
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2011

Experimental study of cognitive radio test-bed
using USRP
Venkat vinod Patcha
Louisiana State University and Agricultural and Mechanical College, venkatvinod@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Patcha, Venkat vinod, "Experimental study of cognitive radio test-bed using USRP" (2011). LSU Master's Theses. 481.
https://digitalcommons.lsu.edu/gradschool_theses/481

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/481?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

EXPERIMENTAL STUDY OF COGNITIVE RADIO TEST-BED USING USRP

Thesis

Submitted to the Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

by
Venkat vinod Patcha

B.TECH in Electronics and Communication Engineering
Padmasri Dr. B.V. Raju Institute of Technology (Affiliated to JNTU), India, 2008.

August, 2011

Acknowledgments

First of all, I would like to express sincere gratitude to my adviser Dr. Shuangqing Wei for
his constant support in building my thesis. I would like to thank him for introducing me to
the field of Wireless Communication and Cognitive Radio. His throughout guidance and
motivation in solving complex problems has provided encouragement, enthusiasm and sup-
port, while the knowledge acquired by working with him has provided deep understanding
of issues that are apart from classroom work. Also, I would like to thank my Co-adviser
Dr. Rajgopal Kannan, whose support has provided valuable experience. I would thank
Dr. Xue-bin Liang for being a member of thesis committee.

Apart from all, my parents and elder sister have provided the emotional and financial
support to build my confidence and without which this wouldn’t be possible. I would like
to thank my friends and roommates for their support and morale boost during the hard
times. Also, I would like to mention my lab-mates for giving their resources and time in
enabling to complete my thesis.

ii

Table of Contents

Acknowledgments . ii

List of Tables . vi

List of Figures . vii

Abstract . ix

1 Introduction . 1
1.1 Motivation . 2
1.2 Contribution of Thesis . 2
1.3 Background Information for Test-Bed Model 3

1.3.1 Hardware: USRP (Universal Software Radio Peripheral) 3
1.3.2 Software: GNU Radio . 5

1.4 Organization of Thesis . 6

2 Spectrum Sensing of Primary User . 7
2.1 Motivation . 7
2.2 Objective . 7
2.3 Implementation . 8

2.3.1 Average Periodogram Analysis . 8
2.3.2 Wide-band Spectrum Analyzer for USRP 8
2.3.3 Methodology . 9

2.4 Analysis . 12
2.4.1 PSD and Curve-fitting Functions 12
2.4.2 Histogram and Density Plots . 14
2.4.3 Cases . 14

2.5 Remarks . 16

3 Markov Traffic Model . 17
3.1 Motivation . 17
3.2 Objective . 17
3.3 Implementation . 17

3.3.1 Markov Process . 18

iii

3.3.2 Explanation . 18
3.3.3 PSD of DBPSK Modulation . 19

3.4 Problems . 22

4 Coded OFDM Transceiver . 23
4.1 Motivation . 23
4.2 Objective . 23
4.3 Implementation . 23

4.3.1 Background Information . 24
4.3.2 Mathematical Model for Coded OFDM Blocks 26

4.4 Implementation of Coded OFDM . 31
4.4.1 Approach 1 . 31
4.4.2 Approach 2 . 33
4.4.3 Approach 3 : Working Model . 34

4.5 Packet Structure and Packet Flow for Coded OFDM 35
4.5.1 Packet Structure . 35
4.5.2 Packet Flow . 36

4.6 Problems . 38
4.6.1 Cope with Big Burst of Errors in Coded OFDM Model 38
4.6.2 Remarks . 39

5 Four Node Test-bed Experiments . 42
5.1 Motivation . 42
5.2 Objective . 42
5.3 Implementation . 42

5.3.1 Periodic Sensing-transmission Cycles 43
5.3.2 Periodic Sensing-reception-sensing-transmission Cycles 43

5.4 Experiments and Test-bed Results . 45
5.4.1 Scenarios and Performance Metric 46
5.4.2 Scenario 1: Single (Primary) Channel for Communication 47
5.4.3 Scenario 2: Two Channels (Without Handshaking) 51
5.4.4 Scenario 3 : Rendezvous Communication (Two Channels) 56

6 Conclusion and Future Work . 67
6.1 Conclusion . 67
6.2 Future Work . 68

Bibilography . 69

A Algorithm for Markov Traffic Model . 71

B Description of Channel Estimation in OFDM Model 74

C Description of Demodulation of OFDM Symbols 76

iv

D Programs for Primary and Secondary Users 78
D.1 Primary Users: Markov Traffic Model with Coded OFDM 78
D.2 Secondary Users: Three-way Handshaking 86

Vita . 96

v

List of Tables

5.1 Performance of PU: short burst of traffic from SU 49

5.2 Performance of PU: long burst of traffic from SU 49

5.3 Performance of SU: short burst of traffic from SU 50

5.4 Performance of SU: long burst of traffic from SU 50

5.5 Performance of PU:long burst of traffic from PU and SU 51

5.6 Performance of SU: long burst of traffic from PU and SU 51

5.7 Performance of PU for two-channel without hand-sake 55

5.8 Performance of SU for two-channel without hand-sake 55

5.9 Performance of PU for two-channel with two-way handshake 59

5.10 Performance of SU for two-channel with two-way handshake 59

5.11 Performance of PU for two-channel with three-way handshake(DBPSK) . . 63

5.12 Performance of SU for two-channel with three-way handshake(DBPSK) . . 63

5.13 Performance of PU for two-channel with three-way handshake(GMSK) . . 64

5.14 Performance of SU for two-channel with three-way handshake(GMSK) . . . 64

5.15 Throughput metric of SUs for rendezvous protocols for three conditions . . 65

vi

List of Figures

1.1 Frequency Usage of Spectrum Bands [9] . 2

1.2 Hardware (USRP version 1) and Architecture [4] 4

2.1 2-D Illustration of Piece-wise Periodogram Analysis 10

2.2 Block Diagram for Piece-Wise Periodogram Analysis 11

2.3 Block Diagram for sensing model . 12

2.4 PSD and Curve-fitting plot under H0 . 13

2.5 PSD and Curve-fitting plot under H1 . 13

2.6 Histogram and density plots of average channel power for H0 andH1 . . . 14

2.7 Histogram and density plots of average channel power for different time
windows under H1 . 15

2.8 Histogram and density plots of average channel power for different window-
ing functions under H1 . 16

3.1 Block Diagram for two state Markov model 18

3.2 Block Diagram for DBPSK modulation . 19

3.3 MATLAB plot for PSD of DBPSK modulated waveform using equation (3.5) 21

3.4 PSD of DBPSK modulated waveform on Spectrum Analyzer 21

4.1 Flow-graph for OFDM model [12] . 24

4.2 Training Sequence for Symbol Synchronization [12] 25

4.3 Block Diagram for coded OFDM . 27

vii

4.4 Approach 1: Flow-graph for coded OFDM transmitter 32

4.5 Approach 1: Flow-graph for coded OFDM receiver 32

4.6 Approach 2: Flow-graph for coded OFDM receiver 33

4.7 Working Model: Flow-graph for coded OFDM receiver 35

4.8 Packet structure for coded OFDM model 36

4.9 Packet flow for coded OFDM model . 37

4.10 Modified Header Packet Structure . 39

5.1 Block Diagram for sensing-transmission flow graphs 43

5.2 Time Division Multiplexing of sensing-transmission periods 44

5.3 Block Diagram for sensing, reception and transmission flow graphs 44

5.4 Time Division Multiplexing of sensing-reception-sensing-transmission periods 45

5.5 Test-bed Model for PU’s and SU’s . 46

5.6 Duty cycle of SU’s for two channel and without mutual handshake 53

5.7 Flow Chart for two-way handshake . 57

5.8 Duty cycle of SU’s for two channel and with two-way handshake 58

5.9 Flow Chart for three-way handshake . 61

5.10 Duty cycle of SU’s for two channel and with three-way handshake 62

5.11 Multimedia Traffic for Primary Users . 66

5.12 Multimedia Traffic for Secondary Users . 66

viii

Abstract

Cognitive Radio is an emerging technology that enables efficient utilization of the spectrum.
As such, it has created great interests in industrial and research fields. Many people have
proposed test-bed models for the performance analysis of primary and secondary users in a
real-time noise environment. However, these test-beds are generally lacking in their range
of capabilities as well as accurate implementation of the proposed models. In this thesis,
we develop our test-bed on USRP to achieve the spectrum sensing and co-existence of
primary and secondary users, while implementing the rendezvous protocols for secondary
traffic coordination.

We first demonstrate the spectrum sensing on the primary users using an energy detec-
tor(Average periodogram analysis) to obtain the average power of the primary channel
under two different channel conditions (busy or idle). The focus is extended on developing
the Markov traffic model and the Coded OFDM transceivers, while discussing the practical
limitations for Markov traffic and viable solutions for reducing the burst errors for Coded
OFDM . Finally, a four-node test-bed model of primary and secondary users is analyzed
with the interference metrics(packet loss and error rate) for different scenario’s. Also, the
throughput and the interference metrics are compared for different rendezvous protocols
of the secondary users.

ix

Chapter 1

Introduction

Wireless Communication has been a rapidly growing sector in the communication industry
that led to rise of market share and economic growth. In fact, the growth of wireless
communication has created new technologies, which provide services with high bandwidth.
From the beginning of the 20th century, there has been an increase in the usage of radio
spectrum in areas such as Mobile communication, Wireless Local Area Network (WLAN),
Blue-tooth and Cordless phones. The Federal Communication Commission (FCC), which
manages the radio frequency spectrum and its usage, has published a report on the precise
usage of the spectrum and the rise of unlicensed users that could cause interference to the
licensed users [5]. In addition, the report has stressed on frequency bands that are heavily
occupied all the time or partially occupied or vacant most of the time [5]. The Figure 1.1
signifies the usage of spectrum bands over a certain period. The scarcity of spectrum and
need for efficient usage has led to the development of a new field ”Cognitive Radio”.
The term was first coined by Joseph Mitola in his thesis that emphasizes the efficient
usage of spectrum and its allocation [9]. Cognitive Radio (CR) is a type of radio, that is
aware of its environment, in which the radio adapts its transmission for efficient usage of
the underutilized spectrum. The central idea of CR is to allow the unlicensed bands of
the Secondary Users(SU), such as WLAN and Blue-tooth to utilize the licensed bands of
the Primary Users(PU), such as TV and mobile without interference. The main features
of cognitive radio are intelligence, adaptivity, reliability and efficiency [8]. It is a key
contribution to the 4th generation (4G) technology for the efficient spectrum utilization
[9]. The practical implementation of CR has been achieved by Software Defined Radio
(SDR). SDR is a radio communication system in which the components implemented on
hardware are transferred to a software program that provides the flexibility of changing
the operating parameters of the device. The primary advantage of SDR is to use them
over wide RF bandwidth and to perform Intermediate frequency(IF) functions inside the
processor. In fact, Cognitive Radio is defined as ”intelligence” that sits above SDR and lets
SDR determine which mode of operation and parameter to use [19]. As SDR handsets can

1

Figure 1.1: Frequency Usage of Spectrum Bands [9]

easily be re-configured to different wireless broadband technologies, they can be utilized to
implement a CR Test-bed. The flexibility, robustness and efficiency of SDR has resulted
in practical experimentation over RF world.

1.1 Motivation

Many features of Cognitive Radio have attracted researchers, while studies are conducted
for efficient utilization. The flexibility and growth of SDR has provided ease of implemen-
tation of a Cognitive Radio test-bed. They provide the ease of implementation by using
software to build a network and to modify the network based on the availability. The major
contribution in our thesis is to create a test-bed model for evaluating the spectrum access
and co-existence of primary and secondary users and study their performance analysis,
while emphasizing the usage of existing rendezvous protocols for secondary users(SU) to
reduce interference effects and provide high throughput.

1.2 Contribution of Thesis

• Energy detection methods are useful for calculating the energy statistics of the pri-
mary user that determine the presence or absence of primary traffic. We perform
the energy detection of PU’s using average periodogram analysis. The curve-fitting

2

functions, PSD, histogram and density plots of average power are evaluated under
each hypothesis(presence and absence of primary traffic). Also, the histogram plots
of average power are examined for varying time windows and windowing functions.

• Developed Markov traffic model consisting of ON and OFF cycles with ON cycles
that are uniformly distributed and OFF cycles that are dependent on their former
ON periods. Also, the practical problems with transition times for switching between
ON and OFF cycles are discussed.

• Implementing Coded OFDM model using the OFDM and Trellis convolution blocks
in GNU Radio. In fact, the mathematical model is demonstrated for the current
OFDM and trellis blocks to develop the working model. The problems encountered
in the implementation are discussed.Moreover, we have provided solutions to resolve
big burst of errors in Coded OFDM.

• Experimental analysis is performed on four-node test-bed model. The co-existence
and interference free communication of PU’s and SU’s are discussed based on perfor-
mance metric for different scenarios. Also, the existing rendezvous protocol are used
for efficient utilization of spectrum and secondary traffic coordination.

1.3 Background Information for Test-Bed Model

This section discuss about the Hardware and Software platform of our test-bed model.
Also, we explain the capabilities, advantages and disadvantages of our model.

1.3.1 Hardware: USRP (Universal Software Radio Peripheral)

The Universal Software Radio Peripheral or USRP was developed by Ettus Research LLC
that provides the low cost radio systems for commercial and research applications [1].
USRP provides digital baseband and IF section within the hardware, which aids to utilize
general purpose computers to function as high bandwidth software radios. In addition, the
board can provide interface to various daughter-boards for a wide range of applications.
The basic philosophy behind the USRP is to provide all waveform specific features like
modulation and demodulation in CPU, whereas the high speed operations like interpola-
tion, decimation, digital up and down conversion are provided within FPGA [4][7].

3

1.3.1.1 Capabilities

The basic architecture for USRP version 1 contains USB 2.0, ADC’s and DAC’s, re-
programmable FPGA and daughter-board interface. The Figure 1.2 provides the basic
components of USRP version 1. Each USRP has 4 ADC and DAC, ADC outputs data at
12 bits per sample, 64 Million samples per sec (64 MS/sec) and DAC outputs data at 14
bits per sample, 128 Million samples per sec (128 MS/sec). The daughter-board interface
allows to connect to ADC and DAC components. Furthermore, the USB 2.0 interface
provides connection from FPGA to the computer. All samples sent over the USB interface
are in 16-bit signed integers in IQ format [4][7].

ADC

ADC

ADC

ADC

DAC

Receive

DAC

DACDAC
Daughter-Board

Daughter-Board

Transmitter

FPGA

FX2
USB 2

Controller

Receive

Daughter-Board

Daughter-Board

Transmitter

Figure 1.2: Hardware (USRP version 1) and Architecture [4]

1.3.1.2 Advantages and Disadvantages

1. It can operate in full-duplex mode. It allows the transmitter and receiver to operate
independently.

2. The flexibility for utilizing wide-variety of daughter-boards can serve a wide range of
commercial and research applications. For instance, RFX boards provide USRP to
work as a RF transceiver system.

3. Maximum flexibility in frequency planning for RF boards.

4. The Maximum effective bandwidth is about 8 MHz. The limitation is due to the
USB 2.0 interface where the combined data rate over the bus should not exceed
32 Megabytes per sec(32 MB/sec) [7]. This restricts the usage for high bandwidth
signals.

5. Hardware latency restricts the effective implementation of MAC protocols.

4

1.3.2 Software: GNU Radio

GNU Radio is a free software development kit that provides signal processing modules to
build a software radio in a real-time environment using low cost and reconfigurable radios
[1]. It is based on block architecture that involves hybrid Python/C++ programming.
Moreover, it provides us to integrate with analysis and plotting tools, such as octave and
gnu-plot to support evaluation and computation experiments with ease.

1.3.2.1 GNU Radio Architecture

The baseline architecture of GNU Radio involves a complex flow-graph that consists of
modules and low-level algorithms. Each module or low-level algorithm is structured in
C++ and provides basic signal processing functions (ex: Filters, FFT, Channel Coding
etc.,). They are automatically generated into python modules with the use of python
’wrapper’ or interface i.e., SWIG (Simplified Wrapper and Interface Generator) [1]. The
generated blocks are used to construct a flow-graph model with the help of python.
The application is built on python program that provides python framework. The python
framework is responsible for communication of data through module buffers and creates
a simple scheduler that helps to run blocks in a sequential order for single iteration. The
GNU Radio software typically consists of four elements [2].

• Source: Each flow-graph has a single source. It is the head (start) of the flow-graph.
For instance, USRP source or file source are common types of source blocks.

• Sink: Each flow-graph has a single sink. It is the tail (end) of the flow-graph. For
instance, USRP sink or file sink are common types of sink blocks.

• Flow-graph: The application is based on a flow-graph. Each flow-graph consists of
intermediate blocks along with single source and sink blocks. We can have multiple
flow-graphs within a single application.

• Scheduler: It is created for each active flow-graph, which is based on steady stream
of data flow between the blocks. It is responsible for transferring data through the
flow-graph. It monitors each block for sufficient data at I/p and O/p buffers so as to
trigger processing function for those blocks.

