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Abstract
With the advances in wireless communication, the topic of Networked Control Systems

(NCSs) has become an interesting research subject. Moreover, the advantages they offer

convinced companies to implement and use data networks for remote industrial control and

process automation. Data networks prove to be very efficient for controlling distributed

systems, which would otherwise require complex wiring connections on large or inaccessi-

ble areas. In addition, they are easier to maintain and more cost efficient. Unfortunately,

stability and performance control is always going to be affected by network and communi-

cation issues, such as band-limited channels, quantization errors, sampling, delays, packet

dropouts or system architecture.

The first part of his research aims to study the effects of both input and output quan-

tization on an NCS. Both input and output quantization errors are going to be modeled as

sector bounded multiplicative uncertainties, the main goal being the minimization of the

quantization density, while maintaining feedback stability. Modeling quantization errors

as uncertainties allows for robust optimal control strategies to be applied in order to study

the accepted uncertainty levels, which are directly related to the quantization levels. A

new feedback law is proposed that will improve closed-loop system stability by increasing

the upper bound of allowed uncertainty, and thus allowing the use of a coarser quantizer.

Another aspect of NCS deals with coordination of the independent agents within a

Multi-agent System (MAS). This research addresses the consensus problem for a set of

discrete-time agents communicating through a network with directed information flow. It

examines the combined effect of agent dynamics and network topology on agents’ consen-

susability. Given a particular consensus protocol, a sufficient condition is given for agents

to be consensusable. This condition requires the eigenvalues of the digraph modeling the

network topology to be outer bounded by a fan-shaped area determined by the Mahler

measure of the agents’ dynamics matrix.

x



Chapter 1
Introduction

1.1 Motivations and Challenges of NCS and MAS

Due to an accelerating technological merging of communications, control, and comput-

ing, researchers in various fields have been interested in the rapid and constantly exciting

developments and the technological challenges of the Networked Control Systems (NCSs).

Typically, these systems consist of the system to be controlled and of actuators, sensors,

and controllers which are operated through a communication network. In most of the

cases, the NCSs are spatially distributed, might function in an asynchronous mode, while

still being coordinated such that they achieve some desired performances.

Spatially distributed components for control systems are not considered novelty since

they have been around for decades in chemical process plants, refineries, power plants, and

airplanes. Years ago, such industrial equipment had its components hard-wired, and the

information from all sensors was brought to a dispatcher, which would monitor conditions,

analyze data, and take decisions on how the system was to be controlled. Actuators like

valves, motors, etc. were then used to implement the control policies. Nowadays, computer

routines run on remotely located microprocessors, controlling the order in which input and

output devices obtain access to the processed data, and sending the data via shared digital

networks or wireless connections. These changes were imminent, since wiring hardware

costs went up while IT devices got cheaper, and also since physically introducing new

components into some systems, as the needs change, proved to be difficult. All these

reasons lead to a continuously growing interest in networked control systems, which, in

turn, raised up essentially new questions in communications, information processing, and

control, dealing with the relationship between network operation and the quality of the

overall system’s behavior. For instance, researchers are studying the connection between

closed-loop stability and communication constraints on the feedback channels. Attention

1



has been focused on the minimum transmission bit rate that would guarantee stability

of the feedback loop. The nature of the wireless communication links between sensors,

actuators, and controllers, and their limitations (packet rates, sampling, network delay,

packet dropouts) also brought questions and challenges in the estimation and controller

synthesis area.

It is important to notice that networked control systems research is mainly at the

crossroad of three research areas: control systems, communication networks and informa-

tion theory, and computer science. While many theoretical results have been obtained

separately in each of these fields focusing on individual problems, merging them would be

of great benefit to the NCSs research community. Usually, control theory considers the

links between the interconnected dynamical systems as “ideal channels”, in order to focus

on issues related to control area. In contrast, communication theory ignores most of the

control problems, so that it can focus on the transmission of information over “imperfect

channels”. Since, as shown in Figure 1.1, the NCSs are, in general, spatially distributed

systems in which sensors, actuators, and controllers communicate through a shared band-

limited network, combining these frameworks proved to be imperative in NCSs modeling.

Plant

actuators sensors

decoders encoders

Network

Controller

Controller Controller

Network

decoders encoders

Plant
actuators sensors

decoders encoders

Plant
actuators sensors

1

Figure 1.1: General NCS architecture.

Several key issues that make networked control systems distinct from the other control

systems are detailed in the following paragraphs.
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Band-Limited Channels. A set of significant constraints set upon NCSs are due

to the incapacity of communication networks to carry an infinite amount of information

per unit of time. Starting with Shannon’s results on the maximum amount of information

that can be reliably transmitted on a communication channel with a specified bandwidth,

researchers in the communication field developed a series of important results. Some of

these results have been used by control theory to solve the problem of minimum bit rate

necessary to stabilize a linear system through feedback over a finite capacity channel [15],

[32], [42].

Sampling and Delay. Though periodic sampling of a continuous signal has been

extensively studied in the digital control area, the process becomes significantly more com-

plicated once the signal needs to be further encoded, transmitted over a network and

decoded by a receiver. The overall network delay, which mainly consists of network access

delays and transmission delays, plays a key role in the system. It can be highly variable

due to network conditions, such as congestion and channel capacity. Even though commu-

nication researchers do not see them as potential pitfalls, network delays are given serious

thoughts in the control community, since they can affect both performance and stability of

the system. Open-loop control, such as on-off relay systems, for instance, are not signifi-

cantly influenced by network delays. Nevertheless, real life time sensitive high performance

applications, like telerobotics and telesurgery, cannot be adequately controlled using an

open-loop structure. They require measurement data to be sent across the network in

order to minimize the output error. Either constant or time varying, the network delays

will degrade performance and stability. Therefore, advanced methodologies are necessary

to handle their effects.

R(s)

+

∑∑∑ E(s)
Gc(s)

U(s)
τ ca Gp(s)

Y (s)

τ sc

−

2

Figure 1.2: System deterioration caused by delays - closed-loop control structure.
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A very simple example to simulate network delays, can be implemented by introducing

some delays in a classical control structure shown in Figure 1.2. Following the example in

[43], let the plant be a DC motor with transfer function

Gp(s) =
2029.826

(s+ 26.29)(s+ 2.296)
.

The controller was chosen to be a proportional-integral (PI) controller

Gc(s) =
βKP (s+ KI

KP
)

s
,

where KP = 0.1701 is the proportional gain, KI = 0.378 is the integral gain, and β is a

parameter to change both KP and KI , while keeping the ratio between these gains constant.

Closed-loop is affected by delays τ ca between controller and actuator, and τ sc from sensor

to controller. The example will consider τ ca = τ sc =
τ

2
, where τ is the total closed-loop

communication delay. Closed-loop step responses in Figure 1.3 show that longer delays will

substantially degrade performances like overshoot and settling time.
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Figure 1.3: System deterioration caused by delays - closed-loop step responses for various
values of closed-loop delay τ , and β = 1.

Figure 1.4 depicts the primary branches of the root locus with respect to β for different
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delays, and focus on the stability region. It is obvious that, the longer the delay the smaller

the stability margin, and thus, the smaller the range of stabilizing values for the closed-

loop parameter β. It should be pointed out that stability analysis techniques are subject

to network architectures and protocols.
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Figure 1.4: System deterioration caused by delays - primary branches of the root locus
with respect to β for various values of closed-loop delay.

Packet Dropout. While transiting the network, data might be lost. The so-called

packet dropouts could result from transmission errors in physical links, such as switches or

routers (which are obviously more common in wireless networks than in wired ones), or

from buffer overflows caused by data congestion. Communication experts would solve these

incidents by retransmitting the lost data. Control researchers might think of a trade-off.

Because, even though some signals coming from sensors might be lost while crossing the

network, some NCSs could operate satisfactorily. Consequently, retransmission may not

be the case for these systems, since it would imply additional delays, and, therefore, severe

decrease in performance might occur.

Systems Architecture. The general NCS structure in Figure 1.1 is most of the

times simplified under specific assumptions to make the analysis easier. For instance, some

controllers are collocated with the actuators, and thus, are able to directly communicate.
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Figure 1.5: Single-loop NCS architecture.

Also, although significantly simpler than the multiple-loop structure in Figure 1.1, a single

loop structure like the one in Figure 1.5 is still characterized by the same bandwidth

limitations, communication delays, and packet dropouts.

Besides communication-constrained feedback control, a rather new aspect of NCS re-

search is interested in distributed coordination of networks of mobile robot agents. This has

lead to a more general area of interest, that of Multi-agent Systems (MASs). The reason

for which such a field would raise the researchers’ enthusiasm is the myriad applications

that would benefit from it, such as formation control, flocking, scheduling and planning,

distributed control, condition monitoring, to name just a few. The main issue in a network

of agents is that, while each agent performs the task that it has been designed for, it has

to act aware of its environment changes that might occur because of the other agents’

actions. Therefore, communicating with the other agents in order to be able to readjust

its behavior accordingly is very important. As pointed out in [6], there have been studied

many strategies to solve this problem, depending on the desired final outcome of the MAS.

Some of these outcomes and the proposed strategies are briefly discussed in the following

paragraphs.

Maintain Rigid Formations. Starting with the simple problem of two mobile agents

that are required to keep a constant distance between them while tending to their tasks,

the idea of developing and controlling agent rigid formations on a larger scale triggered
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the search for effective strategies to solve the problem. One of these strategies is the so-

called leader-follower strategy. Typically, what happens is that each robot tries to regulate

its distance with respect to a limited set of neighboring agents, which most of the times

consists of only one or two more robots. In this small subset of agents, one is designated

as the leader, and the others are the followers, which will constantly measure and try to

readjust the value of the interagent distance. Moreover, an MAS formation is many times

required to be stably rigid, meaning that the MAS should be able to overcome any small

perturbation that might disturb the agents arrangement. In this case, each robot should

restore its directed distances from the neighboring agents, such that the MAS can return

to the formation that preceded the occurrence of perturbation.

Consensus Problems. Unlike the leader-follower strategy, the idea behind the con-

sensus problems is to develop a certain consensus law, which will eventually determine all

agents to move in a prescribed direction, even without a centralized controller to coordinate

their movements, and regardless of the fact that by changing location each agent changes

its closest neighbors.

Shaping Formation Movement. Other applications, such as controlling a group of

satellites to cooperatively take images from space, not only require the agents to reach a

relative distance from each other, but also position themselves on a particular curve and

then move at constant speed.

Coverage Problems. Very similar to consensus problems, the coverage problems aim

at controlling the agents in a distributed manner, so that they position themselves to cover

the action area according to a given distribution.

1.2 Dissertation Contributions

Of all the aspects of NCS and MAS mentioned so far, this research focuses on the

communication-constrained feedback control due to transmission channel bandwidth limi-

tations, and on the consensus problem for a class of discrete-time MAS.

In the case of distributed systems, each component will only have access to a small
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portion of the total communication bandwidth available to the network. Therefore, even

though the network has a large number of bits allocated for communication, a considerable

number of components sharing that bandwidth could raise the possibility of large quanti-

zation errors. In turn, these errors can drastically influence the system stability control,

due to the low resolution of the transmitted data.

The first part of this research aims to develop some theoretical stability results con-

cerning Linear Time Invariant (LTI) systems under a feedback law that uses only a finite

number of fixed control values and a finite number of measurements levels. In other words,

both the inputs and the outputs of the plant are quantized, which automatically leads to

quantization of the system’s states.

In [15], the authors prove that for a single-input linear discrete time invariant system,

the least dense, or coarsest, quantizer that quadratically stabilizes it is the logarithmic

quantizer. Moreover, the density of the quantizer is computed using a special case of the

Linear Quadratic Regulator (LQR) method. An expression for the optimal logarithmic

quantizer is also provided, which depends exclusively on the system unstable eigenvalues.

The idea that the logarithmic quantizer can be bounded by a sector, which depends

entirely on its density, inspired the study in [16] to use the sector bound method to analyze

the quantized state feedback problem. Thus, it reveals that the quantized feedback stabi-

lization problem is strongly connected to the quadratic stabilization problem with sector

bound uncertainties. The main conclusion of [16] is that feedback control problems can be

translated into robust control problems by simply converting the quantization errors into

sector bound uncertainties. Hence, by solving the equivalent H∞ optimization problems,

it is straight forward to obtain complete solutions to quadratic stabilization problem for

Multiple-Input Multiple-Output (MIMO) quantized systems with either quantized state

feedback or quantized output feedback.

While [16] deals with the cases in which either the control signal or the measurement

is quantized, the proposed sector bound approach is extended in [10] to take on the case of
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a SISO linear output feedback system affected by quantization at both input and output.

Once again, by converting the quantized feedback control problem into a robust control

problem, the objective of minimizing the quantity of information needed to be transmitted

while stability is preserved is easily achieved and a bound for admissible quantization

densities is provided.

To take it a step further, this research improves the quantization density bound by

proposing a new control law. Since so far, the quantized input signal was considered

unknown due to uncertainty, the approaches for feedback control with quantized input did

not consider the possibility of making it available to the controller. In reality, this signal is

known, and it is of great advantage to feed it back to the controller. Thus, the quantization

effect is taken into account by the controller when adjusting the control input. Not only

does the new proposed feedback law include the levels of the quantized output, but it

also informs the controller about the possible lost information in the control input due to

quantization.

First, the state feedback is studied with the control law augmented with the quantized

values of the input. Since the quantization is modeled using the sector bound approach, the

state feedback control problem becomes a Full Information (FI) control problem. Standard

H∞ control is then used to design the quantized state feedback controller. In the case when

the states are not available, they can be estimated from the measurements in order to be

able to design a state feedback law that is also augmented with the quantized input values.

In this case, an observer-based controller is implemented to solve the problem.

The most challenging part comes with introducing quantization at both input and

output simultaneously. Intuitively, the case of input-output feedback, that is when the

controller is supplied with more information by including the quantized input in the control

law besides the quantized output measurements, should be more efficient than the common

output feedback law, and provide a larger upper bound for the quantization density. This

research gives an analytical solution to the problem, by constructing the controllers for
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both cases and comparing the parameters involved in the corresponding solutions. The

conclusions are also supported by a series of simulation results.

The part of the thesis discussing the MASs investigates the consensusability problem

for discrete-time multi agent dynamic systems, and how to synthesize the control law to

ensure the agents reach consensus. Consensus problem for MASs has received a lot of at-

tention lately in the case of both continuous-time and discrete-time systems. Particularly,

in [30], the existence of consensus protocols for continuous-time LTI MASs is studied, and

then strengthened by the formulation of a necessary and sufficient condition to achieve con-

sensusability of this type of agents with respect to a set of admissible consensus protocols.

An intriguing result detailed in [28] shows that the consensusability of continuous-time

LTI MASs under directed communication topology is dependent on the ratio of the largest

eigenvalue to the second smallest eigenvalue of the Laplacian of the connected graph. The

same problem has been investigated for the case of discrete-time LTI MASs under undi-

rected communication topology in [49], and emphasizes once again the importance of the

eigenvalue ratio introduced in [28].

In this dissertation, the focus is on discrete-time LTI MASs whose communication

topologies are modeled by directed graphs. A consensusability condition for both SISO

and MIMO discrete-time dynamic agents is derived and an explicit synthesis procedure for

designing the distributed consensus feedback control law is provided, such that, the agents

asymptotically reach the prescribed consensus. The main contribution lies in adding an

extra condition to the eigenvalue ratio condition, that would result in a strong sufficient

consensusability condition. This extra condition regards the argument of the largest and

second smallest eigenvalues of the Laplacian of the connected graph. Together, these two

conditions that depend on the agent dynamics, delimit a fan shaped region where the

Laplacian eigenvalues should reside in order for the MAS to reach consensus. Thus, the

communication topology can be somehow easily set up by choosing the Laplacian eigenval-

ues to belong to the designed region.
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1.3 Dissertation Structure

The rest of the dissertation is structured as follows.

Chapter 2 presents some preliminary results in the fields of linear algebra, discrete-time

signals and systems, and robust control. Notions like vector and matrix norms, Kronecker

product, signals and systems norms, robust stability, Linear Fractional Transformation

(LFT), and small gain theorem are reviewed to ensure a better understanding of the prob-

lems discussed in the coming chapters.

Chapter 3 starts with introducing the closed-loop feedback issues due to communica-

tion constraints between the controlled system and the designed controller. In particular,

the problem of quantized signals as a consequence of limited-bandwidth communication

channels is presented, followed by some of the solutions that had been considered so far to

find the largest upper bound for the quantization levels that would ensure stability. Then, a

new control law is proposed to improve this upper bound. The results are further on backed

up by comparing the controllers synthesized according to the old and new approaches, and

by a series of simulations.

Chapter 4 tackles the consensusability problem of MASs. After an overview of the area

of MASs, including some important definitions, a summary of the main characteristics of

a directed graphs is given. Next sections describe the main subject of the chapter, that

of discrete-time LTI MASs reaching consensus. The sufficient consensusability condition is

studied by investigating the gain and phase margins under state feedback control for both

single-input and multiple-input MASs under directed communication topologies.

The dissertation is concluded in Chapter 5, which also lists some ideas about future

possible research topics.
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Chapter 2
Preliminaries

This chapter reviews some of the basic concepts of linear algebra, signals and systems

and their norms, LFT, and robust stability conditions, that are going to be used throughout

this thesis.

2.1 Linear Algebra

While many of the basic linear algebra concepts and facts are very well known and

detailed in most of the books covering the subject, including references such as [25, 27, 36],

some of them are not too commonly used, and therefore easily disregarded. Hence, a

reminder of some of these notions is presented in the following subsections.

2.1.1 Eigenvalues and Eigenvectors

For a square matrix A ∈ Cn×n, the eigenvalues are defined as the solutions to the

equation det(λIn − A) = 0. The set of all roots {λi}ni=1 satisfying this equation is called

the spectrum of A, and, hence, the spectral radius of matrix A is defined as

ρ(A) := max
1≤i≤n

|λi|,

where | · | denotes the absolute value function.

If λ is an eigenvalue of a matrix A, then any nonzero vector v ∈ Cn satisfying

Av = λv

is called the right eigenvector of A. Similarly, a nonzero vector u is referred to as the left

eigenvector of A if

u∗A = λu∗.
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2.1.2 Matrix Inversion Formula

The following two identities, known as variants of the Woodbury identity, proved to be

helpful in some of the later proofs.

(A+ CBCT)−1 = A−1 − A−1C(B−1 + CTA−1C)−1CTA−1

(A+ UBV )−1 = A−1 − A−1U(B−1 + V A−1U)−1V A−1.

Also, a particular case, called the Kailath variant, is also useful and shown below:

(A+BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1.

2.1.3 Vector Norms and Matrix Norms

Consider a vector x ∈ Cn. The p-norm of x is defined as

‖x‖p :=

(
n∑

i=1

|xi|p
)1/p

, for 1 ≤ p ≤ ∞.

The three most commonly used norms are, therefore, expressed as

‖x‖1 :=
n∑

i=1

|xi|,

‖x‖2 :=

√√√√
n∑

i=1

|xi|2,

‖x‖∞ := max
1≤i≤n

|xi|.

For a matrix A ∈ Cm×n, the matrix norm induced by a vector p-norm is defined as

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

.
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For p = 1, 2,∞, the related induced matrix norms are given by

‖A‖1 := max
1≤j≤n

m∑

i=1

|aij| (column sum),

‖A‖2 :=
√
λmax(A∗A),

‖A‖∞ := max
1≤i≤m

n∑

j=1

|aij| (row sum).

Since ‖A‖p is induced from a vector p-norm, A can be considered to be a mapping from a

vector space Cn equipped with a vector norm ‖ · ‖p to another vector space Cm equipped

with a vector norm ‖ · ‖p. Thus, in systems theory, the induced norms are viewed as

input/output amplification gains.

2.1.4 Kronecker Product

Given two matrices A ∈ Cm×n and B ∈ Cp×q, the Kronecker product of A and B is

defined as

A⊗B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB




∈ Cmp×nq.

Properties of the Kronecker product include

A⊗ (B + C) = A⊗B + A⊗ C

A⊗ (B ⊗ C) = (A⊗B)⊗ C

(αAA)⊗ (αBB) = αAαB(A⊗B)

(A⊗B)T = AT ⊗BT

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

(A⊗B)−1 = A−1 ⊗B−1.
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2.2 Discrete-time Systems and Signals

This section reviews fundamental concepts of discrete-time systems and signals, focus-

ing primarily on the way the strength of a system or signal is measured. Different norms

are defined to measure the energy of a signal or a certain system gain to use as performance

index of the control system.

2.2.1 Discrete-time Linear Dynamical System Models

The state-space description of a finite dimensional Linear Discrete Time Invariant

(LDTI) dynamical system is given by a set of difference equations with constant coeffi-

cients: 



x(k + 1) = Ax(k) +Bu(k), x(k0) = x0

y(k) = Cx(k) +Du(k),

where x(k) ∈ Rn is the state vector, x(k0) is the initial condition of the system, u(k) ∈ Rm

is the input vector, y(k) ∈ Rp is the output vector, A ∈ Rn×n is the system dynamics

matrix, B ∈ Rn×m is the system input matrix, C ∈ Rp×n is the system output matrix, and

D ∈ Rp×m is the system direct connection matrix. If the system has one input (m = 1)

and one output (p = 1), the system is called Single-Input Single-Output (SISO) system.

Otherwise, it is know as a MIMO system.

An LDTI system is said to be asymptotically stable if and only if the eigenvalues of

the system dynamics matrix A are less than unity in their magnitude, i.e. |λi| < 1, i =

1, 2, , . . . , n. In this case, matrix A is also known as a stability matrix.

The systems dynamics can also be modeled using the transfer matrix from input u to

output y as in

Y (z) = G(z)U(z),

where U(z) and Y (z) are the Z-transform of u(k) and y(k), respectively, with zero initial
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conditions. Thus, it can be written

G(z) = C(zI − A)−1B +D ,




A B

C D


 .

2.2.2 Discrete-time Signal and System Norms

To quantify the concept of strength or energy of a signal, the mathematical notion of

the norm is used for both continuous-time and discrete-time signals. The most important

types of norms that could be defined for signals are discussed in the following paragraphs

for discrete-time cases.

Let x(k), k ∈ Z+ be a discrete-time signal. The notion of the strength of x(k) can

be generalized through the definition of p-norm associated with the lp[0, ∞] space for

1 ≤ p <∞:

‖x‖p =

(
∞∑

k=1

|x(k)|p
)1/p

.

In particular, and with different physical meanings, the following signal norms can be

defined:

• 1-norm of x(k), also known as the action of the signal

‖x‖1 =
∞∑

k=1

|x(k)|

• 2-norm of x(k), also known as square root of the energy of the signal

‖x‖2 =

√√√√
∞∑

k=1

|x(k)|2
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• ∞-norm of x(k), also known as the amplitude of the signal

‖x‖∞ = sup
k∈Z+

|x(k)|,

which is the least upper bound of |x(k)|.

