
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2011

Power management and optimization
Hari Sundararajan
Louisiana State University and Agricultural and Mechanical College, hari.s@alumni.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Sundararajan, Hari, "Power management and optimization" (2011). LSU Master's Theses. 3842.
https://digitalcommons.lsu.edu/gradschool_theses/3842

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3842?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

POWER MANAGEMENT AND OPTIMIZATION

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

In

The Department of Electrical and Computer Engineering

By

Hari Sundararajan

B.S., Louisiana State University, 2008

December 2011

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for His gracious presence in enabling me to

achieve everything I have so far, and for always having stood by me.

I would like to extend my most sincere gratitude to the following people without whom it would

have been impossible to complete this work.

My sincere thanks to my advisor, Dr. Thomas Sterling who has been continuously supportive

and patience with me. His constant guidance and advice throughout is the only reason I have

been able to successfully complete this project. No amount of words will be sufficient to express

my gratitude to Dr. Sterling. Maciej Brodowicz , my supervisor, deserves special mention for

having spent a lot of time in helping me throughout the project. Dr. Ramanujam has been a

constant source of guidance and support throughout my research.

I would also like to extend my gratitude to my parents for their faith in me throughout my

education.

A number of other people deserve mention for their unwavering support. Rajesh Sankaran, my

senior who has always been someone I could rely upon, Richie Sajan, my roommate of 6 years

who has always remained a constant companion throughout my graduate career, Chirag Dekate

for his steering me in the right direction, Vinay Amatya for his help in setting up all the

necessary hardware, Srikanth Jandhyala for motivating me to get into the field of High

Performance Computing, Terrie Bordelon for his constant support, Nevin Thomas George and

all my undergraduate friends for constantly cheering me on, Viji Balachandran for being a pillar

of support, Uma Ramanujam, Karthik Omanakuttan, Dr. Horst Reinhard Beyer and Subramanian

Venkatachalam for everything they have done for me.

iii

Finally, I would like to make a special mention of Dhivya Manivannan, without whose love and

motivation this work and document would have never taken shape.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ………….…………….…………………………………………… ii

