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Abstract

Here we present two broad categories of games, namely, group matching games and bottleneck

routing games on grids. Borrowing ideas from coalition formation games, we introduce a new

category of games which we call group matching games. We investigate how these games

perform when agents are allowed to make selfish decisions that increase their individual

payoffs versus when agents act towards the social benefit of the game as a whole. The Price of

Anarchy (PoA) and Price of Stability(PoS) metrics are used to quantify these comparisons.

We show that the PoA for a group matching game is at most kα and the PoS is at most

k
α

where k is the maximum size of a group and α is a switching cost. Furthermore we show

that the PoA and PoS of the games do not change significantly even if we increase λ, the

number of groups that an agent is allowed to join.

We also consider routing games on grid network topologies.The social cost is the worst

congestion in any of the network edges (bottleneck congestion). Each player’s objective is

to find a path that minimizes the bottleneck congestion in its path. We show that the price

of anarchy in bottleneck games in grids is proportional to the number of bends β that the

paths are allowed to take in the grids’ space. We present games where the PoA is Õ(β).

We also give a respective lower bound of Ω(β) which shows that our upper bound is within

only a poly-log factor from the best achievable price of anarchy. A significant impact of our

analysis is that there exist bottleneck routing games with small number of bends which give

a poly-log approximation to the optimal coordinated solution that may use an arbitrary

number of bends. To our knowledge, this is the first tight analysis of bottleneck games on

grids.
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Part I

Group Matching Games
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Chapter 1
Introduction to Group Matching Games

Coalition formation games are a class of games in which agents are partitioned and each

agent’s payoff is dependent on the members of their partition. We borrow some ideas from

these games to create group matching games. Our aim in this paper is to investigate a broad

range of group matching games from a game theoretic point of view. We analyze how various

group matching games behave when individual agents selfishly form matches that maximize

their local utilities without considering the needs of the system as a whole. In other words,

without a central matchmaker that matches agents together, if agents are allowed to match

with other agents based on their local needs, how worse will the utility of the system as a

whole be?

The model outlined in this paper has several real world applications. The model can

represent a kidney exchange market where agents barter exchange kidneys. A group in this

model represents a cycle of agents battering kidneys and the utility of the group is the utility

that the agents gain from participating in that group.

Another application is in wireless sensor networks. In this application a group represents

a set of agents communicating with each other. It would be ideal for agents close to each

other to form a group. This is because the further away agents are from each other the more

power is used for communication. Since autonomous wireless agents have a finite supply of

power they would want to conserve power by forming clusters of groups in close proximity

to one another. The overall social aim is to reduce the average energy consumption. Each

agents would in turn want to join local groups so as to minimize their individual power

consumption.
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The model can also apply to online social networks. Online social networks are often

difficult to scale because of the nature of the links between the users. It is difficult to partition

and distribute the data because all the users are connected. One solution to this problem is

to assign a utility measure to groups of friends. Each user would then decide which group

to join based on the utility measures. Once we have a stable assignment of groups we could

then put all the data pertaining to a particular group in the same location. This in turn

improves performance because related data is in close proximity to each other and so can be

retrieved faster.

The list of applications is endless and can include any application that involves grouping

entities together and having these entities choose which group to join based on individually

perceived utility gain while also considering improving an overall social utility.

In this paper we are primarily concerned with answering the following questions. In a

matching game, how worse is the overall social utility if agents behave selfishly versus if they

where matched centrally? This is important because we cannot always centrally manage

matching games when the number of agents is large. Often these problems become NP-hard

problems thus the need to allow agents to form matchings amongst themselves.

The games introduced in this paper are closely related to the matching problem, coalition

formation and the set cover problem.

1.1 Matching Problems

There are several classical matching problems, the most common one is the stable marriage

problem (SMP). In this problem we are presented with an equal number of men and women

each with a list of members of the opposite sex that they would like to marry, in order

of preference. The solution is a matching of men to women such that no two people of

the opposite sex would prefer to be with each other rather than their currently assigned

partners. Gale and Shapley outline a solution to this problem that produces a stable matching

in polynomial time, i.e. O(n2) worst case running time.[14]. The stable roommate problem
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(SRP) is similar to the SMP except that the SRP is not bipartite. That is, we do not have

a separate set of men and woman but rather any roommate can be matched with another.

Irving et al developed an O(n2) algorithm to determine if, in a given instance, there is a

stable matching and if so what that matching is [16].

The top trading cycles (TTC) is another related problem. In this problem each agent has

a house that they would like to trade for a better house. Each agent also has an ordered list

of houses that they would prefer. The solution to the problem is an assignment of agents to

houses in which every agent is assigned to a house that is as good or better than the one

they currently have. Shapley and Scarf develop an O(m) algorithm, where m is the total

length of the preference list of all the participants, that solves this problem and guarantees

that no group of agents can deviate from the given solution to find a better assignment of

houses [33].

An important aspect of matching games is the concept of a matching. A matching is a

set of vertex disjoint edges in a graph. That is, a set of edges in which no two edges share

a vertex. A maximum matching is the maximum number of such edges in a given graph.

Edmonds’ matching algorithm is able to find a maximum matching in a given graph in O(n4)

time [13].

More recent work on stable matching include that of Anshelevich et al [2]. Here they in-

vestigate how bad bipartite stable matchings are compared with socially optimum matchings

and if agents can find stable matchings on their own. A socially optimum matching is one

that is orchestrated to maximize a social utility rather than maximizing the utility of the in-

dividual agents. Anshelevich et al found that in certain situations two sided stable matching

may be arbitrarily worst than a socially optimal matching. To incentivize agents to partake

in socially optimum matchings they introduce the concept of approximate stability. That

is, agents are required to pay a switching cost of α in order to deviate from their current

matching. This has been shown the help produce good stable matchings. They primarily
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investigated two sided matching performed on three different types of graphs. The results

are summarized below.

1. Symmetric edge labeled graph. These graphs have undirected edges that are labeled

with a weight. The PoA is at most 2. The PoA is at most 2α and the PoS is at most

2
α

if the graph is α-stable.

2. Vertex labeled graph. These are graphs in which a weight is attached to the vertices.

The PoA is at most 2. The PoA is at most 1+α
α

if the graph is α-stable.

3. Asymmetric edge labeled graph. These are graphs with directional edges that are

weighted. The PoA is arbitrarily bad.

Additionally, empirical experiments performed by the authors show that by introducing a

modest switching cost the stable matching is quite close to the optimal matching.

1.2 Coalition Formation

Many real world applications require that entities form groups in order to better coordinated

their activities. For example, departments within an organization can form groups in other

to pool their resources so as to save money. Such application can be modeled as coalition

formation problems. A coalition formation game is a game with finite players in which a

feasible allocation is a partition of the agents and an agent’s payoff only depends on the

members of his/her coalition. Two important notion in coalition formation games are the

notion of anonymity and additive separability. With anonymity all agents are seen as equal

and so an agent is not concerned about the identity of the other agents in its coalition. It

is only concerned with the number of agents in the coalition. In additive separable games

any subset of a coalition provides less payoff, so therefore agents prefer to collate to form a

bigger grand coalition.

Sandholm et al [31] enumerate three major activities involved in coalition formation. These

are,
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1. Coalition structure generation. Agents have to be partitioned into coalitions in which

they achieve some kind of payoff. This partition is known as the coalition structure.

The task of enumerating possible coalitions and finding the optimal coalition structure

in not trivial. Sandholm et al [31] tackle this problem.

2. Solving the optimization problem of each coalition. In certain situations it might be

expensive for individual agents to solve a combinatory optimization problem, e.g. task

allocation, multi-agent planning and scheduling, and so they form coalitions to solve

the problem. Sandholm [32] discusses this further.

3. Dividing the value. This involves how the proceeds generated by the coalition is divided

amongst the members of the coalition. Shehory and Kraus [35] discuss methods of

distributing payoff.

1.3 Set Cover Games

The set cover problem is a well known NP-complete problem. In a set cover game the goal

is to find the minimum number of sets needed to cover all the elements in a universal set

given a set of subsets of the universal set. In recent times there has been an emergence of a

class of games known as set cover games. These games present a game theoretic formulation

of the set cover problem. Leibovic and Willet [20] present such a game. Here the elements

in the universal set are represented as agents. These agents then make a decision as to

which subset they want to be covered by. Agents prefer to be in a subset which is also

chosen by many other agents. The authors discover that the PoA is bounded by Θ(log n)

which matches the know approximate algorithm for the NP-complete problem. Balcan et

al [6] present a slight variation of this game. They introduce a central authority into this

game. This central authority knows a good approximation of the optimal solution. It then

broadcasts this solution to a small fraction of agents. Agents then make decision based on

6



this. The authors show that again, the game is able to achieve a solution that is log n factor

away from the optimal.

1.4 Set Packing Problem

Another problem closely related to the games that we study in this thesis is the set packing

problem. This problem is one of the most studied problems in combinatorial optimization.

It can simply be described as follows. Given a collection of sets find the maximum number

of pairwise disjoint sets in this collection. In the weighted version of this problem all the

sets have weights and you are tasked with finding the highest weighted collection of pairwise

disjoint sets. When the size of the sets are restricted and cannot exceed a number k then we

call this problem the k-set packing problem.

Finding the optimal solution to the k-set packing problem has been shown to be NP-hard

for any k ≥ 3 [1]. Furthermore, if k = 3 the problem becomes APX-hard [17]. Due to this

fact most of the work being done on this problem involves finding good heuristics that give

good approximations to the optimal solution. One such heuristic is a greedy algorithm that

iteratively adds an arbitrary set and removes all sets intersecting with it. We continue doing

this until there are no more sets to be added. It is shown that this algorithm provides a k

approximation to the optimal solution.

Another approach is the local search heuristic. In this approach we attempt to replace

a small subset of the solution with a collection that is of greater weight [11, 3]. Arkin and

Hassin [3] show that local search results in an approximation of k− 1 + ε where ε > 0. Bafna

et al [5] also collaborate this assertion.

Chandra and Halldórsson [11] combine the greedy algorithm and the local search heuristic

to provide a better approximation. They first start with a greedy solution and then re-

peatedly choose the best possible local improvement. This approach produces a 2(k + 1)/3

approximation, which is asymptotically tight.
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1.5 Outline

The organization of the rest of this thesis is as follows. In Chapter 2 we outline the basic

definitions in group matching games. In Chapter 3 we analyze group matching games. We

give PoA and PoS bounds. In Chapter 4 we provide an analysis of group matching games

with λ greater than 1. We also outline some algorithms that produce stable matching for

these types of games. In Chapter 6 we discuss group cover games and we provide a PoA

bound for these types of games.
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Chapter 2
Definitions for Group Matching Games

We consider games involving agents which are based on the classic set packing problem. We

will first introduce some basic terminologies from the set packing problem which we will

extend for the games that we will describe below.

We are given a collection of sets S = {g1, g2, . . . , gm}, where each gi, 1 ≤ i ≤ m, is a set

of elements from the universe N = {1, . . . , n}. We will refer to the elements of N as agents.

There is a weight function w : S → R+ which assigns a positive weight w(g) to each set

g ∈ S. A disjoint sub-collection M ⊆ S has the property that for every 1 ≤ i, j ≤ m, i 6= j,

gi ∩ gj = ∅. For brevity we will refer to a disjoint sub-collection as a matching. In a set

packing problem the goal is find a matching M which maximizes
∑

gi∈Mw(gi).

We consider group matching games where each game is expressed as a tuple G =

〈N,S, (ci), (Si), (ui)〉, where for each agent i we have a fixed weight ci > 0 (we denote

(ci) = (c1, . . . , cn)), a strategy set Si ⊆ S such that for each g ∈ Si, i ∈ g, and a utility

function ui defined below.