Since a transfer matrix models the transfer from an input signal to an output signal, it

could be considered as an operator from the input space to the output space, on which a

norm is induced. Thus, by knowing the norm of a stable dynamical system, the size of its

output could be easily determined for a given input. As for signals, there are several types

of norms that could be defined for systems. Nevertheless, only the H∞ norm is discussed,

since it is the one the makes the tool for stability studies in this research.

Let l2[0, ∞) be the set of all real square summable sequences, i.e.

l2[0, ∞) = {x : ‖x‖2
2 <∞}.

For a mapping G : l2[0, ∞) 7→ l2[0, ∞), the H∞ norm of G is defined as

‖G‖∞ := sup
x 6=0∈l2[0,∞)

‖Gx‖2

‖x‖2

,

symbolizing the maximum possible energy amplification or reduction. In particular, if G(z)

denotes the proper and real rational stable transfer matrix of an LDTI dynamic system,

the H∞ norm is defined as

‖G(z)‖∞ := sup
|z|>1

σ̄[G(z)],

where σ̄[G(z)] is the maximum singular value of G(z).

2.3 Robust Control

The theorem below is useful in testing robust stability conditions under distinct sup-

positions on the type of model uncertainty. The notion model uncertainties refers to the
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inevitable errors that occur while trying to describe the real life behavior of a system

through a mathematical model. With P (z) representing the nominal plant model, the

uncertain models are generally given in one of the following forms:

1. additive form:

P∆(z) = P (z) +W1(z)∆(z)W2(z), σ̄(∆(z)) < 1, ∀ |z| > 1,

where the modeling error ∆(z) is scaled using the stable weighting transfer functions

W1(z) and W2(z) to better characterize the frequency structure of the uncertainty;

2. multiplicative form:

P∆(z) = (I +W1(z)∆(z)W2(z))P (z).

Following the terminology in [51], given Π the set of uncertain models, suppose P (z) ∈ Π

is the nominal model and K(z) is the resulting controller. The closed-loop system is said

to be

• nominally stable if K(z) internally stabilizes the nominal model P (z),

• robustly stable if K(z) internally stabilizes all the models in Π.

If in the LFT in Figure 2.1, G(z) is partitioned as

G(z) =



G11(z) G12(z)

G21(z) G22(z)


 ∈ C(p1+p2)×(q1+q2),

then the lower LFT with respect to K(z) is defined as

Fl(G(z), K(z)) := G11(z) +G12(z)K(z)(I −G22(z)K(z))−1G21(z),
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Figure 2.1: Linear fractional transformation.

provided the inverse of (I −G22(z)K(z)) exists. Also, the upper LFT with respect to ∆ is

given by

Fu(G(z),∆) := G22(z) +G21(z)∆(I −G11(z)∆)−1G12(z),

provided (I −G11(z)∆)−1 exists.

∆

M(z)

d(k) z(k)

3

Figure 2.2: Small gain theorem.

Theorem 2.3.1 ([51] Small Gain Theorem). Suppose M(z) is a rational proper transfer

matrix, that could model a stable linear closed-loop system consisting of the plant, controller

and various weights, and let γ > 0. Then the LFT in Figure 2.2 is well defined and

internally stable for all ∆, and

(a) ‖∆‖∞ ≤
1

γ
if and only if ‖M(z)‖∞ < γ;

(b) ‖∆‖∞ <
1

γ
if and only if ‖M(z)‖∞ ≤ γ.

When the uncertainty block ∆ is in a diagonal form comprising multiple uncertainty

blocks, the small gain condition in Theorem 2.3.1 could turn out to be a conservative
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sufficient condition for robust stability. Therefore, in the case of three or less uncertainty

blocks, a reasonable approach would be to redraw the structure in Figure 2.2 as in Figure

2.3, where Wl and Wr are constant scaling matrices such that Wr∆ = ∆Wl. Then the

small gain theorem can be extended to time-varying structured uncertainty. Consequently,

the robust stability holds and ‖∆‖∞ <
1

γ
if and only if ‖WlM(z)W−1

r ‖∞ ≤ γ. It follows

that robust stability could be, in this case, tested by doing a search for the scaling matrices

that would entail the small gain condition to be non-conservative.

∆

M(z)

d(k) z(k)

Wr ∆ W−1
l

W−1
r M(z) Wl

d(k) z(k)

3

Figure 2.3: Small gain theorem - structured time-varying uncertainty case.
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Chapter 3
Communication-constrained
Feedback Stability in NCS

For years, control and communications researchers have worked on their own problems

independently. Communications theory mostly cares about reliably transmitting the in-

formation from sender to receiver, with none or less concern on a particular purpose of

the transmitted data, or whether it would finally be fed back to the source. On the other

hand, control theory focuses on using the information in a feedback loop to ensure stability

and desired performances, while assuming the communication links do not significantly

influence these performances.

It is advisable to treat communication and control as two separate problems for en-

gineering systems with large bandwidth, in order to simplify the analysis and design of

the overall system. Nevertheless, due to recent advances in technology, applications like

mobile telephony, sensor networks, micro-electromechanical systems, or industrial control

networks, have required a different approach. The main purpose of these applications is to

control a series of dynamical systems using multiple actuators and sensors, which exchange

information over a digital communication network.

For such distributed systems, out of the total communication capacity of the network

only a small quota is allocated to each component. Therefore, even though the total capac-

ity in bits per second might be large, there still exists the possibility of large quantization

errors that infringe upon control performance, due to the low resolution of the transmitted

data.

Over the decades, there has been a fairly large amount of research concerning quan-

tization errors. Back in the 1970s, quantization was modeled as an extra additive white

noise, which allowed results from stochastic control to be applied [12]. Research has proven,

though, that while reasonable for high resolution quantizers, this approach fails when the
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quantizer has a coarse resolution and the open-loop dynamics are unstable. It has been

recently discovered, for example in [5], [44], that there exists a critical positive data rate

below which an unstable plant cannot be stabilized by any quantization and control scheme.

This important result suggests that control performance is strongly and negatively affected

by a low communication capacity. Therefore, a more thorough analysis is required, in which

communication and control aspects should be considered jointly rather than independently.

The simplest network topology used to study the networked control systems is depicted

in Figure 1.5. It consists of one dynamical system and its corresponding controller con-

nected through a feedback network with a specified data rate in bits per unit time. Having

set the closed loop structure, the most essential question related to it is whether or not there

exists a lower limit for the feedback data rate above which a stabilizable controller can be

designed. The problem is very similar to Shannon’s source coding theory that determines

the smallest data rate above which a given random process can be reliably communicated,

that is, with arbitrarily small probability of error [11], [39]. Nonetheless, the most signif-

icant difference consists in the fact that for control systems, data is not just transmitted

between two points, but also used in the feedback loop.

Once the stability problem has been overcome, the next issue of great concern is

the trade-off between the communication rate and the optimal control performance that

could be achieved. This research idea is the control theory counterpart of Shannon’s rate-

distortion theory for digital communications [8], [40].

The main objective of this research is to develop some theoretical stability results

concerning LDTI systems using only a finite number of fixed control values and a finite

number of measurements levels. In other words, both the inputs and the outputs of the

plant are quantized, which automatically leads to quantization of the system’s states.

22



3.1 Previous Approaches and Strategies

3.1.1 Stabilization Using Quantized State Feedback

In [15], unlike the approach in this research, quantization is considered as a useful pro-

cess. Understanding how to systematically quantize information while preserving stability

and desired performance without treating quantization as noise or uncertainty is the main

purpose of [15]. The simplest case considered in [15] is the quadratic stabilization of the

LDTI system

x(k + 1) = Ax(k) +Bu(k) (3.1)

where A ∈ Rn×n, B ∈ Rn×1, x ∈ Rn×1 is the state, and u ∈ R is the control input. It

is assumed that A is unstable and (A,B) is stabilizable. The quantized state feedback is

modeled by

u(k) = f(v(k))

v(k) = g(x(k))

(3.2)

where g(·) represents the unquantized feedback law, and f(·) is a static (memoryless), time-

invariant (fixed quantization levels), and symmetric quantizer (f(−v) = −f(v)).

The collection {v(k)}k∈Z is encoded into a set of distinct quantized levels

U = {±ui, i = ±1,±2, . . . } ∪ {0}, (3.3)

each of the quantization level ui corresponding to a segment Vi such that the quantizer

maps the entire segment to the same quantization level.

The density of a quantizer f(·) is defined as:

nf = lim sup
ε→0

#g[ε]

− ln ε
(3.4)

where #g[ε] denotes the number of quantization levels in the interval [ε, 1/ε]. A coarse, or

least dense, quantizer has a large space between levels, which implies a small nf .
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A logarithmic quantizer has the set of quantized levels defined by

U = {±ui : ui = ρiu0, i = ±1,±2, . . . } ∪ {u0} ∪ {0}, 0 < ρ < 1, u0 > 0, (3.5)

and the associated quantizing function given by:

f(v) =





ui, if 1
1+δ

ui < v ≤ 1
1−δui, v > 0

0, if v = 0

−f(−v), if v < 0

(3.6)

where

δ =
1− ρ
1 + ρ

. (3.7)

Applying the definition in (3.4), the density of a logarithmic quantizer is nf =
2

ln 1
ρ

. This

entails that the smaller the parameter ρ, the smaller the density nf , and therefore, in spe-

cialized literature, ρ is referred to as the quantization density instead of nf . The logarithmic

quantizer is graphically exemplified in Figure 3.1.

u

v

u = (1− δ)v

u = (1 + δ)v u = v

u = f(v)

δ = 1−ρ
1+ρ

Figure 3.1: Logarithmic quantization.

In [15], the quadratic stabilization problem is studied. For this purpose, a quadratic

Lyapunov function V (x) = xTPx, P = P T > 0 is used to evaluate the stability of the
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feedback system. In other words, the quantizer must satisfy:

∇V (x) = V (x(k + 1))− V (x(k))

= V (Ax+Bf(g(x)))− V (x) < 0, ∀x 6= 0. (3.8)

The quantizer that minimizes nf subject to (3.8) is called the coarsest quantizer. But,

since the constraint in (3.8) is a strict inequality, the exact coarsest quantizer cannot be

achieved.

The density of the quantizer is strictly dependent on the choices for V (x) (or P ), f(·),

and g(·). Therefore, the fundamental question that arises is what the coarsest density, ρinf ,

could be among all possible P and g(·). It has been proven in [15] that the best choice

would be a logarithmic quantizer with the density given by

ρinf =

∏

i

|λui | − 1

∏

i

|λui |+ 1
(3.9)

where λui denote the unstable eigenvalues of the system matrix A.

As depicted in Figure 3.1, the logarithmic quantizer f(v) can be bounded by a sector

(1 + ∆)v, ∆ ∈ [−δ, δ], described by only one parameter δ, which relates to the quantizer

density by (3.7). This idea inspired the study in [16] that uses the sector bound method to

analyze the quantized state feedback problem for the system (3.1). This study reveals that

there is a strong connection between the quantized state feedback stabilization problem and

a state feedback quadratic stabilization problem with sector bound uncertainty. This newly

discovered connection entails an alternative proof for the coarsest quantization density in

(3.9), and it is summarized in the following theorem [16].

Theorem 3.1.1. The following results hold.

1. If the system (3.1) is quadratically stabilizable via quantized state feedback (3.2) -
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(3.3), then the coarsest quantization density can be approached by taking a logarithmic

quantizer and a linear unquantized feedback law.

2. Given a logarithmic quantizer with quantization density ρ, the system (3.1) is quadrat-

ically stabilizable via quantized linear state feedback if and only if the following un-

certain system:

x(k + 1) = Ax(k) +B(1 + ∆)v(k), ∆ ∈ [−δ, δ] (3.10)

is quadratically stabilizable via linear state feedback, where δ and ρ are related by

(3.7).

3. The largest sector bound for (3.10) to be quadratically stabilizable via linear state

feedback is given by

δsup =
1∏

i

|λui |
. (3.11)

Consequently, the coarsest quantization density ρinf for (3.1) is given by (3.9).

It is well known from [35], [13], and [47] that to quadratically stabilize system (3.10)

using a linear state feedback

g(x) = Kx, (3.12)

the uncertainty bound should be upper bounded by

δsup =
1

infK ‖Gc(z)‖∞
, (3.13)

where

Gc(z) = K(zI − A−BK)−1B. (3.14)

Therefore, it is more appealing to look at the coarsest quantization problem as an H∞
optimization problem (3.13), because they share the same optimal control gain.
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3.1.2 Stabilization Using Quantized Output Feedback

The next step was to apply the technique for state feedback to quantized output feed-

back for the system 



x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

(3.15)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n. [16] deals with the cases in which either the

control signal or the measurement is quantized, while [10] tackles the problem of simulta-

neously applying quantization to both input and output.

When only the control signal is quantized, it turns out that, under the assumption

that the pair (A,C) is observable, the coarsest quantization density achievable by output

feedback is the same as the one obtained when state feedback is used. Moreover, the output

feedback controller can be chosen as an observer-based controller





xc(k + 1) = Axc(k) +Bu(k) + L(y(k)− Cxc(k))

v(k) = Kxc(k)

u(k) = f(v(k)),

(3.16)

where f(·) is the quantizer, K is the state feedback gain, and L is any gain such that (3.16)

is a dead-beat observer.

In the case when only measurement is quantized, the controller takes the form





xc(k + 1) = Acxc(k) +Bcf(y(k))

u(k) = Ccxc(k) +Dcf(y(k))

(3.17)

where f(·) is the quantizer. A generalized version of the state feedback case can be used to

solve the problem of finding the coarsest quantizer for quadratic stabilization of the closed

loop system. The result is summed up in the following theorem [16].

Theorem 3.1.2. Consider the system (3.15). For a given quantization density ρ > 0,
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the system is quadratically stabilizable via a quantized controller (3.17) if and only if the

following auxiliary system:





x(k + 1) = Ax(k) +Bu(k)

v(k) = (1 + ∆)Cx(k), |∆| ≤ δ

(3.18)

is quadratically stabilizable via





xc(k + 1) = Acxc(k) +Bcv(k)

u(k) = Ccxc(k) +Dcv(k)

(3.19)

where δ and ρ are related by (3.7). The largest sector bound δsup (which gives ρinf) is given

by

δsup =
1

infK̄ ‖Ḡc(z)‖∞
(3.20)

where

K̄(z) = Cc(zI − Ac)−1Bc +Dc,

G(z) = C(zI − A)−1B (3.21)

Ḡc(z) = (1− K̄(z)G(z))−1K̄(z)G(z)

Further, if G(z) has relative degree equal to 1 and no unstable zeros, then the coarsest quan-

tization density for quantized state feedback can be reached via quantized output feedback.

The key conclusion of [16] is that quantized feedback control problems can be trans-

formed into robust control problems by simply converting quantization errors into sector

bound uncertainties. Thus, for SISO and MIMO quantized systems, quadratic stabilization

problem (with either quantized state feedback or quantized output feedback) has complete

solutions obtained by solving the equivalent H∞ optimization problems.
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The sector bound approach in [16] is extended in [10] to assist with the situation in

which a SISO linear output feedback system is simultaneously affected by quantization at

both input and output. This is very common in practical situation these days, because the

feedback information (control signal and measurements) is exchanged by the control system

components, such as sensors, and actuators, through a shared communication channel.

Once again, by using the sector bound approach, the quantized feedback control problem

is converted into a robust control problem. Thus, the objective of minimizing the quantity

of information needed to be transmitted while stability is preserved is easily achieved and

a bound for admissible quantization densities is provided. Consider the system (3.15) is

controlled by a dynamic controller





ξ(k + 1) = Acξ(k) +Bcv(k)

w(k) = Ccξ(k) +Dcv(k).

(3.22)

The quantizers are modeled by





u(k) = Q1(w(k)), input quantizer

v(k) = Q2(y(k)), output quantizer,

(3.23)

where Q1(·) and Q2(·) are logarithmic quantizers with quantization levels ρ1, and ρ2, re-

spectively. With controller (3.22), the closed-loop system can be modeled by





x(k + 1) = Ax(k) +BQ1(Ccξ(k) +DcQ2(Cx(k)))

ξ(k + 1) = Acξ(k) +BcQ2(Cx(k)).

(3.24)

Applying the bounded sector approach to both quantizers and extending the results in [16]

to the double quantization problem, it follows in [10] that the quadratic stability of the

closed loop system (3.15), (3.22), and (3.23) is equivalent to the quadratic stability of the
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auxiliary system 



x(k + 1) = Ax(k) +B(1 + ∆1)w(k)

ξ(k + 1) = Acξ(k) +Bc(1 + ∆2)y(k)

y(k) = Cx(k)

w(k) = Ccξ(k) +Dc(1 + ∆2)y(k)

(3.25)

where |∆1| ≤ δ1, |∆2| ≤ δ2, and the parameters δi are related to the quantization densities

ρi through δi =
1− ρi
1 + ρi

, i = 1, 2.

Using standard linear fractional transformation [51], and defining

Â =



A+BDcC BCc

BcC Ac


 , B̂ =



B BDc

0 Bc


 ,

Ĉ =



DcC Cc

C 0


 , D̂ =




0 Dc

0 0


 ,

q(k) =



q1

q2


 , p(k) =



p1

p2


 ,

q1 = w(k), q2 = y(k), p1 = ∆1q1, p2 = ∆2q2,

(3.26)

the closed-loop system (3.25) can be rewritten as





x̄(k + 1) = Âx̄(k) + B̂p(k)

q(k) = Ĉx̄(k) + D̂p(k)

p(k) = ∆̂q(k), ∆̂ = diag{∆1, ∆2}.

(3.27)

Denote by

Ĝ(z) = Ĉ(zI − Â)−1B̂ + D̂ (3.28)

the transfer function matrix from p(k) to q(k) for the open-loop system in (3.27). Then,

by the small gain theorem, the closed-loop system is quadratically stable if the following
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condition holds

‖Ĝ(z)‖∞‖∆̂‖2 < 1. (3.29)

The small-gain condition turns out to be both necessary and sufficient to ensure the

quadratic stability of system (3.27) in the case of a single uncertainty block [14]. Due

to the conservative nature of the small-gain condition in the matter of multiple uncertainty

blocks, the condition is scaled to become

‖TĜ(z)T−1‖∞‖∆̂‖2 < 1, (3.30)

where T is any invertible diagonal matrix [38]. Without loss of generality, T can be chosen

as T = diag{1, τ}, τ > 0.

In consideration of the above statements, the quadratic stability of the closed-loop

system (3.15), (3.22), and (3.23) is determined by the following theorem [10].

Theorem 3.1.3. Consider the system (3.15) and quantizers as in (3.23) with given densi-

ties ρ1 and ρ2. This system is quadratically stabilizable via the controller (3.22) if and only

if the auxiliary system





x(k + 1) = Ax(k) +B(1 + ∆1)w(k)

v(k) = (1 + ∆2)Cx(k), |∆i| ≤ δi, i = 1, 2

(3.31)

is quadratically stabilizable via the controller (3.22). This, in turn, is guaranteed when

δi < δ̂sup, i = 1, 2, where

δ̂sup =
1

inf
K,T
‖TĜ(z)T−1‖∞

(3.32)

with Ĝ(z) as given in (3.28), T is a diagonal and invertible matrix and

K(z) = Cc (zI − Ac)−1Bc +Dc.
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3.2 Current Approaches and Strategies

3.2.1 State Feedback

So far, the approaches for state feedback control with logarithmically quantized input

did not consider the quantized control signal u(k) as known, and thus, available to the

controller. But, since the quantized input is known, it could be of great advantage to feed

it back to the controller. The quantizing effect can thus be taken into account by the

controller when adjusting the control input. This could also be desirable in case rigorous

system performance needs to be studied later. The new proposed feedback law is shown

in Figure 3.2, where the quantization has been modeled using the sector bound approach.

When the input quantization process is modeled as in Figure 3.2, the control input becomes

∆

P (z)

K̂(z)

v(k)

+

d(k)

+ u(k) y(k)

∆

K

[A|B]

F

v(k)

+

d(k)

+ u(k)

x(k)
+

+

∆

G(z)

[
K̂1(z) K̂2(z)

]

d(k) v(k)

v(k)
[
y(k)
u(k)

]

∆

G(z)

K(z)

d(k) z(k)

v(k) w(k)

3

Figure 3.2: Illustration of the quantized feedback system under state feedback.

u(k) = v(k) + d(k) = (1 + ∆)v(k), (3.33)

and thus the systems equations are

x(k + 1) = Ax(k) +Bd(k) +Bv(k), (3.34)

with the control law

v(k) = Fx(k) +Ku(k). (3.35)

32



Substituting (3.33) in (3.34) implies v(k) = Fx(k) + Kv(k) + Kd(k), which yields v(k) =

(I −K)−1Fx(k) + (I −K)−1Kd(k). Denote F1 = (I −K)−1F and F2 = (I −K)−1K to

write

v(k) =

[
F1 F2

]


x(k)

d(k)


 . (3.36)

It is assumed that K has no unitary eigenvalues. Also, since the quantization is modeled

using the sector bound approach, ∆ is a bounded uncertainty, and therefore, d(k) can be

looked at as an energy bounded disturbance. Hence, the state feedback control problem

becomes a FI control problem. Specifically, this means that, if Tvd(z) denotes the closed loop

transfer matrix from disturbance d(t) to control input v(t) with the state-space realization





x(k + 1) = Ax(k) +Bd(k) +Bv(k),

v(k) = F1x(k) + F2d(k),

(3.37)

the goal is to design an FI control law that will stabilize the closed loop system and minimize

‖Tvd(z)‖∞.

Standard H∞ control ensures that ‖Tvd(z)‖∞ < γ for some γ > 0 if and only if there

exists a solution X ≥ 0 to the discrete algebraic Riccati equation (DARE)

X = A∗X[I + (1− γ−2)BB∗X]−1A, (3.38)

and

γ2I −B∗X(I +BB∗X)−1B > 0. (3.39)

Since X ≥ 0, the matrix inequality holds for any γ > 1. Thus, it can be concluded that the

coarsest quantization density is 1, the largest possible. If X ≥ 0 is a stabilizing solution to
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the DARE (3.38), then the optimal FI control gains are given by

[
F1 F2

]
= −(I +B∗XB)−1B∗X

[
A B

]
. (3.40)

With this controller, the corresponding closed loop transfer matrix is given by

Tvd(z) =



A+BF1 B(I + F2)

F1 F2


 . (3.41)

It is noted that I + F2 = (I + B∗XB)−1, and therefore, invertible. By the definition

F2 = (I −K)−1K, the controller components can be obtained as

K = (I + F2)−1F2 = −B∗XB,

F = (I + F2)−1F1 = −B∗XA.
(3.42)

3.2.2 Output Feedback

If the states are not available and only the outputs y(k) in (3.16) are measured, the

system’s transfer matrix becomes P (z) = C(zI − A)−1B. Moreover, estimated states are

needed in order to be able to design a state feedback control law. Let x̂(k) denote the

estimated state vector, and ex(k) = x̂(k) − x(k) the estimation error vector. Thus, the

control law becomes

v(k) = F1x̂(k) + F2d(k) = F1x(k) + F2d(k) + F1ex(k). (3.43)

Since d(k) = u(k)− v(k) and both u(k) and v(k) are known to the controller, d(k) is also

accessible to the controller. This implies

v(k) = F1x̂(k) + F2[u(k)− v(k)] = (I + F2)−1F1x̂(k) + (I + F2)−1F2u(k), (3.44)
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where I + F2 = (I +B∗XB)−1, and therefore invertible.

