
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2012

Design and analysis of peer 2 peer operating system
Anudeep Meka
Louisiana State University and Agricultural and Mechanical College, ameka3@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Meka, Anudeep, "Design and analysis of peer 2 peer operating system" (2012). LSU Master's Theses. 3318.
https://digitalcommons.lsu.edu/gradschool_theses/3318

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3318?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


DESIGN AND ANALYSIS OF PEER 2 PEER 
OPERATING SYSTEM 

 
 
 
 
 
 
 
 
 

 A Thesis 
 
 

Submitted to the Graduate Faculty of the Louisiana 
State University and Agricultural and Mechanical 

College 
in partial fulfillment of the 

requirements for the degree of 
Master of Science in Systems Science 

In 
The Interdepartmental Program in 
The Department of Computer Science 

 
 
 
 
 
 
 
 
 
 
 
 
 

By 
                                                Anudeep. Meka 
   B. E., Maharaj Vijayaram Gajapathi Raj College of Engineering, Jawaharlal Nehru 
                                      Technological University  2010 
                                              Vizianagaram, India 
                                                                         May  2012. 
 
 
 
 



ii 

 

ACKNOWLEDGEMENTS 
 
 

I am very grateful to my advisor Dr. Supratik Mukhopadhyay for his guidance, patience and 

understanding throughout this work. His suggestions, discussions and constant encouragement 

have helped me to get a deep insight in my thesis work. I would like to thank Dr. Jianhua Chen, 

Dr. Konstantin Busch and Dr Jian Zhang for sparing their time to be a part of my thesis advisory 

committee. 

Also I am very thankful to Department of Computer Science. Also I’m very thankful to the scalaris 

developer’s team who helped me a lot in my work. I’m also very thankful to my friend Bharadwaj 

and Nutan who helped me. I am very much thankful to my friends. 

I wish to endow my earnest gratitude to my parents, who believed in me and have been thorough 

all the rough times. I also want to thank my entire family and friends for their affection, support 

and compassion. 



iii 

 

TABLE OF CONTENTS 
 
 
 

Acknowledgements…………………………………………………..…ii 
 

Abstract …………………………………………………………….…..iv 
 

1. Introduction ……………………………………………………….…1 
 

2. Motivation For Doing Thesis Under This Area……………………....2 
 

3. Differentiation With Related Work…………………………………...4 
 

4. Architecture Of PPOS…......................................................................6 
 

5. Distributed Hash Tables [8]………………………………………….10 
 

6. Scalaris………………………………………………………………13 
 

7. Virtual Machine……………………………………………………..16 
 

8. Algorithms And Analysis…………………………………………...20 
 

9. Experimental Results And Performance Analysis…………………......36 
 

10. Conclusions………………………………………………………...40 
 

References………………………………………………………………41 
 

Vita……………………………………………………………………...42 



iv 

 

ABSTRACT 
 
 

The peer to peer computing paradigm has become a popular paradigm for deploying distributed 

applications. Examples: Kadmelia, Chord, Skype, Kazaa, Big Table. Multiagent systems  have 

become a dominant paradigm within AI for deploying reasoning and analytics applications. Such 

applications are compute-intensive. 

In disadvantaged networks the ad-hoc architecture is the most suitable one. Examples: military 

scenarios, disaster scenarios. 

We combine the paradigms of peer-to-peer computing, multiagent systems, cloud computing, 

and ad-hoc networks to create the new paradigm of ad-hoc peer-to-peer mobile agent cloud 

(APMA cloud) that can provide the computing power of a cloud in “disadvantaged” regions 

(e.g., through RF using a router or GPRS) 

– To this end we have designed and implemented a peer to peer operating system – 

PPOS that can leverage the computing power of such a cloud. 



1  

1. INTRODUCTION 
 
 

Chapter1 includes the introduction which gives the overview of the entire thesis. Chapter 2 gives 

a description of the motivating part which is responsible for the development of the thesis. This 

chapter also explains the prior technologies also. It gives a brief overview of the structured peer 

to peer networks and also unstructured Peer to peer networks. Through this one can understand 

why there is a need for the design of new peer to peer OS. 

Chapter3 gives the details of the differentiation with related work. Chapter4 gives the 

architecture of PPOS. Chapter 5 is all about the Distributed hash tables in detail. The distributed 

hash tables are very important because the operating system is based on the distributed key 

Value pair .Chapter 6 deals about the scalaris. Chapter 7 is about the Virtual machine. Chapter 8 is 

about algorithms. Chapter 9 deals with the Experimental results compared with different operating 

systems. It follows with vita and references. 