LIST OF TABLES ………………………………………………………………………………vi

LIST OF FIGURES …………………………………...………………………………………..vii

ABSTRACT …………………………….………………………………………………….… viii

CHAPTER 1. INTRODUCTION…………………...…………...….………………………… …1

1.1 BACKGROUND……………………………………...……………………………....3

1.2 MOTIVATION………………………………………………………………………..4

CHAPTER 2. HARDWARE ENVIRONMENT DESCRIPTION………...…………………….6

 2.1 WORKSTATION DETAILS…………………………………………………………6

 2.2 CPU DETAILS…………………..…………………………….……………………..6

 2.3 GPU DETAILS…………………..…………………………….……………………..6

 2.4 POWER MONITORING HARDWARE DETAILS……..…………………………..8

 2.5 EXPERIMENTAL SETUP…………………………………………………………..10

CHAPTER 3. SOFTWARE ENVIRONMENT DESCRIPTION………….…………..………..11

 3.1 OPERATING SYSTEM………………………………….……………………...…..11

 3.2 BASIC LINEAR ALGEBRA SUBROUTINES……………………………………..11

 3.3 AMD COREMATH LIBRARY – ACML ………………………………….……….12

 3.4 COMPILER TOOLCHAIN – GCC ………………………………..………….…….12

 3.5 PARALLEL PROGRAMMING API – OPENMP……………………………..…....13

 3.6 PARALLEL PROGRAMMING API – MPI…………………………………...…....14

 3.7 PARALLEL PROGRAMMING API – POSIX THREADS……………………...…15

 3.8 GPU PROGRAMMING API - CUDA………………………………………………15

CHAPTER 4. BENCHMARKS AND WORKLOAD DESCRIPTION .…… …………………17

 4.1 EFFECT OF CACHE ACCESS……………………………………………………..17

 4.2 BLOCK MATRIX MULTIPLICATION…………………………………………....17

 4.3 GCC OPTIMIZATION………………………………………………………..……..18

 4.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING……………18

 4.5 HIGH PERFORMANCE COMPUTING CHALLENGE BENCHMARKS…..……18

 4.5.A HIGH PERFORMANCE LINPACK…………………………………..….19

 4.5.B RANDOM ACCESS…………………………………………………..…..20

 4.6 CUDA COMPUTATIONS…………………………………….……………...……..21

v

CHAPTER 5. EXPERIMENTAL METHODOLOGY ………………………………………….22

CHAPTER 6. EXPERIMENTAL RESULTS ..…………………………………………………26

 6.1 EFFECT OF CACHE ACCESS……………………………………………………..26

 6.2 BLOCK MATRIX MULTIPLICATION…………………………………….……...27

 6.3 GCC OPTIMIZATION…………………………………………………….……...…27

 6.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING……..…..…27

 6.5.A HIGH PERFORMANCE LINPACK……….………………………………...…...28

6.5.B GUPS – GIGA UPDATES PER SECOND……………..………………………...28

6.6 CUDA COMPUTATIONS………………………………………………….…..…..29

 6.6.1 SIMPLE CUBLAS………………………………………………….……..30

 6.6.2 BASIC VECTOR ADDITION…………………………………………… 30

 6.6.3 MERGE SORT…………………………………….……………………....30

 6.6.4 SINGLE VERSUS DOUBLE PRECISION COMPUTATIONS………….30

CHAPTER 7. DISCUSSION ..……………………………………………….………….………45

CHAPTER 8. CONCLUSION AND FUTURE WORK . ………….…………………………..47

REFERENCES ……………………………………………………………………….…………48

VITA .. ………………………………………………………………………………..…..……..50

vi

LIST OF TABLES

TABLE 1 BASE AC POWER VERSUS CPU FREQUENCY…………….....…………………31

TABLE 2: BASE DC POWER VERSUS CPU FREQUENCY…………………………………31

TABLE 3: BASE AC POWER VERSUS STRIDE SIZE………………………………...…..…32

TABLE 4: BASE AC POWER FOR DIFFERENT BLOCK AND DATA SIZES ………….…33

TABLE 5: BASE AC POWER FOR DATA SIZE 10000………………………………………34

TABLE 6: BASE AC POWER FOR DATA SIZE 20000 …………………………….………..35

TABLE 7: BASE AC POWER FOR DATA SIZE 40000 ……………………………..……….36

TABLE 8: BASE AC POWER FOR DATA SIZE 80000………………………………..……..37

TABLE 9: BASE AC POWER USING OPENMP …………………………..…………………38

TABLE 10: BASE AC POWER USING PTHREADS ………………………...……………….39

TABLE 11: BASE AC POWER USING GPU ………………………………..………………..40

TABLE 12: BASE DC POWER USING GPU …………………………………………………40

TABLE 13: BASE AC POWER FOR DIFFERENT SGEMM RUNS ……………………..….41

TABLE 14: BASE AC POWER FOR VECTOR ADDITION …………………...…………….42

TABLE 15: BASE AC POWER FOR MERGE SORT ……………………………………..….43

TABLE 16: BASE AC POWER FOR SINGLE AND DOUBLE PRECISION ……………….44

vii

LIST OF FIGURES

FIGURE 1 BASE AC POWER VERSUS CPU FREQUENCY………….......…………………31

FIGURE 2: BASE DC POWER VERSUS CPU FREQUENCY………………………………31

FIGURE 3: BASE AC POWER VERSUS STRIDE SIZE……………………………...…..…32

FIGURE 4: BASE AC POWER FOR DIFFERENT BLOCK AND DATA SIZES ……….…33

FIGURE 5: BASE AC POWER FOR DATA SIZE 10000……………………………………34

FIGURE 6: BASE AC POWER FOR DATA SIZE 20000 ………………………….………..35

FIGURE 7: BASE AC POWER FOR DATA SIZE 40000 …………………………..……….36

FIGURE 8: BASE AC POWER FOR DATA SIZE 80000……………………………..……..37

FIGURE 9: BASE AC POWER USING OPENMP …………………………..………………38

FIGURE 10: BASE AC POWER USING PTHREADS ………………………...…………….39

FIGURE 11: BASE AC POWER USING GPU ……………………………….………………..40

FIGURE 12: BASE DC POWER USING GPU ………………………………………………40

FIGURE 13: BASE AC POWER FOR DIFFERENT SGEMM RUNS ……………………….41

FIGURE 14: BASE AC POWER FOR VECTOR ADDITION …………………...………….42

FIGURE 15: BASE AC POWER FOR MERGE SORT …………………………………..….43

FIGURE 16: BASE AC POWER FOR SINGLE AND DOUBLE PRECISION ……………….44

viii

ABSTRACT

After many years of focusing on “faster” computers, people have started taking notice of the fact

that the race for “speed” has had the unfortunate side effect of increasing the total power

consumed, thereby increasing the total cost of ownership of these machines. The heat produced

has required expensive cooling facilities.

As a result, it is difficult to ignore the growing trend of “Green Computing,” which is defined by

San Murugesan as “the study and practice of designing, manufacturing, using, and disposing of

computers, servers, and associated subsystems – such as monitors, printers, storage devices, and

networking and communication systems – efficiently and effectively with minimal or no impact

on the environment” [1].

There have been different approaches to green computing, some of which include data center

power management, operating system support, power supply, storage hardware, video card and

display hardware, resource allocation, virtualization, terminal servers and algorithmic efficiency.

In this thesis, we particularly study the relation between algorithmic efficiency and power

consumption, obtaining performance models in the process. The algorithms studied primarily

include basic linear algebra routines, such as matrix and vector multiplications and iterative

solvers.

Our studies show that it if the source code is optimized and tuned to the particular hardware

used, there is a possibility of reducing the total power consumed at only slight costs to the

computation time. The data sets utilized in this thesis are not significantly large and

consequently, the power savings are not large either. However, as these optimizations can be

ix

scaled to larger data sets, it presents a positive outlook for power savings in much larger research

environments.

1

CHAPTER 1 - INTRODUCTION

Since the dawn of computing, the only metric that has always been focused on for improving has

been performance. Faster has always meant better and towards this end, there has been

significant progress and research aimed at increasing processor speeds.

Computer algorithms have generally been constructed, and programs written for sequential

computation, wherein the program is a sequence of steps to be followed in order to implement

the algorithm. These steps are executed by a computer, or to be precise, the central processing

unit of a computer. Traditionally, computers have always had a single central processing unit.

Efficiency of computers has always been measured in terms of the time the computer takes to

solve and work through the algorithms it has been programmed for. Since the computer executes

the steps of the algorithm in a sequential fashion, the total time taken by a computer to run a

program is given by the product by the number of instructions in the program and the average

time taken to execute one instruction. Therefore, reducing either of the above factors yields a

“better-performing” computer.

Research in algorithms have led to their improvement, which effectively translates into smaller

number of instructions required. However, there can only be so much improvement done to an

algorithm before the effect of further research becomes minimal. As a result, the most popular

way then of improving the performance of computers was through the process of frequency

scaling.

Frequency scaling refers to the technique of increasing a processor‟s frequency. Between the

period from mid-1980s through mid-2000s, processor frequency was increased every year. As

mentioned earlier, the running time of a particular program is the product of the number of

2

instructions in the program, the average number of cycles required per instruction (a value

dependent on the program) and the average time the processor takes to execute one cycle. The

third value, the average time a processor takes to execute one cycle is the inverse of the

advertised processor frequency, and therefore, an increase in processor frequency directly results

in a reduced run time.

Up until around 2004, chip manufacturers got away with constantly increasing frequency of their

microprocessors. An increase in the processor frequency allowed any program in the market to

take lesser time to execute, and hence “run faster.” However, the factor that was ignored in this

process was power. The power consumed by a microprocessor is directly related to the

capacitance being switched in every cycle, the square of the voltage and the frequency.

Consequently, climbing higher up the frequency scale implied climbing up the power consumed

as well. As the power consumed is dissipated as heat, measures had to be taken to cool the

central processing units.

Around 2004, Intel stopped production of their single core line of microprocessors, and the

termination of its Tejas and Jayhawk processors [2] is often heralded as the birth of multi core

processors, and a new parallel programming paradigm. Manufacturers started including multiple

cores within their chips, and this required a significant change in the way the algorithms were

implemented. However, this still doesn‟t tackle the overall problem of cooling the

microprocessors.

Over time, the birth of commodity clusters has led to super computers that are able to perform

hundreds of trillions of floating point operations per second. However, the massive amount of

power consumed by these computers necessitates the construction of massively extravagant

cooling facilities as well. Seager of Lawrence Livermore National Laboratory observes that

3

energy bill required to run the supercomputers there are of the order of $8 million per year to

power up and $6 million [3] per year to cool. Similarly, the building for the ASC Q

supercomputer at Los Alamos National Laboratory costs nearly $100 million to construct.

1.1 BACKGROUND

One of the original attempts at building power efficient machines included Green Destiny [4], a

240 processor supercomputer that consumed 3.2 kiloWatts of power when booted diskless. One

of the primary advantages of this computer was its completely lack of unscheduled downtime

during its two-year run. Arrhenius equation as applied to microelectronics states that a compute

node is twice as likely to fail if its temperature raises by 18 degrees F. As a result, keeping the

power and temperature low also helps with reducing unscheduled downtimes, as Green Destiny

was able to prove.

The concept of energy efficient supercomputing came into picture when Sharma et al. [5] made

the case for a Green 500 List to supplement the Top 500 List, which ranks computers solely on

the speed metric. They argued for a new list that would also rank computers based on new

metrics that would indicate the power consumed, such as FLOPS / watt.

There have also been significant advances made in the industry towards increased power

efficiency. PA Semi announced their PWRficient ™ Processor family that is a derivative of

IBM‟s POWER Architecture ™ aims to “really drive a breakthrough in performance per watt”

[6].

There have been other works conducted along similar topics. In their paper on power profiling,

Feng et al. [20] have concluded that power profiles are regular corresponding to application

4

characteristics and that for fixed problem sizes increasing the number of nodes always increases

energy consumption but does not always improve performance.

In this project, frequency is scaled within certain limited values, and studies are made. Similar

research was performed by Freeh [21] , where they use high performance cluster nodes that are

frequency and voltage scalable, and save energy by scaling down the CPU. Their paper primarily

deals with the NAS benchmark and they conclude that the benchmark exhibits a better energy

time trade off using multiple phases, where a pre set frequency is assigned to each phase

heuristically. Similar research is also done by the same author in his paper on energy time

tradeoffs in MPI programs [22].

In their paper on improvement of power-performance efficiency for high end computing [23], Ge

et al. propose a novel approach to utilize parallel performance inefficiencies that are typically

found in non-interactive, distributed scientific applications and conserve energy using dynamic

voltage scaling. They present a framework to analyze and optimize the power performance while

using dynamic voltage scaling. Similar work in the field has also been performed by Hsu et al.