An observer-based controller is employed in the following rationale. Thus, assuming

the matrix L is such that A+ LC is a stability matrix, the estimated state vector is given

by the standard observer

x̂(k + 1) = Ax̂(k) + L[Cx̂(k)− y(k)] +Bu(k)

= (A+BF1 + LC)x̂(k)− Ly(k) +B(I + F2)d(k).

(3.45)

Putting together (3.43) and (3.45), the observer-based controller has the transfer func-

tion

K(z) =

[
K1(z) K2(z)

]
=



A+BF1 + LC B(I + F2) −L

F1 F2 0




=



Ã B̃1 B̃2

C̃ D̃1 D̃2


 ,

(3.46)

and the closed loop structure is depicted in Figure 3.3.

R(s)

+

∑∑∑ E(s)
Gc(s)

U(s)
τ ca Gp(s)

Y (s)

τ sc

−

∆1

P (z)

∆2

K(z)

v(k)

+

d1(k)

+ u(k) y(k)

+

yq(k)

+ d2(k)

∆

P (z)

K(z)

v(k)

+

−

d(k)

+ u(k)

+

y(k)

d(k)

2

Figure 3.3: Illustration of the quantized feedback system under output feedback.

By (3.34) and (3.43), there holds

x(k + 1) = Ax(k) +BF1x̂(k) +B(I + F2)d(k). (3.47)
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Taking the difference between equations (3.45) and (3.47), and recalling the state estimation

error ex(k) = x̂(k)− x(k), the error dynamics are characterized by

ex(k + 1) = (A+ LC)ex(k), (3.48)

which represents the unreachable subsystem of the closed loop system. Equation (3.47)

can be rewritten as

x(k + 1) = (A+BF1)x(k) +BF1ex(k) +B(I + F2)d(k). (3.49)

Thus, the closed loop state space model becomes



x(k + 1)

ex(k + 1)


 =



A+BF1 BF1

0 A+ LC






x(k)

ex(k)


+



B(I + F2)

0


 d(k),

v(k) =

[
F1 F2

]


x(k)

ex(k)


+ F2d(k),

(3.50)

and the goal is to design a stabilizing L such that ‖Tvd(z)‖∞ < γ, where

Tvd(z) =




A+BF1 BF1 B(I + F2)

0 A+ LC 0

F1 F1 F2



. (3.51)

After the unreachable modes ex(k) are eliminated, Tvd(z) =



A+BF1 B(I + F2)

F1 F2


,

which is exactly the same state space realization as in (3.41). Therefore the problem

is equivalent to the FI control problem previously discussed, and the same H∞ norm is

achieved.
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If the control law is implemented like in the state feedback case, using the estimated

state and the plant quantized input, (3.43) and (3.45) become

x̂(k + 1) = Ax̂(k) + L[Cx̂(k)− y(k)] +Bu(k)

= (A+ LC)x̂(k) +Bu(k)− Ly(k),

v(k) = Fx̂(k) +Ku(k).

(3.52)

This is in fact the standard state observer in Figure 3.4, where

K̂(z) =

[
K̂1(z) K̂2(z)

]
=



A+ LC B −L

F K 0


 =



Â B̂1 B̂2

Ĉ D̂1 D̂2


 . (3.53)

∆

P (z)

K̂(z)

v(k)

+

d(k)

+ u(k) y(k)

∆

K

[A|B]

F

v(k)

+

d(k)

+ u(k)

x(k)
+

+

∆

G(z)

[
K̂1(z) K̂2(z)

]

d(k) v(k)

v(k)
[
y(k)
u(k)

]

∆

G(z)

K(z)

d(k) z(k)

v(k) w(k)

3

Figure 3.4: Equivalent block diagram for quantized feedback system under output feedback.

It can be verified that the feedback controller K̂(z) is given by

K̂(z) =


I +K(z)



I

0







−1

K(z). (3.54)
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The following are detailed steps of the proof of equation (3.54). From (3.46),

v(z) = K(z)



d(z)

y(z)


 = K1(z)d(z) +K2(z)y(z) = K1(z)(u(z)− v(z)) +K2(z)y(z)

⇓

(I +K1(z))v(z) = K1(z)u(z) +K2(z)y(z) = K(z)



u(z)

y(z)




⇓

v(z) = (I +K1(z))−1K(z)



u(z)

y(z)




Since K1(z) =

[
K1(z) K2(z)

]


I

0


 = K(z)



I

0


, it results that

v(z) =


I +K(z)



I

0







−1

K(z)



u(z)

y(z)




⇓

v(z) = K̂(z)



u(z)

y(z)




Also,

v(k) = F1x̂(k) + F2d(k) = F1x̂(k) + F2u(k)− F2v(k)

⇓

(I + F2)v(k) = F1x̂(k) + F2u(k)

⇓

v(k) = (I + F2)−1F1x̂(k) + (I + F2)−1F2u(k)
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But, v(k) = Fx̂(k) +Ku(k), and therefore K = (I + F2)−1F2, and F = (I + F2)−1F1 as in

(3.42).

If the closed loop structure in Figure 3.4 is transformed into the LFT in Figure 3.5,

standard H∞ control could be carried out on G(z). With d(k) as the disturbance input,

v(k) as the control input, [y(k), u(k)]T as measurements outputs, and v(k) as the output

to be controlled and minimized, a realization for G(z) would be given by

G(z) =




A B B

0 0 I

C 0 0

0 I I




. (3.55)

Nevertheless, the above given observer-based solution was given instead of anH∞ approach
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]
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Figure 3.5: Closed loop in LFT form.

in order to avoid unnecessary complications. Also, the H∞ control method is applied in

the following section, to solve the rather complicated case of an LDTI system affected by

quantization at both input and output simultaneously.
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3.3 Stabilization with Quantization at Both Input and

Output

The next step is to consider the output feedback control for the plant P (z) = C(zI −

A)−1B with logarithmic quantization at both input and output. In this setting, the feedback

controller K(z) will be driven by either the quantized measurements yq(k) alone, or by the

quantized control inputs u(k) and the quantized measurements yq(k) simultaneously.

As stated in Theorem 3.1.1 from [16], analyzing stability of an NCS with logarithmic

quantizer is equivalent to analyzing the robust stability of a feedback system with sector

bounded uncertainties modeled in multiplicative form. Hence, stability analysis and con-

troller synthesis are focused on uncertain dynamic systems with both input and output

H∞-norm bounded multiplicative uncertainties. The quantization errors are treated as

time-varying sector bounded uncertainties, and integrated in the system’s model as shown

in equation (3.56).





x(k + 1) = Ax(k) +Bu(k) = Ax(k) +B[I + ∆1(k)]v(k)

yq(k) = [I + ∆2(k)]y(k) = [I + ∆2(k)]Cx(k),

(3.56)

where, y(k) = Cx(k) denotes the plant output prior to quantization. The general LFT

form used to model the closed-loop structure is shown in Figure 3.6, with signals z(k),

d(k), and w(k) chosen according to the analyzed control system. The typical H∞ control

∆

P (z)

K̂(z)

v(k)

+

d(k)

+ u(k) y(k)

∆

K

[A|B]

F

v(k)

+

d(k)

+ u(k)

x(k)
+

+

∆

G(z)

[
K̂1(z) K̂2(z)

]

d(k) v(k)

v(k)
[
y(k)
u(k)

]

∆

G(z)

K(z)

d(k) z(k)

v(k) w(k)

3

Figure 3.6: Closed loop structure in LFT form.
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problem in [51] is employed in order to synthesize the controller that would allow for the

largest uncertainty bound. By the sector bound approach, define the uncertainties bounds

as ‖∆1‖∞ ≤ δu, and ‖∆2‖∞ ≤ δy. The uncertainty block in Figure 3.6 has the diagonal

form ∆ =




∆1 0

0 ∆2


. In order to solve the H∞ control and robust stability problems, the

µ-synthesis method presented in [51] is applied.

Let ‖T (z)‖∞ = sup
|z|>1

σ̄ [T (z)], with σ̄ [T (z)] being the maximum singular value of any

proper and real rational stable transfer matrix T (z), and ‖∆‖∞ = sup
f 6=0∈l2[0,∞)

‖∆f‖2

‖f‖2

. Define

Ĝ(z) = Fl(G(z), K(z)) as the lower LFT with respect to K of the system in Figure 3.6.

Since ∆ is a time-varying two-block-diagonal uncertainty, to study the robust stability of

the closed-loop system in Figure 3.6, the extended version of the small gain theorem in

[51], summarized at the end of Chapter 2, is employed. Hence, let the scaling matrices

Wl and Wr be chosen as



W1 0

0 W2


. Without loss of generality, Wl and Wr are picked as

compatibly dimensioned diagonal matrices



τI 0

0 I


 , τ > 0. By the small gain theory in

[51], the following lemma can be stated.

Lemma 3.3.1. The closed-loop system is robustly stable for all ‖∆‖∞ <
1

γ
if and only if

‖WlĜ(z)W−1
r ‖∞ ≤ γ. (3.57)

A reasonable approach to deal with the controller synthesis problem is to use an algo-

rithm similar to the so-called D-K iteration algorithm to iteratively solve

min
τ>0

min
K
‖WlFl(G(z), K(z))W−1

r ‖∞
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for τ andK. In short, for a fixed τ in the scaling matricesWl andWr, the standardH∞ opti-
mization problem is solved to obtain min

K
‖WlFl(G(z), K(z))W−1

r ‖∞. Then, for a given sta-

bilizing controllerK, the second convex optimization problem min
τ>0
‖WlFl(G(z), K(z))W−1

r ‖∞
is worked out.

3.3.1 Controller Synthesis - Problem Formulation

Consider the system depicted in the block diagram in Figure 3.6 as being the LFT

form of the feedback structure to be analyzed. Since the plant P (z) = C(zI − A)−1B is

considered to be real-rational and proper, G(z) is also going to be real-rational and proper.

Moreover, its state-space realization will be stabilizable and detectable, due to the fact that

the pairs (A, B), and (C, A) are assumed to be stabilizable, and detectable, respectively.

Clearly, the main issue that needs to be taken care of is stability. The H∞ method aims

to synthesize a real-rational and proper controller K(z) that would not only stabilize the

closed-loop system, but also minimize ‖WlFl(G(z), K(z))W−1
r ‖∞. This would result in

finding the largest admissible bound γ−1 for the uncertainty block ∆ =




∆1 0

0 ∆2


. Since

the time-varying sector bounded uncertainties model the input and output quantization

errors, their magnitude cannot exceed 1, and therefore it is assumed that γ−1 < 1(γ > 1).

3.3.2 Controller Synthesis - Simple Output Feedback Case

The first feedback loop with both input and output quantization modeled as multi-

plicative uncertainty is depicted in Figure 3.7. The output feedback control law depends

solely on the quantized output of the system, and hence expressed as

v(k) = Kyq(k). (3.58)

To arrange the system in Figure 3.7 in the LFT form in Figure 3.6, for P (z) =

A B

C 0


, with A ∈ Rn×n, B ∈ Rn×q, and C ∈ Rp×n, denote the signals z(k) =



v(k)

y(k)


,
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∆1

P (z)

∆2

K(z)

v(k)

+

d1(k)

+ u(k) y(k)

+

yq(k)

+

d2(k)

∆1

P (z)

∆2

K(z)

v(k)

+

d1(k)

+ u(k) y(k)

+

yq(k)

+

d2(k)

4

Figure 3.7: Feedback control system involving quantized plant input and output modeled
as multiplicative uncertainties.

w(k) = yq(k), and d(k) =



d1(k)

d2(k)


. The LFT for this case is depicted in Figure 3.8, and

the equation that describes the dynamics becomes




v(k)

y(k)

yq(k)




=




0 0 Iq

P (z) 0 P (z)

P (z) Ip P (z)







d1(k)

d2(k)

v(k)




=




A B 0 B

0 0 0 Iq

C 0 0 0

C 0 Ip 0







d1(k)

d2(k)

v(k)



. (3.59)

In this first case, G(z) =




0 0 Iq

P (z) 0 P (z)

P (z) Ip P (z)




, and therefore the scaling matrices are chosen

to be Wl =



τIq 0

0 Ip


, and Wr =



τIq 0

0 Ip


 , τ > 0. A necessary and sufficient condition

for the existence of a stabilizing controller K(z) such that ‖WlFl(G(z), K(z))W−1
r ‖∞ < γ

for a given γ > 1 is expressed in Theorem 3.3.1 below.
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∆1

∆2

G(z)

K(z)

d1(k) v(k)

d2(k) y(k)

v(k) yq(k)

∆1

∆2

G(z)

K(z)

d1(k) v(k)

d2(k) y(k)

v(k)
u(k)

yq(k)

2

Figure 3.8: LFT for structure in Figure 3.7.

Theorem 3.3.1. There exist τ > 0 and a stabilizing controller K such that

‖WlFl(G(z), K)W−1
r ‖∞ < γ

if and only if ρ(X∞Y∞) < γ2, where ρ(X∞Y∞) is the spectral radius of the product X∞Y∞,

and X∞ and Y∞ are the solutions to the DAREs below

X∞ = A∗X∞
[
I + (1− γ−2)BB∗X∞

]−1
A+ τ−2C∗C, (3.60)

Y∞ = AY∞
[
I + (1− γ−2)τ−2C∗CY∞

]−1
A∗ +BB∗. (3.61)

Proof. Since γ > 1, the DARE in equations (3.60) and (3.61) will always have positive semi-

definite solutions. Therefore, according to the H∞ control theory, the only condition that

needs to be satisfied to ensure the existence of a stabilizing controller is ρ(X∞Y∞) < γ2.

3.3.3 Controller Synthesis - Input-Output Feedback Case

The same analysis is performed on the structure in Figure 3.9, which is characterized

by an augmented control law that, not only considers the quantized measurements, but
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also the quantized input, as seen in equation (3.62).

v(k) = K1u(k) +K2yq(k) =

[
K1 K2

]


u(k)

yq(k)


 = K



u(k)

yq(k)


 . (3.62)

∆1

P (z)

∆2

K(z)

v(k)

+

d1(k)

+ u(k) y(k)

+

yq(k)

+

d2(k)

1

Figure 3.9: Feedback control system involving quantized plant input and output modeled
as multiplicative uncertainties, and input-output feedback law.

After rearranging the system in Figure 3.9 to fit the LFT form in Figure 3.6, with

z(k) =



v(k)

y(k)


, w(k) =



u(k)

yq(k)


, and d(k) =



d1(k)

d2(k)


, the LFT in Figure 3.10 is obtained

and the equation describing its dynamics is




v(k)

y(k)

u(k)

yq(k)




=




0 0 Iq

P (z) 0 P (z)

Iq 0 Iq

P (z) Ip P (z)







d1(k)

d2(k)

v(k)




=




A B 0 B

0 0 0 Iq

C 0 0 0

0 Iq 0 Iq

C 0 Ip 0







d1(k)

d2(k)

v(k)



. (3.63)
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For this case G(z) =




0 0 Iq

P (z) 0 P (z)

Iq 0 Iq

P (z) Ip P (z)




, and thus the scaling matrices become Wl =

∆1

∆2

G(z)

K(z)

d1(k) v(k)

d2(k) y(k)

v(k) yq(k)

∆1

∆2

G(z)

K(z)

d1(k) v(k)

d2(k) y(k)

v(k)
u(k)

yq(k)

2

Figure 3.10: LFT for structure in Figure 3.9.


τIq 0

0 Ip


, and Wr =



τIq 0

0 Ip


 , τ > 0. Once again, after transforming the discrete time

problem into its continuous time counterpart using a bilinear transformation, the controller

synthesis problem is solved as presented in Theorem 3.3.2.

Theorem 3.3.2. There exist τ > 0 and a stabilizing controller K such that

‖WlFl(G(z), K)W−1
r ‖∞ < γ

if and only if ρ(X∞Y∞) < γ2, where ρ(X∞Y∞) is the spectral radius of the product X∞Y∞,
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and X∞ and Y∞ are the solutions to the DAREs below

X∞ = A∗X∞
[
I + (1− γ−2)BB∗X∞

]−1
A+ τ−2C∗C, (3.64)

Y∞ = AY∞
[
I + (1− γ−2)τ−2C∗CY∞

]−1
A∗. (3.65)

Proof. The proof follows the same argument as the proof for Theorem 3.3.1.

Remark 3.3.1. If plant P (z) =



A B

C 0


 is stable, i.e. all eigenvalues of A are inside the

unit circle, then the solution to equation (3.65) is given by Y∞ = 0. Subsequently, the

coupling condition becomes ρ(X∞Y∞) = 0. This, in turn, implies that γ → 0, which allows

for a larger and larger upper bound for the uncertainties. Since the main concern of this

study is stability, it can be concluded that if A is a stability matrix, the system can be left

to evolve in open-loop.

Denote the solutions to equations (3.60), (3.61), (3.64), and (3.65) as X̂∞, Ŷ∞, X̃∞,

and Ỹ∞, respectively. According to [26] and [51], since



A B

C 0


 is a minimal realization

of P (z), these solutions exist and are hermitian and positive semi-definite. Moreover, since

equations (3.60) and (3.64) are the same for both control structures, X̂∞ = X̃∞ ≥ 0.

Moreover, from equations (3.64) and (3.65), it results that Ŷ∞ ≥ Ỹ∞. With X̂∞ =

X̃∞ ≥ 0, it follows that ρ(X̂∞Ŷ∞) ≥ ρ(X̃∞Ỹ∞). The results of the H∞ optimization

problem in Theorems 3.3.1 and 3.3.2 ensure that, for given γ̂ > 1 and γ̃ > 1, ρ(X̂∞Ŷ∞) < γ̂2,

and ρ(X̃∞Ỹ∞) < γ̃2, respectively. It follows that γ̂ ≥ γ̃. In conclusion, γ̂−1 ≤ γ̃−1, which

states that the amount of admissible uncertainty in the case of the simple output feedback

structure is less than how much uncertainty the second structure could tolerate. This

analytical result is in agreement with the intuitive conclusion that the controller in the

second case should be able to handle more uncertainties, since it is not only receiving
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information about the uncertain output, but also about the uncertain input.

3.3.4 Comparative Simulation Results

This section presents the algorithm used to solve several examples whose results are

intended to back up the intuitive and theoretical conclusions drawn in the previous section.

However, though this research focuses on discrete time systems, the controller synthesis

theorem is stated for continuous time domain, based on theH∞ control theory developed in

[51]. The reason is that the final results that are of interest are similar in both continuous

and discrete time domains. Indeed, the analyzed upper bounds represent the infinity norm

of a closed-loop system, and the infinity norm of a given discrete problem is preserved

under a bilinear transformation in the continuous domain, and vice-versa. Thus, using

the bilinear transformation, also known as the trapezoidal integration method or Tustin

transformation method

z =
1 + sTs

2

1− sTs
2

⇔ s =
2

Ts

1− z−1

1 + z−1
,

where Ts is the sampling time, the corresponding Laplace transform is given by

G(s) = G(z)

∣∣∣∣∣
z=

1+ sTs
2

1− sTs
2

.

It follows that

‖WlFl(G(z), Kd)W
−1
r ‖∞ = ‖WlFl(G(s), Kc)W

−1
r ‖∞,

with Kd and Kc being the controllers for discrete, and continuous cases, respectively.

The algorithm that is coded in the MATLAB function in Appendix C performs a two-

parameter minimization procedure sequentially. First, with Wl and Wr fixed by choosing a

τ > 0, a minimization is carried on over K, then over τ with K being fixed. The process is

repeated until a certain desired tolerance is reached. The following steps summarize some

of the synthesis algorithm details:

(i) Fix an initial estimate of the scaling matrices Wl and Wr by setting up an estimate
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for τ > 0.

(ii) Select an initial set of positive values for τ among which the first search is going to

be performed.

(iii) For each τ in the set in step (ii), construct a state-space model for the scaled system

W̃lG(z)W̃−1
r =



Wl 0

0 I


G(z)



W−1
r 0

0 I


 .

(iv) Solve an H∞-optimization problem to minimize

‖Fl(W̃lG(z)W̃−1
r , K)‖∞ = ‖WlFl(G(z), K)W−1

r ‖∞

over all stabilizing K’s, and denote the minimizing controller by K̂.

(v) Find τ that minimizes

‖WlFl(G(z), K̂)W−1
r ‖∞ = ‖F(W̃lG(z)W̃−1

r , K̂)‖∞,

and denote it by τ̂ .

(vi) Compare τ̂ with the previous estimate τ . The algorithm stops if the two estimates

are close, or replaces τ with τ̂ and goes back to step (ii), otherwise.

To ensure the search for τ is always performed within a set of equidistant points, the

algorithm will only consider working with a scaling variable ε ∈ (0, 1). Values greater than

1 for τ will be nonetheless taken into consideration based on the following remarks.

1. For τ = ε ∈ (0, 1), the scaling matrices can be rewritten in terms of ε without any
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major differences.

Wl =



τI 0

0 I


 =



εI 0

0 I


 ,

W−1
r =



τ−1I 0

0 I


 =



ε−1I 0

0 I


 .

2. For τ > 1, we can rewrite τ =
1

ε
= ε−1. The scaling matrices can thus be rewritten

in terms of ε as follows

Wl =



τI 0

0 I


 =



ε−1I 0

0 I


 ,

W−1
r =



τ−1I 0

0 I


 =



εI 0

0 I


 .

The algorithm procedure is exemplified in the set of 4 graphs in Figure 3.11, for the case of

the unstable plant P (z) =
z − 3

z(z − 2)
. The search for τ > 0 that would minimize the norm

‖WlFl(G(z), K̂)W−1
r ‖∞ starts in the interval (0, 1], as seen in Figure 3.11(a). Since the

minimum norm is found to be for τ = 1, the search continues for values τ > 1, but still

inside the (0, 1] interval through the change of variable τ = ε−1 > 1, as depicted in Figures

3.11(b), 3.11(c), and 3.11(d).

After having run the algorithm on several cases characterized by different plant mod-

els, the results were compiled in Table 3.1. Once again, it can be seen by the examples

covering the unstable cases, that the upper limits for the uncertainty gain are greater in the

case when extra information is added to the feedback control law (column 5) than when

controller is synthesized based solely on output measurements (column 3). Regarding the

cases when the plant is stable, illustrated in the second part of Table 3.1, the conclusions
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(d) Fourth step

Figure 3.11: Detailed steps of the search algorithm for a plant P (z) =
z − 3

z(z − 2)
controlled

using the simple output feedback structure.

are similar to those in Remark 3.3.1. When the plant is stable, there is no difference in the

maximum amount of admissible uncertainty between the two studied structures. Moreover,

the upper bounds for the uncertainty gains in the case of stable plants are considerably
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larger than the ones obtained for the unstable plants, and correspond to the same value of

τ > 0.

Table 3.1: Comparative simulation results for the uncertainty upper bounds.