2  

2. MOTIVATION FOR DOING THESIS UNDER THIS AREA. 
 
 

2.1 INTRODUCTION 
 

Cloud computing and multiprocessing are emerging computing paradigms that enable an average 

user to access unprecedented computing capacity. A cloud data center is a conglomeration of 

loosely–coupled  servers  together  with  management  and  application  software  that  delivers 

software, platform, and infrastructure  as services to clients. 

To effectively leverage the computing power of a cloud, we need an operating system and a 

virtualization layer that interfaces between the user and the infrastructure. A cloud datacenter is 

usually centrally managed. Conventional clouds can be private, public, community, or hybrid. A 

cloud needs to be adaptable   to dynamic load through elasticity. 

The peer to peer computing paradigm has become a popular paradigm for deploying distributed 

applications. Examples: Kadmelia, Chord, Skype, Kazaa, Big Table. Multi agent systems have 

become a dominant paradigm within AI for deploying reasoning and analytics applications. Such 

applications are compute-intensive. 

In disadvantaged networks the ad-hoc architecture is the most suitable one. Examples: military 

scenarios, disaster scenarios. We combine the paradigms of peer-to-peer computing, multi agent 

systems, cloud computing, and ad-hoc networks to create the new paradigm of ad-hoc peer-to- 

peer mobile agent cloud (APMA cloud) that can provide the computing power of a cloud in 

“disadvantaged” regions (e.g., through RF using a router or GPRS).To This end we have designed 

PPOS that can leverage the computing power of a cloud. 

The figure1 shows that the motivations behind the work. In disastrous environment in order to 

run high performance video analytics we need to have access to a cloud. So we can create a 

cloud by means of this setup and can still run the high performance video analytics in disastrous 



3  

environments where don’t have to access to clouds like Microsoft azure and Amazon EC2. 

Large industrial giants like Microsoft and Amazon provide cloud services to people 

according to their requirements. The requirements for a project might change whenever the 

user wants to change. But the cloud requirements are not subject to change due to the 

Constraints imposed by the industrial giants. 
 
 
 
 

 
 

 
Figure1: Motivations For Doing Thesis Under This Area. 



4  

3. DIFFERENTIATION WITH RELATED WORK 
 
 
Conventional grids [1] are managed centrally; they do not operate on disadvantaged 

network with nodes running agents communicating among one another; they provide a 

single point of failure: that of the management infrastructure. 

Peer-to-peer grids like jalapeno [2] do not operate on disadvantaged ad-hoc mobile networks. 

Our architecture is asynchronous loosely coupled one. We provide an eventually consistent 

view of a single machine with a Unix-like interface and provide the user with a single 

agent-oriented programming model. 
 

 
Rather than a shared memory model we use a Linda-like tuple space [3] in the form of a 

distributed global address space (DGAS). 

PPOS concurrency semantics allows the dataflow [4] model of  deterministic parallelism. 

The agent-oriented model of PPOS allows transactions: a computation can be split into 

transactions with each transaction executing on a location that also contains the required 

data. PPOS implements locks for mutually exclusive access of data. It has access control 

for managing use of resources and flow of information. 

FOS [5] from MIT is a scalable operating system for multicore machines and clouds .As 

opposed to synchronous message passing model of FOS, PPOS Message-passing model is 

asynchronous; asynchrony helps improve Scalability. Fault-tolerance: as long as more than 

50% of the nodes in the network are up, PPOS provides an eventually consistent view of a 

single machine. Partition-tolerance: PPOS is able to operate in disadvantaged networks 

where there are frequent network partitions. Elasticity: Within PPOS there is a group 

communication system that manages (eventual) consistency under agents joining and 



5  

leaving the network. As nodes leave and join, the system stabilizes to an eventually 

consistent state. This enables the system to be elastic while providing the user with the view 

of a single machine. Uniformity of time:  Through an implementation of Mattern’s global 

virtual time algorithm PPOS provides a uniform notion of time across the network. 

VMware [6] provides a completely virtualized set of hardware to the operating system but it 

is limited by elasticity constraint and does not provide a single machine view with a uniform 

programming model to the user  as opposed to PPOS. 

Xtreem OS [7] is a grid operating system which involves the workloads which are 

non-interacting whereas PPOS is an agent based operating system where we can find 

the agents interacting with each other to complete the high performance computing. 



6  

4. ARCHITECTURE OF PPOS 
 
 

4.1 APMA CLOUD ARCHITECTURE 
 
 

Heterogeneous mobile devices communicate among each other (peer-to-peer) asynchronously 

through a distributed transactional key-value store Scalaris. Agents run on virtual machines 

deployed on these devices executing tasks. The PPOS operating system manages execution of 

agents on the APMA cloud controlling access to resources and providing the user with the view of 

a single eventually consistent machine and a single programming model. Devices can join and 

leave the cloud at any time. 