1.3.2.2 Advantages and Disadvantages

1. It has extensive library of pre-defined and test-bed functional blocks [2].

2. It provides simulation environment to build our own models.

5

3. The python wrapper or interface helps to provide easy access of blocks. For instance,
SWIG in GNU Radio provides easy access of C++ blocks into python [2].

4. It requires experience in software; especially low-level programming.

1.4 Organization of Thesis

The thesis is organized as follows. Chapter 2 gives the spectrum sensing of the PU’s based
on energy detection method while evaluating the average power of primary traffic under two
hypotheses. In Chapter 3, we develop the Markov traffic model consisting of ON and OFF
cycles that are used to represent the PU traffic. The Chapter 4 gives the implementation of
Coded OFDM model based on OFDM and Trellis convolution blocks in GNU Radio while
mentioning the different approaches and their problems. The Experimental test-bed for
CR is analyzed under different scenario’s using performance metric is provided in Chapter
5. The Chapter 6 provides the Conclusion and Future work.

6

Chapter 2

Spectrum Sensing of Primary User

2.1 Motivation

Spectrum sensing is considered as a primary component of a CR system. It is required for
the proper allocation of secondary user traffic on primary channel based on sensing results.
Many researchers have studied the mathematical analysis of spectrum sensing algorithms
based on environmental design and user constraints for CR [23][11]. In fact, [3] discusses
the practical implementation of spectrum sensing based on square of the FFT values.
There is a need for efficient energy detector to analyze wide-band spectrum. For instance,
WLAN 802.11b physical layer utilizes direct-sequence spread spectrum(DSSS), which is
a wide-band signal that occupies the entire 22 MHz spectrum of the 802.11 channel. To
detect wide-band signals using energy detector, we need a wide-band spectrum analyzer
that can scan the entire spectrum.

2.2 Objective

• In GNU Radio, usrp spectrum sense.py program helps to scan wide-band signals.
The program doesn’t provide an appropriate evaluation of average power. We an-
alyzed the periodogram method in [21] to perform energy detection using average
periodogram technique for the former program.

• The power spectral density (PSD), curve-fitting functions and histogram of average
channel power are evaluated for PU traffic under two hypothesis (H0 and H1). For
the H1, the histogram and density plots of average channel power are demonstrated
for two different cases.

7

2.3 Implementation

This section provides the mathematical formula for average periodogram technique [21][13],
which can be used as a energy detection method for determining the presence or absence
of primary traffic. Also, we discuss on implementation for wide band spectrum analyzer
based on the average periodogram analysis.

2.3.1 Average Periodogram Analysis

It is used for estimation of power spectrum, which is based on discrete Fourier transform
(DFT) of finite length segments of signals. It helps for computation of power spectral
density (PSD). It involves sectioning the data into finite segments to compute individual
periodogram or modified periodogram and averaging the modified periodogram segments.
The main advantage is non-negative estimate and involves less computation than other
methods.
Let x[n], n = 0, 1, . . . , L−1 be the discrete time signal that are divided into K finite length
equal segments, where length of each segment is N i.e., KN = L; xr[n], n = 0, 1, . . . , N−1
is the rth segment and w[n], n = 0, 1, . . . , N−1 be the window applied to each segment.The
mathematical analysis follows that in [13]
The modified periodogram for the rth segment is

Ir[k] =
1

NU
|Vr[k]|2; for k = 0, 1 . . . N − 1 (2.1)

Where Vr[k] is a N point DFT and U is normalization factor i.e.,

Vr[k] = DFT{w[n]xr[n]} and U =
1

N

N−1∑
n=0

(W [n])2

The time averaged periodogram estimate I[k] is the average of modified periodograms

I[k] =
1

K

K−1∑
r=0

Ir[k] (2.2)

The equation 2.2 indicates the PSD of x[n] sequence.

2.3.2 Wide-band Spectrum Analyzer for USRP

Hardware limitations : In USRP1 (version 1) all the samples sent over the USB interface
are in 16 bit signed integer format, i.e., 16 bit I and 16 bit Q data (complex) values, which

8

means 4 bytes per complex sample. USRP1 is built on USB, which can sustain 32 MB/sec
over the bus. This results in (32 MB/sec/4 Byte) 8 Mega complex samples/sec across the
USB. Since complex processing is used, this provides a maximum effective total spectral
bandwidth of about 8 MHz (Nyquist criteria). In fact, USB bus limits the maximum band-
width to 8 MHz in USRP1 [4].

Piece-wise average periodogram analysis : In GNU Radio, usrp spectrum sense.py program
[1] provides a wide-band spectrum analysis. Here, the RF front end is tuned to suitable
steps to examine wide-band spectrum, but not all at the same time. In fact, the former
program doesn’t perform periodogram analysis on FFT samples. We modified the program
to perform the periodogram analysis based on mathematical analysis (2.2) and verified the
practical calculation of power in time and frequency domain. The Figure 2.2 depicts the
block diagram for piece-wise periodogram analysis. Tune delay(tn) and Dwell delay(td) are
two important parameters in piece-wise analysis [1].

• Tune delay (td): It is the time period over which FFT samples are discarded for the
RF front end to settle to new center frequency.

• Dwell delay (tn): It is the time period over which the average values (average power
in each FFT bin) of vectors are determined for each center frequency. This operation
is performed after discarding tune delay samples.

The piece-wise spectrum analysis can also be represented on a time and frequency plot.
Assume the primary carrier frequency fc lies between fL and fH i.e., fL ≤ fc ≤ fH ,
where fLandfH are the lowest and highest frequency components of the primary spectrum
band and fH − fL > WMHz. As USRP cannot scan more than 8 MHz, we scan in
steps of W MHz (W < 8MHz)1 over the entire spectrum band. In addition, frequency
overlap between spectrum bands are considered to prevent frequency holes at spectrum
edges [1]. The Figure 2.1 explains the 2-D illustration of piece-wise spectrum analysis for
25% overlap.

2.3.3 Methodology

The analysis is performed for two hypotheses(H0 and H1)

• H0: Primary Traffic is OFF

• H1: Primary traffic is ON

1To prevent the loss of samples at low decimation rates i.e., high data rate. The loss of sample or USRP
overrun is indicated as UOUOUO..... on the print screen [1].

9

Figure 2.1: 2-D Illustration of Piece-wise Periodogram Analysis

For each hypothesis, we evaluate the PSD, curve-fitting functions, histogram and density
plot of average channel power. In addition, the histogram and density plots of average
channel power are analyzed for different time windows and windowing functions.
Primary Users(PU’s): We consider, two USRPs communicate on ISM (Industrial, Scientific
and Medical) band. The parameters of primary traffic are

• Modulation : DBPSK

• Data Rate : 500 Kb/sec

• Carrier Frequency : 2.422GHz

• Primary Bandwidth (∆W): 675 kHz

Secondary User(SU): We consider, USRP node to sense 3 MHz (2420.5-2423.5MHz) of
the primary channel around the primary carrier frequency. In USRP, the ADC clock runs
at 64 MS/sec. With decimation rate as 64 2, it can analyze 1 MHz of spectrum and the
scan is performed in frequency steps to cover the entire spectrum. Also, a 25% overlap is
considered to avoid the frequency holes at the spectral edges and due to which it scan 2.5
MHz of spectrum covering from (2420.5 - 2423 MHz).
First step: A command is sent to RF front end to tune to 2421 MHz (f0). It will collect
the statistics from frequencies 2420.5 MHz to 2421 .5 MHz
Second step: A command is sent to RF front end to tune to 2421.750 MHz (f1). It will

2To avoid the loss of USRP samples, where the UoUoUo.... appears with the decrease of decimation

10

F
ig

u
re

2.
2:

B
lo

ck
D

ia
gr

am
fo

r
P

ie
ce

-W
is

e
P

er
io

d
og

ra
m

A
n
al

y
si

s

11

Primary
User 1

Primary
User 2

Secondary
User

Primary channel

Figure 2.3: Block Diagram for sensing model

collect the statistics from frequencies 2421.125 MHz to 2422.225 MHz
Third step: A command is sent to RF front end to tune to 2422.500 MHz (f2). It will
collect the statistics from frequencies 2422 MHz to 2423 MHz
For each center frequency, the modified periodograms(FFT bins) collected for the dwell
delay (td) are used to obtain the average periodogram based on (2.2). Also, the overlapping
frequency bins for the three center frequencies are averaged. The calculated values are
plotted to obtain the power spectral density(PSD).

2.4 Analysis

This section provides the analysis for the section 2.3 with plots for PSD and curve-fitting
functions. Also, the variations in average channel power are studied by providing the
histogram and density plots with different cases.

2.4.1 PSD and Curve-fitting Functions

The Figure 2.4 and 2.5 provides the PSD and curve-fitting functions around carrier fre-
quency for the two hypothesis.

12

Figure 2.4: PSD and Curve-fitting plot under H0

Figure 2.5: PSD and Curve-fitting plot under H1

13

2.4.2 Histogram and Density Plots

The number of center frequencies is inversely related to USRP decimation rate. For in-
stance, if the frequency range for scanning is δW and decimation rate is d then number of
center frequencies(L) is given by L = δW∗d

64MS/sec
3.

The average power for the spectrum band is the average of each average periodogram (ob-
tained for each center frequency)(2.2) over the entire spectrum band. The Histogram and
density plots are obtained for the average power collected over 300 frames. Histogram and
density plots of average power under the two different hypotheses is shown in the Figure
2.6. The mean value in the Figure 2.6 indicates the average channel power when primary
transmitter is ON (H0) and OFF(H1). In fact, the mean value of H0 is the average noise
power of the channel.

20 20.5 21 21.5 22 22.5 23
0

20

40

60

80

100

120

140

Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

20 20.5 21 21.5 22 22.5 23 23.5
0

0.5

1

1.5

2

2.5

3

3.5

Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

40 42 44 46 48 50 52 54
0

20

40

60

80

Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

38 40 42 44 46 48 50 52 54 56
0

0.1

0.2

0.3

0.4

Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

fr
p
ow data1

data1fr
p
ow1

Mean :50.90
Variance: 1.63

Mean :20.49
Variance:0.063

Histogram and density plots of average channel statistics for USRP when Primary Tx’r is OFF

Histogram and density plots of average channel statistics for USRP when Primary Tx’r is ON

Figure 2.6: Histogram and density plots of average channel power for H0 andH1

2.4.3 Cases

The histogram and density plots of average channel power under H1 are evaluated for dif-
ferent time windows and windowing functions.

3ADC Sampling rate is 64 MS/sec

14

2.4.3.1 Time Window

By changing the decimation rate and FFT length, the time window of measurement is
varied. In USRP ADC clock runs at 64 MS/sec.
For example, the decimation rate is 8 and FFT length =256 and the samples at ADC are
decimated by factor of 8 and sampled at 8 MS/sec i.e., Time window for 256 samples is
0.256 msec.
The Histogram and density plots are plotted for varying decimation rates(64,128,256) and
with constant FFT length(256) is provided in the Figure 2.7.
There is decrease in the value of average channel power with the increase of time window

40 42 44 46 48 50 52 54
0

20

40

60

80
Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

38 40 42 44 46 48 50 52 54 56
0

0.1

0.2

0.3

0.4
Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

40 41 42 43 44 45 46 47 48 49
0

10

20

30

40
Window:Hanning
FFT size:256
ADC Sampling:500k samples/sec
Time Window:0.512msec

S
ca

n
C

ou
nt

Average Channel Power

38 40 42 44 46 48 50 52
0

0.1

0.2

0.3

0.4
Window:Hanning
FFT size:256
ADC Sampling:500k samples/sec
Time Window:0.512msec

Average Channel Power

37 38 39 40 41 42 43
0

10

20

30

40
Window:Hanning
FFT size:256
ADC Sampling:250k samples/sec
Time Window:1.024msec

S
ca

n
C

ou
nt

Average Channel Power

36 37 38 39 40 41 42 43 44
0

0.2

0.4

0.6

0.8
Window:Hanning
FFT size:256
ADC Sampling:250k samples/sec
Time Window:1.024msec

Average Channel Power

fr
p
ow1

fr
p
ow2

fr
p
ow3 data1

data1

data1

Mean:45.10
Variance:1.89

Mean: 50.90
Variance:1.63

Histogram and density plots of average channel statistics for different time windows of USRP when Primary Tx’r is ON

Mean: 40.47
Variance: 0.83

Figure 2.7: Histogram and density plots of average channel power for different time
windows under H1

where the increase of time window is achieved by decreasing the ADC sampling rate.

2.4.3.2 Windowing Function

Windowing is performed to reduce smearing, spectral leakage and to preserve the amplitude
of signal. The different window function doesn’t affect the shape of the power spectrum.
But, there is a change in characteristics of the wave such as reduction in spectral leakage
and side lobe power. Hanning window gives the best performance due to lower side lobes

15

[13].
The Histogram and density plots for Hanning, Blackmanharris and Rectangular window
functions is shown in the Figure 2.8.
The average channel power for different windowing functions remain constant.

40 42 44 46 48 50 52 54
0

20

40

60

80

Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

38 40 42 44 46 48 50 52 54 56
0

0.1

0.2

0.3

0.4
Window:Hanning
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

44 45 46 47 48 49 50 51 52 53 54
0

20

40

60
Window:Blackmanharris
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

42 44 46 48 50 52 54 56
0

0.1

0.2

0.3

0.4
Window:Blackmanharris
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

40 45 50 55
0

50

100

150
Window:Rectangular
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

S
ca

n
C

ou
nt

Average Channel Power

40 42 44 46 48 50 52 54 56
0

0.2

0.4

0.6

0.8

Window:Rectangular
FFT size:256
ADC Sampling:1M samples/sec
Time Window:0.256msec

Average Channel Power

fr
p
ow1 data1

fr
p
ow2 data1

fr
p
ow3 data1

Mean: 50.90
Variance: 1.63

Mean: 49.65
Variance: 1.45

Mean: 51.38
Variance: 1.05

Histogram and density plots of average channel statistics for different window functions of USRP when Primary Tx’r is ON

Figure 2.8: Histogram and density plots of average channel power for different windowing
functions under H1

2.5 Remarks

1. The bin statistics functional block performs the maximum over the dwell time for
the center frequency bins. We have implemented the average over the dwell time so
as to evaluate the average periodogram analysis for each center frequency.

2. The shape of the PSD determines the probability density function (pdf) of the energy
statistics under each hypothesis.

3. In order to implement periodic sensing involving sleep and sensing periods, we provide
sleep mode in the functional block of bin statistics. It helps to discard the samples
collected during the sleep mode. It is more robust and provides efficient sensing
results compared to the sleep function in python.

16

Chapter 3

Markov Traffic Model

3.1 Motivation

In a Cognitive Radio Network(CRN), the Markov model for the primary user(PU) spectrum
usage helps to study the dynamic behavior of spectrum access and traffic patterns of the
PU. Also, primary channel is modeled in the form of alternative ON and OFF cycles
with secondary users (SUs) utilizing the OFF periods for transmission. For instance, a
simulation model of semi-Markov traffic is considered for PUs to enhance the efficient
utilization of the OFF periods by SU in [10].

3.2 Objective

• To generate Markov traffic model involving ON and OFF periods on a cognitive
test-bed. Also, to configure ON periods for transmission of long and short bursts of
traffic, while the OFF periods vary depending on the former period traffic burst.

• Analyze the output spectrum for DBPSK modulation with spectrum analyzer and
MATLAB plot for the PSD equation provided in [14].

3.3 Implementation

This section discuss the Markov process and the implementation of Algorithm on GNU
Radio. Moreover, the PSD equation is analyzed theoretical and practical verification is
provided on a spectrum analyzer.

17

3.3.1 Markov Process

Markov process or Markov chain is paradigm of states in which the current state depends
on the past states. Homogeneous Markov chain [6] has finite number of states that are
independent of time, and their transition matrix P indicates the probability of transitions
from one state to another. The Figure 3.1demonstrates the two state Markov model.
So and S1 are two states of Markov model with

S0 1− β

α

β

1− β S1

Figure 3.1: Block Diagram for two state Markov model

Probability of transition from stateS1 toS0 i.e., P r[S0/S1] = S01 = α
Probability of transition from stateS0 toS1 i.e., P r[S1/S0] = S10 = β
Similarly,
Probability of transition from stateS0 toS0 andS1 toS1i.e.,
P r[S0/S0] = S00 = 1− α and Pr[S1/S1] = S11 = 1− β
Transition matrix P for two state Markov model is given as

P =

[
S00 S01

S10 S11

]
=

[
1− α α

β 1− β

]

3.3.2 Explanation

The two state Markov model uses benchmark tx.py(GNU Radio example[1]), which pro-
vides packet based modulation for continuous and discrete transmission. In the program,
the two states OFF (S0) and ON (S1) indicate the presence and absence of primary traffic
on the channel. The S0 traffic is a period of no transmission that is produced on halting
the main thread and S1 traffic is similar to continuous traffic. The states of Markov model
are generated from the predefined transition matrix P and based on the current state,
the burst traffic of ON and OFF periods are produced. Also, the program provides the

18

flexibility for allocation of number of states and available packets for ON cycles.
In S0 state, the time.sleep(txoff) function is utilized for halting the main thread of Python.
The txoff represents the duration of OFF period, which depends on the former ON state
i.e.,the length of previous ON burst determines the duration for the OFF period. The OFF
periods are maintained longer than ON periods so as to provide sufficient transition time
for switching between ON and OFF periods and to avoid the ON period creep into OFF
period. Also, the longer ON periods requires longer OFF periods. For the run-time of the
program, the indication of UuUu....1 represents the S0 state.
In S1 state, the ON period is modeled with probability density function(p.d.f) fTON (x), x >
0 that follow uniform distribution. The number of packets for ON period depends on avail-
able packets and their prior probabilities. For instance, the available packets for ON periods
are x,y,z then the Pr(x),Pr(y),Pr(z) determines the packets for the current ON state. The
transmission period depends on data rate, number of packets and packet size. Also, the
random selection of packets contributes for short and long bursts of traffic. For the run-
time of the program, the indication of dots represents the number of packets transmitted.
The algorithm in Appendix A provides the Markov traffic for the current model.

