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Abstract

Simulation has become a useful approach in scientific computing and engineering for its

ability to model real natural or human systems. In particular, for complex systems such

as hurricanes, wildfire disasters, and real-time road traffic, simulation methods are able to

provide researchers, engineers and decision makers predicted values in order to help them

to take appropriate actions. For large-scale problems, the simulations usually take a lot of

time on supercomputers, thus making real-time predictions more difficult. Approximation

models that mimic the behavior of simulation models but are computationally cheaper,

namely ”surrogate models”, are desired in such scenarios. In the thesis, a framework for

scalable surrogate detection in large-scale simulations is presented with the basic idea of

”using functions to represent functions”. The following issues are discussed in the thesis: i)

the data mining approaches to detecting and optimizing the surrogate models; ii) the scalable

and automated workflow of constructing surrogate models from large-scale simulations; and

iii) the system design and implementation with the application of storm surge simulations

in the occurrence of hurricanes.
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Chapter 1

Introduction

The increase in capacity of computational resources, data storage, integrated experimental

and observational devices and connecting networks available to scientists and engineers is

enabling new paradigms and methodologies for scientific discovery. Simulations, especially

for those of complex systems, are greatly enabled on large computers. With many researchers

now having easy access to supercomputers, domain scientists, such as physicists, biologists

and engineers, are able to develop and run simulations that model the natural processes in

various areas in a distributed and collaborative environment. The capability of mimicking

system behavior can help decision makers to predict the future situation. In the scenario

of large-scale simulations which are targeted in a spatial domain rather than a single point,

one or many simulations are performed to find out the predicted values at points of in-

terest for forecasting purposes. Such applications in scientific computing and engineering,

including storm surge forecasting in hurricanes [1, 2], the prediction of methane inflow rates

during mining [3], road traffic prediction [4], forecasting capabilities related to ecological and

biological systems [5, 6], provide good case studies as complex system modeling based on

simulations.

However, the increase in capacity of computational resources does not lead directly to
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a rapid improvement of the simulations themselves. Instead, it brings a new challenge that

motivates scientists to fully utilize the huge amount of simulation data created in supercom-

puters, thus fostering advanced scientific research. Driven by the urgent need for in-depth

investigations in Louisiana coastal areas, especially during hurricane seasons, a data center,

which provides research communities with scientific data resources on demand, is imperative.

1.1 Motivation

Machine learning and data mining techniques have been widely used in various fields since

the 1990s. The functions exist to exploit hidden information and latent relationships from

data and verifying them. While common data mining tasks, such as classification, regression

and clustering, can identify the value of target variable with multiple attributes known, a

simulation can also regarded as one or many functions mapping from a set of input parameters

to the target variable in the area of interest. So it enables researchers to apply data mining

methods in constructing surrogate models. In particular, as a typical simulation outputs

time series on every node in the computational grid. Combining the parameter space of

simulation input with its output and running multiple such simulations, there exist the

following patterns: i) the relationship between the input and the simulated response as an

objective function at a single point; ii) the spatio-temporal correlation between points of

interest and iii) the clustering of points of interest based on the level of response. Along

with describing the data mining models for detecting surrogate models from simulation data,

we also present a scalable and automated workflow in this paper that facilitates the high-
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performance data mining.

1.2 An Application Scenario: Storm Surge Prediction in Hurri-
canes

In this thesis, the author mainly focuses on the application of storm surge prediction in

hurricanes. Storm surge prediction is essential is estimating the effect brought by the hurri-

cane. The Louisiana Coastal Area presents an array of rich and urgent scientific problems

that require new computational approaches: tropical cyclones, especially Hurricane Katrina

in 2005 and Hurricane Gustav in 2008 have caused severe loss of life and property damage.

Now dynamic storm surge prediction, mainly based on physics-based simulations ,is being

operationally used as accurate and timely predictions are essential for decision makers to

deploy appropriate evacuation plans. However, the dynamic and multi-physics nature of

this problem, as well as the expensiveness of computational resource consumption, present

new challenges for related research in coastal science and engineering.

Running a storm surge simulation, as typically using ADCIRC (Coastal Circulation

and Storm Surge model) model [7], can take more than 2,200 CPU hours for a hurricane of

5 days. This means that even with 64 computing nodes in a cluster, more than 30 hours is

needed for completing the simulation. While it is large-scale complex problem, the surrogate

models in the thesis are based on extracted time series from 15 locations, corresponding

to the tide gages in Louisiana, for each simulation. On the other hand, while a hurricane

track can be a trajectory with an arbitrary order across the Gulf of Mexico, we use the
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hypothetical tracks in the experiments to evaluate the model response to parameter space.

