entry that its preload data will be written to. Figure 8.2

explains what happens during the current step for the BB E1 which is at the end of the

trace through (A1,B1,C1,D1,E1) (shown by a dashed line). For this Figure, assume a BIT

with 28 entries. The number of index bits needed to access this BIT will be 8. The index

of the BIT entry which will hold preload data for E1 is based on D1, whose starting PC

address is 0x325A. The BIT index used by E1 will be the lower 8 bits of this address, 0x5A.

The current step for E1 starts by evaluating C1, followed by B1 and A1. The figure shows
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BIT Index for E1: 0x5A

0x305A

1. Contains Preload data for D4

2. If E1's data is placed 
here, BIT entry will be 
overwritten at B1

D4

0x325A

FIGURE 8.2: Control flow diagram showing BIT overlap between E1 and D4

another trace, A1,B1,C2,D4 that reaches D4 and whose preload data was previously placed

in PLS B1. The BIT entry index that this second trace needs to write, 0x5A, will be the

same one that the first trace needs to write. Lets assume that the current step selects A1 as

the potential PLS for the first trace. If A1 is selected, the BIT entry for the first trace will

always be overwritten by the data for the second trace when block B1 is fetched. Clearly,

there is no point in considering A1 or any previous blocks before A1 when evaluating PLSs.

Hence, this step will always check for this condition. If a potential PLS currently writes the

same BIT entry (for another branch) that the trace being evaluated in this step writes to,

no previous blocks before that PLS will be considered.

The algorithm checks the BIT entry that each of its potential PLS blocks may currently be

writing (for another BI). If the BIT entry that a block writes is the same one that the current

BI will need to write, no further blocks in the trace need to be considered (if data is placed

in those further blocks, it will just be overwritten by this block). This is another advantage

of preloading, as obvious BIT conflicts such as this can be determined and eliminated at

compile time because of the path information that is available.

3. After a potential PLS is selected for a given placement candidate BB, this step does a

more complete calculation to determine if a placement should be made at the selected PLS,
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say PLS1. If there is another BI that is currently placed in PLS1, it is the victim BI.

Firstly, as is done above, the amount by which the placement candidate BI will benefit by

being placed at PLS1 is computed. Next, the algorithm goes through a list of all the other

possible BIs that can be reached from PLS1 and checks to see if any of these have already

been placed in another PLS. If they have been placed elsewhere, and the BIT index of the

placement is the same as the placement candidate or victim, there is a possibility that one

or more of these other BIs will now be displaced. The benefit to the placement candidate

is therefore adjusted by the negative effect that might occur if any of these other BIs are

now displaced. If the improvement from placing the placement candidate is still adequate,

PLS1 is selected as a PLS for this BI and its data is preloaded into it. After the placement

is completed, the new scores for all affected traces are computed. Any trace that has been

displaced by the placement is added to the list of unplaced traces.

4. The algorithm returns to Step 1 for another round. Based on the simulated annealing

algorithm, if the reduction in unrealized score is large enough, the annealing factors are

adjusted to reduce the likelihood of a worse PLS being selected over a better PLS. Recall

that simulated annealing starts with a high likelihood of accepting worse solutions and this

likelihood gradually decreases as the algorithm proceeds.

The algorithm stops after a certain number of temperature reductions or a certain number

of rounds (one round is Steps 1 through 4 described above).

8.2 Carry Space Needed for Preloading

In chapter 4, we discuss how the configuration data for branches will be carried in special

carry instructions that duplicate existing instructions, with part of the immediate fields and

unused fields carrying the configuration data. See Section 4.3 for more details. The basic idea

does not change when preloading is introduced. However, the amount of data that needs to

be stored in carry space increases with preloading. When preloading is not used, the BIT

entry for a BI, as well as the tag bits, are determined at run time when the BI first occurs
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so that the entry is used for subsequent occurences of the BI (see Figure 5.1). The data is

not available during the first occurrence of the BI. Since the goal in preloading is to place

data for a BI upstream and have it available in the BIT by the time the BI is fetched for

each occurrence of the BI (including the very first occurrence), the BIT index will also have

to be carried in carry instructions in addition to the predictor configuration. If a tag field is

used in the BIT, the tag bits will also have to be carried.

In Section 6.7, we looked at branch instructions and discovered that they typically have

adequately short displacements to store the 10 to 11 bit configuration for Spotlight without

adversely affecting performance. Because of the additional bits that need to be carried for

preloading, it is no longer sufficient to use a single branch based carry instruction. Additional

space is needed to store the BIT index and tag bits. Other than branches, there are several

potential instructions such as ADD, SUBCC and LDW which also have immediate fields

that can be used to store carry bits. We evaluated some of these instructions for SPARC V9

to determine a set of special carry instructions in addition to the special branch instruction

proposed previously. We then looked at how much total space will be available in typical

basic blocks if this set of carry instructions is used. The results are demonstrated in the next

chapter.

8.3 Initializing Preloading

Simulated annealing optimizes the placement of BIs in PLSs after starting at an initial state.