3.3.3 PSD of DBPSK Modulation

PSD for DBPSK modulated wave is given by [14]. It is based on determining the PSD for a
differentially encoded sequence. DBPSK can be considered as a combination of differential
encoder and BPSK modulation. The basic structure of DBPSK modulation is provided in
figure 3.2.

Differential
Encoder

ak

{0, 1}
BPSK

Modulation

Vl(t)bk

{0, 1}

Figure 3.2: Block Diagram for DBPSK modulation

Let ak be the i.i.d binary random variables with probabilities; Pr[ak = 1] = p andPr[ak =
0] = 1 − p; 0 < p < 1. The sequence bk is generated as bk = ak ⊕ bk−1. The PSD of
differentially encoded sequence(bk) and DBPSK modulated signal (Vl) is evaluated in [14]

Sb(f) =
2p(1− p)

1− (1− 2p) cos 2πfT − 2p(1− p)
+
µ2
b

T

∞∑
k=−∞

δ(f −K/T) (3.1)

Svl(f) =
1

T
|G(f)|2 · Sb(f) (3.2)

1USRP underrun [1] indicates that there are not enough samples for USRP transmission

19

where,
Sb is the PSD of differential encoded sequence.
µb is the mean of the bk sequence.
G(f) is the frequency response of the pulse shape.
T is the signaling interval.
If input symbols are equiprobable i.e,Pr[ak = 1] = 1/2 andPr[ak = 0] = 1/2 and mean
µb = 0 then from equation (3.1)

Sb(f) = 1 (3.3)

If, g(t) is root raised cosine filter, frequency response G(f) is provided as [6]

G(f) =


√
T for 0 ≤ |f | ≤ 1−β

2T√
T
2
[1 + cos(πT

β
(|f | − 1−β

2T
))] for 1−β

2T
≤ |f | ≤ 1+β

2T

0 for |f | ≥ 1+β
2T

(3.4)

From equation (3.3) and (3.4), if the input sequence are equiprobable, the mean of differ-
ential encoded sequence is zero and pulse shaping is raised cosine waveform, then PSD of
DBPSK is given by (3.2)

Svl(f) =


1 for 0 ≤ |f | ≤ 1−β

2T
1
2
[1 + cos(πT

β
(|f | − 1−β

2T
))] for 1−β

2T
≤ |f | ≤ 1+β

2T

0 for |f | ≥ 1+β
2T

(3.5)

3.3.3.1 Plots

The basic parameters of DBPSK modulated wave

• Roll of factor for root-raised cosine filter (β) : 0.35

• Interpolation : 128

• Carrier Frequency (fc) : 2.422 GHz

• Samples per symbol : 2

In USRP, the relation between Data rate,interpolation and samples per symbol is given as
2

Datarate(Rb) =
DACsamplingrate

Interpolation ∗ Samplespersymbol
For DBPSK, the symbol rate(Rs) is equal to the data rate (Rb) and the symbol period
T = 1/Rs

2DAC sampling rate : 128 MS/sec

20

Substituting the value of β and symbol period T in equation (3.5) provides PSD for DBPSK
modulation, the MATLAB plot and the output of spectrum analyzer for DBPSK modula-
tion are shown in the Figures 3.3 & 3.4

Figure 3.3: MATLAB plot for PSD of DBPSK modulated waveform using equation (3.5)

Figure 3.4: PSD of DBPSK modulated waveform on Spectrum Analyzer

21

3.4 Problems

Transition time is the time required to switch from one state to another. It is required
to prevent the overlap between S0 and S1 periods. In fact, the longer S0 periods provides
the sufficient transition time to switch between S0 and S1 periods or vice-versa. Also, the
transition time from continuous S1 states to S0 state is greater than the transition time
from S0 to S1 or continuous S0 states to S1 state. For instance, the Markov chain sequence
S0(1), S1(1), S0(2), S0(3), S1(2), S1(3), S1(4), S0(4), where S0(i); i = 1, 2, 3, 4 represents
OFF state and S1(i); i = 1, 2, 3, 4 represents the ON state. The transition time between
S0(1) and S1(1) or S0(3) and S1(2) is less than the transition time between S1(4) and S0(4).
In fact, the S0(4) has longer OFF period than other OFF periods.

22

Chapter 4

Coded OFDM Transceiver

4.1 Motivation

Many Forward Error Correction(FEC) blocks are used with OFDM in fields such as WLAN
/WMAN and DAB/DVB systems. The use of convolution codes in OFDM system helps
to reduce the peak average ratio power(PARP) while improving the bit error rate (BER)
[17]. In [22], a convolution code is implemented to the current OFDM model on GNU
Radio that uses low code rate. However, the current Trellis Convolution Blocks on GNU
Radio provide the flexibility for high code rates in addition to the Viterbi Algorithm with
soft and hard decision decoding.

4.2 Objective

• Mathematical model for the Coded OFDM model

• Create Coded OFDM model using Trellis blocks in GNU Radio

• Packet structure and flow for the coded OFDM model

• Cope with big burst of errors in the coded OFDM model

4.3 Implementation

This section provides the background information of OFDM model, synchronization and
equalization on GNU Radio. The channel coding technique and available blocks are also

23

discussed. Moreover, a mathematical model for the coded OFDM is explained for the
implementation.

4.3.1 Background Information

4.3.1.1 OFDM

OFDM or Orthogonal Frequency Division Multiplexing is a type of multi-carrier(MC)
technique that allows for high data rate transmission and reduces the effect of Inter Symbol
Interference (ISI) caused by delay spread in wireless channels [17]. It divides the available
channel bandwidth (W) into sub-bands(N) of narrow-width(δf = W/N). Also, all the
sub-bands are executed in parallel that are independently coded and modulated for high
data rates.
In GNU Radio, the flow-graphs for OFDM transmitter and receiver are shown in the
Figure4.1.

Figure 4.1: Flow-graph for OFDM model [12]

4.3.1.2 Synchronization and Equalization

Synchronization of an OFDM signal involves finding the symbol timing and the carrier
frequency offset. They need to be efficiently determined for proper recovery of OFDM
symbols. In the OFDM model of Figure 4.1, signal detection at the receiver is performed
using Maximum likelihood [20] or PN -sequence correlation [16]. PN- sequence correlation
involves transmitting known preamble symbol along with the OFDM symbols for synchro-
nization. In fact, the preamble symbol contain one training sequence with two known

24

symbols of equal length in the time domain.
At the transmitter, the desired training sequence is obtained from the frequency domain
sequence consisting of information on even frequencies and zeros on odd frequencies which
are passed through an IFFT block [12]. The generation of training sequence is demon-
strated in Figure 4.2. The ”known preamble”, ”insert preamble” and ”IFFT blocks” in
Figure 4.1 are responsible for generation and encapsulation of the desired training sequence.
It is appended before the start of OFDM symbols that are generated from each packet.

Figure 4.2: Training Sequence for Symbol Synchronization [12]

At the receiver, the generated training sequence that is placed at the start of the packet(frame)
is used for symbol synchronization. The symbol timing is achieved by searching for the
symbol in which the first half is similar to second half in time domain [12]. On the other
hand, equalization is achieved by generating 1-tap equalizer from the received and known
symbols (training sequence) that correct phase shifts and multi-path effects. The syn-
chronized and equalized OFDM symbols are passed through OFDM demodulation. In
Figure 4.1, the symbol synchronization and OFDM preamble correlation blocks are used
for synchronization and equalization of OFDM symbols.

4.3.1.3 Channel Coding

Convolution coding : Channel coding contains channel encoding and decoding blocks that
are used to improve the reliability of transmission by detecting and correcting errors that
are introduced in the channel. Convolution coding is a type of channel coding technique
that has memory and described in terms of finite state machine(FSM). In these codes,
”each time instant k, xk information is encoded to yk information sequence and changing
the state of encoded from sk to sk−1 ” [6]. The primary advantage of convolution codes is
the natural Trellis structure that helps decoding based on Viterbi algorithm.

Trellis based convolution blocks in GNU Radio: Trellis convolution blocks are based on
finite state machine(FSM). A FSM has a finite number of states,input and output sym-
bols. It completely hides the information about input and output symbols. In GNU Radio,

25

the Trellis encoder, Metric calculator and Viterbi decoder are the three blocks that uti-
lize FSM structure for convolution coding. The mathematical expressions for FSM and
convolution blocks are explained in the section below.

1. Trellis Encoder : It is useful for generation of encoder sequence based on the initial
state of FSM.

2. Metric Calculator: It provides proper metrics to the Viterbi algorithm. The metrics
can be soft or hard decision decoding, where the soft decision decoding is based on
Euclidean distance and the hard decision decoding is based on Hamming distance.

3. Viterbi Decoder : It performs the Viterbi decoding for K Trellis steps.

4.3.2 Mathematical Model for Coded OFDM Blocks

Let,

• Up and V q be the uncoded and coded bit stream of the transmitter

• X and Y are the input and output OFDM symbol.

• N and Ñ are the FFT length and sub-carriers of the OFDM symbol.

• Ks is the known preamble symbol

• Ûp and V̂ q are the uncoded and coded bit stream of the receiver.

• Rate of the channel encoder, e.g. code rate (p
q
) = 1

2

4.3.2.1 Transmitter

The information source has data in the form of packets that are transformed into bit stream
(Up). The bit stream is channel encoded to produce the coded bit stream(V q).

Up = (U0, U1,, Up−1) and V q = (V0, V1,, Vq−1); Also, |Up| 6= |V q| (4.1)

where, Ui ∈ Id for i = 0, 1, . . . , p − 1 and Vi ∈ Od for i = 0, 1, . . . , q − 1 ; Id and Od are
defined from the FSM that are explained below.
In the OFDM modulator, the symbol modulator maps the channel encoded bit stream (V q)

26

Frame Source and

Symbol modulation Preamble

Insert Add Cyclic
Prefix Amplitude

Preamble

Channel

Filter

Symbol
Synchro−

nization
FFT

OFDM
preamble

correlation

OFDM

frame sink

Known

IFFT

Information
Source

Channel OFDM

Modulator

Channel

OFDM

Metric

Trellis

Encoder

Sink

Information Viterbi

Algorithm Demodulator

Ks

´̂
Y

OFDM Modulator

OFDM Demodulator

X

Up V q

Y Ŷ

V̂ qÛp

Figure 4.3: Block Diagram for coded OFDM

27

to sub-carriers based on the signal constellation. The output of the block is an OFDM
symbol of length N which contain Ñ sub carriers and (N − Ñ) zero sub-carriers.

X = (l0, l1, · · · , lzl−1, X0, X1, · · · , XÑ−1, lzl · · · , lN−Ñ−1); |X| = N (4.2)

for each sub-carrier, Xi ∈ C = {aj ∈ RD; 1 6 j 6 M}
where, li = 0 for i = 1, 2, . . . , (N − Ñ), zl is the number of zero sub-carriers to the left
of Ñ sub-carriers, C is the constellation, aj is the signal point in C, D is the number of
dimension, M is the constellation size.
The known preamble (Ks) is appended to the OFDM symbols for synchronization and
equalization. The number of OFDM symbols between the preambles depends on packet
size(mbytes),sub-carriers(Ñ) and number of bits per symbol(k).
The number of OFDM symbols generated for each packet = m∗8

Ñ∗k = 8ν, where ν = m
Ñ∗k

In fact, the output of the insert preamble block corresponds to

Ks, X
0, X1, · · · · · · · · · , X8ν−1, Ks, X

8ν , X8ν+1, · · · · · · · · · , X16ν−1 · · · · · · · · · (4.3)

where Ks = P0Q0R0
The discrete OFDM symbols(time-domain) acquired from the IFFT block are appended
with the cyclic prefix.

4.3.2.2 Receiver

The output OFDM symbols of the channel are passed through the channel filter, symbol
synchronization and FFT blocks to acquire the synchronized OFDM symbols(Y) based
on the PN sequence correlation [12]. They are corrupted by channel coefficients(fading
channel parameters) and noise.

Y = (m0,m1, · · · ,mzl−1, Y0, Y1,YÑ−1,mzl , · · · ,mN−Ñ−1); |Y | = N (4.4)

where,
Yk = |hk| ∗Xk + ηk, for k = 0, 1, . . . , Ñ − 1
mk = |hk| ∗ lk + ηk, for k = 0, 1, . . . , N − Ñ
|hk| and ηk are channel and noise coefficients.

The OFDM preamble correlation block performs the correlation and equalization on the
synchronized OFDM symbols(Y). It accepts the vector of complex constellation points
from FFT that correlates with the known preamble to estimate the frequency offset in
the FFT bins. It then performs the 1-tap equalization on all the sub-carriers to correct
phase and amplitude distortion. In addition, the corrupted zero sub-carriers are removed
from the OFDM symbol. The algorithm for the equalization and correlation is explained

28

in Appendix B. Ŷ is the equalized OFDM symbol.

Ŷ = (Ŷ0, Ŷ1, · · · · · · · · · , ŶÑ−1); |Ŷ | = Ñ (4.5)

where, Ŷk = Yk/ĥk = Xk + η̂k, ĥk are the estimates of channel coefficients and η̂k = ηk/ĥk.

Ŷ are passed through OFDM demodulator to obtain the demodulated OFDM symbols(
´̂
Y)

´̂
Y = (

´̂
Y0,

´̂
Y1, · · · · · · · · · , ´̂

YÑ−1); | ´̂Y | = Ñ (4.6)

The algorithm for the demodulation using phase locked loop is explained in the Appendix
C. The OFDM symbols are passed through the Trellis metric blocks to perform the soft or
hard decision decoding so as to pass them to the Viterbi blocks.

FSM structure: All the Trellis convolution blocks are based on FSM. A FSM contains
finite number of states, input and output values. A FSM class can be constructed by con-
taining information of input(I), state(S), output(O), next state(NS), output symbol(OS).
They are described as
Input denotation Id ∈ {0, 1, 2 · · · · · · , I − 1},with cardinality I and xk takes values from Id
Output denotation Od ∈ {0, 1, 2 · · · · · · , O−1},with cardinality O and yk takes values from
Od

State denotation Sd ∈ {0, 1, 2 · · · · · · , S − 1} ,with cardinality S and sk takes values from
Sd
Next state NS : SdXId −− > Sd, meaning sk+1 = NS(sk, xk)
Output Symbol OS : SdXId −− > Od, meaning yk = OS(sk, xk)
For instance, if the code rate is 1/2, then the input cardinality(I) is 2 and the output
cardinality(O) is 4. for time instant k, input xk, state sk , output yk and yk = OS(xk, sk).
The state sk moves to the next state sk+1.