 
 
 

Figure2: The Apma Cloud Architecture 



7  

PPOS partitions tasks into agents that run on peer machines. Partitioning can be temporal as well as 

spatial. Agents can asynchronously communicate among each other . An agent schedules these 

agents on different machines. Currently, scheduling is based on heuristics and metadata Agents are 

both publishers and subscribers in contrast with the traditional client server model where servers 

produce and clients consume. 

4.2 PPOS DESIGN PRINCIPLES 
 
 

Agents implement tasks and run on virtual machines deployed on the hosts of the network. 

Multiple virtual machines can be tied to a single device. PPOS allows agents to migrate while 

execution from one host to another. PPOS allows hot swapping of one agent with another at 

runtime. 

Agents communicate peer-to-peer asynchronously through the distributed transactional storage 

Scalaris. A group communication system within PPOS manages agent communication. Agent 

deployment and execution is managed by PPOS. 

PPOS provide the user with the view of a single eventually consistent machine with a single file 

system and a single programming model and a Unix-like interface PPOS provides tolerance to 

network partitions and faults and controls access to resources PPOS allows interaction with the 

native operating systems of the hosts. 

4.3 PPOS ARCHITECTURE DESCRIPTION 
 
 

Users interact with PPOS through the microkernel scheduling and deploying tasks and accessing 

resources. The microkernel itself is a set of agents that are replicated on each host. Operating 

system  services  like  file  services,  deploying  and  unloading  agents,  measurements,  etc.,  are 

provided by a set of agents. 



8  

The interface between the users and the kernel constitutes of Unix-like commands, compilers and 

interpreters, and system libraries. System libraries consist of agent byte codes that implement 

certain functionalities. 

The microkernel agents and the deployed agents communicate with each other through the Scalaris 

distributed key-value store.  The kernel agents ensure that a snapshot of the state of the system is 

always stored in Scalaris. The Paxos algorithm maintains eventual consistency even in case of 

faults and network partitions. 

4.4 UNDERLYING TECHNOLOGIES 
 
 

• A Java-based implementation on the top of the Scalaris distributed key-value store. 
 
 

• The PPOS virtual machine is built on the top of the Java Virtual Machine 
 
 

• User can interact with PPOS through the PPOS shell console. 
 
 

4.5 PAXOS AND EVENTUAL CONSISTENCY 
 
 

Brewers CAP theorem states that it is impossible for a distributed computing system to provide 

Consistency,  Availability,  and  Partition-tolerance  at  the  same  time  we  settle  for  eventual 

consistency while maintaining availability and partition-tolerance. Paxos is a family of protocols 

for solving the consensus problem in network of unreliable processors. It can make progress using 

2f+1 processers even if ‘f’ processers fail among the group simultaneously. PAXOS has the 

following the roles for processors to eventually carry out a task. They are client, acceptor, proposer, 

learner, and leader. 



9  

 
 
 

Figure3: Ppos Architecture 



10  

5. DISTRIBUTED HASH TABLES [8] 
 

5.1 INTRODUCTION [8] 
 
 
 

In our thesis we are mostly concerned about the distributed has tables because they deal with the 

Structured peer to peer networks .A distributed hash table (DHT)[8] is a reliable, scalable, wide  

area Data storage system that gives relief to programmers from many of applications of building 

a Complicated distributed system. DHTs store blocks of data on hundreds or thousands of 

Machines connected to the Internets, replicate the data for reliability, and quickly locate data. 

Despite running over high latency, wide area links. The DHT [8] addresses problems of locating 

Data and replicating it for exactness. 

DHT [8] provides a generic interface, which makes it easy for a wide variety of applications to 

adopt DHT [8]s as a storage substrate: put stores data in the system under a key; get retrieves 

the data. The key value pairs are stored in the DHT [8] and any participating node can 

efficiently retrieve the value Associated with a given key.  The mapping from keys to values is 

distributed among the nodes, in such a Way that a change in the set of participants causes a 

minimal amount of disruption. This allows DHT [8]s to scale to extremely large numbers of 

nodes and to handle continual node arrivals, departures, and failures. 

Distributed hash tables [8] have the following properties: 
 

1. Decentralization: there is no central coordination among the nodes and all the nodes form the 

system collectively. 

2. Fault tolerance: The system must not lose the reliability with the nodes joining the system or 

leaving the system. . 

