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ABSTRACT 

After many years of focusing on “faster” computers, people have started taking notice of the fact 

that the race for “speed” has had the unfortunate side effect of increasing the total power 

consumed, thereby increasing the total cost of ownership of these machines. The heat produced 

has required expensive cooling facilities.  

As a result, it is difficult to ignore the growing trend of “Green Computing,” which is defined by 

San Murugesan as “the study and practice of designing, manufacturing, using, and disposing of 

computers, servers, and associated subsystems – such as monitors, printers, storage devices, and 

networking and communication systems – efficiently and effectively with minimal or no impact 

on the environment” [1]. 

There have been different approaches to green computing, some of which include data center 

power management, operating system support, power supply, storage hardware, video card and 

display hardware, resource allocation, virtualization, terminal servers and algorithmic efficiency. 

In this thesis, we particularly study the relation between algorithmic efficiency and power 

consumption, obtaining performance models in the process. The algorithms studied primarily 

include basic linear algebra routines, such as matrix and vector multiplications and iterative 

solvers.  

Our studies show that it if the source code is optimized and tuned to the particular hardware 

used, there is a possibility of reducing the total power consumed at only slight costs to the 

computation time. The data sets utilized in this thesis are not significantly large and 

consequently, the power savings are not large either. However, as these optimizations can be 
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scaled to larger data sets, it presents a positive outlook for power savings in much larger research 

environments. 
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CHAPTER 1 - INTRODUCTION 

Since the dawn of computing, the only metric that has always been focused on for improving has 

been performance. Faster has always meant better and towards this end, there has been 

significant progress and research aimed at increasing processor speeds.  

Computer algorithms have generally been constructed, and programs written for sequential 

computation, wherein the program is a sequence of steps to be followed in order to implement 

the algorithm. These steps are executed by a computer, or to be precise, the central processing 

unit of a computer. Traditionally, computers have always had a single central processing unit.  

Efficiency of computers has always been measured in terms of the time the computer takes to 

solve and work through the algorithms it has been programmed for. Since the computer executes 

the steps of the algorithm in a sequential fashion, the total time taken by a computer to run a 

program is given by the product by the number of instructions in the program and the average 

time taken to execute one instruction. Therefore, reducing either of the above factors yields a 

“better-performing” computer.  

Research in algorithms have led to their improvement, which effectively translates into smaller 

number of instructions required. However, there can only be so much improvement done to an 

algorithm before the effect of further research becomes minimal. As a result, the most popular 

way then of improving the performance of computers was through the process of frequency 

scaling.  

Frequency scaling refers to the technique of increasing a processor‟s frequency. Between the 

period from mid-1980s through mid-2000s, processor frequency was increased every year. As 

mentioned earlier, the running time of a particular program is the product of the number of 
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instructions in the program, the average number of cycles required per instruction (a value 

dependent on the program) and the average time the processor takes to execute one cycle. The 

third value, the average time a processor takes to execute one cycle is the inverse of the 

advertised processor frequency, and therefore, an increase in processor frequency directly results 

in a reduced run time.  

Up until around 2004, chip manufacturers got away with constantly increasing frequency of their 

microprocessors. An increase in the processor frequency allowed any program in the market to 

take lesser time to execute, and hence “run faster.” However, the factor that was ignored in this 

process was power. The power consumed by a microprocessor is directly related to the 

capacitance being switched in every cycle, the square of the voltage and the frequency. 

Consequently, climbing higher up the frequency scale implied climbing up the power consumed 

as well. As the power consumed is dissipated as heat, measures had to be taken to cool the 

central processing units.  

Around 2004, Intel stopped production of their single core line of microprocessors, and the 

termination of its Tejas and Jayhawk processors [2] is often heralded as the birth of multi core 

processors, and a new parallel programming paradigm. Manufacturers started including multiple 

cores within their chips, and this required a significant change in the way the algorithms were 

implemented. However, this still doesn‟t tackle the overall problem of cooling the 

microprocessors.  

Over time, the birth of commodity clusters has led to super computers that are able to perform 

hundreds of trillions of floating point operations per second. However, the massive amount of 

power consumed by these computers necessitates the construction of massively extravagant 

cooling facilities as well. Seager of Lawrence Livermore National Laboratory observes that 
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energy bill required to run the supercomputers there are of the order of $8 million per year to 

power up and $6 million [3] per year to cool. Similarly, the building for the ASC Q 

supercomputer at Los Alamos National Laboratory costs nearly $100 million to construct.  

1.1 BACKGROUND 

One of the original attempts at building power efficient machines included Green Destiny [4], a 

240 processor supercomputer that consumed 3.2 kiloWatts of power when booted diskless. One 

of the primary advantages of this computer was its completely lack of unscheduled downtime 

during its two-year run.  Arrhenius equation as applied to microelectronics states that a compute 

node is twice as likely to fail if its temperature raises by 18 degrees F. As a result, keeping the 

power and temperature low also helps with reducing unscheduled downtimes, as Green Destiny 

was able to prove.  

The concept of energy efficient supercomputing came into picture when Sharma et al. [5] made 

the case for a Green 500 List to supplement the Top 500 List, which ranks computers solely on 

the speed metric. They argued for a new list that would also rank computers based on new 

metrics that would indicate the power consumed, such as FLOPS / watt.  

There have also been significant advances made in the industry towards increased power 

efficiency. PA Semi announced their PWRficient ™ Processor family that is a derivative of 

IBM‟s POWER Architecture ™ aims to “really drive a breakthrough in performance per watt” 

[6]. 

There have been other works conducted along similar topics. In their paper on power profiling, 

Feng et al. [20] have concluded that power profiles are regular corresponding to application 
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characteristics and that for fixed problem sizes increasing the number of nodes always increases 

energy consumption but does not always improve performance.  

In this project, frequency is scaled within certain limited values, and studies are made. Similar 

research was performed by Freeh [21] , where they use high performance cluster nodes that are 

frequency and voltage scalable, and save energy by scaling down the CPU. Their paper primarily 

deals with the NAS benchmark and they conclude that the benchmark exhibits a better energy 

time trade off using multiple phases, where a pre set frequency is assigned to each phase 

heuristically. Similar research is also done by the same author in his paper on energy time 

tradeoffs in MPI programs [22]. 