P (z)
simple output feedback input-output feedback

τ γ̂−1 τ γ̃−1

1

z − 2
0.5478 0.2588 0.01 0.4989

1

z(z − 2)
0.6415 0.1209 0.01 0.2499

z − 3

z(z − 2)
1.6387 0.0497 0.01 0.1

1

z(z − 1.4)
1.187 0.2497 0.01 0.5089

z − 2

z(z − 1.6)
1.399 0.0566 0.01 0.1136

z − 1.5

z(z − 1.7)
0.8248 0.0379 0.01 0.0759

1

z − 1.1
1.7476 0.5395 0.01 0.9078

1

z − 0.8
100 20.0005 100 20.0236

z − 0.8

z(z − 0.3)
100 72.2223 100 72.2291

z − 0.3

z(z − 0.1)
100 84.6154 100 84.6213

To back up these results, another experiment has been conducted. A MATLAB R©

Simulink model shown in Figure 3.12 was set up to include both feedback structures in

Figures 3.7 and 3.9. The purpose was to monitor the time-domain behavior of the out-

put signal when random time-variant uncertainties were applied at both input and output.

The unforced time responses of the closed-loop systems with the plant model given by

P (z) =
z − 3

z(z − 2)
is studied in 3 different scenarios. The first case uses randomly generated

uncertainties in the interval (−γ̃−1, γ̃−1) = (−0.1, 0.1). It can be seen from Figure 3.13

that the outputs are stable in both cases, despite the fact that the uncertainties exceed
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the limits for the closed-loop structure with simple feedback. This may be due to the fact

that, once the uncertainties fall in the interval (−γ̂−1, γ̂−1) = (−0.05, 0.05), the controller

manages to restore the stable behavior. Unlike this first scenario, the next two consider the

uncertainties to be randomly generated outside the bound for the first structure, but still

within the bound of the second feedback structure. The results in Figure 3.14 are for posi-

tive values of uncertainties, while the ones in Figure 3.15 deal with negative uncertainties.

As expected, since the uncertainty gain is constantly outside the stability range for the first

Plant_2

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Plant_1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Output_2

y2

Output_1

y1

Delta_2

Delta_1

Controller_2

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Controller_1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Figure 3.12: MATLAB R©/Simulink diagram to simulate system’s behavior with input and
output uncertainties.

structure, the designed controller will not be able to sustain the closed-loop stability. On

the contrary, the controller designed for the second structure manages to bring the output

signal to a steady-state.
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Figure 3.13: Time responses for the uncertain structures in Figures 3.7 and 3.9 for plant

given by P (z) =
z − 3

z(z − 2)
and uncertainties in (−0.1, 0.1).
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Figure 3.14: Time responses for the uncertain structures in Figures 3.7 and 3.9 for plant

given by P (z) =
z − 3

z(z − 2)
and uncertainties in (0.05, 0.1).
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Chapter 4
Consensusability of Multi-agent
Systems

The discussions in Chapter 3 dealt with issues related to communication-constrained

feedback channels in networked control systems. Another networked control problem that

has received a considerable amount of attention among many research communities consid-

ers the distributed coordination of a set of autonomous or semiautonomous agents, such as

unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), or unmanned under-

water vehicles (UUVs). Applications of such problem include formation control, flocking,

and synchronization of chaotic oscillators. Though it is still important for the control in-

formation flow to run through the communication channels at a fast rate, the patterns of

this information flow matter most for these systems and applications. The agents of this

kind of systems are networked together through feedback of local information coming from

neighboring agents. They all perform individual tasks while interacting with each other

with the intention of reaching a prescribed consensus asymptotically.

The main contribution of this chapter is to address the consensus problems for a set

of discrete-time agents with directed network information flow. The information exchange

among agents is viewed as a communication graph and, therefore, modeled using algebraic

graph theory, to describe how much information each agent has access to at a specific

moment in time. Directed graphs prove to be very helpful with modeling network charac-

teristics, like “agent i receives information from agent j”, for example. Moreover, the graph

Laplace matrix offers a way to quantify the agents performance to reach an agreement.

4.1 Multi-agent Systems: Overview

It has been more than a decade since the term Multi-agent System (MAS) has been

introduced in the computer science community. It didn’t take long for the concept to be-

come popular in other fields of research and industry. MAS technology is being built today
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to help in the fields of power systems ([31]) with diagnostics, condition monitoring, powers

system restoration, market simulation, network control and automation, or in control area,

to take care of sensor networks, distributed computation, cooperative control of unmanned

vehicles, attitude alignment of satellite clusters, to name just a few. For all these and many

other applications, an MAS would allow to have a main problem divided into subproblems

that would be distributed to distinct problem solving agents designed to have their own in-

terests and goals. Though the necessity to research the field of MASs is easy to understand,

their advantages, the novelties they are bringing, and the problems they are more suitable

for, are still issues that make MAS technology a well debated topic among researchers and

industrial partners.

As mentioned in [41], starting as a subfield of artificial intelligence, MASs attempt

to provide the necessary background to construct complex systems that include multiple

agents and the mechanisms that would help with synchronizing their behaviors. Thus,

there is no surprise to see that most of the MAS terminology, concepts, methodologies are

defined using terms from artificial intelligence and computer science fields. The terminology

and definitions to follow are mainly taken from [45] and [31].

4.1.1 Agent, Intelligent Agent, and Multi-agent System

According to Wooldridge in [45], “an agent is a computer system that is situated in

some environment, and that is capable of autonomous action in this environment in order

to meet its design objectives.” The environment represents the external surroundings of

the agent. To perform its tasks, an agent might have to observe the environment, which

would be usually done through sensors in the case of physical environment (e.g. industrial

processes), or through messaging and program calling in the case of computing environment

(e.g. data and computing resources). In the industrial processes field, for instance, a control

system can be considered an agent. Thermostats, for example, can be viewed as an agent

that automatically responds to the temperature changes in the surrounding space. The

temperature is sensed using sensors, and switches are activated to control the equipment.
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Of course, control systems viewed as agents can be more elaborate, as in the case of

independent space probes, unmanned aircrafts, nuclear reactor control systems, etc.

Nevertheless, as noted in [31], from an engineering point of view, this definition is

debatable, because it is not quite clear what differentiates agents from the existing hardware

and software systems. A more detailed description of the agent notion was needed to ensure

the line between agent systems approaches and current engineering approaches is not easy

to cross. Therefore, Wooldridge revised the concept of agent and turned it into the new

concept of an intelligent agent, by adding three extra features that will individualize agents

from standard hardware and software systems. These characteristics are:

• Reactivity. Any change in the surrounding environment is promptly perceived by an

intelligent agent, and determines it to immediately take action towards fulfilling the

goals it has been designed for.

• Pro-activeness. An intelligent agent behaves constantly guided by the goals it needs

to achieve. In the words of Wooldridge, it presents a “goal-directed behavior by

taking the initiative”, meaning that it continuously changes its actions in order to

meet the requirements.

• Social ability. An intelligent agent has the ability to interact with other intelligent

agents coexisting in the same environment to better reach the purpose for which it

has been developed. The interaction between intelligent agents implies more than

just simple data transfer from one to another, which most software and hardware

systems already do. Intelligent agents negotiate actions and work in a collaborative

manner, so that they reach a consensus that would allow all of them to achieve their

objectives.

It is now easy to define a Multi-agent System (MAS) as a system consisting of two or more

agents or intelligent agents. What is really critical to acknowledge is that while each agent

of an MAS has a very well defined goal, there is no global system objective. The intention

58



for which the MAS has been designed can only be achieved by involving several intelligent

agents, each developed to achieve their own local goals corresponding to component parts

of that intention. The agent receives messages signaling the designer’s intentions and the

other agents’ actions. Its autonomy allows it to decide upon fulfilling the requests, the task

priority, and what further actions need to be scheduled if necessary.

Since there is hardly a unanimous decision on a general definition of agents, it is left

to the designer’s latitude to choose whether or not the agents in the MAS have the ability

to communicate, depending on the specific field of interest. For the sake of this research

and its applications, the MASs taken into account support communication between agents,

that is used with the main intention of reaching a consensus among the agents.

4.1.2 Consensus of Multi-agent Networked Systems

Once again, with their developments in distributed computing, the computer science

community brought up an interesting subject: consensus in a distributed network [29]. In

general, by consensus it should be understood that the agents within a network asymptoti-

cally come to an accord with respect to a specific entity of interest that depends the initial

states of all agents [34].

In the field of systems control theory, distributed computation and systems have been

playing an important role. Thus, a lot of consensus problems arose throughout the years.

For instance, the systems in charge of watching the altimeters on board of an aircraft need

to eventually reach an agreement about the altitude value. Or, some agents might run

distinct fault diagnosis procedures on one of the systems components, and the individual

conclusions could be later combined into a common decision regarding the state of that

particular component.
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4.2 Graph Theory

4.2.1 Directed Graphs

The communication between the N agents of a multi-agent system can be represented

by a directed graph (or digraph) G = (V , E ,A), where V = {v1, v2, . . . , vN} is a finite

non-empty set of nodes, and E = {e1, e2, . . . , eM} ⊂ V × V is a set of ordered pairs of

distinct nodes called directed edges or arcs. An arc (vi, vj) ∈ E of a digraph is simply

denoted by −−→vivj, and is said to go out of vi and go into vj, or plainly to go from vi to vj.

Matrix A = [ai,j]
N,N
i,j=1,1 of non-negative elements is called the weighted adjacency matrix

and consists of values representing the coupling strength between neighboring agents or

information received by agent j from agent i. The weights in matrix A satisfy the following

properties:

• ai,j > 0 if (ei, ej) ∈ E ;

• ai,i = 0, that is self-edges are not allowed or (ei, ei) /∈ E .

The neighborhood of a node vi is the set of all the nodes vj, j 6= i directly connected to it,

i.e. Ni = {j | vivj ∈ E , i, j = 1, . . . , N}. A v1− vK walk connects nodes v1 and vK through

a sequence of nodes and edges v1, e1, v2, e2, . . . , eK−1, vK , in which each edge ej−1 =

vj−1vj, j = 2, . . . , K. A walk in which no node is repeated is called a path. A communication

digraph G is then said to be strongly connected if there exists a path connecting any pair

(vi, vj) of nodes. For a graph to be complete, each node has to be adjacent to all of the

others. That is, vi is directly connected to vj for all i 6= j. A digraph contains a directed

spanning tree, if one of its nodes vi has the property of being the root, i.e. for each node vj

different than vi, there is a unique directed path from vi to vj. In the case of a weighted

directed graph, the out-degree of a node vi ∈ V is defined as the sum of the weights of all

the arcs radiating from it, according to

deg+
i =

N∑

j=1

ai,j, i = 1, . . . , N.
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On the other hand, its in-degree represents the sum of the weights of all arcs going into it,

deg−i =
N∑

j=1

aj,i, i = 1, . . . , N.

Let D = diag(deg+
i : vi ∈ V) be the diagonal matrix of graph G. Then, the difference

LG = [li,j]
N,N
i,j=1,1 = D −A =




∑N
j=1 a1,j −a1,2 −a1,3 . . . −a1,N

−a2,1

∑N
j=1 a2,j −a2,3 . . . −a2,N

...
...

...
. . .

...

−aN,1 −aN,2 −aN,3 . . .
∑N

j=1 aN,j




(4.1)

is the Laplace matrix, or Laplacian, of communication graph G. Thus, li,i > 0, li,j ≤ 0, ∀i 6=

j, and
∑N

j=1 li,j = 0 for each i.

Lemma 4.2.1. [37], [17], [7] The Laplacian LG of a digraph G has at least one zero eigen-

value and all the non-zero eigenvalues are in the open right half plane, and can be arranged

in non-decreasing order of their magnitude 0 ≤ |λ1| ≤ |λ2| ≤ · · · ≤ |λN |. Furthermore,

λ1 = 0 is a simple eigenvalue, if and only if the digraph G has a spanning tree.

Lemma 4.2.2. [28], [46], [9], [7] If G has a directed spanning tree, then there exists a

permutation matrix P that would transform L into its Frobenius normal form

PLPT =




L1 L12 · · · L1k

0 L2 · · · L2k

...
...

. . .
...

0 0 · · · Lk




,

where Li, i = 1, . . . , N are square irreducible matrices, that is their corresponding digraphs

are strongly connected. Hence, decomposing the Laplace matrix into its Frobenius nor-

mal form is equivalent to decomposing the digraph into its maximally strongly connected
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subgraphs.

4.2.2 The Laplace Matrix Spectrum

Consider a digraph G that has a spanning tree, and let the non-zero eigenvalues of

its Laplacian matrix be λi = rie
jθi , with ri = |λi|, θi = ∠λi for i = 2, . . . , N . Write

λi = (1 + δi)c, for some c ∈ R, and |δi| ≤ δ, for i = 2, . . . , N and some δ > 0. Then,

δi =
λi
c
− 1⇔ |δi| =

∣∣∣∣
λi
c
− 1

∣∣∣∣ ≤ δ. (4.2)

If {λi}Ni=2 are densely populated in an area, then the radius can be calculated according to

δ = min
c∈R

max
2≤i≤N

∣∣∣∣
λi
c
− 1

∣∣∣∣ = min
c∈R

max
2≤i≤N

∣∣∣∣
λi − c
c

∣∣∣∣ . (4.3)

Assume they are compact in a fan shaped region, like the shaded area in Figure 4.1, with

r2 ≤ ri ≤ rN and −θ ≤ θi ≤ θ. Without loss of generality, assume θ2 = θN = θ by the

dense distribution of the eigenvalues on the fan shaped region.

θ

1
µ(A)
1

µ(A)

δ =
∣∣∣λN

r0
− 1

∣∣∣

1

λN

r0

λ2

r0

Figure 4.1: Laplace matrix spectrum region.
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Then, the center of the set of {λi}Ni=2, denoted by r0, satisfies

δ =

∣∣∣∣
λ2

r0

− 1

∣∣∣∣ =

∣∣∣∣
λN
r0

− 1

∣∣∣∣ .

Hence, the next set of equations gives a solution for the center r0 in terms of the largest

and the second smallest eigenvalue magnitudes:

δ =

∣∣∣∣
r2e

jθ

r0

− 1

∣∣∣∣ =

∣∣∣∣
rNe

jθ

r0

− 1

∣∣∣∣⇔
∣∣r2e

jθ − r0

∣∣ =
∣∣rNejθ − r0

∣∣⇔

|r2(cos θ + j sin θ)− r0|2 = |rN(cos θ + j sin θ)− r0|2 ⇔

(r2 cos θ − r0)2 + r2
2 sin2 θ = (rN cos θ − r0)2 + r2

N sin2 θ ⇔

r2
2 − 2r2r0 cos θ = r2

N − 2rNr0 cos θ ⇔

r0 =
rN + r2

2 cos θ
=
|λN |+ |λ2|

2 cos θ
. (4.4)

Thus, the radius of the set becomes

δ =

∣∣∣∣
2rNe

jθ cos θ

rN + r2

− 1

∣∣∣∣ =

∣∣∣∣
2rNe

jθ cos θ − (rN + r2)

rN + r2

∣∣∣∣

=

∣∣∣∣
2rN cos θ − (rN + r2)e−jθ

rN + r2

∣∣∣∣ =

∣∣∣∣
2rN cos θ − (rN + r2) cos θ + j(rN + r2) sin θ

rN + r2

∣∣∣∣

=

∣∣∣∣
(rN − r2) cos θ + j(rN + r2) sin θ

rN + r2

∣∣∣∣ =

∣∣∣∣
rN − r2

rN + r2

cos θ + j sin θ

∣∣∣∣

=

√(
rN − r2

rN + r2

)2

cos2 θ + sin2 θ. (4.5)

Since 0 <
rN − r2

rN + r2

< 1, from equation (4.5), the following inequality can be written:

δ =

√(
rN − r2

rN + r2

)2

cos2 θ + sin2 θ >

√(
rN − r2

rN + r2

)2

cos2 θ +

(
rN − r2

rN + r2

)2

sin2 θ

=
rN − r2

rN + r2

=
|λN | − |λ2|
|λN |+ |λ2|

.

(4.6)
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If the digraph G, whose Laplace matrix is given by L, models the communication network

topology of an MAS, finding the fan-shaped area for the Laplace matrix spectrum, which

would ensure agents consensus, becomes a simultaneous gain and phase margin problem.

4.3 Consensus Control of Discrete-time Multi-agent

Systems

Consider a set of N discrete-time dynamic agents, each described by the same state-

space model 



xi(k + 1) = Axi(k) +Bui(k),

yi(k) = Cxi(k), i = 1, 2, . . . , N,

(4.7)

where xi(k) ∈ Rn is the agent’s state vector, ui(k) ∈ Rm is the control input, and yi(k) ∈ Rp

is the measured output. Thus all agents in the system have the same plant model given

by the transfer matrix P (z) = C(zI − A)−1B. The communication network topology is

represented by a directed graph G = (V , E ,A). Consensus control of such an MAS intends

to design a distributed feedback control protocol based on local information, such that

lim
k→∞
‖xi(k)− xj(k)‖ = 0, ∀i, j = 1, . . . , N. (4.8)

So far, research has been focused on the state feedback protocol (C = I) given by

ui(k) = K

N∑

j=1

ai,j[xj(k)− xi(k)], i = 1, . . . , N, (4.9)

where K ∈ Rm×n is a constant state feedback gain, and A = [ai,j]
N,N
i,j=1,1 represents the

adjacency matrix of the digraph G describing the network communication topology. Con-

sensusability is reached for the multi-agent system, if there exists a control protocol as in

equation (4.9) that will lead to (4.8).

Lemma 4.3.1. [28], [30], [49] In the case of state feedback control, the discrete-time agents

modeled by (4.7) are consensusable under the protocol (4.9), if and only if there exists
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a constant control gain K ∈ Rm×n such that A − λiBK is a stability matrix for any

i = 2, 3, . . . , N .

Proof. Using the control protocol in equation (4.9), the state equation in (4.7) for each

agent can be rewritten as

xi(k + 1) = Axi(k) +BK
N∑

j=1

ai,j[xj(k)− xi(k)] = Axi(k)−
N∑

j=1

li,jBKxj(k). (4.10)

Stacking all the agents’ states in one vector X(k) =

[
xT

1 (k) xT
2 (k) . . . xT

N(k)

]T

∈

RnN×1, the overall state dynamics is given by

X(k + 1) =




A 0 . . . 0

0 A . . . 0

...
...

. . .
...

0 0 . . . A




X(k)

+




(∑N
j=1 a1,j

)
BK −a1,2BK . . . −a1,NBK

−a2,1BK
(∑N

j=1 a2,j

)
BK . . . −a1,NBK

...
...

. . .
...

−aN,1BK −aN,2BK . . .
(∑N

j=1 aN,j
)
BK




X(k).

Invoking the definition of Kronecker product, the above equation can be expressed as

X(k + 1) = [IN ⊗ A− L⊗BK]X(K), (4.11)

where L ∈ RN×N is the Laplacian matrix of the digraph G. It is said that protocol (4.9)

solves the consensus problem if the states of system (4.10) satisfy

xi(k)
k→∞−→ xj(k), ∀i, j = 1, 2, . . . , N. (4.12)
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Consider rT =

[
r1 r2 . . . rN

]
∈ R1×N to be the left eigenvector of the Laplacian matrix

L associated with the zero eigenvalue (rTL = 0), satisfying rT1 = 1. Following the rationale

in [28], define the disagreement vector as

$(k) = X(k)−
[(
1rT

)
⊗ In

]
X(k) ∈ RnN×1, (4.13)

satisfying

(
rT ⊗ In

)
$(k) =

(
rT ⊗ In

)
X(k)−

(
rT ⊗ In

) [(
1rT

)
⊗ In

]
X(k)

=
(
rT ⊗ In

)
X(k)−

(
rT1rT ⊗ In

)
X(k)

= 0. (4.14)

Based on the dynamics in equation (4.11), the disagreement dynamics becomes

$(k + 1) = (IN ⊗ A− L⊗BK)X(k)−
[(
1rT

)
⊗ In

]
(IN ⊗ A− L⊗BK)X(k),

which, using equations (D.1) and (D.2) in Appendix D, can be rearranged as below:

$(k + 1) = (IN ⊗ A− L⊗BK)X(k)− (IN ⊗ A− L⊗BK)
[(
1rT

)
⊗ In

]
X(k)

= (IN ⊗ A− L⊗BK)
[
X(k)−

[(
1rT

)
⊗ In

]
X(k)

]

= (IN ⊗ A− L⊗BK)$(k). (4.15)

In the following paragraphs, it is argued that solving the agents consensusability problem

is equivalent to solving the asymptotic stability problem for the disagreement dynamics.
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From equation (4.13), the disagreement dynamics is rewritten as

$(k) =
[
IN ⊗ In −

(
1rT

)
⊗ In

]
X(k) =

[(
IN − 1rT

)
⊗ In

]
X(k)

=
(
M̂ ⊗ In

)
X(k), (4.16)

with

M̂ = IN − 1rT =




1− r1 −r2 . . . −rN

−r1 1− r2 . . . −rN
...

...
. . .

...

−r1 −r2 . . . 1− rN




.

Given the definition of the left eigenvector r for the Laplacian matrix, M̂ can be diagonalised

using the transformation matrix M̂T =




1 0 . . . −1

0 1 . . . −1

...
...

. . .
...

0 0 . . . 1




as shown below

M̂TM̂M̂−1
T =




1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0

−r1 −r2 . . . −rN−1 0




.

Thus, it is easy to see that 0 is a simple eigenvalue for M̂ and 1 is an eigenvalue of

multiplicity N − 1. Moreover, 1 is the right eigenvector corresponding to the 0 eigenvalue.

Therefore, according to equation (4.16), $(k) = 0 if and only if x1(k) = x2(k) = · · · =

xN(k). In other words, the consensus problem is solved if and only if $(k)
k→∞−→ 0.

Next step is to review the asymptotic stability of the disagreement dynamics in (4.15).
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First, define matrices Y ∈ RN×(N−1), W ∈ R(N−1)×N , T ∈ RN×N , and H ∈ R(N−1)×(N−1),

satisfying the following properties

T =

[
1 Y

]
, T −1 =



rT

W


 ,

T −1LT = J =




0 0

0 H


 , H =




λ2 ∗ ∗ . . . ∗

0 λ3 ∗ . . . ∗
...

...
...

. . .
...

0 0 0 . . . λN




,

(4.17)

where λi, i = 2, . . . , N are the non-zero eigenvalues of the Laplacian matrix L. State

transformation ε(k) = (T −1 ⊗ In)$(k), with ε(k) =

[
εT

1 εT
2 . . . εT

N

]T

, leads to the new

dynamics

ε(k + 1) = (In ⊗ A− J ⊗BK) ε(k), (4.18)

based on equations (D.3), (D.4), (D.5) in Appendix D.

It is important to notice that, since ε(k) =






rT

W


⊗ In


$(k) and with equations

(D.6) and (D.7) in Appendix D,

ε1(k) = (rT ⊗ In)$(k) = (rT ⊗ In)(M̂ ⊗ In)X(k) ≡ 0. (4.19)

The dynamics in (4.18) is expanded as

ε(k + 1) =




A− 0 ·BK 0 0 . . . 0

0 A− λ2BK ∗ . . . ∗
...

...
...