The thesis is organized as follows: in Chapter 2, the surrogate modeling approaches

are presented along with the criteria used for model validation. Then in Chapter 3, the

automated and scalable workflow of the data-oriented modeling is discussed in a view of

framework development. The implementation and results are illustrated in Chapter 4, and

finally the thesis is concluded in Chapter 5 along with the recommendations for future work.
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Chapter 2

Data-Oriented Methods for Detecting
Surrogate Models

2.1 Background and Problem Setting

Mining simulation data is receiving more and more attention in recent years. Besides the

simulation-based prediction, optimal design is also an objective as it is common in many

engineering applications [8]. As large computing resources become more accessible for re-

searchers over years, the work in building data warehouses and mining large-scale simulation

data spreads from area to area in order to detect features, such as [9] for computational

fluid dynamics and [10] for protein unfolding simulations. In data mining related research in

hurricane events, the significance of application has prompted the interdisciplinary research

in recent years, such as the framework for querying and retrieving moving sensor data in

hurricane events [11] and a real time storm surge forecasting system [12]. Due to the very

limited availability of observational storm surge data [13], physics-based simulations become

the primary method for predictions.

As the aim of our work is to detect surrogate models [14], which provide rapid approx-

imations of more expensive models, at or between multiple points of interest (POI) in the
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simulation domain, we denote a simulation as F(x) (x ∈ Rn) and multiple points of interest

as p1, p2, ...ps. Thus, the value of each POI can be extracted from the simulation and is

represented by F(x, pi) or F(x, pi, t) for a specific time t if time series are available at POI.

Along with the simulations, there is a parameter space Xn (as x ∈ Xn) that represent the

entire range of the input set for the simulation. All the factors can affect the target value

at POIs. Furthermore, the representation of the parameter space is not definite for each

factor: taking storm surge simulation as an example, scalar inputs such as central pressure

and the pressure radius can be exactly represented by one value and all the locations are

corresponding to a 2D coordinate as latitude and longitude; but the track file is organized

by a set of coordinates as the location of hurricane center with time, associate with the wind

velocity at each time point, but in order to find out the patterns with regard to the variation

in parameter space, the representation can be re-defined to explore the space in a structural

manner. This is an important part in the problem domain as it is desired to be able to

quickly make predictions for an arbitrary input.

A typical applicable surrogate model, defined by domain scientists [15], is a response

function that suggests a continuous surface for maximum surge (ζ) at a given location:

ζ(x, y) = φkm([xo, yo], [cp, Rp], [x, y]) (2.1)

where the target variable ζ in the function is the response to the hurricane central pressure

cp, the hurricane pressure radius Rp, landfall location [xo, yo] with a specified track angle k

and forward speed m.
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2.2 Basic Forms of Surrogate Models

2.2.1 Response Function Model

With the basic idea of ”using a set of functions to represent a function”, a typical tool, basis

functions, is to be introduced. Basis functions become the base for all the surrogate models

in the thesis as they provide the fundamental representational power [18].

2.2.1.1 Basis Functions

Behaving as universal approximators, basis functions play the essential role in the construc-

tion of response function. A basis functions is an element of a particular basis of a function

space. Common basis includes exponential, radial basis, Fourier, B-spline and polynomial.

While basis functions are usually not individually used, a set of basis functions always co-

exist in the model, namely basis function system. Denote a set of functional building blocks

as φk, k = 1,...,K and then a function x(t) defined in this way is expressed as

x(t) =
K∑
k=1

ckφk(t) = Cφ(t) (2.2)

Such a basis function expansion incorporates parameters c1,c2, ...,cK as coefficients of

the expansion. In computation, the matrix expression in the last term of Eq. 2.2 uses C to

stand for the vector of K coefficients and φ to denote a vector of length K containing the

basis functions.
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In [18], it is strictly proved that a radial-basis-function network with one hidden layer

is capable to represent any continuous functions as universal approximator. Actually, the

proof regards the radial-basis-function network as a linear combination, so the proof shows

the family of radial basis function is dense enough to cover a continuous domain. There exist

other previous works showing the representational power of other basis functions [19, 20].

In the thesis, it is in a more practical view that a specific basis is chosen based on the

effectiveness in the target problem solving.

2.2.1.2 Modeling Simulation Response using Basis Functions

As mentioned in Section 2.1, a response function can represent the output variation in

response to the parameter space of simulation input. Functional data analysis [17] is used

to construct such models. That is, multiple sets of basic functions are chosen as universal

approximators for regression and each element in the parameter space contribute to one set.

We denote y as the target variable, extracted from the simulation as y = F(x, pi)

yi = α +
n∑
j=1

xjβj + εi (2.3)

where α is the intercept, βj(t) (the same as x(t) in Eq. 2.2) represents a basis coefficient

expansion and εi is the residual. Then, xj is one element from the parameter space, while n

is the total number of parameters.