[24] where they leverage a commodity technology, “dynamic voltage and frequency” scaling to

implement power aware algorithms in commodity HPC systems.

1.2 MOTIVATION

The aim of this project is to take a commercial off the shelf workstation, monitor and observe the

power consumed for a variety of work loads and in the process of correlating the various factors

involved, come up with a performance model that can be used to predict and improve power

consumption depending on what the workstation is used for.

5

Even though certain factors are outside the programmer‟s control, we believe that knowledge of

the hardware used and its specifications will enable programmers to write code that draws power

efficiently. While efficiency in terms of time is still the primary metric sought after, certain

compromises can be allowed if the result is an improvement along the power metric, since that

would translate into increased up times and lowered total cost of ownership.

6

CHAPTER 2 - HARDWARE ENVIRONMENT DESCRIPTION

2.1 WORKSTATION DETAILS

The workstation used for testing purposes is a Hewlett Packard xw9400 workstation. The total

RAM installed in the workstation is 16GB, with 8 Dual Inline Memory Modules (DIMM) of

capacity 2GB each. The RAM modules DDR2 Synchronous, with a frequency of 667 Mhz each

and are 64 bit wide.

2.2 CPU DETAILS

The workstation is outfitted with 2 Quad Core AMD Opteron ™ Processor 2384. This provides

the programmer with 8 cores to operate on. Additionally, if the operating system supports it, the

processor can be made to run at different frequencies. This sets itself up for later testing, as

frequency is a significant factor affecting power consumption. Additionally, the CPUs have 512

KB of L1 cache, 2MB of L2 cache and 6 MB of L3 cache. The CPUs are 64 bit capable

2.3 GPU DETAILS

The workstation also features a NVIDIA GPU. The GPU details, as provided by a deviceQuery

listing of the NVIDIA CUDA API lists the following –

CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA

Device 0: "GeForce GTX 260"

 CUDA Driver Version: 4.0

 CUDA Runtime Version: 3.10

7

 CUDA Capability Major revision number: 1

 CUDA Capability Minor revision number: 3

 Total amount of global memory: 939196416 bytes

 Number of multiprocessors: 27

 Number of cores: 216

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 16384 bytes

 Total number of registers available per block: 16384

 Warp size: 32

 Maximum number of threads per block: 512

 Maximum sizes of each dimension of a block: 512 x 512 x 64

 Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

 Maximum memory pitch: 2147483647 bytes

 Texture alignment: 256 bytes

 Clock rate: 1.35 GHz

 Concurrent copy and execution: Yes

 Run time limit on kernels: No

 Integrated: No

8

 Support host page-locked memory mapping: Yes

 Compute mode: Default (multiple host threads can use this device

simultaneously)

 Concurrent kernel execution: No

 Device has ECC support enabled: No

It must be observed that double precision is supported in CUDA compute capability 1.3 and

above, and the GTX 260 used for testing purposes works with CUDA compute capability 1.3.

However, CUDA‟s double precision support is turned off by default; the compiler converts

doubles into floats inside of kernels. While this might not cause a significant issue in itself, the

problem is more likely to arise because the host (CPU) code remains unchanged. This causes the

double precision values on the CPU to be read as multiple single precision values on the GPU. In

order to prevent this, the following flag is passed to the compiler when it is invoked –

nvcc –gpu-name sm_13

Additionally, the NVIDIA GTX 200 Technical Brief [7] states that while the multi processors on

the GTX 200 series have 8 single precision floating point ALUs (one on each core), there is only

one double precision ALU per multiprocessor that is shared between all the cores. Consequently,

applications where the execution time is predominantly dependent on computations are likely to

see a significant slow down of up to 8. However, the aim of this research is to focus on the power

consumption, and the tests will be performed accordingly.

2.4 POWER MONITORING HARDWARE DETAILS

The following are the hardware being utilized for obtaining power measurements –

9

AC power meter – Yokogawa PR 300

DC meter – Texmate DI-503 E with IQD2 input board (quad channel 50 mV converter)

Hall effect transducers: LA 55-P / SP23 by LEM

Communications Bridge – Net485 from Gridconnect

A brief description of the hardware is provided below.

The Yokogowa PR300 is an industry standard panel mounted power and energy meter for

monitoring energy consumption. For the purpose of this research, this device is used for

measuring active power. It features a large triple display and provides for a wide choice of

measurement items. It is equipped with a standard RS-485 communication function and it is

capable of Ethernet communication, which is the method used in this research as well. The

device can be used in a variety of different configurations, such as single phase two wire system,

single phase three wire system, or three phrase systems. The device has been setup for a simple

single phase two wire system [8].

The Texmate DI-503E is a programmable meter controller. It is equipped to handle upto 4 input

channels, and in this research, the inputs are connected to a 3V rail, a 5V rail, and two 12V rails.

The GPU is connected to a 12 V rail, and hence significant fluctuations are observed along this

line when performing measurements of GPU computations. Similarly, the CPU is powered by

the other 12V rail and this is the rail monitored when performing computations that involve CPU

factors, such as number of CPUs and CPU frequency [9].

The LA 55 –P / SP23 is a closed loop compensated current transducer that uses the Hall effect.

This eliminates the need for actual wire connections [10].

10

The NET485 bridge allows the connection between the monitoring computer and the RS485

interface on the Yokogowa PR300, which in turn enables remote serial communications [11].

2.5 EXPERIMENTAL SETUP

The power monitoring hardware as described above is connected directly to a workstation (also

described earlier). A separate profiling computer is connected to the power meters through the

Net485 bridge, and it is on this computer that the readings are measured. The readings are

sampled, by default, every 0.5 seconds. The application used to obtain the values allows for a

padding value, which is the amount of time for which measurements are taken before running the

test, and after running the test, which allows us to study variations in the power draw. The power

monitoring application is executed on the profiling machine. One of the arguments for this

command is the name of the application to be executed on the test bed, and this happens via SSH

over Ethernet.

The power monitoring meters are plugged into the same power strip that the test bed is connected

to. It must be observed that this setup merely measures the wall socket power drawn by the

motherboard, and doesn‟t measure the power draw of individual components such as the hard

disk. This implies our power monitoring measurements should primarily be done around

compute-intensive applications.

In order to generate the Green 500 List, the authors keep the software configuration similar

across all systems, and measure the power drawn with a setup similar to the above setup across

different systems. However, in this case, we take a single system and measure the power drawn

with a variety of different software configurations to provide a different perspective into power

consumption.

11

CHAPTER 3. - SOFTWARE ENVIRONMENT DESCRIPTION

3.1 OPERATING SYSTEM

Both the test bed and the profiling computer run the Fedora 12 operating system with the

2.6.31.5-127.fc12.x86_64 SMP Linux kernel. This is a SMP enabled kernel.

The operating system allows for dynamic modification of the CPU frequency. This is

accomplished by the following command

cpufreq-selector -c $i -f $num

$i refers to the CPU number and can take on values between 0 and 7, for the 8 available cores.

$num refers to the frequency speed. The file

/sys/devices/system/cpu/cpuXX/cpufreq/scaling_available_frequencies lists the frequencies that

are supported for switching by the operating system, and for the test bed values, these values

were found to be 2700000, 2000000, 1500000 and 800000.