Soft Decision Decoding is based on the Euclidean Distance metric. The sub-carriers
(Ykfork = 0, 1, · · · Ñ−1) of synchronized OFDM symbol(Y) and their channel estimates(ĥk)
are used in the computation.
Euclidean Distance: For each sub-carrier of D dimension, O output symbols are produced.
The metrics are obtained by

‖Yk − ĥk ∗ Ci‖2 =
D∑
j=1

|Yk,j − ˆhk,j ∗ Ci,j|2 (4.7)

where, Yk = (Yk,1, Yk,2........, Yk,D), Ci = (Ci,1, Ci,2,, Ci,D) is defined from the constel-

lation, ĥk = (ˆhk,1, ˆhk,2,, ˆhk,D) are the channel estimates for each sub-carrier and O
depends on the output cardinality of the FSM channel coder.
For instance, if the code rate= 1/2 and QPSK modulation is utilized, then the channel
encoder outputs 2 bits for each 1 bit and output cardinality of FSM is 4. So, for each

29

sub-carrier we obtain 4 metrics i.e., for Y0, we get ||Y0 − ĥ0 ∗ C0||2, ||Y0 − ĥ0 ∗ C1||2, ||Y0 −
ĥ0 ∗ C2||2, ||Y0 − ĥ0 ∗ C3||2

Hard Decision Decoding is based on the Hamming Distance metric. The sub carriers

(
´̂
Yk for k = 0, 1, · · · , Ñ − 1) of demodulated OFDM symbol(

´̂
Y) are used in the computa-

tion.
Hamming Distance: For each sub-carrier of D dimensional vector, O output metrics are
produced.The metrics are obtained by

i0 = argmin
i
‖ ´̂
Yk − Ci‖2 = argmin

i

D∑
j=1

| ´̂
Yk,j − Ci,j|2 (4.8)

where
´̂
Yk = (

´̂
Yk,1,

´̂
Yk,2........,

´̂
Yk,D), Ci = (Ci,1, Ci,2,, Ci,D) are defined from the con-

stellation and O depends on the output cardinality of the FSM channel encoder. For O
output metrics, the position of i0 is set to zero and the remaining metrics are taken as 1.
For instance, if the code rate= 1/2 and QPSK modulation is utilized, then the channel
encoder outputs 2 bits for each 1 bit and output cardinality of FSM is 4. So, for each sub-

carrier we obtain 4 metrics i.e., for
´̂
Y0, we get || ´̂Y0−C0||2, || ´̂Y0−C1||2, || ´̂Y0−C2||2, || ´̂Y0−C3||2

and if the value of || ´̂Y0 − C1||2 is minimum, then the output metrics are 1011. Since, the
value of second metric is minimum, it is set to zero and the remaining three metrics are
taken to be 1. These four float values corresponds to each sub-carrier that are passed
through the Viterbi block.

Viterbi Algorithm Block : It instantiates the Viterbi decoder for a sequence of K trellis
epochs, whose input is a sequence of K × O values and the output is a sequence of K
values. Here, O is the output cardinality of the FSM. The output of the metric block that
contains soft or hard symbols and the three metrics(PS , PI and OS) of the FSM are
utilized in decoding the K epochs.
In a p

q
channel encoder, for each time instant k, input xk information is encoded to output

yk information sequence while changing the state of encoder from sk to sk−1. The three
matrices provide the previous state (PS), previous input (PI) and output symbol (OS) of
a FSM and each state has 2p incoming and outgoing paths. For instance, if p

q
= 1

2
, then

each state has 2 incoming and outgoing paths. The three matrices of the FSM are defined
below.

sk−1 = PS(sk, i); i = 0, 1 · · · I − 1; (4.9)

xk−1 = PI(sk, i); i = 0, 1 · · · I − 1; (4.10)

yk = OS(sk, xk) (4.11)

where I is the input cardinality of the FSM.
For all the states in each epoch, the values of the minimum metric and previous states are

30

stored in two vectors. In fact, the ACS (Add compare and select) algorithm is performed
at each state to compute the minimum metric for all the 2p incoming paths.
At the end of K epochs, the two vectors containing the minimum metric and their previ-
ous state are utilized for extracting the previous input from PI matrix. The traced path
obtained from the PI matrix provides the uncoded stream.

4.4 Implementation of Coded OFDM

In all the approaches, a (2,1) trellis code with 4 state i.e, 1 bit input and two bits output is
considered for channel coding. The data stream is unpacked so that each input byte into 8
single bits (carried in a byte 1) before the trellis encoding and pack every four 2-bit worth
bytes into a single byte after trellis encoding. It implies that for every information bearing
byte (before unpacking) we get two coded bytes (after packing).

4.4.1 Approach 1

4.4.1.1 Transmitter

In uncoded OFDM model, the data stream in information source is encapsulated with
header and CRC, which are passed through the OFDM blocks. However, the coded OFDM
model contains the channel encoder that is inserted between information source and OFDM
blocks. In fact, the trellis blocks in GNU Radio which are based on FSM structure are
utilized for the channel encoding. The Figure 4.4 demonstrates the flow-graph structure
for the coded OFDM.
The encapsulated data stream containing header and CRC fields are traversed through the
message source. The message source is a queue that contains a pointer on the top of the
stack(queue). The output of the message source is connected to the ”pack-and-unpack”
block to send the stream of correct input bits to the trellis encoder. The number of bits
to the trellis encoder depends on the code rate. The trellis encoded stream is packed into
bytes before sending into the message sink. The packet from the message sink are passed
onto the OFDM blocks. Also, the message sink is a queue similar to the message source
block.
In order to pass the packets from message sink onto the OFDM blocks, a separate thread
runs in parallel to the main program. The primary objective of the thread is to observe the
packets in the message queue and upon the reception of the packet, they are transferred

1In GNU Radio, the data stream is in the form of bytes and to input single bit to the trellis encoder
block, input byte is unpacked to 8 single bits and each input bit is stored in a byte

31

Figure 4.4: Approach 1: Flow-graph for coded OFDM transmitter

to the OFDM blocks.

4.4.1.2 Receiver

Figure 4.5: Approach 1: Flow-graph for coded OFDM receiver

In the uncoded OFDM model, the OFDM demodulator block performs the symbol syn-
chronization, FFT, equalization and demodulation of the OFDM symbols.In fact, the de-
modulation and framing of the packets are performed in OFDM frame sink.
For the coded OFDM model, the output of the demodulated symbols (i.e., the output of
OFDM frame sink block) is connected to the metrics calculator which produces the re-
quired input symbols to Viterbi decoder. The Viterbi decoder obtains the uncoded packet

32

based on trellis steps, initial and final states of the FSM. The decoded bytes are packed
and sent to the frame sink. The frame sink looks for the start of the header and packs the
payload and CRC in a message queue.

4.4.2 Approach 2

4.4.2.1 Problems in Approach 1

The program doesn’t output any packets during the execution. The problem should be
with the metric calculator and OFDM frame sink. In the receiver, the input to the metric
calculator block should be synchronized OFDM symbols instead of demodulated symbols
as soft decision decoding is implemented in the metric block. The possible approach is to
output the soft symbols of the preamble correlation to the metric calculation and perform
Viterbi decoding for the acquired soft symbols.

Figure 4.6: Approach 2: Flow-graph for coded OFDM receiver

4.4.2.2 Receiver

In the present approach, the output of the OFDM preamble correlation block, which pro-
vides the symbol and phase synchronized OFDM symbols are connected directly to the
trellis metric block.The correlation block has two outputs. One to pass the streams of
OFDM symbols, while the other contains the flag to indicate the start of OFDM symbols.
The metric block is structured to perform soft decision decoding for the OFDM symbols
when it receives the flag output. The corresponding metric values are passed to the Viterbi

33

block and then moved to the frame sink for determining the packet loss rate.
The approach has more than 90 % packet loss.

4.4.3 Approach 3 : Working Model

Problem:
The receiver and packet structure are the main problems of the former approach. The
demodulated OFDM symbols which enter the trellis metric are in disarray with the trans-
mitted OFDM symbols (i.e., OFDM symbols produced by each packet on the transmitter
are not properly aligned at the receiver). Moreover, the header and CRC fields are incor-
rectly detected in the frame sink.
Approach:

• In order to design the coded OFDM model, the ”equivalent inner channel” created
between the trellis encoder and the Viterbi decoder, including the packing/message
queuing/ofdm modulation/demodulation, etc, up until the input to the metric cal-
culation block should be working perfectly. This ”equivalent inner channel” has to
be a byte-in byte-out channel, where each byte is carrying only 2 bits 2. The metrics
defined are ”symbol-wise Hamming distance” i.e., to perform Hard Decision Decod-
ing.

• The header and CRC fields are added to the coded data stream and the frame sink
is replaced by message sink.

4.4.3.1 Transmitter

The flow-graph structure is similar to the Figure 4.4. The only difference is the encapsu-
lation of header and CRC fields. The coded data stream in the message sink is appended
with header and CRC fields that are sent to the OFDM modulator blocks.

4.4.3.2 Receiver

For coded OFDM system, the coded packets after the removal of header and CRC are
passed on to a message source. They are passed through a unpack block to provide ap-
propriate input bits to trellis metric (to perform Hard Decision Decoding) and produce
required input symbols to Viterbi decoder to obtain the uncoded packet based on trellis

2In GNU Radio, the data stream is in form of bytes and here each byte for the inner channel contains
the encoded bit-stream. Since, it is a (2,1) channel encoder, each byte contain 2 bits

34

Figure 4.7: Working Model: Flow-graph for coded OFDM receiver

steps, finite state machine initial and final states. The decoded bytes consisting of payload
and CRC are packed and sent to a message sink.
Two separate threads are created. One passes the coded packets from the output of mes-
sage queue of OFDM frame sink onto the message source block. The other thread is used
to perform the detection of received packets in the message sink.

4.5 Packet Structure and Packet Flow for Coded OFDM

4.5.1 Packet Structure

The three fields of the packet structure are header, coded payload and CRC. The header
contains two equal length fields that comprises offset and coded payload length. The two
equal length fields are used for identifying the packet at the receiver. The coded payload
is acquired through the channel encoder. The channel encoder in the figure 4.8 is a FSM
convolution encoder, which is discussed in the section above. The CRC field is used for
Forward error correction (FEC) of packets at the receiver. Moreover, the coded payload
and CRC fields are whitened, which involves bit-wise XOR operation with pseudo random
stream of data. The packet structure for the coded OFDM model is shown in the Figure
4.8.

35

Payload CRC Channel
Encoder

Coded_payload

 Header Coded_Payload CRC

4 bytes 4 bytes

Offset coded_payload

Length

Offset coded_payload

Length

 4
 bits

12 bits 4
 bits

12 bits

4 bytes

Payload is from generated data stream and
each coded_payload are independent; i.e., no
correlation between two coded_payload streams.

Whitened (scrambled)

Figure 4.8: Packet structure for coded OFDM model

4.5.2 Packet Flow

4.5.2.1 Transmitter

• Step 1: Append CRC to the data stream payload. The payload is obtained from
the information source(ex: binary or image file for transmission).

• Step 2: Channel encode the stream to acquire the coded payload. The encoded
stream depends on the code rate.

• Step 3: Whiten(scramble) the data stream (coded payload appended with CRC). It
involves bit-wise XOR operation with known PN-sequence.

• Step 4: Generate header(4 bytes) of two equal 2 bytes consisting of offset(upper
nibble) and coded payload length(12 bits); Add header to the whitened data stream
and pack them into packets, and send to the message queue.

• Step 5: Generate OFDM symbols from packets based on number of sub-carriers and
signal constellation.

• Step 6: Insert known preamble; In the time domain it corresponds to one training
symbol consisting of two equal length symbols.

• Step 7: Add cyclic prefix to the OFDM symbols

36

Look
 for
Sync
 ??

 Perform Synchronization
 and Equalization

Check
 for

 Header(i.e.,
consisting of two

equal length
 fields) ?

True

De­whiten the coded payload
and CRC.Also, pass the coded
payload through the channel
decoder.

Pass the payload and CRC
to perform the packet loss
rate.

False

 Obtain the payload
 from data stream and
 append with CRC

 Channel encode the
stream to acquire coded

payload

 Whiten the stream
 (coded payload
 appended with CRC)

Obtain packet with Header(two
equal length fields) added to the

whitened data stream

 Generate OFDM
symbols from the packet

Insert Preamble and
add cyclic prefix

 Append CRC to the data
stream payload

TRANSMITTER RECEIVER

True

False

Remove header and
demodulate the packet

Figure 4.9: Packet flow for coded OFDM model

37

4.5.2.2 Receiver

• Step 1: Perform synchronization and equalization [16].

• Step 2: Look for the sync signal i.e., an indicator for start of the packet.

• Step 3: Check for the header with two equal length fields.

• Step 4: Remove the header and demodulate the OFDM symbols.

• Step 5: De-whiten the payload and CRC and pack coded payload into packets.

• Step 6: Pass the packet through a channel decoder to obtain payload and CRC.

• Step 7: Calculate the packet loss rate.

4.6 Problems

4.6.1 Cope with Big Burst of Errors in Coded OFDM Model

• Modified Header
Problem: The data stream(payload) is passed through the channel encoder to acquire
the coded payload. Each coded payload is independent i.e., there is no correlation
between two coded payload streams. The coded payload is added with header and
CRC before passing through the OFDM blocks. At the receiver, the demodulated
OFDM symbols look for the header with two equal length fields. As a result, any
false alarm of the header(incorrect header containing two equal length fields) leads
to misalignment of the channel decoder with a complete loss of packets.
Approach: The header field has two equal length fields. We included the two bit
parity for each field that can be used for error detection. In fact, the header size
is maintained to be 4 bytes by shortening the offset size to 2 bits. This reduces
the overhead of additional bits in the header. Moreover, the receiver is designed for
header verification of two equal length fields and parity check bit. This prevents the
header mismatch and packet loss. The modified packet structure is shown in the
Figure 4.10.

• Interleaving
Appending convolution interleaving to the coded data stream reduce the burst of
errors. The interleaver is attached to the output of the trellis encoder while the
de-interleaver to the input of the trellis metric.

• Packet size
Reducing the packet size of transmission. In fact, the trellis encoder and decoder per-
form better for smaller trellis steps. As a result, transmission of packets in smaller

38

Payload CRC Channel
Encoder

Coded_payload

 Header Coded_Payload CRC

4 bytes 4 bytes

Parity_
check

coded_payload
Length

 2 bits 12 bits

4 bytes

Payload is from generated data stream and
each coded_payload are independent; i.e., no
correlation between two coded_payload streams.

Whitened (scrambled)

Offset

 2 bits

Parity_
check

coded_payload
Length

 2 bits 12 bits

Offset

 2 bits

Figure 4.10: Modified Header Packet Structure

size decreases packet loss rate.
For instance, payload1 and payload2 are two equal length data stream, then payload1
+ CRC through channel encoder has less than 1% packet loss and payload1+payload2+CRC
stream through channel encoder has 50 to 60% packet loss. The packet loss rate is
decreased with smaller packet size.

• Sleep function
The use of sleep function(time.sleep()) in the queue watcher threads helps to protect
the integrity of packets for trellis decoding. Two threads are watched at the receiver,
one observes the message queue of the ofdm frame sink block to pass the data stream
through channel decoder and the other thread is used to watch the output stream of
the channel decoder to perform FEC(CRC check) and measure the packet loss rate.
The packets for the second thread are obtained from the channel decoded stream
of messages of first thread. So, the second thread is provided some transition time
(time.sleep(0.01)) to reduce the packet loss rate.

4.6.2 Remarks

1. There is a significant packet loss in OFDM at the receiver due to mis-match on the
preamble and miss the entire packet. The problem in capturing some of the packets
seems to be at the ofdm sync blocks in the receiver. As a result, the headers are

39

received incorrectly which result in misfire of the entire packet.

2. Misfire of the packets in coded OFDM model is sensitive to data rate i.e.,variations
in decimation and interpolation result in better performance. For instance, decrease
of interpolation and decimation rate by 2 results in 15-20 % improvement of packet
loss.
The relation between Decimation,Interpolation and Data rate for OFDM model3

Data Rate(Rb) =
(ADC Sampling Rate ∗Occupied Tones)

(No of FFT ∗Decimation rate)
∗ (bits per tone)

Data Rate(Rb) =
(DAC Sampling Rate ∗Occupied Tones)

(No of FFT ∗ Interpolation rate)
∗ (bits per tone)

Bits per tone depends on modulation type. For BPSK it is 1,QPSK it is 2.

3. In 2.4 GHz band,the receiver is prone to frequency deviation. In fact,the frequency
offset(δ) of USRP is not the search range of the carrier frequency(fc), especially for
small bandwidth signals. If OFDM symbols are constantly transmitted on carrier
frequency(fc) then the receiver need to be tuned to various frequencies of fc ± δ.
Also, the value of δ varies by changing data rate.
For instance, Interpolation:256, Decimation :128 and carrier frequency 2.2.422 GHz,
then the frequency offset of the receiver is 10 kHz.

4. Without scrambling the data sequence (whitening the payload and CRC fields) all
the packets are received incorrectly for both coded and uncoded system.

5. There is trade-off between overhead and system efficiency for the uncoded and coded
OFDM. The overhead of a packet is the additional amount of bits/bytes appended
to the payload for synchronization, equalization and error detection, whereas the
system efficiency is defined as the ratio of raw bits/bytes sent to the total number of
bits/bytes utilized for transmission. In uncoded OFDM, the overhead involves CRC,
header, zero-padding, cyclic prefix and known preamble. However, the coded OFDM
involves the corresponding fields in addition to the channel encoded bits/bytes and
parity check bits of the header. For instance, if the payload length is 508 bytes, FFT
length is 512, occupied tones is 200, length of cyclic prefix is 128, 32 bits of CRC,
32 bits of header, code rate of channel encoder is 1

2
and QPSK modulation for each

sub-carrier.
In a uncoded OFDM, the payload(4016 bits) is appended to the 64 bits of header
and CRC to generate each packet. The zero-padding bits and cyclic prefix bits are
added to the OFDM symbols generated from each packet, while the preamble bits
are added at the start of each packet. So, the total overhead for the uncoded OFDM
is 9888 bits, while the system efficiency is provided as 4016

4016+9888
= 0.288.