This initial state can be empty (none of the BIs are placed), but this is not a requirement

of the algorithm. In fact, the algorithm can be initialized to any configuration before being

optimized. The disadvantage of an empty initial setting is that it does not consider the

configuration of Spotlight that was discussed in previous chapters. In this configuration, the

data for a BI is stored within the BI itself and loaded into the BIT on the first occurrence

of the BI. Since a BI carries its own data, this version of preload data placement is called
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Auto Preload. Another disadvantage of an empty initial setting is that the algorithm will

take longer to converge on a good solution.

In addition to considering an inital empty state, we also consider initializing the annealing

process with the Auto Preload configuration, where every BI is its own PLS and carries

its own preload data. The possible advantage of doing this is that for some BIs, the best

placement for it might be Auto Preloading its data. Specifically, consider a BI which is

reached by a large number of paths (traces) and each of these paths are taken with roughly

the same frequency. The best configuration for this type of BI might be Auto Preload, since

the alternative is to place the BI in a large number of PLSs. Since PLSs are limited, doing

so can adversely affect the performance of other BIs.

Therefore, we evaluate both the empty and Auto Preload initial configuration. The results

are shown in the next chapter.

8.4 A Special Case - The Agree Predictor

The preloading technique discussed so far has been described generally with specific refer-

ences to Spotlight. Preloading can be used for any front end scheme that uses statically

chosen data with little or no changes to what has been described. This section discusses

a special case which is particularly suited for preloading with some changes. The Agree

predictor is described in chapter 3 and is illustrated in Figure 3.1.

The special feature of Agree is that each branch requires only one bit of preload data,

called a biasing bit. This provides an opportunity to improve on the preloading technique

described so far. Recall that pls min indicates the minimum distance (in basic blocks) from

a BI that its data can be placed at in a PLS. Lets assume that this value, d, is set to 2.

Further, assume that all CTIs within this distance are branches. If we start at a given PLS,

there are only two possible BIs that can be reached from the PLS at a distance, d = 1

(because the PLS may either be taken or not taken). For d = 2, there are four possible BIs

that can be reached from the PLS. Hence, storing the biasing bit of ALL possible BIs at
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d = 2 from the PLS will only need 4 bits. In general, a total of 2d bits are needed to store

data for all possible branches at a distance of d from a PLS. The hardware structure that

stores the biases for these branches is called a bias vector.

B1 B2

C1 C2 C3 C4

D3 D4D1 D2

A1

D5 D6 D7 D8

1

1

11

1

11

0

0 0

0000

0 1 1 0 1 0 1 1

0 1 1 0

1 0

 0

B1 taken: second half
of vector selected

A1 not taken: first half
of vector selected 

Bias Vector

The 4th bit of original bias vector selected
for D4, based on the path taken to D4 (A1 not taken, 
B1 taken, C2 taken) 

C2  taken: second half
of vector selected

FIGURE 8.3: Control flow diagram showing BIT overlap between E1 and D4

This concept is illustrated in Figure 8.3, which shows an example where d = 3 and all

CTIs are branches. The left arrows marked with a 0 show the not taken path from a branch

and the right arrows marked with 1 show the taken path. Starting at block A1, there are a

total of 8 possible blocks, D1 through D8, that can be reached at a distance of 3. If A1 is

not taken, the bias vector can be narrowed down to its first half and B1 is reached. If B1 is

taken, the bias vector from A1 can be narrowed down to its second half and C2 is reached.

Finally, if C2 is taken, the bias vector from B1 can be narrowed down to its second half.

The bit that remains is the bias of branch D4. Hence, the bias for D4 is found in the fourth

bit (from the left) of the original bias vector at A1. In general, the bias for a branch DX

can be found in the Xth (from the left) bit of the original bias vector at A1. If all CTI’s

are branches, the bias for any branch at a distance d from a PLS can be found and easily

extracted starting with a 2d bit bias vector placed at the PLS.
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Therefore, we consider a version of preloading that always preloads the bias vector at

a fixed distance. This is feasible because the number of bits required to cover all possible

branches at a short distance is small and easily manageable. We call this version of Agree

the Agree Preplace predictor.

The obvious problem with the above technique is that not all CTI’s in a program are

branches. When indirect jumps are encountered, they can reach several target branches.

This is dealt with by adding the taken count of all the target branches from a PLS and

using the sum to determine a single bias.

Preloading actually provides an opportunity to improve on the original Agree predictor

since it has the ability to consider path information. In the original Agree predictor, a branch

has a fixed bias. This can be improved upon by having multiple biases for a branch, based

on which path is taken to that branch. Instead of a per branch bias, the bias of the trace

from a PLS to a branch is placed in the PLS. If one path to a branch results in the branch

being mostly taken, and another path results in it being mostly not taken, the branch will

use a different bias for each case. This can provide better performance than storing a single

bias for the branch for both paths to it.
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Chapter 9
Evaluating Preloading

9.1 Experimental Framework

The simulator configuration, benchmarks and sampling method used in this chapter are

identical to that described in chapter 6. Traces for benchmarks were collected and stored in

one simulation step. The length of each trace stored was 20 basic blocks. The trace blocks

have a single exit, but can have multiple entrances.