In their paper on improvement of power-performance efficiency for high end computing [23], Ge 

et al. propose a novel approach to utilize parallel performance inefficiencies that are typically 

found in non-interactive, distributed scientific applications and conserve energy using dynamic 

voltage scaling. They present a framework to analyze and optimize the power performance while 

using dynamic voltage scaling. Similar work in the field has also been performed by Hsu et al. 

[24] where they leverage a commodity technology, “dynamic voltage and frequency” scaling to 

implement power aware algorithms in commodity HPC systems.  

1.2 MOTIVATION 

The aim of this project is to take a commercial off the shelf workstation, monitor and observe the 

power consumed for a variety of work loads and in the process of correlating the various factors 

involved, come up with a performance model that can be used to predict and improve power 

consumption depending on what the workstation is used for.  
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Even though certain factors are outside the programmer‟s control, we believe that knowledge of 

the hardware used and its specifications will enable programmers to write code that draws power 

efficiently. While efficiency in terms of time is still the primary metric sought after, certain 

compromises can be allowed if the result is an  improvement along the power metric, since that 

would translate into increased  up times and lowered total cost of ownership.  
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CHAPTER 2 - HARDWARE ENVIRONMENT DESCRIPTION 

2.1 WORKSTATION DETAILS  

The workstation used for testing purposes is a Hewlett Packard xw9400 workstation. The total 

RAM installed in the workstation is 16GB, with 8 Dual Inline Memory Modules (DIMM)  of 

capacity 2GB each. The RAM modules DDR2 Synchronous, with a frequency of 667 Mhz each 

and are 64 bit wide.  

2.2 CPU DETAILS 

The workstation is outfitted with 2 Quad Core AMD Opteron ™ Processor 2384.  This provides 

the programmer with 8 cores to operate on. Additionally, if the operating system supports it, the 

processor can be made to run at different frequencies. This sets itself up for later testing, as 

frequency is a significant factor affecting power consumption. Additionally, the CPUs have 512 

KB of L1 cache, 2MB of L2 cache and 6 MB of L3 cache. The CPUs are 64 bit capable 

2.3 GPU DETAILS 

The workstation also features a NVIDIA GPU. The GPU details, as provided by a deviceQuery 

listing of the NVIDIA CUDA API lists the following –  

CUDA Device Query (Runtime API) version (CUDART static linking) 

There is 1 device supporting CUDA 

Device 0: "GeForce GTX 260" 

  CUDA Driver Version:                           4.0 

  CUDA Runtime Version:                          3.10 
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  CUDA Capability Major revision number:         1 

  CUDA Capability Minor revision number:         3 

  Total amount of global memory:                 939196416 bytes 

  Number of multiprocessors:                     27 

  Number of cores:                               216 

  Total amount of constant memory:               65536 bytes 

  Total amount of shared memory per block:       16384 bytes 

  Total number of registers available per block: 16384 

  Warp size:                                     32 

  Maximum number of threads per block:           512 

  Maximum sizes of each dimension of a block:    512 x 512 x 64 

  Maximum sizes of each dimension of a grid:     65535 x 65535 x 1 

  Maximum memory pitch:                          2147483647 bytes 

  Texture alignment:                             256 bytes 

  Clock rate:                                    1.35 GHz 

  Concurrent copy and execution:                 Yes 

  Run time limit on kernels:                     No 

  Integrated:                                    No 
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  Support host page-locked memory mapping:       Yes 

  Compute mode:                                  Default (multiple host threads can use this device 

simultaneously) 

  Concurrent kernel execution:                   No 

  Device has ECC support enabled:                No 

It must be observed that double precision is supported in CUDA compute capability 1.3 and 

above, and the GTX 260 used for testing purposes works with CUDA compute capability 1.3. 

However, CUDA‟s double precision support is turned off by default; the compiler converts 

doubles into floats inside of kernels. While this might not cause a significant issue in itself, the 

problem is more likely to arise because the host (CPU) code remains unchanged. This causes the 

double precision values on the CPU to be read as multiple single precision values on the GPU. In 

order to prevent this, the following flag is passed to the compiler when it is invoked –  

nvcc –gpu-name sm_13  

Additionally, the NVIDIA GTX 200 Technical Brief [7] states that while the multi processors on 

the GTX 200 series have 8 single precision floating point ALUs (one on each core), there is only 

one double precision ALU per multiprocessor that is shared between all the cores. Consequently, 

applications where the execution time is predominantly dependent on computations are likely to 

see a significant slow down of up to 8. However, the aim of this research is to focus on the power 

consumption, and the tests will be performed accordingly.  

2.4 POWER MONITORING HARDWARE DETAILS   

The following are the hardware being utilized for obtaining power measurements –  
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AC power meter – Yokogawa PR 300 

DC meter – Texmate DI-503 E  with IQD2 input board (quad channel 50 mV converter) 

Hall effect transducers: LA 55-P / SP23 by LEM 

Communications Bridge – Net485 from Gridconnect 

A brief description of the hardware is provided below.  

The Yokogowa PR300 is an industry standard panel mounted power and energy meter for 

monitoring energy consumption. For the purpose of this research, this device is used for 

measuring active power. It features a large triple display and provides for a wide choice of 

measurement items. It is equipped with a standard RS-485 communication function and it is 

capable of Ethernet communication, which is the method used in this research as well. The 

device can be used in a variety of different configurations, such as single phase two wire system, 

single phase three wire system, or three phrase systems. The device has been setup for a simple 

single phase two wire system [8]. 

The Texmate DI-503E is a programmable meter controller. It is equipped to handle upto 4 input 

channels, and in this research, the inputs are connected to a 3V rail, a 5V rail, and two 12V rails. 

The GPU is connected to a 12 V rail, and hence significant fluctuations are observed along this 

line when performing measurements of GPU computations. Similarly, the CPU is powered by 

the other 12V rail and this is the rail monitored when performing computations that involve CPU 

factors, such as number of CPUs and CPU frequency [9]. 

The LA 55 –P / SP23 is a closed loop compensated current transducer that uses the Hall effect. 

This eliminates the need for actual wire connections [10]. 
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The NET485 bridge allows the connection between the monitoring computer and the RS485 

interface on the Yokogowa PR300, which in turn enables remote serial communications [11].  