In a coded OFDM, the payload(4016 bits) is appended to 32 bits of CRC that are

3Important : Increase in data rate results in better performance as imposed to decrease its value.

40

passed through the channel encoder to obtain the coded payload. As the code rate
is 1

2
, for each input bit it generates 2 output bits. The obtained coded payload

is appended to 64 bits of header(including 2 bits of parity check) and CRC. The
resultant coded packet are appended with zero-padding, cyclic prefix and preamble
bits similar to the uncoded OFDM. The resultant overhead for the coded OFDM is
19632 bits, while the system efficiency is provided as 4016

4016+19632
= 0.145.

Therefore, for the coded OFDM
% Increase in overhead = 98.5 %
% Decrease in system efficiency = 49.65 %

41

Chapter 5

Four Node Test-bed Experiments

5.1 Motivation

To create the test-bed model for CR with 4 nodes. Also, to evaluate the co-existence of
PUs and SUs under different conditions with a performance metric.

5.2 Objective

• Flow-graph model for sensing-transmission and sensing-reception-sensing-transmission
cycles. Explaining the possible constraints for the implementation.

• To perform the test-bed experiments under three different scenarios for PUs and SUs
and evaluating the discrepancies by examining with performance metric.

• Comparison of throughput metric for rendezvous protocols to evaluate the efficiency
of communication.

5.3 Implementation

The sensing flow-graph is based on the discussion in the Chapter 2. The transmitter
and receiver flow-graphs are based on packet modulator and demodulator blocks in GNU
Radio.1

1digital folder in GNU Radio examples that provide continuous transmission and reception

42

5.3.1 Periodic Sensing-transmission Cycles

Objective: To generate alternate sensing-transmission cycles.
Approach: Two separate flow-graphs are generated as hierarchical blocks for sensing and
packet transmission under the main block (the main source for all the blocks in the GNU
Radio software). The flow-graphs are connected in parallel at the same time, while the
set enable(ind) function2 is used to switch between the source and sink blocks of the USRP.
If the ind is True, then USRP runs as transmitter and ind is False, then USRP runs as
receiver. The Figure 5.1 indicates the flow-graph model for the sensing and transmission
cycle.

Figure 5.1: Block Diagram for sensing-transmission flow graphs

Initially, the USRP is switched to sensing mode by set enable(False) and at the end of
sensing cycle it is moved to transmission mode by switching set enable(True). The cycles
are repeated for periodic sensing and communication model. For proper operation of
the cycles, transition time is inserted between the sensing and transmission cycles and
vice versa(time.sleep() function is utilized). The Figure 5.2 provides the time division
multiplexing of sensing and transmission periods.

5.3.2 Periodic Sensing-reception-sensing-transmission Cycles

Objective: To implement the period of sensing-reception-sensing-transmission. As USRP
is a source in sensing and reception flow-graphs, only one flow-graph (sensing or reception)
should be active.
Approach: All the three flow-graphs are implemented as hierarchical blocks. The transmit-

ter flow-graph is connected all the time, but the dynamic flow graph model is implemented
for sensing and reception flow-graph so that one flow graph is active for each time slot i.e.,

2Alternatively, set auto tr() function could be used for automatic switching between Tx’r and Rx’r

43

Figure 5.2: Time Division Multiplexing of sensing-transmission periods

Figure 5.3: Block Diagram for sensing, reception and transmission flow graphs

44

during the sensing period the sensing flow-graph is active and in the reception period the
reception flow-graph is active. Initially, the sensing flow-graph is connected and the lock()
and unlock() function are used for dynamically switching between the two flow-graphs.
The Figure 5.3 indicates the flow-graph model for the sensing, transmission and reception
periods.
At the end of sensing period, the lock() method is called to disconnect the sensing blocks,
and connect the receiver blocks, and the configuration ends by calling unlock() method to
indicate the end of flow-graph transfer. Also, the sensing functional block(bin statistics f.cc)
has been changed so as to initiate the scanning of center frequencies after the call from the
python program. A method scan mode(ncenfreqs) has been implemented in the functional
block that passes the number of center frequencies(ncenfreqs) to be scanned and returns
the control after the end of scanning period. This prevents the abrupt ion of the thread
while using the lock() and unlock() methods to switch flow-graphs. In the reception mode,
the packets are received for certain duration specified by the user. Similarly, the call blocks
are repeated to switch for the sensing period.
The switching between the sensing and transmission or transmission or sensing periods is
similar to section 5.3.1. The Figure 5.4 provides the time division multiplexing of sensing,
reception, sensing, transmission periods.

Figure 5.4: Time Division Multiplexing of sensing-reception-sensing-transmission periods

5.4 Experiments and Test-bed Results

The current test-bed model involves four USRPs, with two PUs communicating on primary
channel and two opportunistic SUs that reconfigure their communication based on the
primary traffic. The SUs communicate on the primary or secondary channel. The Figure
5.5 demonstrates the test-bed model of PUs and SUs.

45

Figure 5.5: Test-bed Model for PU’s and SU’s

5.4.1 Scenarios and Performance Metric

Three scenarios are considered for primary and secondary traffic. The USRP is aware of the
noise power of the primary channel based on the experiments for Hypothesis (H0) discussed
in the Chapter 2. Also, the sensing is performed for three center frequencies around the
primary carrier frequency. For the three scenarios, the primary traffic corresponds to
Markov model communication of ON and OFF cycles that are demonstrated in Chapter 3.

• scenario 1 : Single channel(primary channel) for primary and secondary traffic.

• scenario 2 : Two channels (primary and secondary channel) for communication. SUs
communicate without mutual handshake.

• scenario 3 : Two channels (primary and secondary channel) for communication. SUs
communicate through rendezvous protocol. We demonstrated the cases for two-way
and three-way handshake. On the other hand, the method can be extended for DSA
(dynamic spectrum access) of multiple channels.

Performance Metric: Interference for PUs and SUs are studied by analyzing the percent-
age of packet loss and error rate. They are examined for without interference, empirical
threshold, false alarm (PU is absent, SU sense channel is busy) and miss detection (PU is
present, SU sense channel is idle) that are obtained by varying the threshold for the energy
detector(periodogram analysis).
For the three scenarios, the performance metrics provides to evaluate the interference free
communication and coexistence of PUs and SUs. Also, it is used as QoS for the establish-

46

ment of various rendezvous protocols for SUs traffic.

Percentage of packet loss (%pl) =
No of transmitted − No of received

No of transmitted
(5.1)

Percentage of error rate (%er) =
No of received − No of correct

No of received
(5.2)

5.4.2 Scenario 1: Single (Primary) Channel for Communication

PUs and SUs communicate on single channel, but SUs utilizes the channel only when it
senses that there is no PU communication.
Secondary Traffic: At any given time, the secondary transmitter operates in three modes;
sensing, idle or transmission mode. In sensing mode, it senses the primary channel to
evaluate the average power of the channel. In idle mode, it remains silent for the length of
the duration specified by the user. In transmission mode, it transmits a fixed number of
packets. Initially, it senses the primary channel and before returning to the sensing mode,
it moves to idle or transmission mode based on the sensing decision. Usually, if the channel
is busy, it remain for a short period in idle mode and switch back to sensing mode, but if
the channel is deemed free, then it transmit data packets over the primary channel. The
program uses the periodic sensing and transmission that are explained in the section 5.3.1
to alternatively switch between sensing and transmission mode. Similarly, the secondary
receiver remain in idle or reception mode. The idle mode is similar to the secondary
transmitter and for the reception mode it receives packets for a certain duration.3

5.4.2.1 Primary Traffic : Parameters and Assumptions

The primary traffic uses DBPSK modulation for its transmission. Assume the number of
packets available for transmission are 10,15,20. The ON periods are calculated based on
data rate, packet size and packet overhead. Also, the ON periods has uniform distribution
and their selection depends on prior probabilities. The corresponding OFF periods are 0.51,
1.32, 2.55 seconds that are determined from algorithm in Appendix A. The parameters of
primary traffic are

• Modulation : DBPSK ; Excess Bandwidth = 0.35

• Interpolation rate : 512 ; Samples per symbol : 2

• Carrier Frequency(fc) : 2.422 GHz

3The program is based on the packet demodulator block in GNU Radio.

47

• Packet size=4000 bytes ; Packet overhead = 20 bytes

• Data Rate4 =125Kb/sec

• Transition Matrix(P) =

[
0.25 0.75

0.35 0.65

]
• Pr(10) = 0.45; Pr(15) = 0.3; Pr(20) = 0.25

• TON10 = 0.25728secs; TON15 = 0.38592secs; TON20 = 0.51456secs

• TOFF10 = 0.51secs; TOFF15 = 1.32secs; TOFF20 = 2.55secs

5.4.2.2 Secondary Traffic :Parameters and Assumptions

The secondary traffic uses Coded OFDM model discussed in Chapter 4. We evaluate
the performance metrics for short and long burst. The transmission periods for number
of packets depends on data rate, packet size and packet overhead. The sensing period
depends on dwell delay and tune delay for each of the center frequencies.
We considered the case of 30 and 100 packets for short and long burst. There are only
three center frequencies and the sensing period is 3∗ (td+ tn); td = 10msecand tn = 1msec.
The parameters for secondary traffic are

• Modulation : Coded OFDM (QPSK); Code Rate = 1/2

• Interpolation : 256; Samples per symbol=2

• Occupied tones: 200; FFT length =512

• Scanning Frequency Range :2.5 MHz i.e., considering three center frequencies around
carrier (2.4205 GHz-2.423 GHz)

• Packet size =508 bytes ; Packet Overhead = 525 bytes

• Data Rate 5=390.625 Kb/sec

• Transmission time for short burst(30 packets) Tt 30 = 0.634secs

• Transmission time for long burst(100 packets) Tt 100 = 2.115secs

• Sensing period for three center frequencies Ts = 33msecs

4DataRate(Rb) = (ADCSamplingRate)
(Samplespersymbol∗Interpolationrate) ∗ (bitspersymbol);ADCSamplingRate :

128MS/sec
5DataRate(Rb) = (ADCSamplingRate∗OccupiedTones)

(FFTsize∗Interpolationrate) ∗ (bitspertone)

48

We evaluate the performance for short and long burst of traffic from SU. The packet loss
and error rate are calculated based on equations (5.1), (5.2)

• Total number of packets for transmission(PU): 200

• Total number of packets for transmission (SU): 1000

• Threshold for Energy Detector : τ

• Average Power Statistics for PU :Pavg = 54.5
where the average power statistics are similar to the mean of average power for H1

hypothesis in Chapter 2.

5.4.2.3 Performance of PU

case(i): Short Burst of Traffic from SU
The Table 5.1 provides the percentage of packet loss and error rate of PU with short bust
of traffic from SU.

Table 5.1: Performance of PU: short burst of traffic from SU

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 200 197 0 1.5
Empirical Threshold(τ(55) u Pavg) 171 165 14.5 3.5
Miss Detection (τ(70) > Pavg) 87 63 56.5 27.5
False Alarm (τ(45) < Pavg) 135 120 32.5 11.11

case (ii):Long Burst of Traffic from SU
The Table 5.2 provides the percentage of packet loss and error rate of PU with long bust
of traffic from SU.

Table 5.2: Performance of PU: long burst of traffic from SU

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 200 197 0 1.5
Empirical Threshold(τ(55) u Pavg) 85 82 57.5 3.5
Miss Detection (τ(70) > Pavg 40 35 80 12.5
False Alarm (τ(45) < Pavg 60 55 70 8.33

49

5.4.2.4 Performance of SU

case(i): Short Burst of Traffic from SU
The Table 5.3 provides the percentage of packet loss and error rate of SU with short bust
of traffic from SU.

Table 5.3: Performance of SU: short burst of traffic from SU

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 768 745 20.2 2.55
Empirical Threshold(τ(55) u Pavg) 727 698 27.3 3.98
Miss Detection (τ(70) > Pavg) 717 687 28.3 4.18
False Alarm (τ(45) < Pavg) 715 682 28.5 4.615

case (ii) : Long Burst of Traffic from SU
The Table 5.4 provides the percentage of packet loss and error rate of SU with long bust
of traffic from SU.

Table 5.4: Performance of SU: long burst of traffic from SU

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 840 830 16.0 1.19
Empirical Threshold(τ(55) u Pavg) 827 815 17.3 1.25
Miss Detection (τ(70) > Pavg) 726 713 27.4 1.79
False Alarm (τ(45) < Pavg) 749 738 25.1 1.468

5.4.2.5 Special Case:Long Burst of Traffic from PU and SU

From the Table 5.2, there is a complete loss of packets due to secondary interference (big
burst of data). In order to avoid the interference we need to increase the number of packets
during ON cycle i.e., transmission time of PU is longer and enabling SU to detect PU. The
PU traffic are changed as
Transmitting 40,60,80 packets during ON cycle.
OFF periods ; 5 ,6 and 8 seconds.

Performance of Primary User Traffic.
The Table 5.5 provides the percentage of packet loss and error rate of PU with long bust
of traffic from PU and SU.
Performance of Secondary User Traffic

50

Table 5.5: Performance of PU:long burst of traffic from PU and SU

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 200 200 0 0
Empirical Threshold(τ(55) u Pavg) 168 167 16 0.5
Miss Detection (τ(70) > Pavg) 102 92 49 9.8
False Alarm (τ(45) < Pavg) 138 128 31 7.24

The Table 5.6 provides the percentage of packet loss and error rate of SU with long bust
of traffic from PU and SU.

Table 5.6: Performance of SU: long burst of traffic from PU and SU

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 847 836 15.3 1.29
Empirical Threshold(τ(55) u Pavg) 800 786 20 1.75
Miss Detection (τ(70) > Pavg) 719 694 28.1 3.47
False Alarm (τ(45) < Pavg) 743 733 25.7 1.34

Remarks :

1. From the Table 5.2, there is a large percentage of packet loss and error rate for the
PU with long burst of traffic from SU.

2. The large percentage of packet loss and error rate for the PU can be reduced by
lengthening the transmission periods of the ON traffic for the PU. As it is shown in
Table 5.5 and 5.2, there is decrease of 40 % packet loss and error rate, when long
burst of traffic is performed for the PU

3. Shorter idle periods are used for the secondary transmitter. Secondary transmitter
senses the primary channel and switches to idle or transmission mode based on the
sensing decision. At the end of idle or transmission mode, it switch back to sensing
period. So, the shorter idle periods increases the probability of detection of the PUs.

5.4.3 Scenario 2: Two Channels (Without Handshaking)

We assume, there are two channels for SU’s communication and the secondary channel is
free all the time. There is no synchronization of SU’s for the data traffic exchange.
Protocol for synchronization of secondary traffic:
There is no mutual handshake and the exchange of communication takes place with the

51

initiation of a beacon signal. The secondary transmitter sends a beacon signal before
the data transmission on either channel(primary or secondary) based on sensing decision
for primary traffic. The secondary receiver remains on the channel if there is a beacon
signal or hops between the primary and secondary channel. For the secondary receiver,
the length of the duration it remains for the beacon signal on a particular channel is
known as contention period. The flow-graph model of sensing transmission cycle in section
5.3.1 is used for the secondary transmitter and packet demodulator blocks are modified
for the secondary receiver. The duty cycle for SUs and secondary receiver channel usage
is demonstrated in the Figure 5.6.

We tried to use the same parameters as discussed in scenario 1, but Coded OFDM
is very sensitive to packet loss and there is high probability for loss of beacon signal
in transmission. Thus, we intend to use Coded OFDM for primary traffic and DBPSK
modulation for secondary traffic. Moreover, the two carrier frequencies are considered
as 2.457GHz (channel 10) and 2.462GHz (channel 11) in 802.11 channels which are less
suspectable to interference compared to 2.422GHz (channel 3).

5.4.3.1 Primary Traffic: Parameters and Assumptions

The primary traffic uses coded OFDM modulation. Assume, the number of packets avail-
able for transmission are 40,60,80. The ON periods are calculated based on data rate,
packet size and packet overhead. Also, the ON periods has uniform distribution and their
selection depends on prior probabilities. The corresponding OFF periods are considered as
1.692, 5.072, 8.46 secs that are determined from algorithm in Appendix A. The parameters
for primary traffic are

• Modulation : Coded OFDM (QPSK) ; Code Rate = 1/2

• Interpolation = 128 ; Samples per symbol=2

• Occupied tones: 200; FFT length =512

• Packet size =508 bytes ; Packet Overhead = 525 bytes

• Primary Carrier Frequency(fc1) : 2.457 GHz

• Data Rate 6 = 780.25 Kb/sec

• Transition Matrix(P) =

[
0.25 0.75

0.35 0.65

]
• Pr(40) = 0.25; Pr(15) = 0.35; Pr(20) = 0.40

6DataRate(Rb) = (ADCSamplingRate∗OccupiedTones)
(FFTsize∗Interpolationrate) ∗ (bitspertone); ADCSamplingRate : 128MS/sec;

52

F
ig

u
re

5.
6:

D
u
ty

cy
cl

e
of

S
U

’s
fo

r
tw

o
ch

an
n
el

an
d

w
it

h
ou

t
m

u
tu

al
h
an

d
sh

ak
e

53

• TON40 = 0.846secs; TON60 = 1.268secs; TON80 = 1.692secs

• TOFF40 = 1.692secs; TOFF60 = 5.072secs; TOFF80 = 8.46secs

5.4.3.2 Secondary Traffic: Parameters and Assumptions

Transmission period depends on data rate, packet size and packet overhead. The sensing
period is same as the scenario 1.