9.2 Set of Experiments

We evaluate preloading for Spotlight by comparing the accuracy of versions that use preload-

ing to non-preloading versions of these predictors. We also evaluate the accuracy of the Agree

Preplace predictor. We break down the performance of preloaded Spotlight by looking at

different measures that contribute to performance. We evaluate the effect that different ini-

tialization methods have on preloading and look at data such as BIT hit ratios and compute

synthetic prediction ratios (an estimate of the expected prediction rate) to help understand

the performance of preloaded Spotlight. We also evaluate the availability of carry space in

existing program instructions.

9.3 Comparing Preload to Non-Preloaded Spotlight

Figures 9.1 - 9.4 show the misprediction rates for Spotlight for Preload vs. non-Preload

configurations for four PHT sizes. The ideal BIT hit rate (which assumes that profiled data

is always available) is also shown, as it represents the best case performance that can be

expected to be achieved. All configurations use a relatively small BIT with 26 entries. From

Figure 9.1, we see that preloading is able to close the performance gap between non Preload

and Ideal by approximately half for gcc, crafty, parser, perlbmk, gap, bzip2 and twolf. This

is also the case on average. The other benchmarks do not benefit much from preloading, with
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FIGURE 9.1: Misprediction Rates for Preload vs. Non Preload (PHT Lg Size 10)
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FIGURE 9.2: Misprediction Rates for Preload vs. Non Preload (PHT Lg Size 12)
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FIGURE 9.3: Misprediction Rates for Preload vs. Non Preload (PHT Lg Size 14)
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FIGURE 9.4: Misprediction Rates for Preload vs. Non Preload (PHT Lg Size 16)
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FIGURE 9.5: IPC Improvement for Spotlight with Preload vs. Non Preload (PHT Lg Sz 10)

vpr suffering having a slightly higher misprediction. The benefits of preloading continue to

hold as the PHT Size increases, as shown in the figures for PHT lg size 12 and 14. The amount

of actual improvement declines, but this is expected as overall misprediction rates decrease.

Further, as the PHT size increases, the number of branches that need special configurations

diminishes. Due to fewer conflicts in the PHT at larger PHT sizes, more branches can use

the default configuration without suffering a loss in performance.

A very important point is that since preloading is a technique where the complexity is

moved away from hardware to software, the software developer can make a choice about

whether it should be used or not. For example, if the developer believes that preloading will

not be beneficial, they can choose to not perform the analysis and annotation steps associated

with preloading (see chapter 4). Instead, the developer can choose to either not use profiling

at all, or use profiling to implement the non-Preloaded version of Spotlight. The developer’s

decision could be based on the developer’s feel for how reliable the training data is. That is,

for some benchmarks there might not be a good set of training data so far as Spotlight and

preloading is concerned. This is in contrast to a pure hardware scheme on a general purpose
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processor which have to be used for a diverse range of programs, and therefore, the cost of

the scheme has to be weighed against the benefits that are expected over all programs. The

analysis code can also be improved so that preloading is only considered if it is expected to

help based on some criteria. This would automate the decision and make the developer’s job

easier. However, this may not be straightforward because the performance on the training

input compared to actual (reference) input may differ.

The improvement in terms of IPC is shown in Figure 9.5 for PHT size 10. The improvement

is significant for the benchmarks which benefit most from preloading such as gcc, crafty,

parser, perlbmk and twolf. For example, the misprediction rate for perlbmk improved by

2.15%, which resulted in an IPC improvement of about 9/

The following subsections will examine the factors leading to the performance seen here.

9.3.1 Performance and Frequency of Most Mispredicted
Branches

The main goal of preloading is to optimize the use of space in a small BIT. Preloading will

not be beneficial if the most frequently mispredicted branches can easily fit in the BIT, i.e,

the BIT hit ratio is high even when the BIT is small. In the previous Figures, we saw that

gzip, swim and mcf do not benefit from preloading, with vpr suffering a slight performance

loss. These are also the benchmarks that were not affected much by the BIT size when

preloading was not used, as shown in chapter 6, Figures 6.2 - 6.4. On the other hand, the

former benchmarks were all sensitive to BIT size and saw an improvement in performance

with every increase in the BIT size.

Figure 9.6 clarifies this relationship. It shows what percentage of dynamic mispredictions

occur due to the top 30 most mispredicted branches. It is clear immediately that gzip,

swim, mcf and vpr do not need a large BIT, since the 30 most frequently mispredicted

branches make up greater than 90% of mispredictions in these benchmarks. The number is

very close to100% for swim and vpr. On the other hand, they make up less than 20% of

mispredictions in gcc, and about 50% or less in crafty, parser and perlbmk. They make up
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FIGURE 9.6: Percentage of Mispredictions Due to Top 30 Branches

less than 80% in bzip2 and twolf, the two other benchmarks which consistently benefit from

preloading. The higher percentages for these two benchmarks corresponds with relatively

lower benefits from preloading, i.e., while these two benchmarks benefit from preloading, the

benefit is not as significant as the other benchmarks. The 30 most mispredicted branches are

97.6% of mispredictions in gap. While gap benefits from preloading at the smallest PHT size

(Figure 9.1), the benefits diminish at higher PHT sizes. A possible reason is that gap has

a few branches which benefit from a special configuration, but the branches are constantly

evicted from the BIT, perhaps due to conflict misses.