3. Scalability: the system should function in spite of thousands of nodes and millions of 



11  

nodes added to the system. 
 

5.2 STRUCTURE OF DISTRIBUTED HASH TABLES [8] 
 

The structure of distributed hash tables uses key space portioning. The key space portioning 

gives the ownership of key space to all nodes. The nodes are connected by means of the overlay 

Network allowing finding the owner of any given key among the key space. Suppose if the key 

space consists of 160 bit strings and to store a file with given file name and its Data a 160 bit 

key is generated160-bit key k, and a Message put (k, data) is sent to any node participating in 

the DHT. The message is moved from one node to another through the overlay network until it 

reaches the single node responsible for key k as specified by the key space partitioning. That 

node then stores the key and the data. Any other client can then get the contents of the file by 

again Hashing filename to produce k and querying any DHT node to find the data associated 

with k with a Message gets (k). 

5.3 OVERLAY NETWORK [8]: 
 

Each node maintains a set of links to all other nodes. Each node forms its neighbors according to 

the Network topology and all the nodes form the network. For any key k, each node either has a 

node ID that owns k or has a link to a node whose node ID is closer to k, in terms of the key 

space distance defined above. It is then easy to route a message to the owner of any key k using 

the following the greedy Algorithm, forward the message to the neighbor whose ID is closest to 

k. When there is no such neighbor, then we must have arrived at the closest node, which is the 

owner of k as defined above. This is called the key based routing. The two important constraints 

on the topology that are to be maintained are maximum number of hops in any network must be 

low so that requests complete quickly and the maximum number of neighbors on any node is 

low so that maintenance over head is not excessive. 



12  

5.4 ALGORITHMS FOR OVERLAY NETWORK [8] 
 

There  are  many algorithms that  exploit  the  structure of the  overlay  network  for  sending a 

message to all nodes, or a subset of nodes, in a DHT [8]. 



13  

6. SCALARIS 
 

6.1 INTRODUCTION 
 
 

Scalaris [9] is a distributed key-value store for the large scale Web 2.0 services, implemented 

in Erlang programming language .It is concurrent and garbage collected programming language. 

Scalaris implements the four ACID  properties which are very much  required  in  a 

distributed environment. It has the high capability of transactional support for data consistency in 

case of concurrent data operations and node failures and also the network problems. 

Major e commerce firms require highly concurrent access to distributed data and the high end 

operations must be done in real quick and it should be concurrent. Scalaris is capable of scaling 

to ‘n’ number of systems which supports consistent replication and fast transactions even in case 

of a system failure. No computer is neither a client nor a server, any data is available across 

multiple systems and transactions can be initiated through key value pair mechanism. Every node 

acts as a peer to another node in the system and new nodes can be scaled from few servers to 

thousands of them without any disruption. New nodes can be added  or  deleted  without 

disturbing  the  transactions. In  Scalaris if certain number of connected each other they are 

called as the Scalaris ring .Each node in the ring is recognized by the other node using the 

computer name. We provide each computer names in the properties file namely Scalaris. 

Properties which uses this file to recognize the nodes to make the transactions. 

6.2 ARCHITECUTREOF SCALARIS 
The architecture consists of 3 layers [9]. They are – 



14  

 
 
 
 

Source: portal.acm.org/ft_gateway.cfm?id=1411280&type=pdf 
 
 
P2P layer – The key-value pairs in the nodes in the scalaris ring can be retrieved using the 

structured overlay protocol in the bottom layer. The keys are stored in lexographical order. 

This gives the advantage of writing different type of queries. 

Replication layer - This is the layer which takes care of the replication of the nodes in a ring. 

This is responsible for  adding the nodes from ‘1’ to ‘n’ in a Scalaris ring without interrupting 

the service performance and it implements the ACID properties which are very necessary for the 

concurrent write operations. This layer also uses a consensus protocol called “paxos” which is 

required for the low communication overhead. This is for implementing fault-tolerant distributed 

databases. 

Transaction layer - This is the top layer which actually hosts the applications like Web 2.0 and 

also manages the transactions across the multiple nodes in a ring. This can be used for these- 

commerce applications like online shopping, banking and data sharing. 



15  

 
The main advantage of Scalaris is that it provides 

 
 
 

1. Reliable transactions 
 
 

2. Consistency 
 
 

3. Implements ACID properties 
 
 

4. Scalability 
 
 

5. Data replication 
 
 

6. Fault tolerance 
 
 

7. Data distribution 
 

6.3 SCALARIS AND ERLANG 
 
 
 

The main advantage of using Erlang is its usage of concurrency and it develops the process to 

write an Erlang application which is used by powerful primitives. Another   advantage of Erlang 

is the way concurrency supports the error handling. When a process crashes abruptly,  it  sends  a 

message to  the  main  controlling process  which  is capable of taking the actions. So because of 

this error handling there is a fault tolerance complexion of the code. 