The file /sys/devices/system/cpu/cpuXX/cpufreq/scaling_available_governors lists the different

modes that the CPU frequency switching can take on. Setting it performance will allow the CPU

to run at maximum speed and setting it to ondemand allows the operating system to dynamically

switch between the different available frequencies depending on the workload. This is not an

option we will be utilizing in this research. The userspace governor setting allows the CPU to be

at a particular frequency

3.2 BASIC LINEAR ALGEBRA SUBROUTINES – ATLAS

ATLAS [12] stands for Automatically Tuned Linear Algebra Software. It is an ongoing research

effort that aims at providing a portable and optimal version of standard linear algebra routines

12

with C and Fortran interfaces. It provides a complete BLAS API and a small subset of LAPACK

API. The version of ATLAS used in this research project is 3.8.4. It provides C and Fortran77

interfaces to routines such as GESV, GETRF, GETRS, GETRI, TRTRI etc. ATLAS provides a

custom C interface to LAPACK, as LAPACK doesn‟t have an official C interface. Additionally,

static libraries are provided by default. The interface provided by ATLAS is used by the HPL

and HPCC benchmarks.

3.3 AMD CORE MATH LIBRARY – ACML

ACML is a set of math routines that are thoroughly optimized and threaded for HPC applications

by AMD for their processors. It provides a full implementation of Levels 1,2 and 3 of Basic

Linear Algebra Subroutines and LAPACK routines. The interface provided by ACML is used to

compare against the similar interface provided by ATLAS for SGEMM calculations

3.4 COMPILER TOOLCHAIN – GCC

The compiler used for the CPU –based code is GCC version 4.4.3, built with posix threads

support. This compiler also has support for OpenMP, which is described in a later section. The

compiler allows for various optimizations at different optimization levels, some of which are

described below. Measurements are taken at different optimization levels in order to study the

effect of compiler optimization on power consumption. GCC supports three levels of

optimization [13], with each higher level performing all optimizations done at the previous level

and an additional set. At the first level, the compiler attempts to reduce code size and execution

time without performing optimizations that require additional time. At the second level, GCC

attempts all supported optimizations that do not involve space – time trade off. This option

13

increases compilation time. The third level performs loop unrolling and function inlining along

with optimizations that would have been performed in the previous levels.

 Default Inline – Do not make member functions inline by default if they are defined

inside the class scope (C++). Turned on in level 1.

 Loop optimize – Performs loop optimizations, such as moving constant expressions

outside the loop, simplifying exit test conditions and attempts at loop unrolling

 If-conversion – Attempt to transform conditional jumps into branch less equivalents.

 Defer-pop – Always pop the arguments to each function call as soon as that function

returns.

 Inline functions – The compiler heuristically decides which functions are simple enough

to be worth integrating directly into their callers.

Other optimizations can be found in the GCC Manual.

3.5 PARALLEL PROGRAMMING API – OPENMP

OpenMP is an API for shared memory multiprocessing programming using C, C++ and Fortrain.

It consists of compiler directives, library routines and environment variables [14] that influence

and direct run time behavior. It uses a portable model that gives programmers a simple way to

utilize all available cores on a shared memory symmetric multiprocessor based system.

OpenMP is managed by a technology consortium consisting of major computer hardware and

software vendors such as AMD, IBM, Intel, Cray, HP, NVIDIA and others [15].

14

OpenMP implements multithreading , wherein the thread that is executing the program (also

referred to as master thread) forks a specified number of threads (also referred to as slave

threads) and the run time environment allocates the different threads to the different processing

units available. This allows the programmer to control the number of cores being used in the

code. The operating system allocates threads to the processing units depending on factors such as

usage and machine load. The number of allocable threads is assigned by setting the values of

certain environment variables before the execution of the code. OpenMP provides support for

both task parallelism as well as data parallelism.

3.6 PARALLEL PROGRAMMING API – MPI

MPI stands for Message Passing Interface [16], and is the industry standard for parallel

programming on super computers and computer clusters. While the previously described

OpenMP API is primarily used as shared memory multithreaded programming library, MPI is

primarily targeted at distributed memory programming, where the individual “threads” (referred

to as processes in MPI) are typically run on different machines connected over a Local Area

Network. Thus each process is likely to have access to only its own local memory.

MPI library functions include point to point rendezvous type send/receive operations, combining

partial results of computations such as gather and reduce, exchanging data between processes

and synchronizing processes through barriers.

There exist different implementations of MPI. For the purpose of this project, MPICH 1.2.7p1

was chosen. Additionally, even though MPI is traditionally meant for distributed memory

machines, MPICH also provides for using shared memory as a channel for communication. This

was accomplished using the ch_shmem option while compiling MPICH.

15

3.7 PARALLEL PROGRAMMING API – POSIX THREADS

In shared memory multiprocessors architectures such as the one used in the test bed, threads are

often used to implement parallelism. Hardware vendors often implement their own proprietary

implementations towards this end, however, the IEEE POSIX 1003.1 c standard specifies a

standard C language interface for programming threads.

 The pthreads API consists of subroutines falling in to 4 major categories

 Thread management – Routines that create, detach, join and perform other operations on

threads

 Mutexes – Routines that deal with synchronizations using mutual exclusions

 Condition Variables – Routines that deal with communications between threads that

share mutexes

 Synchronization – Routines that deal with locks and barriers.

3.8 GPU PROGRAMMING API - CUDA

CUDA, which stands for Compute Unified Device Architecture is a proprietary architecture

developed by NVIDIA for use with their Graphics Processing Units (GPUs). „C for CUDA‟

provides programmers a C programming interface with NVIDIA specific extensions and

restrictions) that allows for coding algorithms to be executed on the NVIDIA GPUs.

GPUs were traditionally used for applications such as gaming and graphics rendering. However,

the GPU can also be viewed as a compute capable device [17] consisting of an extremely large

number of processing units. This technique of using the GPU for performing computations in

16

applications that were once strictly the domain of CPU is known as GPGPU (General Purpose

computing on Graphics Processing Units). The GPU acts as co-processor to the CPU, and allows

data parallel, compute intensive portions of applications to be offloaded onto itself.

Data-parallel refers to the parallel programming paradigm where the same set of operations are

carried out independently on different data. As long as the computations are independent, the

task can be compiled into an instruction set for the GPU and can be downloaded onto the GPU.

The GPU itself is implemented as a set of multiprocessors, each having a Single Instruction

Multiple Data architecture (SIMD). At any given clock cycle, the processors are all performing

the same operation, but they are operating on different data.

For instance, in the GeForce GTX 260 used in the test bed, the number of multi processors is

listed as 27 and the number of cores is listed as 216, thereby implying that each multiprocessor

has 8 cores.

nvcc is NVIDIA‟s compiler driver that allows compilation of CUDA code. The workflow of this

compiler initially involves separating the device (GPU) code from the host (CPU) code. The

CPU code is eventually compiled by the host compiler. The GPU code is compiled into a binary

object. This binary object is then loaded and executed on the GPU using the CUDA driver API.

Further details regarding CUDA and nvcc‟s workflow can be found in the NVIDIA CUDA

Programmer‟s Guide [17].

17

CHAPTER 4 – BENCHMARKS AND WORKLOAD DESCRIPTION

In this section, we describe the various applications being run on the CPU and the GPU. While

some applications are industry standard benchmarks, some applications are smaller applications

coded in order to expose and stress particular factors individually to monitor whether or not they

have an impact on power consumption.