9.3.2 Performance and BIT Miss Rates

The more branches that can find their special configurations in the BIT, the higher the

prediction rate is likely to be. We examine the correlation between performance and BIT

miss rates in this Section. The BIT miss rate is the percentage of branches that have a

special predictor configuration but do not find it in the BIT. Figures 9.7 - 9.8 show the BIT

miss rates for a small (lg size 10) and large PHT (lg size 16) respectively for preload and
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non-preload configurations. The number on top of each bar shows the absolute improvement

in misprediction rate for preloading over non-preloading.
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FIGURE 9.7: BIT Miss Rates for PHT Sz 10

From both Figures, we can see that gcc, crafty, perlbmk and twolf benefit from preloading

by achieving a signficantly lower BIT Miss rate. This is not the case for parser, gap and

bzip2 at PHT size lg 10 and for parser and bzip2 at PHT size lg 16. For the other bench-

marks, preloading has a higher miss rate but this does not correlate with significantly higher

misprediction rates. Hence, we can conclude that while a significantly lower BIT miss rate

results in better performance, it is not a necessary condition.

These results are not surprising because the goal of preloading is to make efficient use

of the BIT space. As illustrated in Figure 8.2 and discussed in Section 8.1.4, preloading

uses techniques to avoid obvious BIT misses by taking advantage of the path information

available. Further, preloading places data based on both how frequently a trace executes and

how much a branch is expected to benefit by using the special configuration over the default

configuration. Therefore, if a branch benefits little from a special configuration, preloading

may not place its data in a PLS or set of PLSs. In general, this technique will minimize
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the performance impact of BIT misses, by trying to ensure that the misses are for branches

which do not benefit much from preload data. By ensuring that more important branches

stay in the BIT at the expense of less important branches, it is even possible to get better

performance with higher miss rates, as is the case with parser, gap and bzip2 for Figure 9.7.

9.3.3 Performance and Synthetic Misprediction Ratios

During the profiling analysis step, we compute a synthetic ratio which estimates the expected

misprediction ratio. This is computed as follows. As described in Section 4.2, the accuracy

of all possible Spotlight segments including the default and selected special configurations

are computed for each branch. Therefore, if a trace is placed, the accuracy of the special

configuration for that trace is multiplied by the frequency of the trace. If a trace is not placed,

the accuracy of the default configuration is multiplied by the frequency. This should give us

an estimate of the misprediction ratio expected during the actual execution (the reference

run) of the program. Figure 9.9 shows the ratio of the synthetic to actual misprediction

ratios. To avoid differences due to the program input, we use the same data to do both the

training and reference runs. A ratio of 1 indicates that the actual rate is exactly what is
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expected. A number greater than 1 indicates that the synthetic misprediction ratio is higher

than actual.
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We see that while some benchmarks have a ratio very close to 1, many benchmarks have a

much lower rate, indicating that the actual misprediction rate is higher than expected. The

benchmarks gcc, crafty, parser, perlbmk and gap show the biggest difference. This is the case

even though we use the same exact inputs for training and reference runs. We considered

that another possibility for the difference is due to a higher number of PHT conflicts in the

reference run. To evaluate if this is the case, we increased the size of the PHT used during

the reference runs to avoid conflicts. The maximum number of GHR bits used to index the

PHT did not change, but additional PC bits were added to the PHT index so that branches

which mapped to the same PHT entry before would map to different PHT entries with the

change. Figure 9.10 shows the results for 4 of the benchmarks with the biggest difference in

absolute misprediction ratios from Figure 9.9.

We see that adding the extra PHT bits reduces the difference between expected and actual.

The most significant difference is for perlbmk, which improves from a ratio of 28% to 85%.

84



The three other benchmarks evaluated also show a significant improvement. The benchmarks

crafty and parser move from a ratio of < 1 to a ratio > 1 . The reason for this is that during

profiling, we use unique PHT’s to evaluate the accuracy of each configuration. During the

reference run, there is only one PHT used for all branches. As such, the profile run may

not be able to properly account for PHT conflicts. The difference is still significant for gap,

but this is somewhat misleading since the overall accuracy for gap is very high and a small

difference in accuracy results in a big change in the ratio. Of course, by increasing the PHT

size during the reference run, we introduced an additional difference in conditions by having

a smaller PHT during training runs. Further, the training runs are done on a functional

simulator while the reference runs are done on a timing simulator. These and possibly other

factors account for the difference in misprediction ratios that still exist.

9.3.4 Performance and Preload Initialization

We discussed two options for initializing the simulated annealing, preloading algorithm in

Section 8.3. One option was to initialize the placements to empty, and the other was Auto

Preload, where each branch carries its own data initially. These two initalizations are evalu-

ated in Figure 9.11.

