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ABSTRACT 

The desire to conceptualize network traffic in a prevailing communication network is a facet for 

many types of network research studies. In this research, real traffic traces collected over trans-

Pacific backbone links (the MAWI repository, providing publicly available anonymized traces) 

are analyzed to study the underlying traffic patterns. All data analysis and visualization is carried 

out using Matlab1. At packet level, we first measure parameters such as distribution of packet 

lengths, distribution of protocol types, and then fit following analytical models. Next, the 

concept of flow is introduced and flow based analysis is studied. We consider flow related 

parameters such as top ports seen, duration of the flow, distribution of flow lengths, and number 

of flows with different timeout values and provide analytical models to fit the flow lengths. 

Further, we study the amount of data flowing between source-destination pairs. Finally, we focus 

on TCP-specific aspects of captured traces such as retransmissions and packet round-trip times. 

From the results obtained, we infer the Zipf-type nature of distribution for number of flows, 

heavy-tailness of flow sizes and the contribution of well-known ports at packet and flow level. 

Our study helps a network analyst to further the knowledge and optimize the network resources, 

while performing efficient traffic engineering. 

                                                            

1 Matlab® is a registered trademark of The Mathworks, Inc. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The Internet is a network of networks which carries a vast range of information resources and 

services, such as the exchange of documents of the World Wide Web (WWW) and the framework 

to support emails and other applications. The desire to conceptualize network traffic in a 

prevailing communication network is a facet for many types of network research studies. Internet 

has long been studied to tackle vast gamut of problems, including security, attacks and 

monitoring general health of the network. Network analysis is a process of capturing network 

traffic and inspecting it closely to determine what is happening in the network [2]. It is also 

known by several other names: network analysis, protocol analysis, and packet sniffing and 

packet analysis to name a few. We consider network traffic analysis to be a set of methods that 

successively is utilized to understand the nature of traffic on per packet or per flow level basis. 

The traffic data encompasses the time and duration of the communication, the intricate shape of 

the communication streams, the identities of the groups communicating, and their location. The 

analysis of network traffic provides information about the user behavioral patterns thereby 

enabling network operators to understand the underlying traffic phenomenon. Various 

parameters are studied or closely monitored based on this phenomenon. Maximum utilization 

must be obtained from the capital investment in network infrastructure but at the same time the 

operator must be aware of capacity constraints within the network and plans to meet future 

demands in a timely fashion [3]. Analysis of network activity is an important undertaking 

leading to valuable contributions both to the research community and to the commercial sector. 

For instance, researchers and Internet service Providers (ISPs) are constantly seeking ways to 
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optimize the network resources and perform efficient traffic engineering. Traffic analysis not 

only provides means of identifying a fault in the network, but also helps in understanding the 

root cause of the fault and its impact on communication between the users of a network. Authors, 

in [4] describe the main difficulties awaiting those who are trying to simulate the Internet and 

study its properties. Nonetheless, accomplished researchers share their knowledge of how to 

pursue this apprehensive task [5]. 

In this thesis, we pursue the analysis of traffic statistics, for traces collected every day, for 15 

minutes, from 2001 to 2011, over trans-Pacific backbone links (the MAWI repository, providing 

publicly available anonymized traces [6]). Based on the dataset, there is a valuable contribution 

aiming at the longitudinal study of the evolution of the traffic, where long term characteristics 

are investigated both at TCP/IP layers (packet and flow attributes) and application usages [7]. 

The field of traffic analysis is very vast which encompasses data collection, statistical analysis, 

and prediction and pattern recognition analysis. The data to be analyzed depends on the 

availability of network traffic measurements. Traffic measurements in operational networks aid 

in understanding the traffic characteristics in deployed networks, developing traffic models and 

evaluate performance of protocols and applications. Computer network measurements provide 

network operations, its development and research with information regarding the network 

behavior.  The reliability and credibility of this information directly affects the quality of these 

activities, and thus the perception of the network and its services [8, 9]. Traffic characterization 

has been utilized in the telephone network since the beginning of the 20th century, where Erlang 

established foundation exists for modern traffic theory [10]. 