In the game every player chooses a group in its strategy set. An allocation is a tuple

a = (a1, · · · , an), where ai ∈ Si ∪ {∅}, which represents the groups chosen by the agents.

Note that in an allocation an agent i may not choose any group in which case ai = ∅. An

allocation is valid if for each g ∈
⋃
i ai, 1 ≤ i ≤ n, all the agents (elements) in g must

have chosen g in the allocation, namely, for each agent j ∈ g, aj = g. The groups in a valid

allocation form a matching. In other words a matching is a set of all the elements in a valid

allocation. Sometimes we refer to a valid allocation as a matching and vice versa.

The utility of an agent i is a function that accepts an allocation and returns a real number,

namely, ui : ×ni=1(Si∪{∅})→ R. More specifically, we set the utility function ui(a) = w(ai),

9



TABLE 2.1. An example demonstrating the PoA of a game

N = {1, 2, 3, 4, 5}
g1 = {1, 2}, g2 = {2, 3}, g3 = {3, 4, 5}

S = {g1, g2, g3}
S1 = {g1}, S2 = {g1, g2}, S3 = {g2, g3}, S4 = {g3}, S5 = {g3}
a = (a1, a2, a3, a4, a5) = (∅, g2, g2, ∅, ∅), a∗ = (g1, g1, g3, g3, g3)

M = {g2},M∗ = {g1, g3}
c1 = 2, c2 = 3, c3 = 4, c4 = 1, c5 = 1
u1(M

∗) = 5, u2(M
∗) = 5, u3(M

∗) = 6, u4(M
∗) = 6, u5(M

∗) = 6
u1(M) = 0, u2(M) = 7, u3(M) = 7, u4(M) = 0, u5(M) = 0

w(g1) = 5, w(g2) = 7, w(g3) = 6
SU(M∗) = 11, SU(M) = 7

PoA = 11
7

FIGURE 2.1. An example of a group matching game. The small circles represent agents and the
larger circles with broken outlines represent groups. The numbers in parenthesis represent the
weights of the agents. Groups g1, g3 form a optimal matching and group g2 forms the stable match-
ing.
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where w(g) =
∑

i∈g ci and w(∅) = 0. For a matching M we will also use the notation ui(M)

to denote ui(a) for the respective allocation a. Table 2.1 and Figure 2.1 show an example of

a group matching game.

We say that a group g1 is adjacent to g2 if they have some agents in common, i.e. g1∩g2 6= ∅.

The neighborhood of a group g, denoted X(g), is the set of all groups adjacent to g, namely,

X(g) = {gi : gi ∩ g 6= ∅}.

An agent’s goal is to maximize its utility. Note that, we are only interested in valid alloca-

tions (matchings). A matching M is stable if players cannot improve their utilities by chang-

ing their current group choices. In other words, in a stable matching, no group g′ in S\M can

be formed by agents deflecting from their currently assigned groups because at least one mem-

ber of g′ cannot improve its utility. In particular, let M′ = (M∪{g′}) \ {g ∈M : g∩ g′ 6= ∅}

be the matching where g′ has been formed by agents deflecting from their group choices

in M. There is a player i ∈ g′ such that the utility of i in M′ is not greater than in M.

Therefore, for each g′ ∈ S \M, there is i ∈ g′, such that ui(M) = w(g) ≥ w(g′) = ui(M
′),

i ∈ g ∈M.

We now extend the definition of a stable matching to include the notion of an α-stable

matching for any α ≥ 1. A matching M is α-stable if players cannot improve their utilities

by a factor of α by changing their current group choices. In other words, no group g′ in

S \M can be formed by agents deflecting from their currently assigned groups because at

least one member of g′ cannot improve its utility by more than a factor of α by deflecting.

In particular, let M′ = (M∪{g′}) \ {g ∈M : g ∩ g′ 6= ∅} be the matching where g′ has been

formed by agents deflecting from their group choices in M. There is a player i ∈ g′ such that

the utility of i in M′ is not more than a factor of α times greater than in M. Therefore, for

each g′ ∈ S \M, there is i ∈ g′, such that αui(M) = w(g) ≥ w(g′) = ui(M
′), i ∈ g ∈M. If

we do not explicitly specify the value of α then it is assumed that α = 1.
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We define the social utility of a matching M to be SU(M) =
∑

g∈Mw(g). A matching M∗

is optimal if it has the largest social utility of all the possible matchings.

Let Q denote all possible stable matchings in the game. Note that Q is finite. The Price

of Anarchy of the game G is PoA = min
M∈Q

SU(M∗)
SU(M)

. In other words the PoA is the ratio of

the optimal matching to the worst stable matching. Another related metric is the Price of

Stability (PoS) which is defined as PoS = max
M∈Q

SU(M∗)
SU(M)

. In other words, it is the ratio of the

optimal matching to the best stable matching.

We can easily extend the definitions of PoA and PoS to α-stable matchings by considering

Q to include all such matchings.
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Chapter 3
Analysis of Group Matching Games

We analyze group matching games. We first show that there exist stable matchings and then

we analyze the price of anarchy and the price of stability.

3.1 Stability

We present Algorithm 1 which computes a stable matching (1-stable matching) for any game

G. The algorithm begins by ordering all the groups in the game in decreasing order of group

weight. It then iterates through the groups in this order and decides whether to add each

group to the resulting set of groups which will be returned as output. A new group is added

only if all of its members are not already in the current set of groups. The resulting output

is a stable matching.

Algorithm 1: Algorithm to find a stable matching in a group matching game

input : A group matching game G = 〈N,S, (ci), (Si), (ui)〉
output: A set of groups M

1 Z = (g1, g2, . . . , g|S|) is a sorted list of groups were w(gi) ≥ w(gj), i > j, gi, gj ∈ S;

2 M← ∅;
3 for i = 1, . . . , |S| do

4 if all members of gi are not in any group in M then

5 M←M ∪ gi;

6 return M

Example of Algorithm 1

Figure 3.1 shows an example demonstrating how Algorithm 1 operates. We say that an agent

is free if a group in which it is a member of has not been added to the matching M. The

algorithm examines the groups in decreasing order of group weight.
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In the first iteration of the algorithm, g2 is added to the matching M because its agents

2 and 3 are free.

In the next iteration g1 is examined. It is not included in the matching because one of its

agents, 2 is not free.

In the third iteration g3 is not included in M because agent 3 is not free.

Finally, g4 is added to M because all its agents are free.

Therefore the final matching included groups g1 and g4. Note that this matching is stable

because no group outside of g1 and g4 can be formed without some agent’s utility reducing.

Remember that an agent’s utility is its group weight in a particular matching.

Theorem 3.1.1 Given a game G, Algorithm 1 returns a stable matching.

Proof: Let M be the output of then algorithm. In M an agent is added to at most one

group. This is because when its group is added to M all other groups that it belongs to are

not eligible to be added to M in subsequent iterations. Therefore, M is a matching.

Next we will prove the M is stable. Suppose to the contrary that M is unstable. This

means that there is a group g ∈ S \M causing an instability such that w(g) > w(g′) for

all i ∈ g ∩ g′, g′ ∈ X(g) and g′ ∈ M. Since g′ is in M then from line 4 we have it that,

w(g′) ≥ w(g′′) for all g′′ ∈ X(g′). This is a contradiction because g ∈ X(g′) but w(g) > w(g′).

3.2 Price of Anarchy

Consider game G where the maximum group size is k. We provide a PoA upper bound for

α-stable matchings where the bound is expressed in terms of α and k.

Theorem 3.2.1 The PoA of a game G for α-stable matchings is αk where k is the maximum

group size, for any α, k ≥ 1.

Proof: Let M∗ be the optimal matching and M be an α-stable matching. We proceed by

setting an upper-bound for SU(M∗) with respect to SU(M) which will give the PoA bound.
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FIGURE 3.1. An example demonstrating how Algorithm 1 operates. The smaller circles repre-
sent agents, the larger circles with broken outlines represent groups. The numbers in parenthesis
indicates the group’s weight.
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Let g∗ ∈M∗ \M, then there exist a g̃, where g̃ ∈ X(g∗) and g̃ ∈M \M∗, such that,

αw(g̃) ≥ w(g∗), (3.1)

since M is an α-stable matching, at least one agent i ∈ g ∩ g∗ gets a utility that is not more

than α times worse in M than in M∗.

Therefore, we can map every group g′ ∈ M∗ \M to a group g ∈ M \M∗ such that

w(g′) ≤ αw(g). For g ∈M \M∗, let Fg ⊆ X(g) be the set of groups in M∗ \M which map

to g. Note that, ⋃
g∈M\M∗

Fg = M∗ \M. (3.2)

A group g ∈ M \M∗ can be adjacent to at most k groups in Fg, and therefore |Fg| ≤ k.

From Inequality 3.1 we have,

kw(g) ≥ w(g)|Fg| ≥
∑
g′∈Fg

w(g′)

α
.

Therefore,

w(g) ≥ 1

kα

∑
g′∈Fg

w(g′). (3.3)

Thus,

SU(M \M∗) =
∑

g∈M\M∗
w(g)

≥ 1

kα

∑
g∈M\M∗

∑
g′∈Fg

w(g′) using Inequality (3.3)

≥ 1

kα

∑
g′∈M∗\M

w(g′) using Inequality (3.2)

=
1

kα
SU(M∗ \M). (3.4)
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FIGURE 3.2. The small circles represent agents and the larger circles with broken outlines represent
groups. Groups g1, g2, g3, g4 each shares an agent with g. The groups all have size k.

Since M = (M ∩M∗) ∪ (M \M∗) and M ∩M∗ is disjoint with M \M∗, we get

SU(M) = SU(M ∩M∗) + SU(M \M∗)

≥ SU(M ∩M∗) +
1

kα
SU(M∗ \M) using Inequality (3.4)

≥ 1

kα
(SU(M ∩M∗) + SU(M∗ \M))

=
1

kα
SU(M∗). (3.5)

Since M is an arbitrary stable matching, we get PoA ≤ αk.

Theorem 3.2.2 For any α, k ≥ 1, there is a game G with maximum group size k such that

the PoA ≥ αk for α-stable matchings.

Proof: We define a game G with S = {g, g1, . . . , gk} such that gi ∩ gj = ∅ for i 6= j and

g shares exactly one agent with each gi, that is |g ∩ gi| = 1 (see Figure 3.2). Therefore, the

group g is adjacent to k other groups. Every agent i ∈ g has weight ci = 1
k

and for every
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agent j ∈ (gi \ g) has weight cj = kα−1
k(k−1) . Thus the weights of the groups are,

w(g) =
k∑
i=1

1

k
= 1

and

w(gi) =
1

k
+

k−1∑
i=1

kα− 1

k(k − 1)
= α.

The optimal matching is M∗ = {g1, . . . , gk} with SU(M∗) =
∑k

i=1w(gi) = kα. The

matching M = {g} is stable since each agent p ∈ gi ∩ g will choose g because it does not

improve it utility by moving to gi, since up(M
∗) = w(gi) = α = αw(g) = αup(M). The only

other stable matching is M∗ which has a higher social utility than M. Therefore,

PoA = SU(M∗)/SU(M)

= kα.