To fit this model, it would be converted to a form that least-square regression can be

finally used. The optimization criterion become
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{α̃, β̃}λ = arg min
α,β

{
M∑
i=1

[yi − α−
n∑
j=1

xjβj] + λ

n∑
j=1

(β′
j)

2} (2.4)

where λ is the regularization parameter that restricts the value range of βj and thus avoids

excessive local fluctuation in the estimated function, and M is the number of data points,

equivalent to the number of simulations.

From the perspective of regression analysis, the basis function system has the following

differences in comparison with ordinary curve fitting (e.g. using a polynomial): i) to perform

curve fitting for a given function, the solving procedures always include least-squares regres-

sion in the end, which requires to solve a linear system. As for the linear system, it is desired

that the number of equations should be no less than the number of known variables; and

ii) It is computationally expensive to treat every independent variable equally in the design

function. For example, when using a second-order polynomial to fit a function y = f(x1, x2),

it is not known a priori that which of x1 and x2 affect y in the first order or second order.

Then, the design function is

yi = a1x
2
i1 + a2x

2
i2 + a3xi1 + a4xi2 + a5

Thus, at least 5 sampling points of {(xi1, xi2, yi)} are needed although there are only 2

independent variables.

In the surrogate model, the application can be described as: Suppose that it is needed to

find a surrogate model to fit the scalar response. The input of the simulation model includes
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n scalar variables {x1, x2, ..., xn} and the simulation output is just a scalar value y for the

given input set. Each simulation is regarded as a record, so to use ordinary least-square

fitting, it is required to have at least n + 1 records for a linear model and much more for

higher-oder models. Otherwise, no solution can be found.

Therefore, with the limitation in representational power and computation using ordinary

models, basis function system has the advantage of using a hierarchical structure to embed

the coefficients to the model, while in essence it is still a linear model: in Eq. 2.3, both xj and

βj are represented using basis functions. And here xj itself can be independently represented

as a function by the basis function system. So, it substantially addresses the issue of model

expressiveness as long as the input is functional. And this is real in many applications or

can always be designed to be functional.

In the above description, the response function is compared with ordinary least-square

regression while both are supposed in the form of y = f(Xn), where both y and each xk ∈ Xn

are scalar values. This category of surrogate model is targeted to a single simulation output

as (e.g. the maximum value at a specific location in the storm surge simulation) as the

scalar response to the input. On the other hand, many simulations are performed with

time evolution, meaning that the output at a POI is time series instead of a single value.

While time series provide more information and the analysis of time series become more

sophisticated, response functions can be more advantageous here. Thereby, surrogate models

that reflect functional response are desired.

To illustrate the use of basis function system for modeling functional response, the form
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of surrogate model is re-defined as

yi(t) =
n∑
j=1

xijβj(tj) + εi (2.5)

With the target variable y becoming a function of time t, the corresponding problem

setting is slightly different. While in Eq. 2.3 the goal is to find out the coefficients that

well fit the scalar response, Eq. 2.5 embeds such coefficients in term betaj as the represen-

tational power determines that there much be such solutions. However, with regard to any

of y1, y2, ...yM , optimal coefficients are the target of this type of model given the simulation

input. While these input parameters x1, x2, ...xn are pre-defined and don’t vary with time

in the setting of simulation models, they are not functional at this stage, although in the a

general model it can also be a function of time t as xj(t).

Similar to scalar response, the solution of the surrogate model for functional response

can also be converted into the form of an optimization problem:

β̃ = arg min
β
{
M∑
i=1

∫
[yi(t)−

n∑
j=1

xijβj(t)]
2 dt} (2.6)

Although response functions demonstrate their representational power as universal ap-

proximators, domain knowledge is helpful to make sure that the model doesn’t include

misleading relationships, in order to avoid data dredging.

Experiments related to this part are illustrated in 4.2.2 and 4.2.3.
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2.2.2 Correlation-Involved Surrogate Model

While response function can directly explore the response to simulation input, it is also

interesting to discover the spatio-temporal correlation from a point of interest to another. In

domain science, there also exists the theoretical foundation of the correlation: as discussed

in [2], the coastal-basin geometry has a profound effect to the storm surge. While a simulation

output doesn’t include only a single value of the target variable, such correlation relationships

between locations or variables can be helpful as a new type or a component of surrogate

models.

In the context of surrogate model for simulations, while the correlated links between

variables or locations may not be known a priori, the target is to find such causal links

that tend to be invariants, with the examination of the variance across different simulations.

Thus, statistical hypothesis testing is important to find out the links with a certain confidence

level before proceeding to model construction. To specify the correlation across locations in

the simulation output, y is again denoted as time series extracted from the simulation at

location pi: y(pi, t) = F(x, pi, t).