• Modulation : DBPSK ; Excess Bandwidth = 0.35

• Interpolation rate : 256 ;Samples per symbol : 2

• Scanning Frequency Range : 2.5 MHz i.e., three center frequencies around carrier
(2.4205-2.423 GHz)

• Secondary Carrier Frequency(fc2) : 2.462 GHz

• Packet size=4000 bytes;Packet overhead = 20 bytes

• Data Rate 7 = 250 Kb/sec

• Tran mission time for long burst(100 packets) Tt 100 = 4.864secs

• Sensing period for three center frequencies Ts = 33msecs

We evaluate the performance of PUs and SUs besides mentioning the synchronization prob-
lems of secondary traffic. The packet loss and error rate are calculated based on equations
(5.1), (5.2)

• Total number of packets for transmission(PU): 1000

• Total number of packets for transmission(SU): 1000

• Threshold for Energy Detector : τ

• Average Power Statistics for PU :Pavg = 46.5
where, the average power statistics are obtained by performing the average power
analysis for Coded OFDM parameters under hypothesis H1 as discussed in section
2.4, Chapter 2.

7DataRate(Rb) = (ADCSamplingRate)
(Samplespersymbol∗Interpolationrate) ∗ (bitspersymbol); ADCSamplingRate :

128MS/sec

54

5.4.3.3 Performance of PU

The Table 5.7 provides the percentage of packet loss and error rate of PU for two channel
without handshaking.

Table 5.7: Performance of PU for two-channel without hand-sake

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 991 989 0.9 0.2
Empirical Threshold(τ(45) u Pavg) 864 832 13.6 3.7
Miss Detection (τ(60) > Pavg) 665 625 33.5 6.01
False Alarm (τ(35) < Pavg) 824 786 17.6 4.61

5.4.3.4 Performance of SU

The Table 5.8 provides the percentage of packet loss and error rate of SU for two channel
without handshaking.

Table 5.8: Performance of SU for two-channel without hand-sake

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 509 432 49.1 15.12
Empirical Threshold(τ(45) u Pavg) 506 463 49.4 8.49
Miss Detection (τ(60) > Pavg) 517 488 48.3 5.60
False Alarm (τ(35) < Pavg) 523 496 47.7 5.16

Remarks:

1. There is no mutual handshake between the two SUs before the start of data com-
munication. It results in large percentage of packet loss and error rate which is
demonstrated in the Table 5.8.

2. In the synchronous protocol, the secondary receiver hops between primary and sec-
ondary channel if there is no beacon signal for the contention period. For the imple-
mentation on GNU Radio, the main thread in python awaits for the packet(beacon
signal) in the message sink. The message sink acquires the packets from the demod-
ulated blocks (implemented on C++) of the receiver. The latency for the packet to
pass through the blocks and return the call to python abrupt the main thread which
results in switching between the two channels. The problem causes the receiver to

55

hop between the channels even if there is continuous burst of traffic. The pictorial
representation of latency problem is shown in the Figure 5.6.

3. Interference of PU’s and SU’s is accountable for the packet loss. The loss of control
packet results in complete loss of data packets for the SU. The Figure 5.6 demon-
strates the loss of beacon signal and the interference of PUs and SUs.

5.4.4 Scenario 3 : Rendezvous Communication (Two Channels)

5.4.4.1 Rendezvous Communication: Two-way Handshaking

The rendezvous protocol [18] uses mutual handshake in advance to actual data traffic. The
secondary nodes accomplish handshaking by transmitting periodic beacon signals on free
channels and awaits for an acknowledgment signal. The handshaking completes, when
a node receives an acknowledgment signal and start communicating for data traffic. We
assume that there are two channels for SU’s communication.
Protocol for synchronization of secondary traffic:
There are two modes of operation; synchronous and data traffic modes. In the synchronous
mode, the nodes meet on a control channel with an exchange of beacon and acknowledgment
signal i.e., mutual handshaking between the nodes. To achieve handshaking, nodes send a
periodic beacon signal(containing channel information) on free channels. If there is a node
that listens to a beacon, then it responds immediately with an acknowledgment signal.
The reception of an acknowledgment signal completes synchronous mode and both switch
to the data traffic mode.
In data traffic mode, the node that receives acknowledgment signal acts as the secondary
transmitter to send data traffic (predefined no of packets), the other node the one who
receives beacon signal acts as the secondary receiver to listen to the data traffic. At
the end of data traffic, each node sense communicating channel to switch to synchronous
mode(channel is busy) or remain in data traffic mode(channel is idle) i.e.,the exchange of
communication takes place until the channel is occupied by the PU. The flow-graph and
duty cycle of SU’s for two-way handshake is shown in the Figure 5.7 and 5.8.

5.4.4.2 PU and SU Traffic

All the parameters for PUs and SUs are same as scenario 2.
Remarks
There are two cases that might result in disruption of communication.

1. In data traffic mode, if a node stagnates on a channel as the other node vacates the
channel at the end of data traffic (advances to synchronous mode; the node sense the

56

F
ig

u
re

5.
7:

F
lo

w
C

h
ar

t
fo

r
tw

o-
w

ay
h
an

d
sh

ak
e

57

F
ig

u
re

5.
8:

D
u
ty

cy
cl

e
of

S
U

’s
fo

r
tw

o
ch

an
n
el

an
d

w
it

h
tw

o-
w

ay
h
an

d
sh

ak
e

58

Table 5.9: Performance of PU for two-channel with two-way handshake

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 970 969 0.03 0
Empirical Threshold(τ(45) u Pavg) 974 958 0.26 16.42

Table 5.10: Performance of SU for two-channel with two-way handshake

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic (Node A) 620 384 38.0 59.03
Empirical Threshold (Node A) 634 298 36.6 52.99
No PU Traffic (Node B) 468 204 53.2 56.41
Empirical Threshold (Node B) 710 208 29.0 50.2

channel is busy). The stagnated nodes tries to communicate for a certain period. It
switches to synchronous mode if there is lack of response from the other node. It
stagnated node problem causes packet loss for the SUs. The Figure 5.8 demonstrates
the stagnated node problem.

2. Loss of an acknowledgment signal might cause one node to be in synchronous mode,
while the other is still in data traffic mode. Similar to case (i) the node in data
traffic mode remains in that mode for a certain duration and returns to synchronous
mode due to lack of response on the channel. The Figure 5.8 shows the loss of
acknowledgment signal.

The Table 5.10 demonstrates the percentage of packet loss and error rate for the SU due
to stagnated node and loss of acknowledgment signal.

5.4.4.3 Rendezvous Protocol : Three - way Handshake

Motivation for three-way protocol
1. Duty cycles for two nodes are asynchronous.i.e., lack of time synchronization.
2. Loss of beacon and acknowledgment signal.
3. Stagnated Node Problem.
It is based on the lines of two-way handshaking protocol.
Protocol for synchronization of secondary traffic: We assume there are two channels for
communication. For the protocol, there are two modes of operation; synchronous and data
traffic mode. In synchronous mode, each node transmits a beacon signal and waits for an
acknowledgment signal, with the reception of acknowledgment signal, the node transmits
ack-ack(to convey the reception of acknowledgment signal so as to reduce stagnated node
problem) signal to establish communication and traverses to data traffic mode, while the

59

other node on reception of ack-ack signal moves to data traffic mode. In addition, syn-
chronous traffic signals contains channel information, node representation (Tx’r or Rx’r)
and packet number.
In data traffic mode, the exchange of data traffic is performed with the transmitter and
receiver rendezvous communication on agreed channel. At the end of data traffic, each
node traverse to the synchronous mode to establish the communication. The flow-graph
model and duty cycle of SU’s for the demonstration of three-way handshake are shown in
Figures 5.9 and 5.10.

5.4.4.4 MAP Testing

It is a decision rule to distinguish between the two hypothesis based on the collected
statistics. The density functions of statistics and prior probabilities for each hypothesis
are used in MAP testing. Consider, the collected statistics (z) for the two hypothesis H0

and H1. The MAP testing is defined from [15].

P (z/H0)

P (z/H1)

H0

T
H1

π1

π0

; where, P (H0) = π0 and P (H1) = π1 (5.3)

For our experiments, the average power statistics (Pavg) are used to distinguish between
the two hypothesis H0 (Primary traffic is OFF) and H1 (Primary traffic is ON). The
density function of Pavg for H0 is obtained from section 2.4 in Chapter 2, while the density
function of Pavg for H1 is acquired by performing the similar experiment with Coded
OFDM modulation for PU. The experiments provide that both statistics follow Gaussian
distribution i.e.,

P (Pavg/H0) =
1√

2πσ2
0

exp
− (z−µ0)2

2σ2
0 ; µ0 = 20.49 and σ0 = 0.063 (5.4)

P (Pavg/H1) =
1√

2πσ2
1

exp
− (z−µ1)2

2σ2
1 ; µ1 = 44.040 and σ1 = 2.897 (5.5)

The prior probabilities for the two hypothesis are evaluated from transition matrix (P). In

fact, the transition matrix(P) for the Markov traffic of PUs is chosen as P =

[
0.25 0.75

0.35 0.65

]
which is used to obtain the ratio of prior probabilities from Appendix A. So, the ratio is
given as

π1

π0

=
0.75

0.35
(5.6)

60

F
ig

u
re

5.
9:

F
lo

w
C

h
ar

t
fo

r
th

re
e-

w
ay

h
an

d
sh

ak
e

61

F
ig

u
re

5.
10

:
D

u
ty

cy
cl

e
of

S
U

’s
fo

r
tw

o
ch

an
n
el

an
d

w
it

h
th

re
e-

w
ay

h
an

d
sh

ak
e

62

From equation 5.3 to 5.6, the resultant equation is provided as

P (Pavg/H0)

P (Pavg/H1)

H0

T
H1

π1

π0

; (5.7)

The collected statistics for each time instant are substituted in equation 5.7 to determine
the presence or absence of primary traffic. The tables 5.11 to 5.14 provides the percentage
packet loss and error rate for MAP testing.

5.4.4.5 Primary and Secondary Traffic Performance

The performance of PUs and SUs are evaluated for two different modulations(DBPSK,
GMSK) of secondary traffic. Also, the MAP testing is performed in each case. The re-
maining parameters are same as scenario 2.
Average power statistics of the channel(Pavg) = 44.05.
where, the average power statistics are obtained by performing the average power analysis
for Coded OFDM parameters under hypothesis H1 as discussed in section 2.4, Chapter 2.

case(i): Secondary Traffic Modulation (DBPSK)

Table 5.11: Performance of PU for two-channel with three-way handshake(DBPSK)

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 985 960 1.5 2.53
Empirical Threshold(τ(45) u Pavg) 958 943 4.2 1.56
Miss Detection (τ(60) > Pavg) 885 870 11.5 1.69
False Alarm (τ(35) < Pavg) 951 937 4.9 1.47
MAP testing 970 958 3.0 1.28

Table 5.12: Performance of SU for two-channel with three-way handshake(DBPSK)

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 956 879 4.4 8.05
Empirical Threshold(τ(45) u Pavg) 946 861 5.4 8.98
Miss Detection (τ(60) > Pavg) 915 821 8.5 10.27
False Alarm (τ(35) < Pavg) 923 872 7.7 5.52
MAP testing 934 858 6.6 5.48

case(ii): Secondary Traffic Modulation(GMSK)

63

Table 5.13: Performance of PU for two-channel with three-way handshake(GMSK)

Case No of received No of Correct %Packet Loss %Packet Error

No SU Traffic 985 960 1.5 2.53
Empirical Threshold(τ(45) u Pavg) 968 951 3.2 1.75
Miss Detection (τ(60) > Pavg) 901 867 9.9 3.77
False Alarm (τ(35) < Pavg) 959 948 4.1 1.14
MAP testing 952 940 4.8 1.26

Table 5.14: Performance of SU for two-channel with three-way handshake(GMSK)

Case No of received No of Correct %Packet Loss %Packet Error

No PU Traffic 992 988 0.8 0.40
Empirical Threshold(τ(45) u Pavg) 974 965 2.6 0.92
Miss Detection (τ(60) > Pavg) 936 919 6.4 1.81
False Alarm (τ(35) < Pavg) 948 920 5.2 2.95
MAP testing 958 946 4.2 1.25

Remarks

1. The major problem for the two-way handshake is the stagnated node where the
node remain in data traffic mode while the other node sends out beacon signal for
handshaking. We address the problem by providing the mutual handshake after the
completion of each data traffic burst. Also, we modeled the protocol so that one node
is a receiver while the other remain as a transmitter for the data traffic.

2. From the Tables 5.12 and 5.14, it provides that using GMSK for SUs results in less
percentage of packet loss and error rate compared to DBPSK for all the cases(empirical
threshold, false alarm, miss detection and MAP testing). Especially, for the empirical
threshold there is decrement of 8% in error rate for GMSK and DBPSK. So, it is
better to use GMSK for the three-way rendezvous protocol of SUs.

3. Although there loss of acknowledgment and ack of acknowledgment in the three-
way handshake. It provides better performance rather than two-way handshake by
eliminating the stagnated node problem. The Tables 5.10 and 5.14 demonstrates
that there is reduction of 30 % of packet loss and 50 % of packet error for empirical
threshold in a three-way handshake protocol.

4. The three-way handshake provides better performance compared to two-channel
model without handshaking. The Tables 5.14 and 5.8 demonstrates that the per-
centage of packet loss and error rate are decreased by more than 40 % for the SUs.

64

5.4.4.6 Comparison of Throughput Metric of SUs for Handshaking Protocols

Throughput metric is defined as the average rate of successful messages over the commu-
nication channel. It is measured in terms of correctly received bits/packets/ messages per
unit time. We define the metric as the number of correctly received packets per unit time
i.e.,

Throughput Metric =
Number of correctly received packets

Transmission time for all packets
packets/sec.

The multimedia image file is used for transmission of packets. The throughput metric is
compared for the two-way and three-way handshaking of the SUs under no PU traffic,
empirical threshold and MAP testing.

Table 5.15: Throughput metric of SUs for rendezvous protocols for three conditions

Handshaking protocol No PU traffic Empirical Threshold MAP testing

Scenario 3 (Two-way) 3.759 2.486 3.011
Scenario 3 (Three-way with DBPSK) 5.498 5.445 5.029
Scenario 3 (Three-way with GMSK) 6.066 5.939 5.933

Remarks

1. From the Table 5.15, the throughput metric for the three-way with DBPSK and
GMSK is more than the two-way handshaking. It indicates the three-way handshak-
ing provides the effective way for transmission of packets over the communication
channel.

2. From the Table 5.15, the throughput metric for the three way handshaking for
DBPSK is less than the three-way handshaking for GMSK. It indicates the GMSK
modulation for SUs provides high efficieny (throughput) compared to DBPSK for
SUs.

5.4.4.7 Multimedia Traffic

The Figure 5.11 and 5.12 provides the multimedia traffic of primary and secondary users for
various threshold. Here, Coded OFDM is used for primary traffic and GMSK modulation
is used for secondary traffic. The figure provides the image files for four cases that are
discussed in the former tables.

65

Figure 5.11: Multimedia Traffic for Primary Users

Figure 5.12: Multimedia Traffic for Secondary Users

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The ability of SDR is used to develop the CR test-bed. We proposed our own test-bed
model to achieve spectrum sensing and co-existence of the PUs and SUs in an interfer-
ence channel. We worked on implementing the energy detection of PU using the average
periodogram technique to provide the PSD, curve-fitting functions, histogram and density
plots for two different hypothesis (busy or idle) in order to determine the statistical vari-
ations of primary traffic and the density functions of average channel power. Moreover,
the histogram plots for varying time windows and windowing functions are provided to
determine the variations in average channel power.

We implemented the Markov traffic model for the primary users and the need for transition
time due to practical limitations are addressed. Also, the Coded OFDM transceivers are
developed and the problems for the big burst of errors are mitigated by modifying the
header structure, transition time between threads, interleaving blocks and reducing the
packet size.

Finally, we extended the work to a four-node test-bed model with two PUs and two SUs.
The interference metrics of the PUs and SUs are evaluated for the three scenarios with
empirical, false alarm and miss detection thresholds in each case. Also, the throughput
metrics provide that three-way handshaking for SU with GMSK modulation provide high
throughput in our experiments.

67

6.2 Future Work

There is a great scope for improving the test-bed model of Cognitive radio. The effective
area of research work includes

1. We have considered energy detection using average periodogram analysis for spectrum
sensing of PUs. In a large network, there are different PUs and SUs, so we need an
efficient detector to differentiate between different PUs and SUs. Thus, we could
extend the work to implement other detection methods such as cyclo-stationary and
matched filter detection that helps differentiate between different users.