3.3 Price of Stability

We present Algorithm 2 which computes an α-stable matching with a low social utility given

a group matching game. Firstly, it arranges all the groups in the game in descending order

of group weight in Line 1. It then initializes the current set of groups M to be the set of

groups that form an optimal matching (Line 2). It then iterates through these groups in this

descending order of group weights checking whether the group currently being examined is

a factor of α better than all its neighboring groups (Line 4). If this criteria is met then the

neighboring groups are all replaced by the currently examined group in the current set of

groups (Line 5 and 6). The final output of the algorithm is an α-stale matching as we prove

below. In addition the social utility k
α

worse than the optimal social matching.
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Algorithm 2: An algorithm to produce an α-stable matching

input : A group matching game G = 〈N,S, (ci), (Si), (ui)〉
output: A set of groups M

1 Z = (g1, g2, . . . , g|S|) is a sorted list of groups were w(gi) > w(gj), i > j, gi, gj ∈ S;

2 M←M∗;

3 for i = 1, . . . , |S| do

4 if w(gi)
α

> w(g′) for all g′ ∈ X(gi) then

5 M←M \ g′, for all g′ ∈ X(g) ; // remove all groups adjacent to gi from

M

6 M←M ∪ gi;

7 return M;

Example of Algorithm 2

Figure 7 shows an example of Algorithm 2 in operation. The algorithm begins with M being

the optimal matching, it then examines the groups in decreasing order of weight. In this

example k = 3 and α = 2.

In the first iteration the algorithm examines group g1. Since its weight is a factor of α

greater than its neighbors (w(g1)/2 > w(g2), w(g1)/2 > w(g3) and w(g1)/2 > w(g4)), it is

added to M and its neighbors g2, g3 and g4 are removed from M.

The group g6 is then examined. Since it is not a factor of α greater then its neighbors, it

is not removed from the matching M.

Theorem 3.3.1 Algorithm 2 produces an α-stable matching.

Proof: Suppose to the contrary that the matching M returned by the algorithm is unstable.

This means that there is a group g 6∈ M causing an instability such that αw(g) > w(g′)

for all i ∈ g ∩ g′, g′ ∈ X(g) and g′ ∈ M. Since g′ is in M then from Line 4 we can say

that, w(g′)/α > w(g′′) for all g′′ ∈ X(g′). This is a contradiction because g ∈ X(g′) but

w(g) > w(g′)
α

.
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FIGURE 3.3. An example demonstrating how Algorithm 2 operates. The smaller circles repre-
sent agents, the larger circles with broken outlines represent groups. The numbers in parenthesis
indicates the group’s weight.
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Theorem 3.3.2 Every group matching game has PoS ≤ k/α for α-stable matchings where

k is the maximum group size.

Proof: Let M∗ be the optimal matching and M be the α-stable matching returned by

Algorithm 2. Initially when the algorithm starts M∗ = M. During the execution of the

algorithm several groups from M∗ are removed from M. Let g∗ ∈ M∗ \M be one such

group. Then, from Line 4 there exist a g̃, where g̃ ∈ X(g∗) and g̃ ∈M \M∗ such that,

αw(g∗) < w(g̃). (3.6)

Therefore, we can map every group g′ ∈ M∗ \M to a group g ∈ M \M∗ such that

w(g) > αw(g′). For g ∈M \M∗, let Fg ⊆ X(g) be the set of groups in M∗ \M which map

to g. Note that, ⋃
g∈M\M∗

Fg = M∗ \M. (3.7)

A group g ∈ M \M∗ can be adjacent to at most k groups in Fg, and therefore |Fg| ≤ k.

From Inequality 4.1 we have,

kw(g) ≥ w(g)|Fg| >
∑
g′∈Fg

αw(g′).

Therefore,

w(g) ≥ α

k

∑
g′∈Fg

w(g′). (3.8)

Thus,

SU(M \M∗) =
∑

g∈M\M∗
w(g)

≥ α

k

∑
g∈M\M∗

∑
g′∈Fg

w(g′) using Inequality (4.3)

≥ α

k

∑
g′∈M∗\M

w(g′) using Inequality (4.2)

=
α

k
SU(M∗ \M). (3.9)
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Since M = (M ∩M∗) ∪ (M \M∗) and M ∩M∗ is disjoint with M \M∗, we get

SU(M) = SU(M ∩M∗) + SU(M \M∗)

≥ SU(M ∩M∗) +
α

k
SU(M∗ \M) using Inequality (3.9)

≥ α

k
(SU(M ∩M∗) + SU(M∗ \M))

=
α

k
SU(M∗). (3.10)

Consequently, we get PoS ≤ k
α

.

Theorem 3.3.3 There is a game G with an α-stable matching such that PoS ≥ k/α(1 + ε)

for k ≥ α for an arbitrarily small ε.

Proof: We define a game G with S = {g, g1, · · · , gk} such that gi ∩ gj = ∅ for i 6= j and

g shares exactly one agent with each gi, that is |g ∩ gi| = 1 (see Figure 3.2). Therefore, the

group g is adjacent to k other groups. Every agent i ∈ g has weight ci = 1+ε
k

(where ε is a

very small number) and for every agent j ∈ (gi \g) has weight cj = k−α
kα(k−1) . Thus the weights

of the groups are,

w(g) =
k∑
i=1

1 + ε

k

= 1 + ε,

and

w(gi) =
1

k
+

k−1∑
i=1

k − α
kα(k − 1)

=
1

α
.

The game has two matchings, the optimal matching M∗ = {g1, · · · gk} and the stable

matching M = {g}. All agents p ∈ gi ∩ g will choose g because up(M
∗) < αup(M), therefore

the social welfare in the stable matching will be,
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SU(M) = w(g) = 1.

If however all the agents choose gi then,

SU(M∗) =
k∑
i=1

w(gi)

=
k

α
.

Since there is no other stable matching other than M,

PoS = SU(M∗)/SU(M)

=
k

α(1 + ε)
.

Theorem 3.3.4 For any x ≥ 0, each (k + x)-stable matching is also a k-stable matching,

where k ≥ 1 is the largest group size.

Proof: Consider a k + x-stable matching M. Suppose that g ∈ S \M. Let M′ be the

matching which is obtained from M by adding g and removing all the members of X(g).

Let i ∈ g be the agent with the largest ci among all the other agents in g. We have that

ci ≥ w(g)/k. If i ∈ g′ ∈ M, then clearly w(g′) ≥ ci ≥ w(g)/k. Then ui(M
′) = w(g) ≤

kw(g′) = kui(M). Consequently, agent i has no incentive to switch to g since there is no

improvement by more than a factor of k in its utility. Thus, for each group in S \M there

is an agent which cannot improve its utility by more than a factor of k by switching to that

group. Therefore, M is a k-stable matching.
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Chapter 4
Group Matching Game with λ > 1

In this section we introduce the parameter λ which is the maximum number of groups that

an agent can be a member of. For these games we extend our original definitions of stability

and matching. An allocation is a tuple a = (a1, . . . , an), where ai ⊆ Si ∪ ∅, which represents

the groups chosen by the agents. Note that in an allocation an agent i may choose up to λ

groups and so |ai| ≤ k or not choose any group at all in which case ai = ∅. An allocation

is valid if for each g ∈
⋃
i ai, 1 ≤ i ≤ n, all the agents (elements) in g must have chosen g

in the allocation, namely, for each agent j ∈ g, aj = g. Once again, the groups in a valid

allocation form a matching. In other words a matching is a set of all the elements in a valid

allocation. Sometimes we refer to a valid allocation as a matching and vice versa.

We define qi to be the number of groups that agent i has currently chosen. Let M be a

stable matching and M′ = (M∪{g′})\{g ∈M : g∩g′ 6= ∅} be the matching where g′ has been

formed by agents deflecting from their group choices in M. There is a player i ∈ g′ which has

already met its quota of groups it can choose and the utility of i in M′ is not greater than in

M. Therefore, for each g′ ∈ S\M, there is i ∈ g′, such that ui(M) = w(g) ≥ w(g′) = ui(M
′),

i ∈ g ∈M and qi = λ.

4.1 Price of Anarchy for Game with λ > 1

We describe Algorithm 3 which given a game G produces a stable matching. The groups in

the game are sorted into descending order of weight. Each agent is given a quota. It represents

the number of groups that an agent has joined. Anytime an agent’s group is added to M, the

current set of groups, its quota is increased. An agent cannot join more than λ groups. Each

group is then examined in this descending order of weight. If all the members of the group

currently being examined have not met their quota (Line 5) then the group in added to the
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current set of groups (Line 7) and the quota for each member of the group is increased. If

any group does not meet this criteria it is not added to be current set of groups. At the end

of the execution of the algorithm the set of groups is returned as a matching.

Algorithm 3: Algorithm to find a stable matching in a simple group packing game with
λ > 1

input : A group matching game G = 〈N,S, (ci), (Si), (ui)〉
output: A set of groups M

1 Z = (g1, g2, . . . , g|S|) is a sorted list of groups were w(gm) > w(gn),m > n, gm, gn ∈ S;

2 M← ∅;
3 For each i ∈ N, qi ← 1 ; // each agent i has a quota qi. We initialize the

quotas to 1

4 for j = 1, · · · , |S| do

5 if qi < λ for all i ∈ gj then

6 qi ← qi + 1;

7 M←M ∪ gj;

8 return M;

Example of Algorithm 3

Figure 7 shows an example of Algorithm 3 in operation. It examines the groups in decreasing

order of weight. In this example k = 3 and λ = 2.

In the first iteration the algorithm examines group g1. The quotas for the members of the

group, agents 1, 2 and 3 are increased by one and g1 is added to M.

In the next iteration group g2 is examined, the quotas for agents 1, 2 and 4 are increased

by one and g2 is added to M.

In the proceeding iterations, group g3, g4 and then g5 is examined. These groups are not

added to M because agent 1 and 2 have already met their quota of 2.

Note that at the end of the execution of the algorithm, M is stable.

Theorem 4.1.1 The matching returned by Algorithm 3 is stable.
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FIGURE 4.1. An example demonstrating how Algorithm 3 operates. The smaller circles repre-
sent agents, the larger circles with broken outlines represent groups. The numbers in parenthesis
indicates the group’s weight.
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Proof: To prove that the algorithm is stable we assume that to the contrary we have a

group g 6∈ M such that w(g) > w(g′) for j ∈ g′ ∩ g and qj < λ where g′ ∈ M. Since g is

not in the stable matching this means that there is an agent i ∈ g that has already met its

quota. Since the algorithm examines groups in decreasing order of weight this means that i

met its quota when a group in which it is a member of g′ was added to the matching. This

means that i ∈ g′ such that g′ ∈ M and w(g′) > w(g) and qi = λ which contradicts our

initial assertion.

Theorem 4.1.2 The PoA ≤ αk for a simple group matching game with λ > 1.

Proof: Let M∗ be the optimal matching and M be the α-stable matching returned by

Algorithm 3. Initially when the algorithm starts M∗ = M. During the execution of the

algorithm several groups from M∗ are removed from M. Let g∗ ∈ M∗ \M be one such

group. There exist a g̃, where g̃ ∈ X(g∗) and g̃ ∈M \M∗ such that,

w(g∗) < αw(g̃). (4.1)

Therefore, we can map every group g′ ∈ M∗ \M to a group g ∈ M \M∗ such that

αw(g) > w(g′). For g ∈M \M∗, let Fg ⊆ X(g) be the set of groups in M∗ \M which map

to g. Note that, ⋃
g∈M\M∗

Fg = M∗ \M. (4.2)

A group g ∈M \M∗ can be adjacent to at most λk groups in Fg, and therefore |Fg| ≤ λk.

Furthermore, a group g′ ∈ Fg can be adjacent to at most λ groups in M \M∗.

From Inequality 4.1 we have,

λkw(g) ≥ w(g)|Fg| >
∑
g′∈Fg

w(g′)

α
.