2.2.2.1 Granger Testing for Correlation Detection

Granger causality test [21] is performed to find out the specific links in the given data.

The POIs p1, p2, ...ps in one simulation form the search space, while any directional pair

{pi → pj} can be a link using a bivariate test and a multivariate test involves more points
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such as {pi1 , pi2 , ...pik → pj}. The result of the test, F-ratio and the corresponding P-value,

is calculated based on the comparison between predicting the time series at pj using only

its own values and using time series from auxiliary locations pi1 , pi2 ...pik along with its own.

Then,

SSQER =
t∑
i=l

[y(pj, i)− f(y(pj, i− l), ..., y(pj, i− 1)]2 (2.7)

SSQEU =
t∑
i=l

[y(pj, i)− f(y(pj, i− l)...y(pj, i− 1), y(pi1 , i− l), y(pi1 , i− l+ 1)...y(pik , i− 1)]2

(2.8)

Fgranger =
(SSQER − SSQEU)/l

SSQE/[t− l(1 + k)− 1]
(2.9)

In the above three equations, SSQER is the sum of square error using the restricted

method, which only involves the values at the same location and SSQEU is that using the

unrestricted method, which is elaborated using values from locations pi1 , ...pik . Thus, the

F-ratio is calculated based on the sum of square error with the specified degree of freedom in

the problem setting. l represents the lag in prediction. The P-value is then easily obtained

according to the value of Fgranger, suggesting the probability that the null hypothesis (the

values of the given auxiliary locations can improve the time series prediction) can hold.

In practice, the number of total locations would not be a large number. In storm surge
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simulations, 15 locations are selected corresponding to the 15 tide gages in Louisiana ??.Therefore,

the search for the correlation relationships between locations would not result in costly com-

putation.

2.2.2.2 Spatial-Temporal Causal Modeling

Spatio-temporal causal modeling method [23], proposed by Lozano et al., is used for applying

Granger causality to modeling the climate change attribution. The spatio-temporal causal

link, which represents the causality between s set of time series, is defined by the following

regression with regard to the time series at one location and its neighbors:

y(pi, t) =
u∑
k=1

s∑
l=1

αk,ly(pk, t− l) (2.10)

Also if more variables other than y are also involved in the model, then

y(pi, t) =
u∑
k=1

s∑
l=1

αk,ly(pk, t− l) +
u∑
k=1

s∑
l=1

βk,lx(pk, t− l) (2.11)

where k represents a relative locations while l is the lag; the above αk,l and βk,l are coefficients

to be solved. The residual term is omitted here.

The solution of the coefficients in correlation-involved models is straightforward using

least-square regression. However, a careful selection of the auxiliary locations is important.

If the links can’t result in stable helpfulness in prediction, it would be better to discard the

link in the model. In Section 4.2.4, the parametric performance is illustrated.
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2.3 Hybrid Surrogate Model

To consider a general model that works for more than one applications, it is worth incorpo-

rating the factors as mentioned in previous sections into one resultant model that can better

represent the characteristics of the simulation data. Thereby, a hybrid surrogate model is

taken in to account.

2.3.1 Procedural Surrogate Modeling

While large-scale simulations mimic the behavior of complex systems, it is assumed that both

the response function and correlation-involved model can reflect a part of the characteristics

of data. Then, it is necessary to revisit the problem setting. Based on the description in

Section 2.2, one simulation is considered to be a function

{y(p1, t), y(p2, t), ..., y(ps, t)} ← F(Xn) (2.12)

When we only focus on one single point of interest pj, the response function model can

be constructed with a basis function system,

y(pj, t) = f(Xn, C, φ) + ε0 (2.13)

As a simulation model is considered to be noise free and thereby can be representable

by a specific form of function system, ε0 is not regarded as random effects but can be further
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interpreted. Thus, it is thereby assumed that ε0 results from: i) insufficient information is

obtained from the selected point of interest pj; and ii) the error from selected basis function

system (error in computation or coefficients). While ii) is solely attributed to the response

function modeling, i) can be alleviated by adding more information to the same model. So

it is necessary to embed both the response function and correlation-involved effects into

the same model. Because the response function is constructed independently from point to

point, it is regarded as the primary effect and the spatio-temporal correlation between points

of interest becomes the secondary effect.

Then, according to 2.2.2, spatio-temporal causal modeling can be applied on ε0

ε0(pj, t) =
u∑
k=1

s∑
l=1

ε0(pk, t− l) (2.14)

or

ε0(pj, t) =
u∑
k=1

ε0(pk, t) (2.15)

Eq. 2.14 suggests a typical model in the form of time series prediction as no concurrent

values are used in the predictors, while Eq. 2.15 sets the lag l as 0 as concurrent values.