Traffic prediction is another field which is closely related to traffic analysis. Here, one could 

assess the future network capacity requirements and the proactively plan the future network 
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developments. Several machine learning approaches have been applied to the network traffic 

recently. The approaches differ in the sense of time domain to signal domain and also making the 

use of wavelet analysis. The network traffic matrices are very huge and it’s impossible to 

manually navigate through it. Thus in [11], the authors tried to closely study the Origin-

Destination (OD) flow time-series, taken from two different backbone networks and incorporated 

the use of Principal Component Analysis (PCA) [12], thereby reducing the dimensionality of the 

dataset to the order of small number. PCA is one of the dimension reducing techniques for data 

sets of higher dimensions, which has been utilized in numerous fields such as face recognition 

and image compression and now finding its way in network traffic research. It is a technique for 

finding patterns in data of high dimensions since it is difficult to locate patterns in data of high 

dimensions preventing the data from been visualized. 

The approach of analyzing the data could further introduce or subtract the errors found in 

network measurements. Hence, by ignoring the issues that arise from the collected data, the error 

introduced in the results can be articulated by the selected analysis method. Due to the issues in 

the measurement tools, properties of the measured parameter or the network variations, jitter, 

may arise in the output from the analysis. The approach to reduce jitter is to average the existing 

data over large intervals [13]. If the jitter does not contain any bias, increasing the interval size 

will lead to smoother value, but with the presence of jitter.  

Network traffic is a cornucopia of data and the approaches involved in measuring, analyzing, 

predicting and modeling solely depends on the end use of the data. However, acquiring the data 

at the packet, flow and router level is a strenuous task. While working on this thesis, we tried to 

collect the data from a live campus, but were unable to do so as there was no provisioning for 

data measurement and collection. We had to test and formulate our theory based on the 
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anonymized (de-privatized) dataset obtained from the internet. Since the addresses are 

anonymized, it only affects the topology of the data and not the results. 

1.2 Objective 

The objective of this thesis is to analyze and visualize the network traffic data both at packet and 

flow connection levels. We try to address various concerns related to the percentage of 

TCP/UDP traffic, protocol categorization, load vs throughput, distribution of the flows and 

packets, length of the flows and TCP statistics such as Round Trip Time (RTT) and the 

retransmissions. The traffic traces utilized in the research are obtained from the online traffic 

data repository maintained by the Measurement and Analysis on the WIDE Internet (MAWI) 

working group of the WIDE Project. The traffic traces are further processed in a human readable 

form and analyzed using Matlab to reveal the underlying statistics. The traffic in the MAWI 

dataset is subject to bandwidth changes, to congestions and to a variety of anomalies. This allows 

us to compare the impacts of anomalies on the traffic statistics. Our approach encorporates the 

use of simple freely available tools which put together helps to accomplish interesting results. 

This thesis presents the ways  of utilizing available resources to analyse traffic using standard 

free packet capture and analysis software. We try to manually inspect the traces for network 

nuances and filter it accordingly, so that it does not negate the underlying truth. Given the 

dataset, we try to investigate traffic volume mundane patterns and most common applications in 

use. Further, we tried to employ aggeration techniques, e.g. aggregation by origin-destination 

pairs and by user. Moreover, we try to identify the general nature of the traffic according to the 

nature of distribution, heavy-tailness and correlation patterns. The results obtained after 

performing different preprocessing steps at various levels were analyzed and visualized. 
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1.3 Layout of the Thesis 

The thesis is organized as follows: 

Chapter 1 provides an insight about the approaches involved in network traffic data analysis and 

visualization. It discusses different notions to analyze the data at signal, packet and flow level. It 

provides insight about the challenges faced in analyzing the traffic data followed by the objective 

and layout of the thesis. 

Chapter 2 covers the IP network traffic and provides a review of various statistical distributions 

utilized throughout this research. It provides information about the 5-layer TCP/IP model and its 

relevance to the research. The protocols involved at Network and Transport layer are discussed. 

The chapter presents the heuristics adopted in filtering TCP/UDP ports from raw data and 

stresses on the IP and TCP/UDP packet header structure. It introduces the concept of flow with 

respect to network traffic. The analytical models incorporated to fit the traffic data distribution 

are also discussed in detail. The definition and interpretation of box plot when applied to a large 

data set is elaborated.  

Chapter 3 introduces the tool’s utilized in the analysing and visualizing the network traffic 

measurements. Most of the tools used are free, except for Matlab which is a commercial product. 

Further, it shows how these tools unite together to aid in carrying out efficient passive network 

analysis of a raw data. This chapter shows the usage of the tools and their contribution to the 

thesis. 