16  

7. VIRTUAL MACHINE 
 
 

7.1 INTRODUCTION: 
 
 

A computer application which is used to create a virtual environment refers to a process called 

virtualization [10].  It allows the user  to  see the network  infrastructure through aggregation 

process. If a user wants to operate the software located on any computer then he could use a 

virtual machine. Through this process of virtualization there is a possibility of running multiple 

operating systems on single computer platform. 

7.2 KINDS [10] 
 

The virtual machines [10] are of different kinds. But the term mostly used to refer to a hardware 

virtual machines software is called as virtual machine monitor. It is also called a hypervisor. This 

type of software makes it possible for running multiple identical executions on one computer. 

Any one of these executions would run as an operating system. Through this one could run 

multiple applications on different operating systems. The main advantage offered by the virtual 

machine software is that the users could boot and restart their machines as hardware init ialization 

is not required. Virtual machine [10] is a kind of personal machine with all the required functional 

hardware different from the original machine. 

7.2.1SYSTEM VIRTUAL MACHINE [10]: 
 
  Multiple OS environments can co-exist on the same computer, in strong isolation from 

each other. 

  The virtual machine can provide instruction set architecture (ISA) that is somewhat different 

from that of the real machine. 

 
    Application provisioning, maintenance, high availability and disaster recovery. 



17  

The desire to run multiple operating systems was the original motivation for virtual machines, as it 

allowed time-sharing a single computer between several single-tasking Operation Systems. In 

some respects, a system virtual machine [10] can be considered a generalization of the concept 

virtual memory [10] that historically preceded it. IBM's CP/IMS, the first systems to allow full 

virtualization [10], implemented time sharing by providing each user with a single-user operating 

system, the CMS. 

 

Unlike  virtual  memory [10],  a  system  virtual  machine  allowed  the  user  to  use  privileged 

instructions in their code. This approach had certain advantages, for instance it allowed users to 

add input/output devices not allowed by the standard system. 

 

The main intention of designing a virtual machine is that to run several operating systems on a 

single  machine.  .It  allows sharing a  single  machine between several single tasked  operating 

systems .It saves a lot of time as it allows time sharing. The concept of virtual machine [10] takes 

its roots from the concept of virtual memory. 

 

Systems allow full virtualization [10] by providing each user a single user operating system. 

Unlike virtual memory virtual machine allows the user to use their own instructions in their code. 

This makes it feasible for the users to add any input and output devices which are generally not 

allowed by the standard system. 

 

The guest operating system whatever installed does not have to be compatible with hardware. It 

makes it possible to run different operating system on same computer. The use of virtual machine 

[10] to support different guest operating systems is being popular in embedded Systems. A typical 

use would be to support a real time operating system at the same time as a high level OS such as 

Linux or windows. Virtual machines offer other advantages for OS development which includes 



18  

debugging access and reboots. 
 
 

7.2.2. PROCESS VIRTUAL MACHINE [10] 
 

An application virtual machine such as a process virtual machine [10] runs like an ordinary 

application inside the host OS and supports only a single process. The main feature of this kind 

of application   is that it’s created when the process starts and terminates when it exits. The 

purpose is mainly to provide a programming environment that is free from any platform and 

extracts the details of the operating system beneath it or the hardware. It allows the program to 

execute in the same way on any platform. 

A  process  VM  [10]  provides  a  high  level  abstraction  and  can  be  implemented  using  an 

interpreter. Concerned with performance, it is comparable with that of compiled programming 

languages and can be achieved by the use of just in time compilation. 

This type of VM [10] became popular with Java programming language. This can be 

implemented by means of Java virtual machine. Other examples include Parrot virtual machine 

which serves as an abstraction layer for several interpreted languages which run on a VM [10] 

called common language runtime. 

A specific case of a process virtual machine [10] is that it is abstract with the Communication 

mechanisms of a computer cluster. In this virtual machine there is no single process, but one 

process per machine in the cluster. They are basically designed to reduce the labor of the 

Programmer in creating parallel applications by letting him concentrate on algorithms rather than 

communication schema with the interconnect and the OS. The fact that the communication 

among these machines in a cluster is not hidden and the entire cluster is represented as a single 

parallel machine. 

Unlike other process VM [10]’s these systems don’t have a specific programming language. 