Therefore,

w(g) ≥ 1

αkλ

∑
g′∈Fg

w(g′). (4.3)
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Each agent in g is also a member of λ groups g′ each of which is a member of a set Fg, that

is each g ∈M \M∗ can be mapped to λ sets of Fg, therefore,

1

α

∑
g∈M\M∗

∑
g′∈Fg

w(g′) ≥ λSU(M∗ \M) (4.4)

Thus,

∑
g∈M\M∗

w(g) ≥ 1

αkλ

∑
g∈M\M∗

∑
g′∈Fg

w(g′) using Inequality (4.3)

∑
g∈M\M∗

w(g) ≥ 1

αk
SU(M∗ \M) using Inequality (4.4)

SU(M \M∗) ≥ 1

αk
SU(M∗ \M) (4.5)

Since M = (M ∩M∗) ∪ (M \M∗) and M ∩M∗ is disjoint with M \M∗, we get

SU(M) = SU(M ∩M∗) + SU(M \M∗)

≥ SU(M ∩M∗) + αkSU(M∗ \M) using Inequality (4.5)

≥ αk (SU(M ∩M∗) + SU(M∗ \M))

= kαSU(M∗). (4.6)

Consequently, we get PoA ≤ kα.

Theorem 4.1.3 For any α, k ≥ 1 and λ > 1 there is a game G with maximum group size k

such that the PoA ≥ α(k − 1) for α-stable matchings.

Proof: We define a game G with S = {g1, g2, . . . , gλ, g∗1,1, . . . , g∗k−1,λ} such that each agent

i ∈ {1, . . . , k − 1} ⊂ N is a member of λ groups g∗i,1, . . . , g
∗
i,λ and λ groups g1, . . . , gλ. That

is, gi ∩ g∗i,j = i and g1 ∪ · · · ∪ gk−1 = {1, . . . , k − 1} for i = 1, . . . , k − 1 and j = 1, . . . , λ (See

Figure 4.3). Every agent j ∈ gi has weight cj = 1
k−1 and every group l ∈ (g∗i,j \ gi) = kα−1

k(k−1) .

Thus the weights of the groups are,
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w(gi) =
k∑
i=1

1

k

= 1

w(g∗i,j) =
k−1∑
i=1

kα− 1

k(k − 1)
+

1

k

= α

Let M∗ = {g∗i,1, . . . , g∗i,λ} and M = {g1, . . . , gλ} be two matchings in the game. If all agents

i ∈ {1, . . . , k − 1} choose groups gi because ui(M) > ui(M
∗) then the social utility in the

stable matching will be,

SU(M) =
λ∑
i=1

w(gi)

= λ.

If however all agents i ∈ {1, . . . , k − 1} choose groups g∗i,j then,

SU(M∗) =
k−1∑
i=1

λ∑
j=1

w(g∗i,j)

= λα(k − 1).

Therefore,

PoS = SU(M∗)/SU(M)

= α(k − 1).

Given a simple group matching game G = (N,S) with λ > 1 and {1, · · · , k} ⊂ N . Let

M∗ be an optimal matching and M be a stable matching. Given that A = {g1, · · · gλ} and

Bi = {gi1, · · · , giλ}, i = 1, · · · , k. Furthermore, A∩Bi = {1, · · · , k}. Let A ∈M and Bi ∈M∗.

Furthermore the strategies for i are si = {A,Bi}. The weights of the groups are as follows,

w(g) = x+ ε for all g ∈ A and w(g′) = x for all g′ ∈ Bi, x ≥ 0.
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If the agents all choose si = A then w(M) = λx. If however the agents choose si = Bi

then w(M∗) = kλx. Therefore PoA = w(M∗)/w(M) = k.

4.2 Price of Stability for λ > 1

We present a description of Algorithm 4 which computes an α-stable matching with a low

social utility given a game G. Every agent is given a quota of groups that it can join. Anytime

an agent’s group is added to M, the current set of groups, its quota is increased. An agent’s

quota cannot exceed λ. The algorithm begins by setting the current set of groups M to

M∗ (Line 2). It then iterates through all the groups in the games and examines them in

descending order of group weight. If all of the members of the currently examined group

have not met their quota and the currently examined group is a factor of α greater than

the groups that the agents are currently members of (Line 5) then the agents’ quotas are

increased (Line 8). This is repeated until all the members of the group have met their quotas

(Line 5) then the groups are added to the set of groups M and their old groups are removed

from the set (Lines 6 and 7). At the end of the execution of the algorithm the M return is

a stable matching that is k
α

times worse than the optimal matching. Furthermore, all agents

who are members of the groups in M returned by the algorithm have met their quota, that

is, they are members of not more than λ groups.

Example of Algorithm 4

Figure 4.2 shows an example of Algorithm 4 in operation. The algorithm begins with M

being the optimal matching, it then examines the groups in decreasing order of weight. In

this example k = 3, α = 2 and λ = 2.

In the first iteration the algorithm examines group g1. Since its members, 1, 2 and 3 have

not met their quotas and its weight is a factor of α greater than its neighbors g3, g4, g5 and

g6 in M, its members quotas are increased and it is added to a temporary matching T .
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Algorithm 4: Algorithm to find a stable matching in a simple group packing game with
λ > 1
input : A group matching game G = 〈N,S, (ci), (Si), (ui)〉
output: A set of groups M

1 Z = (g1, g2, . . . , g|S|) is a sorted list of groups were w(gm) > w(gn),m > n, gm, gn ∈ S;

2 M←M∗;

3 qi ← 1 for all i ∈ N ; // each agent i has a quota qi. We initialize the quotas

to 1

4 for j = 1, . . . , |S| do

5 if no i ∈ gj have exceeded their quota and
w(gj)

α
> w(g′) for all g′ ∈ X(g) ∧ g′ ∈M

then

6 M←M ∪ gj;
7 M←M \ g′;
8 qi ← qi + 1 for all i ∈ qi;

9 return M;

In the next iteration g2 is examined. Its weight is a factor of α greater than its neighbors

g3, g4, g5 and g6. In addition its members 1 and 2 have now met their quotas therefore g1

is taken from T and together with g2, is added to M and its neighbors g3, g4, g5 and g6 are

removed from M.

Note that the final matching, comprising of g1 and g2, is 2-stable.

Theorem 4.2.1 Given a game G, Algorithm 4 returns a stable matching.

Proof: Let M be the output of then algorithm. In M an agent is added to at most one

group. This is because when its group is added to M all other groups that it belongs to are

not eligible to be added to M in subsequent iterations. Therefore, M is a matching.

Next we will prove the M is stable. Suppose to the contrary that M is unstable. This

means that there is a group g 6∈ M such that w(g)
α

> w(g′) for j ∈ g′ ∩ g, g′ ∈ X(g), and

qj < λ where g′ ∈M. Since g′ is in M then from line ?? we have it that, w(g′)
α

> w(g′′) for

all g′′ ∈ X(g′). This is a contradiction because g ∈ X(g′) but w(g)
α

> w(g′).
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FIGURE 4.2. An example demonstrating how Algorithm 4 operates. The smaller circles repre-
sent agents, the larger circles with broken outlines represent groups. The numbers in parenthesis
indicates the group’s weight.
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Theorem 4.2.2 The PoS of an α-stable simple group matching game with λ > 1 is at most

k/α.

Proof: Let M∗ be the optimal matching and M be the α-stable matching returned by

Algorithm 4. Initially when the algorithm starts M∗ = M. During the execution of the

algorithm several groups from M∗ are removed from M. Let g∗ ∈ M∗ \M be one such

group. There exist a g̃, where g̃ ∈ X(g∗) and g̃ ∈M \M∗ such that,

αw(g∗) < w(g̃). (4.7)

Therefore, we can map every group g′ ∈ M∗ \M to a group g ∈ M \M∗ such that

w(g) > αw(g′). For g ∈M \M∗, let Fg ⊆ X(g) be the set of groups in M∗ \M which map

to g. Note that, ⋃
g∈M\M∗

Fg = M∗ \M. (4.8)

A group g ∈M \M∗ can be adjacent to at most λk groups in Fg, and therefore |Fg| ≤ λk.

Furthermore, a group g′ ∈ Fg can be adjacent to at most λ groups in M \M∗.

From Inequality 4.7 we have,

λkw(g) ≥ w(g)|Fg| >
∑
g′∈Fg

αw(g′).

Therefore,

w(g) ≥ α

kλ

∑
g′∈Fg

w(g′). (4.9)

Each agent in g is also a member of λ groups g′ each of which is a member of a set Fg, that

is each g ∈M \M∗ can be mapped to λ sets of Fg, therefore,

α
∑

g∈M\M∗

∑
g′∈Fg

w(g′) ≥ λSU(M∗ \M) (4.10)
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Thus,

∑
g∈M\M∗

w(g) ≥ α

kλ

∑
g∈M\M∗

∑
g′∈Fg

w(g′) using Inequality (4.9)

∑
g∈M\M∗

w(g) ≥ α

k
SU(M∗ \M) using Inequality (4.10)

SU(M \M∗) ≥ α

k
SU(M∗ \M) (4.11)

Since M = (M ∩M∗) ∪ (M \M∗) and M ∩M∗ is disjoint with M \M∗, we get

SU(M) = SU(M ∩M∗) + SU(M \M∗)

≥ SU(M ∩M∗) +
α

k
SU(M∗ \M) using Inequality (4.11)

≥ α

k
(SU(M ∩M∗) + SU(M∗ \M))

=
α

k
SU(M∗). (4.12)

Consequently, we get PoS ≤ k
α

.

Theorem 4.2.3 There is a game G with an α-stable matching and λ ≥ 1 such that PoS ≥

(k − 1)/α for k ≥ α.

Proof: We define a game G with S = {g1, g2, . . . , gλ, g∗1,1, . . . , g∗k−1,λ} such that each agent

i ∈ {1, . . . , k − 1} ⊂ N is a member of λ groups g∗i,1, . . . , g
∗
i,λ and λ groups g1, . . . , gλ. That

is, gi ∩ g∗i,j = i and g1 ∪ · · · ∪ gk−1 = {1, . . . , k − 1} for i = 1, . . . , k − 1 and j = 1, . . . , λ (See

Figure 4.3). Every agent j ∈ gi has weight cj = 1
k−1 and every group l ∈ (g∗i,j \ gi) = k−α

kα(k−1) .

Thus the weights of the groups are,
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w(gi) =
k∑
i=1

1

k

= 1

w(g∗i,j) =
k−1∑
i=1

k − α
kα(k − 1)

+
1

k

=
1

α

Let M∗ = {g∗i,1, . . . , g∗i,λ} and M = {g1, . . . , gλ} be two matchings in the game. If all agents

i ∈ {1, . . . , k − 1} choose groups gi because ui(M) > ui(M
∗) then the social utility in the

stable matching will be,

SU(M) =
λ∑
i=1

w(gi)

= λ.

If however all agents i ∈ {1, . . . , k − 1} choose groups g∗i,j then,

SU(M∗) =
k−1∑
i=1

λ∑
j=1

w(g∗i,j)

=
λ(k − 1)

α
.

Therefore,

PoS = SU(M∗)/SU(M)

=
k − 1

α
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FIGURE 4.3. An example of a group matching game with λ = 2 and k = 3. The small circles rep-
resent agents and the larger circles with broken outlines represent groups. Agent 1 ∈ g1, g2, g∗1,1, g∗1,2
and agent 2 ∈ g1, g2, g

∗
2,1, g

∗
2,2. Groups g1, g2 form the stable matching. Groups g∗1,1, g

∗
1,2, g

∗
2,1, g

∗
2,2

form the optimal matching.

36



Chapter 5
Group Matching Game with Subset Property

In this section we introduce games that exhibit a so-called subset property. These games are

like the games we described earlier with an additional caveat that the subset of every group

in S is also a valid strategy.

Formally, we define these games as follows. Given a game G = 〈N,S, (ci), (Si), (ui)〉 such

that for an agent i, g ∈ Si ⇒ 2g ∈ Si. That is, if an agent has g as one of its strategies then

all subsets of g are also strategies of that agent. In addition, all the agents have the same

weight therefore we can set ci = 1, w(g) = |g| and SU(M) =
∑

g∈Mw(g). We can then prove

the following theorem.