Chapter 4 provides the methodology involved in analyzing the raw traffic data. It describes about 

the source of traffic data and its details. It discusses about the approach utilized for analyzing the 
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traffic data namely flow, packet, source-destination pair and TCP relevant statistics. The outputs 

generated at the aforementioned levels are discussed in detail. 

Chapter 5 presents the results, including the traffic model and network performance parameters. 

The statistics of aggregated packets or byte counts distribution at the TCP/IP layer are analyzed. 

For the analysis performed in this section, we have tried to evaluate several analytical models 

that best describes the dataset. Further, the results obtained are substantiated where ever 

applicable. 

Finally, we summarize the thesis in Chapter 6, followed by a scope for further study of our work 

presented in this thesis. 
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CHAPTER 2: IP NETWORK TRAFFIC AND REVIEW OF STATISTICS 

This chapter provides an overview of the Internet model followed by the protocols used at the 

network and transport layers. Further, we elaborate on the approach employed to filter TCP/IP 

ports from raw packets. The concept of flow is introduced and discussed in detail. We, first, 

provide a definition for flow, and then elaborate on how flows are affected with different timeout 

values. Flows can be applied in many areas [14, 15], including packet filtering and IP routing. 

Here we focus on the application of flow in Internet traffic. Our goal in defining flow attributes 

is to properly identify and measure the dynamic traffic pattern of the Internet. We also describe 

the long and short tail distributions and their relevance to our research. Further, we provide the 

definition for various types of distribution implemented throughout this research. The process of 

distinguishing different application protcols in a packet traffic, is out of scope of the thesis. 

Finally, we conclude this chapter by providing a discussion, how the material presented here is 

relevant for the next chapter. 

2.1 The 5-layer TCP/IP Model 

The phenomenal achievement of the Internet has led to the rapid approbation of the Internet 

Protocol (IP) technology to build all types of communication networks, including private 

commercial networks (intranets), military communication networks, private home networks, 

smart devices (smart phones, Internet TV), and the emerging Fourth-generation (4G) cellular 

networks. The traffic in the modern IP networks is disparate and  most of the applications used in 

the networking environment prefer IP as a medium to transmit the data. The traffic generated by 

these applications have highly deviating characteristics and the compulsion to peruse the 

protocols seperately becomes credible. Several models have been developed to categorize the 
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communication protocols into distinct hierarchial structure. The 7-layered OSI model [16] and 

the 5-layered TCP/IP model [17] are most commonly used in IP network studies. In this thesis, 

the 5-layered TCP/IP model, illustrated in Figure 2.1, is considered. Furthermore, we limit our 

study to the two layers: network and transport layer protocols. The first (Physical) and the second 

(Data link) layers in the model consist protocols for maintaining physical and link-level 

connectivity and ensuring bit-level integrity in data transfer. They do not contribute much from 

the analysis point of view of the network when inspecting packet traffic. In order to perform 

packet/flow traffic analysis, one needs to be aware of the protocols and its header structure at 

higher layers. 

Layer 7-Layer OSI 5-Layer TCP/IP Example Protocols and Specifications 

L7 Application 

Application Telnet, HTTP, FTP, SMTP,POP3, VOIP, SNMP L6 Presentation 

L5 Session 

L4 Transport Transport TCP, UDP 

L3 Network Network IP 

L2 Data Link Data Link 
Ethernet(IEEE 802.3), HDLC, Frame Relay, 

PPP 

L1 Physical Physical RJ-45, Ethernet(IEEE 802.3) 

Figure 2.1: Comparison of 5-layer TCP/IP and 7-Layer OSI models 

2.1.1 Network and Transport Layers 

Note that, the network layer (L3) is responsible for the transfer of data in the form of packets in 

an interconnected network. Refer to Figure 2.2 (a) for the header format of the IP layer [18].The 

study of network traffic starts from this network layer, as layers 1 through 2 do not contribute 

much from the aspects of end-to-end traffic study. The main function of network protocols is to 
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establish connectivity between all L3 routers and hosts in the network, thereby allowing 

communication between the direct or indirect connections. 

 

Figure 2.2(a): IP header format [18] 

 

 

Figure 2.2(b): TCP/UDP header format [19, 20] 

The main function of network protocols is to establish connectivity between all layer 3 routers 

and hosts in the network, thereby allowing communication between the direct or indirect 

connections. It performs network routing functions, and might also perform fragmentation and 

reassembly, and report delivery errors. The Internet Protocol is the heart of the TCP/IP protocol 
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suite and corresponds to the network layer. In Internet, IP protocol- currently, IPv6 [14] along 

with IPv4 [21] is responsible for transfer of packets between end machines on a hop-by-hop 

basis. 