Eq. 2.14 extends the capability of surrogate model as it can use real-time values from neigh-

bors to improve the quality of prediction. Different from response functions, the model that

Eq. 2.15 suggests would utilize historical data as a part of the model input, as offline sim-

ulations must be archived and remain available for the surrogate model. In contrast, for
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response functions, the model coefficients are obtained through training with historical data

and in the scenario of prediction, the surrogate can function with the model itself without

any additional data.

Putting the two procedures together, the resultant model is

yi(pj) = Fi(Xn, pj) = f1(X
n) + f2(y(p1), ..., y(pu)) + ε′ (2.16)

where f1 and f2 are referred to as the response function and correlation-involved model

respectively. The denotation of time, t, as discussed with different cases, is omitted to keep

the generality of the model.

This method is called procedural surrogate modeling as it specifies the primary and

secondary and models the effects in such an order.

2.3.2 Combining multiple results

The hybrid surrogate model is constructed with the two steps as described above, by differen-

tiating response function from correlation-involved model as primary and secondary effects.

However, there always exist multiple results based on the type of model, the model param-

eter setting, and the data used for model training. In this subsection, a general approach is

presented.

Suppose that there is multiple models m1, m2, ... ,mr (mk = fk(X
n, yp1...j), for

k ∈ 1, 2, ..., r) are trained using data sets from a pool of training data DT . Another set
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of validation data DV is available then for combination these results. The training and val-

idation data sets are substantially the same using the same simulation model (statistically,

they come from the same distribution), but may be localized to different regions of the gen-

eral distribution. While the test data, as the real prediction task, may have more similarity

with the validation data, it would lead to a combination in Eq. 2.17

f̄(Xn, yp1...u) =
r∑

k=1

bkmk (2.17)

where bk is the combining coefficient associated with the model mk. So, the optimal b1, ..., br

can be obtained using least-square regression:

{b1, ..., br}DV = arg min
b1...br

{
MV∑
k=1

[f̄(Xn, yp1...u)−F(Xn)]2} (2.18)

where MV is the size of validation data set (the number of simulations for validation).

2.4 Surrogate Detection with Statistical Inference

The approach to surrogate model construction from simulations is applicable for almost all

the simulations that output time series in a domain. However, a good surrogate model,

defined by the fitness and the variance across simulation samples, may not be found for

every simulation model, especially for those chaotic or the models that comprise random

effects themselves. In the statistical context, the task is to detect all the possible surrogate

models with a certain confidence level. Statistical inference based on surrogate modeling is
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discussed in the section.

2.4.1 Model Validation

A set of criteria and methods are described in order to validate the model. Other than

root mean square error or mean absolute error, coefficient of determination(R2) is used as a

measure of how well future outcomes are likely to be predicted the model, represented by

R2 = 1−
∑M

i (yi − fi)2∑M
i (yi − ȳ)2

(2.19)

Another factor that can impact model performance is model input representation. The

representation of parameter space {x1, x2, ...xn} is converted from the original input of the

simulation model, and it is worth noting that domain knowledge can help with setting up

a better representation to capture the characteristics of simulations. It would be important

in experiments that the designed simulations can cover a problem domain, although it may

not be clear a priori.

One way to test whether the designed simulations, as the training data of surrogate

models, cover the problem domain is to use cross-validation: randomly dividing the data into

several equivalent sets, and use most of them for training while leaving the rest for testing. A

good design, as well as a good model, should not be expected to have much variance among

different combinations of the data sets.
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2.4.2 Hypotheses and Reliability

The statistical hypothesis testing is embedded in the surrogate modeling process. As a

regression problem, the baseline hypothesis is that ”whether or not the surrogate model

can well fit the given simulation data” and then it comes to ”whether model A is better

than model B with statistical significance”. There are a few notes with regard to making

comparisons for model selection.

The value of R2 is not deterministic in judging the quality of model for the following

reasons: i) the value of R2 depends on the application. For instance, in some applications,

R2 = 0.9 is not good enough while in some cases, 0.7 is acceptable; ii) In the situation of

prediction, new data are fed to the model so there exists uncertainty in the performance.

That is also why it is desired to combine multiple results. However, when modeling using the

same approach, such criteria, including root mean square error, F ratio (as in the procedures

of granger test), and coefficient of determination, can provide model comparison.

For simulation models, another source of uncertainty comes from the error of simulation

model itself compared to the observational values. In terms of surrogate modeling, it is

assumed that a simulation is noise free and has a continuous domain in response to its

parameter space. However, surrogate modeling inducts a domain-specific simulation model

into a general framework of statistical modeling, so more approaches to data mining are

prospective in the future development.
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Chapter 3

Scalable and Automated Workflow for
Data-Oriented Modeling

In this chapter we illustrate our approach to addressing the following issues: i) how we impose

parallelism in the platform as the scale of the problem increases; ii) how we can establish

a generic framework that always facilitates the new types of surrogate models or patterns

without structural change in the code or algorithm, as well as the continuous increase in the

amount of data.