. . .
...

0 0 0 . . . A− λNBK




ε(k). (4.20)
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Thus, asymptotic stability of εi(k), i = 2, . . . , N , i.e. εi(k)
k→∞−→ 0, is ensured if and only

if the subsystems

εi(k + 1) = (A− λiBK)εi(k), i = 2, . . . , N, (4.21)

are asymptotically stable, which is equivalent with A−λiBK, i = 2, . . . , N being stability

matrices. This concludes the proof.

Lemma 4.3.2. [28] Let the set of N discrete-time dynamic agents described by equation

(4.7) be interconnected through a network with a communication topology G with a directed

spanning tree. If the distributed feedback control protocol in (4.9) satisfies Lemma 4.3.1,

then

xi(k)
k→∞−→

(
rT ⊗ Ak

)




x1(0)

x2(0)

...

xN(0)




, i = 1, 2, . . . , N, (4.22)

where r ∈ RN×1 is the left eigenvector of the digraph Laplacian corresponding to the zero

eigenvalue (rTL = 0), also satisfying rT1 = 0.

Proof. The solution to the agents dynamics defined in compact form in equation (4.11) is

given by

X(k) = [IN ⊗ A− L⊗BK]kX(0), (4.23)

which, by using equations (D.3) and (D.4) in Appendix D, becomes

X(k) =
[(
T −1 ⊗ In

)−1
[IN ⊗ A− J ⊗BK]

(
T −1 ⊗ In

)]k
X(0)

=
(
T −1 ⊗ In

)−1
[IN ⊗ A− J ⊗BK]k

(
T −1 ⊗ In

)
X(0).

(4.24)

Since IN⊗A−J ⊗BK =



A 0

0 IN ⊗ A−H⊗BK


 and

(
T −1 ⊗ In

)−1
= T ⊗In, it follows
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that

X(k) = (T ⊗ In)



Ak 0

0 [IN ⊗ A−H⊗BK]k



(
T −1 ⊗ In

)
X(0). (4.25)

By Lemma 4.3.1, IN ⊗ A−H⊗BK is a stability matrix, and therefore,

[IN ⊗ A−H⊗BK]k
k→∞−→ 0.

Consequently,

X(k)
k→∞−→ (T ⊗ In)



Ak 0

0 0



(
T −1 ⊗ In

)
. (4.26)

Using the definitions of T and T −1 in equation (4.17), it can be written that

(T ⊗ In)



Ak 0

0 0



(
T −1 ⊗ In

)
= (1⊗ In)Ak(rT ⊗ In) = (1⊗ Ak)(rT ⊗ In)

= (1 · rT)⊗ (Ak ⊗ In) = (1 · rT)⊗ Ak.

(4.27)

From equations (4.26) and (4.27), it follows that

X(k)
k→∞−→

[
(1 · rT)⊗ Ak

]
X(0), (4.28)

which implies that, for each of the N agents, equation (4.22) is valid.

Remark 4.3.1. The conclusions of Lemmas 4.3.1 and 4.3.2 lead to some interesting observa-

tions regarding the consensus values with respect to the agents dynamics. Thus, if matrix

A is a stability matrix, i.e. it has all eigenvalues inside the unit circle, then the consensus

value reached by the agents is going to be 0. If matrix A has all eigenvalues outside the

unit circle, the consensus is going to be reached asymptotically at infinity. The case when

matrix A has eigenvalues on the unit circle proves to be the critical case for consensus of

agents in (4.7) under the protocol (4.9) to happen at a constant value.

70



4.3.1 Single Input Systems

According to Lemma 4.3.1, consensusability is related to the eigenvalues of A−λiBK.

Since the controller gain K is real (which is the case with physical systems), it could be

considered that, for each component of the MAS, the feedback protocol gain is given by

λiK = |λi|Kejθi . Under this alternate paradigm, the concepts of gain and phase margin

for reaching consensusability are reinterpreted based on the following arguments. The gain

margin is correlated to the range |λi| can be adjusted supposing θi = 0, for the agent

to be consensusable. Likewise, the phase margin corresponds to the range that θi could

be modified for a given |λi|, such that the agent remains consensusable. This perspective

allows to look at the angle θ in Figure 4.1 as the phase margin, while the ratio
|λN |
|λ2|

is

going to be considered the gain margin. Thus, in order to ensure a better design of the

communication graph Laplacian, it is of paramount importance to find upper limits for

these gain and phase margins based upon the agent model.

With λi = (1 + δi)c, c ∈ R, |δi| ≤ δ, i = 2, . . . , N , stability of A − λiBK is equivalent

to det(zI − A + (1 + δi)cBK) 6= 0, ∀|z| ≥ 1, ∀i = 2, . . . , N . This can be looked at as

studying the robust stability of a plant Pi(z) = (zI − A)−1Bc(1 + δi) with multiplicative

uncertainty. Typical H∞ robust control results are employed to find upper bounds for the

gain and phase margins.

Denote the complementary sensitivity function under state feedback by T0(z) = K(zI−

A + BK)−1B, KT, B ∈ Rn×1. Define the H∞ norm as ‖T0(z)‖∞ := sup
|z|>1

σ̄(T0(z)), with

σ̄(T0(z)) the largest singular value of T0(z). Let the Mahler measure of the n × n system

matrix A be given by

µ(A) =
n∏

i=1

max {1, |λi(A)|}. (4.29)

Lemma 4.3.3. [4], [18], [21] If the pair (A, B) is stabilizable, then

γopt = inf
K∈R1×n

‖T0(z)‖∞ = µ(A),
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and for each γ > γopt, there exists a stabilizing state feedback control gain such that

‖T0(z)‖∞ < γ. Moreover, K =
[
1 + (1− γ−2)B∗XB

]−1
B∗XA, where X ≥ 0 is the stabi-

lizing solution of the DARE

X = A∗X
[
I + (1− γ−2)BB∗X

]−1
A, B∗XB < γ2. (4.30)

Theorem 4.3.1. Given a digraph G modeling the network topology of the discrete-time

multi-agent system (4.7), with (A, B) a stabilizable pair and m = 1, the system is consen-

susable under protocol (4.9) if

θ < arcsin

√√√√√
(
rN
r2

+ 1
)2

4 rN
r2
µ2(A)

−

(
rN
r2
− 1
)2

4 rN
r2

, (4.31)

where r2 and rN are the magnitudes of the second smallest and the largest eigenvalues of

the digraph Laplacian.

Proof. According to Lemma 4.2.1, the consensusability problem is solvable if and only if

A − λiBK is a stability matrix, where λi, i = 2, . . . , N are the complex eigenvalues for

the Laplacian matrix L of the digraph G. This condition is equivalent to

det(zI − A+ λiBK) 6= 0, ∀ |z| ≥ 1. (4.32)

By the argument used in root locus method, the roots of det(zI−A+λiBK) are the same

as for det
(
I + λiBK(zI − A)−1

)
. Consequently, condition in (4.32) is equivalent to

det
(
I + λiBK(zI − A)−1

)
= 1 + λiK(zI − A)−1B 6= 0, ∀ |z| ≥ 1. (4.33)

Since, for C = I, the agent transfer function is given by P (z) = (zI−A)−1B, the condition
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in equation (4.33) can be written as

1 + λiKP (z) 6= 0, ∀ |z| ≥ 1. (4.34)

With λi = (1 + δi)c, for some c ∈ R, and |δi| ≤ δ, for i = 2, . . . , N , and some δ > 0, the

above statement is equivalent to

1 + (1 + δi)cKP (z) = 1 + cKP (z) + δicKP (z) 6= 0, ∀ |z| ≥ 1. (4.35)

Furthermore, the consensusability condition can be expressed as

1 + δi
cKP (z)

1 + cKP (z)
6= 0, ∀ |z| ≥ 1. (4.36)

In light of Lemma 4.3.3, there exists a stabilizing state feedback controller gain K such

that the complementary sensitivity function Tc(z) = cK(zI − A + cBK)−1B under state

feedback for the nominal part of the uncertain agent Pi(z) satisfies ‖Tc(z)‖∞ < γ for

γ > γopt = µ(A).

Since the system is single input, that is B ∈ Rn×1, the complementary sensitivity

function can be written as

Tc(z) =
cK(zI − A)−1B

1 + cK(zI − A)−1B
=

cKP (z)

1 + cKP (z)
. (4.37)

Thus, the consensusability condition in equation (4.36) becomes

1 + δiTc(z) 6= 0, ∀ |z| ≥ 1. (4.38)
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With 0 < θ <
π

2
, the phase condition in equation (4.31) becomes:

| sin θ| <
√

(rN + r2)2

4rNr2µ2(A)
− (rN − r2)2

4rNr2

⇔ sin2 θ <
(rN + r2)2

4rNr2µ2(A)
− r2

N + r2
2

4rNr2

+
1

2
. (4.39)

From equations (4.5) and (4.39), it follows that

r2
N + r2

2 + 2rNr2(2 sin2 θ − 1)

(rN + r2)2
=
r2
N + r2

2 + 2rNr2(sin2 θ − cos2 θ)

(rN + r2)2
= δ2 < µ−2(A) (4.40)

which implies

δ < µ−1(A). (4.41)

Since δi ≤ δ, equation (4.41) ensures the consensusability condition in equation (4.38) is

satisfied. Moreover, together with equation (4.6), the condition in equation (4.41) implies:

1

µ(A)
>
|λN | − |λ2|
|λN |+ |λ2|

⇔

µ(A) <

∣∣∣λNλ2
∣∣∣+ 1

∣∣∣λNλ2
∣∣∣− 1

⇔

∣∣∣∣
λN
λ2

∣∣∣∣ <
µ(A) + 1

µ(A)− 1
. (4.42)

Theorem 4.3.1 provides a sufficient condition for reaching consensus among a set of

discrete-time agents. It relates the gain and phase margin to an important measure of the

agents stability, that is the Mahler measure. As expected and also shown in Figure 4.2,

according to the conditions in Theorem 4.3.1, the consensusability region gets tighter and

tighter as the agents are less and less stable.

Example 4.3.1. To prove the efficiency of assigning the Laplacian eigenvalues according to

the inequalities in equations (4.31) and (4.42), consider the system described by equation
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Figure 4.2: Consensusability region with respect to the system Mahler measure µ(A).

(4.7), for which the system matrices are given by:

A =




1.5 0.2 0

−1.2 0 1.8

1.1 0 0



, B =




1.2

−1.5

0.4



, C = I3. (4.43)

The MAS consists of N = 5 agents, with each agent dynamics characterized by matrices in

equation (4.43). The topology of the network connecting the 5 agents is a digraph whose

weighted adjacency matrix is computed based on the following arguments.

The eigenvalues of matrix A are 1.5142, and −0.0071 ± 0.5113j, with absolute values

1.5142, and 0.5114, respectively. Therefore, due to one eigenvalue outside the unit circle,

each agent has an unstable behavior. The Mahler measure of matrix A is µ(A) = 1.5142.

To ensure consensusability of agents, the radius δ of the fan region where the eigenvalues of

the digraph Laplacian should reside, must satisfy δ <
1

µ(A)
= 0.66, as depicted in Figure

4.3. According to equation (4.42), the non-zero smallest and largest eigenvalues of the

Laplacian should satisfy
|λ4|
|λ2|

< 4.89. If
|λ4|
|λ2|

= 1.2 is chosen, equation (4.31) implies an

upper bound for the angle θ of approximately 41◦. Picking θ = 10◦ and the center of the
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θ = 10◦

1
µ(A)

= 0.66

δ = 0.20

1

λ2
λ4

Figure 4.3: Position of the eigenvalues for the digraph Laplacian in Example 4.3.1.

fan region at r0 = 1, it follows that |λ2| = 0.8953 and |λ4| = 1.0743, leading to the following

set of eigenvalues, also depicted in Figure 4.3, for the digraph Laplacian:

λ1 = 0, λ2,3 = 0.88168± 0.15546, λ4,5 = 1.058± 0.18656j.

Taking the inverse Fast Fourier Transform of a properly arranged vector of these eigenval-

ues, the Laplacian is obtained as

L =




0.77588 −0.26206 −0.21812 −0.24868 −0.047017

−0.047017 0.77588 −0.26206 −0.21812 −0.24868

−0.24868 −0.047017 0.77588 −0.26206 −0.21812

−0.21812 −0.24868 −0.047017 0.77588 −0.26206

−0.26206 −0.21812 −0.24868 −0.047017 0.77588




.

From the Laplacian definition in equation (4.1), the weighted adjacency matrix is computed
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as

A =




0 0.26206 0.21812 0.24868 0.047017

0.047017 0 0.26206 0.21812 0.24868

0.24868 0.047017 0 0.26206 0.21812

0.21812 0.24868 0.047017 0 0.26206

0.26206 0.21812 0.24868 0.047017 0




.

In order to find the controller, the solution X to the DARE in equation (4.30) is solved for

γ =
1

δ
= 5.1185 > µ(A) = 1.5142. Thus, the controller gain is given by

K =
[
1 + (1− γ−2)B∗XB

]−1
B∗XA =

[
0.83376 0.11012 0.13091

]
.

In furtherance of this example, each element of the initial state vectors of all agents is

randomly generated from the uniform distribution on the interval [−5, 5]. As it can be seen

in Figures 4.4, 4.5, and 4.6, the deviation of each state of each agent from the average state

value goes asymptotically to zero. In conclusion, the 5 agent system reaches a consensus.
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Figure 4.4: Deviations of states x1(k) from their average value x̄1(k).
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Figure 4.5: Deviations of states x2(k) from their average value x̄2(k).
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Figure 4.6: Deviations of states x3(k) from their average value x̄3(k).

4.3.2 Multiple Input Systems

Consider the fundamental H∞ optimization problem for a general system

x(k + 1) = Ax(k) +Bu(k) +Bd(k),
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where x(k) ∈ Rn×1 is the state vector, u(k) ∈ Rm×1 is the input vector, d(k) ∈ Rm×1 is

an energy bounded or H2-norm bounded disturbance, A ∈ Rn×n, B ∈ Rn×m, and (A, B)

is a stabilizable pair. Without loss of generality, assume that A and B are partitioned as

follows

A =



Au 0

0 As


 , B =



Bu

Bs


 , (4.44)

where Au ∈ Rnu×nu is completely unstable, As ∈ R(n−nu)×(n−nu) is a stability matrix,

and Bu ∈ Rnu×m. Denote the complementary sensitivity function under state feedback

by T0(z) = K(zI − A + BK)−1B, K ∈ Rm×n. For the case of multi-input systems, the

following lemma is beneficial.

Lemma 4.3.4. With r = rank{Bu}, there holds

r
√
µ(A) ≤ γopt := inf

K∈Rm×n
‖T0(z)‖∞ ≤ µ(A), (4.45)

with µ(A) being the Mahler measure defined in equation (4.29).

Proof. The objective of the state feedback H∞ control problem is to apply the control law

u(k) = Kx(k) that would stabilize the feedback system and have an induced H2 norm not

greater than γ > γopt over all possible disturbances d(k) with unity H2 norm. According

to [4] and [18], such a state feedback control law exists and is equivalent with the existence

of a stabilizing X ≥ 0 satisfying

X = A∗X
[
In + (1− γ−2)BB∗X

]−1
A, γ2Im −B∗XB > 0. (4.46)

First, assume that Au does not have any eigenvalues on the unit circle. Then, the DARE

in equation (4.46) admits a stabilizing semi-positive solution for γ > γopt, which has the
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form

X =



Xu 0

0 0


⇒ Xu = A∗uXu

[
Inu + (1− γ−2)BuB

∗
uXu

]−1
Au, (4.47)

with the condition γ2Im − B∗XB > 0 being reduced to γ2Im − B∗uXuBu > 0. The pair

(Au, Bu) is reachable due to the initial hypothesis of (A, B) being stabilizable. Moreover,

under the assumption made on Au, the stabilizing solution Xu is nonsingular. Thus, the

DARE is equivalent to the following Lyapunov equation

X−1
u = A−1

u X−1
u (A−1

u )∗ + (1− γ−2)A−1
u BuB

∗
u(A

−1
u )∗. (4.48)

The assumption on Au also implies that A−1
u is a stability matrix, and, therefore, the

solution X−1
u > 0 is unique and given by

X−1
u = (1− γ−2)Zu

Zu =
∞∑

i=1

A−iu BuB
∗
u(A

−i
u )∗.

(4.49)

Since rank{Bu} = r, there exists a unitary matrix Q ∈ Rr×m (QQ∗ = Ir), such that

Bu = B̃uQ with B̃u ∈ Rnu×r. Hence, the inequality in equation (4.46) becomes

γ2Ir > B̃∗uXuB̃u = (1− γ−2)−1B̃∗uZ
−1
u B̃u ⇔

γ2Ir > Ir + B̃∗uZ
−1
u B̃u.

(4.50)

Obviously, the last inequality entails γopt =

√
1 + λmax(B̃∗uZ

−1
u B̃u). Applying matrix de-

terminant properties to inequality in equation (4.50) leads to

γ2r > det(Ir + B̃∗uZ
−1
u B̃u) = det(Inu + B̃uB̃

∗
uZ
−1
u ) =

det(Zu + B̃uB̃
∗
u)

det(Zu)

=
det(Zu + B̃uB̃

∗
u)

det[(A−1
u )(Zu + B̃uB̃∗u)(A

−1
u )∗]

= det(A∗uAu) = µ2(A)⇒ γ > r
√
µ(A).
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Therefore, if γ2Ir > Ir+B̃
∗
uZ
−1
u B̃u, then Xu = (1−γ−2)−1Z−1

u > 0 exists, and the inequality

γ > r
√
µ(A) holds. Consequently, the inequalities in equation (4.45) are obtained by taking

γ sufficiently close to γopt. This concludes the proof of equation (4.45) under the assumption

that A has no eigenvalues on the unit circle. Suppose that A has eigenvalues on the unit

circle. The complementary sensitivity function whose H∞-norm is to be minimized over

all stabilizing state feedback gains K, can be rewritten as

Tε =



K

εC


 (zI − A+BK)−1B, ε > 0, C =

[
0 Cu

]
, Cu ∈ R1×nu ,

with (Cu, Au) being an observable pair. Since Au is nonsingular, such a Cu exists. Then,

it can be argued that given any γ > γopt, ‖Tε‖∞ < γ could be achieved for some stabilizing

K by taking ε > 0 sufficiently small.

Remark 4.3.2. With λi(·) denoting the i-th eigenvalue, if rank{Bu} = m, then

λi(Im +B∗uZ
−1
u Bu) = 1 + λi(B

∗
uZ
−1
u Bu),

and γ2
opt = 1 +λmax(B

∗
uZ
−1
u Bu). Hence, the condition number of B∗uZ

−1
u Bu determines how

tight the lower and upper bounds in equation (4.45) are. A condition number close to 1 will

get γopt closer to the lower bound. Otherwise, γopt is close to the upper bound. As a matter

of fact, if rank{Bu} = 1, the problem is similar to the single input case, and, therefore, γopt

equals the upper bound. Also, if X ≥ 0 is the stabilizing solution of the DARE in equation

(4.46) satisfying the inequality in equation (4.46), then a stabilizing state feedback gain K

achieving ‖T0‖∞ < γ, for some γ > γopt is implemented according to

K =
[
Im + (1− γ−2)B∗XB

]−1
B∗XA.

Rewrite the complementary sensitivity function under state feedback by introducing a
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square nonsingular matrix D, as shown below

TD(z) = KD(zI − A+BD−1KD)−1BD−1. (4.51)

Let rank{B} = rank{Bu} = r > 0. Then

r
√
µ(A) ≤ γopt := inf

D,KD

‖TD‖∞ ≤ µ(A).

It can be proven that by properly designing D and KD, the following result holds

inf
D,KD

‖TD‖∞ ≈ r
√
µ(A).

This conclusion is supported by the following example.

Example 4.3.2. Consider a system described by the state-space model x(k+1) = Ax(k)+

Bu(k), with

A =




−0.4326 1.1909 −0.1867 0.1139 0.2944

−1.6656 1.1892 0.7258 1.0668 −1.3362

0.1253 −0.0376 −0.5883 0.0593 0.7143

0.2877 0.3273 2.1832 −0.0956 1.6236

−1.1465 0.1746 −0.1364 −0.8323 −0.6918




;

B =




1.7160 −0.7998 1.3372

2.5080 1.3800 2.3817

−3.1875 1.6312 −2.4049

−2.8819 1.4238 −0.0396

1.1423 2.5805 −0.3134




.
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The set of eigenvalues for A is {−1.1192, −0.5521±1.7693j, 0.8022±0.877j}, with absolute

values {1.1192, 1.8535, 1.1886}, respectively, and rank{B} = 3. Thus, in Lemma 4.3.4,

Au = A and Bu = B. Applying the definition of Mahler measure, µ(A) = 5.432, and

hence, 3
√
µ(A) = 1.758. Following the steps detailed in the proof of Lemma 4.3.4, the

Lyapunov equation (4.48) is solved for [(1− γ−2)Xu]
−1 = Zu = Z. It follows that

1.758 = 3
√
µ(A) < γopt =

√
1 + λmax(B∗Z−1B) = 2.964 < µ(A) = 5.432.

The next question is whether or not γopt can be made closer and closer to 3
√
µ(A), the

lower bound in equation (4.45), by involving a square nonsingular matrix D. First, the

Cholesky factorization is performed on B∗Z−1B = D∗1D1, and set D = D1. As explained

at the end of Remark 4.3.2, a minimization of ‖TD(z)‖∞, with TD(z) as in equation (4.51),

is performed over all state feedback gains, according to Lemma 4.3.4. This yields

Z1 =
∞∑

k=1

A−kB(D∗1D1)−1B∗(A∗)−k > 0,

and γ
(1)
opt =

√
1 + λmax((BD−1)∗Z−1

1 (BD−1)) = 2.396. The process can be further repeated

by taking a new Cholesky decomposition of (BD−1)∗Z−1
1 (BD−1) = D∗2D2, setting D =

D2D1, and minimizing ‖TD(z)‖∞, which leads to a new γ
(2)
opt = 2.09. Proceeding with

more iterations, a sequence {Di}Ki=1 of square nonsingular matrices is obtained. Setting

D = DK . . . D2D1, ‖TD(z)‖∞ is minimized over all sate feedback gains yielding γ
(K)
opt . Figure

4.7 shows the computation results after K = 15 iterations, leading to γ
(15)
opt = 1.8537, which

is about 5.5% higher than the lower bound. Regardless of the fact that the method in

this example fails to reach the exact lower bound, the improvement of γopt by refining the

condition number of B∗Z−1B with a square nonsingular matrix D is evident. Moreover, it

can be noticed that γ
(K)
opt drops fast in the beginning, which entails that a small value for

K is sufficient to reach the goal.

83



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
p
ti
m
a
l
γ
(γ

op
t
)

K

Figure 4.7: γ
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opt (◦- curve), lower bound (∇-line), upper bound (∆-line).