5.1 PoA Analysis

Theorem 5.1.1 The PoA ≤ 2 for a game G in which all agent have the same weight.

Proof: Let M∗ be the optimal matching and M be an α-stable matching. We proceed by

setting an upper-bound for SU(M∗) with respect to SU(M) which will give the PoA bound.

Let g∗ ∈M∗ \M, then there exist a g̃, where g̃ ∈ X(g∗) and g̃ ∈M \M∗, such that,

w(g̃) ≥ w(g∗), (5.1)

since M is an stable matching, at least one agent i ∈ g ∩ g∗ gets a utility that is better in

M than in M∗.

Furthermore, we can say that SU(M∗) > SU(M) if there exist an agent i ∈ g∗, such that

|g∗| = 2 and Si = {g∗}. That is, there will be a loss in social utility if an agent in a group

looses its only partner and cannot form another group. Therefore in this case we have,

w(g∗) = 2, (5.2)
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We can therefore map every group g′ ∈ M∗ \M to a group g ∈ M \M∗ such that

w(g′) ≤ w(g). For g ∈M \M∗, let Fg ⊆ X(g) be the set of groups in M∗ \M which map to

g. Note that, ⋃
g∈M\M∗

Fg = M∗ \M. (5.3)

A group g ∈ M \M∗ can be adjacent to at most k groups in Fg, and therefore |Fg| ≤ k.

From Inequality 5.1 we have,

kw(g) ≥ w(g)|Fg| ≥
∑
g′∈Fg

w(g′).

Therefore,

w(g) ≥ 1

k

∑
g′∈Fg

w(g′). (5.4)

Thus,

SU(M \M∗) =
∑

g∈M\M∗
w(g)

≥ 1

k

∑
g∈M\M∗

∑
g′∈Fg

w(g′) using Inequality (5.4)

≥ 1

k

∑
g∈M\M∗

∑
g′∈Fg

2 using Inequality (5.4) and(5.2)

≥ 1

k

∑
g′∈M∗\M

2k using Inequality (5.3)

= 2 · SU(M∗ \M). (5.5)

Since M = (M ∩M∗) ∪ (M \M∗) and M ∩M∗ is disjoint with M \M∗, we get

SU(M) = SU(M ∩M∗) + SU(M \M∗)

≥ SU(M ∩M∗) + 2SU(M∗ \M) using Inequality (5.5)

≥ 2 (SU(M ∩M∗) + SU(M∗ \M))

= 2 · SU(M∗). (5.6)

Since M is an arbitrary stable matching, we get PoA ≤ 2.
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5.2 Lower Bound

Theorem 5.2.1 There is a game G where all the agents have the same weight and with

maximum group size k such that the PoA ≥ 2 for stable matchings.

Proof: We define a game G with S = {g, g1, . . . , gk} such that gi ∩ gj = ∅ for i 6= j and

g shares exactly one agent with each gi, that is |g ∩ gi| = 1 (see Figure 3.2). Therefore, the

group g is adjacent to k other groups. Furthermore, |g| = k and |gi| = 2. Every agent i ∈ N

has weight ci = 1. Thus the weights of the groups are,

w(g) =
k∑
i=1

1 = k

and

w(gi) = 2.

The optimal matching is M∗ = {g1, . . . , gk} with SU(M∗) =
∑k

i=1w(gi) = 2k. The

matching M = {g} is stable since each agent p ∈ gi ∩ g will choose g because it improves

it utility by moving to gi, since up(M
∗) ≤ up(M). The only other stable matching is M∗.

Therefore SU(M) = k and

PoA = SU(M∗)/SU(M)

= 2.
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Chapter 6
Group Cover Game

In this section we introduce group cover games. A group cover game G =

〈N,S, (ci), (Si), (ui)〉. These games differ from the group matching games in that SU(M) =

1/|M|.

6.1 Price of Anarchy for Group Cover Game

Theorem 6.1.1 The PoA of an anonymous, agent weighted game with SU(M) = 1/|M| is

logen.

Proof: Let G be group cover game. Suppose that the number of groups in the optimal

matching M∗ is m, i.e. SU(M∗) = 1/m. We examine the groups in descending order of

weight. Let n1 be the number of agents left after all the agents in the highest weighted group

have been removed and n2 is the number of agents left after all the first and second highest

weighted agents have been removed etc. We can say that the first group must have size not

less that n/m agents (If it had group size less than that then its members would defect to

the optimal matching). So therefore, after the agents in the first group are matched we can

say that the number of agents remaining is

n1 ≤ n− n/m = n(1− 1/m)

. After all the agents in the first group have been removed we know that at least one group

will have no less than n1/m agents (the optimal matching now has n1 remaining agents and

m groups), therefore we are left with n2 ≤ n1 − n1/m ≤ n(1 − 1/m)n2 agents. We can see

that generally,

ni+1 ≤ n(1− 1/m)ni
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. To determine the number of groups needed for all the agent to be matched we proceed as

follows,

n(1− 1/m)k < 1

n(1− 1/m)mk/m < 1

(1− 1/m)mk/m < 1/n

ek/m < 1/n . . . based on the relation (1− 1/x)
1
x ≈ e−1

k < m loge n

We can see that, SU(M∗) = 1
m

and SU(M) = 1
m loge n

. Therefore, PoA = loge n.
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Chapter 7
Conclusions to Group Matching Games

Several contributions have been made by the work outlined in this dissertation. We show

that group matching games have several real world applications in areas such as kidney

exchange programs, social networks and wireless sensor networks. We have described new

types of matching games and have put forward a game theoretic framework for describing and

analyzing these games. We then presented several intuitive alogithms for achieving stablility

in these games. We have also outlined the performance of these games in terms of the PoA

and PoS matric. Specifically we discovered that the PoA is bounded by the maximum group

size. By relaxing the criteria for stability the PoA increases by a factor of α and the PoS

improves by a factor of α. We also discovered, counterintuitively, that by allowing agents to

join up to λ groups we do not improve on the PoA and PoS bounds significantly.

These results can serve as a basis to use to further explore more elaborate matching games

in a game theoretic setting. Future work could involve exploring more complex games such

as games in which the utility that an agent gains from a group is its Shapely value [4] which

depends on its contribution to the group. We could also investigate games in which agents

act altruistically. That is, agent are willing to loose a certain amount of utility in order to

help group members to improve their own utilities. Using group matching games as a basis

we can explore whether allowing this will improve the PoA and PoS.
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Part II

Bottleneck Routing Games on Grids

43



Chapter 8
Introduction to Bottleneck Routing Games
on Grids

Motivated by the selfish behavior of entities in communication networks and tasks in job

scheduling, we study congestion games where each packet’s path is controlled independently

by a selfish player. We consider non-cooperative routing games with n players, where each

player’s pure strategy set consists of a set of paths in the network. A player selfishly selects a

strategy (a single path) that maximizes the player’s utility cost function. Such games are also

known as atomic or unsplittable-flow games. We focus on bottleneck routing games where the

objective for the social outcome is to minimize the bottleneck congestion C, the maximum

congestion on any edge. Each player’s objective is also to select a path with the smallest

bottleneck congestion along the selected path’s edges. Typically, the congestion on a edge is

a non-decreasing function on the number of paths that use the edge; here, we consider the

congestion to be simply the number of players that use the edge.

Bottleneck routing games have been studied in the literature [7, 9, 8]. In [7] the authors

observe that bottleneck games are important in networks for various practical reasons. In

wireless networks, the maximum congested link is related to the lifetime of the network since

the nodes adjacent to high congestion links transmit large number of packets which results

to higher energy depletion. High congestion links also result to congestion hot-spots which

may slow-down the network throughput. Hot spots also increase the vulnerability of the

network to malicious attacks which aim to increase the congestion of links in the hope to

bring down the network. Bottleneck games are also important from a theoretical point of

view since the bottleneck congestion is immediately related to optimal packet scheduling. In

a seminal result, Leighton et al. [21] showed that there exist packet scheduling algorithms

that deliver the packets along their chosen paths in time very close to C+D, where D is the
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maximum chosen path length. When C � D, the congestion becomes the dominant factor

in the packet scheduling performance. Thus, smaller bottleneck congestion C immediately

implies faster packet delivery time.

A natural problem that arises in games concerns the effect of the players’ selfishness on the

welfare of the whole system measured with the social cost C. We examine the consequence

of the selfish behavior in pure Nash equilibria which are stable states of the game in which

no player can unilaterally improve her situation. We quantify the effect of selfishness with

the price of anarchy (PoA) [19, 25], which expresses how much larger is the worst social cost

in a Nash equilibrium compared to the social cost in the optimal coordinated solution in

the strategy space. The price of anarchy provides a measure for estimating how closely do

Nash equilibria of bottleneck congestion games approximate the optimal C∗ of the respective

coordinated optimization problem in the player’s strategy set.

Ideally, the price of anarchy should be small. However, the current literature results have

only provided weak bounds for bottleneck games. In [7] it is shown that if the resource

congestion delay function is bounded by some polynomial with degree k then PoA = O(|E|k),

where E is the set of edges in the graph. In [9] it is shown that if k = 1 there are game

instances with PoA = Ω(|E|). A natural question that we explore here is the circumstances

under which there are bottleneck games with alternative and better price of anarchy bounds.

8.1 Contributions

We consider grid network topologies in which the nodes are placed in a d-dimensional array

and each node connects with edges to at most 2d neighbors. The number of nodes is nd =

N . Grid networks have been used as interconnection networks in parallel multiprocessor

computer architectures [22]. In wireless networks 2-dimensional grids provide a framework

for formulating and analyzing wireless communication problems. In other communication

networks routing and scheduling algorithms are typically first tested and analyzed on grids

and then extended to arbitrary network topologies [10].
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We explore games where the price of anarchy is expressed in terms of the numbers of bends

that the paths use in the grid. A bend is a node in a path which connects two path segments

in different dimensions. We explore games where the strategies of the players consists of

paths whose bends are bounded by β, where β can be any number of nodes up to N . We

first examine basic bottleneck games on grids with at most β bends for the paths. We show

that there are instances in the 2-dimensional grid with β = O(1) and price of anarchy

Ω(
√
N). However, this is not satisfactory. In order to obtain price of anarchy bounded by β,

we explore two alternative games.

In the first game we utilize channels, where path segments on straight lines are routed

in different channels according to their lengths. An edge accommodates α = log n channels

(logarithms are base 2), such that channel j is used by path segments of length in range

[2j, 2j+1 − 1]. Channels do not interfere with each other so that congestion can be created

only by path segments in the same channel. Channels can be implemented with different

frequencies in the physical communication medium, or with time division multiplexing, or

with other means of signal multiplexing. The use of channels enables us to control the price

of anarchy. We show that in channel bottleneck games if paths are allowed to use at most β

bends, the price of anarchy is

PoA = O((β/d) logN).

We also provide a lower bound PoA = Ω(β). Thus, for constant d, the upper bound is tight

within a log n factor.

We then explore games which use only one channel. Now, in order to control the price of

anarchy we split the path segments into different grid lines according to the lengths of the

segments. Odd lines with index 2i + 1 are used to route path segments of length in range

[2i mod α, 2(i mod α)+1 − 1], where α = log n (logarithms are base 2). Even index lines are used

to route paths segments with length at most 2α−1. Even index lines are uses to route paths

close to the source and destination and when path segments switch to different lengths. This
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gives α+ 1 different types of lines. Thus, path segments are separated in space, and a single

channel suffices. Note that we can still perform routing from every node to any other node

without significantly increasing the number of bends, compared to a routing mode without

space separated path segments. We show that in the respective split bottleneck games if paths

are allowed to use at most β bends, the price of anarchy is

PoA = O((β/d2) log2N).