2.5 EXPERIMENTAL SETUP 

The power monitoring hardware as described above is connected directly to a workstation (also 

described earlier). A separate profiling computer is connected to the power meters through the 

Net485 bridge, and it is on this computer that the readings are measured. The readings are 

sampled, by default, every 0.5 seconds. The application used to obtain the values allows for a 

padding value, which is the amount of time for which measurements are taken before running the 

test, and after running the test, which allows us to study variations in the power draw. The power 

monitoring application is executed on the profiling machine. One of the arguments for this 

command is the name of the application to be executed on the test bed, and this happens via SSH 

over Ethernet.  

The power monitoring meters are plugged into the same power strip that the test bed is connected 

to. It must be observed that this setup merely measures the wall socket power drawn by the 

motherboard, and doesn‟t measure the power draw of individual components such as the hard 

disk. This implies our power monitoring measurements should primarily be done around 

compute-intensive applications.  

In order to generate the Green 500 List, the authors keep the software configuration similar 

across all systems, and measure the power drawn with a setup similar to the above setup across 

different systems. However, in this case, we take a single system and measure the power drawn 

with a variety of different software configurations to provide a different perspective into power 

consumption.   
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CHAPTER 3. - SOFTWARE ENVIRONMENT DESCRIPTION 

3.1 OPERATING SYSTEM  

Both the test bed and the profiling computer run the Fedora 12 operating system with the 

2.6.31.5-127.fc12.x86_64 SMP Linux kernel. This is a SMP enabled kernel.  

The operating system allows for dynamic modification of the CPU frequency. This is 

accomplished by the following command  

cpufreq-selector -c $i -f $num 

$i refers to the CPU number and can take on values between 0 and 7, for the 8 available cores. 

$num refers to the frequency speed. The file 

/sys/devices/system/cpu/cpuXX/cpufreq/scaling_available_frequencies lists the frequencies that 

are supported for switching by the operating system, and for the test bed values, these values 

were found to be 2700000, 2000000, 1500000 and 800000.  

The file /sys/devices/system/cpu/cpuXX/cpufreq/scaling_available_governors lists the different 

modes that the CPU frequency switching can take on. Setting it performance will allow the CPU 

to run at maximum speed and setting it to ondemand allows the operating system to dynamically 

switch between the different available frequencies depending on the workload. This is not an 

option we will be utilizing in this research. The userspace governor setting allows the CPU to be 

at a particular frequency 

3.2 BASIC LINEAR ALGEBRA SUBROUTINES – ATLAS  

ATLAS [12] stands for Automatically Tuned Linear Algebra Software. It is an ongoing research 

effort that aims at providing a portable and optimal version of standard linear algebra routines 
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with C and Fortran interfaces. It provides a complete BLAS API and a small subset of LAPACK 

API. The version of ATLAS used in this research project is 3.8.4. It provides C and Fortran77 

interfaces to routines such as GESV, GETRF, GETRS, GETRI, TRTRI etc. ATLAS provides a 

custom C interface to LAPACK, as LAPACK doesn‟t have an official C interface. Additionally, 

static libraries are provided by default. The interface provided by ATLAS is used by the HPL 

and HPCC benchmarks.  

3.3 AMD CORE MATH LIBRARY – ACML 

ACML is a set of math routines that are thoroughly optimized and threaded for HPC applications 

by AMD for their processors. It provides a full implementation of Levels 1,2 and 3 of Basic 

Linear Algebra Subroutines and LAPACK routines. The interface provided by ACML is used to 

compare against the similar interface provided by ATLAS for SGEMM calculations 

3.4 COMPILER TOOLCHAIN – GCC  

The compiler used for the CPU –based code is GCC version 4.4.3, built with posix threads 

support. This compiler also has support for OpenMP, which is described in a later section. The 

compiler allows for various optimizations at different optimization levels, some of which are 

described below. Measurements are taken at different optimization levels in order to study the 

effect of compiler optimization on power consumption. GCC supports three levels of 

optimization [13], with each higher level performing all optimizations done at the previous level 

and an additional set. At the first level, the compiler attempts to reduce code size and execution 

time without performing optimizations that require additional time. At the second level, GCC 

attempts all supported optimizations that do not involve space – time trade off. This option 
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increases compilation time. The third level performs loop unrolling and function inlining along 

with optimizations that would have been performed in the previous levels. 

 Default Inline – Do not make member functions inline by default if they are defined 

inside the class scope (C++). Turned on in level 1.  

 Loop optimize – Performs loop optimizations, such as moving constant expressions 

outside the loop, simplifying exit test conditions and attempts at loop unrolling 

 If-conversion – Attempt to transform conditional jumps into branch less equivalents.  

 Defer-pop – Always pop the arguments to each function call as soon as that function 

returns.  

 Inline functions – The compiler heuristically decides which functions are simple enough 

to be worth integrating directly into their callers.  

Other optimizations can be found in the GCC Manual.  

3.5 PARALLEL PROGRAMMING API – OPENMP 

OpenMP is an API for shared memory multiprocessing programming using C, C++ and Fortrain. 

It consists of compiler directives, library routines and environment variables [14] that influence 

and direct run time behavior. It uses a portable model that gives programmers a simple way to 

utilize all available cores on a shared memory symmetric multiprocessor based system. 

OpenMP is managed by a technology consortium consisting of major computer hardware and 

software vendors such as AMD, IBM, Intel, Cray, HP, NVIDIA and others [15]. 
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OpenMP implements multithreading , wherein the thread that is executing the program (also 

referred to as master thread)  forks a specified number of threads (also referred to as slave 

threads) and the run time environment allocates the different threads to the different processing 

units available. This allows the programmer to control the number of cores being used in the 

code. The operating system allocates threads to the processing units depending on factors such as 

usage and machine load. The number of allocable threads is assigned by setting the values of 

certain environment variables before the execution of the code. OpenMP provides support for 

both task parallelism as well as data parallelism.  

3.6 PARALLEL PROGRAMMING API – MPI  

MPI stands for Message Passing Interface [16], and is the industry standard for parallel 

programming on super computers and computer clusters. While the previously described 

OpenMP API is primarily used as shared memory multithreaded programming library, MPI is 

primarily targeted at distributed memory programming, where the individual “threads”  (referred 

to as processes in MPI) are typically run on different machines connected over a Local Area 

Network. Thus each process is likely to have access to only its own local memory.  