Corollary 4.3.1. Given a digraph G modeling the network topology of the discrete-time

multi-agent system (4.7), with (A, B) a stabilizable pair and m > 1, the system is consen-

susable under protocol (4.9) if

θ < arcsin

√√√√√
(
rN
r2

+ 1
)2

4 rN
r2
µ2

opt

−

(
rN
r2
− 1
)2

4 rN
r2

, (4.52)

where r2 and rN are the magnitudes of the second smallest and the largest eigenvalues of the

digraph Laplacian, and µopt = γopt verifies the lower and upper bounds in equation (4.45).
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Chapter 5
Conclusions and Future Work

Inspired by the multitude of applications NCS area has to offer, this dissertation has

studied two of the current challenges related to communication-constrained feedback sta-

bility and consensusability of components in an MAS.

The first part of the thesis had the primary goal of analyzing the stabilization of LDTI

systems using only a finite number of control values and measurement levels. In other words,

due to limited bandwidth channels, the communication between actuators and plant, and

between sensors and controller is prone to quantization errors, which, in turn, propagate

to the systems states. Unlike the previous studies, the new approach has considered the

quantized input values as being known, and thus available to the controller. Therefore,

a new control law has been proposed and used in this study in order to synthesize the

controllers that would ensure stability even in the presence of a more coarsely quantized

signal. Following the idea in [16], this work has extended the use of classical sector bound

method to LDTI systems under the newly suggested feedback. The quantization errors had

been converted into sector bound uncertainties, so that the quantized feedback problems

could be treated as robust control problems. First, the case with only quantized input

has been considered. It has been shown what the coarsest quantization density is and

how to design the controller under state feedback, and the observer-based controller under

output feedback case. Then, the method has been extended to systems affected by loga-

rithmic quantization at both input and output. The largest admissible uncertainty, which

represents the sector bound condition, has been estimated using a scaled H∞ optimization

algorithm, that has been detailed, coded and used to back up the analytical results through

a series of examples.

The second part of the dissertation has dealt with the problem of consensusability

for discrete-time MASs under a time-invariant communication topology described by a
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directed graph. Under a proposed distributed feedback control protocol based on agents’

local information, the consensusability condition has been derived. It has been shown that

this condition depends strictly on the Mahler measure of the agent, and is given in terms

of the second smallest and largest eigenvalues of the digraph Laplacian.

Combining the two main studies of this thesis into one could be the topic of a future

research work. It would be of great interest to define the consensusability condition and

how to design the consensus control protocol in the case of a communication-constrained

network between agents.
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Appendix A

Controller Synthesis - Simple Output
Feedback Case

For the case in Figure 3.7, using the scaling matrices W̃l =




τIq 0 0

0 Ip 0

0 0 Ip




, and W̃r =




τIq 0 0

0 Ip 0

0 0 Iq



, τ > 0 the system becomes:

W̃lGW̃
−1
r =




τIq 0 0

0 Ip 0

0 0 Ip







0 0 Iq

P 0 P

P Ip P







τ−1Iq 0 0

0 Ip 0

0 0 Iq




=




0 0 τIq

P 0 P

P Ip P







τ−1Iq 0 0

0 Ip 0

0 0 Iq




=




0 0 τIq

τ−1P 0 P

τ−1P Ip P




=




A B 0 τB

0 0 0 τIq

τ−1C 0 0 0

τ−1C 0 Ip 0




. (A.1)
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Denoting B̃1 =

[
B 0

]
, B̃2 = τB, C̃1 =




0

τ−1C


, C̃2 = τ−1C, D̃11 =




0 0

0 0


, D̃12 =



τIq

0


, D̃21 =

[
0 Ip

]
, and D̃22 = 0, it can be seen that one of the simplified assumptions

in the H∞ theory is not satisfied, that is

D̃∗12

[
C̃1 D̃12

]
=

[
τIq 0

]



0 τIq

τ−1C 0


 =

[
0 τ 2Iq

]
6=
[
0 Iq

]
.

The other condition 

B̃1

D̃21


 D̃∗21 =



B 0

0 Ip







0

Ip


 =




0

Ip




is satisfied. Normalizing D̃12 =



τIq

0


 by writing it as

D̃12 = Up




0

Iq


Rp =




0 Iq

Ip 0







0

Iq


 τIq =



τIq

0


 ,

and writing D̃21 as

D̃21 = R̃p

[
0 Ip

]
Ũp = Ip

[
0 Ip

]


Iq 0

0 Ip


 =

[
0 Ip

]
,
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the new model for H∞ synthesis becomes

Ĝ =




0 Ip 0

Iq 0 0

0 0 Ip



W̃lGW̃

−1
r




Iq 0 0

0 Ip 0

0 0 τ−1Iq




=




A

[
B 0

]


Iq 0

0 Ip


 τBτ−1Iq




0 Ip

Iq 0







0

τ−1C







0 Ip

Iq 0







0 0

0 0






Iq 0

0 Ip







0 Ip

Iq 0






τIq

0


 τ−1Iq

Ipτ
−1C Ip

[
0 Ip

]


Iq 0

0 Ip


 Ip0τ

−1Iq




=




A B 0 B

τ−1C 0 0 0

0 0 0 Iq

τ−1C 0 Ip 0




(A.2)

The new partitioned matrices for Ĝ are B̂1 =

[
B 0

]
, B̂2 = B, Ĉ1 =



τ−1C

0


, Ĉ2 = τ−1C,

D̂11 =




0 0

0 0


, D̂12 =




0

Iq


, D̂21 =

[
0 Ip

]
, and D̂22 = 0, and thus the orthogonality

conditions are satisfied.

Denote by KG the stabilizing controller for G and by KĜ the stabilizing controller for

Ĝ. Then, it follows that

KĜ = τIqKGIp = τKG. (A.3)
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According to the solution to the discrete-time H∞ control problem in [26], some prelim-

inary matrices must be defined before proceeding with synthesizing the actual controller.

D1• =

[
D̂11 D̂12

]
=




0 0 0

0 0 Iq


 =




0p×(q+p) 0p×q

0q×(q+p) Iq


 . (A.4)

D•1 =



D̂11

D̂21


 =




0 0

0 0

0 Ip




=




0(p+q)×q 0(p+q)×p

0p×q Ip


 . (A.5)

From equations (A.4) and (A.5), it follows that

R = D∗1•D1• −



γ2I 0

0 0


 =



−γ2Iq+p 0(q+p)×q

0q×(q+p) Iq


 , (A.6)

R̃ = D•1D
∗
•1 −



γ2I 0

0 0


 =



−γ2Ip+q 0(p+q)×p

0p×(p+q) Ip


 . (A.7)

The DAREs needed to solve the H∞ control problem involve two pairs of symplectic ma-

trices defines as follows:

S∞ :=






A−

[
B̂1 B̂2

]
R−1D∗1•Ĉ1 0

−Ĉ∗1 (I −D1•R
−1D∗1•) Ĉ1 I


 ,



I

[
B̂1 B̂2

]
R−1

[
B̂1 B̂2

]∗

0

(
A−

[
B̂1 B̂2

]
R−1D∗1•Ĉ1

)∗







=







A 0

−τ−2C∗C I


 ,



I (1− γ−2)BB∗

0 A∗





 = (S∞1, S∞2) (A.8)
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and

T∞ :=








A− B̂1D

∗
•1R̃

−1



Ĉ1

Ĉ2







∗

0

−B̂1

(
I −D∗•1R̃−1D•1

)
B̂∗1 I



,




I



Ĉ1

Ĉ2




∗

R̃−1



Ĉ1

Ĉ2




0 A− B̂1D
∗
•1R̃

−1



Ĉ1

Ĉ2










=







A∗ 0

−BB∗ I


 ,



I (1− γ−2)τ−2C∗C

0 A





 = (T∞1, T∞2). (A.9)

The DAREs corresponding to the symplectic pairs in equations (A.8) and (A.9) are there-

fore given by

X∞ = A∗X∞
[
I + (1− γ−2)BB∗X∞

]−1
A+ τ−2C∗C, (A.10)

Y∞ = AY∞
[
I + (1− γ−2)τ−2C∗CY∞

]−1
A∗ +BB∗. (A.11)

Once an admissible controller KĜ for Ĝ has been designed, according to equation A.3, it

results that

KG = τ−1KĜ. (A.12)

95



Appendix B

Controller Synthesis - Input-Output
Feedback Case

For the case in Figure 3.9, using the scaling matrices W̃l =




τIq 0 0 0

0 Ip 0 0

0 0 Iq 0

0 0 0 Ip




, and

W̃r =




τIq 0 0

0 Ip 0

0 0 Iq



, τ > 0 the system becomes:

W̃lGW̃
−1
r =




τIq 0 0 0

0 Ip 0 0

0 0 Iq 0

0 0 0 Ip







0 0 Iq

P 0 P

Iq 0 Iq

P Ip P







τ−1Iq 0 0

0 Ip 0

0 0 Iq




=




0 0 τIq

P 0 P

Iq 0 Iq

P Ip P







τ−1Iq 0 0

0 Ip 0

0 0 Iq




=




0 0 τIq

τ−1P 0 P

τ−1Iq 0 Iq

τ−1P Ip P




=




A B 0 τB

0 0 0 τIq

τ−1C 0 0 0

0 τ−1Iq 0 Iq

τ−1C 0 Ip 0




.

(B.1)
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Denoting B̃1 =

[
B 0

]
, B̃2 = τB, C̃1 =




0

τ−1C


, C̃2 =




0

τ−1C


, D̃11 =




0 0

0 0


,

D̃12 =



τIq

0


, D̃21 =



τ−1Iq 0

0 Ip


, and D̃22 =



Iq

0


, it can be seen that the simplified

orthogonality assumptions in the H∞ theory are not satisfied, that is

D̃∗12

[
C̃1 D̃12

]
=

[
τIq 0

]



0 τIq

τ−1C 0


 =

[
0 τ 2Iq

]
6=
[
0 Iq

]
,

and



B̃1

D̃21


 D̃∗21 =




B 0

τ−1Iq 0

0 Ip






τ−1Iq 0

0 Ip


 =




τ−1B 0

τ−2Iq 0

0 Ip



6=




0 0

Iq 0

0 Ip




Normalizing D̃12 =



τIq

0


 and D̃21 =



τ−1Iq 0

0 Ip


 by writing them as

D̃12 = Up




0

Iq


Rp =




0 Iq

Ip 0







0

Iq


 τIq =



τIq

0


 ,

and

D̃21 = R̃p



Ip 0

0 Iq


 Ũp =




0 τ−1Iq

Ip 0






Ip 0

0 Iq







0 Ip

Iq 0


 =



τ−1Iq 0

0 Ip
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respectively, the new model for H∞ synthesis becomes

Ĝ =




0 Ip 0 0

Iq 0 0 0

0 0 0 Ip

0 0 τIq 0




W̃lGW̃
−1
r




0 Iq 0

Ip 0 0

0 0 τ−1Iq




=




A

[
B 0

]



0 Iq

Ip 0


 τBτ−1Iq




0 Ip

Iq 0







0

τ−1C







0 Ip

Iq 0







0 0

0 0







0 Iq

Ip 0







0 Ip

Iq 0






τIq

0


 τ−1Iq




0 Ip

τIq 0







0

τ−1C







0 Ip

τIq 0






τ−1Iq 0

0 Ip







0 Iq

Ip 0







0 Ip

τIq 0






Iq

0


 τ−1Iq




=




A 0 B B

τ−1C 0 0 0

0 0 0 Iq

τ−1C Ip 0 0

0 0 Iq Iq




(B.2)

The controller for Ĝ, denoted KĜ, is going to be given by

KĜ = RpKGR̃p, (B.3)

where KG is the initial controller corresponding to G, Rp = τIq, and R̃p =




0 τ−1Iq

Ip 0


.

This implies

KG = R−1
p KĜR̃

−1
p , (B.4)
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where R−1
p = τ−1Iq, and R̃−1

p =




0 Ip

τIq 0


. To simplify the controller design, let us first

assume D̃22 =




0

0


, and, therefore,

Ĝ0 =




A 0 B B

τ−1C 0 0 0

0 0 0 Iq

τ−1C Ip 0 0

0 0 Iq 0




, (B.5)

for which the controller is denoted by KĜ0
. Then, the controller for Ĝ is going to be given

by

KĜ = KĜ0


I +



Iq

0


KĜ0




−1

. (B.6)

The new partitioned matrices for Ĝ0 are B̂1 =

[
0 B

]
, B̂2 = B, Ĉ1 =



τ−1C

0


, Ĉ2 =



τ−1C

0


, D̂11 =




0 0

0 0


, D̂12 =




0

Iq


, D̂21 =



Ip 0

0 Iq


, and D̂22 =




0

0


. In this case, only

one orthogonality condition is satisfied, that is

D̂∗12

[
Ĉ1 D̂12

]
=

[
0 Iq

]


τ−1C 0

0 Iq


 =

[
0 Iq

]
,
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while the other is still not met



B̂1

D̂21


 D̂∗21 =




0 B

Ip 0

0 Iq






Ip 0

0 Iq


 =




0 B

Ip 0

0 Iq



6=




0 0

Ip 0

0 Iq



.

Once again, according to the solution to the discrete-time H∞ control problem in [26],

some preliminary matrices must be defined before proceeding with synthesizing the actual

controller. First, write

D1• =

[
D̂11 D̂12

]
=




0 0 0

0 0 Iq


 =




0p×(p+q) 0

0 Iq


 , (B.7)

D•1 =



D̂11

D̂21


 =




0 0

0 0

Ip 0

0 Iq




=




0p+q

Ip+q


 . (B.8)

and then, from equations (B.7) and (B.8) compute

R = D∗1•D1• −



γ2Ip+q 0

0 0


 =



−γ2Ip+q 0

0 Iq


 (B.9)

R̃ = D•1D
∗
•1 −



γ2Ip+q 0

0 0


 =



−γ2Ip+q 0

0 Ip+q


 . (B.10)
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The corresponding symplectic pairs needed to solve the H∞ discrete-time control problem

are shown below.

S∞ :=






A−

[
B̂1 B̂2

]
R−1D∗1•Ĉ1 0

−Ĉ∗1 (I −D1•R
−1D∗1•) Ĉ1 I


 ,



I

[
B̂1 B̂2

]
R−1

[
B̂1 B̂2

]∗

0

(
A−

[
B̂1 B̂2

]
R−1D∗1•Ĉ1

)∗







=







A 0

−τ−2C∗C I


 ,



I (1− γ−2)BB∗

0 A∗





 = (S∞1, S∞2) (B.11)

and

T∞ :=








A− B̂1D

∗
•1R̃

−1



Ĉ1

Ĉ2







∗

0

−B̂1

(
I −D∗•1R̃−1D•1

)
B̂∗1 I



,




I



Ĉ1

Ĉ2




∗

R̃−1



Ĉ1

Ĉ2




0 A− B̂1D
∗
•1R̃

−1



Ĉ1

Ĉ2










=






A∗ 0

0 I


 ,



I (1− γ−2)τ−2C∗C

0 A





 = (T∞1, T∞2). (B.12)

The DAREs corresponding to the symplectic pairs in equations (B.11) and (B.12) are

therefore given by

X∞ = A∗X∞
[
I + (1− γ−2)BB∗X∞

]−1
A+ τ−2C∗C, (B.13)

Y∞ = AY∞
[
I + (1− γ−2)τ−2C∗CY∞

]−1
A∗. (B.14)

After KĜ0
is synthesized, KĜ can be obtained from equation (B.6). The stabilizing con-

troller K for the initial system given by G can then be obtained by using equation (B.4).
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Appendix C

MATLAB Code

C.1 MATLAB Search Algorithm for Simulations in

Section 3.3
1 function [K, CL , gamma , tau] = ControllerNormalizedSearch(G,

BlkStruc , nmeas , ninp , w, epsilon)

2 % Block Structure BlkStruc is needed for the structured

singular value

3 % function

4 screenSize = get(0, ’screensize ’);

5 fig = figure;

6 set(fig , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

7 3.75* screenSize (3)/4, 3* screenSize (4) /4] ,...

8 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’);

9

10 % transform G into state -space , such that we can write the

scaled function

11 % as Wl*G*Wr^{-1} = Wl*(C*(sI -A)^{ -1}*B + D)*Wr^{-1} =

12 % Wl*C*(sI -A)^{ -1}*B*Wr^{-1} + Wl* D * Wr^{-1}

13 % getting the total number of inputs and outputs of the system

14 G_nout = size(G, 1);

15 G_ninp = size(G, 2);

16

17 eps_min = epsilon (1);

18 eps_max = epsilon(end);

19 n_eps = length(epsilon);

20 eps_step = (eps_max - eps_min)/( n_eps - 1);

21

22 Kiter = 1;

23 redo = 1;

24 lorr = logical (1); % to the LEFT or RIGHT of 1; 1 for LEFT , 0

for RIGHT

25

26 while redo == 1

27 for idx = 1: length(epsilon)

28 % scaling matrices

29 % this will only work for the case of 2 scalar

uncertainties blocks
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30 % Delta = diagonal{Delta1 , Delta_2}

31

32 % the search for tau will be done by searching an

epsilon in interval (0,1), and

33 % therefore we switch between 2 cases of scaling

factors to include

34 % the cases when tau should actually be greater than 1

35

36 % we start searching in (0, 1)

37 if lorr

38 % case tau < 1

39 tau_e(idx) = epsilon(idx);

40 Wl = diag([ epsilon(idx), ones(1, G_nout - 1 -

nmeas)]);

41 Wr = diag([ epsilon(idx), ones(1, G_ninp - 1 - ninp

)]);

42 % augmented scaling matrices

43 Wl_a = diag([ epsilon(idx), ones(1, G_nout -1)]);

44 Wr_a = diag([ epsilon(idx), ones(1, G_ninp -1)]);

45 lefttitle = [’$K$ iteration \# ’, num2str(Kiter , ’

%d’) ,...

46 ’, $D$ iteration \# ’ ,...

47 num2str(idx , ’%d’), ’, with $\varepsilon = ’,

num2str(epsilon(idx), ’%.4f’) ,...

48 ’$, ($\tau = ’, num2str(epsilon(idx), ’%.4f’),

’$)’];

49 else

50 % case tau > 1

51 tau_e(idx) = 1/ epsilon(idx);

52 Wl = diag ([1/ epsilon(idx), ones(1, G_nout - 1 -

nmeas)]);

53 Wr = diag ([1/ epsilon(idx), ones(1, G_ninp - 1 -

ninp)]);

54 % augmented scaling matrices

55 Wl_a = diag ([1/ epsilon(idx), ones(1, G_nout -1)]);

56 Wr_a = diag ([1/ epsilon(idx), ones(1, G_ninp -1)]);

57 lefttitle = [’$K$ iteration \# ’, num2str(Kiter , ’

%d’) ,...

58 ’, $D$ iteration \# ’ ,...

59 num2str(idx , ’%d’), ’, with $\varepsilon = ’,

num2str(epsilon(idx), ’%.4f’) ,...

60 ’$, ($\tau = ’, num2str (1/ epsilon(idx), ’%.4f’

), ’$)’];

61 end

62
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63 G_a.a = G.a;

64 G_a.b = G.b/Wr_a;

65 G_a.c = Wl_a*G.c;

66 G_a.d = Wl_a*G.d/Wr_a;

67 G_a_ss = ss(G_a.a, G_a.b, G_a.c, G_a.d);

68 [K{idx}, CL{idx}, gamma(idx), info] = hinfsyn(G_a_ss ,

nmeas , ninp , ’Method ’, ’ric’, ’Display ’, ’off’);

69 % returned K and CL are in state -space

70

71 % scaled closed -loop model , norm , FRD model , and

singular values

72 CLSS_scaled = CL{idx}; %minreal(ss(Wl*tf(lft(G, tf(K{

idx})))/Wr));

73 CL_scaled_norms(idx) = norm(CLSS_scaled , inf);

74

75 % frequency response model of the scaled closed -loop

76 CLf_scaled = frd(CLSS_scaled , w);

77 SV_scaled = sigma(CLf_scaled , w);

78 % unscaled closed -loop model , norm , FRD model , and

singular values

79 CLSS = lft(G, K{idx});

80 CL_norms(idx) = norm(CLSS , inf);

81 CLf = frd(CLSS , w);

82 SV = sigma(CLf , w);

83 % structured singular values bounds; these are

computed for

84 % unscaled closed loop

85 mubnds = mussv(CLf , BlkStruc);

86 % maximum lower bound

87 [maxmubndl , mubndlidx] = max(mubnds (1,2).ResponseData

(:));

88 % maximum upper bound

89 [maxmubndu , mubnduidx] = max(mubnds (1,1).ResponseData

(:));

90

91 % for stability , we should just look at the proper

block in the

92 % closed -loop model , that is CL_11

93 % the following code only applies in this case , since

I have

94 % Delta_1 and Delta_2 as 1 by 1 blocks

95 CL_scaled_11 = CLSS_scaled (1,1);

96 CL_scaled_11_norm(idx) = norm(CL_scaled_11 , inf);

97

98 figure(fig);
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99 subplot(1, 2, 1);

100 g1 = gca;

101 set(g1 , ’Position ’, [0.05, 0.05, 0.4, 0.8]);

102 semilogx(w, squeeze(mubnds.ResponseData), ’Color ’, ’

green’, ’LineWidth ’, 3)

103 hold on

104 % semilogx(w, CL_norm(idx)*ones(size(w)), ’Color ’, ’

yellow ’, ’LineWidth ’, 2.5, ’LineStyle ’, ’-’)

105 semilogx(w, CL_scaled_norms(idx)*ones(size(w)), ’Color

’, ’red’, ’LineWidth ’, 1.5, ’LineStyle ’, ’-’)

106 semilogx(w, gamma(idx)*ones(size(w)), ’Color’, ’black’

, ’LineWidth ’, 1, ’LineStyle ’, ’-.’)

107 semilogx(w, SV_scaled , ’Color ’, ’magenta ’, ’LineWidth ’

, 1.5, ’LineStyle ’, ’-.’)

108

109 legend(’upper mussv’, ’lower mussv’ ,...

110 ’inf norm (scaled CL)’, ’gamma (hinfsyn)’, ...

111 ’sv (Scaled FRD)’, ’sv (Scaled FRD)’)

112 title(lefttitle , ’FontWeight ’, ’bold’, ’FontSize ’, 12)

113 hold off

114 end

115 % find the tau that gives the minimum norm

116 [min_scaled_norm , minidx] = min(CL_scaled_norms);

117

118 figure(fig);

119 subplot(1, 2, 2);

120 g2 = gca;

121 set(g2 , ’Position ’, [0.55, 0.05, 0.4, 0.8]);

122 stem(epsilon , gamma , ’o’, ’MarkerSize ’, 8,...

123 ’MarkerEdgecolor ’, ’black’, ’MarkerfaceColor ’, ’white ’

)

124 hold on

125 stem(epsilon , CL_scaled_norms , ’o’, ’MarkerSize ’, 6,...

126 ’MarkerEdgecolor ’, ’black’, ’MarkerfaceColor ’, ’green ’

)

127 plot(epsilon(minidx), min_scaled_norm , ’s’, ’MarkerSize ’,

4,...

128 ’MarkerEdgeColor ’, ’black’, ’MarkerFaceColor ’, ’red’)

129 if lorr

130 righttitle = {[’$K$ it. \# ’, num2str(Kiter , ’%d’) ,...