The difference between the two methods is not significant. The benchmarks gcc, mcf,

perlbmk, gap and bzip2 do better with the auto preload initialization. The benchmarks

vpr, crafty and twolf do better with the empty initialization and the other benchmarks are

unchanged. The benchmark which benefits the most from auto preloading is perlbmk which

improves by a relatively significant misprediction ratio of 0.41. The results here indicate

that the initialization technique has some impact on misprediction rates, although it is not

significant. Which choice is better depends on the benchmark.

9.4 Evaluating Carry Space

Section 6.7 demonstrated that branch instructions have adequately small displacements for

replacement branch carry instructions with 10 or 11 bits of carry space to be effective. But
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FIGURE 9.11: Preload with Empty vs. Auto Preload Initalization

preloading requires more data, a BIT index and tag, straining the capacity of a single branch

to carry the data. For Spotlight, we need 10 bits to represent the configuration. If a BIT of 26

entries is used, the BIT index will require an additional 6 bits and tag field will require 2 to

6 bits. The total number of carry bits needed for Spotlight will be 18 to 22 bits. Other profile

based predictors such as EHB and Agree need fewer bits, but unless the configuration itself

is very small, the space available in branch instructions is not adequate by itself to carry

data for preloading. We need to find additional instructions which can also carry preload

bits, with the hardware being responsible for combining bits from several instructions in a

block. Data on the amount of available carry space would also be useful for those designing

other preloading. mechanisms.

9.4.1 Evaluating Per Instruction Carry Space

As explained in Section 8.2, there are many SPARC V9 instructions such as Load, Store, Add,

Shift and Sub which are potential candidates for storing carry bits. The opcode map for Sparc

V9 [41] indicates that there are five free opcodes available for this type of instruction. Based

on a study of the instruction frequency and the amount of bits available, we selected ADD,
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SUBCC, LDUW, STW and SLL as the instructions for which special annotated versions will

be created.

10

10

rd10

rd

op3

op3

rs1

rs1 i=1

i=0

rs2

simm13
1824 192530 2931 14 13 12 045

FIGURE 9.12: SPARC Instruction format for ADD, SUBCC, LDUW and STW

Figure 9.12 shows the format for four of these instructions. The first format is for the non-

immediate (two register fields) version of these instructions, and the second format is for the

immediate version. The non-immediate version always has 8 free bits, which is available for

holding carry data. The immediate version has a 13 bit immediate field, and as we did for

branches, we evaluate the bit size of immediate values in our benchmark to determine how

many of these bits can be used for carry bits in annotated versions of the instruction. The

format for SLL is shown in Figure 9.13. Both the non-immediate versions always have 7 free

bits for these instructions. The size of the immediate field (shcnt32 in Figure 9.12) is limited

to 5 bits and we also evaluate how many of these bits can be used for carry bits.

10 rd10 op3 rs1

i=0

1824 192530 2931 14 13 12 45

10 rd op3 rs1

i=1

rs2x

shcnt32x=0

FIGURE 9.13: SPARC Instruction format for SLL

Figures 9.14 - 9.18 show the percentage of immediate instructions which can give up a

certain number of bits of carry space for each of these instructions. The data is shown for a

few selected benchmarks and on average over all benchmarks. The number in brackets in the

Figure labels indicate what percentage of dynamic instructions this instruction represents

on average. For example, ADD instructions make up 11.1% of all program instructions on

average while SUBCC makes up 10.3%.
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FIGURE 9.14: Free Space Available in Imme-
diate ADD (11.1%)
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FIGURE 9.15: Free Space Available in Imme-
diate SUBCC (10.3%)

We see that ADD immediate instructions use most of their immediate fields on average,

i.e, they have large absolute immediate values. Almost 100% of instructions can give up 2

bits for carry, but the number drops to about 90% when we go to 3 bits and the percentage

continues to decline steadily after that. However, this is not the case in all benchmarks. We

see that more than 90% of ADDs only need an one or two bit immediate field in gcc and

twolf and can give up 11 bits for carry. On the other hand, gap and perlbmk see a drop off

starting at 3 bits.

The immediate fields in SUBCC are very small and on average, approximately 90% of

instructions can give up 10 bits for carry. The variation across benchmarks is not extreme,

the four benchmarks shown each have 80% of SUBCC immediate instructions that can give

up 10 bits. For twolf, almost all SUBCC immediate instructions can give up 12 bits, indicating

that in most cases, the instruction has an immediate value of 0.

The immediate field in the LDUW instruction can be reduced by more than three bits

for more than 90% of instructions and by five bits for more than 80% of instructions on

average. For this instruction, the benchmark twolf has the biggest immediate fields and the
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FIGURE 9.16: Free Space Available in Imme-
diate LDUW (17.6%)
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FIGURE 9.17: Free Space Available in Imme-
diate STW (3.8%)

percentage of instructions drops significantly to less than 70% starting at 6 bits. In fact, all

benchmarks seem to have the biggest drop starting at 6 bits. The perlbmk benchmark also

has similarly large immediate fields. The STW instruction is similar to LDUW on average

but the benchmark data differs. The benchmark twolf has smaller immediate fields for STW

compared to LDUW while the benchmark gap is the opposite, with bigger immediate fields

for STW compared to LDUW.