MPI library functions include point to point rendezvous type send/receive operations, combining 

partial results of computations such as gather and reduce, exchanging data between processes 

and synchronizing processes through barriers.  

There exist different implementations of MPI. For the purpose of this project, MPICH 1.2.7p1 

was chosen. Additionally, even though MPI is traditionally meant for distributed memory 

machines, MPICH also provides for using shared memory as a channel for communication. This 

was accomplished using the ch_shmem option while compiling MPICH.  
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3.7 PARALLEL PROGRAMMING API – POSIX THREADS 

In shared memory multiprocessors architectures such as the one used in the test bed, threads are 

often used to implement parallelism. Hardware vendors often implement their own proprietary 

implementations towards this end, however, the IEEE POSIX 1003.1 c standard specifies a 

standard C language interface for programming threads.  

 The pthreads API consists of subroutines falling in to 4 major categories 

 Thread management – Routines that create, detach, join and perform other operations on 

threads  

 Mutexes – Routines that deal with synchronizations using mutual exclusions 

 Condition Variables – Routines that deal with communications between threads that 

share mutexes 

 Synchronization – Routines that deal with locks and barriers.  

3.8 GPU PROGRAMMING API - CUDA 

CUDA, which stands for Compute Unified Device Architecture is a proprietary architecture 

developed by NVIDIA for use with their Graphics Processing Units (GPUs).  „C for CUDA‟ 

provides programmers a C programming interface with NVIDIA specific extensions and 

restrictions) that allows for coding algorithms to be executed on the NVIDIA GPUs.  

GPUs were traditionally used for applications such as gaming and graphics rendering. However, 

the GPU can also be viewed as a compute capable device [17] consisting of an extremely large 

number of processing units. This technique of using the GPU for performing computations in 
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applications that were once strictly the domain of CPU is known as GPGPU (General Purpose 

computing on Graphics Processing Units). The GPU acts as co-processor to the CPU, and allows 

data parallel, compute intensive portions of applications to be offloaded onto itself.  

Data-parallel refers to the parallel programming paradigm where the same set of operations are 

carried out independently on different data. As long as the computations are independent, the 

task can be compiled into an instruction set for the GPU and can be downloaded onto the GPU.  

The GPU itself is implemented as a set of multiprocessors, each having a Single Instruction 

Multiple Data architecture (SIMD). At any given clock cycle, the processors are all performing 

the same operation, but they are operating on different data.  

For instance, in the GeForce GTX 260 used in the test bed, the number of multi processors is 

listed as 27 and the number of cores is listed as 216, thereby implying that each multiprocessor 

has 8 cores. 

nvcc is NVIDIA‟s compiler driver that allows compilation of CUDA code. The workflow of this 

compiler initially involves separating the device (GPU) code from the host (CPU) code. The 

CPU code is eventually compiled by the host compiler. The GPU code is compiled into a binary 

object. This binary object is then loaded and executed on the GPU using the CUDA driver API.  

Further details regarding CUDA and nvcc‟s workflow can be found in the NVIDIA CUDA 

Programmer‟s Guide [17]. 
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CHAPTER 4 – BENCHMARKS AND WORKLOAD DESCRIPTION 

In this section, we describe the various applications being run on the CPU and the GPU. While 

some applications are industry standard benchmarks, some applications are smaller applications 

coded in order to expose and stress particular factors individually to monitor whether or not they 

have an impact on power consumption.  

4.1 EFFECT OF CACHE ACCESS  

We explore the impact of cache lines on power consumption. We run loops of the form  

for (int i=0; i<array.Length(); i+= K) arr[i] *= 3; 

In the above loop, we expect to see different run times for different values of K. CPU‟s fetch 

memory in chunks of typically 64 bytes called cache lines. When a particular memory location is 

accessed, the entire cache line is fetched from the main memory into the cache, and subsequent 

accesses to elements in the cache are much faster.  

We then monitor the power consumed in different iterations.  

4.2 BLOCK MATRIX MULTIPLICATION 

The basic matrix multiplication algorithm is the one that involves three nested loops. However, 

with block multiplication, we take groups of elements (the number of elements in the group is 

equal to the block size) and then then perform multiplication / addition operation on those 

elements as required. The idea behind this implementation is that the group of elements are on 

the cache and this reduces cache misses.  

This test is performed as an extension of the previous Cache Access test.  
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4.3 GCC OPTIMIZATION 

The matrix multiplication code is compiled with varying GCC optimization levels and power 

consumption is monitored.  

4.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING                            

Matrix multiplication is carried out using OpenMP and pthreads. The least common multiple of 

1,2,3,4,5,6,7 and 8 is taken as the smallest size of the matrix (840), which allows us to use any 

number of processors and have the tasks divided evenly between the processor cores.  

4.5 HIGH PERFORMANCE COMPUTING CHALLENGE BENCHMARKS (HPCC)  

The HPCC benchmarks [18] consists of 7 tests. 

1 HPL – The Linpack benchmark, which measures floating point rate of execution while 

solving a linear system of equations.  

2 DGEMM – Measures rate of execution of Double recision General Matrix Multiplication 

3 STREAM -  Measures sustainable memory bandwidth and corresponding computation rates 

for a vector kernel 

4 PTRANS – Parallel Matrix Transpose, bandwidth that stresses the communications capacity 

of a network 

5 RandomAccess – Measures the rate of integer random updates of memory (GUPS – Giga 

Updates Per Second)  

6 FFT – Floating point rate of execution of double precision complex Discrete Fourier 

Transform 
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7 Communication bandwidth and latency – Tests and measures latency and bandwidth using 

various simultaneous communication patterns.  

The HPCC benchmarks were designed with the goal of examining the performance of 

supercomputers with memory access patterns different from that of the standard HPL. The 

Top500 List is solely based on the performance of the supercomputer on the HPL benchmark, 

and these tests were designed to compare performances using additional metrics.  

For this research project, special focus shall be given to HPL and RandomAccess, as we believe 

that the execution rate as well as memory updates can influence power consumption. DGEMM 

and FFT could have been used as well; however, HPL is easily ported to the GPU using CUDA 

and hence is a convenient way to measure power consumption across different scenarios 

involving the CPU and the GPU.  