4.1 EFFECT OF CACHE ACCESS

We explore the impact of cache lines on power consumption. We run loops of the form

for (int i=0; i<array.Length(); i+= K) arr[i] *= 3;

In the above loop, we expect to see different run times for different values of K. CPU‟s fetch

memory in chunks of typically 64 bytes called cache lines. When a particular memory location is

accessed, the entire cache line is fetched from the main memory into the cache, and subsequent

accesses to elements in the cache are much faster.

We then monitor the power consumed in different iterations.

4.2 BLOCK MATRIX MULTIPLICATION

The basic matrix multiplication algorithm is the one that involves three nested loops. However,

with block multiplication, we take groups of elements (the number of elements in the group is

equal to the block size) and then then perform multiplication / addition operation on those

elements as required. The idea behind this implementation is that the group of elements are on

the cache and this reduces cache misses.

This test is performed as an extension of the previous Cache Access test.

18

4.3 GCC OPTIMIZATION

The matrix multiplication code is compiled with varying GCC optimization levels and power

consumption is monitored.

4.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING

Matrix multiplication is carried out using OpenMP and pthreads. The least common multiple of

1,2,3,4,5,6,7 and 8 is taken as the smallest size of the matrix (840), which allows us to use any

number of processors and have the tasks divided evenly between the processor cores.

4.5 HIGH PERFORMANCE COMPUTING CHALLENGE BENCHMARKS (HPCC)

The HPCC benchmarks [18] consists of 7 tests.

1 HPL – The Linpack benchmark, which measures floating point rate of execution while

solving a linear system of equations.

2 DGEMM – Measures rate of execution of Double recision General Matrix Multiplication

3 STREAM - Measures sustainable memory bandwidth and corresponding computation rates

for a vector kernel

4 PTRANS – Parallel Matrix Transpose, bandwidth that stresses the communications capacity

of a network

5 RandomAccess – Measures the rate of integer random updates of memory (GUPS – Giga

Updates Per Second)

6 FFT – Floating point rate of execution of double precision complex Discrete Fourier

Transform

19

7 Communication bandwidth and latency – Tests and measures latency and bandwidth using

various simultaneous communication patterns.

The HPCC benchmarks were designed with the goal of examining the performance of

supercomputers with memory access patterns different from that of the standard HPL. The

Top500 List is solely based on the performance of the supercomputer on the HPL benchmark,

and these tests were designed to compare performances using additional metrics.

For this research project, special focus shall be given to HPL and RandomAccess, as we believe

that the execution rate as well as memory updates can influence power consumption. DGEMM

and FFT could have been used as well; however, HPL is easily ported to the GPU using CUDA

and hence is a convenient way to measure power consumption across different scenarios

involving the CPU and the GPU.

 4.5.a HIGH PERFORMANCE LINPACK

LINPACK is a software library that provides a FORTRAN interface for performing numerical

linear algebra. It utilizes the BLAS (Basic Linear Algebra Subroutines) libraries for performing

basic vector and matrix operations. It solves linear systems whose matrices are general, banded,

symmetric indefinite

Originally, LINPACK was used as a measure of a system‟s floating point computing power. The

benchmark solves a dense system of linear equations using the Gaussian Elimination algorithm

with partial pivoting. This result is then reported in millions of floating point operations per

second.

With the advancements in super computing technology and the advent of beowulf clusters built

out of Commercial Off The Shelf computers, Linpack was no longer a good super computer

20

benchmark as it focused primarily on floating point arithmetic units and cache memory and not

on the shared memory or the node interconnect. Linpack‟s memory access patterns disregard the

multi layered memory hierarchies of modern machines and hence more time than necessary was

being spent on moving data as opposed to actual computation. LAPACK addresses this problem

by reorganizing the algorithms to use block matrix operations in the inner loops. However, in

order to obtain the fastest possible performance, LAPACK would require that optimized block

matrix operations be already available on the host machine. This is where ATLAS is used.

Additionally, Linpack as a benchmark gave way to High Performance Linpack [19], which too is

a software package that solves a random dense linear system in double precision arithmetic on

distributed memory computers. This algorithm uses a two dimensional block cyclic data

distribution, followed by a variant of the LU factorization with row partial pivoting and recursive

panel factorization and finally a backward substitution. Thus, HPL not only times the calculation

of a solution, but it also provides a way of quantifying the accuracy of the obtained solution.

4.5.b RANDOM ACCESS

The current trend in processor architecture is to focus on having longer cache lines and better

stride performance. However, random memory access is also a metric that needs to be given

importance.

RandomAccess (GUPS) is a benchmark that works by identifying the number of memory

locations that can be randomly updated in one second, divided by 1 Billion. An update is defined

as a read-modify-write operation on a table of 64 bit words.

The authors provide multiple variations of the GUPS benchmark, including Sequential and Multi

threaded local versions and MPI versions for distributed computers.

21

4.6 CUDA COMPUTATIONS

In order to test the power monitoring characteristics of the GPU, we run a variety of programs

on the GPU. Some basic tests are described below –

1. CuBLAS – BLAS for CUDA, performing basic linear algebra sub routines

2. Basic vector addition

3. Merge sort .

4. Computation with single precision and double precision values

22

CHAPTER 5 -EXPERIMENTAL METHODOLOGY

A typical output when using the power monitoring software for an application is as follows–

AC[02]: starting monitor thread

AC[02]: 0.037 -> active power: 177.60 W

 The above is repeated for as many samples as requested 

******: 2.500 ** Starting: ssh c04 ../RemoteScript

AC[02]: 2.516 -> active power: 177.60 W

******: 2.743 ** Application exited

AC[02]: 3.016 -> active power: 183.60 W

 The active power continues to get monitored for as many samples as requested 

DC Readings - DC[02]: starting monitor thread

DC[02]: 0.037 -> 3.3V rail: 7.61 W

DC[02]: 0.037 -> 5V rail: 9.38 W

DC[02]: 0.037 -> 12V rail1: 16.02 W

DC[02]: 0.037 -> 12V rail2: 70.19 W

 The above is repeated for as many samples as requested 

******: 3.500 ** Starting: ssh c04 ~/Codes/xGPUvectorAdd

DC[02]: 3.515 -> 3.3V rail: 7.60 W

23

DC[02]: 3.515 -> 5V rail: 9.38 W

DC[02]: 3.515 -> 12V rail1: 16.02 W

DC[02]: 3.515 -> 12V rail2: 69.46 W

 The above is once again shown at the sampling rate till the application exits 

******: 4.892 ** Application exited

DC[02]: 5.014 -> 3.3V rail: 7.58 W

DC[02]: 5.014 -> 5V rail: 9.38 W

DC[02]: 5.014 -> 12V rail1: 24.67 W

DC[02]: 5.014 -> 12V rail2: 97.93 W

 The above is again shown for as many samples as requested 

A couple of observations must be made at this point. In the following command

powermon –n 2 –a –p 7 – ssh “~/RemoteScript”

powermon represents the name of the executable run on the profiling computer, which is a

custom written program that accesses the registers on the power monitors to obtain the power

measurements.

The –n switch is used to indicate the number associated with the test bed. The test bed is node 2

of 4 in the configuration used in the lab, and hence the value.

The next switch indicates whether AC active power values are measured, or the power draw on

individual rails are measured. This switch is optional. Not including either of –a or –d will

24

result in a combined output of both sets of values.

The –p switch indicates the amount of padding around application start and termination, in

number of samples.

Additionally, the sampling period can be changed with a –s argument switch. The default value

as can be observed from the time stamps is 500 milliseconds.

Even though it is not shown in the above output, the-o switch allows the output to be redirected

to a file. The output from the execution of the remote program is redirected to stderr.

ssh is the protocol used to communicate with the test bed.