The SLL instruction is unique in that both immediate and non-immediate versions always

have 7 free bits, with the instruction using just a 5 bit field for immediate instructions. This

is illustrated in Figure 9.18, where 100% of immediate instructions have at least 7 bits free.

An additional two bits can be taken from the immediate field for about 90% of instructions

on average. This is the case for all of the individual benchmarks shown. There is not much

variation in the per benchmark data for the benchmark shown. Some benchmarks which are

not shown, such as gzip and mcf, see a bigger drop when we reach 9 bits, but these are

benchmarks which generally do not benefit much from preload data.
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FIGURE 9.18: Free Space Available in Immediate SLL (6.1%)

TABLE 9.1: Carry Space Assigned by Instruction

Instruction Carry Space Provided
BRANCH 10
ADD 4
SUBCC 10
LDUW 4
STW 4
SLL 9

9.4.2 Evaluating per Block Carry Space

In the decode stage, the hardware will be responsible for identifying the instructions discussed

in the previous subsection (or another set of suitable instructions), extracting the carry bits

and combining them to get the special configuration, bit index and tag bits. This would be

done on a per block basis. This subsection evaluates the total number of carry bits that

are available on a per block basis. To do this, we need to decide how many bits each of

the instructions mentioned previously will give up. Based on the results in the previous

subsection and Section 6.7 (for branches), Table 9.1 shows the number of bits that we select

for each of these instructions.
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FIGURE 9.19: Carry Space Bit Availability in Blocks

The overall results are shown in Figure 9.19. We see that both on average and for all

benchmarks shown, 10 bits can be found in a basic block for almost 100% of instructions. The

average percentage of basic blocks that can hold 10 bits of carry space is is 98.7%. However,

the number drops to 86.2% for 11 bits. We mentioned at the beginning of this Section that

Spotlight needs between 18 and 22 bits of carry space to store a special configuration. The

average number of blocks with 18 bits of space is 82% and the number of blocks with 22 bits

of carry space is 70%. The per benchmark data (shown for a set of selected benchmarks)

shows that for benchmarks like gzip, gcc, mcf and bzip2, the percentage of blocks which can

give up these higher number of bits is greater than 80%. On the other hand, benchmarks

such as crafty and perlbmk have a limited number of blocks which can give up these higher

number of bits. The most negative result is for perlbmk, where less than 60% of blocks can

give up 18 bits. The result show that the availability of space is not necessarily correlated

to whether a benchmark is preload sensitive. The benchmarks gcc and bzip2 have a large

amount of free space per block even though they are preload sensitive. This is also the case

for twolf (not shown). On the other hand, benchmarks such as crafty, parser and perlbmk are
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preload sensitive but have limited carry space availability per block. This is probably because

not enough of the frequently used instructions in these benchmarks have carry versions.

9.4.3 Summary of Carry Space Availability

The results shown above are mixed and inconclusive. While some benchmarks have a large

amount of blocks with high carry space, other Preload sensitive benchmarks have a limited

amount of blocks with high carry space. There are some important points to be made.

Firstly, the amount of carry space that is calculated per block is dependent on the set

of instructions selected and the amount of carry bits selected for each of these instructions.

The per block results can vary significantly based on these choices. The parameter space

is relatively large and our study above was far from exhaustive. For example, for ADD

instructions, the benchmarks gcc and twolf have very small displacements while perlbmk

and gap have larger displacements. Should we select 7 bits of carry space for ADD (see

Figure 9.14) so that gcc and twolf can benefit, and so that when perlbmk and gap do find

enough space in these instructions, they can get 7 or 8 bits of carry space? Or should we

assign 3 bits of carry space to ADD, so that perlbmk and twolf have a higher probability of

finding at least some carry space bits? There is no obvious answer to this question.

Secondly, it is not clear what percentage of blocks need to have enough carry space for

preloading to be effective. If preload space is not available in some blocks but there are

very few branches near that block which need carry space data, this is unlikely to affect

performance. On the other hand, if preload space is not available in a part of the code that

benefits significantly from preloading, this would affect accuracy in a negative way.

Finally, the amount of carry space available will be affected by the choice of instructions.

The instructions we selected were based on how frequently they occur, and how much free

space they may be able to give up. It is possible that different instructions will give better

results. All of these questions merit further investigation.

92



9.4.4 Reducing the Size of Carried Data

Since Spotlight needs to preload a lot of carry data, it would be beneficial to reduce the

amount of data required. This subsection discusses some ways this could be done.

One option is to develop an additional compact representation of the special configuration.

A single bit could indicate that the preload data representation is compact. The goal would

be to use the compact representation for some of the most common configurations. We saw

in Figure 6.13 and Figure 6.15 that special configurations such as 0 GHR bits and very short

GHR segments are common. If these are represented compactly, many branches would need

fewer carry space bits, increasing the probability that they can find a block with enough

carry space. Further, if some branches use special configurations that vary in accuracy only

slightly from a compact configuration, those branches could use the compact representation

instead.