 4.5.a HIGH PERFORMANCE LINPACK 

LINPACK is a software library that provides a FORTRAN interface for performing numerical 

linear algebra. It utilizes the BLAS (Basic Linear Algebra Subroutines) libraries for performing 

basic vector and matrix operations. It solves linear systems whose matrices are general, banded, 

symmetric indefinite  

Originally, LINPACK was used as a measure of a system‟s floating point computing power. The 

benchmark solves a dense system of linear equations using the Gaussian Elimination algorithm 

with partial pivoting. This result is then reported in millions of floating point operations per 

second.  

With the advancements in super computing technology and the advent of beowulf clusters built 

out of Commercial Off The Shelf computers, Linpack was no longer a good super computer 
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benchmark as it focused primarily on floating point arithmetic units and cache memory and not 

on the shared memory or the node interconnect. Linpack‟s memory access patterns disregard the 

multi layered memory hierarchies of modern machines and hence more time than necessary was 

being spent on moving data as opposed to actual computation. LAPACK addresses this problem 

by reorganizing the algorithms to use block matrix operations in the inner loops. However, in 

order to obtain the fastest possible performance, LAPACK would require that optimized block 

matrix operations be already available on the host machine. This is where ATLAS is used.  

Additionally, Linpack as a benchmark gave way to High Performance Linpack [19], which too is 

a software package that solves a random dense linear system in double precision arithmetic on 

distributed memory computers. This algorithm uses a two dimensional block cyclic data 

distribution, followed by a variant of the LU factorization with row partial pivoting and recursive 

panel factorization and finally a backward substitution. Thus, HPL not only times the calculation 

of a solution, but it also provides a way of quantifying the accuracy of the obtained solution.  

4.5.b RANDOM ACCESS 

The current trend in processor architecture is to focus on having longer cache lines and better 

stride performance. However, random memory access is also a metric that needs to be given 

importance.  

RandomAccess (GUPS) is a benchmark that works by identifying the number of memory 

locations that can be randomly updated in one second, divided by 1 Billion. An update is defined 

as a read-modify-write operation on a table of 64 bit words.  

The authors provide multiple variations of the GUPS benchmark, including Sequential and Multi 

threaded local versions and MPI versions for distributed computers.  
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4.6 CUDA COMPUTATIONS 

In order to test the power monitoring characteristics of the GPU, we run a variety of programs  

on the GPU. Some basic tests are described below –  

1. CuBLAS – BLAS for CUDA, performing basic linear algebra sub routines  

2. Basic vector addition 

3. Merge sort .  

4. Computation with single precision and double precision values  
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CHAPTER 5  -EXPERIMENTAL METHODOLOGY 

A typical output when using the power monitoring software for an application is as follows–  

AC[02]: starting monitor thread 

AC[02]:    0.037 -> active power: 177.60 W 

 The above is repeated for as many samples as requested   

******:    2.500 ** Starting: ssh c04 ../RemoteScript 

AC[02]:    2.516 -> active power: 177.60 W 

******:    2.743 ** Application exited 

AC[02]:    3.016 -> active power: 183.60 W 

 The active power continues to get monitored for as many samples as requested   

DC Readings - DC[02]: starting monitor thread 

DC[02]:    0.037 -> 3.3V rail:  7.61 W 

DC[02]:    0.037 -> 5V rail:   9.38 W 

DC[02]:    0.037 -> 12V rail1: 16.02 W 

DC[02]:    0.037 -> 12V rail2:  70.19 W 

 The above is repeated for as many samples as requested  

******:    3.500 ** Starting: ssh c04 ~/Codes/xGPUvectorAdd 

DC[02]:    3.515 -> 3.3V rail:  7.60 W 
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DC[02]:    3.515 -> 5V rail:   9.38 W 

DC[02]:    3.515 -> 12V rail1: 16.02 W 

DC[02]:    3.515 -> 12V rail2:  69.46 W 

 The above is once again shown at the sampling rate till the application exits   

******:    4.892 ** Application exited 

DC[02]:    5.014 -> 3.3V rail:  7.58 W 

DC[02]:    5.014 -> 5V rail:   9.38 W 

DC[02]:    5.014 -> 12V rail1: 24.67 W 

DC[02]:    5.014 -> 12V rail2:  97.93 W 

 The above is again shown for as many samples as requested   

A couple of observations must be made at this point. In the following command  

powermon –n 2 –a –p 7 – ssh “~/RemoteScript” 

powermon represents the name of the executable run on the profiling computer, which is a 

custom written program that accesses the registers on the power monitors to obtain the power 

measurements.  

The –n switch is used to indicate the number associated with the test bed. The test bed is node 2 

of 4 in the configuration used in the lab, and hence the value.  

The next switch indicates whether AC active power values are measured, or the power draw on 

individual rails are measured. This switch is optional. Not including either of –a  or –d  will  
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result in a combined output of both sets of values. 

The –p switch indicates the amount of padding around application start and termination, in 

number of samples.  

Additionally, the sampling period can be changed with a –s argument switch. The default value 

as can be observed from the time stamps is 500 milliseconds.  

Even though it is not shown in the above output, the-o switch allows the output to be redirected 

to a file. The output from the execution of the remote program is redirected to stderr.  

ssh is the protocol used to communicate with the test bed. 

The command to be executed on the test bed is included within quotes. Since the running of 

CUDA programs, HPCC benchmarks and OpenMP programs require the setting of environment 

variables, the commands are included in a script file on the test bed, which is then sourced 

through the SSH command run on the profiling computer.  

Since the entire execution happens on a terminal, it allows us to create scripts that execute the 

program multiple times with varying data, in order to obtain substantial data. Text processing is 

then done on the obtained data in order to extract the relevant information, which is then plotted 

and studied.  

The following tests were conducted, in the order of the workload descriptions provided in the 

previous chapter. 

