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Abstract 

 Massively multiplayer online games (MMOGs) may use peer-to-peer, client-

server, or mirrored-server environments. Since there exist multiple server options in 

mirrored server environments, a problem arises when deciding to which server each 

player should connect. We propose three distinct algorithms that assign players within 

Quality of Service (QoS) as each player joins and leaves, taking into consideration 

whether a player already in QoS can be moved to place a newly joining player in QoS 

without sacrificing QoS for the moved player. Our results show that for certain numbers 

of servers and values of QoS, our algorithms increase the total number of players in 

QoS over a static player to server assignment and bear adapting to a wider variety of 

environments.
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1. Introduction 

 The computer and video game industry is very popular. The ESRB reports that 

as of 2009, 67% of U.S. households play video games, and over 10.4 billion dollars of 

revenue were generated by computer and video games in that year [ESRB]. One type of 

video game is the massively multiplayer online game (MMOG). In an MMOG, hundred 

to hundreds of thousands of players connect to a persistent online virtual world and 

interact with each other there via some sort of game avatar. The persistent nature of the 

game, coupled with the number of players that may interact in it, requires some 

architecture that ensures each player sees the same game world regardless of how he 

or she connects to it or how many players are located in the same area of the game 

world as him or her. Architectures that perform this hosting and maintenance of these 

virtual worlds include client-server, peer-to-peer, and mirrored server. 

 In a client-server architecture, one central server hosts the game world. Each 

player that connects to the game world connects to the same server. A benefit of this 

type of architecture is consistency. Since each player connects to the same server, 

each player will see the same game world. However, since players may connect only to 

one server, this server can become overloaded quickly. Also, if a player’s connection to 

this server is poor, he or she has no other choice of connection method. Therefore, the 

client-server architecture is not scalable and is not suitable for most MMOGs. 

 Peer-to-peer architectures do not use central servers. Instead, players’ machines 

each connect to one another, and each one shares the workload required to maintain 

the game world. This workload can be divided up in several ways, including partitioning 



 

 2 

the game world into areas called regions, and assigning each region to a player to host. 

This type of architecture reduces overhead, since it does not need to establish or 

maintain a server, but has other drawbacks. One drawback is that region assignment 

could cause a player to become overloaded if too many players visit that game world 

region. This could also result in poor game performance for that player, as his or her 

machine would spend a great deal of processing time handling processing for the 

region, leaving less time to handle updates for the player. Also, game world 

performance can become uncontrollable, since it depends on the capabilities of each 

user’s machine. Therefore, it is not largely used in MMOGs. 

Lastly, the mirrored server architecture contains several servers, each with the 

same copy of the game world. Players may connect to any of these servers and receive 

the same game experience. Each server is responsible for sending any updates that 

occur to it as a result of player actions to the other servers to maintain consistency. 

Players have more choices of server to which they can connect, so one poor server 

connection will not hinder him or her from playing the game. The mirrored server 

architecture is the one we shall consider in this paper. 

 Since multiple server choices exist in the mirrored server architecture, we must 

determine to which server each player will connect. Some authors [ARM2][GAR10] 

propose methods for players to narrow down choices themselves and choose a server 

to which to connect. Others, such as Webb et al. [WEBB ET AL], propose methods of 

assigning players to servers under some constraint (minimizing overall delay for all 

players, in their case). We will look at the environment of Ta et al. [TAETAL], in which 
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players are assigned to servers while attempting to maximize the number of players 

within Quality of Service, or QoS. For a player to be considered within QoS, his or her 

delay, or time to send and receive updates to his or her connected server, must be 

below a specific threshold. They refer to this as the Client Assignment Problem (CAP), 

and we will discuss this problem and its variations in further detail in Chapter 2. One 

drawback to their approach is that they assume an environment where no players have 

joined or have been assigned and do not consider that players may join or leave as 

gameplay ensues. In a persistent MMOG, players may join or leave at any time, and 

these joins or leaves could produce opportunities for other players without QoS to 

achieve QoS. The work I have done is to create three distinct algorithms that attempt to 

capitalize on these missed opportunities and increase the number of players with QoS 

over the method utilized by Ta et al. 

The rest of the paper is laid out as follows. Chapter 2 discusses the work of Ta et 

al. and the background of the problem in further detail. Chapter 3 goes over related 

work in areas related to our problem. Chapter 4 discusses the algorithms I have 

developed and their operation in detail. Chapter 5 goes over the simulated comparisons 

of my algorithms with Ta et al.’s. Chapter 6 concludes the paper. 
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2. Problem Background 

In this chapter we will discuss the background for the problem to which we are 

proposing a solution – namely, some of the environments that exist in this field of 

research (and more specifically, the one in which we will operate), some of the general 

work that has been done in this area, and the exact nature and parameters of our 

problem. We will go into detail about the work done by Ta et al. to solve this problem, 

highlight some areas of opportunity, and propose some initial solutions to capitalize on 

that opportunity. 

2.1 Problem Background and Terms 

In a massively multiplayer online game (MMOG), hundreds to hundreds of 

thousands of players connect to a persistent online virtual world and interact with each 

other there via some sort of game avatar. As discussed previously, there are a few 

environments that perform the hosting and maintenance of this virtual world. In a client-

server environment, a single, centralized server hosts the game world, and each player 

connects to the same server. In a peer-to-peer environment, all players connect to each 

other, and each is responsible for a portion of the overall hosting and processing. In a 

mirrored server [MIRRSERV] environment for an MMOG, when a player joins, he or she 

connects to a server network, with each server in the network containing a copy of the 

game world. Each server, or mirror, communicates with the others to ensure that they 

each have the same copy of the game world at all times, so that each player has the 

same experience no matter to which server he or she connects. There are a finite 

number of servers, each with finite capacity, or number of players that may connect to it 
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simultaneously. This capacity is set so that, at maximum load, the server can provide an 

acceptable game experience to each player without becoming overloaded and thus 

providing poorer performance.  

Instead of mirrored servers each handling copies of the entire game world, the 

game world can be partitioned into areas called regions [BES5], with each server 

handling one or more regions. These regions can be static or may change dynamically 

to accommodate a changing load as players move around the game world. Call the 

server handling a region as the target server for that region. Two ways of handling a 

player as he or she moves through multiple regions are to either directly connect the 

player to the target server of the current region, or to connect the player to a static 

server responsible for communicating all updates to the target server of the player’s 

current region. In the latter, the static server responsible for communicating updates is 

called the contact server. In the former, the target server and contact server are the 

same server. The time to send and receive updates to and from a player to his or her 

contact server is the contact delay. Target delay refers to the time to send and receive 

updates to and from a player’s target server, which includes the contact delay. If target 

or contact delay is too high, a player’s game experience may suffer [CLAY2], since they 

will be unable to send and receive updates quickly enough to perform game actions in a 

timely fashion. For example, in a first-person online game, there is a sharp decrease in 

performance for delay greater than 100 ms. Quality of Service, or QoS, refers to the 

maximum target delay a player may have without suffering this decrease in game 



 

 6 

performance. For a player to be considered in QoS, he or she must be connected to a 

server such that his or her target delay is below or equal to the value of QoS. 

Ta et al. [TAETAL] present the Client Assignment Problem (CAP) for an MMOG. 

In the basic CAP, given a set of players, a set of servers, and the delays from the 

players to servers and servers to servers, the goal is to construct an assignment of 

players to servers that maximizes the number of players in QoS. A number of 

refinements of the CAP exist. One such is whether the set of players is given offline or 

online. For offline assignment, the entire set of players is available initially. For online 

assignment, no players are present initially, and the problem is to assign players to 

servers as they join and leave over time. Player-to-server assignments may change 

over time as demands change. Another refinement is that CAP exists for both region-

based environments (CAP-R) and in mirrored server environments (CAP-M), with offline 

and online versions of each. For CAP-R, we compare the target delay to the QoS 

threshold; for CAP-M, we instead compare the contact delay. 

2.2 Ta et al.’s algorithms 

Ta et al. develop three algorithms to attempt to maximize the number of players 

within QoS for a variation of offline CAP-R. Each of the three GDA algorithms – GDA-1, 

GDA-2, and GDA-3 – starts with a set of players, with each player in a region, and 

consists of two steps – an initial assignment step of regions to servers followed by a 

refinement step.  