19  

They are embedded in existing language and provide binding for several languages. Typically 

such a system provides links for several programming language. Examples are parallel virtual 

machine and message passing interface, they can be considered. 



20  

8. ALGORITHMS AND ANALYSIS 
 
 

8.1 LS COMMAND 
 

The purpose of this command is to display the contents of the directory. The ls command writes 

to the output the contents of the directory. We have written an algorithm to display the contents 

of the directory. 

The LS algorithm has been used to retrieve the list of the files using the command LS. We will 

retrieve all the files corresponding to the directory. The owner of the file will be one who has 

uploaded that. The algorithm will traverse the list for all entries which are owned by particular 

owner. We will obtain the list of all the entries owned by different owners. We kept all these 

elements in a new list called output and we sorted the output according to the alphabetical order 

and printed the output. 

Ls command requires us to upload the files to the scalaris before we could retrieve them. 

Different files of different sizes have been uploaded. The file sizes were namely 25mb, 1mb, 

2mb, 699mb… 
 

We must be able to retrieve the information available with these files as per our algorithm. In our 

cloud  of two  computers  we  have  uploaded the  files  even  from the  second  computer.  The 

screenshot corresponding to that particular files upload has been kept in the following pages for 

reference. 

The figure 5 shows the list of the files uploaded from one pc and the second figure shows the 

list of files uploaded from the second pc. 

8.1.1 LS ALGORITHM 
 

1.  Initially a key in Scalaris called dir., is created which represents the root folder /. 
 

The value associated with this key are the top level files/folders contained in the 



21  

root. 
 

1.  Corresponding to each folder is a key whose value represents the top level 

files/folders contained in that folder 

2.  This  value  is  associated  with  this  key  is  formed  by  concatenating the 

files/folders  along  with  the  computer  names  using  an  operator @  for 

separation and  other attributes as  they  are  created/modified including a 

special binary attribute file/folder. 

2.  Traverse the tree and print the list of nodes using split to separate the nodes at a 

particular level of the tree. 

3.  Sort the files according to alphabetical order and display the results. 
 
 
 

 
 

Figure4: Snapshot with Write Blob. 
 

We obtained the above output on both the computers in our cloud. The output was same on both 

the computers. We made further improvements to our LS command and obtained the list of the 

files corresponding to a particular letter and particular folder. The figures 5 and 6 show us the 

output. 



22  

In the figure7 we can observe that the list of the files starting with a, r and also the list of all files. 
 

8.2 MKDIR COMMAND 
 

8.2.1 MKDIR ALGORITHM 
 

1) Check for existing folder with name provided. 
 

2) If not exists create a folder with name provided. 
 

Mkdir checks the name for existing folder .If there is no existing folder with the name provided 

then it creates a new folder with the name. 

8.3 CP COMMAND 
 

The cp command copies the source file specified by the Source. 

File parameter to the destination file specified by the Target. 

File parameter. If the target file exists, CP overwrites the contents, but the mode, owner, and 

group associated with it are not changed. 

8.3.1 CP ALGORITHM 
 

1) Check for file exists. Throw error if file not exists. 
 

2) Check for folder exists. Throw error if folder not exists. 
 

3) Copy file from one folder to other folder provided. 
 

The CP command checks for whether the file exists. If the file does not exist, then it would result 

in and error. Then it would check for whether the folder exists .The folder is nothing but the folder 

which is created using MKDIR command. The CP command copies the file from one folder to 

another folder provided. 

We implemented two types of copy. 
 
 
 

1. Physical copy 
 

2. Logical copy 



23  

1. Physical copy: This kind of copy what we have implanted copies the files from one machine to 

another machine in the cloud. This has taken considerably long time for us to copy a 2 GB file 

from one machine to another machine on the cloud. The copy of the file has taken place when both 

the computers are connected to a same network. We were able to access the file on other desktop 

also. 

2. Logical copy: This includes copying the files uploaded from the desktop to scalaris  and 

copying from one virtual directory to another directory. In the above screen shot we were able to 

move the contents of the directory meka to one more directory chettu. This is called logical copy. 

Logical copy did not take us much time because everything that was moved was moving logical 

from one virtual folder to another virtual folder. 

8.3.2CP TECHNIQUE: 
 

• The syntax of cp is 
 

– Cp source folder/file destination folder/file1. 
 

1. We use source folder name and the destination folder name as the two keys. 
 

2. Using the key corresponding to the source folder name we can get the list of the files and 

split the files accordingly as described in LS algorithm and search for the file specified in 

the  source.  If the  file  exists,  its  name  is  concatenated  to  the  value  specified  by the 

destination folder key. 