1. Simple loops with varying strides to measure cache sizes (Refer Chapter 4.1) 

2. Block matrix multiplications (Refer Chapter 4.2) 
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a. Vary block size 

b. Vary problem size  

3. Block matrix multiplication with different GCC optimizations (Refer Chapter 4.3) 

4. Symmetric Multiprocessor Parallel Programming with block matrix multiplication (Refer 

Chapter 4.4) 

a. Vary number of CPUs used  

b. Vary processor speed of CPUs  

5. HPCC benchmarks  

a. HPL benchmark (Refer Chapter 4.5.a) 

i. Vary number of processes 

ii. Vary problem sizes 

b. RandomAccess benchmark (Refer Chapter 4.5.b) 

6. Computations on the GPU, with varying problem sizes (Refer Chapter 4.6) 
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CHAPTER 6 – EXPERIMENTAL RESULTS  

The first measurement taken involves the base line values. This shall be our reference point of 

origin for all further readings.  

This reading is measured after a clean restart. Since the operating system has been configured to 

start in runlevel 3, the graphics card has not yet started drawing power. Once we manually 

change the runlevel to 5 with the following command 

init 5 

Linux starts its X Windows and enters its Graphical User Interface mode. At this point, the GPU 

begins to draw power and all further measurements (even after switching off the GUI) will be 

influenced by this. This will require calculating a new power base line as well.  

After having obtained base line values, we proceed to conduct experiments that only use the 

CPU, reserving the GPU use for later.  

Tables 1 and 2 represent the active power drawn and the DC power drawn for different base line 

values. Figures 1 and 2 are corresponding graphical representations.  

6.1 EFFECT OF CACHE ACCESS 

In this program,  we step over an array incrementing every 16
th

 integer. Upon reaching the last 

value, we loop back to the beginning. We experiment with different array jumps and observe the 

power draw. It can be observed that there‟s a significant climb when the array sizes are 512 and 

2048 kb, which are the sizes of the L1 and L2 caches.  

Table 3 represents the active power drawn for different stride sizes, and figure 3 is its 

corresponding graphical representation.  
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6.2 BLOCK MATRIX MULTIPLICATION 

In this section, we take the regular matrix multiplication code, and modify it take a group of 

elements (Block). The motivation behind this technique is to improve cache access, as the 

“group” of elements that we will be working on is expected to be in the cache, as opposed to the 

original triple nested loop where we have far more frequent cache misses.  

Provided below are certain observations from varying the block sizes and the problem sizesThe 

CPU frequency was kept constant throughout, and the code used for the above was sequential 

block matrix multiplication.  

Table 4 shows different values of active power consumed for different combinations of block 

size and data size, and the data is represented pictorially in figure 4.  

6.3 GCC OPTIMIZATION 

Tables 5, 6, 7 and 8 (and corresponding figures 5,6,7 and 8) represent the active power drawn for 

different GCC optimization levels for data sizes of 10000, 20000, 40000 and 80000 respectively.  

6.4 SYMMETRIC MULTIPROCESSOR PARALLEL PROGRAMMING 

In this section, we take the block matrix multiplication algorithm we have been using and 

observe that matrix multiplication is effectively embarrassingly parallel. As a result, it can be 

trivially parallelized.  

As we are on a shared memory architecture machine, both of the matrices are available entirely 

to every thread / process. Each thread updates its individual results in the product matrix.  

We vary the number of CPUs used between 1 and 8, which is the total number of processing 

cores in the test bed.  
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The processor speed of the CPUs is also varied between the allowed values of 800 MHz, 1500 

MHz, 2000 MHz and 2700 MHz. The problem size is kept constant at 84000 and a block size of 

64 is chosen.  

Tables 9 and 10 represent the data measured when using OpenMP and Pthreads respectively. 

The biggest observation that can be drawn is that in the case of OpenMP, when the 5
th

 thread is 

made available, there‟s a significant jump in the power draw. However, in the case of pthreads, 

the power draw is more or less uniformly increasing.  

6.5.a  HIGH PERFORMANCE LINPACK 

The input for running the HPL benchmark is in the form of a file named HPL.dat. Some relevant 

factors are explained below –  

Line 5 – This line specifies the number of problem sizes to be executed. In our case, we always 

keep it 1, since we are measuring power consumed for each variation.  

Line 6 – The problem size. We vary this value (N) 

Line 7 – The value of the block size for each run 

Line 10 – Number of process grids. Again, we will be running one at a time.  

Line 11 and 12 – Specifies the number of process rows and columns of the grid, which in turn 

corresponds to available cores. Therefore, we monitor power consumed for different values of P 

and Q such that P*Q <= 8 

6.5.b GUPS – GIGA UPDATES PER SECOND  

In this research, GUPS is run in a sequential fashion. The following results were obtained.  
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Begin of SingleRandomAccess section. 

Node(s) with error 0 

Node selected 1 

Single GUP/s 0.190227 

Current time (1310884140) is Sun Jul 17 01:29:00 20112 

End of SingleRandomAccess section. 

Active Power consumed = 191 W, without enabling GPU 

6.6 CUDA COMPUTATIONS 

Before we begin measuring power consumptions owing to GPU usage, we need to enable the 

GPU. This is done by switching the Linux operating system to run level 5. The following 

command accomplishes this -  

init 5 

This brings up the GUI mode. For the purposes of the experiment, we switch back to runlevel 3, 

under the assumption that we are eliminating any residual power draw for printing graphics on 

the screen. This way we are using the GPU strictly as a computational device. 

However, once switched on, the GPU will draw a small power of its own. Hence we need to 

update our base line values. The new base line values are provided in the following tables –  

For every one of the test kernels explained below, tests were run both on the host alone, as well 

as using the host and the GPU device. In most cases, visible speed ups could be noticed when 
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running the kernel on the GPU. However, as the aim of this project is not to measure speed up, 

the time taken to execute will not be considered. Instead, the power draw alone will be measured.  

Additionally, it must be observed from the above tables that the mere process of turning on the 

GPU draws in an overall residual power. For some of the test kernels before, we try and find the 

median data set, such that for any data set smaller than the median, it would be optimal to run the 

code on the CPU itself without turning on the GPU, and similarly for any data set larger than the 

median it would be optimal to run the code on the GPU inspite of the residual power draw. 

Tables 11 and 12 represent this data.  

6.6.1 SIMPLE CUBLAS 

In this program, SGEMM is used. For comparison, the code used to run the program entirely on 

the CPU involves OpenMP.  Table 13 represents this data.  

6.6.2 BASIC VECTOR ADDITION 

Table 14 represents this data.  

6.6.3 MERGE SORT 

In this case, the matrix multiplication done both on the host and on the device is the non blocked 

multiplication. However, the CPU version does use OpenMP and utilizes all 8 cores available. 