While the search space is rather large in two aspects: the range of geographic locations

and the representation of parameter space, the task-level parallelism also depends on the

workflow.

3.1 Scalability with Task-level Parallelism

3.1.1 Scalability: Task assembling

While a set of individual data mining tasks can be defined, such tasks, including the input

data required, are assembled before the algorithm execution. For example, for a given
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Figure 3.1: Scalability in mining hurricane simulation data. Left: Task assembling; Right:
Map-Reduce

parameter space representation, a response function is to be constructed for each point of

interest. So the time series of such locations are extracted and then aggregated. Thus, after

the data are prepared for each task, one task can be executed by a computing unit. This

scheme is suitable when independent tasks can be clearly defined (such as response function

construction).

3.1.2 Scalability: Map-Reduce

While MapReduce [24] is very efficient as a programming model in Hadoop distributed file

systems and other equivalents, the parallel scheme is general in processing large-scale data.

For our data mining tasks such as spatio-temporal causal modeling, the discovery of causal

links in one simulation is individually performed as the stage ”map”, while all the found links

are to be validated in the rest of simulations as the stage ”reduce”.Figure 3.1 illustrates the

execution under the two modes.
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3.2 Design Principle

The automated workflow includes three components involved in the entire process of data-

driven modeling: parallel simulation, distributed data archive and core data mining. Parallel

simulations provide the data source. However, a typical storm simulation using ADCIRC

outputs more than 20 GBytes of data (the computational grid used consists of more than 1

million nodes) for one individual simulation, which brings challenges to data management [29]

as simulations accumulate. So a distributed data archive can provide larger capacity for data

with the interoperability to the original simulation environment.

There are several challenges with regard to the implementation of the workflow. First,

the hierarchical parallelism is applied for better scalability: while the processing of each
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POI under one simulation is the unit of a task, there exist multiple POIs in one simulation

and the number of simulations keeps increasing. When the number of available computing

units is larger than the number of simulations and that of POIs, a task partitioner is used

to optimize the parallel performance; Second, the seamlessness between the data archive

and the platform of data processing is important. If the simulation bunch has to be simply

downloaded from the archive for analysis, that can slow down the workflow to a considerable

extent. PetaShare [30] under Louisiana Optical Network Initiative (LONI) provides the

capability of mounting and also allows users to attach programs on remote data centers [31].

3.3 Operational Automation and Workflow Extensibility

As for an automated workflow, we aim to ease the data mining operational procedures,

especially for writing additional codes or modifying parameters to incorporate the new data.

Moreover, data mining can be continuously performed in a distributed environment. The

user scenario can be described as follows:

A user continuously submits simulation jobs on a cluster with the simulation output data

archived to a distributed data archive right after the simulation is completed. Then, since

she wants to use the prepared data mining algorithms to construct the updated models with

new data involved, as well as validating the existing models stored in her working space, she

submits another job with the path of the desired new data in distributed archive listed. Then,

by mounting the archive (or getting the data) from the archive, the data mining tasks can be

performed with the information in the model base.
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Besides, extensibility is a criterion regarding the quality of the framework implemen-

tation here in order to continuously perform data mining with the increase of data and

the development of more models. Especially, an updated validation is important for exist-

ing models after new data become available. At the same time, new models can be built

from the enlarged database. The framework structure is presented in Figure 3.2, in which

each module is extensible and thereby a check is easily performed based on the dependency

between modules.

In the implementation, a simulation marker file is used to determine the addresses in

storage for the simulations that are to be used for modeling. When the simulation marker

files is read by the framework, the addresses are checked for the availability of data and

whether or not the data have been preprocessed. For new simulations that only raw data are

available in the addresses, the preprocessing is performed. Otherwise, the program directly

uses the processed file, which is friendly to data analysis codes or software. This means

that users only need to prepare a simple file to specify the data used for analysis, and then

the framework is able to handle the procedure of scalable data processing and then prepare

the data for user. In practice, the data preprocessing, such as extracting the time series of

points of interest from the raw simulation output file, is the most time consuming part. Once

the preprocessing has been done, user can construct any data set for modeling or analysis

purposes, with the automated functionality provided by the workflow.
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3.4 Challenges

In the scenario of surrogate modeling from storm surge simulation data, the huge amount of

simulation output presents the most significant challenge. The ADCIRC model outputs in

ASCII format and one simulation can take up more than 20 GBytes in storage as previously

mentioned, which makes the time taken for data preprocessing rather long. As the data

output itself is not that structural for database management, it is not easy to enhance

the efficiency, especially when the storage itself becomes an issue. When more and more

simulations are run, some of the raw data have to be removed in order to avoid excessive

hard drive usage. It is desired to use indexing or other techniques to speed up data access

and can be a part of the future work in this field.