In GDA-1, the initial assignment algorithm iterates through a list of all regions and 

assigns each region (and the players within it) to a server that will not become 
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overloaded by the assignment. The algorithm sets both the contact and target servers of 

each player in that region to be the assigned server. Once initial assignment is 

complete, the refinement algorithm sorts any players without QoS by decreasing order 

of target delay (to its current target server, which is the same as its contact server), and 

then, for each of these players, attempts to find a new contact server (with available 

capacity) that will reduce the target delay within the QoS threshold to which to connect 

the player. If it fails to find such a server, it then sets the player’s contact server to the 

server that provides the least total delay to its target server and also has capacity. (This 

server does not satisfy QoS.) 

GDA-2 has a different initial assignment algorithm, assigning each region (and its 

players) to the server that puts the fewest number of players in that region outside of 

QoS. It then sets the contact server of each player in that region to be the assigned 

server. There is no refinement step for GDA-2. GDA-3 is a combination of parts of GDA-

1 and GDA-2. The algorithm begins with the initial assignment of GDA-2, where regions 

are assigned based on minimizing the number of players without QoS in that region. 

Refinement is the same as GDA-1, iterating through the list of players without QoS and 

attempting to assign them to servers with QoS. 

 My work consists of alternative approaches to the Client Assignment Problem in 

an online CAP-M environment instead of offline CAP-R. Algorithms for each of those 

environments can be easily adapted to the other. To adapt online algorithms to offline 

environments, since all players are available initially, we can use the online algorithm to 

assign players as we would in an online environment, but instead attempt player 
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assignment in descending order of delay, so that players with higher target server 

delays are assigned first. To adapt offline algorithms to run in online environments, we 

perform the assignment algorithm for each player as he or she joins, instead of once 

with a single pool of joining players. In CAP-M, target servers and contact servers are 

not separate, but this changes only the way we calculate delays and does not affect 

algorithm performance. Instead of target delay consisting of delay from a player to his or 

her contact server plus delay from that contact server to the player’s target server, 

target delay is simply delay from player to his or her assigned server. Conversely, we 

can also modify the target delay calculation – from contact delay only, to contact delay 

plus delay from contact server to target server – if converting from online CAP-M to 

offline CAP-R. Thus, algorithms for offline CAP-R can be easily modified to work in 

online CAP-M, and vice versa. The primary goal of each of my algorithms is the same 

as Ta et al.’s – to increase the total number of players within QoS. The other differences 

between my algorithms and Ta et al.’s will be discussed in further detail in the Method 

chapter. 
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3. Related Work 

To my knowledge, few authors have researched the exact environment in which 

Ta et al. operate, but several authors have contributed work towards the individual 

elements that comprise it – namely, assigning virtual regions to servers and bettering 

the player experience (whether through reducing average delay or achieving QoS). 

Some of these approaches have heavily influenced the direction of my own algorithms 

and will be discussed in detail here. This chapter will also discuss other works that 

provide examples of alternative methods to similar aspects of the Client Assignment 

Problem. 

Armitage [ARM2] uses autonomous systems to improve discovery of servers in 

an MMOG. When playing an online game that is server-based and the server must be 

chosen manually, a player typically cannot know which servers provide a suitable delay 

without probing each individual server. The time taken for a server to send back a reply 

after being probed is known as the round trip time (RTT). In an online game such as 

Counterstrike: Source (which boasts around thirty thousand servers), probing each 

server individually would be impractical. Armitage’s system reduces total probe time and 

reduces the number of probes by probing servers likely to have low delay before servers 

likely to have high delay (thus finding suitable servers more quickly), stopping when the 

delay reaches a user-defined threshold. It also performs its operations on the client side 

so as not to generate unnecessary additional network traffic.  

 Armitage’s algorithm first categorizes servers into clusters using each game 

server’s IP address to identify topologically distinct regions of the Internet as a general 
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indicator of servers that are physically close together. Next, it probes a sample of 

servers in each cluster to rank a cluster of servers’ potential RTT. It then probes 

clusters, in order of ascending rank, for their individual servers’ RTTs. In this way, it can 

more easily discover servers with lower RTTs and find a suitable server for low latency 

gameplay. 

Gargolinski et al. [GAR10] look at server selection from the client’s perspective. 

Current game server selection tools typically consider only the perspective of a single 

client attempting to join a game session, but in some games, including MMOGs, clients 

may seek to play together on the same server or in a single session. The authors 

present an architecture for multiple people to select a server that is best for all of them 

without requiring some form of external communication to do so (such as a trial and 

error selection while talking over an instant messaging client or telephone). Clients who 

want to play together use a program called QStat, which sends packets to potential 

servers and uses the response time to estimate latency. Subject to some initial 

preferences (such as map selection or game type), one client, who is designated as the 

host, filters the potential server list and chooses a final server for all clients based on the 

lowest average latency to it. The authors do note that, while this is a simple approach, 

the host could choose based on some delay constraint or based on the standard 

deviation for fairness reasons, but this would be more complex. 

Briceño et al. [BRI3] focus on fairness and scalability of MMOG environments, 

where fairness is measured as the difference in the maximum and minimum response 

times of users in the system, and scalability refers to the ability of the system to 
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maintain fairness regardless of the number of players. They consider an environment 

that has a main server (MaS) that controls game world state, with potential secondary 

servers (SSs) that assist the MaS with calculations. SSs are essentially users playing 

the game whose computers are chosen to become SSs. If there are any conflicts in 

game states among players on the same SS, then the SS resolves it and then 

communicates with the MaS, which resolves any further conflicts among SSs. There are 

four heuristics developed by the authors to choose the SSs, and they each perform the 

same tasks - determine the number of SSs, choose which users are converted to SSs, 

and assign users to the SSs and MaS. However, unlike my research, the system 

created by these heuristics does not maintain itself over time. If a player designated as 

SS leaves the game, then it does not choose another to take its place, nor are players 

reassigned to different SSs over time if a better choice exists. In addition, some of their 

heuristics perform too slowly to be considered for real-time use, whereas the algorithms 

I have developed are all intended for use in real-time. 

In contrast to assigning players to static regions, some systems operate in an 

MMOG environment that partitions game regions transparently to players and spreads 

regions among multiple servers, allowing interaction between objects on adjacent 

servers. Systems can modify these regions as needed based on how players move and 

interact, so if a region becomes densely populated because of events in the game 

(known as “hotspots”), then the system can partition it further to be handled by more 

servers so performance does not degrade. Hotspots commonly occur in MMOGs and 

can overload a server under a static partitioning algorithm - hence the need for dynamic 
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algorithms. J. Chen et al.’s [CHE6] “locality aware dynamic load management” is such 

an algorithm. It is a decentralized dynamic partitioning algorithm that attempts to reduce 

QoS violations, run local to each server to reduce overhead. While other algorithms 

involve all possible nodes in a global heuristic, theirs considers the local server and 

neighbor servers to determine where repartitioning may be needed. Each local 

algorithm checks for QoS violations and determines the cause, whether from 

overloading or excessive communication. If the cause is overloading, the algorithm 

sheds load from the overloaded servers onto other servers (preferably neighboring 

servers), assuming they can handle the additional computation. If the cause is 

excessive communication, the algorithm combines underloaded neighboring server 

partitions. The algorithm takes into consideration its own effect on performance and 

attempts to not reassign too often, as this can have a considerable effect on game 

performance itself. Communication between servers is also taken into consideration and 

reduced, as too much of it could also impact performance. Thus the algorithm seeks to 

increase performance and reduce QoS violations, all while being mindful of its own 

impact on performance. Since my algorithms consider a mirrored server environment, 

they do not consider or perform game world partitioning, but the ability to reduce QoS 

violations while not impacting performance is a desirable trait in either environment. 

Chertov and Fahmy [CF7] also investigate an adaptive partitioning architecture 

that partitions virtual space into regions. Similar to Chen et al.’s system [CHE6], theirs 

takes advantage of clients gathering around points of interest to dynamically repartition 

and balance loads. The architecture also aims to efficiently handle sparse 
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environments, or areas where few clients are gathering. Each server handles a 

rectangular region that can grow or shrink in size to accommodate a varying number of 

players. The servers attempt to keep the number of players handled by each server 

balanced as players move to different game regions. Regions may end up overlapping 

so that multiple servers handle the same player, but the system takes steps to eliminate 

these overlaps and assign the player to one server or the other. Their environment is 

similar to mine in that it sets a limit on number of players per server and can reassign 

players during the course of gameplay as needs change due to moving players. 

However, mine does not attempt to keep an even player distribution among servers and 

does not consider proximity of players’ avatars in the game world (i.e., game regions). 