3. Through this we can get the file copied from one folder to another folder.  If the file 

doesn’t exist on source folder the console will throw an error. 

4. If the file gets copied from the source folder to the destination folder then it displays a 

message “FILE COPIED”. 

8.4 RM COMMAND 
 

This  command  is  used  to  remove  the  contents  from  a  specified  directory.  The  following 

algorithm has been used to remove the contents of the directory. 



24  

8.4.1 RM ALGORITHM 
 
1) Check for file exists. Throw error if file not exists. 

 
2) Check if permissions available to delete. If not throw error. 

 
3) Delete file from the folder. 

 
The RM command checks for whether the file exists. It will throw and error if the file doesn’t 

exist. The command will also check if the permissions are available for the particular folder to 

delete. If not it will throw an error. We set the permissions in such a way like that the files which 

were created and uploaded from the owner PC will only be able to remove the files. If we try to 

remove the files from any other PC, it will result in permission being denied. 

8.4.2 RM TECHNIQUE 
 

The syntax for rm algorithm is –rm folder/file. 
 

1. The rm algorithm works on the fact that the folder (that is the key) has been given 

and corresponding file associated with file is also given (if a file needs to be deleted). 

2. The list of the files associated with that particular key can be obtained and we will 

search for the file that has to be removed. 

3. The files are always associated with its owner that is the host name from which was 

originally taken from. 

4. If the file found with the associated computer name is different from the host 

machine’s name then the file cannot be removed and it displays a message 

“PERMISSION DENIED”. 

5. If the file found with the associated computer name is same as that of the host 

machine name then the file can be removed as the owner himself is removing the file. 

6. If the file is not found at all then the console will throw an error. 



25  

8.5 LOADING AGENTS 
 

Agent code is stored an agent repository. A microkernel load manager agent downloads the byte 

code from the server and stores it in Scalaris. It determines on which core the agent will run on 

based on user-provided metadata or using heuristics. Through Scalaris it communicates with the 

agent loader of the corresponding machine instructing it to load the agent whose code is available 

under a particular key in Scalaris. The agent loader of the target machine loads the agent on that 

machine and updates a list of loaded agents maintained under a key in Scalaris. 

 
8.5.1 UNLOADING AGENTS 

 
Click the icon corresponding to agents in the java applet window and it will 

 
correspondingly remove the agents in PS. The agent unloader of the target machine unloads the 

agent on that machine and updates the list of loaded agents maintained under a key in scalaris. 

8.5.2 CAUTION 
 

If you are getting a list of agents redundantly and the class files getting loaded redundantly, 

then simply remove the list of agents loaded on the group.commnucation properties located 

in the build folder of grcommn project. This will give the correct output without any errors. 

 
 
 

8.6 PS ALGORITHM 
 

The syntax of PS command is –ps. 
 

This command will obtain the list of all the agents loaded on every core through the key for 

the list of loaded agents maintained in Scalaris 

The agent loader will also get the owner name along with the size of the agent in bytes. 



26  

We have installed a jetty server and kept the jar files in webapps folder of the scalaris folder in 

jetty server distribution. The jar files are loaded into the system by providing a URL which hosts 

those jar files in the computer. The jar files are accessed from the system by that URL and the 

corresponding class files are extracted and written to scalaris.PS command gives the list of all 

processes(class files) running on all computers in the group. We could do this by means of reliable 

group communication and SCALARIS. 



27  

 
 

Figure5: Snapshot For Files Uploaded 



28  

 
 

 
 

Figure6: Snapshot For Ls. 



29  

 
 
 

 
 
 
 
 

Figure7: Snapshot Of Lsstar. 



30  

 
 

 
 

Figure 8: Snapshot For Mkdir 



31  

 
 

 
 

Figure 9: Snapshot For Cp. 



32  

 

 
 

Figure 10: Snapshot For Ls, Cp, Rm. 



33  

 
 
 
 
 
 
 
 

 
 
 

Figure 11: Snapshot For Jetty 



34  

 
 
 

 
 
 
 
 
 

Figure 12: Snapshot For Ps. 



35  

 

 
 
 
 

Figure 13: Snapshot for Chmod 



36  

9. EXPERIMENTAL RESULTS AND PERFORMANCE  
                                         ANALYSIS. 

 
 

The analysis of the above research work has been done with one more Operating system Linux. 

The following results have been obtained and we have plotted them graphically to show the 

operating system results. The graph is drawn for PPOS AND LINUX. The time taken to 

execute the LS command in PPOS AND LINUX has been plotted as a graph. 
 