The command to be executed on the test bed is included within quotes. Since the running of

CUDA programs, HPCC benchmarks and OpenMP programs require the setting of environment

variables, the commands are included in a script file on the test bed, which is then sourced

through the SSH command run on the profiling computer.

Since the entire execution happens on a terminal, it allows us to create scripts that execute the

program multiple times with varying data, in order to obtain substantial data. Text processing is

then done on the obtained data in order to extract the relevant information, which is then plotted

and studied.

The following tests were conducted, in the order of the workload descriptions provided in the

previous chapter.

1. Simple loops with varying strides to measure cache sizes (Refer Chapter 4.1)

2. Block matrix multiplications (Refer Chapter 4.2)

25

a. Vary block size

b. Vary problem size

3. Block matrix multiplication with different GCC optimizations (Refer Chapter 4.3)

4. Symmetric Multiprocessor Parallel Programming with block matrix multiplication (Refer

Chapter 4.4)

a. Vary number of CPUs used

b. Vary processor speed of CPUs

5. HPCC benchmarks

a. HPL benchmark (Refer Chapter 4.5.a)

i. Vary number of processes

ii. Vary problem sizes

b. RandomAccess benchmark (Refer Chapter 4.5.b)

6. Computations on the GPU, with varying problem sizes (Refer Chapter 4.6)

26

CHAPTER 6 – EXPERIMENTAL RESULTS

The first measurement taken involves the base line values. This shall be our reference point of

origin for all further readings.

This reading is measured after a clean restart. Since the operating system has been configured to

start in runlevel 3, the graphics card has not yet started drawing power. Once we manually

change the runlevel to 5 with the following command

init 5

Linux starts its X Windows and enters its Graphical User Interface mode. At this point, the GPU

begins to draw power and all further measurements (even after switching off the GUI) will be

influenced by this. This will require calculating a new power base line as well.

After having obtained base line values, we proceed to conduct experiments that only use the

CPU, reserving the GPU use for later.

Tables 1 and 2 represent the active power drawn and the DC power drawn for different base line

values. Figures 1 and 2 are corresponding graphical representations.

6.1 EFFECT OF CACHE ACCESS

In this program, we step over an array incrementing every 16
th

 integer. Upon reaching the last

value, we loop back to the beginning. We experiment with different array jumps and observe the

power draw. It can be observed that there‟s a significant climb when the array sizes are 512 and

2048 kb, which are the sizes of the L1 and L2 caches.

Table 3 represents the active power drawn for different stride sizes, and figure 3 is its

corresponding graphical representation.

27

6.2 BLOCK MATRIX MULTIPLICATION

In this section, we take the regular matrix multiplication code, and modify it take a group of

elements (Block). The motivation behind this technique is to improve cache access, as the

“group” of elements that we will be working on is expected to be in the cache, as opposed to the

original triple nested loop where we have far more frequent cache misses.

Provided below are certain observations from varying the block sizes and the problem sizesThe

CPU frequency was kept constant throughout, and the code used for the above was sequential

block matrix multiplication.

Table 4 shows different values of active power consumed for different combinations of block

size and data size, and the data is represented pictorially in figure 4.

6.3 GCC OPTIMIZATION

Tables 5, 6, 7 and 8 (and corresponding figures 5,6,7 and 8) represent the active power drawn for

different GCC optimization levels for data sizes of 10000, 20000, 40000 and 80000 respectively.

6.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING

In this section, we take the block matrix multiplication algorithm we have been using and

observe that matrix multiplication is effectively embarrassingly parallel. As a result, it can be

trivially parallelized.

As we are on a shared memory architecture machine, both of the matrices are available entirely

to every thread / process. Each thread updates its individual results in the product matrix.

We vary the number of CPUs used between 1 and 8, which is the total number of processing

cores in the test bed.

28

The processor speed of the CPUs is also varied between the allowed values of 800 MHz, 1500

MHz, 2000 MHz and 2700 MHz. The problem size is kept constant at 84000 and a block size of

64 is chosen.

Tables 9 and 10 represent the data measured when using OpenMP and Pthreads respectively.

The biggest observation that can be drawn is that in the case of OpenMP, when the 5
th

 thread is

made available, there‟s a significant jump in the power draw. However, in the case of pthreads,

the power draw is more or less uniformly increasing.

6.5.a HIGH PERFORMANCE LINPACK

The input for running the HPL benchmark is in the form of a file named HPL.dat. Some relevant

factors are explained below –

Line 5 – This line specifies the number of problem sizes to be executed. In our case, we always

keep it 1, since we are measuring power consumed for each variation.

Line 6 – The problem size. We vary this value (N)

Line 7 – The value of the block size for each run

Line 10 – Number of process grids. Again, we will be running one at a time.

Line 11 and 12 – Specifies the number of process rows and columns of the grid, which in turn

corresponds to available cores. Therefore, we monitor power consumed for different values of P

and Q such that P*Q <= 8

6.5.b GUPS – GIGA UPDATES PER SECOND

In this research, GUPS is run in a sequential fashion. The following results were obtained.

29

Begin of SingleRandomAccess section.

Node(s) with error 0

Node selected 1

Single GUP/s 0.190227

Current time (1310884140) is Sun Jul 17 01:29:00 20112

End of SingleRandomAccess section.

Active Power consumed = 191 W, without enabling GPU

6.6 CUDA COMPUTATIONS

Before we begin measuring power consumptions owing to GPU usage, we need to enable the

GPU. This is done by switching the Linux operating system to run level 5. The following

command accomplishes this -

init 5

This brings up the GUI mode. For the purposes of the experiment, we switch back to runlevel 3,

under the assumption that we are eliminating any residual power draw for printing graphics on

the screen. This way we are using the GPU strictly as a computational device.

However, once switched on, the GPU will draw a small power of its own. Hence we need to

update our base line values. The new base line values are provided in the following tables –

For every one of the test kernels explained below, tests were run both on the host alone, as well

as using the host and the GPU device. In most cases, visible speed ups could be noticed when

30

running the kernel on the GPU. However, as the aim of this project is not to measure speed up,

the time taken to execute will not be considered. Instead, the power draw alone will be measured.

Additionally, it must be observed from the above tables that the mere process of turning on the

GPU draws in an overall residual power. For some of the test kernels before, we try and find the

median data set, such that for any data set smaller than the median, it would be optimal to run the

code on the CPU itself without turning on the GPU, and similarly for any data set larger than the

median it would be optimal to run the code on the GPU inspite of the residual power draw.

Tables 11 and 12 represent this data.

6.6.1 SIMPLE CUBLAS

In this program, SGEMM is used. For comparison, the code used to run the program entirely on

the CPU involves OpenMP. Table 13 represents this data.

6.6.2 BASIC VECTOR ADDITION

Table 14 represents this data.

6.6.3 MERGE SORT

In this case, the matrix multiplication done both on the host and on the device is the non blocked

multiplication. However, the CPU version does use OpenMP and utilizes all 8 cores available.

This data is presented in table 15.

 6.6.4 SINGLE VERSUS DOUBLE PRECISION COMPUTATIONS

Basic vector operations are performed, such as addition and scaling. This data is presented in

table 16.