We also provide a lower bound PoA = Ω(β). Thus, for constant d, the upper bound is tight

within a log2 n factor.

8.2 Impact of Games with Small Number of Bends

We demonstrate that Nash equilibria of bottleneck games with small number of bends can

approximate efficiently the best coordinated solution that uses an arbitrary number of bends.

Assuming that every path in the network can be used, there exist oblivious routing algorithms

in grids which find paths with O(d logN) bends and achieve O(d logN) approximation to

the optimal solution that uses an arbitrary number of bends [10]. Let C denote the solution

returned by the oblivious algorithm and C∗ denote the global optimal solution with an

arbitrary number of bends. Clearly, C/C∗ = O(d logN).

Consider now channel bottleneck games where the strategy of each player contains all

possible paths in the grid with β = O(d logN) bends. Let C∗ denote the smallest social cost.

Clearly, C∗ ≤ C. Let C be any Nash equilibrium of the game. Since C/C∗ ≤ PoA, and

PoA = O((β/d) logN) = O(log2N), we obtain

C/C∗ = O(d log3N).

Therefore, Nash equilibria of channel bottleneck games with small number of bends provide

good approximations to the optimal coordinated solution with arbitrary number of bends.

We can obtain a similar result for split bottleneck games. Note that any solution of an

oblivious routing algorithm with congestion C ′ and x bends is translated to a solution with
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congestion C ′ · log n and O(x) bends in the split grid, since some of the path segments have to

be rerouted to nearby lines that accommodate their length. Since PoA = O((β/d2) log2N) =

O((1/d) · log3N), we obtain:

C/C∗ = O((1/d) log5N).

8.3 Related Work

Congestion games were introduced and studied in [24, 26]. In [26], Rosenthal proves that

congestion games have always pure Nash equilibria. Koutsoupias and Papadimitriou [19]

introduced the notion of price of anarchy in the specific parallel link networks model in

which they provide the bound PoA = 3/2. Roughgarden and Tardos [29] provided the first

result for splittable flows in general networks in which they showed that PoA ≤ 4/3 for a

player cost which reflects to the sum of congestions of the resources of a path. Pure equilibria

with atomic flow have been studied in [9, 12, 23, 34] (our work fits into this category), and

with splittable flow in [27, 28, 29, 30]. Most of the work in the literature uses a player

cost metric related to the aggregate sum of congestions on all the edges of the player’s

path; and the social cost metric is also an aggregate expression of all the edge congestions

[12, 28, 29, 30, 34].

Bottleneck routing games have been studied in [7], where the authors consider the max-

imum congestion metric in general networks with splittable and atomic flow. They prove

the existence and non-uniqueness of equilibria in both the splittable and atomic flow mod-

els. They show that finding the best Nash equilibrium that minimizes the social cost is a

NP-hard problem. Further, they show that the price of anarchy may be unbounded for spe-

cific resource congestion functions. In [9], the authors consider bottleneck routing games in

general networks where they prove that ` ≤ PoA ≤ c(`2 + log2|V |), where ` is the size of

the largest edge-simple cycle in the graph and c is a constant. In [8] the authors consider

bottleneck games with the C + D metric. In [15], the authors prove the existence of strong

Nash equilibria (which concern coalitions of players) for games with the lexicographic im-

48



provement property; such games include the bottleneck routing games that we consider here.

In [18], the authors provide games with the bottleneck social cost which achieve low price of

anarchy when the players use a cost function which is an aggregate exponential expression

of the congestions of the edges in their selected paths.

8.4 Outline

In Chapter 9 we give basic definitions. In Chapter 10 we present a basic bottleneck routing

game with high price of anarchy. In Section 11.1 we present the channel and split bottleneck

games, respectively, which achieve price of anarchy bounded by the number of bends β. We

finish with providing lower bounds in Section 12.2.
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Chapter 9
Definitions for Bottleneck Routing Games

The d-dimensional grid G = (V,E) consists N = |V | = nd nodes arranged in a grid of d

dimensions with side length n in each dimension. There is an edge connecting a node with

each of its 2d neighbors (except for the nodes at the boundaries of the grid). Each node has

a coordinate (a1, a2, . . . , ad), where ai ∈ [0, n− 1] denotes the position in the ith dimension.

An example of a 2-dimensional grid is shown in Figure 10.1. A line segment with x edges in

the kth dimension is a sequence of nodes (a1, . . . , ak, . . . , ad), . . . , (a1, . . . , ak + x, . . . , ad).

Let Π = {π1, . . . , πκ} be a set of players such that each πi corresponds to a path request

from a source ui and destination vi. A routing p = [p1, p2, · · · , pκ] is a collection of paths,

where pi is a path for player πi from ui to vi. For any routing p and any edge e ∈ E,

the edge-congestion Ce(p) is the number of paths in p that use edge e. For any path q,

the path-congestion Cq(p) is the maximum edge congestion over all edges in q, namely,

Cq(p) = maxe∈q Ce(p). Player’s πi congestion is denoted as Cπi(p) = Cpi(p). The network

(bottleneck) congestion C(p) is the maximum edge-congestion over all edges in E, that is,

C(p) = maxe∈E Ce(p).

We denote the length (number of edges) of any path p as |p|. For a grid G, the path p

consists of a sequence path segments which change dimensions. A bend of a path is a node

that connects two consecutive path segments in different dimensions. By default, we take

the source and destination nodes to be bends.

A routing game in graph G is a tuple R = (G,Π,P), where Π = {π1, π2, . . . , πκ} is the

set of players such that each player πi has a source node ui and destination vi. The set P is

the strategy state space of the game, P = P1 × P2 × · · · × Pκ, where Pi is the strategy set

of player πi which is a collection of available paths in G for player i from ui to vi. Any path
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p ∈ Pi is a pure strategy available to player πi. A pure strategy profile (or game state) is any

routing p = [p1, p2, · · · , pκ] ∈ P .

For game R and routing p, the social cost (or global cost) is a function of routing p, and

it is denoted SC(p). The player or local cost is also a function on p denoted pci(p). We use

the standard notation p−i to refer to the collection of paths {p1, · · · , pi−1, pi+1, · · · , pκ}, and

(pi; p−i) as an alternative notation for p which emphasizes the dependence on pi. A greedy

move is available to player πi if the player can obtain lower cost by changing the current

path from pi to p′i. Specifically, the greedy move takes the original routing p = (pi; p−i) to

p′ = (p′i; p−i) (in which path pi is replaced by p′i) such that pci(p
′) < pci(p).

Player i is locally optimal (or stable) in routing p if pci(p) ≤ pci(p
′
i; p−i) for all paths

p′i ∈ Pi. In other words, no greedy move is available for a locally optimal player. A routing

p is in a Nash Equilibrium if every player is locally optimal. Nash Equilibria quantify the

notion of a stable selfish outcome. A routing p∗ ∈ P is an optimal pure strategy profile if it has

minimum attainable social cost: for any other pure strategy profile p ∈ P , SC(p∗) ≤ SC(p).

We quantify the quality of the Nash Equilibria with the price of anarchy (PoA) (sometimes

referred to as the coordination ratio) and the price of stability (PoS). Let Q denote the set

of distinct Nash Equilibria, and let SC∗ denote the social cost of the optimal routing p∗ ∈ P .

Then,

PoA = sup
p∈ Q

SC(p)

SC∗
, PoS = inf

p∈ Q

SC(p)

SC∗
.
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Chapter 10
Basic Bottleneck Routing Game

Consider a routing game R = (G,Π,P) in a d-dimensional grid G = (V,E), where each path

in Pi is allowed to have at most β bends. For any routing p = [p1, p2, · · · , pκ] ∈ P , the social

cost function is the bottleneck congestion, SC(p) = C(p), and the player cost function is

the bottleneck congestion of its path, pci(p) = Cπi(p) = Cpi(p).

We first show that such (basic) games have always Nash equilibria and the price of stability

is 1. However, there are game instances where the price of anarchy is very large compared

to the number of bends β. For this reason we explore alternative games with low price of

anarchy in Sections 11.1 and 12.1.

The stability of the above basic game follows from techniques in [9, 15] related to potential

functions based on lexicographic ordering. We give the details here for completeness. For

routing p, the congestion vector

M(p) = [m0(p),m1(p), . . . ,mκ(p)]

is defined such that each component mj(p) is the number of edges with congestion j. Note

that ∑
j

mj(p) = |E|.

The network congestion C(p) is the maximum index j for which mj > 0. We define a

lexicographic total order on routings according to their congestion vectors. Let p and p′

be two routings, with M(p) = [m0,m1, . . . ,mκ(p)], and M(p′) = [m′0,m
′
1, . . . ,m

′
κ(p)]. Two

routings are equal, written p = p′, if and only if mj = m′j for all j ≥ 0. Routing p is

smaller than p′, written p < p′, if and only if there is some j ∈ [0, κ] such that mj < m′j and

∀j′ > j,mj′ = m′j′ .
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It is easy to verify that for any greedy move of a player from a routing p to routing p′

it holds that p′ < p, since a lower index vector position increases in M(p′) and a higher

index vector position decreases in M(p′) with respect to M(p). Let p∗ ∈ P be the minimum

routing (according to the total lexicographic order) in the available game state set. Routing

p∗ is a Nash equilibrium since no player can perform a greedy move to improve its cost.

Further, p∗ has optimal social cost, since if there was another state with smaller social cost

then p∗ wouldn’t be minimum. Therefore, we obtain:

Theorem 10.0.1 Any basic bottleneck game instance R has at least one Nash Equilibrium

and PoS(R) = 1.

10.1 Price of Anarchy Analysis for Basic Bottleneck

Routing Game

Next, we show that there are instances of the basic bottleneck game with large price of

anarchy even when β is small.

Theorem 10.1.1 There is a basic bottleneck game instance R in the 2-dimensional grid,

with β = 0(1) bends, such that PoA(R) = Ω(
√
N).

Proof: Consider an n×n grid. In the game there are κ = n/2 players, where each player πi

has source si in node (0, i−1) of the column 0, and destination ti in node (n−1, i+n/2−2)

of column n − 1 (see Figure 10.1). The strategy set of player πi consists of two paths Pi =

{p1i , p2i }. Both of the paths cross row r = n/2 − 1 (the row is highlighted in Figure 10.1).

Path p1i uses one “dedicated” edge in row r, so that the dedicated edges of different players

do have any common nodes (see left of Figure 10.1). The remaining path segments of p1i are

used to connect the source and destination so that the first strategy paths of the players are

disjoint. Note that path p1i consists of at most five path segments (6 bends). Path p2i uses all

the edges of row r, and it consists of at most three path segments (4 bends), one in column

0, one in row r, and one in column n− 1 (see right of Figure 10.1).
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FIGURE 10.1. A game with large price of anarchy and small number of bends
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The routing with the first path choices p1 = [p11, p
1
2, . . . , p

1
κ] is optimal, since the congestion

is C(p1) = 1. The routing with the second path choices p2 = [p21, p
2
2, . . . , p

2
κ] has congestion

C(p2) = κ and every player has cost pci(p
2) = κ, due to the path segments in row r. Routing

p2 is a Nash equilibrium, since if any player πi switches to path p1i , then its cost remains κ

because it still uses the dedicated edge in row r. Therefore:

PoA(R) ≥ C(p2)

C(p1)

= κ

= n/2

= Ω(
√
N).

An alternative game for showing Theorem 10.1.1, is also when we consider players which

have source and destination adjacent to an edge, and any feasible path is in their strategies.

In particular, there are as many players as the number of vertical edges (edges in columns),

which is (n − 1)n = n2 − n. Each player has source on one endpoint and destination the

other end-point of a vertical edge. The optimal solution simply uses the edge as path for

each player giving congestion one. However, in the equilibrium, each players uses as path

the alternative path that is formed by following the remaining edges of a path in the current

column and the edges of an adjacent column. See for example Figure 10.2 and the player

with source u and destination v. The players of each adjacent columns are involved in one

cycle for length (n− 1)2 + 2 = 2n edges. Each path in the equilibrium has at most 4 bends.