131 ’, $\|W_{l}\ mathcal{F}(G,K)W_{r}^{ -1}\|_{\

infty} = ’ ,...

132 num2str(min_scaled_norm , ’%.4f’) ,...

133 ’$ ($\| \Delta \|_{\infty} < ’, num2str (1/

min_scaled_norm , ’%.4f’), ’$)’];
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134 [’$\| M_{11} \|_{\ infty} = ’ ,...

135 num2str(CL_scaled_11_norm(minidx), ’%.4f’) ,...

136 ’$ ($\| \Delta_ {1} \|_{\ infty} < ’ ,...

137 num2str (1/ CL_scaled_11_norm(minidx), ’%.4f’)

,...

138 ’$) for $\varepsilon = ’, num2str(epsilon(

minidx), ’%.4f’) ,...

139 ’$, ($\tau = ’, num2str(epsilon(minidx), ’%.4f

’), ’$)’]};

140 else

141 righttitle = {[’$K$ it. \# ’, num2str(Kiter , ’%d’) ,...

142 ’, $\|W_{l}\ mathcal{F}(G,K)W_{r}^{ -1}\|_{\

infty} = ’ ,...

143 num2str(min_scaled_norm , ’%.4f’) ,...

144 ’$ ($\| \Delta \|_{\infty} < ’, num2str (1/

min_scaled_norm , ’%.4f’), ’$)’];

145 [’$\| M_{11} \|_{\ infty} = ’ ,...

146 num2str(CL_scaled_11_norm(minidx), ’%.4f’) ,...

147 ’$ ($\| \Delta_ {1} \|_{\ infty} < ’ ,...

148 num2str (1/ CL_scaled_11_norm(minidx), ’%.4f’)

,...

149 ’$) for $\varepsilon = ’, num2str(epsilon(

minidx), ’%.4f’) ,...

150 ’$, ($\tau = ’, num2str (1/ epsilon(minidx), ’

%.4f’), ’$)’]};

151 end

152 title(righttitle , ’FontWeight ’, ’bold’, ’FontSize ’, 12)

153 hold off

154

155 if epsilon(minidx) == epsilon (1)

156 redo = 0;

157 K = K{minidx };

158 CL = CL{minidx };

159 gamma = gamma(minidx);

160 tau = epsilon(minidx);

161 else if epsilon(minidx) == epsilon(end)

162 lorr = ~lorr;

163 redo = 1;

164 else if Kiter == 1

165 eps_norm_min_old = epsilon(minidx);

166 eps_min = epsilon(minidx) - eps_step;

167 eps_max = epsilon(minidx) + eps_step;

168 eps_step = (eps_max - eps_min)/( n_eps - 1);

169 epsilon = eps_min:eps_step:eps_max;

170 redo = 1;
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171 Kiter = Kiter + 1;

172 else if floor (100* abs(epsilon(minidx) -

eps_norm_min_old))/100 <= 0.01

173 redo = 0;

174 K = K{minidx };

175 CL = CL{minidx };

176 gamma = gamma(minidx);

177 tau = epsilon(minidx);

178 else

179 eps_norm_min_old = epsilon(minidx);

180 eps_min = epsilon(minidx) - eps_step;

181 eps_max = epsilon(minidx) + eps_step;

182 eps_step = (eps_max - eps_min)/( n_eps - 1)

;

183 epsilon = eps_min:eps_step:eps_max;

184 redo = 1;

185 Kiter = Kiter + 1;

186 end

187 end

188 end

189 end

190 end

C.2 MATLAB Main File for Simulations in Section

3.3
1 % in the file , since the uncertainties coming from

quantization are

2 % time -variant , dksyn function won ’t do it; so I have to solve

the Hinfity

3 % problem all by myself; let ’s see if I am gonna get any good

results

4 clear all

5 close all

6 clc

7 format short g

8 format compact

9

10 screenSize = get(0, ’screensize ’);

11 set(0,’DefaultTextInterpreter ’,’LaTex’);

12

13 gain = 1;

14 Ts = 0.01;

15 fignum = 1;
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16 % Discrete -time plant TF model

17 % P = [zpk([], [2], gain , Ts)]

18 % P = [zpk([], [0, 2], gain , Ts)]

19 % P = [zpk([], [0, 1.4], gain , Ts)]

20 % P = [zpk([3], [0, 2], gain , Ts)]

21 % P = [zpk([2], [0, 1.6], gain , Ts)]

22 % P = [zpk ([1.5] , [0, 1.7], gain , Ts)]

23 % P = [zpk([], [1.1] , gain , Ts)]

24 % P = [zpk([], [0.8] , gain , Ts)]

25 % P = [zpk ([0.8] , [0, 0.3], gain , Ts)]

26 P = [zpk ([0.3] , [0, 0.1], gain , Ts)]

27 % discrete -time state -space model needed for the Simulink run

28 Pss = ss(P);

29 % continuous -time plant TF model

30 Pc = d2c(P, ’tustin ’)

31 % continuous -time plant SS model

32 PcSS = minreal(ss(Pc))

33

34 % titlePP = ’For plant $\displaystyle P(z) = \frac {1}{z-2}$’;

35 % titlePP = ’For plant $\displaystyle P(z) = \frac {1}{z(z-2)}$

’;

36 % titlePP = ’For plant $\displaystyle P(z) = \frac {1}{z(z -1.4)

}$’;

37 % titlePP = ’For plant $\displaystyle P(z) = \frac{z-3}{z(z-2)

}$’;

38 % titlePP = ’For plant $\displaystyle P(z) = \frac{z-2}{z(z

-1.6)}$’;

39 % titlePP = ’For plant $\displaystyle P(z) = \frac{z -1.5}{z(z

-1.7)}$’;

40 % titlePP = ’For plant $\displaystyle P(z) = \frac {1}{z -1.1}$

’;

41 % titlePP = ’For plant $\displaystyle P(z) = \frac {1}{z -0.8}$

’;

42 % titlePP = ’For plant $\displaystyle P(z) = \frac{z -0.8}{z(z

-0.3)}$’;

43 titlePP = ’For plant $\displaystyle P(z) = \frac{z -0.3}{z(z

-0.1)}$’;

44

45 textP = evalc(’P’);

46 ix1 = strfind(textP ,’:’);

47 ix2 = strfind(textP ,’)’);

48 titleP = textP(ix1(1)+2:ix2(end));

49

50 w = logspace (-2 ,10,1000);

51 tau_start = 0.01;
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52 tau_end = 1;

53 % number of tau ’s for which we do the search; basically , it is

the length

54 % of tau vector

55 n_tau = 10;

56 tau_step = (tau_end - tau_start)/(n_tau - 1);

57 init_tau = tau_start:tau_step:tau_end;

58

59 % signals used in the structures , that are going to be used by

iconnect and

60 % isignal to create the model

61 d1 = icsignal (1);

62 d2 = icsignal (1);

63 v = icsignal (1);

64 u = icsignal (1);

65 y = icsignal (1);

66 yq = icsignal (1);

67

68 % the LFT TF

69 % for the case with input and output quantization , both

multiplicative ,

70 % but just simple output feedback

71

72 G1 = iconnect;

73 G1.Input = [d1; d2; v];

74 G1.Output = [v; y; yq];

75 G1.Equation {1} = equate(u, d1+v);

76 G1.Equation {2} = equate(y, PcSS*u);

77 % PcSS needs to be in state -space such the state -space for G1c

is going to

78 % have the matrices accordingly ... G1c.a = PcSS.a, and so on

...

79 G1.Equation {3} = equate(yq , d2+y);

80 G1c = ss(G1.System);

81

82 nmeas1 = 1;

83 ninp1 = 1;

84

85 BlckStruct1 = [1, 1; 1, 1];

86

87 [K1 , CL1 , gamma1 , tau1] = ControllerNormalizedSearch(G1c ,

BlckStruct1 , nmeas1 , ninp1 , w, init_tau);

88 fignum = fignum + 1;

89 gamma1

90 tau1
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91 eig(CL1.a)

92 pole(CL1)

93 K1d = c2d(K1, Ts , ’tustin ’);

94

95 set(gcf ,’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

96 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

97 ’PaperPosition ’, [0.05 , 0.05, 0.9, 0.9]);

98 ax = axes(’Position ’ ,[0,0,1,1],’Visible ’,’off’);

99 MasterTitle = text (0.4 ,0.95 , titlePP);

100 set(MasterTitle ,’FontWeight ’,’bold’, ’FontSize ’, 12)

101

102 ftime = clock;

103 filename = char([’./Figs/’, datestr(clock ,’yyyy -mm-dd_HH -MM-SS

’), ’_SearchController_1 ’]);

104 print(’-dpdf’, ’-r150’, filename);

105

106 % the LFT TF

107 % for the case with input and output quantization , both

multiplicative ,

108 % but output feedback augmented with feedback from quantized

input as

109 % well

110

111 G2 = iconnect;

112 G2.Input = [d1; d2; v];

113 G2.Output = [v; y; u; yq];

114 G2.Equation {1} = equate(u, d1+v);

115 G2.Equation {2} = equate(y, PcSS*u);

116 G2.Equation {3} = equate(yq , d2+y);

117 G2c = ss(G2.System)

118

119 nmeas2 = 2;

120 ninp2 = 1;

121

122 BlckStruct2 = [1, 1; 1, 1];

123

124 [K2 , CL2 , gamma2 , tau2] = ControllerNormalizedSearch(G2c ,

BlckStruct2 , nmeas2 , ninp2 , w, init_tau);

125 fignum = fignum + 1;

126 gamma2

127 tau2

128 eig(CL2.a)

129 pole(CL2)

130 K2d = c2d(K2, Ts , ’tustin ’);
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131

132 set(gcf ,’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

133 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

134 ’PaperPosition ’, [0.05 , 0.05, 0.9, 0.9]);

135 ax = axes(’Position ’ ,[0,0,1,1],’Visible ’,’off’);

136 MasterTitle = text (0.4 ,0.95 , titlePP);

137 set(MasterTitle ,’FontWeight ’,’bold’, ’FontSize ’, 12)

138

139 ftime = clock;

140 filename = char([’./Figs/’, datestr(clock ,’yyyy -mm-dd_HH -MM-SS

’), ’_SearchController_2 ’]);

141 print(’-dpdf’, ’-r150’, filename);

142

143

144 %%

145 CLL1 = lft(G1c , K1);

146 delta1_11 = 1/norm(CLL1 (1,1), inf)

147 CLL2 = lft(G2c , K2);

148 delta2_11 = 1/norm(CLL2 (1,1), inf)

149

150 %%

151 % Run Simulink model

152 % for positive uncertainty interval only

153 Delta_min = 1/ gamma1;

154 Delta_max = 1/ gamma2;

155

156 curr_time = clock;

157 seed_1 = abs(curr_time(end) + 1);

158 seed_2 = abs(curr_time(end) - 1);

159

160 set_param(’my_usim_model_both ’,’AlgebraicLoopSolver ’,’

LineSearch ’)

161 set_param(’my_usim_model_both/D1’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))

162 set_param(’my_usim_model_both/D1’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))

163 set_param(’my_usim_model_both/D1’, ’Seed’, num2str(seed_1 ,’%.2

f’))

164 set_param(’my_usim_model_both/D2’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))

165 set_param(’my_usim_model_both/D2’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))

166 set_param(’my_usim_model_both/D2’, ’Seed’, num2str(seed_2 ,’%.2

f’))
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167

168 sim(’my_usim_model_both ’)

169 %sim(’my_usim_model_both_1 ’)

170

171 deltaSignals = [delta1.signals.values , delta2.signals.values ];

172 Delta_norm_max = max(max(deltaSignals (:,1)), max(deltaSignals

(:,2)));

173 Delta_norm_min = min(min(deltaSignals (:,1)), min(deltaSignals

(:,2)));

174

175 fig4 = figure(fignum);

176 fignum = fignum + 1;

177 set(fig4 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

178 3.5* screenSize (3)/4, 3* screenSize (4) /4] ,...

179 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’);

180 subplot (2,2 ,1:2)

181 stairs(delta1.time , delta1.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0, 0.8, 0.2]);

182 hold on;

183 stairs(delta2.time , delta2.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0.5, 0, 0.8]);

184 %line([ delta1.time (1), delta1.time(end)],[delta1_11 , delta1_11

], ’LineWidth ’, 1, ...

185 % ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

186 %line([ delta1.time (1), delta1.time(end)],[delta2_11 , delta2_11

], ’LineWidth ’, 1, ...

187 % ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

188 hold off;

189 title([’Input and output uncertainty values ($’, num2str(

Delta_norm_min ,’%.3f’) ,...

190 ’ \leq \Delta_{i} \leq ’, num2str(Delta_norm_max , ’%.3f’)

,...

191 ’, \; i = 1,2$)’], ’FontSize ’, 14, ’FontWeight ’, ’bold’

,...

192 ’Interpreter ’, ’Latex ’)

193 legend(’Input uncertainty ’, ’Output uncertainty ’)

194 subplot (2,2,3)

195 stairs(y1.time , y1.signals.values , ’LineWidth ’, 1.5, ’Color’,

’red’)

196 title([’Output (simple output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

197 ’Interpreter ’, ’Latex ’)

198 subplot (2,2,4)
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199 stairs(y2.time , y2.signals.values , ’LineWidth ’, 1.5, ’Color’,

’blue’)

200 title([’Output (input -output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

201 ’Interpreter ’, ’Latex ’)

202

203 set(gcf ,’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

204 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

205 ’PaperPosition ’, [0.05 , 0.05, 0.9, 0.9]);

206 ax = axes(’Position ’ ,[0,0,1,1],’Visible ’,’off’);

207 MasterTitle = text (0.4 ,0.05 , titlePP);

208 set(MasterTitle ,’FontWeight ’,’bold’, ’FontSize ’, 14)

209

210 ftime = clock;

211 filename = char([’./Figs/’, datestr(clock ,’yyyy -mm-dd_HH -MM-SS

’), ’_Pos_Simulink_Run ’]);

212 print(’-dpdf’, ’-r150’, filename);

213

214 set_param(’my_usim_model_both/D1’, ’Maximum ’, ’1’)

215 set_param(’my_usim_model_both/D1’, ’Minimum ’, ’0’)

216 set_param(’my_usim_model_both/D2’, ’Maximum ’, ’1’)

217 set_param(’my_usim_model_both/D2’, ’Minimum ’, ’0’)

218

219 %%

220 % Run Simulink model

221 % for negative uncertainty interval only

222 Delta_min = -1/gamma2;

223 Delta_max = -1/gamma1;

224

225 curr_time = clock;

226 seed_1 = abs(curr_time(end) + 1);

227 seed_2 = abs(curr_time(end) - 1);

228

229 set_param(’my_usim_model_both ’,’AlgebraicLoopSolver ’,’

LineSearch ’)

230 set_param(’my_usim_model_both/D1’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))

231 set_param(’my_usim_model_both/D1’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))

232 set_param(’my_usim_model_both/D1’, ’Seed’, num2str(seed_1 ,’%.2

f’))

233 set_param(’my_usim_model_both/D2’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))
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234 set_param(’my_usim_model_both/D2’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))

235 set_param(’my_usim_model_both/D2’, ’Seed’, num2str(seed_2 ,’%.2

f’))

236

237 sim(’my_usim_model_both ’)

238 %sim(’my_usim_model_both_1 ’)

239

240 deltaSignals = [delta1.signals.values , delta2.signals.values ];

241 Delta_norm_max = max(max(deltaSignals (:,1)), max(deltaSignals

(:,2)));

242 Delta_norm_min = min(min(deltaSignals (:,1)), min(deltaSignals

(:,2)));

243

244 fig4 = figure(fignum);

245 fignum = fignum + 1;

246 set(fig4 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

247 3.5* screenSize (3)/4, 3* screenSize (4) /4] ,...

248 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’);

249 subplot (2,2 ,1:2)

250 stairs(delta1.time , delta1.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0, 0.8, 0.2]);

251 hold on;

252 stairs(delta2.time , delta2.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0.5, 0, 0.8]);

253 %line([ delta1.time (1), delta1.time(end)],[delta1_11 , delta1_11

], ’LineWidth ’, 1, ...

254 % ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

255 %line([ delta1.time (1), delta1.time(end)],[delta2_11 , delta2_11

], ’LineWidth ’, 1, ...

256 % ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

257 hold off;

258 title([’Input and output uncertainty values ($’, num2str(

Delta_norm_min ,’%.3f’) ,...

259 ’ \leq \Delta_{i} \leq ’, num2str(Delta_norm_max , ’%.3f’)

,...

260 ’, \; i = 1,2$)’], ’FontSize ’, 14, ’FontWeight ’, ’bold’

,...

261 ’Interpreter ’, ’Latex ’)

262 legend(’Input uncertainty ’, ’Output uncertainty ’)

263 subplot (2,2,3)

264 stairs(y1.time , y1.signals.values , ’LineWidth ’, 1.5, ’Color’,

’red’)
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265 title([’Output (simple output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

266 ’Interpreter ’, ’Latex ’)

267 subplot (2,2,4)

268 stairs(y2.time , y2.signals.values , ’LineWidth ’, 1.5, ’Color’,

’blue’)

269 title([’Output (input -output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

270 ’Interpreter ’, ’Latex ’)

271

272 set(gcf ,’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

273 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

274 ’PaperPosition ’, [0.05 , 0.05, 0.9, 0.9]);

275 ax = axes(’Position ’ ,[0,0,1,1],’Visible ’,’off’);

276 MasterTitle = text (0.4 ,0.05 , titlePP);

277 set(MasterTitle ,’FontWeight ’,’bold’, ’FontSize ’, 14)

278

279 ftime = clock;

280 filename = char([’./Figs/’, datestr(clock ,’yyyy -mm-dd_HH -MM-SS

’), ’_Neg_Simulink_Run ’]);

281 print(’-dpdf’, ’-r150’, filename);

282

283 set_param(’my_usim_model_both/D1’, ’Maximum ’, ’1’)

284 set_param(’my_usim_model_both/D1’, ’Minimum ’, ’0’)

285 set_param(’my_usim_model_both/D2’, ’Maximum ’, ’1’)

286 set_param(’my_usim_model_both/D2’, ’Minimum ’, ’0’)

287

288 %%

289 % Run Simulink model

290 % for whole uncertainty interval

291 Delta_min = -1/gamma2;

292 Delta_max = 1/ gamma2;

293

294 curr_time = clock;

295 seed_1 = abs(curr_time(end) + 1);

296 seed_2 = abs(curr_time(end) - 1);

297

298 set_param(’my_usim_model_both ’,’AlgebraicLoopSolver ’,’

LineSearch ’)

299 set_param(’my_usim_model_both/D1’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))

300 set_param(’my_usim_model_both/D1’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))
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301 set_param(’my_usim_model_both/D1’, ’Seed’, num2str(seed_1 ,’%.2

f’))

302 set_param(’my_usim_model_both/D2’, ’Minimum ’, num2str(

Delta_min ,’%.5f’))

303 set_param(’my_usim_model_both/D2’, ’Maximum ’, num2str(

Delta_max ,’%.5f’))

304 set_param(’my_usim_model_both/D2’, ’Seed’, num2str(seed_2 ,’%.2

f’))

305

306 sim(’my_usim_model_both ’)

307 %sim(’my_usim_model_both_1 ’)

308

309 deltaSignals = [delta1.signals.values , delta2.signals.values ];

310 Delta_norm_max = max(max(deltaSignals (:,1)), max(deltaSignals

(:,2)));

311 Delta_norm_min = min(min(deltaSignals (:,1)), min(deltaSignals

(:,2)));

312

313 fig4 = figure(fignum);

314 fignum = fignum + 1;

315 set(fig4 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

316 3.5* screenSize (3)/4, 3* screenSize (4) /4] ,...

317 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’);

318 subplot (2,2 ,1:2)

319 stairs(delta1.time , delta1.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0, 0.8, 0.2]);

320 hold on;

321 stairs(delta2.time , delta2.signals.values , ’LineWidth ’, 1.5, ’

Color’, [0.5, 0, 0.8]);

322 line([ delta1.time (1), delta1.time(end)],[1/gamma1 , 1/ gamma1],

’LineWidth ’, 1, ...

323 ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

324 line([ delta1.time (1), delta1.time(end)],[-1/gamma1 , -1/gamma1

], ’LineWidth ’, 1, ...

325 ’LineStyle ’, ’-.’, ’Color ’, ’black ’)

326 hold off;

327 title([’Input and output uncertainty values ($’, num2str(

Delta_norm_min ,’%.3f’) ,...

328 ’ \leq \Delta_{i} \leq ’, num2str(Delta_norm_max , ’%.3f’)

,...

329 ’, \; i = 1,2$)’], ’FontSize ’, 14, ’FontWeight ’, ’bold’

,...

330 ’Interpreter ’, ’Latex ’)

331 legend(’Input uncertainty ’, ’Output uncertainty ’)
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332 subplot (2,2,3)

333 stairs(y1.time , y1.signals.values , ’LineWidth ’, 1.5, ’Color’,

’red’)

334 title([’Output (simple output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

335 ’Interpreter ’, ’Latex ’)

336 subplot (2,2,4)

337 stairs(y2.time , y2.signals.values , ’LineWidth ’, 1.5, ’Color’,

’blue’)

338 title([’Output (input -output feedback)’], ’FontSize ’, 14, ’

FontWeight ’, ’bold’ ,...