It offers a connectionless and best-effort delivery service to the transport layer (layer 4). A 

connectionless service does not require a virtual circuit to be established prior to the process of 

data transfer thereby offering a packet switched transfer medium where fidelity of the data is not 

guranteed. The connectivity between the end-hosts is established by incorporating the routing 

protocols, such as EGP [22], OSPF [23], RIP [24] and BGP [25]. There are a number of layered 

management protocols belonging to the network layer. The task of resolving host’s physical and 

IP addresses is managed by ARP [26] and RARP [27]. Maximising the usage of IP address space 

allocation to the hosts can be  automated by designing a DHCP [28] environment to the network. 

Error reporting and delivery of control messages is handled by ICMP [29]. It runs on top of the 

IP and is considered to be in the same layer as IP. 

2.1.2 Transport Protocols 

Transport protocols utilizes the services offered by the underlying network layer protocols and 

runs on top of the IP. TCP [20] and UDP [19], built on the best-effort service provided by IP are 

two most frequently used protocols to support a wide range of applications. Figure 2.2 (b) 

illustrates the header format for TCP/UDP packet segments. 

TCP provides reliable, connection-oriented stream service over IP. It sets up a logical full-duplex 

connection between two end-hosts across a datagram network. It also provides flow and 

congestion control, thereby allowing receivers to control the rate at which sender transmits 

information preventing buffers from overflowing. Source IP, destination IP, source port and 
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destination port are the four tuple attributes which helps TCP in uniquely identifying each 

connection. TCP ensures connection establishment using three-way handshake by  incorporating 

bidirectional connection which involves the exchange of SYN, SYN+ACK and ACK packets, 

respectively. It also needs proper use of the flags. It is most commonly known as a three-way 

handshake procedure for connection establishment and termination. TCP provides for a 

harmoniuos close that involves the independent termination of each direction of the connection, 

by sending a FIN packet which is reciprocated with an ACK packet. Another alternative for 

connection termination provided by TCP is through reset (RST) segments.  Data reliability is 

achieved by the use of retransmission timeouts. Hence, TCP uses acknowledge packets and 

retransmissions to gurantee succesful transmission of the data. 

Unlike TCP, UDP provides a much simpler and bare minimum service to the applications. The 

UDP is an unreliable, connection-less and not stream-oriented transport layer protocol. It is a 

very simple protocol which aids in demultiplexing and error checking on the data. It is specified 

by source and destination ports to identify the connection. Flow and congestion control 

mechanisms are not utilized by UDP. Since, UDP is connection-less, it does not implement 

connection establishment and termination procedure. The absence of ACK and retransmission 

mechanisms makes it an unreliable protocol. Further, there is no rate control mechanism to adjust 

the transmission rate and the applications using UDP do not require the heavyweight service of 

TCP. However, UDP proves to be very helpful in multicasting, network management, routing 

table updates and real-time multimedia as opposed to TCP. 

2.1.3 TCP/UDP Ports 

The study of applications and services incorporated in a network is of prime importance to  
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network operators. The elementary way to conduct this study is to consider transport layer port 

numbers. The service port number and an ephemeral port number are the two port numbers used 

by TCP and UDP packets, as highlighted in Figure 2.2 (b). The service port number or well 

known port number is a destination port number encountered in TCP SYN packet (first packet 

for UDP) which aids in identifying applications unquestionably. Since, each TCP and UDP 

packet has both source and destination ports. The protocol implemented to distinguish 

application port numbers is: 

a) If one of the source port numbers is less than 1024 or if it is present in the list of well-

known ports, consider it as service port to distinguish the application. 

b) If neither is true, perform above step for the destination port. 

c) Finally, if the above two steps fail, the smaller port number is considered having a higher 

probability of been a service port. 

Internet Assigned Numbers Authority (IANA) [30] port assignment catalog is utilized for 

mapping ports to applications. The port numbers are broadly categorized as follows: well-known 

ports (0-1023), registered ports (1024-49151) and dynamic or private or ephemeral ports (49152-

65535). 

2.2 Traffic Flows 

The nature of internet traffic can better be understood by knowing the concept of the flow. Flow 

is the sequence of packets or a packet that belonged to certain network sessions (conversation) 

between two hosts but delimited by the setting of flow generation or analyzing tool [31]. 