Beskow et al. [BES5] consider an MMOG where the game world is dynamically 

partitioned into regions based on player distribution in an attempt to lower the overall 

latency of interacting players. There are three key elements to the authors’ approach – 

region assignment, a distributed name server / migration, and latency estimation. 

(Region migration, while important to the authors’ work, is not covered by my work and 

will not be discussed here.) Region assignment consists of choosing a server to which 

to assign a region such that all players interacting in the region can send each other 

updates within some latency constraint. This assignment tries to ensure that there is not 

a server that could provide the players in a region with better performance. Generally, 

the algorithm, given some set of players in a region as an input, will choose the server 

for which the sum of latencies of shortest paths to those players is the smallest. One 
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server can end up hosting all regions, whereas in my work each server has a finite 

capacity.  

Latency estimation is used by region assignment as a replacement for complete 

network monitoring because probing the entire network is costly and not scalable. To 

save time and processing, these techniques measure a subset of links and then 

estimate the rest based on those measurements. Two techniques are used - Netvigator, 

which provides more accurate results but is more difficult to implement, and Vivaldi, 

which is easier to implement but provides less accurate results. Netvigator uses 

landmark-based estimation, in which a set of landmark nodes is used to estimate 

others’ relative network position. Vivaldi uses multidimensional-scaling based 

estimation, which uses statistical comparisons of data to make its estimates. These 

techniques are less important in my work than the authors’ since region assignment is 

not considered, but still hold value since estimating latency is beneficial in algorithms 

like mine that use latency as a determining factor of server assignment. 

Lee et al. [LEE11] consider a client-server environment with many servers but 

few clients connected to each, with servers connected to one another by low latency 

links. Each player connects to a server that is responsible for forwarding his or her 

actions to other players with whom he or she is interacting in the same area of the game 

world. The authors’ zoom in / zoom out (ZIZO) distributed algorithm assigns players to 

servers such that a small number of servers is selected while keeping the largest delay 

between any pair of interacting players, referred to as the synchronization delay, below 
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a bound. An ideal assignment would have all players assigned to one server, assuming 

that satisfied the synchronization delay bound.  

The authors observe that the low latency links between servers can reduce the 

delay between interacting players that are separated by a large physical distance. Two 

players can each connect to a server that is physically close to him or her, and each of 

those servers can send updates to the other via the server network. While this reduces 

the synchronization delay, it increases the number of servers used. The ZIZO algorithm 

seeks to find a middle ground by choosing an assignment such that the synchronization 

delay is kept below the bound while reducing the number of servers used in the player-

to-server assignment. Given a set of servers and an initial assignment of players to 

servers (players are initially assigned to the server physically closest to them), the 

algorithm chooses a server that is closest to the physical center of all players and 

designated as such. During the “zoom in” portion of ZIZO, the algorithm checks the 

servers nearby to each player’s initial server to see if assigning the player to one of 

those servers would still keep the synchronization delay below its bound, assuming that 

server is closer to the previously designated center server than the player’s current 

server. It continues to do this until it either can no longer find a server closer to the 

central server that satisfies the delay bound or gets to the central server itself. It then 

migrates the player to that server. If every player is migrated to the central server then 

the algorithm stops because we have satisfied the synchronization delay bound and 

every player is connected to the same server. During the “zoom out” portion, we perform 

a similar operation, but in the reverse direction, and considering only servers with 
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assigned players. Thus, if the algorithm can assign a player to a server that is farther 

away from the central server, closer to the player, and still satisfy the delay bound, it 

will. Since we consider only servers that have already had players assigned to them, 

this will either keep the number of servers used the same or reduce it by assigning more 

players to the same servers.  

During the ZIZO algorithm, there are three methods by which clients can attempt 

to migrate to servers - full search, partial search, and tree search. The full search is 

simple - clients consider all servers as potential moves and pick the one with least 

delay. Partial search considers only servers that will move a client either closer to or 

further from the core (no lateral moves, in other words). Tree search designates a 

“parent” for each server (where the parent is a server that is closer to the core), and 

allows moves only to that parent server when moves occur. Thus, clients move in a 

designated path. According to the authors, this algorithm performs better than a 

centralized greedy algorithm would, since it does not require upkeep of global 

information. The zoom out process is essential to the function of this algorithm, as it 

contributes to an overall saving of twenty percent of server resources. While their 

algorithms seek to reduce overall delay by considering moves for all players at once, 

which is much different than my environment, the concept of continual upkeep of server 

assignments and looking for better choices on a regular basis is the foundation of my 

algorithms. 

Y. Chen et al. [CHE8] present heuristic algorithms that create subnetworks of 

servers based on some delay constraint, given a set of servers and clients. These 
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algorithms work for both client-server models and peer-to-peer models, though the 

authors focus on the client-server aspect. Though their algorithms and mine both seek 

to reduce delay, theirs seek to reduce average delay (where each player satisfies QoS), 

while mine seek to reduce the number of players without QoS.  

The authors have designed two algorithms - the first to reduce overall delay, the 

second to reduce the number of servers involved. The first works by representing each 

server as a graph node. It constructs a shortest path tree for each server, with the root 

being that particular server. The algorithm assigns clients to these servers, with minimal 

delay from client to server. Once it constructs all of these trees, the algorithm chooses 

the tree with the lowest overall latency. This algorithm uses only a subset of the overall 

server group as its solution, unlike my algorithms, which attempt to utilize all available 

servers. The second algorithm starts with a single server node and then adds clients 

subject to satisfaction of some delay constraint until no more clients can be adding 

without violating the constraint. It then chooses a neighboring server, joins it to the tree, 

and then adds clients to it in the same fashion. It performs this repeatedly until it has 

joined all clients without exceeding the delay bound. Again, this algorithm does not use 

all possible servers in its solution. 

 The same authors went on to further improve these algorithms [CHE9] by 

subjecting their algorithms to an additional goal - minimizing the variance in delay 

between players, which is similar to the idea of fairness proposed by Briceño et al. 

[BRI3]. For the client-server setup, given an initial assignment of a root server and a 

subset of overall servers, the algorithm finds shortest paths from the root to each server 
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in the subset. It then finds the shortest distance from each client to the root using these 

paths. It then uses this information to form minimal delay variation chains, choosing the 

one with the smallest variance.  

 Zhang and Tang [ZHANGTANG] seek to assign clients to distributed servers. 

However, instead of seeking to minimize client-to-server delays like some of the other 

authors we have discussed, they seek to also minimize client-to-client delays as part of 

the overall delay minimization. The authors implement two algorithms – Greedy-

Assignment and Distributed-Greedy-Assignment.  

 The Greedy-Assignment algorithm starts with the set of all clients and the set of 

all servers. At each step of the algorithm, for each joining player, the algorithm 

calculates the potential interaction path length from that player to all other players that 

have joined. The interaction path length consists of the delay from the player to their 

potential server, the delay from that server to each of the other servers to which players 

who have already joined are connected, and the delay from those already joined players 

to their servers. The algorithm then makes the assignment with minimum interaction 

path length. The Distributed-Greedy-Assignment algorithm starts with some initial 

assignment. Each client then checks to see if changing its assigned server will decrease 

the overall interaction path lengths. This continues for each client, one at a time, until no 

more changes can be made that will reduce the overall path lengths. When considering 

path length reduction, each client considers only paths that involve him or herself, since 

a change in server assignment would not reduce path length for paths where that client 

is not included. The authors’ simulation results show that for the changes that are made 
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using this algorithm, ninety percent of changes occur in the first iteration, and ninety 

nine percent occur within three iterations, so one iteration is sufficient to produce 

adequate results. The idea of factoring client-to-client delays into calculations for client 

to server assignment is novel and provides some interesting ways that our algorithms 

may be adapted to operate in other environments. 

 Ta and Zhou [TAZHOU1] [TAZHOU2] propose the client assignment problem. 

The client assignment problem proposed in this paper is similar to the CAP in our 

problem background, although here the authors are assigning zones to servers such 

that the assignment minimizes the number of players outside of QoS. In the paper used 

for our problem the authors mentioned zones, but ended up assigning individual 

players. The authors propose two algorithms for this version of the CAP – Greedy-1 and 

Greedy-2. 