This data is presented in table 15.  

 6.6.4 SINGLE VERSUS DOUBLE PRECISION COMPUTATIONS 

Basic vector operations are performed, such as addition and scaling. This data is presented in 

table 16.  
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Figure 1:Base AC power versus CPU frequency 

 

Figure 2:Base DC power versus CPU frequency 

Table 1: Base AC power versus CPU 

frequency 

CPU freq 

(MHz) 

Base AC 

power (Watt) 

800 178.7 

1500 183 

2000 185.4 

2700 192.6 

 

Table 2: Base DC power versus CPU 

frequency 

CPU freq 

(MHz) 

Base 12V 

Rail2 (Watt) 

800 52.3 

1500 58.2 

2000 64.3 

2700 68.92 
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Table 3: Base AC power versus stride size 

Stride size 

Active 

Power 

(Watts) 

1 178.7 

2 179.6 

4 179.6 

8 180 

16 180.9 

32 181.5 

64 181.9 

128 182 

256 182.6 

512 185 

1024 185.6 

2048 190 

4096 190.9 

 

 

 

Figure 3:Base AC power versus stride size 
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Table 4: Base AC power for different block and data sizes 

Block Size 10000 20000 40000 80000 

1 192.2 200 212 220 

2 192.8 200.3 212.4 220.1 

4 192.8 200.4 212.8 220.3 

8 193 201 213.3 221 

16 193.4 201.3 213.9 221.5 

32 193.5 201.4 214.4 221.6 

64 193.6 201.9 214.5 221.8 

128 193.8 202.4 215 223 

256 193.9 202.5 215.5 223.5 

512 196 203 216.8 225 

1024 196 203.4 217 226 

2048 198 204 218.9 228 

4096 198.6 205 219 230 

 

 

Figure 4:Base AC power for different block and data sizes 
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Table 5: Base AC power for data size 10000 

Block Size 
No 

optimization 
"-O1" "-O2" "-O3" 

1 192.2 192 191.5 189.3 

2 192.8 191 191.3 189.5 

4 192.8 192.6 192.2 189.5 

8 193 192.7 192 190 

16 193.4 192.5 192.2 191.4 

32 193.5 193.7 192.1 191.8 

64 193.6 193.6 192.8 192.3 

128 193.8 194 193.2 192.8 

256 193.9 194.2 193.5 193 

512 196 195.6 194.2 193.6 

1024 196 195.8 195.3 194.2 

2048 198 197.4 195.2 194.6 

4096 198.6 198 196.2 195.2 

 

 

Figure 5:Base AC power for data size 10000 
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Table 6: Base AC power for data size 20000 

Block Size 
No 

optimization 
"-O1" "-O2" "-O3" 

1 200 199.2 198.2 194.5 

2 200.3 199.6 198.2 194.9 

4 200.4 199.6 198.8 195.2 

8 201 199.9 199.3 195.6 

16 201.3 200.4 199.7 196.4 

32 201.4 200.6 200 196.8 

64 201.9 201 200.6 197.3 

128 202.4 201.4 201.2 197.4 

256 202.5 201.8 201.5 197.4 

512 203 201.9 201.7 198.3 

1024 203.4 202.8 202.8 198.7 

2048 204 203.2 202.9 198.9 

4096 205 203.5 203 200.1 

 

 

Figure 6:Base AC power for data size 20000 
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Table 7: Base AC power for data size 40000 

Block Size 
No 

optimization 
"-O1" "-O2" "-O3" 

1 212 212.2 212 211 

2 212.4 212.4 212.4 211.1 

4 212.8 213 212.8 212 

8 213.3 213.3 213.3 212.4 

16 213.9 213 213.9 212.8 

32 214.4 214.4 214.4 213 

64 214.5 214.5 214.5 213.8 

128 215 214.9 215 214 

256 215.5 215 215.5 214.4 

512 216.8 216.8 216.8 214.4 

1024 217 217 217 215 

2048 218.9 218.9 218.9 216 

4096 219 219 219 215.6 

 

 

Figure 7:Base AC power for data size 40000 

 

 



37 

  

Table 8: Base AC power for data size 80000 

 Block 

Size 

No 

optimization 
"-O1" "-O2" "-O3" 

1 220 220.1 218.2 214.2 

2 220.1 219.2 219 214.9 

4 220.3 219.7 219.2 215.1 

8 221 220.1 220 215.9 

16 221.5 220.7 220.5 215.8 

32 221.6 221 220.9 216.1 

64 221.8 221.3 221.3 216.8 

128 223 221.9 222.1 217.3 

256 223.5 222.5 222.8 218 

512 225 223.1 223 219.1 

1024 226 223.9 223.8 219.5 

2048 228 225.3 224.9 220.1 

4096 230 226.3 226 220.9 

 

 

Figure 8:Base AC power for data size 80000 
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Table 9: Base AC power using OPENMP 

number of 

CPUs 
800 Mhz 

1500 

Mhz 

2000 

Mhz 

2700 

Mhz 

1 178.7 185 189.5 196.6 

2 179 185.5 190 197 

3 179.5 185.7 190 197.6 

4 179.7 186 190.6 198 

5 181 190 195 204 

6 181.3 191.3 195.1 205 

7 182 192 195.2 205.6 

8 182.4 192.4 195.5 206 

 

 

Figure 9:Base AC power using OPENMP 
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Table 10: Base AC power using PTHREADS 

number of 

CPUs 
800 Mhz 

1500 

Mhz 

2000 

Mhz 

2700 

Mhz 

1 178.7 185 189.5 196.6 

2 178.7 185.5 189.5 197 

3 178.9 185.7 190 197.6 

4 179 186 190.5 198 

5 180 186.5 192 200 

6 181 187 192.5 200.2 

7 181.2 187.6 192.7 200.5 

8 182.4 188 193 201 

 

 

Figure 10:Base AC power using PTHREADS 

 

 

 

 

 



40 

  

 

 

 

 

Figure 11:Base AC power using GPU 

 

Figure 12:Base DC power using GPU 

Table 12: Base AC power using GPU 

CPU freq 

(Mhz) 

Base AC 

power (Watt) 

800 198 

1500 200 

2000 208 

2700 210 

 