31

Figure 1:Base AC power versus CPU frequency

Figure 2:Base DC power versus CPU frequency

Table 1: Base AC power versus CPU

frequency

CPU freq

(MHz)

Base AC

power (Watt)

800 178.7

1500 183

2000 185.4

2700 192.6

Table 2: Base DC power versus CPU

frequency

CPU freq

(MHz)

Base 12V

Rail2 (Watt)

800 52.3

1500 58.2

2000 64.3

2700 68.92

32

Table 3: Base AC power versus stride size

Stride size

Active

Power

(Watts)

1 178.7

2 179.6

4 179.6

8 180

16 180.9

32 181.5

64 181.9

128 182

256 182.6

512 185

1024 185.6

2048 190

4096 190.9

Figure 3:Base AC power versus stride size

33

Table 4: Base AC power for different block and data sizes

Block Size 10000 20000 40000 80000

1 192.2 200 212 220

2 192.8 200.3 212.4 220.1

4 192.8 200.4 212.8 220.3

8 193 201 213.3 221

16 193.4 201.3 213.9 221.5

32 193.5 201.4 214.4 221.6

64 193.6 201.9 214.5 221.8

128 193.8 202.4 215 223

256 193.9 202.5 215.5 223.5

512 196 203 216.8 225

1024 196 203.4 217 226

2048 198 204 218.9 228

4096 198.6 205 219 230

Figure 4:Base AC power for different block and data sizes

34

Table 5: Base AC power for data size 10000

Block Size
No

optimization
"-O1" "-O2" "-O3"

1 192.2 192 191.5 189.3

2 192.8 191 191.3 189.5

4 192.8 192.6 192.2 189.5

8 193 192.7 192 190

16 193.4 192.5 192.2 191.4

32 193.5 193.7 192.1 191.8

64 193.6 193.6 192.8 192.3

128 193.8 194 193.2 192.8

256 193.9 194.2 193.5 193

512 196 195.6 194.2 193.6

1024 196 195.8 195.3 194.2

2048 198 197.4 195.2 194.6

4096 198.6 198 196.2 195.2

Figure 5:Base AC power for data size 10000

35

Table 6: Base AC power for data size 20000

Block Size
No

optimization
"-O1" "-O2" "-O3"

1 200 199.2 198.2 194.5

2 200.3 199.6 198.2 194.9

4 200.4 199.6 198.8 195.2

8 201 199.9 199.3 195.6

16 201.3 200.4 199.7 196.4

32 201.4 200.6 200 196.8

64 201.9 201 200.6 197.3

128 202.4 201.4 201.2 197.4

256 202.5 201.8 201.5 197.4

512 203 201.9 201.7 198.3

1024 203.4 202.8 202.8 198.7

2048 204 203.2 202.9 198.9

4096 205 203.5 203 200.1

Figure 6:Base AC power for data size 20000

36

Table 7: Base AC power for data size 40000

Block Size
No

optimization
"-O1" "-O2" "-O3"

1 212 212.2 212 211

2 212.4 212.4 212.4 211.1

4 212.8 213 212.8 212

8 213.3 213.3 213.3 212.4

16 213.9 213 213.9 212.8

32 214.4 214.4 214.4 213

64 214.5 214.5 214.5 213.8

128 215 214.9 215 214

256 215.5 215 215.5 214.4

512 216.8 216.8 216.8 214.4

1024 217 217 217 215

2048 218.9 218.9 218.9 216

4096 219 219 219 215.6

Figure 7:Base AC power for data size 40000

37

Table 8: Base AC power for data size 80000

 Block

Size

No

optimization
"-O1" "-O2" "-O3"

1 220 220.1 218.2 214.2

2 220.1 219.2 219 214.9

4 220.3 219.7 219.2 215.1

8 221 220.1 220 215.9

16 221.5 220.7 220.5 215.8

32 221.6 221 220.9 216.1

64 221.8 221.3 221.3 216.8

128 223 221.9 222.1 217.3

256 223.5 222.5 222.8 218

512 225 223.1 223 219.1

1024 226 223.9 223.8 219.5

2048 228 225.3 224.9 220.1

4096 230 226.3 226 220.9

Figure 8:Base AC power for data size 80000

38

Table 9: Base AC power using OPENMP

number of

CPUs
800 Mhz

1500

Mhz

2000

Mhz

2700

Mhz

1 178.7 185 189.5 196.6

2 179 185.5 190 197

3 179.5 185.7 190 197.6

4 179.7 186 190.6 198

5 181 190 195 204

6 181.3 191.3 195.1 205

7 182 192 195.2 205.6

8 182.4 192.4 195.5 206

Figure 9:Base AC power using OPENMP

39

Table 10: Base AC power using PTHREADS

number of

CPUs
800 Mhz

1500

Mhz

2000

Mhz

2700

Mhz

1 178.7 185 189.5 196.6

2 178.7 185.5 189.5 197

3 178.9 185.7 190 197.6

4 179 186 190.5 198

5 180 186.5 192 200

6 181 187 192.5 200.2

7 181.2 187.6 192.7 200.5

8 182.4 188 193 201

Figure 10:Base AC power using PTHREADS

40

Figure 11:Base AC power using GPU

Figure 12:Base DC power using GPU

Table 12: Base AC power using GPU

CPU freq

(Mhz)

Base AC

power (Watt)

800 198

1500 200

2000 208

2700 210

Table 11: Base DC power using GPU

CPU freq

(MHz)

Base 12V

Rail2 (Watt)

800 70

1500 74.3

2000 78

2700 80

41

Table 13: Base AC power for different SGEMM runs

Matrix Size ATLAS cuBLAS ACML

5000 210 220 209.8

10000 213.5 220.4 211.7

15000 215 220.6 214.9

20000 218 221 216.7

25000 218.9 224 217.8

30000 220 224.8 218.9

35000 224.3 226 222.1

40000 226.8 228 224.2

45000 228.4 228.9 225.6

50000 230.6 229 228.4

55000 233 230.4 231.1

Figure 13:Base AC power for different SGEMM runs

42

Table 14: Base AC power for vector addition

Vector Size
Host only

Power

Host+GPU

Power

5000 211 220

10000 212.4 220.4

15000 214.6 220.6

20000 216 221

25000 218.7 221.5

30000 219 222.3

35000 221.4 223.4

40000 224.7 223.9

45000 225.1 224.5

50000 225.9 225

55000 226.4 225.8

Figure 14:Base AC power for vector addition

43

Table 15: Base AC power for Merge sort

Vector Size
Host only

Power

Host+GPU

Power

2500 211 220.1

5000 214.2 220.5

10000 216.3 220.7

15000 217.4 221.5

20000 219.5 222.3

25000 221.2 223.7

30000 223.5 224.8

35000 224.3 225.9

40000 225.6 226.6

45000 226.8 228

50000 230.4 228.9

55000 231 229.1

Figure 15:Base AC power for Merge sort

44

Table 16: Base AC power for single and double precision

Vector Size

Single

Precision,

CPU

Single

Precision,

GPU

Double

Precision,

CPU

Double

Precision,

GPU

2500 211 220.1 220 230.1

5000 214.3 220.3 222.1 231.6

10000 215.8 219.6 223.5 232.8

15000 217.3 220.7 224.2 233.5

20000 218.1 222.1 224.9 234.1

25000 221.1 223.7 225.8 234.8

30000 223 224.7 227.1 235.2

35000 224.1 225.4 228.2 236.1

40000 225.8 226.1 229.9 236.6

45000 226.7 227.1 231.1 237.1

50000 228.1 227.8 232 237.9

55000 229.1 228.5 234 238.1

Figure 16:Base AC power for single and double precision

45

CHAPTER 7. DISCUSSION

Tables 1 and 2 establish the dependence of power consumption on the cpu frequency. Most

modern CPUs, especially the ones used in laptop computers provide for a dynamic modulation in

the cpu frequencies depending on the load. The Figures establish that the relation between the

frequency and base power consumed is more or less linear. Thus, from a power point of view, it

would be a wiser idea to let CPUs idle at the lowest possible frequency they can support.