Alternatively, the definition of flow may also be coined as, a series of packets that share the 
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same source IP, destination IP, source port, destination port and the protocol. This is most 

commonly known as five-tuple IP flow, which is an aggregation of individual flows. The most 

important thing to remember is that all traffic in a flow is unidirectional. Network flow data 

symbolizes a summary of sessions between two end hosts. It further aids in network analysis and 

security issues. Flow data is independent of packet payloads. The flow tool or analyzer is 

dependent on the amount of information collected from packet headers and its relevant metrics. 

In addition, the network flow data deeply enhances the visualization of discrete network events 

such as protocol analysis or length distribution without the need for payload analysis. Further, 

the knowledge of flow data aids in understanding how different flows compete in a network to 

acquire network resources. Packets having similar five-tuple information belong to the same 

flow. The conversation between two end points in the Internet layer is directional. A network 

flow can be considered either as unidirectional flow or bidirectional flow. In unidirectional flow, 

the flow attribute is characterized in one direction i.e. from source to destination or vice versa. 

Whereas, in a bidirectional flow, the attributes are characterized considering both directions. 

Considering the flows to be unidirectional in our case is justified, as we can always combine 

unidirectional flows to form bidirectional flows in a trace file. However, from the results 

obtained, it is inferred that there is a strong correlation between the number of flows detected and 

the  length of the timeout value, as corroborated in [32]. The paper shows that the number of 

flows varies inversely with the length of the timeout value. Flow identification is achieved by 

labeling each flow information uniquely. As our intention in the research, is to analyze the 

amount of traffic between two hosts achieved by focussing on source and destination IP. The 

Figure 2.3 shows the impact of timeout values on flows. 
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Each flow is identified using the five-tuple attribute with the help of crl_flow [33] tool (part of 

CoralReef [33] software). The duration of the flow is defined by the time for which the flow 

survived without timeouts. The period determines the start and end times of each flow. Apart 

from the five-tuple attribute, flow timeout is an important parameter when defining a flow. It 

refers to the duration during which flow can be idle before considering it as dead. Thus, a flow 

time out value cannot be too short or too long , as a short timeout would lead to dissemination of 

flow into several small flows therby impacting the workload on the system and a long timeout 

value may discard several short flows, thereby preventing us from tracking real traffic. Further, 

an extremely long timeout value prevents a flow from getting expired because of which the 

number of flows keep increasing. Thus, a flow time out value cannot be too short or too long , as 

a short timeout would lead to dissemination of flow into several small flows therby impacting the 

workload on the system and a long timeout value may discard several short flows, thereby 

preventing us from tracking real traffic. Further, an extremely long timeout value prevents a flow 

from getting expired because of which the number of flows keep increasing. Thus, a flow time 

out value cannot be too short or too long , as a short timeout would lead to dissemination of flow 

into several small flows therby impacting the workload on the system and a long timeout value 

may discard several short flows, thereby preventing us from tracking real traffic. Further, an 

extremely long timeout value prevents a flow from getting expired because of which the number 

of flows keep increasing. 

According to the Realtime Traffic Flow Measurement (RFTM) architecture [34], a flow has 

attributes that are derived from endpoint attribute values, metrics values like packet and byte 

counts, time values as well as summary information like mean, mean or average values, jitters 
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and distributiuonal information. Our goal in defining flow attributes is, proper identification and 

measurement.  

 

 

 

 

  

 

 

Figure 2.3: Flow model: Impact of timeout value 

A TCP flow would start with a SYN packet and end with a FIN or RST packet. Whereas in UDP, 

it is difficult to define a flow, because UDP is a connection-less, unreliable datagram delivery 

protocol. Hence, there is no concept of a connection in UDP. However, a flow could still be 

defined by the controlling application specifying source or destination port number. Since, each 

application has its own header structure, so we tried to utilize crl_flow [33] tool along with 

manual inspection of the flow data. A flow can be defined in terms of different granularity levels, 

which inturn depends on the accuracy required for the analysis. The use of different granularity 

levels and their relevance to network analysis is discussed in [32]. We are using the most 

commonly used granularity which is the five-tuple attribute, as illustrated in Figures 2.2(a) and 

2.2(b), illustrating the format of an IP and TCP/UDP header structure, respectively. 
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2.3 Probability Distributions 

This section considers two types of distributions. The tail of the distribution, defined as P(X>x) 

is, used to predict rare events in several areas of probability applications, including networking. 