The number of tag bits used also impacts performance. The tag bit representation can be

reduced by evaluating whether a branch has some bits in common with the preload site. This

is likely, because the tag bits are the next higher order bits after the BIT index. Generally,

if a branch is within a reasonable distance from its preload site, there is a good possibility

that the branch and the site have the higher order bits of their PC’s in common. Therefore,

an additional option is to reduce the number of tag bits that need to be carried for some

branches. Huffman coding could also be used, but this would complicate the hardware.

9.5 Evaluating Agree Preplace Predictor

In Section 8.4, we introduced the Agree Preplace predictor which takes advantage of the

fact that Agree only needs one bit of data per branch. This makes it possible to cover

all possible branches that could occur d blocks away. We also introduced an improvement

to the basic Agree predictor which selects the biasing bit based on the path taken to a

branch instead of using a single bias for all branch instances. The advantage of both of these

schemes is that they do not require a large number of configuration bits like Spotlight. It
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also does not use a BIT and hence does not need to store BIT index or tag bits in the carry

instruction. We evaluate the accuracy of both of these predictors by comparing them to

the Ideal Agree predictor. This is similar to the NoBIT (Ideal) version of Spotlight used in

previous Sections in that it assumes that profiled data (the biasing bit) is always available

without the possibility of a BIT miss.
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FIGURE 9.20: Accuracy of Agree Preplace for PHT Lg Sz 10

Figures 9.20 - 9.23 show the results for these three schemes for four PHT sizes. The

Agree Preplace Instruction predictor uses one bias for all instances of a branch, while the

Agree Preplace Path predictor selects the bias based on the path taken to a branch from

d blocks back. From Figure 9.20, we see that the Preplace Instruction predictor is fairly

close to Ideal in benchmarks such as swim, vpr, parser, bzip2 and twolf. In gap, gzip and

gcc, the difference is significant in percentage terms but not in absolute terms (0.53, 0.57

and 0.62 respectively). The difference is more significant for mcf, crafty and perlbmk. Twolf

does better with Preplace Instruction compared to Ideal. The data chart above is wrong,

but I can’t access the ECE systems to change it. The largest difference is in the benchmark

perlbmk, which is not surprising since it has a high number of indirect jumps, something
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that Agree Preplace is not designed to handle. As the size of the PHT increases as shown in

Figure 9.21, the difference between the two schemes declines significantly for the benchmarks

with the biggest difference. The exceptions are mcf and perlbmk, which still see a big drop

between Ideal and Agree Preplace Instruction. In fact, as we increase the PHT size as shown

in Figure 9.22 and Figure 9.23, the difference continues to decline for all benchmarks other

than these two.

By selecting a bias based on the path to a branch, the Agree Preplace Path predictor has

the potential to outperform the Ideal predictor, and the results indicate that this is exactly

what happens. Even at the smallest PHT size, where Agree Preplace Instruction predictor

fails to match the Ideal predictor, the Preplace Path predictor is able to outperform Ideal

in all benchmarks other than benchmarks gzip, vpr, perlbmk and gap. The difference for

vpr is almost trivial (0.05%) while the difference for gap is not significant (0.21%). While

there is a difference for perlbmk of about 1.04%, it is much smaller than the difference

between Ideal and Preplace Instruction. The only benchmark (from the set which saw a

big drop between Ideal and Path Instruction) which does not benefit from Preplace Path
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is gzip, which sees a trivial decline compared to Preplace Instruction. The benchmarks gcc,

mcf, crafty, parser, bzip2 and twolf all get better performance than Ideal, delivering on the

potential of the Preplace Path predictor to improve over ideal. As the PHT size increases,

the main observation is that both the gap between Preplace Path and Ideal declines, both

for benchmarks where Preplace Path is better and for benchmarks where Ideal is better. The

exception is mcf, which has better performance at PHT Size 10 but has worse performance

at higher PHT sizes.
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Chapter 10
Reducing Complexity of Non-Branch
Predictor Front End Schemes with Preloading

This chapter discusses some of the other potential uses of preloading on the processor front

end, other than the branch prediction schemes described so far. Preloading is a general

technique that can deliver some type of statically chosen data to the front end of the processor

by extracting it from instructions leading up to a block. The data for a block cannot be stored

within the block itself because the front end of the processor is the first few pipeline stages

before instruction decode. As such, on the front end, the only way to deliver statically chosen

data in a low cost manner to a block is to Preload it in prior blocks leading up to the block.

10.1 Using Preloading to Potentially Improve

Performance and Reduce Cost of the Basic

Block Table

Figure 10.1 shows the part of the front end of a processor relevant to the basic block table.

The block table is used to compute the address of the next block that needs to be fetched

from the Instruction Cache. The table delivers the length of the next block, the CTI type

and the address of a target. There are two possibilities based on whether a branch is not

taken, a branch is taken or the block ends with a non-branch CTI. If a branch is not taken,

the next block is computed as the sum of the start address of the current block and the

length of the block provided by the block table. If a branch is taken, or if the branch is not

a CTI, the target field is used as the start PC of the next block that needs to be fetched.