Table 11: Base DC power using GPU 

CPU freq 

(MHz) 

Base 12V 

Rail2 (Watt) 

800 70 

1500 74.3 

2000 78 

2700 80 
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Table 13: Base AC power for different SGEMM runs 

Matrix Size ATLAS cuBLAS ACML 

5000 210 220 209.8 

10000 213.5 220.4 211.7 

15000 215 220.6 214.9 

20000 218 221 216.7 

25000 218.9 224 217.8 

30000 220 224.8 218.9 

35000 224.3 226 222.1 

40000 226.8 228 224.2 

45000 228.4 228.9 225.6 

50000 230.6 229 228.4 

55000 233 230.4 231.1 

 

 

Figure 13:Base AC power for different SGEMM runs 
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Table 14: Base AC power for vector addition 

Vector Size 
Host only 

Power 

Host+GPU 

Power 

5000 211 220 

10000 212.4 220.4 

15000 214.6 220.6 

20000 216 221 

25000 218.7 221.5 

30000 219 222.3 

35000 221.4 223.4 

40000 224.7 223.9 

45000 225.1 224.5 

50000 225.9 225 

55000 226.4 225.8 

 

 

Figure 14:Base AC power for vector addition 
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Table 15: Base AC power for Merge sort 

Vector Size 
Host only 

Power 

Host+GPU 

Power 

2500 211 220.1 

5000 214.2 220.5 

10000 216.3 220.7 

15000 217.4 221.5 

20000 219.5 222.3 

25000 221.2 223.7 

30000 223.5 224.8 

35000 224.3 225.9 

40000 225.6 226.6 

45000 226.8 228 

50000 230.4 228.9 

55000 231 229.1 

 

 

Figure 15:Base AC power for Merge sort 
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Table 16: Base AC power for single and double precision 

Vector Size 

Single 

Precision, 

CPU 

Single 

Precision, 

GPU 

Double 

Precision, 

CPU 

Double 

Precision, 

GPU 

2500 211 220.1 220 230.1 

5000 214.3 220.3 222.1 231.6 

10000 215.8 219.6 223.5 232.8 

15000 217.3 220.7 224.2 233.5 

20000 218.1 222.1 224.9 234.1 

25000 221.1 223.7 225.8 234.8 

30000 223 224.7 227.1 235.2 

35000 224.1 225.4 228.2 236.1 

40000 225.8 226.1 229.9 236.6 

45000 226.7 227.1 231.1 237.1 

50000 228.1 227.8 232 237.9 

55000 229.1 228.5 234 238.1 

 

 

Figure 16:Base AC power for single and double precision 



45 

  

CHAPTER 7. DISCUSSION 

Tables 1 and 2 establish the dependence of power consumption on the cpu frequency. Most 

modern CPUs, especially the ones used in laptop computers provide for a dynamic modulation in 

the cpu frequencies depending on the load. The Figures establish that the relation between the 

frequency and base power consumed is more or less linear. Thus, from a power point of view, it 

would be a wiser idea to let CPUs idle at the lowest possible frequency they can support.  

Section 6.1 establishes a relation between cache misses and power consumption. Every time 

there‟s a cache miss, there‟s a small jump in power as the next set of elements are brought into 

the cache.  

Section 6.2 deals with a commonly seen routine in scientific computing, matrix multiplication. 

Power consumption, as inferred from previously, jumps if the number of cache misses are high. 

Consequently, irrespective of the problem size, keeping the block size smaller than or equal to 

the cache line size would yield optimum results.  

As explained in section 3.3, GCC performs most supported optimizations that do not involve a 

space speed trade off at the second level, and performs optimizations such as inline functions, 

unswitch loops at the third level. Even though the third level of optimizations provide a 

significant gain in power consumption, the compilation time is drastically increased as well.  

Section 6.4 reveals certain interesting results. One of them is that there is not a significant 

difference in overall power consumption between OpenMP and Pthread APIs for multi threaded 

programming. This provides programmers with higher flexibility when it comes to a choice of 

APIs.  
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Additionally, there‟s a significant jump in power consumed when the number of cores increase 

from 4 to 5 in the case of OpenMP, but this characteristic of the graph is absent when using 

pthreads. Given that the architecture of the machine is dual quad-core, a possible explanation for 

this is that the run time environment allocated 4 cores of a single processor for OpenMP 

execution, and when the 5
th

 thread was required, the second processor was brought in for 

computation thereby resulting in a slight increase in the power consumption. 

The HPL and RandomAccess benchmarks from the HPCC suite of benchmarks predict what we 

have already learned from the above test runs. Different combinations of  P, Q and N were tried 

before concluding at 4.14 GFLOPS as the peak performance of the machine. A sudden jump in 

the active power consumed confirms this result.  

Section 6.6. provides certain interesting conclusions, and probably a reminder of what we are 

likely to see more of in the future. In almost all of the test examples, for smaller sizes using the 

CPU alone easily proves more beneficial than using the GPU. This could probably be explained 

by the fact that merely transmitting data to and from the GPU utilizes time and power, and the 

CPU outperforms the GPU before this process finishes. However, as all the graphs indicate, the 

power usage curves of the CPUs are always steeper than those of the GPUs, and there‟s always a 

point in the graph beyond which the GPUs out perform the CPUs in terms of power 

consumption.  

Additionally, a special note must be made of the double precision floating point capabilities of 

the hardware being used in the test bed. The GTX 260, while supporting double precision, is 

more likely to suffer from a degradation in performance since the double precision arithmetic 

logic unit is shared between all cores of each multiprocessor.  
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

In this thesis, we have looked at some of the factors that are likely to affect power consumption. 

As a end user or a developer, there are certain tools in our hands that allow us to write more 

energey efficient programs, while we continue relying simultaneously on hardware vendors to 

build energy efficient systems. Heterogenous computing with GPUs is definitely a viable 

alternative in terms of power consumption, and is already becoming quite popular.  

This thesis revolves primarily around scientific computing kernels, all run via the console. We 

have not studied the power consumption trends in GUI applications, which are more likely to 

affect the non-technical computer users directly. Additionally, we have not studied the power 

consumption trends among different operating systems either. With most open source software 

being cross platform, and vendors making an effort to release compatible software, the onus is on 

the developer to look for energy efficient operating systems.  
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