 For Greedy-1, zones are assigned to servers based on a “desirability” factor, 

which is based on, among other things, the number of players that will be assigned 

without QoS. The assignments are made so that desirability is high, or number of 

players assigned without QoS is minimal. For Greedy-2, the algorithm performs 

assignments in the same way, but the desirability is measured differently – instead of 

minimizing the number of players without QoS, the algorithm measures the average of 

delays from all clients in the zone to be assigned to the potential server and makes the 

assignment with minimum average. Greedy-1 outperforms Greedy-2, except in the case 

when imperfect data is considered. In this case, the authors consider an error factor in 

the delay data, instead of considering it to be absolute. This idea of imperfect data is an 
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interesting concept that will be added to future work for our algorithms. Also, in the 

evaluation of their algorithms in [TAZHOU2], the authors use a correlation parameter to 

simulate the tendency of players who are close in the physical world to be near each 

other in the virtual world. This is not an aspect considered in our environment, but may 

also prove interesting for future modifications to our simulations. 

Webb et al. [WEBBETAL][WEBBETAL2] present the Client to Mirror Assignment 

(CMA) problem in a mirrored server architecture, which closely corresponds to the 

foundation of my work, and is similar to the CAP problem that has been previously 

discussed. Although their approach to the CMA problem involves reducing the average 

delay of players and not only satisfying QoS, our algorithms have similar ideas and both 

seek to improve upon some flaws apparent in other methods, such as Ta et al. ’s. 

The authors propose two pairs of algorithms – J-SA / L-SA and J-Greedy / L-

Greedy. Each pair handles joins and leaves, respectively. The SA algorithms improve 

player delay by building chains of player moves – if an opportunity exists to move a 

player from one server to another and improve his or her delay by moving another 

player, they capitalize on it, and continue to seek opportunities for the player being 

moved, building a “chain” of moves that will reduce the average player delay. The 

Greedy algorithms narrow the scope, instead seeking to quickly assign players to 

servers based on which servers are available and not what could become available if 

players were moved. Both of these methods are important to my work – my algorithms 

will move players to different servers if QoS could be achieved for a joining player by 

making that move, although one of them makes only one move per joining player 
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instead of constructing a chain of moves. A form of greedy joining also occurs as a 

failsafe in my algorithms, seeking to quickly join a player to a server in case other 

methods do not provide an adequate result.  
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4. Method 

 Examining Ta et al.’s approach to the client assignment problem reveals some 

drawbacks. In GDA-1 (and in the other Ta et al. algorithms), refinement occurs only 

once. Dynamic player joins and leaves are not considered. Space may open up on a 

previously full server that would satisfy QoS for a player without QoS, or a player within 

QoS might be able to be moved to another server satisfying QoS to make room for a 

joining player. Several possible solutions present themselves in solving for these 

scenarios that go unaccounted for in Ta et al.’s algorithms. 

 One approach is to keep a list of players without QoS and their delay to each 

server (or to which server would give them the lowest latency). When a player leaves a 

server that is full, check this list of players in an attempt to find a player whose “best 

server,” or server with lowest latency, matches the previously full server. If a match is 

found, then move that player into the vacant spot. If none match, then check the 

“second best server” for each player in the list in the same way. This continues until an 

assignment is found. I have loosely based my approach in the BUMP-ON-LEAVE 

algorithm on this. 

Another approach is to initially attempt to assign a player to the server with least 

latency (whether it has capacity is not considered). If the server has capacity and 

satisfies QoS, then finalize the assignment. If there is not capacity, then attempt to 

move a player that does have QoS on that server to another server that will still satisfy 

QoS and then join the new player to the opened position. The concept of moving 
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players around to better assign joining players is the basis for the BUMP-ON-JOIN-OR-

LEAVE algorithm and the REASSIGNMENT THRESHOLD algorithm also uses it. 

Third, instead of incrementally changing assignments with each join and leave, 

set a threshold for the ratio of players without QoS to overall players. While below the 

threshold, take no action. If the ratio crosses the threshold, then attempt to reassign 

those players without QoS to servers that would satisfy QoS. If no players are 

reassigned, then increase the threshold. This should reduce the amount of time spent in 

reassignment and reduce the frequency of reassignment. These ideas are the basis for 

the REASSIGNMENT THRESHOLD algorithm. 

4.1 BUMP-ON-LEAVE 

BUMP-ON-LEAVE consists of a joining algorithm and a matching leaving algorithm. 

The joining algorithm attempts to assign a player to the first server that satisfies QoS. It 

randomly permutes the server list for each join, because if we were we to attempt player 

joins to servers in the same order – say, S0, S1, …, Sm-1 – S0 would become full quickly 

since it would always be the first server checked. (BUMP-ON-JOIN-OR-LEAVE and 

REASSIGNMENT THRESHOLD also perform this random permutation for each join.) If no 

server that satisfies QoS and has capacity can be found, then it joins the player to the 

server with least delay among those that do have capacity and keeps track of which 

server overall has least delay for the player (assuming this server will satisfy QoS). It 

stores the identity of this player in a list for the least delay server. Each server has such 

a list of players for whom the server is the best choice. The leaving algorithm uses these 

lists to determine player reassignments. If a player leaves a server that previously had 
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no capacity and the server’s list is non-empty, then the algorithm moves the first player 

in that list from his or her non-QoS server to this newly-opened server. If this move 

produces an opening on a previously full server, the algorithm will attempt to move 

another player into that opening. This will continue until we reach a server with an empty 

master list or a player moves from a server that was not already full. If the list contains 

no players or the server was not full before a player left it, then the algorithm takes no 

action. This is because either this server is not best for any non-QoS player or this 

server does not provide QoS to any non-QoS player as a player would have otherwise 

joined earlier. The full description and pseudocode for this algorithm are as follows. 

BUMP-ON-LEAVE Joining Algorithm 
 
Inputs: 
 
S - set of m servers = {S0, S1, ..., Sm-1}. The algorithm randomly permutes the order of these servers for 
each join. 
ML – set of lists = {M0, M1, … Mm-1}. MLj is a list of players Pi without QoS for whom Sj is Pi’s best server; 
that is, the server that would minimize Pi’s delay and put Pi in QoS. Each entry in the list has two 
elements: the player index and the player’s assigned server. 
SB - an array of best servers for players without QoS, indexed by player. Used to find to which ML a 
player belongs (if any). 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
q - QoS threshold 
 
 
Outputs: ML, SC, SB 
 
Variables: 
 
d(i, j) - delay from player i to server j.  
smin – index of server with least delay from player to it 
scap – index of server with least delay from player to it and available capacity 
Steps: 
 
Upon a player Pi  joining 
smin, scap <- NULL  // initialization 
for j <-0 to m-1 
 determine d(i, j)  // determine delay to server j. d(i,NULL) is assumed to be infinity 
 if d(i, j) ≤ q && SC[ j ] > 0 // if the server satisfies QoS and has capacity 
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  join Pi to Sj 
  decrement SC[ j ] 
  end operation 
  

else 
  if d(i, j) < d(i, smin) // if the server has a smaller delay than any server thus far 
   smin <- j 
  if d(i, j) < d(i, scap) && SC[ j ] > 0 // as above, but it also has available capacity 
   scap <- j 
 
// if we get here we were not able to find a server that had capacity and satisfied QoS 
if (smin == scap) // if these servers are the same, there is no server that will satisfy QoS, simply  
  // join the one with least delay...assumed there exists a server with capacity 
 join Pi to Sscap 
 decrement SC[ scap ] 
 end operation 
 
else // else Pi will join Sscap and be added to the list to try to join Ssmin later 
 add (i, scap) to MLsmin  // add Pi and Sscap to the ML of Pi’s best server  
 SB[ i ] <- smin  // store the identity of Pi’s best server 
 join Pi to Sscap 
 decrement SC[ scap ] 
 end operation 
 
 
BUMP-ON-LEAVE Leaving Algorithm  
 
Inputs:  
 
S - set of m servers = {S0, S1, ..., Sm-1} 
ML – set of lists = {M0, M1, … Mm-1}. MLj is a list of players Pi without QoS for whom Sj is Pi’s best server; 
that is, the server that would minimize Pi’s delay and put Pi in QoS. Each entry in the list has two 
elements: the player index and the player’s assigned server. 
SB - an array of best servers for players without QoS, indexed by player. Used to find to which ML a 
player belongs (if any). 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
 
Outputs: ML, SC, SB 
 
Steps: 
 
Upon a player Pi leaving server Sj 
 
increment SC[ j ] 
if k <- SB[ i ] != NULL // if the player is not already connected to his or her best server 
 remove Pi from MLk 

 SB[ i ] <- NULL 
k <- NULL 

if SC[ j ] != 1 // if the server wasn’t previously full then no opportunity for a move exists 
 end operation 
 while ( MLj != NULL ) // while there exists a master list for the server, a player can be moved there 
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 (x, sx) <- MLj ( 0 ) // get the first element of the list, which shows player Px connected to server SSx  
 move Px to server Sj 
 remove Px from MLj  
 SB[ x ] <- NULL 
 increment SC[sx] 
 decrement SC[ j ] 
 if SC[ sx ] != 1 // if the server wasn’t already full then end operation 
  end operation 
 j <- sx // set Ssx as the new server to try to move a player to and continue the loop 
 
 

4.2 BUMP-ON-JOIN-OR-LEAVE 

 The BUMP-ON-JOIN-OR-LEAVE algorithm consists of a matching join and leave 

algorithm. Instead of handling all of the movement work during player leaves like the 

BUMP-ON-LEAVE algorithm, this algorithm attempts to make space on QoS servers when 

a player joins as well as when a player leaves.  