The other challenge can be the cross-platform support of the framework. As the scal-

able data processing is needed, the prerequisite is that the programming language for data

processing itself supports scalable computing. In the experiments of the thesis, the surrogate

modeling part is written using R [25] for its abundant statistical libraries and ease of func-

tional programming, but parallel programming in R is awkward due to the limitation of the

R package itself. The improvement in framework implementation, with better compatibility,

can result from hybrid programming cross platforms. Thus, a better platform should be

used or designed with good scalability in terms of data-intensive operations.

In addition, from the general perspective of scalable data processing, many such jobs

have common or similar workflows. It is also desired to extract a generic workflow design

and result in a more robust and applicable framework.
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Chapter 4

Framework Implementation and Results

In this chapter, the implementation issues, as well as the experiment results are presented.

Starting from platform-specific enabling technologies, the design principle and workflow per-

formance are discussed with regard to the workflow. Then, a series of experiments with the

approaches to surrogate model construction are illustrated respectively.

4.1 Enabling Technologies

4.1.1 Louisiana Optical Network Initiative

As a resource provider of TeraGrid [26], the Louisiana Optical Network Initiative (LONI) [27]

is a state-of-the-art, fiber optics network connecting large scale computer servers across

Louisiana. LONI connects Louisiana and Mississippi research universities to one another as

well as to the National Lambda Rail and Internet2. Usually, we request 32-128 processors

to run each simulation job. When 128 processors are allocated, it takes about 15 hours to

finish a simulation of a 5-day hurricane activity. In fact, it is usually the case that we need

to submit more than 10 jobs simultaneously for the purpose of analysis.
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4.1.2 PetaShare

PetaShare [28] is a distributed data archival, analysis and visualization cyberinfrastructure

for data-intensive collaborative research. More specifically, PetaShare provides a data center

that stores all the simulation data with interfaces for users to access and perform operations

on the data. PetaShare is currently deployed at seven Louisiana campuses. Users can perform

basic data operations, such as uploading and downloading, via either a set of commands or

a web portal.

Each hurricane simulation usually produces useful data with more than 20 GBytes of

disk space. Some applications however can utilize the simulation values at a few locations

instead of downloading all the data. PetaShare enables this operation by mounting its

available resources to the users’ machines via Petafs commands. After mounting, users can

run their own analytical models on LONI machines with PetaShare data. In particular, since

each simulation covers the entire domain of the Gulf of Mexico, we frequently extract data

for a few geographic locations from the simulations stored in PetaShare in order to perform

analyses.

4.1.3 Workflow Performance

As mentioned above, extracting multiple points of interest out of millions of nodes in the

mesh is time consuming, so a task partitioner can match the distribution of subtasks with

the available computing resources. We present a preliminary strong scaling analysis for our
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Figure 4.1: the strong scaling analysis for data processing

automated and scalable processing pipeline in Figure 4.3, with 4 selected simulations and

15 POIs in each corresponding to the tide gage stations in Louisiana. Thus, there are 60

sub-tasks for scaling.

4.2 Experiment Results

We present our current results with regard to mining severe-storm simulation data and the

scalability in high-performance data processing.

4.2.1 Simulation Experiment Design

: In the scenario of storm surge prediction, we use ADCIRC model and both the wind and

surge profiles are available through the storm surge simulation outputs. It is straightforward
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Figure 4.2: Two hurricane track representations in simulation design (using Google Earth)

that the wind velocity at one point of interest has strong correlation to the level of surge

height. However, it is not known how strong the correlation is between these two variables,

as well as whether the storm surge height, which would directly impact decision makers

regarding evacuation in hurricanes.

We use 25 storm surge simulations of hypothetical hurricane tracks. There are 5 landfall

locations with 5 different track angles for each location. And then, the storm surge time

series are extracted from the 15 POIs in Louisiana, corresponding to 15 tide gage stations.