Section 6.1 establishes a relation between cache misses and power consumption. Every time

there‟s a cache miss, there‟s a small jump in power as the next set of elements are brought into

the cache.

Section 6.2 deals with a commonly seen routine in scientific computing, matrix multiplication.

Power consumption, as inferred from previously, jumps if the number of cache misses are high.

Consequently, irrespective of the problem size, keeping the block size smaller than or equal to

the cache line size would yield optimum results.

As explained in section 3.3, GCC performs most supported optimizations that do not involve a

space speed trade off at the second level, and performs optimizations such as inline functions,

unswitch loops at the third level. Even though the third level of optimizations provide a

significant gain in power consumption, the compilation time is drastically increased as well.

Section 6.4 reveals certain interesting results. One of them is that there is not a significant

difference in overall power consumption between OpenMP and Pthread APIs for multi threaded

programming. This provides programmers with higher flexibility when it comes to a choice of

APIs.

46

Additionally, there‟s a significant jump in power consumed when the number of cores increase

from 4 to 5 in the case of OpenMP, but this characteristic of the graph is absent when using

pthreads. Given that the architecture of the machine is dual quad-core, a possible explanation for

this is that the run time environment allocated 4 cores of a single processor for OpenMP

execution, and when the 5
th

 thread was required, the second processor was brought in for

computation thereby resulting in a slight increase in the power consumption.

The HPL and RandomAccess benchmarks from the HPCC suite of benchmarks predict what we

have already learned from the above test runs. Different combinations of P, Q and N were tried

before concluding at 4.14 GFLOPS as the peak performance of the machine. A sudden jump in

the active power consumed confirms this result.

Section 6.6. provides certain interesting conclusions, and probably a reminder of what we are

likely to see more of in the future. In almost all of the test examples, for smaller sizes using the

CPU alone easily proves more beneficial than using the GPU. This could probably be explained

by the fact that merely transmitting data to and from the GPU utilizes time and power, and the

CPU outperforms the GPU before this process finishes. However, as all the graphs indicate, the

power usage curves of the CPUs are always steeper than those of the GPUs, and there‟s always a

point in the graph beyond which the GPUs out perform the CPUs in terms of power

consumption.

Additionally, a special note must be made of the double precision floating point capabilities of

the hardware being used in the test bed. The GTX 260, while supporting double precision, is

more likely to suffer from a degradation in performance since the double precision arithmetic

logic unit is shared between all cores of each multiprocessor.

47

CHAPTER 8. CONCLUSION AND FUTURE WORK

In this thesis, we have looked at some of the factors that are likely to affect power consumption.

As a end user or a developer, there are certain tools in our hands that allow us to write more

energey efficient programs, while we continue relying simultaneously on hardware vendors to

build energy efficient systems. Heterogenous computing with GPUs is definitely a viable

alternative in terms of power consumption, and is already becoming quite popular.

This thesis revolves primarily around scientific computing kernels, all run via the console. We

have not studied the power consumption trends in GUI applications, which are more likely to

affect the non-technical computer users directly. Additionally, we have not studied the power

consumption trends among different operating systems either. With most open source software

being cross platform, and vendors making an effort to release compatible software, the onus is on

the developer to look for energy efficient operating systems.

48

REFERENCES

 [1] San Murugesan, “Harnessing Green IT: Principles and Practices,” IEEE IT Professional,

January–February 2008, pp 24-33.

[2] http://www.nytimes.com/2004/05/08/business/intel-halts-development-of-2-new

microprocessors.html?pagewanted=1. Retrieved July 15, 2011

[3] M. Seager. What are the future trends in highperformance interconnects for parallel

computers? In IEEE Symposium on High-Performance Interconnects (HotI), Aug. 2004

[4] M. Warren, E. Weigle, and W. Feng. High-density computing: A 240-node beowulf in one

cubic meter. In Proceedings of SC2002, Nov. 2002.

[5] Sharma, S. and others. Making a case for a green500 list. In Proceedings of 20
th

 IEEE

International Parallel and Distributed Processing Symposium, 2006, pp 343.

[6] A. Vance. DEC veterans prepare chip challenge for Intel, Amd, Ibm and

Sun.http://www.theregister.co.uk/2005/10/24/pasemi power/,October 2005.

[7] NVIDIA GTX 200 Technical Brief; see

http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf

[8] See ftp://ftp.yokogawa.co.jp/nsfl/com/pr/jkmxc/gs/GS77C01E01-01E_005.pdf

[9] See http://www.texmate.com/media/pdf/2011/03/DI-503_NZ304_L6-24-04.1.pdf

[10] See http://www.lem.com/docs/products/la%2055-p%20sp23%20e.pdf

[11] See http://site.gridconnect.com/docs/PDF/NET485_UM_800240_c.pdf

http://www.nytimes.com/2004/05/08/business/intel-halts-development-of-2-new
ftp://ftp.yokogawa.co.jp/nsfl/com/pr/jkmxc/gs/GS77C01E01-01E_005.pdf
http://site.gridconnect.com/docs/PDF/NET485_UM_800240_c.pdf

49

[12] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra Software. In

Proceedings of Ninth SIAM Conference on Parallel Processing for Scientific Computing, 1999,

CD-ROM Proceedings

[13] See http://gcc.gnu.org/onlinedocs/gcc-4.3.3/gcc/

[14] Dagum , L., and Menon , R. 1998. OpenMP: An industry-standard API for shared-memory

programming. IEEE Comput.Sci. Eng. 5, 1, 46–55.

[15] See http://openmp.org/wp/about-openmp/

[16] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1999.

[17] See http://developer.nvidia.com/cuda-toolkit-40

[18] Luszczek, P., Bailey, D., Dongarra, J., Kepner, J., Lucas, R., Rabenseifner, R., Takahashi,

D.: The HPC Challenge (HPCC) Benchmark Suite. In: SC 2006 Conference Tutorial. IEEE, Los

Alamitos (2006)

[19] Antoine Petitet, R. Clint Whaley, Jack J. Dongarra, and Andy Cleary. HPL – A Portable

Implementation of the High-Performance Linpack Benchmark for Distributed-Memory

Computers. Innovative Computing Laboratory,September 2000. Available at

http://icl.cs.utk.edu/hpl/ and http://www.netlib.org/benchmark/

http://gcc.gnu.org/onlinedocs/gcc-4.3.3/gcc/
http://developer.nvidia.com/cuda-toolkit-40

50

VITA

Hari Sundararajan was born in Kumbakonam, India, in September 1986. Hari came to the United

States to pursue his higher education and joined Louisiana State University (LSU) in August

2004. In August of 2008, he completed his undergraduate education with a Bachelor of Science

in Electrical Engineering. Hari then joined the graduate program in LSU in August 2008 and

completed the requirements for his master‟s degree in August 2011. Hari is the elder son of

Sundararajan Seshadri and Latha Sundaraarjan and has a brother, Badri Sundararajan.

	Louisiana State University
	LSU Digital Commons
	2011

	Power management and optimization
	Hari Sundararajan
	Recommended Citation

	POWER MANAGEMENT AND OPTIMIZATION