When a player joins, the algorithm iterates through servers until it finds one that 

satisfies QoS for that player and checks its capacity. If the server has capacity, the 

algorithm joins the player to it while looking for another server that satisfies QoS to set 

as the player’s alternative server. If the server does not have capacity, the algorithm 

sets it as the player’s alternative and continues to look for another server that satisfies 

QoS and also has capacity. If no adequate server is found, then the algorithm attempts 

to bump a second player to his or her alternative server from a server that would satisfy 

QoS for the joining player. If the joining player still cannot be joined within QoS in any of 

these ways, the algorithm joins him or her to a server with capacity and adds him or her 

to a list of players without QoS to be later considered for movement into QoS when 

another player leaves.  

The leaving algorithm is similar to the leaving algorithm of BUMP-ON-LEAVE. 

When a player leaves a server that was previously full, the algorithm iterates through 
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the list of players without QoS and checks to see if QoS would be satisfied for any of 

those players if they moved to the newly-open server. If so, then it moves that player 

into the newly-opened spot. However, the algorithm does not form a chain of moves, 

unlike BUMP-ON-LEAVE. The full description and pseudocode for the algorithm are as 

follows. 

 
BUMP-ON-JOIN-OR-LEAVE Joining Algorithm 
 
 
Inputs: 
 
S - set of m servers = {S0, S1, ..., Sm-1}. The algorithm randomly permutes the order of these servers for 
each join. 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
Z - an unsorted list of players that have been joined to a server but are without QoS, encompasses all 
servers. Each element is of the form (w, x, y), where w is the player index, x is index of the player’s 
secondary server, and y is the index of the player’s current server. 
PD – set of lists = {PD0, PD1, …, PDm-1}. Each list PDj is unordered and contains the indices of all players 
on Sj that have QoS and also have a secondary server. Each element of PDj is in the format  
(w, x), where w contains the player’s index and x contains the index of the player’s secondary server. 
q - QoS threshold 
 
Outputs: C, Z, PD 
 
Variables: 
 
spri - primary server candidate satisfying QoS for Pi 
ssec - secondary server candidate satisfying QoS for Pi 
d(i, j) - delay from player i to server j 
Min - server index of assigned server from greedy join 
 
 
 
Steps: 
 
Upon a player Pi joining 
initialize spri <- NULL, ssec <- NULL 
for j <- 0 to m-1 
 Determine d(i, j) 
 if d(i, j) ≤ q 
  if SC [ j ] == 0 //if we find a full server that satisfies qos 
   if ssec == NULL //if we have no secondary server 
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    ssec <- j  
    if spri != NULL //this means we have both a sec and pri, done 
     add (i, ssec) to PDspri 
     end operation 
  else  //we’ve found a server satisfying qos with capacity 
   if spri  == NULL  //we have no primary server 
    spri <- j 

join Pi to Sspri //join immediately - server with qos and cap is ideal 
    decrement SC [ j ] 
    if ssec != NULL  //we have pri and sec - done 
     add (i, ssec) to PDspri 
     end operation 
   else //we already found a primary and joined, now we have our secondary 
    ssec <- j 
    add (i, ssec) to PDspri 
    end operation 
 
if spri != NULL and ssec == NULL 
 end operation // we have already joined a primary but found no secondary so we simply end 
 
else //went through the entire list and don’t have a primary server, might have sec. 
 for j <-0 to m-1 
  if d(i, j) ≤ q //no server had capacity and QoS at this point so only check QoS 
   t <- length ( PDj ) 
   for k <- 0 to t-1 //iterating through PD 
    (x, sx ) <- PDj (k)  //get an element of PD 
    if SC[ sx ] != 0 //potential bumpee can be bumped 
     move Px to Ssx 
     decrement SC[ sx ] 
     join Pi to Sj //join player to newly-opened spot 
     if ssec != NULL  //only add to bump list if secondary 
       add (i, ssec) to PDj 
     end operation 
 
//if we get here either no server satisfied QoS or we could not bump anyone on servers that satisfied QoS  
//to another server 
join Pi to first server with capacity, store index of joined server in Min  
//we can’t join a server that satisfies QoS so join and let leave alg. handle 
add (i, ssec, Min) to Z //add player to Z list for leaving algorithm’s consideration 
end operation 
 
 
 
BUMP-ON-JOIN-OR-LEAVE Leaving Algorithm 
 
Inputs: 
 
S - set of m servers = {S0, S1, ..., Sm-1}. The algorithm randomly permutes the order of these servers for 
each join. 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
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Z - an unsorted list of players that have been joined to a server but are without QoS, encompasses all 
servers. Each element is of the form (w, x, y), where w is the player index, x is index of the player’s 
secondary server, and y is the index of the player’s current server. 
PD – set of lists = {PD0, PD1, …, PDm-1}. Each list PDj is unordered and contains the indices of all players 
on Sj that have QoS and also have a secondary server. Each element of PDj is in the format  
(w, x), where w contains the player’s index and x contains the index of the player’s secondary server. 
q - QoS threshold 
 
 
Outputs: C, PD, Z 
 
 
Variables: 
 
d(i, j) - delay from player i to server j 
ssec - secondary server candidate satisfying QoS for Pi 
 
Steps: 
 
Upon a player Pi leaving server Sj 
  
remove Pi  from PDj  
increment SC[ j ] 
if SC[ j ] == 1 //if the server was full but now it’s not, look for someone to move 
 l <- length(Z) 
 for k <-0 to l-1 //iterate through Z list 
  (x, ssec, sx) <- Z( k ) //get an element of Z 
  determine d(x, j) 
  if d(x, j) <= q 
   move Px from Ssx to Sj //move the player into the newly opened spot 
   remove Px from Z 
   increment SC [ sx ] //increment Px’s previous server’s capacity 
   decrement SC [ j ]  
   if ssec != j //if new server isn’t also the secondary, put into bump list 
    add (x, ssec) to PDj 
   end operation //else sec. and new server are same, so doesn’t go into bump list 
     
 end operation //if we get here there is no possible move so quit 
else take no further action //the server wasn’t previously full so we don’t consider it for movement 

 

 

4.3 REASSIGNMENT THRESHOLD 

The REASSIGNMENT THRESHOLD algorithm consists of a joining algorithm, leaving 

algorithm, and refinement algorithm. The overall algorithm attempts to reduce the 

number of times the “bumping” portion of the algorithm needs to be run. The goal of this 
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algorithm is place an acceptable number of players in QoS, but with fewer operations 

than the previous two algorithms, thus reducing computation time. In BUMP-ON-LEAVE 

and BUMP-ON-JOIN-OR-LEAVE, bumping takes place each time a player leaves or each 

time a player joins or leaves, respectively. The REASSIGNMENT THRESHOLD algorithm 

sets a threshold for the ratio of players without QoS to the total number of players. Until 

the player ratio exceeds this threshold, the algorithm does not attempt to improve any 

assignments.  

The algorithm checks the ratio against the threshold at two times when the ratio 

increases: when a player joins without QoS or when a player with QoS leaves. Below 

the threshold, the algorithm adds a joining player to the first server that satisfies 

capacity and QoS. If such a server does not exist, then the algorithm adds the player to 

a list of players without QoS.  