The 25 simulations cover almost all the possibilities of the track variation given the designed

trajectory (currently as straightline). The track variation at one location is shown in the left

of Figure 4.2. In Section 4.2.3, the right in the figure is used.
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Figure 4.3: Maximum storm surge prediction as scalar response using neural networks

4.2.2 Surrogate models for scalar response

While the task is to predict the maximum storm surge height at a specific location with

response to the simulation input, neural networks are used to make the prediction for each

location respectively. In the spirit of cross-validation, 20 random runs are performed for

a given number of simulations as training data while the rest is used for prediction. The

number of simulations for prediction ranges from 1 to 7. The results are shown in Figure 4.3

It is clear to see the spatial heterogeneity, which means that at different locations the

surge response would be different. In Grand Isle, the storm surge height is relatively easy to

predict. The cause is due to the geometry and the direction of hurricane wind field.
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Figure 4.4: Storm surge time-series analysis as functional response (circled: simulation;
dotted: surrogate)

4.2.3 Surrogate models for functional response: time series anal-

ysis for storm surge

Then, time series analysis is performed with the storm surge simulation data as shown

in Figure. 4.4. The illustrated two figures are picked from all the 15 locations to show the

simulated storm surge profile and the output of the surrogate model.

4.2.4 Correlation-Involved Models

4.2.4.1 Correlation-Based Scalar Response

With the additional data of wind velocity profile from simulation outputs, the surrogate

model is improved for each location to get the maximum storm surge height. Table 4.1

shows the coefficient of determination (R2) and F-ratio at selected locations.
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Table 4.1: Using wind-surge correlation to model the scalar response

Location R2 F-ratio(18,9)

Carrollton 0.9661 14.272

New Canal 0.9279 6.441

Grand Isle 0.9679 15.116

Cypremont 0.9937 12.038

With a significant correlation between maximum storm surge height and wind velocity

profile, the model can be potentially used for the storm surge forecasting with the input of

wind field in the occurrence of a new hurricane, as the wind model is computationally much

cheaper than the surge model.

4.2.4.2 Spatio-Temporal Causal Link

The spatio-temporal causal links over the 25 storm surge simulations, with a confidence level

above 85%, are shown in Figure 4.5.
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Figure 4.5: Spatial-temporal causal links in the simulations (with Google Earth)
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Chapter 5

Summary, Conclusions and Recommen-
dations

In this thesis, we present the methodology of surrogate model detection and construction as

well as a scalable and automated workflow along with the methods that we use at the current

stage to mining severe-storm simulation data. The workflow efficiency and the experiment

results using the surrogate modeling approach have been shown with the application of storm

surge prediction during hurricanes. Different types of data-oriented models reflect multiple

implicit factors hidden in the simulation data and a statistical framework is proposed to

validate such models.

Based on the surrogate modeling, an automated and scalable workflow is proposed in

order to efficiently process the simulation data. Considering the simulation data involved in

many applications are with large scale, the task-level parallelism in data processing is de-

scribed and implemented in the framework. The framework structure is presented with user

scenarios. Some considerations with regard to system design principle and framework im-

plementations are also discussed as a general guideline for data-intensive computing systems

and applications [32].
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Based on the experiment results shown in the thesis, the following conclusions can

be drawn: i) Lightweight surrogate models based on the scalar and functional response of

simulations to its parameter space can help with making predictions in a significantly shorter

time than running simulations themselves; ii) In large-scale simulations with the value of

multiple points of interest available, the spatio-temporal correlation can lead to correlation-

involved models that alleviate the error in response functions due to the dynamics of physical

model and such models can be used along with response functions as a hybrid model. For the

future development on both the modeling and framework sides, a set of recommendations

are listed.

In an engineering point of view, the data mining process goes with the size of the

simulation data archive keeping enlarged. So the problem scale, or the search space, would

tremendously increase for a better confidence level in prediction, making scalable computing

and convenient manipulation necessary. For example, when hundreds and thousands of

simulations become available, it would cover tens of parameter space representations and

thereby possibly hundreds of data mining subtasks at the same time. We have given a careful

consideration to the extensibility and capacity for operations on a distributed environment.

Besides, another direction is to construct a general workflow system with regard to scalable

data processing and analytics.

As for the modeling approach itself, there exists space for refining the existing models

and reducing the uncertainty. Especially, when it proceeds to the real-time forecasting with

the input of observational data, more data mining techniques are to be incorporated in the
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model. The current results have been shown potential for the application in engineering and

decision making.

In specifics, the following points can be followed as future work.

• A new programming model, or design pattern, can be used for the framework for

better scalability, including incorporating the R statistical programming into C++ for

robustness and using Hadoop for parallel processing.

• A general abstract interface can be proposed for more types of simulations and it can

result in a generic workflow or framework. Then the surrogate modeling methods can

also be used in a broader context.

• More recent achievements in machine learning and data mining, such as Gaussian

processes, can be used to elaborate the surrogate modeling approaches.

Furthermore, as the goal of surrogate modeling also includes bridging the gap between

simulation and sensor data in terms of real-time forecasting. New models are desired to

boost simulations to make them more accurate. While simulations are still used as the

primary way in prediction in various real-world applications, there exist lots of potential in

this direction.
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