2. The optimality for the detection of the threshold is to be determined. Also, to
optimize the SU sensing and transmission parameters.

3. The statistical information of the Markov traffic model for the PUs can be utilized
for the SUs to efficiently utilize the OFF period and configure their transmission
parameters including transmission power, duty cycles and modulation.

4. To Develop and implement more effective and efficient MAC protocols for the SU
and perform MAC layer sensing.

68

Bibliography

[1] Open source gnu-radio. “http://gnuradio.org/”.

[2] BBN Technologies Corp. “GNU Radio Architectural Changes”.

[3] Danijela Cabric, Artem Tkachenko, and Robert W. Brodersen. “Experimental study of
spectrum sensing based on energy detection and network cooperation”. In Proceedings
of the first international workshop on Technology and policy for accessing spectrum,
TAPAS ’06, New York, NY, USA, 2006. ACM.

[4] Matt Ettus. “USRP Users and Developers Guide”. Ettus Research.

[5] Spectrum Policy Task Force. “Spectrum policy task force report et docket no. 02-135”.
Technical report, U. S. Federal Communications Commission, 2002.

[6] Proaksis John G. and Salehi Masoud. “Digital Communication”. Mc Graw Hill, 5 th
edition edition, 2008.

[7] Firas Abbas Hamza. “The USRP under 1.5X Magnifying lens”. GNU Radio commu-
nity, June 2008.

[8] S. Haykin. “Cognitive Radio: Brain-empowered wireless ommunications”. Selected
Areas in Communications, IEEE Journal on, 23(2):201 – 220, February 2005.

[9] J. Mitola III. “Cognitive Radio: An Integrated Agent Architecture for Software Defined
Radio”. PhD thesis, Department of Teleinformatics,Royal Institute of Technology
(KTH), Stockholm, Sweden, May 2000.

[10] Hyoil Kim and K.G. Shin. “Efficient discovery of spectrum opportunities with MAC-
layer sensing in cognitive radio networks”. Mobile Computing, IEEE Transactions on,
7(5):533 –545, may 2008.

[11] Alexe E. Leu, Mark McHenry, and Brian L. Mark. “Modeling and analysis of interfer-
ence in listen-before-talk spectrum access schemes”. International Journal of Network
Management, 16(2):131–147, 2006.

69

[12] Ettus Matt, W. Rondeau Thomas, and McGwier Robert. “OFDM implementation in
GNU Radio”. Wireless@VT Symposium, 2007.

[13] Alan V. Oppenhiem and Ronald W. Schafer. “Discrete-Time Signal Processing,”,
chapter 10. Prentice Hall, 1999.

[14] C. Pimentel and V.C. da Rocha. “On the power spectral density of constrained
sequences”. Communications, IEEE Transactions on, 55(3):409 –416, march 2007.

[15] H. Vincent Poor. “An Introduction to Signal Detection and Estimation”. Springer-
Verlag New York, Inc., 1994.

[16] T.M. Schmidl and D.C. Cox. “Robust frequency and timing synchronization for
OFDM”. Communications, IEEE Transactions on, 45(12):1613 –1621, dec 1997.

[17] P.K. Sharma and A. Basu. “Performance analysis of peak-to-average power ratio re-
duction techniques for wireless communication using OFDM signals”. In Advances
in Recent Technologies in Communication and Computing (ARTCom), 2010 Interna-
tional Conference on, pages 89 –95, oct. 2010.

[18] M.D. Silvius, A.B. MacKenzie, and C.W. Bostian. “Rendezvous MAC protocols for
use in cognitive radio networks”. In Military Communications Conference, 2009.
MILCOM 2009. IEEE, pages 1 –7, oct. 2009.

[19] Captain Ryan W. Thomas. ”Cognitive Networks”. PhD thesis, Virginia Polytechnic
Institute and State University, Blacksburg,Virginia, 2007.

[20] J.J. van de Beek, M. Sandell, and P.O. Borjesson. “ML estimation of time and
frequency offset in OFDM systems”. Signal Processing, IEEE Transactions on,
45(7):1800 –1805, jul 1997.

[21] P. Welch. “The use of fast Fourier transform for the estimation of power spectra:
A method based on time averaging over short, modified periodograms”. Audio and
Electroacoustics, IEEE Transactions on, 15(2):70 – 73, jun 1967.

[22] Zhi Yan, Zhangchao Ma, Hanwen Cao, Gang Li, and Wenbo Wang. “Spectrum sensing,
access and coexistence testbed for cognitive radio using USRP”. In Circuits and
Systems for Communications, 2008. ICCSC 2008. 4th IEEE International Conference
on, pages 270 –274, may 2008.

[23] T. Yucek and H. Arslan. “A survey of spectrum sensing algorithms for cognitive ra-
dio applications”. Communications Surveys Tutorials, IEEE, 11(1):116 –130, quarter
2009.

70

Appendix A

Algorithm for Markov Traffic Model

Initialization
The two states S0 and S1 represents OFF and ON periods, while the transition matrix P
provides the transition probabilities.

• S0 = 0 and S1 = 1

• P =

[
S00 S01

S10 S11

]
=

[
1− α α

β 1− β

]

The ON period follow an uniform distribution and the OFF period depend on the for-
mer ON period. The number of packets available for ON periods are x, y, z and their
corresponding probabilities, OFF periods and default period are related as

• Pr(x) = p1; Pr(y) = p2; Pr(z) = p3

• TOFFx = 2 ∗ TONx; TOFFy = 4 ∗ TONy; TOFFz = 5 ∗ TONz

• Tdef = 2

Assumptions
Let,

• N is the number of Markov states

• Mk st is a vector containing the Markov states

• TOFF is the current OFF period that depends on former ON period

71

Algorithm

Step 1 : Generate (N − 1) uniform random variables between [0,1] and store in a vector
U rv

Step 2 : Store the transition probabilities to a matrix P

Step 3 : Obtain the stationary probabilities of S0 and S1 using AP=A;
where, A= [Pr(S0 = 0) Pr(S1 = 1)]

Step 4 : For initial state, generate uniform random variable u.

if u < Pr(S0 = 0) then
Mk st[0]← 0

else
Mk st[0]← 1

end if

Step 5 :

for i = 1→ N − 1 do
if Mk st[i− 1] = 1 then

Generate uniform random variable u
if u < p1 then
No pkts← x

else
if u > p1 and u < p1 + p2 then
No pkts← y

else
if u > p1 + p2 and u < 1 then
No pkts← z

end if
end if

end if
Store No pkts to vector ON pkts
if U rv[i] < P [1][0] then
Mk st[i]← 1

else
Mk st[i]← 0

end if
else

if ON pkts[i− 1] = x then
TOFF ← TOFFx

else
if ON pkts[i− 1] = y then

72

TOFF ← TOFFy
else

if ON pkts[i− 1] = z then
TOFF ← TOFFz

else
TOFF ← Tdef

end if
end if

end if
if U rv[i] < P [0][1] then
Mk st[i]← 0

else
Mk st[i]← 1

end if
end if

end for

73

Appendix B

Description of Channel Estimation in
OFDM Model

The channel estimation for the OFDM symbols is performed in two steps. Initially, the
known preamble symbol is used to correlate and estimate the coarse frequency offset. In
the estimation of channel coefficients, the even taps are set based on known preamble and
coarse frequency offset, while the odd taps are linearly interpolated between set carriers
and zero-filled carriers.
Assumptions
Let,

• L is the cyclic prefix length.

• n is the OFDM symbol count.

• ∆fc is the coarse frequency offset.

• nc is the maximum bins for frequency correlation.

• ∆φKs and ∆φs are used in the correlation from known preamble and received symbol.

• ĥ is the channel coefficient of OFDM symbol.

Algorithm

Step 1 : Initialize ∆φKs = [0, 0, · · · , 0] , ∆φs = [0, 0, · · · , 0] and ĥ = [0, 0, · · · , 0] ; where,
|∆φKs| = |ĥ| = Ñ , |∆φs| = N

Step 2 : Estimation of coarse frequency offset

74

for i = 0→ |∆φKs | − 2; i← i+ 2 do
∆φKs [i]← ||Ks[i]−Ks[i+ 2]||2

end for
for i = 0→ |∆φs| − 2; i← i+ 2 do

∆φs[i]← ||Y [i]− Y [i+ 2]||2
end for
for i = zl − nc → zl + nc do
sum← 0; max← 0; index← 0
for j = 0→ j < Ñ − 1 do
sum← sum+ (∆φKs [j] ∗∆φs[i+ j])

end for
if sum > max then
max← sum; index← i

end if
end for
∆fc ← index− zl; n = 0

Step 3 : Estimation of channel coefficients

ĥ[0]← Ks[0] ? e−
2π∆fcL
N∗1 ? Y [zl + ∆fc]

for i = 0→ Ñ − 1; i← i+ 2 do

ĥ[i]← Ks[i] ? e
− 2π∆fcL

N∗1 ? Y [i+ zl + ∆fc]

ĥ[i− 1]← h[i]+h[i−2]
2

end for
for i = 0→ Ñ − 1 do
Ŷ [i]← ĥ[i] ? e−

2π∆fcL
N∗n ? Y [i+ zl + ∆fc]

end for
n← n+ 1

75

Appendix C

Description of Demodulation of
OFDM Symbols

The demodulation of OFDM symbols are performed using PLL (phase locked loop).
Let,

• pk is the phase locked loop coefficient; pk = |pk|ejφ .

• ε is the accumulated error

• f is the frequency shift

• φg is the phase gain

• fg is the frequency gain

• eg is the equalizer gain

• X̂k be the closet constellation point to
´̂
Yk. Also, X̂k = Ci, when euclidean distance

metric is minimum i.e., min
16i6M

‖ ´̂
Yk − Ci‖, where Ci are from the constellation points

of size M.

Algorithm

Step 1 : Initialize, φ← 0; ε← 0; f ← 0; φg ← 0.25; fg ← φ2
g/4; eg ← 0.05

Step 2 : Initialize, p = [p1, p2, · · · , pÑ]; where, p1 = p2 = · · · = pÑ ← 1.0 + 0.0j;

Step 3 :

76

for k = 0→ Ñ − 1 do
´̂
Yk ← Ŷk × ejφ × pk
ε← ε+

´̂
Yk × X̂k

∗
; ε← |ε|ejθ

if (‖ ´̂
Yk‖ > 0.001) then

pk ← pk + eg × (X̂k/
´̂
Yk − pk)

end if
end for

Step 4 : θ ← arg(ε)

Step 5 : f ← f − fg × θ

Step 6 : φ← φ+ f − φg × θ

Step 7 :

if (φ > 2π) then
φ← φ− 2π

end if

Step 8 :

if (φ < 0) then
φ← φ+ 2π

end if

77

Appendix D

Programs for Primary and Secondary
Users

D.1 Primary Users: Markov Traffic Model with Coded

OFDM

#!/usr/bin/env python

#

Copyright 2005, 2006 Free Software Foundation, Inc.

#

This file is part of GNU Radio

#

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

#

GNU Radio is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with GNU Radio; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

#

78

##

#usage = "usage: %prog [options] -f cen_freq -m modulation -s packet-size

--tx-amplitude=value"

#Example: python benchmark_coded_ofdm_tx.py -f 2.422G -m qpsk -s 508

--tx-amplitude=8000

###

from gnuradio import gr, blks2,ofdm_packet_utils

from gnuradio import usrp

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import random, time, struct, sys, math, os

import gnuradio.gr.gr_threading as _threading

from current dir

from coded_transmit_path import coded_transmit_path

from pick_bitrate import pick_tx_bitrate

import fusb_options

class my_top_block(gr.top_block):

def __init__(self, options):

gr.top_block.__init__(self)

self._tx_freq = options.tx_freq # tranmitter’s center frequency

self._tx_subdev_spec = options.tx_subdev_spec # daughterboard to use

self._interp = options.interp # interpolating rate

self._fusb_block_size = options.fusb_block_size # usb info for USRP

self._fusb_nblocks = options.fusb_nblocks # usb info for USRP

if self._tx_freq is None:

sys.stderr.write("-f FREQ or --freq FREQ must be specified\n")

raise SystemExit

Set up USRP sink; also adjusts interp, and bitrate

self._setup_usrp_sink()

self.txpath = coded_transmit_path(options)

self.rxpath = coded_receive_path(options)

79

self.connect(self.txpath, self.u)

///

The Remaining methods for declaration of USRP and

other methods for changing parameters of USRP are similiar to

OFDM (GNU radio examples)

///

///

main (Markov traffic generation and packet transmission)

///

def main():

def send_pkt(payload=’’, eof=False):

return tb.txpath.send_pkt(payload, eof)

######## Function to generate the random Markov OFF(0)

and ON(1) states based on Transition Matrix P

def gen_markov_states(no_of_sts, trans_matx):

global Mk_states

Mk_states = []

generates uniform r.v of length equal to markov states

unif_rv=[random.random() for i in xrange(no_of_sts-1)]

Generate Initial state based on prior probabilites of ON and OFF

that are obtained by solving AP = A; where A = [Pr(S_0 = 0) Pr(S_1 =1]

y=random.random()

if y < 0.464:

MK_states.append(0)

else:

Mk_states.append(1)

Generate states based on algorithm discussed in Appendix A

for i in range(no_of_sts):

if(Mk_states[i]==1):

if (unif_rv[i]<trans_matx[1][0]):

Mk_states.append(0)

else:

Mk_states.append(1)

if(Mk_states[i]==0):

if (unif_rv[i]<trans_matx[0][1]):

Mk_states.append(1)

80

else:

Mk_states.append(0)

Function to return the packets for

ON traffic that follow uniform distribution

def gen_ON_pkts(ON_traffic_pkts,ON_traffic_prs):

uni_rv =random.random()

if uni_rv < ON_traffic_prs[0] :

no_of_pkts = ON_traffic_pkts[0]

if uni_rv > ON_traffic_prs[0] and uni_rv < ON_traffic_prs[0] \

+ ON_traffic_prs[1]:

no_of_pkts = ON_traffic_prs[1]

if uni_rv > ON_traffic_prs[0] + ON_traffic_prs[1] and uni_rv < 1 :

no_of_pkts = ON_traffic_prs[2]

Function for determining the no of packets of former ON

state to evaluate the OFF time for the current OFF state

def tym_OFF_pkts(no_of_pkts):

arr=[]

arr.append(no_of_pkts)

tym_oFF=arr[len(arr)-1]

return tym_OFF

parser = OptionParser(option_class=eng_option, conflict_handler="resolve")

expert_grp = parser.add_option_group("Expert")

parser.add_option("-s", "--size", type="eng_float", default=508,

help="set packet size [default=\%default]")

parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

help="set megabytes to transmit [default=\%default]")

parser.add_option("", "--no-of-sts", type="eng_float", default=1000,

help="set no of states of Markov traffic [default=\%default]")

parser.add_option("-P", "--transition-matrix", type="eng_float", \

default = [[0.25, 0.75],[0.35,0.65]],

help="set transition matrix for Markov traffic")

parser.add_option("", "--pkts-ON-traffic", type="eng_float", \

default = [40,60,80],

help = " set the packets for ON traffic (supports three)")

parser.add_option("", "--prs-ON-traffic", type="eng_float", \

default = [0.45,0.3,0.25],

81

help = "set the probabilities for packets (corresponds to ON traffic)")

parser.add_option("","--from-file", default=None,

help="use file for packet contents")

parser.add_option("", "--fsm-file", default =None,

help= " use for setting the FSM parameters of channel encoder")

my_top_block.add_options(parser, expert_grp)

coded_transmit_path.add_options(parser, expert_grp)

blks2.ofdm_mod.add_options(parser, expert_grp)

blks2.ofdm_demod.add_options(parser, expert_grp)

fusb_options.add_options(expert_grp)

(options, args) = parser.parse_args ()

if options.from_file is not None:

source_file = open(options.from_file, ’r’)

pkt_size = int(options.size)

set the Markov states, transition matrix and ON traffic parameters

Mk_states = options.no_of_sts

Mk_tran_matx = options.transition_matrix

ON_traffic_pkts = options.pkts_ON_traffic

ON_traffic_prs =options.prs_ON_traffic

build the graph

tb = my_top_block(options)

r = gr.enable_realtime_scheduling()

if r != gr.RT_OK:

print "Warning: failed to enable realtime scheduling"

tb.start() # start flow graph

Start the thread to watch the coded payload that are acquired

from messge queue so as to pass through OFDM modulator blocks.

txr_watcher = _queue_watcher_thread_txr(tb.txpath.coded_pkt_msgq,\

tb.txpath.ofdm_tx._pkt_input)

Call the Function to generate Markov states

based on transition matrix and number of states

82

gen_markov_states(Mk_states, Mk_tran_matx)

Initialize the parameters for the loop

count_state=0

current_state= 0

no_of_pkts = 0

pktinfo = 1

while (count_state<Mk_states):

if Mk_states[current_state]==1:

print "\n ON state"

pktno= 1

no_of_pkts=gen_ON_pkts(ON_traffic_pkts, ON_traffic_prs)

print " No of packets that are transmitted", no_of_pkts

while pktno<=no_of_pkts:

if options.from_file is None:

data = (pkt_size - 2) * chr(pktno & 0xff)

else:

data = source_file.read(pkt_size - 2)

if data == ’’:

break;

payload = struct.pack(’!H’, pktinfo & 0xffff) + data

send_pkt(payload)

time.sleep(0.01) # transition time between packets

txr_watcher.pkt_run() # Start the other thread

sys.stderr.write(’.’)

pktno+=1

pktinfo+=1

else:

print "\n OFF state"

Determining the OFF period depending on the former ON period.