When the ratio crosses the threshold, the algorithm performs an assignment 

refinement process that iterates through the list of players without QoS and attempts to 

find a server for each that would satisfy QoS and moves the player to that server, if 

found. Once the algorithm has iterated through the entire list, if the ratio still exceeds the 

threshold, then the algorithm increases the threshold, since it cannot decrease the ratio 

of players without QoS at this time. The amount of increase in threshold is multiplicative 

and is specified before each simulation. If the ratio is below the threshold after 

refinement, then the algorithm decreases the threshold by the same factor until the 

threshold equals a base threshold value or cannot be decreased further without the ratio 

exceeding the threshold.  
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As a backup, the algorithm sets a trigger for the number of player joins and 

leaves that may occur without performing a refinement. If the number of joins and 

leaves exceeds this trigger, then the algorithm performs a refinement, regardless of 

ratio. This provides a failsafe in case the threshold is never exceeded so that players 

are not without QoS indefinitely. The full description and pseudocode for the 

REASSIGNMENT THRESHOLD algorithm are as follows. 

 
 
REASSIGNMENT THRESHOLD Joining Algorithm 
 
Inputs:  
 
S - set of m servers = {S0, S1, ..., Sm-1}. The algorithm randomly permutes the order of these servers for 
each join. 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
Z - an unsorted list of players that have been joined to a server but are without QoS, encompasses all 
servers. Each element is of the form (x, y), where x is the player index and y is the index of the player’s 
current server. 
base_thr - lowest desired value of threshold 
T - threshold for fraction of players without QoS; initially, T = base_thr 
PC - total player count 
jlcount - tracks number of joins/leaves since last refinement; initially 0 
trigger - number to check total joins/leaves against to see if we need to try to run refine again 
q - QoS threshold 
 
Variables: 
 
d(i, j) - delay from player i to server j 
 
Outputs: SC, Z, PC, T, jlcount 
 
 
Steps: 
 
Upon a player Pi joining 
increment jlcount 
increment PC 
for j <-0 to m-1 
 if SC[ j ] > 0 // if we have capacity 
  determine d(i, j)  
  if d(i, j) ≤ q // if we have capacity and QoS 
   join Pi to Sj 
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   decrement SC( j ) 
   end operation // simply join player and adjust capacities/counts 
 
 
for j <-0 to m-1 // if we get here we weren’t able to find a server with capacity satisfying QoS – join to first 

// server with capacity 
 if SC[ j ] > 0 
  join Pi to Sj 
  add (i, j) to Z // add player to the list of players without QoS 
  decrement SC[ j ] 
  // if the ratio of players without QoS to total players is bigger than T, call refinement 
  if ( length(Z) / PC ) > T  
   call refinement algorithm 
 
if (jlcount > trigger ) //check # of moves & ratio vs threshold to see if we need to refine 
 call refinement algorithm 
end operation 
 
REASSIGNMENT THRESHOLD Refinement Algorithm 
 
Inputs: 
 
S - set of m servers = {S0, S1, ..., Sm-1}. The algorithm randomly permutes the order of these servers for 
each refine. 
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
Z - an unsorted list of players that have been joined to a server but are without QoS, encompasses all 
servers. Each element is of the form (x, y), where x is the player index and y is the index of the player’s 
current server. 
base_thr - lowest desired value of threshold 
T - threshold for fraction of players without QoS; initially T = base_thr 
jlcount - tracks number of joins/leaves since last refinement; initially 0 
q - QoS threshold 
threshChg – factor to change T by when adjusting threshold 
 
Outputs: SC, Z, jlcount, T 
 
 
Variables: 
 
d(i, j) - delay from player i to server j 
 
Method: 
 
l <- length(Z) 
for k <-0 to l-1 // iterate through Z 
 (x, sx) <- Z( k ) // get an element of Z 
 for j <-0 to m-1 // iterate through S 
  if SC[ j ] > 0 
   determine d(x, j) 
   if d(x, j) ≤ q // if we have capacity and server satisfies QoS 
    move player from Ssx to Sj 
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    increment SC[ sx ] // adjust server capacities 
    decrement SC[ j ] 
    remove Px from Z 
    if(jlcount != 0) 
     jlcount = 0  // had 1 move so success, reset jlcount 
 
if(jlcount != 0) //if jlcount !=0 here then we moved no one, so increase T and reset count 
 T <- T * threshChg 
 jlcount = 0 
else 
 while(T ≥ base_thr && T > length(Z) / PC ) // if refinement was successful, we check vs. base  
             // threshold and lower the threshold just above where  
             // the current ratio is 
  T <- T / threshChg 

T <- T * threshChg // adjust threshold back up one level, as it will be one level below where it 
//should be 

end operation  
 
REASSIGNMENT THRESHOLD Leaving Algorithm 
 
Inputs: 
 
S - set of m servers = {S0, S1, ..., Sm-1}.  
SC - an array of server availabilities (the number of spots open on each server). If a particular server is 
full, the value for the server in the array will be 0. 
Z - an unsorted list of players that have been joined to a server but are without QoS, encompasses all 
servers. Each element is of the form (x, y), where x is the player index and y is the index of the player’s 
current server. 
base_thr - lowest desired threshold value 
T - threshold for fraction of players without QoS; initially T = base_thr 
PC - total player count 
jlcount - tracks number of joins/leaves since last refinement; initially 0 
q - QoS threshold 
trigger - number to check total joins/leaves against to see if we need to try to run refine again 
 
Outputs: SC, Z, PC, T, jlcount 
 
 
Variables: 
 
d(i, j) - delay from player i to server j 
 
Steps: 
 
Upon player Pi leaving server Sj 
increment jlcount 
increment SC[ j ] // increment capacity of server player is leaving 
decrement PC  // decrease total player count 
if d(i, j) ≤ q // if the player had QoS 
 if( length(Z) / PC ) > T // if the result of the leave causes ratio to go up above threshold 
  call refinement algorithm 
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//else the player did not have QoS, and by leaving our ratio gets better 
else remove Pi from Z 
 
if (jlcount > trigger) //check # of moves & ratio vs threshold to see if we need to refine 
 call refinement algorithm 
end operation 
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5. Simulation 

5.1 Background/Operating Environment 

In order to compare the performance of my algorithms with Ta et al.’s, we 

simulate the operation of each one in the same environment and take several 

measurements. For each algorithm, many simulations are run, tweaking several 

variables for each simulation. These variables include the number of servers available 

for players to join, the capacity of each server, the particular value of QoS, and the 

range of potential server delays each player can have. We also consider the effect that 

server load has on each algorithm’s performance by making it a variable. Each 

simulation, the simulator loads each simulated server to a specific amount and then 

takes a snapshot of the simulated algorithm’s actions over a period of time. Our aim is 

to be able to simulate many types of environments by allowing control over nearly all 

aspects of the simulation using these variables. 

Each simulation starts by generating a two dimensional array of players and their 

delays to each server, using pseudorandom values for each delay based on the range 

specified. Once it fills each server to the specified load using the simulated algorithm’s 

join algorithm, the simulation begins player joins, leaves and other operations based on 

the simulated algorithm. Each simulation cycle there is a chance of a player join and/or 

a player leave. The simulator pseudorandomly generates a one or zero value for each 

potential join and potential leave. If the value is one, the join or leave occurs. Since 

there are two values generated, each cycle there can be a join only, a leave only, both a 

join and a leave, or no action. If a player join or leave occurs, the player to join or leave 
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is chosen pseudorandomly. The simulation captures various results for each algorithm, 

starting from the beginning of the simulation and ending after a prespecified number of 

cycles. These results include number of players joined within QoS, number of players 

joined without QoS, number of players moved into QoS from outside of QoS, and 

algorithm-specific statistics such as number of refine calls by the REASSIGNMENT 

THRESHOLD algorithm. These statistics are captured for every leaving player – players 

that have joined but have not left are not considered.  

Because each algorithm operates differently, some facets of them are not directly 

comparable and other considerations or modifications need to be made. Ta et al.’s 

algorithms consider a slightly different environment than my algorithms do, so I have 

adapted their algorithms to suit my environment in order to compare performance. GDA-

1, GDA-2 and GDA-3 have very few differences among them when converted to my 

simulation environment since mine does not consider regions or target/contact servers, 

so my simulator simulates one overall “GDA” algorithm. This algorithm assigns players 

to servers using the GDA-1 refinement method. Ta et al. make no changes for leaving 

players in their algorithms, and neither does my simulated GDA algorithm.  

We consider the REASSIGNMENT THRESHOLD algorithm in a different environment 

than the other algorithms during these simulations, since that algorithm is based on a 

ratio of players without QoS to overall players. If placed in an environment with a 

specific server load and a steady join/leave rate like the other two, it does little beneficial 

work since the threshold is rarely, if ever, crossed. Instead, it targets an environment 

with variable join and leave rates where the threshold is likely to be crossed.  
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The first set of simulation results below compares the Bump-On-Leave (B-O-L), 

Bump-On-Join-or-Leave (B-O-J-o-L), and GDA algorithms’ performance. The 

REASSIGNMENT THRESHOLD algorithm simulation results immediately follow those. 