The price of anarchy is 2n− 2 = Ω(
√
N).

10.2 Conclusions

We presented new bottleneck games on multidimensional grids whose price of anarchy is

analyzed in terms of the number of bends that the paths are allowed to follow. We found

that the price of anarchy is proportional to the number of bends. We also provided game

55



FIGURE 10.2. A alternative game with large price of anarchy and small number of bends

instances that show that the price of anarchy results are tight within poly-log factors. A

natural question that remains open is whether we can obtain tighter bounds by removing

the poly-log factors. Another interesting problem is to study other network topologies and

examine how the notion of bends is generalized in them.
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Chapter 11
Channel Routing Games on Grids

11.1 Channel Game

Let G = (V,E) be a d-dimensional grid, with nd = N nodes. We consider bottleneck routing

games where each path is allowed to have at most β bends, and achieve price of anarchy

bounded by β. In order to get this price of anarchy we use log n channels, as we describe

below.

We can write any path p as a sequence of path segments p = (q1, q2, . . . , qk), where each

ql is in a line which is in a different dimension than ql+1, where 1 ≤ l < k. The number of

nodes (bends) in the path p is bounded by k + 1 ≤ β; thus, the number of path segments is

k ≤ β − 1.

Let α = log n. Each edge e accommodates α = log n distinct channels A0, A1, . . . , Aα−1.

The purpose of the channels is to route path segments of different lengths separately. A path

segment q whose length is in range |q| ∈ [2j, 2j+1 − 1] uses channel Aj; we also say that the

channel of q is A(q) = Aj. Note that a path may use multiple channels according to the

lengths of its constituent segments.

Consider a routing p. For any edge e denote by C
Aj
e (p) the congestion caused by the

path segments of channel Aj, which is equal to the number of path segments in channel Aj

that use edge e. The congestion of a path segment q is Cq(p) = maxe∈q C
A(q)
e (p), which is

the maximum edge congestion along the path segment and its respective channel. Given a

path p = (q1, q2, . . . , qk), we denote the congestion of the path as the maximum congestion

along any of its path segments, namely, Cp(p) = maxqi∈pCqi(p). Using this notion of path

congestion all the congestion definitions in Chapter 9 can be extended in a grid with channels.
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We are now ready to define the channel bottleneck game R = (G,Π,P). As in the basic

bottleneck game, there is limit β on the allowed number of bends in a selected path. The social

and player cost functions are also similar, SC(p) = C(p), and pci(p) = Cπi(p) = Cpi(p),

where all congestions are calculated using the channel model of the grid. Similar to the basic

congestion game we obtain:

Theorem 11.1.1 Any channel bottleneck game instance R has at least one Nash Equilib-

rium and PoS(R) = 1.

11.1.1 Price of Anarchy Analysis for Channel Game

Consider a Nash equilibrium p ∈ P . Let p∗ = [p∗1, p
∗
2, . . . , p

∗
κ] ∈ P be an optimal routing

with lowest congestion C∗ = C(p∗). Consider a set of players Π′ ⊆ Π such that the smallest

congestion of any player of Π′ in routing p is at least C ′. Since p is an equilibrium, each player

πi ∈ Π′ has congestion at least C ′ − 1 in its optimal path p∗i , namely, Cp∗i (p) ≥ C ′ − 1. The

C ′− 1 congestion in p∗i is due to some path segment q∗i ∈ p∗i with congestion at least C ′− 1,

namely, Cp∗i (p) ≥ Cq∗i (p) ≥ C ′ − 1. Thus, there is an edge e ∈ q∗i such that C
A(q∗i )
e ≥ C ′ − 1.

We call e the special edge of player πi and the respective channel A(q∗i ) the special channel

of player πi. Note that a player could have multiple special edges and respective special

channels, in which case we choose one of them arbitrarily.

We say that two edges e1 and e2 are far-apart with respect to channel Aj if the edges are in

different dimensions, or if the edges are in the same dimension and in different lines, or if the

edges are in the same line and the shortest path length that connects any of their adjacent

nodes is at least 2j−1− 1. If two edges are not far-apart with respect to channel Aj, then we

say that they are close with respect to channel Aj.

Let A(Π′) denote the channel which is special for the majority of the players in Π′. Let

B(Π′) be the subset of players in Π′ with special channel A(Π′). Clearly, since there are α

channels, |B(Π′)| ≥ |Π′|/α. Let Γ(Π′) denote the set of special edges for the players in B(Π′).

Let ∆(Π′) denote a maximum set of edges such that ∆(Π′) ⊆ Γ(Π′), and each pair of edges

58



in ∆(Π′) is far-apart with respect to channel A(Π′). Let Φ(Π′) denote the set of players

which in routing p use an edge in ∆(Π′) such that the path segment that crosses the edge

belongs to channel A(Π′). Each player πi ∈ B(Π′) has either (i) its special edge e ∈ ∆(Π′),

or (ii) there is an edge e′ ∈ ∆(Π′) such that e′ is close to e with respect to channel A. In

either case, we say that player πi is assigned to respective edge e or e′ of ∆(Π′).

Lemma 11.1.2 For any set of players Π′ ⊆ Π, each edge in ∆(Π′) has assigned to it at

most 5C∗ players of Π′ in routing p.

Proof: Suppose that the channel ∆(Π′) is in dimension x. Assume that there is an edge

e ∈ ∆(Π′) such that there are at least z ≥ 5C∗+ 1 players assigned to it. Let X be the set of

players in B(Π′) which are assigned to e because e is their special edge (case (i) above). Let

Y be the number of players in B(Π′) which are assigned to e because e is near their special

edge (case (ii) above). We have that z = |X| + |Y |. If |X| > C∗, then the edge e is used in

the optimal path of at least C∗+ 1 players, which is impossible since the optimal congestion

is C∗. Therefore, |X| ≤ C∗, and hence |Y | ≥ 4C∗ + 1.

For ease of presentation, assume without loss of generality that x is the horizontal dimen-

sion. For any player πi ∈ Y we say that its special edge is in the first (second) part of its

optimal path segment if it is positioned in the left (right) half of its optimal path segment

(if the special edge is positioned exactly in the middle of the path segment then it is si-

multaneously in the first and second parts). Let Yl and Yr denote the players whose special

edges appear on the left and right of e, respectively. Without loss of generality, assume that

|Yl| ≥ |Y |/2. Without loss of generality, assume also that at least half of the special edges

in Yl are in the first half of their respective optimal segments. Denote by Y ′l these players.

We have that |Y ′l | ≥ |Y |/4. By the positions of the special edges of Y ′l all their optimal path

segments intersect, which implies that there is an edge on same line with e which in the
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optimal routing p∗ has congestion at least

|Y ′l | ≥
|Y |
4
≥ 4C∗ + 1

4
> C∗.

This is a contradiction.

From Lemma 11.1.2, each edge in ∆(Π′) is assigned at most 5C∗ players of B(Π′). Since

|B(Π′)| ≥ |Π
′|
α
,

we have:

Corollary 11.1.3 For any set of players Π′ ⊆ Π,

|∆(Π′)| ≥ |Π′|
5αC∗

.

Lemma 11.1.4 For any set of players Π′ ⊆ Π with congestion at least C ′,

|Φ(Π′)| ≥ (C ′ − 1)|Π′|
20αβC∗

.

Proof: Each edge in ∆(Π′) is special for some player in B(Π′). Without loss of generality,

let A(Π′) = Aj. Then, 2j+1− 1 is the maximum path segment of any path that uses channel

A(Π′). By the definition of the special edges ∆(Π′), each path segment of channel A(Π′)

can have at most four special edges. Since each player in Φ(Π′) has at most β path segments

each using at most four special edges in ∆(Π′), and each special edge in ∆(Π′) is used by at

least C ′− 1 players in Φ(Π′) (since the edge e has congestion C ′− 1 in channel A(Π′)), from

Corollary 11.1.3 we obtain:

|Φ(Π′)| ≥ (C ′ − 1)|∆(Π′)|
4β

≥ (C ′ − 1)|Π′|
20αβC∗

.

Theorem 11.1.5 C(p) ≤ 40αβC∗ + log(5αdndC∗).
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Proof: Suppose that C(p) > 40αβC∗ + log(5αdndC∗). There is a player πi ∈ Π with

congestion Cπi(p) = C(p). We define recursively a sequence of player sets Π0,Π1, . . . ,Πk,

where k = log(5αdndC∗) as follows. We define Π0 = {πi}. Suppose we have defined the set

Πt, where t ≥ 1; we define Πt+1 = Φ(Πt). From the above definition of Πt, we have that for

each πj ∈ Πt,

Cπj(p) ≥ C(p)− t

≥ C(p)− k

≥ 40αβC∗ + 1.

From Lemma 11.1.4, |Πt+1| ≥ 2|Πt|. Therefore,

|Πk| ≥ 2k ≥ 5αdndC∗.

Consequently, from Corollary 11.1.3,

|∆(Πk)| ≥
|Πk|

5αC∗
≥ dnd.

However, we have a contradiction, since |∆(Πk)| ≤ |E| < dnd.

From Theorem 11.1.5, since α = O(log n) and N = nd, we obtain the following corollary:

Corollary 11.1.6 For any channel bottleneck game R in the d-dimensional grid which al-

lows paths with at most β bends, PoA(R) = O((β/d) logN).

11.2 Lower Bound

Here, we give lower bounds in terms of bends for the price of anarchy for the channel games.

Theorem 11.2.1 In the d-dimensional grid with N nodes, given any β ≤ c′N , for a specific

constant c′, there is a channel bottleneck game instance R with at most β bends, such that

PoA(R) = Ω(β).
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FIGURE 11.1. Zig-zag path and cycles
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Proof: We present the result for the 2-dimensional n×n grid G, and it can be extended to

the d-dimensional grid. We define a game along a cycle c of the grid. The main building block

of the cycle is the zig-zag path which is formed in two consecutive columns, by alternating

edges between the columns and rows, as shown highlighted in the left of Figure 12.1. A x-zig-

zag path contains x horizontal edges and x− 1 vertical edges, giving 2x− 2 bends (without

counting the end nodes). Given an x-zig-zag path we can build a cycle by closing the end

points with 4 additional bends, giving a cycle with total 2x+ 2 bends. Since x < n− 1 (last

row is reserved to close the cycle), the maximum number of bends that a single zig-zag path

can provide is bounded by 2(n− 1) + 2 = 2n.

In order to obtain a cycle with larger number of bends, we combine multiple zig-zag paths,

as shown in the middle of Figure 12.1. The largest cycle is formed by using n/2 instances of

(n − 1)-zig-zag paths by combining their original version and their horizontal mirrors, and

connecting them with bridge edges in rows 0 and n− 2 and closing the loop with a path in

row n− 1 and bridge edges in the bottoms of columns 0 and n− 1. This construction gives

a cycle with total

` = (2(n− 1) + 2) · n/2 + 4 = n2 + n+ 4

bends. Using the above construction and adjusting appropriately the sizes of the zig-zag

paths it is possible to obtain a cycle with any number of bends β up to `. Clearly, the total

number of edges in the cycle is |c| = Θ(β).