The same type of benefit from preloading branches are also available for the block pre-

dictor. When a block is seen for the first time, its data will not be available in the block

table. Data will also not be available if a block’s data is evicted due to another block. This

can be avoided with preloading by placing the data for a block on the path to the block. By

the time the block is reached, its data will have been preloaded, preventing the miss in the
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block table. As is the case with the BIT discussed in previous chapters, preloading can also

help reduce the size of the block table because the data will typically be used shortly after

preloading it into the table. See chapter 7 for a complete discussion. This will provide the

same benefit as instruction prefetch since it will be able to generate instruction addresses

(though the usual prediction mechanism) for instructions that have never been cached and

which are at targets of CTIs, not just fall-throughs, as sequential prefetch can find.

The number of carry bits needed for preloading the block data is manageable, although

clearly it would be harder to manage if it is combined with a Preload based branch predictor

(the carry space will have to be split between the two). The length of a block should not

require more than 4 or 5 bits, because blocks are unlikely to have more than 24 = 16 or

25 = 32 instructions. The CTI type may be one or two bits. The target will match the size

of the physical address of the system and has the potential to be very large. However, this

can be handled by limiting the type of blocks we Preload and storing the offset to the target

instead of the address of the target itself.
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10.2 Using Preloading for Other Parts of the Front

End

Preloading could be used for an indirect jump predictor. A preload analysis could determine

the multiple targets of a jump and the jump-table indices used for each of them (generated

by xoring the PC with a GHR). These values could then be pre-loaded into the jump table.

In some ways that would provide the same benefit as the Agree predictor, by yielding a

correct prediction for a CTI that has not yet been executed.
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Chapter 11
Conclusions and Future Work

11.1 Contributions

With the increased importance of reduced power consumption and embedded systems, and

the emergence of multi-core processors, it has become necessary to develop architectural

techniques that can improve performance, but do without increasing costs, complexity and

power consumption. This is counter to the trend in branch prediction research, which has

been towards increasingly complex schemes which are both hard to implement and likely

to consume a significant amount of chip area and a significant amount of energy. Yet, real

processors continue to improve single core performance by improving the performance of

the front end. This dissertation makes the following contributions aimed at reducing the

complexity of the processor front end without reducing performance.

• Spotlight - A profile based branch predictor. We introduce a novel profile based

branch predictor which gets high accuracy despite a simple hardware design. It does

this by moving the complexity of the prediction process offline to a profiling step. The

part of the history most correlated to a branch is determined by software instead of

hardware. Because it is a profile based scheme, it is also able to combine the benefits

of other predictors such as EHB and Agree and improve on their performance.

• The Profiling, Analysis and Annotation (PAA) system. We explain how stat-

ically chosen data will be collected and how analysis would be performed in a real

system so that it is non-intrusive to the user. We discuss how annotated binaries can

be generated that use special versions of existing instructions to store and carry stati-
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cally chosen profiled (or other) data.

• Evaluation of free space available in benchmarks for carry instructions. We

evaluate how much free space can be extracted from existing branch and other instruc-

tions, so that special versions can be created that can store carry bits obtained from

profiling.

• Techniques for delivering statically chosen data to hardware in a single cy-

cle. We discuss how a Benefiting / Branch Instruction Table (BIT), combined with an

upstream placement hardware scheme can be used to deliver statically chosen data to

the hardware in a single cycle, and evaluate the cost and accuracy of such a scheme.

• Preloading - A low cost technique for delivering statically chosen data. We

introduce a novel technique, preloading, which places statically chosen data in basic

blocks that lead to a branch or other benefiting instruction. By doing so, the size of

the BIT used to store the data can be minimized without reducing performance. We

demonstrate a special version of preloading for the Agree predictor (or other front end

schemes which require one or two bits of data), which can be effective without using a

BIT or additional hardware.

• Other uses for preloading on the front end We briefly discuss how preloading

can potentially be used to reduce the complexity and improve the accuracy of other

front end schemes such as basic block predictors and indirect jump predictors.
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11.2 Future Work

• Improving the accuracy of the baseline schemes with Preload data. Funda-

mentally, preloading uses path information to place statically chosen data. The path

information itself can be used to improve the accuracy of the baseline scheme. This was

demonstrated one of the special versions of the Agree Predictor, Agree Preplace Path.

The same could be done for Spotlight or other profile based predictors. The currently

proposed scheme use the same configuration for all instances of a branch, regardless of

the path taken.

• Reducing the amount of carry bits needed. The basic preloading scheme requires

storing the BIT index and tag bits in carry instructions, increasing the amount of data

that needs to be carried. There are some potential techniques which can reduce this

data, such as a compact representation for the most common configurations and reduc-

ing the number of tag bits by finding common bits between the PC of the placement

site and the benefiting instruction.

• Evaluating preloading for other front end schemes. We explained how preload-

ing can be used for basic block predictors and suggested other uses for preloading on

the front end. These schemes need to be implemented to evaluate their benefits in

terms of cost and performance improvement.

• Evaluating the energy benefits due to preloading. Preloading improves per-

formance by moving the complexity offline. We do not measure energy usage in this

dissertation, but the energy dissipation of Preload based schemes such as Spotlight

need to be compared to more complex branch predictor schemes such as the Hashed

Perceptron.
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