Unless otherwise noted, in these graphs we consider a QoS value of 100, with a 

potential delay range of 0-500. These values were chosen based on the acceptable 

delays set for online games using first-person avatars by Claypool [CLAY2]. The 

number of servers ranges from ten to forty. Fewer than ten servers results in poor or 

unpredictable results, because there rarely exist alternative servers to which to bump 

players based on the way delays are generated (pseudorandomly, not according to a 

distribution). For greater than forty servers, there are many options for players to join to 

upfront, so nearly all players are assigned within QoS initially. For similar reasons, 

server capacity ranges from forty open spaces per server to one hundred open spaces 

per server. The exact number of players that join and leave varies per simulation 

because of the randomness of joins and leaves, but averages twenty-five hundred 

players. Each data point on each graph represents an average of the results of ten 

simulations. 

5.2 Simulation Results – B-O-L, B-O-J-o-L, GDA 

 Figure 5.1 shows the number of players leaving with QoS for B-O-L, B-O-J-o-L, 

and GDA in an environment of ten servers for varying loads. For this number of servers, 

until the load becomes high (ninety percent) the algorithms perform nearly identically. All 

three algorithms assign nearly every player within QoS by the time that player has left 

(and B-O-J-o-L assigns every player within QoS by the time he or she leaves). Once the 
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load gets to ninety percent, performance begins to vary slightly among the three 

algorithms. GDA performs better than B-O-L in this environment, though simulation 

results for this number of servers had high variance. For future work we will consider a 

different distribution of player delays so that we have a more predictable outcome even 

for an environment of ten or fewer servers. 

Figure 5.2 shows the same comparison as 5.1, but for twenty servers instead of 

ten. With more servers, B-O-L performs slightly better than GDA, and B-O-J-o-L 

continues to assign each player within QoS by the time he or she leaves. As with the 

previous results, each algorithm’s performance is similar until load reaches ninety 

percent, and there it is separated only by a few percent. 

Figure 5.3 shows similar results as the previous two figures, with similar 

performance among the algorithms until ninety percent load, but the performance 

benefit of my algorithms over GDA is slightly smaller, since as the number of servers 

increases, the initial assignment for each algorithm assigns more players within QoS, so 

fewer players need to be moved. Figure 5.4 shows results for forty servers, at which 

point each algorithm is able to assign all players within QoS initially. 

To further separate the work done by my algorithms, the following figures show 

the percentage of players leaving with QoS that were put into QoS by the algorithms. 

Since GDA does not place players into QoS after the initial assignment, for it this 

percentage is always zero. Figure 5.5 shows these results for an environment of ten 

servers at varying loads. Although the percentages are small for loads less than 90%, 

B-O-L outperforms B-O-J-o-L, which shows that bumping a chain of players has a 
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performance benefit over bumping a single player each operation in an environment of 

ten servers.  

 

 

(a)       (b) 

 
(c) 

Figure 5.1. Ratio of players leaving within QoS (from initial assignment or movement during play) 
to total players that have left, for ten servers at loads of (a) 70%, (b) 80%, and (c) 90%. 
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(a)       (b) 

 

(c) 

Figure 5.2. Ratio of players leaving within QoS (from initial assignment or movement during play) 
to total players that have left, for twenty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 
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(a)        (b) 

 

(c) 

Figure 5.3. Ratio of players leaving within QoS (from initial assignment or movement during play) 
to total players that have left, for thirty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 

 
The next few figures (5.6 – 5.8) show that as the server capacity increases, the 

work done by each algorithm approaches zero, apart from initial assignment. This is 

also true as the number of servers increases. Once the number of servers increases to 

forty, less than one half of one percent of players leaving within QoS come from the 

work of the algorithms, regardless of server load. The ranges in which the algorithms 
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(a)      (b) 

 

(c) 

Figure 5.4. Ratio of players leaving within QoS (from initial assignment or movement during play) 
to total players that have left, for forty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 

 

have the greatest impact, for the given default values, is an environment of twenty to 

thirty servers, with forty to sixty capacity each. In the other cases, most players are 

assigned within QoS initially, so a static assignment is good enough to produce good 

results, as shown by the GDA simulations in Figures 5.1-5.4. 
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(a)       (b) 

 

(c) 

Figure 5.5. Percentage of players leaving within QoS, moved into QoS by B-O-L or B-O-J-o-L, for 
ten servers at loads of (a) 70%, (b) 80%, and (c) 90%. 

 

Figures 5.9 and 5.10 show results for ten and twenty servers at ninety percent 

load with the value of QoS increased to 150 from 100. Performance in these scenarios 

is similar to the previous ones, so these values of QoS appear to cause little change in 

results. 
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(a)      (b) 

 

(c) 

Figure 5.6. Percentage of players leaving within QoS, moved into QoS by B-O-L or B-O-J-o-L, for 
twenty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 
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(a)        (b) 

 

(c) 

Figure 5.7. Percentage of players leaving within QoS, moved into QoS by B-O-L or B-O-J-o-L, for 
thirty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 
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(a)      (b) 

 

(c) 

Figure 5.8. Percentage of players leaving within QoS, moved into QoS by B-O-L or B-O-J-o-L, for 
forty servers at loads of (a) 70%, (b) 80%, and (c) 90%. 
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(a)        (b) 

Figure 5.9. Ratio of players leaving within QoS (from initial assignment or movement during play) 
to total players that have left, for a load of 90% on (a) 10 servers, and (b) 20 servers, QoS = 150 

 

 

 

 

Figure 5.10. Percentage of players leaving within QoS, moved into QoS by B-O-L or B-O-J-o-L, for 
a load of 90% on  (a) 10 servers, and (b) 20 servers, QoS = 150 
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5.3 Simulation Results – REASSIGNMENT THRESHOLD and B-O-J-o-L 

Now we present the results of the REASSIGNMENT THRESHOLD algorithm 

simulation. For this simulation, the QoS value is also 100 and the delay range remains 

0-500. However, we do not operate at a prespecified server load because the threshold 

of players without QoS is not crossed since there is a steady join and leave rate. 

Therefore, the join rate is increased to two potential joins per cycle, while keeping the 

leave rate at one potential leave per cycle. More players will join than leave, so there is 

a better chance of crossing the threshold of players without QoS, triggering a refine 

operation. Also, in an attempt to reduce unnecessary refinements, the simulator loads 

servers to thirty percent before allowing algorithm operation. Previous simulations have 

shown that few, if any, algorithm operations take place before achieving seventy percent 

load, so this is an acceptable value. The average number of players joining and leaving 

per simulation is fifteen hundred to two thousand. 

 Figure 5.11 shows a comparison of the REASSIGNMENT THRESHOLD algorithm 

(with refinement threshold values of ten, twenty and thirty percent) with the B-O-J-o-L 

algorithm, in an environment of ten servers. Note that for these comparisons (in this 

figure and all other REASSIGNMENT THRESHOLD figures), B-O-J-o-L is run with the same 

join and leave rate as REASSIGNMENT THRESHOLD, and all other variables are the same 

unless otherwise noted. The figures indicate that with so few servers, threshold value 

has little bearing on the ratio of players with QoS, in part for the same reasons as 

previously simulated using B-O-L and B-O-J-o-L – there are fewer servers, so there are 

fewer alternative servers to which players can be moved. B-O-J-o-L performs nearly as 
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well as in the previous simulations, moving nearly all players into QoS before they 

leave. 

  

(a)      (b) 

Figure 5.11. Ratio of players leaving w/ QoS (from either initial assignment or moved by 
algorithm) to total players that have left, for refinement threshold values of ten, twenty and thirty 
percent using the REASSIGNMENT THRESHOLD algorithm (indicated by the percentages on the 

graph) and also for B-O-J-o-L using the same join/leave rate as REASSIGNMENT THRESHOLD, for 
server capacities of (a) forty and (b) sixty, using ten servers. 