We define now a channel bottleneck game R = (G,Π,P). Let Z denote the set of edges in

the zig-zag paths, excluding the edges adjacent to the end nodes of each zig-zag path. The

game has κ = |Z| players Π = {π1, . . . , πκ}. Player πi has two strategy sets: Pi = {p1i , p2i },

where p1i consists only of edge ei = (ui, vi) ∈ Z in a zig-zag path, and path p2i consists of the

alternate path in the cycle from vi to ui that traverses all the edges of c except ei. The edges

ei ∈ Z are chosen so that different players use different edges. Note that the first path has 2

bends, while the second path has β bends.
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The optimal routing p∗ ∈ P is the one where each player πi uses strategy p1i , namely,

p∗ = [p11, p
1
2, . . . , p

1
κ]. The congestion of p∗ is C(p∗) = 1, since edge is used by at most one

player. Consider now routing p = [p21, p
2
2, . . . , p

2
κ], consisting of the second strategy of each

player. Routing p has congestion C(p) = κ − 1, since all players except πi use edge ei ∈ Z

and all the path segments that use ei belong to the same channel A0 for unit length segments.

The routing p is a Nash equilibrium, since if any user πi attempts to switch to alternate

strategy p1i , the congestion of the becomes κ+ 1 > C(p). Therefore we have that:

PoA ≥ C(p)/C(p∗) = κ− 1 = |Z| − 1 = Ω(β).

Using similar zig-zag paths for the split model by adjusting appropriately the bend dis-

tances (see Figure 12.1) we can obtain the following lower bound:

Theorem 11.2.2 In the d-dimensional grid with N nodes, given any β ≤ c′′N , for a specific

constant c′′, there is a split bottleneck game instance R with at most β bends, such that

PoA(R) = Ω(β).

11.3 Conclusions

We presented new bottleneck games on multidimensional grids whose price of anarchy is

analyzed in terms of the number of bends that the paths are allowed to follow. We found

that the price of anarchy is proportional to the number of bends. We also provided game

instances that show that the price of anarchy results are tight within poly-log factors. A

natural question that remains open is whether we can obtain tighter bounds by removing

the poly-log factors. Another interesting problem is to study other network topologies and

examine how the notion of bends is generalized in them.
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Chapter 12
Split Routing Games on Grids

12.1 Split Game

We describe a way to split the path segments of a path in different lines according to their

lengths. In this way we only need to use a single channel that all players can share. For ease

of presentation, we first describe the respective game in the 2-dimensional grid, and then

explain below how it can be extended to higher dimensions.

Let G = (V,E) be a 2-dimensional n × n grid. Let α = log n. For convenience take n

to be a multiple of 2 log n. The odd index rows (columns) 1, 3, . . . , n − 1 are used to route

horizontal (vertical) path segments of lengths ranging from 2 to n − 1. In particular, row

(2i + 1) mod α (column 2i mod α), where i ∈ [0, n/2 − 1], is used for horizontal (vertical)

path segments whose length is in range [2i mod α, 2(i mod α)+1 − 1]. The even rows (columns)

0, 2, . . . , n − 2 are reserved to route horizontal (vertical) path segments whose length is in

range [1, 2α − 1]. Note that path segments in range [2, 2α − 1] have a chance to be routed

either in even or odd rows and columns. We say that an odd row (column) 2i + 1 (2i) is of

type-(i mod log n), while any even row (column) is of the local-type. Note that there are α+1

types in total. Any edge e ∈ E has the same type of the row or column that it belongs to.

Note that with splitting the path segments into different rows we achieved to have a single

channel that all players can share.

We are now ready to define the split bottleneck game R = (G,Π,P). As in the basic

bottleneck game, there is limit β on the number of bends of a path. Each path has to follow

the rules for using the appropriate rows and columns for its segments as described above. The

social and player cost functions are similar, SC(p) = C(p), and pci(p) = Cπi(p) = Cpi(p).

Similar to the basic congestion game we obtain:
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Theorem 12.1.1 Any split bottleneck game instance R has at least one Nash Equilibrium

and PoS(R) = 1.

12.1.1 Price of Anarchy Analysis for Split Game

Consider a Nash equilibrium p ∈ P . Consider a set of players Π′ ⊆ Π. We can define the

special edge and special type for a player in the same way as we did for channel bottleneck

games. The only difference is that instead of the notion of the channel we use the notion of

the type. Let τ(Π′) be the type which is special for the majority of the players in Π′. Using

τ(Π′) we can define the sets: B(Π′), Γ(Π′), ∆(Π′), and Φ(Π′), as we did in Section 11.1,

where τ(Π′) plays the role of A(Π′). We have that

|B(Π′)| ≥ |Π′|/(α + 1),

since there are α + 1 types.

Lemma 12.1.2 For any set of players Π′ ⊆ Π, each edge e ∈ ∆(Π′) has assigned to it at

most c1αC
∗ players of Π′ in routing p, for some constant c1.

Proof: Let Z ⊆ Π′ denote the set of players that are assigned to e. We examine the

following cases:

• e is of the local type:

Let e = (u, v), and without loss of generality assume the e is horizontal. Each of the

players in Z must have e as a special edge or their special edge is close to e. Let Y

denote the set of local type edges which are close to e. The edges in Y are in the same

row as e and one of their end nodes is at distance at most 2α − 2 from u or v. For

convenience we include e in A. The number of edges in A (including e) is at most

4α−1. Each special edge can accommodate at most C∗ optimal paths from the players

in Z. Therefore, |Z| ≤ C∗ · (4α− 1).

• e is of type-k:

The analysis if the same as in Lemma 11.1.2, where we obtain that |Z| ≤ 5C∗.
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From Lemma 12.1.2, each edge in ∆(Π′) is assigned at most c1αC
∗ players of B(Π). Since

|B(Π′)| ≥ |Π′|
α + 1

,

we have

|∆(Π′)| ≥ |Π′|
(α + 1) · (c1αC∗)

.

Therefore,

Corollary 12.1.3 For any set of players Π′ ⊆ Π,

|∆(Π′)| ≥ |Π′|
c2α2C∗

,

for some constant c2.

Lemma 12.1.4 For any set of players Π′ ⊆ Π with congestion at least C ′,

|Φ(Π′)| ≥ (C ′ − 1)|Π′|
c3α2βC∗

,

for some constant c3.

Proof: Each edge in ∆(Π′) is special for some player in B(Π′). By the definition of the

special edges ∆(Π′), if τ(Π′) is equal to type-i, then each path segment can use at most four

special edges in ∆(Π′). Otherwise, if τ(Π′) is the local type, then each path segment can use

at most one special edge. Since each player in Φ(Π′) has at most β path segments each using

at most four special edges in ∆(Π′), and each special edge in ∆(Π′) is used by at least C ′−1

players in Φ(Π), from Corollary 12.1.3 we obtain:

|Φ(Π′)| ≥ (C ′ − 1)|∆(Π′)|
4β

≥ (C ′ − 1)|Π′|
4c2 · α2βC∗

.
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Theorem 12.1.5 C(p) ≤ 2c3α
2βC∗ + log(2c2α

2n2C∗).

Proof: Suppose that C(p) > 2c3α
2βC∗ + log(2c2α

2n2C∗). There is a player πi ∈ Π with

congestion Cπi(p) = C(p). We define recursively a sequence of player sets Π0,Π1, . . . ,Πk,

where k = log(2c2α
2n2C∗) as follows. We define Π0 = {πi}. Suppose we have defined the set

Πt; we define Πt+1 = Φ(Πt). From the above definition of Πt, we have that for each πj ∈ Πt,

Cπj(p) ≥ C(p)− t

≥ C(p)− k

≥ 2c3α
2βC∗ + 1.

From Lemma 12.1.4, |Πt+1| ≥ 2|Πt|. Therefore,

|Πk| ≥ 2k = 2c2α
2n2C∗.

Consequently, from Corollary 12.1.3,

|∆(Πk)| ≥
|Πk|

c2α2C∗

≥ 2n2.

However, we have a contradiction, since |∆(Πk)| ≤ |E| < 2n2.

From Theorem 12.1.5, since α = log n and N = n2, we obtain the following corollary:

Corollary 12.1.6 For any split bottleneck game R in the 2-dimensional grid which allows

paths with at most β bends, PoA(R) = O(β log2N).

12.1.2 Split Game in the d-Dimensional Grid

We can extend the split games to a grid with d dimensions. The first dimension takes the

role of the horizontal dimension, and the second dimension takes the role of the vertical

dimension. Any other dimension (third and above) uses the first dimension to split the path

segments. For example, in the 3-dimensional grid, a path segment q in the third dimension
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is a sequence of nodes with coordinates q = (x, y, z), . . . , (x, y, z + k). This path segment is

placed in an appropriate odd first coordinate x = 2i+1 if k ∈ [2i mod α, 2(i mod α)+1−1], and if

k ≤ 2α− 1 then it could use an even first coordinate x = 2i. In this way we can characterize

q as type-i, or local type, respectively. The total number of types for the d-dimensional grid

remains α + 1.

The main difference in the price of anarchy analysis is that Theorem 12.1.5 now returns

C(p) ≤ 2c3α
2βC∗ + log(c2α

2dndC∗). Since α = O(log n) and N = nd, Corollary 12.1.6 now

becomes:

Corollary 12.1.7 For any split bottleneck game R in the d-dimensional grid which allows

paths with at most β bends, PoA(R) = O((β/d2) log2N).

12.2 Lower Bound

Here, we give lower bound in terms of bends for the price of anarchy for the split games.

Using similar zig-zag paths for the split model by adjusting appropriately the bend dis-

tances (see right of Figure 12.1) we can obtain the following lower bound:

Theorem 12.2.1 In the d-dimensional grid with N nodes, given any β ≤ c′′N , for a specific

constant c′′, there is a split bottleneck game instance R with at most β bends, such that

PoA(R) = Ω(β).

Proof: The proof is similar to Theorem 11.2.1. The main difference is that we use zig-zag

paths on even rows and columns which allow the use of short length path segments of the

local type (see right part of Figure 12.1). Thus, each zig-zag edge is now a path segment of

length 2. All the bridge edges are also in the even rows and columns. The lowest path segment

that connects the leftmost and rightmost zig-paths needs to use an odd row which allows

the particular long path length. The odd row can be reached with a vertical path segment of

length at most 3 from the leftmost and rightmost zig-zag paths. Therefore, an x-zig-zag path

contains x horizontal path segments, which is bounded as x ≤ (n − 3)/2 = n/2 − 3/2, and
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FIGURE 12.1. Zig-zag path and cycles
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consists of 2x+ 2 ≤ n− 1 bends. This implies that the largest cycle has number of bends:

` = (n− 1) · n/4 + 4 = n2/4− n/4 + 4.

Now each player’s p1i strategy is a path segment of length 2 in a zig-zag path (which is of

the local type), while path p2i is the alternate path in the cycle. The asymptotic analysis on

the price of anarchy remains the same as in Theorem 11.2.1.

12.3 Conclusions

We presented new bottleneck games on multidimensional grids whose price of anarchy is

analyzed in terms of the number of bends that the paths are allowed to follow. We found

that the price of anarchy is proportional to the number of bends. We also provided game

instances that show that the price of anarchy results are tight within poly-log factors. A

natural question that remains open is whether we can obtain tighter bounds by removing

the poly-log factors. Another interesting problem is to study other network topologies and

examine how the notion of bends is generalized in them.
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Chapter 13
Conclusions to Bottleneck Routing Games on
Grids

In this dissertation we also considered routing games on grid network topologies. We showed

that the price of anarchy in bottleneck games in grids is proportional to the number of bends

β that the paths are allowed to take in the grids’ space. We presented games where the price

of anarchy was Õ(β). We also give respective lower bound of Ω(β) which shows that our

upper bound is within only a poly-log factor from the best achievable price of anarchy. A

significant impact of our analysis is that there exist bottleneck routing games with small

number of bends which give a poly-log approximation to the optimal coordinated solution

that may use an arbitrary number of bends. To our knowledge, this is the first tight analysis

of bottleneck games on grids.

Further work in this area could involve the analysis of routing games on other more complex

topologies like mesh networks.
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