339 ’Interpreter ’, ’Latex ’)

340

341 set(gcf ,’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

342 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

343 ’PaperPosition ’, [0.05 , 0.05, 0.9, 0.9]);

344 ax = axes(’Position ’ ,[0,0,1,1],’Visible ’,’off’);

345 MasterTitle = text (0.4 ,0.05 , titlePP);

346 set(MasterTitle ,’FontWeight ’,’bold’, ’FontSize ’, 14)

347

348 ftime = clock;

349 filename = char([’./Figs/’, datestr(clock ,’yyyy -mm-dd_HH -MM-SS

’), ’_Both_Simulink_Run ’]);

350 print(’-dpdf’, ’-r150’, filename);

351

352 set_param(’my_usim_model_both/D1’, ’Maximum ’, ’1’)

353 set_param(’my_usim_model_both/D1’, ’Minimum ’, ’0’)

354 set_param(’my_usim_model_both/D2’, ’Maximum ’, ’1’)

355 set_param(’my_usim_model_both/D2’, ’Minimum ’, ’0’)

C.3 MATLAB Main File for Example 4.3.1
1 clc

2 clear all

3 close all

4 format short g

5 format compact

6

7 screenSize = get(0, ’screensize ’);

8 set(0,’DefaultTextInterpreter ’,’Latex’)

9

10 A = [1.5, 0.2, 0;

11 -1.2, 0, 1.8;

12 1.1, 0, 0];
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13 B = [1.2;

14 -1.5;

15 0.4];

16

17 eig_A = eig(A); % eigenvalues of A

18 abs_eig_A = abs(eig_A);

19 fprintf(’The eigen values of A are: ’)

20 for eig_ind = 1: length(eig_A)

21 fprintf ([ num2str(eig_A(eig_ind)), ’,\t’]);

22 end

23 fprintf(’\n with absolute values: ’)

24 for eig_ind = 1: length(eig_A)

25 fprintf ([ num2str(abs_eig_A(eig_ind)), ’,\t’]);

26 end

27 fprintf(’\n’)

28 % find the number of unstable eigenvalues of A, meaning the

ones that are

29 % outside the unit circle , since we are dealing with discrete -

time systems

30 ue_num = length(find(abs(eig(A)) >= 1));

31 % find the number of stable eigenvalues of A, meaning the ones

that are

32 % inside the unit circle , since we are dealing with discrete -

time systems

33 se_num = size(A, 1) - ue_num;

34 % in this case , though , since A has all eigenvalues outside

the unit

35 % circle , I am not going to bother about it and just think Au

= A and Bu =

36 % B

37

38 % calculating the mahler measure according to definition

39 mu_A = 1; % initialize Mahler measure

40 for i = 1: length(eig_A)

41 mu_A = mu_A * max(abs(eig_A(i)), 1);

42 end

43 fprintf(’Mahler measure mu_A = %.4f \n’, mu_A)

44 fprintf(’1/mu_A = %.4f \n’, 1/mu_A)

45 fprintf(’We need delta < 1/mu_A \n’)

46 %delta = 0.09;

47 %fprintf(’delta = %.4f \n’, delta)

48 % eig_ratio = (1 + delta)/(1 - delta);

49 eig_ratio_ub = (mu_A + 1)/(mu_A - 1);

50 fprintf(’Upper bound for lambda_N/lambda_2 is (mu_A + 1)/(mu_A

- 1) = %.4f \n’, eig_ratio_ub)
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51 eig_ratio = 1.2;

52 fprintf(’eigen ratio lambda_N/lambda_2 = %.4f < %.4f\n’,

eig_ratio , eig_ratio_ub)

53 % upper bound for theta , with the chosen eigen ratio

54 theta_ub = asind(sqrt(( eig_ratio +1) ^2/(4* eig_ratio*mu_A ^2)

-...

55 (eig_ratio -1) ^2/(4* eig_ratio)));

56 fprintf(’upper bound for theta = %.4f degrees \n’, theta_ub)

57 % pick theta

58 theta = 10; % degrees

59 fprintf(’pick theta = %.4f < %.4f \n’, theta , theta_ub)

60 thetar = theta*pi/180; % radians

61 % pick center at r0 = 1

62 r0 = 1;

63 fprintf(’Center of the fan region is chosen at r0 = %.2f.\n’,

r0)

64 % solve to get rN and r2

65 % rNr2 = [1, 1; 1, -eig_ratio ]\[2*r0*cosd(theta); 0];

66 rNr2 = inv([1, 1; 1, -eig_ratio ])*[2*r0*cosd(theta); 0];

67 rN = rNr2 (1);

68 r2 = rNr2 (2);

69 fprintf(’It results , rN = %.4f and r2 = %.4f,\n that have

verified ratio %.4f.\n’ ,...

70 rN , r2, rN/r2)

71

72 % eigen values for the Laplacian

73 lambda_1 = 0;

74 lambda_2 = r2*exp(j*thetar);

75 lambda_3 = conj(lambda_2);

76 lambda_4 = rN*exp(j*thetar);

77 %lambda_4 = abs(rN*exp(j*thetar));

78 lambda_5 = conj(lambda_4);

79 lambdas = [lambda_1 , lambda_4 , lambda_2 , lambda_3 , lambda_5 ];

80 %lambdas = [lambda_1 , lambda_2 , lambda_4 , lambda_3]

81 fprintf(’Eigenvalues for the Laplacian given by the above

conditions :\n’)

82 for eig_ind = 1: length(lambdas)

83 fprintf ([ num2str(lambdas(eig_ind)), ’,\t’]);

84 end

85 fprintf(’with absolute values :\n’)

86 for eig_ind = 1: length(lambdas)

87 fprintf ([ num2str(abs(lambdas(eig_ind))), ’,\t’]);

88 end

89 fprintf(’\n’)

90
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91 fprintf(’Checking to see that the radius (delta) condition is

satisfied .\n’)

92 fprintf(’Distance from lambda_2 to center r0 -> %.4f\n’, abs(

lambda_2 - r0)/abs(r0));

93 fprintf(’Distance from lambda_4 to center r0 -> %.4f\n’, abs(

lambda_4 - r0)/abs(r0));

94 delta = abs(lambda_4 - r0)/abs(r0);

95 fprintf(’delta = %.4f < 1/mu_A = %.4f \n’, delta , 1/mu_A)

96

97 % first row of L = invers DFT of eigenvalue vector

98 row1_L = ifft(lambdas); % this should not have complex

elements

99 fprintf(’Laplacian is built using IDFT of the eigen values :\n’

)

100 Lcal = toeplitz ([ row1_L (1), row1_L(end:-1:2)], row1_L)

101 Dcal = diag(diag(Lcal));

102 fprintf(’Weighted adjacency matrix :\n’)

103 Acal = Dcal - Lcal

104 fprintf(’Pick gamma > gamma_opt = mu_A , to design the

controller .\n’)

105 gamma = 1/delta;

106 fprintf(’So, pick gamma = 1/delta = %.4f. \n’, gamma)

107 % design controller by solving the DARE

108 Q = zeros(size(A, 1));

109 R = eye(size(B, 2));

110 fprintf(’Solution X of DARE:\n’)

111 [X, L, G] = dare(A, sqrt(1 - gamma ^(-2))*B, Q, R);

112 X

113 fprintf(’Controller :\n’)

114 K = (eye(size(B, 2)) + (1 - gamma ^(-2))*B’*X*B)\B’*X*A

115 break

116 % number of agents

117 N = 5;

118

119 % abs(eig(kron(eye(N), A) - kron(Lcal , B*K)))

120

121 % starting simulations

122 % time vector , which in this case is the same with the sample

numbers

123 t = 0:1:30;

124 % initial condition for states

125 x0_min = -5;

126 x0_max = 5;

127 for ag_ind = 1:N
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128 x(:, 1, ag_ind) = x0_min + (x0_max - x0_min).*rand(size(A

,1), 1);

129 end

130

131 % create input vector

132 u = zeros(size(B, 2), length(t), N);

133 for k = 1: length(t) -1

134 for i = 1:N

135 for j = 1:N

136 u(:, k, i) = u(:, k, i) + K * (-Lcal(i,j))* x(:, k

, j);

137 end

138 x(:, k+1, i) = A * x(:, k, i) + B * u(:, k, i);

139 end

140 end

141

142 % getting the average values for states

143 x_sum = zeros(size(A, 1), length(t));

144 for j = 1: length(t)

145 for i = 1:N

146 x_sum (:, j) = x_sum(:, j) + x(:, j, i);

147 end

148 x_avg(:, j) = x_sum(:, j)/N;

149 end

150

151 % getting the deviation of each agent from the average states

152 for j = 1:N

153 x_err(:, :, j) = x(:, :, j) - x_avg;

154 end

155

156 % setting up a vector of colors , to have different colors for

each agent ,

157 % but the same color for all states of one agent

158 % colors are kept per line

159 color_vector = [1, 0, 0; % red

160 0, 0, 0.5; % navy

161 0, 1, 0; % green

162 0, 1, 1; %another shade of blue -> aqua

163 0.5, 0, 0]; % maroon

164

165 fig_num = 1;

166 f2 = figure(fig_num);

167 fig_num = fig_num + 1;

168 set(f2 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

169 3.75* screenSize (3)/4, 3* screenSize (4) /4] ,...
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170 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’ ,...

171 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’usletter ’ ,...

172 ’NumberTitle ’, ’off’ ,...

173 ’Name’, ’Graph’ ,...

174 ’MenuBar ’, ’figure ’ ,...

175 ’ToolBar ’, ’auto’)

176 % this figure is showing the states values , but they will go

to infinity

177 % since the system is unstable

178 for i = 1:size(A, 1)

179 legend_text = [];

180 figure(f2);

181 subplot(ceil(size(A, 1)/ceil(sqrt(size(A, 1)))), ceil(sqrt

(size(A, 1))), i)

182 for ag_ind = 1:N

183 stairs(t, x(i, :, ag_ind), ’Color ’, color_vector(

ag_ind , :) ,...

184 ’LineWidth ’, 1);

185 hold on

186 legend_text = [legend_text; [’agent ’, num2str(ag_ind ,

’%d’)]];

187 end

188 % legend(legend_text , 4)

189 hold off

190 end

191 % print -dpdf -r150 ’Chap4_Ex2_MAS.pdf ’;

192

193 f3 = figure(fig_num);

194 fig_num = fig_num + 1;

195 set(f3 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

196 3.75* screenSize (3)/4, 3* screenSize (4) /4] ,...

197 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’ ,...

198 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’uslegal ’ ,...

199 ’NumberTitle ’, ’off’ ,...

200 ’Name’, ’Graph’ ,...

201 ’MenuBar ’, ’figure ’ ,...

202 ’ToolBar ’, ’auto’)

203 % this figure shows the fan region with the Laplacian

eigenvalues placed in

204 % space

205 g1 = gca;

206 set(g1 , ’Units ’, ’normalized ’)
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207 set(g1 , ’Position ’, [0.05, 0.05, 0.9, 0.9]) % (0.1, 0.1) lower

left corner , then the length on x-axis and the length on y

-axis

208

209 ang = 0:pi /100:2* pi;

210 x_mu_A = (1/ mu_A).*cos(ang) + 1;

211 y_mu_A = (1/ mu_A).*sin(ang);

212 x_delta = delta.*cos(ang) + 1;

213 y_delta = delta.*sin(ang);

214 line3x = [0:0.001:1.5];

215 line3y = line3x*tan(thetar);

216

217 plot(x_mu_A , y_mu_A , ’LineWidth ’, 2, ’LineStyle ’, ’-.’, ’Color

’, ’red’ ,...

218 ’LineWidth ’, 2)

219 hold on

220 plot(x_delta , y_delta , ’LineWidth ’, 2, ’LineStyle ’, ’-’, ’

Color’, ’blue’)

221 plot(line3x , line3y , ’LineWidth ’, 2, ’LineStyle ’, ’-’, ’Color’

, ’black ’)

222 plot(line3x , -line3y , ’LineWidth ’, 2, ’LineStyle ’, ’-’, ’Color

’, ’black ’)

223

224 % arrow for the 1/muA radius circle

225 annotation(’arrow’, [0.05+3*0.9/4 , 0.05+(2+(1/ mu_A)*cosd (100)

+1) *0.9/4] ,...

226 [0.05+1*0.9/2 , 0.05+(1+(1/ mu_A)*sind (100) +0) *0.9/2] , ’

LineWidth ’, 1.5)

227

228 % lines from center r0 = 1 to the extreme eigenvalues lambda_2

and lambda_N

229 line([1, real(lambda_2)], [0, imag(lambda_2)], ’Color ’, ’black

’, ’LineWidth ’, 1);

230 line([1, real(lambda_4)], [0, imag(lambda_4)], ’Color ’, ’black

’, ’LineWidth ’, 1);

231

232 % small arc to show the angle

233 arc3x = 0.4* cos ([0:pi/100: thetar ]);

234 arc3y = 0.4* sin ([0:pi/100: thetar ]);

235 plot(arc3x , arc3y , ’-’, ’LineWidth ’, 1, ’Color’, ’black ’);

236

237 % text annotations

238 text (0.42 , 0.05, [’$\theta = ’, num2str(theta , ’%d’), ’^{\ circ

}$’],...

239 ’FontSize ’, 12, ’FontWeight ’, ’bold’)
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240 text (0.95 , 0.6, [’$\frac {1}{\ mu(A)} = ’, num2str (1/mu_A , ’%.2f

’), ’$’],...

241 ’FontSize ’, 12, ’FontWeight ’, ’bold’)

242 text (1.05 , 0.1, [’$\delta = ’, num2str(delta , ’%.2f’), ’$’

],...

243 ’FontSize ’, 12, ’FontWeight ’, ’bold’)

244 text(1, -.05, ’$1$’, ’FontSize ’, 12, ’FontWeight ’, ’bold’)

245 text(real(lambda_2) -0.03, imag(lambda_2)+0.06 , ’$\lambda_ {2}$’

,...

246 ’FontSize ’, 12, ’FontWeight ’, ’bold’)

247 text(real(lambda_4) -0.05, imag(lambda_4)+0.06 , ’$\lambda_ {4}$’

,...

248 ’FontSize ’, 12, ’FontWeight ’, ’bold’)

249

250 % these are the axis

251 annotation(’arrow’, [0.05+1.8*0.9/4 , 0.95], [0.5, 0.5], ’

LineWidth ’, 2)

252 annotation(’arrow’, [0.05+2*0.9/4 , 0.05+2*0.9/4] , [0.05 ,

0.95], ’LineWidth ’, 2)

253

254 plot(lambdas , ’o’, ’MarkerSize ’, 8, ’MarkerEdgeColor ’, ’black’

,...

255 ’MarkerFaceColor ’, ’green’, ’LineWidth ’, 2)

256 %grid

257 axis([-2, 2, -1, 1])

258 hold off

259 axis off

260 ftime = clock;

261 filename1 = char([’./Figs/Chap4_SI_MAS_3_states_mySol_EV_ ’,

num2str(ftime (1)) ,...

262 ’_’, num2str(ftime (2)), ’_’, num2str(ftime (3)), ’_’,

num2str(ftime (4)) ,...

263 ’h_’, num2str(ftime (5)), ’min’]);

264 print(’-dpdf’, ’-r150’, filename1);

265

266 % next figures show the deviation of each agent from the

average state

267 for i = 1:size(A, 1)

268 legend_text = [];

269 figure(fig_num);

270 fig_num = fig_num + 1;

271 set(gcf , ’Position ’, [screenSize (1)+20, screenSize (2)

+60 ,...

272 3.75* screenSize (3)/4, 3* screenSize (4) /4] ,...
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273 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’,

’auto’ ,...

274 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’usletter ’

,...

275 ’NumberTitle ’, ’off’ ,...

276 ’Name’, ’Graph’ ,...

277 ’MenuBar ’, ’figure ’ ,...

278 ’ToolBar ’, ’auto’)

279 for ag_ind = 1:N

280 figure(gcf)

281 stairs(t, x_err(i, :, ag_ind), ’Color’, color_vector(

ag_ind , :) ,...

282 ’LineWidth ’, 2);

283 hold on

284 legend_text = [legend_text; [’agent ’, num2str(ag_ind ,

’%d’)]];

285 end

286 legend(legend_text , 4)

287 xlabel(’Time step’, ’FontWeight ’, ’bold’, ’FontSize ’, 12)

288 ylabel ([’$ x_{’, num2str(i,’%d’), ’} - \bar{x}_{’, num2str

(i,’%d’) ,...

289 ’}$’], ’FontWeight ’, ’bold’, ’FontSize ’, 16)

290 hold off

291 filename2 = char([’./Figs/

Chap4_SI_MAS_3_states_mySol_state_ ’, num2str(i, ’%d’)

,...

292 ’_’, num2str(ftime (1)) ,...

293 ’_’, num2str(ftime (2)), ’_’, num2str(ftime (3)), ’_’,

num2str(ftime (4)) ,...

294 ’h_’, num2str(ftime (5)), ’min’]);

295 print(’-dpdf’, ’-r150’, filename2);

296 end

C.4 MATLAB Main File for Example 4.3.2
1 clc

2 clear all

3 close all

4 format short g

5 format compact

6

7 screenSize = get(0, ’screensize ’);

8 set(0,’DefaultTextInterpreter ’,’Latex’)

9

10 f1 = figure (1);
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11 set(f1 , ’Position ’, [screenSize (1)+20, screenSize (2) +60 ,...

12 3.75* screenSize (3)/4, 3* screenSize (4) /4] ,...

13 ’PaperOrientation ’, ’landscape ’, ’PaperPositionMode ’, ’

auto’ ,...

14 ’PaperUnits ’, ’normalized ’, ’PaperType ’, ’usletter ’ ,...

15 ’NumberTitle ’, ’off’ ,...

16 ’Name’, ’Graph’ ,...

17 ’MenuBar ’, ’figure ’ ,...

18 ’ToolBar ’, ’auto’)

19 % ’PaperPosition ’, [0.05, 0.05, 0.9, 0.9] ,...

20 %g1 = gca;

21 %set(g1, ’Units ’, ’normalized ’)

22 %set(g1, ’Position ’, [0.05, 0.05, 0.9, 0.9]) % (0.1, 0.1)

lower left corner , then the length on x-axis and the length

on y-axis

23

24 A = [ -0.4326 1.1909 -0.1867 0.1139 0.2944

25 -1.6656 1.1892 0.7258 1.0668 -1.3362

26 0.1253 -0.0376 -0.5883 0.0593 0.7143

27 0.2877 0.3273 2.1832 -0.0956 1.6236

28 -1.1465 0.1746 -0.1364 -0.8323 -0.6918];

29 B = [1.7160 -0.7998 1.3372

30 2.5080 1.3800 2.3817

31 -3.1875 1.6312 -2.4049

32 -2.8819 1.4238 -0.0396

33 1.1423 2.5805 -0.3134];

34

35 eig_A = eig(A); % eigenvalues of A

36 % calculating the mahler measure according to definition

37 mu_A = 1; % initialize Mahler measure

38 for i = 1: length(eig_A)

39 mu_A = mu_A * max(abs(eig_A(i)), 1);

40 end

41 upper_bound = mu_A;

42 lower_bound = nthroot(mu_A , rank(B));

43 % Since I know that this example has all eigenvalues of A

outside the unit

44 % circle , I know that Au = A, Bu = B.

45 % The Lyapunov equation in the lemma is solved considering its

solution

46 % being given by Zu = ((1 - gamma ^(-2)) Xu)^(-1).

47 gamma_opt = []; % initialize the vector that would store the

optimal values for gamma

48 Zu = dlyap(inv(A), inv(A)*B*B’*inv(A) ’);

49 % initial value for the optimal gamma
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50 gamma_opt (1) = sqrt(max(eig(eye(rank(B)) + B’*inv(Zu)*B)));

51 gamma_opt

52

53 % Starting to introduce the D matrix

54 D = eye(size(B, 2)); % size(B, 2) gives the number of columns

of B

55 B_temp = B;

56 Zu_temp = Zu;

57 tol = 0.095;

58 i = 1;

59

60 while floor(abs(lower_bound - gamma_opt(end))*1000) /1000 > tol

61 Zu_temp = dlyap(inv(A), inv(A)*B_temp*B_temp ’*inv(A) ’);

62 gamma_opt(i) = sqrt(max(eig(eye(rank(B_temp)) + B_temp ’*

inv(Zu_temp)*B_temp)));

63 D_temp = chol(B_temp ’*inv(Zu_temp)*B_temp);

64 D = D_temp*D;

65 B_temp = B*inv(D);

66 rank(B_temp);

67 i = i + 1;

68 end

69

70 gamma_opt

71 figure(f1)

72 plot (1:1: length(gamma_opt), gamma_opt , ’ob’, ’LineWidth ’,

1.5 ,...

73 ’MarkerSize ’, 8, ’MarkerEdgeColor ’, ’black ’ ,...

74 ’MarkerFaceColor ’, ’red’)

75 hold on

76 plot (1:1: length(gamma_opt), lower_bound , ’vr’, ’MarkerSize ’,

8,...

77 ’MarkerEdgeColor ’, ’black’, ’MarkerFaceColor ’, [0.2, 0.4,

1] ,...

78 ’LineWidth ’, 1.5)

79 plot (1:1: length(gamma_opt), upper_bound , ’^r’, ’LineWidth ’,

1.5 ,...

80 ’MarkerSize ’, 8, ’MarkerEdgeColor ’, ’black ’ ,...

81 ’MarkerFaceColor ’, [0.2, 0.4, 1])

82 grid

83 hold off

84 ca = gca;

85 caXTick = get(ca, ’XTick’);

86 set(ca , ’XTick ’, [caXTick (1) :1: caXTick(end)]);

87 ylabel(’optimal $\gamma$ ($\gamma_ {\ mathrm{opt}}$)’, ’

FontWeight ’, ’bold’, ’FontSize ’, 14)
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88 xlabel(’$\mathcal{K}$’, ’FontWeight ’, ’bold’, ’FontSize ’, 14)

89 legend(’$\gamma_ {\ mathrm{opt}}$’, ’lower bound’, ’upper bound’

)

90 print -dpdf -r150 ’Chap4_Ex1.pdf’;
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Appendix D

Extra Equations

Useful Equations for Proof of Lemma 4.3.1

(
(1rT)⊗ In

)
(IN ⊗A) =

(
(1rT)IN

)
⊗ (InA) =

(
IN(1rT)

)
⊗ (AIn)

= (IN ⊗A)
(
(1rT)⊗ In

)
(D.1)

(
(1rT)⊗ In

)
(L ⊗BK) =

[(
1rT

)
L
]
⊗ (InBK) =

[(
1rT

)
L
]
⊗ (BKIn)

Since r is a left eigenvector for the Laplacian matrix L corresponding to the 0 eigenvalue,

i.e. rTL = 0 · rT, and

L · 1 =




∑N
j=1 a1j −a12 −a13 . . . −a1N

−a21

∑N
j=1 a2j −a23 . . . −a2N

...
...

...
. . .

...

−aN1 −aN2 −aN3 . . .
∑N

j=1 aNj







1

1

...

1




=




a11

a22

...

aNN




=




0

0

...

0




=




1

1

...

1




· 0 = 1 · 0
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it follows that
(
1rT

)
L = 1 · 0 · rT = L · 1 · rT. Therefore,

(
(1rT)⊗ In

)
(L ⊗BK) =

[
L
(
1rT

)]
⊗ (BKIn)

= [L ⊗BK]
[(
1rT

)
⊗ In

]
(D.2)

The following equations are used to detail the process of getting the result in equation

(4.18).

(T −1 ⊗ In)(IN ⊗ A) = (T −1IN)× (InA) = (INT −1)× (AIn)

= (IN ⊗ A)(T −1 ⊗ In) (D.3)

(T −1 ⊗ In)(L ⊗BK) = (T −1L)⊗ (InBK) = (J T −1)⊗ (BKIn)

= (J ⊗BK)(T −1 ⊗ In) (D.4)

ε(k + 1) =
[
(IN ⊗ A)(T −1 ⊗ In)− (J ⊗BK)(T −1 ⊗ In)

]

= [IN ⊗ A− J ⊗BK] (T −1 ⊗ In)$k

= [In ⊗ A− J ⊗BK] ε(k) (D.5)

To obtain equation (4.19), the following set of equations are useful.

(rT ⊗ In)(M̂ ⊗ In) = (rTM̂)⊗ (InIn) = 01×N ⊗ In = 0 ∈ Rn×nN . (D.6)
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rTM̂ =

[
r1 r2 . . . rN

]




1− r1 −r2 . . . −rN

−r1 1− r2 . . . −rN

−r1 −r2 . . . 1rN




=

[
r1(1−∑N

j=1 rj) r2(1−∑N
j=1 rj) . . . rN(1−∑N

j=1 rj)

]
= 0 ∈ R1×N . (D.7)
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