#The value of OFF cycles are selected based on alogirthm in Appendix A

tymoff=tym_OFF_pkts(no_of_pkts)

if (tymoff==ON_traffic_pkts[0]):

tm=5.0

elif (tymoff==ON_traffic_pkts[1]):

tm=6.0

elif (tymoff==ON_traffic_pkts[2]):

tm=8.0

else:

tm=2.0

print "Time of Sleep for OFF state is \%d secs" \% (tm)

time.sleep(tm) ## OFF period that includes the additional time

83

count_state+=1 ## for switching ON and OFF or OFF and ON states

current_state+=1

txr_watcher.pkt_run(eof=True) #Indicate the thread for the finish of packets.

send_pkt(eof=True)

tb.wait() # wait for it to finish

Thread to transmit the coded payload stream to OFDM modulator blocks.

class _queue_watcher_thread_txr(_threading.Thread):

def __init__(self, pkt_msgq,pkt_input):

_threading.Thread.__init__(self)

self.setDaemon(1)

self.pkt_msgq = pkt_msgq

self.pkt_input = pkt_input

self.start()

def pkt_run(self,eof= False):

if eof:

coded_msg=gr.message(1)

else:

msg = self.pkt_msgq.delete_head()

time.sleep(0.01) ### transition time between the threads.

msg_string=msg.to_string()

coded_pkt=ofdm_packet_utils.make_packet(msg_string, 1, \

1, pad_for_usrp=False, whitening=True)

coded_msg = gr.message_from_string(coded_pkt)

self.pkt_input.msgq().insert_tail(coded_msg)

///

Coded OFDM transmit flow-graph

///

class coded_transmit_path(gr.hier_block2):

def __init__(self, options):

gr.hier_block2.__init__(self, "coded_transmit_path",

gr.io_signature(0, 0, 0), # Input signature

gr.io_signature(1, 1, gr.sizeof_gr_complex))

84

self._verbose = options.verbose # turn verbose mode on/off

self._tx_amplitude = options.tx_amplitude # digital amplitude sent to USRP

#####Channel Coding blocks ########

self.uncoded_pkt_input=gr.message_source(gr.sizeof_char,4)

The FSM file contains the FSM parameters

fsm_st=trellis.fsm(options.fsm_file)

determine the input and output bits

bitspersymbol = int(round(math.log(fsm_st.I())/math.log(2)))

codedsymbolperbits=int(round(math.log(fsm_st.O())/math.log(2)))

K= ((int(options.size)+4)*8)/bitspersymbol

interleaver=trellis.interleaver(K,666)

pack and unpack to pass the required bits based on channel encoder

self.pack_unpack=gr.packed_to_unpacked_bb(bitspersymbol,gr.GR_MSB_FIRST)

self.trell_enc= trellis.encoder_bb(f,0)

self.inter = trellis.permutation(interleaver.K(),interleaver.INTER(),\

1,gr.sizeof_char)

self.unpack_pack=gr.unpacked_to_packed_bb(codedsymbolperbits,gr.GR_MSB_FIRST)

self.coded_pkt_msgq=gr.msg_queue()

self.coded_msg_sink=gr.message_sink((gr.sizeof_char),self.coded_pkt_msgq,False)

##############################

self.ofdm_tx = \

blks2.ofdm_mod(options,msgq_limit=4, pad_for_usrp=False)

self.amp = gr.multiply_const_cc(1)

self.set_tx_amplitude(self._tx_amplitude)

Display some information about the setup

if self._verbose:

self._print_verbage()

Create and setup transmit path flow graph

self.connect(self.uncoded_pkt_input,self.pack_unpack,self.trell_enc,self.inter)

self.connect(self.inter,self.unpack_pack,self.coded_msg_sink)

self.connect(self.ofdm_tx, self.amp, self)

///

The Remaining methods for declaration of OFDM parameters and

other methods for changing them are similiar to

85

OFDM (GNU radio examples)

///

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

pass

D.2 Secondary Users: Three-way Handshaking

#!/usr/bin/env python

#

Copyright 2005,2006,2007,2009 Free Software Foundation, Inc.

#

This file is part of GNU Radio

#

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

#

GNU Radio is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with GNU Radio; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils

from gnuradio import usrp

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

86

from optparse import OptionParser

import random,struct,sys,math,time

Import from current directory

import usrp_dynamic_str_path

############# Three-way handshaking protocol ##########################

Parameters and functional spec

#Two modes : Synchronous and Data traffic ; default = sync_traffic

sync_traffic : Exhange of BCN, ACK, ACK-ACK signal for mutual handshake

data_traffic : Actual data traffic b/w SUs

sync_str provide the representation for BCN(’b’),ACK(’a’) and ACK-ACK(’o’) signal

node_st provides the SUs node transmitter (’t’) and receiver (’r’)

#usage = "usage: \%prog [options] -f cen_freq -m modulation -r data rate"

#Example: python benchmark_coded_ofdm_tx.py -f 2.422G -m gmsk -r 250k

###

///

Top block

///

class my_top_block(gr.top_block):

def __init__(self, demodulator, modulator,rx_callback,options):

gr.top_block.__init__(self)

Set up the dynamic flow graph (receive,transmit or sense path)

self.dynamic_str_path = usrp_dynamic_str_path.usrp_dynamic_str_path(demodulator,\

modulator, rx_callback, options)

self.connect(self.dynamic_str_path)

Global Variables

global n_rcvd,n_right,mode, data_pktno

mode = "sync_traffic"

///

main

///

def main():

global n_rcvd,n_right,frame_power,mode,channel

global traffic_status

n_rcvd = 0

87

n_right = 0

frame_power=0

Receiver Info

def rx_callback(ok, payload): # Callback method for reception of packets ##

global n_rcvd, n_right,mode

global channel,traffic_status

if (mode == "sync_traffic") :

if ok:

(pktno,) = struct.unpack(’!H’, payload[0:2])

(sync,) = struct.unpack(’s’, payload[2])

(state,) = struct.unpack (’s’, payload[3])

(ch_no,) = struct.unpack(’!H’, payload[4:6])

if (str(sync) == ’a’ and str(ch_no) == str(channel)):

if (str(state) == ’r’):

traffic_status = "txr"

mode = "data_traffic"

sync_str = ’o’

node_st = ’t’

ack_ack_payload = struct.pack(’!HssH’, pktno & 0xffff,\

sync_str,node_st,channel & 0xffff)

send_pkt(ack_ack_payload)

print "Received Ack Signal,Transmit Acknowlegment for Ack Signal"

print " ok = %5s pktno = %4d" %(ok,pktno)

if (str(sync) == ’b’ and str(ch_no) == str(channel)):

sync_str = ’a’

node_st = ’t’

ack_payload = struct.pack(’!HssH’, pktno & 0xffff,\

sync_str,node_st,channel & 0xffff)

send_pkt(ack_payload)

print " Recevied Beacon Signal,Transmit Ack Signal"

print "ok = %5s pktno = %4d" %(ok,pktno)

if (str(sync) == ’o’ and str(ch_no) == str(channel)):

mode = "data_traffic"

if (str(state) == ’r’):

traffic_status = "txr"

print "Received Acknowledgment for Ack Signal"

print "ok =%5s pktno =%4d" %(ok,pktno)

88

if mode == "data_traffic":

if (len(str(payload[0:2])) == 2):

(data_pktno,) = struct.unpack(’!H’, payload[0:2])

(hdr,) = struct.unpack(’!s’ , payload[2])

if(str(hdr) == ’h’) :

n_rcvd += 1

if ok:

n_right += 1

print "ok = %5s data_pktno = %4d n_rcvd = %4d n_right = %4d" \

% (ok, data_pktno,n_rcvd,n_right)

Transmitter Info

def send_pkt(payload=’’, eof=False):

return tb.dynamic_str_path.send_pkt(payload, eof)

def tx_packets():

nbytes = 15

pkt_size = options.size

n = 0

while n < nbytes:

hdr = ’h’

if options.from_file is None:

data=(pkt_size - 3) * chr(data_pktno & 0xff)

else:

data=source_file.read(pkt_size-2)

if data == ’’:

break

payload = struct.pack(’!Hs’, data_pktno & 0xffff,hdr) + data

send_pkt(payload)

time.sleep(0.02)

n += 1

sys.stderr.write(’.’)

data_pktno += 1

Sensing Info

def set_sensing(freqs):

89

global frame_power

tb.dynamic_str_path.setup_scan_info(freqs[0],freqs[1])

no of center frequencies to be scanned

nsteps = tb.dynamic_str_path.str_path.nsteps

scan_mode is method implemented in gr.bin_statistics.cc to

start the scanning for primary channel

tb.dynamic_str_path.stats.scan_mode(int(nsteps))

tb.dynamic_str_path.sensing()

frame_power = tb.dynamic_str_path.str_path.avg_frame_power

Channel Info

def chan_info(ch_no):

dict_cen={}

dict_minmax={}

cen_freq=["2.422G","2.452G", "2.457G","2.462G"]

channel_no=[3,9,10,11]

min_freq=["2.421G","2.451G","2.456G","2.461G"]

max_freq=["2.423G","2.453G","2.458G","2.463G"]

for i in range(len(channel_no)):

dict_minmax[channel_no[i]]=[min_freq[i],max_freq[i]]

ky=dict_minmax.keys()

val=dict_minmax.values()

for i in range(len(ky)):

if (ky[i]==ch_no):

freqs=val[i]

for i in range(len(channel_no)):

dict_cen[channel_no[i]]=cen_freq[i]

ky1=dict_cen.keys()

val1=dict_cen.values()

for i in range(len(ky1)):

if (ky1[i]==ch_no):

cen_freq=val1[i]

cen_freq=eng_notation.str_to_num(cen_freq)

90

freqs[0]=eng_notation.str_to_num(freqs[0])

freqs[1]=eng_notation.str_to_num(freqs[1])

return freqs,cen_freq

###########

Command Line arguments for transmission

reception and sensing Flowgraphs

demods = modulation_utils.type_1_demods()

mods = modulation_utils.type_1_mods()

Create Options Parser:

parser = OptionParser (option_class=eng_option, conflict_handler="resolve")

expert_grp = parser.add_option_group("Expert")

parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

default=’dbpsk’,

help="Select modulation from: %s [default=%%default]"

% (’, ’.join(mods.keys()),))

parser.add_option("-s", "--size", type="eng_float", default=1500,

help="set packet size [default=%default]")

parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

help="set megabytes to transmit [default=%default]")

parser.add_option("","--from-file", default=None,

help="use file for packet contents")

usrp_dynamic_str_path.add_options(parser, expert_grp)

for mod in mods.values():

mod.add_options(expert_grp)

for mod in demods.values():

mod.add_options(expert_grp)

(options, args) = parser.parse_args()

build the graph

tb = my_top_block(demods[options.modulation],\

mods[options.modulation], rx_callback, options)

if options.from_file is not None:

source_file = open(options.from_file, ’r’)

91

r = gr.enable_realtime_scheduling()

if r != gr.RT_OK:

print "Warning: Failed to enable realtime scheduling."

tb.start() # start flow graph

running = True

pktno=0

data_pktno = 0

print "Sensing Mode(Sense the primary channel)"

while running:

if (mode == "sync_traffic"):

random selection of channels

channel=int(random.choice([10,11]))

Dynamic change of flow-graph to connect only sensing flow-graph

tb.dynamic_str_path.configure_rxr_sense()

scan_freqs,cen_freq=chan_info(channel)

set_sensing(scan_freqs)

#Dynamic change of flow-graph to disconnect sensing flow-graph

and connect transmission and reception flow-graphs

tb.dynamic_str_path.configure_sense_rxr()

#######Decision Statistics based on MAP testing ########

stats follow gaussian distribution (each mean and variance are known)

dec_stats_OFF = (1/(math.sqrt(2*math.pi*1.53))) * \

(math.exp(-((frame_power - 27.168)**2)/(2*1.53)))

dec_stats_ON = (1/(math.sqrt(2*math.pi*2.89))) * \

(math.exp(-((frame_power - 44.040)**2)/(2*2.89)))

The ON and OFF probability ratio is obtained from Appendix A

dec_stats = (dec_stats_OFF/dec_stats_ON)

mk_ON_OFF_ratio=(0.35/0.75)

if (dec_stats > mk_ON_OFF_ratio):

print "Primary Channel %d is Busy" %(channel)

continue

######

set the center frequency for tx’r and rx’r

tb.dynamic_str_path.usrp_source.set_center_freq(cen_freq)

tb.dynamic_str_path.usrp_sink.set_center_freq(cen_freq)

nbytes = 6

pkt_size = 6

92

n = 0

while n < nbytes:

sync_str = ’b’

node_st = ’t’

payload = struct.pack(’!HssH’, pktno & 0xffff,sync_str,\

node_st, channel & 0xffff)

send_pkt(payload)

n += len(payload)

sys.stderr.write(’.’)

pktno += 1

time.sleep(0.1)

#####################

if (mode == "data_traffic"):

if (traffic_status == "txr"):

tx_packet()

time.sleep(0.4) # transition time to switch to sensing cycle

if (traffic_status == "rxr") :

time.sleep(2.0)

mode ="sync_traffic"

time.sleep(0.1) # transition time to switch to sensing cycle

class dynamic_str_path(gr.hier_block2):

def __init__(self, demod_class, mod_class,rx_callback,\

options,usrp_rate,usrp_source,usrp_sink):

gr.hier_block2.__init__(self, "dynamic_str_path",

gr.io_signature(0, 0, 0),

gr.io_signature(0, 0, 0))

##

Receiver and Transmitter flow-graphs : Packet modulator blocks

Sensing Flow-graph : usrp_spectrum_sense.py

Connect the initial Sensing flowgraph

self.connect(self.packet_transmitter, self.amp, self.usrp_sink)

self.connect(self.usrp_source,self.ampl)

self.connect(self.ampl,self.channel_filter,self.packet_receiver)

self.connect(self.ampl,self.s2v,self.fft,self.c2mag,self.stats)

###

93

Sensing for channel in piece-wise average periodogram analysis

def sensing(self):

frame_count=0

self.frame_power=0

mid_stats = zeros(self.nsteps*self.fft_size)

psd_stats = zeros ((self.nsteps * self.fft_size) - ((self.nsteps-1)*64))

count=0

while (frame_count!=1):

m = parse_msg(self.msgq.delete_head())

fshift=array(m.data)

f_shift=fftshift(fshift)

freq_stats=zeros(len(m.data))

for i in xrange(len(m.data)):

freq_stats[i]= 10*math.log10(f_shift[i]/(self.norm_win_pow*len(m.data)))

mid_stats[count+i] = freq_stats[i]

if (m.center_freq == self.max_center_freq):

Evaluating the periodogram stats for all centre

#frequencies (including averaging the overlapping bins)

for i in range(0,64):

psd_stats[i] = mid_stats[i]

for i in range(0,self.nsteps):

for j in range((i*self.fft_size+64),((i+1)*self.fft_size - 64)):

psd_stats[j-64*i] = mid_stats[j]

for i in range((self.nsteps*self.fft_size)-64,(self.nsteps*self.fft_size)):

psd_stats [i -(64*(self.nsteps-1))] = mid_stats[i]

for i in range(1,self.nsteps): # Averaging the overlapping bins

for j in range(0,64):

psd_stats[i*self.fft_size-64*i + j] = \

(mid_stats[i*self.fft_size-64+j]+ mid_stats[i*self.fft_size + j])/2

self.avg_frame_power = (psd_stats.sum()/(self.nsteps*self.fft_size))

#print "The average power of frame" ,self.avg_frame_power

frame_count += 1

94

else:

count = count + self.fft_size

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

pass

95

Vita

Venkat Vinod Patcha was born in July, 1987, in Kurnool, Andhra Pradesh, India. He
graduated with his Bachelor of Technology in Electronics and Communication Engineering
degree from Padmasri Dr. B.V.Raju Institute of Technology (Affiliated to JNTU), Hyder-
abad, India, in the year 2008. He is presently pursing his Master of Science in Electrical
Engineering degree at Louisiana State University and is expected to graduate in August
2011. His research interests include digital/wireless communications, cognitive radio and
software radios and his present focus is on design and implementation of cognitive radio
test-bed using software radios.

He was awarded the Certificate of Academic Excellence in his bachelor degree studies
for the academic year 2004-2007 from former Indian President A.P.J Abdul Kalam. He
worked as Research Assistant in the Department of Electrical and Computer Engineering,
Louisiana State University. He is a graduate student member of IEEE.

96