 
 
 
 

0.035 
 

0.03 
 

0.025 
 

0.02 
 

0.015 
 

0.01 
 

0.005 
 

0 
PPOS-MEKA LINUX 

 
 
 

Figure 14: Graph Showing LS. 
 

The y-axis indicates time in millisecond and time on x-axis indicates the operating system. From 

the above figure we observe that PPOS-MEKA working time is exactly same on a number of 

computers in cloud with that of LINUX. 

The next graph is plotted again between PPOS-MEKA and LINUX for the CP command and the 

following graph shows that again the time. 

. 



37  

 

 
 
 
 
 

0.035 
 

0.03 
 

0.025 
 

0.02 
 

0.015 
 

0.01 
 

0.005 
 

0 
PPOS-MEKA LINUX 

 
Figure 15: Graph Showing Cp. 

 
The next graph is plotted between two operating systems and the graph indicates that the time 

 
required is one and the same for RM and MKDIR. 

 

 
 

RM 
0.035 

 

0.03 
 

0.025 
 

0.02 
0.015 RM 

 

0.01 
 

0.005 
 

0 
PPOS-MEKA LINUX 

 
 

Figure 16: Graph Showing Rm. 



38  

0.035 
 

0.03 
 

0.025 
 

0.02 
 

0.015 
 

0.01 
 

0.005 
 

0 
PPOS-MEKA LINUX 

 
 

Figure 17: Graph Showing Mkdir 
 

140 
 

120 
 

100 
 

80 
PPOS-MEKA 

60 WINDOWS 
 

40 
 

20 
 

0 
CP . 

 
 

Figure 18: Graph Showing Physical Copy 
 
 
 
 
PHYSICAL COPY: We made a copy of 2gb file between two machines using windows network 

and took us 60 minutes where as it took 125 min to transfer the file from one machine to the 

other using wireless router . LOGICAL COPY: The time required for logical copy of the files is 



39  

so easy and we have taken a shift to logical copy and copy of the file was so easy and it took less 

than 9 sec. The performance levels have been considerably proven to be good when we have 

conducted these experiments and results were successful. 

 
 
 

The graph below shows the comparison levels of the operating systems concerned to PS. 
 
 
 

0.035 
 

0.03 
 

0.025 
 

0.0 
2 

 
0.01 
5 

 

0.01 
 

0.005 
 

0 
PPOS LINUX 

 
Figure 19: Graph showing Ps. 



40 
 

10. CONCLUSIONS 
 
 

We present the design and implementation of a prototype peer-to-peer operating system that 

provides the user with an eventually-consistent view of a single machine with a single file system 

over such a cloud and a single programming model while allowing elasticity, availability, and 

scalability. 

Future Work: We will study an adaptable version of the Paxos algorithm that does not overload 

the network. 



41 
 

REFERENCES 
 
 

1.   http://en.wikipedia.org/wiki/Grid_computing 
 

2. 
 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDwQFjA 
 

B&url=http%3A%2F%2Fjalapeno.therning.org%2Freport.pdf&ei=RSvgTqzBMYrZgAfe 
 

-_z0BQ&usg=AFQjCNFZ5F-spv4fccd4n84Z8uDgC8KMAg 
 
 

3. http://en.wikipedia.org/wiki/Tuple_space 
 
 

4.  http://en.wikipedia.org/wiki/Dataflow_programming 
 
 

5.  A Unified Operating System for Clouds and  Manycore: fos 
 
 

6.  http://en.wikipedia.org/wiki/VMware 
 
 

7. http://www.xtreemos.eu/ 
 
 

8. http://en.wikipedia.org/wiki/Distributed_hash_table 
 
 

9. http://code.google.com/p/scalaris/ 
 
 

10. http://en.wikipedia.org/wiki/Virtualization 



42 
 

                                                                       VITA 

Anudeep Meka was born in Vizianagaram, India in September 1988. He earned his 

primary and secondary education from St. Joseph’s English medium school in 

Vizianagaram, Andhra Pradesh. After finishing his high school, he took a very 

competitive entrance examination for engineering known as EAMCET and stood in top 

0.5%. After qualifying in this examination he got admission to Department of Electrical 

Engineering, M.V.G.R College of engineering, one of the prestigious institutes in 

Andhra Pradesh, India. He received his Bachelor of Engineering (B.E.) from J.N.T 

University, Hyderabad, India, in spring 2010. 

Then he came to United States of America to pursue a master’s degree. He then joined 

the graduate program at Louisiana State University, Baton Rouge, in fall 2010. He is a 

candidate for the degree of  Master of Science in System Science to be awarded at the 

commencement of spring 

2012. 
 