 

  

Figures 5.12, 5.13 and 5.14 show the same comparisons as in 5.11 for an 

increasing number of servers and the same two values of server capacity (forty and 

sixty). Note that as the number of servers increase, so does the ratio of players leaving 

with QoS. For each of these scenarios, B-O-J-o-L assigns each player within QoS by 

the time he or she leaves. 
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(a)       (b) 

Figure 5.12. Ratio of players leaving w/ QoS (from either initial assignment or moved by 
algorithm) to total players that have left, for refinement threshold values of ten, twenty and thirty 
percent using the REASSIGNMENT THRESHOLD algorithm (indicated by the percentages on the 

graph) and also for B-O-J-o-L using the same join/leave rate as REASSIGNMENT THRESHOLD, for 
server capacities of (a) forty and (b) sixty, using twenty servers. 

 
 
 

  
(a)       (b) 

 
Figure 5.13. Ratio of players leaving w/ QoS (from either initial assignment or moved by 

algorithm) to total players that have left, for refinement threshold values of ten, twenty and thirty 
percent using the REASSIGNMENT THRESHOLD algorithm (indicated by the percentages on the 

graph) and also for B-O-J-o-L using the same join/leave rate as REASSIGNMENT THRESHOLD, for 
server capacities of (a) forty and (b) sixty, using thirty servers. 
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(a)       (b) 

Figure 5.14. Ratio of players leaving w/ QoS (from either initial assignment or moved by 
algorithm) to total players that have left, for refinement threshold values of ten, twenty and thirty 
percent using the REASSIGNMENT THRESHOLD algorithm (indicated by the percentages on the 

graph) and also for B-O-J-o-L using the same join/leave rate as REASSIGNMENT THRESHOLD, for 
server capacities of (a) forty and (b) sixty, using forty servers. 

 
 
 

 The next figures compare the percentage of players leaving with QoS that are 

moved there by an algorithm operation – a refinement in the case of the REASSIGNMENT 

THRESHOLD algorithm, or a join/leave bump in the case of B-O-J-o-L. A graph 

accompanies each of these, showing the average number of players moved into QoS 

per algorithm operation, to give context to how many players are moved into QoS total 

and how efficient each operation is. The number of total operations is also included to 

further show how efficient (or inefficient) each algorithm is in each scenario. In each 

graph, B-O-J-o-L moves one player per operation, since it does not bump chains of 

players. 

 Figure 5.15 shows these comparisons for an environment of ten servers with 

server capacities of forty and sixty servers. The number on each bar indicates the total 



 

 52 

number of algorithm operations performed, while the y axis of the graphs on the right 

indicates the number of players moved into QoS for each of these operations. An 

“algorithm operation” means a refine call for REASSIGNMENT THRESHOLD or a join or 

leave operation for B-O-J-o-L. For this number of servers, refinement is called a much 

larger number of times than for a larger number of servers, regardless of threshold 

value, and does little movement each operation. This large number of refine calls comes 

from the small overall capacity. Since total capacity over all servers is small, and the 

refinement threshold is defined as a percentage of total players without QoS, the 

algorithms calls refinement after only a few non-QoS joins. Fewer players are moved 

into QoS per operation since there are fewer alternative servers to which to move non-

QoS players. From these results, the REASSIGNMENT THRESHOLD algorithm does not 

appear to be a good option for these values and an environment of ten or fewer servers. 

Figure 5.16 shows the same comparisons as 5.15, but for an environment of 

twenty servers. For this number of servers, the percentage of players put into QoS by 

an algorithm operation is similar to the percentage in an environment of ten servers, but 

there is a large difference in the number of operations performed. There are still many 

refinement calls at a threshold of ten percent, for the same reasons as in the ten-server 

scenario. This result indicates that even though there is some effort in the algorithm to 

prevent unnecessary refinement calls, we require more effort to prevent this for a lower 

refinement threshold value. Apart from that, as the threshold increases, the number of 

players moved per operation increases (although the total number of players moved into 

QoS decreases). REASSIGNMENT THRESHOLD performs fewer overall algorithm  
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Figure 5.15. Percentage of players leaving with QoS moved there from an algorithm operation 
(refinement or join/leave), paired with graph of players moved into QoS per algorithm operation, 
for refinement threshold values of ten, twenty, and thirty percent (REASSIGNMENT THRESHOLD 
algorithm), and B-O-J-o-L, for server capacities of forty and sixty in an ten server environment. 

Number in each bar indicates total algorithm operations performed. 
  

operations than B-O-J-o-L, but moves fewer players into QoS. There is a tradeoff 

between operations performed and number of players moved into QoS, which confirms 

what we set out to do when designing the REASSIGNMENT THRESHOLD algorithm – 

reduce operations performed while achieving performance near to the other algorithms. 

Figures 5.17 and 5.18 show results for scenarios of thirty servers and forty 

servers, respectively. For this number of servers, the REASSIGNMENT THRESHOLD 

algorithm moves fewer overall players into QoS, but increases the number of players 
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Figure 5.16. Percentage of players leaving with QoS moved there from an algorithm operation 
(refinement or join/leave), paired with graph of players moved into QoS per algorithm operation, 
for refinement threshold values of ten, twenty, and thirty percent (REASSIGNMENT THRESHOLD 

algorithm), and B-O-J-o-L, for server capacities of forty and sixty in an twenty server environment. 
Number in each bar indicates total algorithm operations performed. 

 

 moved per operation. B-O-J-o-L performs similarly to the previous environments. 

Once we reach a thirty percent threshold for thirty servers with sixty capacity, refinement 

is not called during the course of simulation. The forty server, sixty capacity scenario is 

not shown here at all because refinement is never called regardless of refinement 

threshold value. With so many choices of server to connect to there are few players 
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without QoS to begin with, let alone enough to exceed the refinement threshold value 

(except for very low values). 

 

 

Figure 5.17. Percentage of players leaving with QoS moved there from an algorithm operation 
(refinement or join/leave), paired with graph of players moved into QoS per algorithm operation, 
for refinement threshold values of ten, twenty, and thirty percent (REASSIGNMENT THRESHOLD 
algorithm), and B-O-J-o-L, for server capacities of forty and sixty in a thirty server environment. 

Number in each bar indicates total algorithm operations performed. 
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Figure 5.18. Percentage of players leaving with QoS moved there from an algorithm operation 

(refinement or join/leave), paired with graph of players moved into QoS per algorithm operation, 
for refinement threshold values of ten, twenty, and thirty percent (REASSIGNMENT THRESHOLD 
algorithm), and B-O-J-o-L, for a server capacity of forty in a forty server environment. Number in 
each bar indicates total algorithm operations performed. Capacity of sixty is not shown because 

refinement is never called. 

 

 Overall, there is less of a clear choice of which algorithm should be used – one 

does not consistently outperform the other one in all areas. We must make the decision 

whether to reduce the overall number of algorithm operations or increase the number of 

players within QoS. For the purposes of this paper, our goal is to increase the number of 

players within QoS, so our choice is made for us, but in other operating environments 

there may be some merit to reducing the number of algorithm operations. 
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6. Conclusion 

 We have shown, over the course of this document, that the solution to the CAP 

proposed by Ta et al. has some areas where player assignment can be improved, 

specifically after the initial assignment. Opportunities exist to move players into QoS 

after the initial assignment and we have proposed three distinct algorithms to take 

advantage of these opportunities. We have shown that for certain situations, two of 

these algorithms assign more players within QoS than Ta et al.’s. Although the third 

algorithm could not be directly compared to Ta et al.’s in simulation, it accomplishes its 

goal of reducing the number of overall algorithm operations compared to the other two 

algorithms and displays merit for use in other environments where improving the overall 

number of players within QoS is not the primary motive. 

 The research here brings up several considerations for future work. Simulation 

shows that in many cases, the chain of bumps performed by the B-O-L algorithm gives 

it performance near or better than the single bump method used by the B-O-J-o-L 

algorithm, even though the B-O-L algorithm does not bump on joins. The next natural 

step is to apply the chain of bumps to the B-O-J-o-L algorithm. Next, the REASSIGNMENT 

THRESHOLD algorithm needs further improvement so that the refinement function is not 

called repeatedly for low refinement threshold values. We would also like to measure 

the execution time of the algorithm to determine if the added time cost of algorithm 

processing is worth the improvement in player assignment, as well as other, more 

detailed performance measures (such as measuring the number of players within QoS 

at any particular moment of simulation rather than on leave only) to further prove or 
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disprove the merit of each algorithm. Lastly, we would like to simulate the algorithms in 

a real environment of clients and servers to see how they perform and modify them as 

needed to work beyond the limits of the simulator. With these improvements, we could 

not only better judge the value of the algorithms, but use those findings to make them 

more generally applicable and better performing for a wider variety of operating 

environments.  
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