Here, we consider typical distributions that are useful in modeling flow arrival time, flow length 

and packet distribution. 

2.3.1 Long-tail Distributions 

Distributions where the data values in the tails are more spread or shows decay in the tail, based 

on power law as x-α ,are referred to as long-tailed or heavy-tailed distributions. The distributions 

analyzed in this thesis, include Pareto, Log-normal and Weibull distributions, as shown in Figure 

2.4. Note, a heavy-tailed or long-tailed distribution [35], follows: 

Tail Distribution: P[X > x] ~ x-α,   as x →∞,   0 < α < 2 

This means that regardless of the distribution for small values of the random variable, if the 

asymptotic shape of the distribution is hyperbolic, it is heavy tailed [35]. We can further 

conclude that a heavy-tailed distribution has infinite variance and if α is less than unity, the mean 

tends to infinity. The probability of generating large values becomes almost negligible with the 

use of heavy-tailed distribution.  

Pareto distribution [36] , is the simplest heavy-tailed distribution with probability density and 

cumulative distribution function given by the equation: 

PDFPareto = P(x) = αkαx-α-1,  α, k > 0,  x≥k. 

CDFPareto = F(x) = P[X ≤ x] = 1 – (k/x) α,   α, k > 0,  x≥k 
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Figure 2.4: Tail Distributions: P[X > x] for various distributions 

The parameter k is the lower limit for the random numbers generated by a Pareto random number 

generator. It is a power law probability distribution. It is given in terms of cumulative 

distribution function (CDF), i.e. the number of events larger than x, is an inverse power of x. 

Table 2.1 provides the computed mean and variance for various distributions based on the shape 

(α) and scale (β) parameters. From Figure 2.4, we infer that log-normal distribution is flatter than 

Pareto and Weibull distribution lies between Pareto and Gaussian. 

Table 2.1: Shape (α) and scale (β) parameters and moments of distributions 

Distributions α  β  Mean  Variance 

Gaussian  0  2  0  4 

Pareto  1.3  2  15  ∞ 

Log‐normal  1  2  22.874 22183.27

Weibull  0.6  2  5  75 

 

Weibull distribution [37] , is another type of heavy-tailed distribution with probability and 

cumulative density functions given by the equations 

PDFWeibull = P (α, β) (x) = αβ-αxα-1e-(x/β) ^α,  α, β > 0 
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CDFWeibull = P (α, β) (X ≤ x) = 1 - e-(x/β) ^α,  α, β > 0 

The above equations are for the standard Weibull distribution where, µ (the location parameter) 

is zero with α = 1. This distribution is used extensively in reliability applications to model failure 

times. The complementary cumulative distribution function is a stretched exponential function. 

The goodness of fit of data to a Weibull distribution can be visually assessed using a Weibull 

plot. 

Lognormal distribution [37], is another distribution taken into consideration. A variable X is 

log- normally distributed if Y = LN (X) is normally distributed with “LN” denoting the natural 

logarithm. The case where α (the location parameter) and β (the scale parameter) are zero and 

one, respectively, is known as the standard lognormal distribution whose equation is given by 

PDFlognormal = P (α, β) (x) = (1/ (xα√ (2π))) e-0.5(ln(x – β)/α) ^2,  x > 0 

The lognormal and Weibull distributions are probably the most commonly used distributions in 

reliability applications.  

2.3.2 Short-tail Distributions 

Distributions where the data values in the tails are less spread or has exponentially decaying tail 

are known as short-tailed distributions, as shown in Figure 2.4. Apart from the heavy-tailed 

distribution, there are other distributions fitted to the data. It is formidable to prelude which 

distributions best describes the dataset. There are various parameters in the data which need to be 

modeled precisely and different distributions may be used for different parameters. Other 

distributions capitalized for modeling the statistical phenomena are lognormal, normal, Rayleigh 

and Weibull distributions. 



 

19 

 

Rayleigh distribution [37], may be considered as a special case of Weibull distribution. In 

communication theory, it is used to model scattered signals that reach a receiver by multiple 

paths. The probability density and cumulative distribution function are as follows: 

PDFRayleigh = P (α) (x) = (x/α2) e-(x^2/ (2α^2)),  0 ≤ x ≤ ∞  

CDFRayleigh = F[x] = 1 – e (-0.5(x/α) ^2),  0 ≤ x ≤ ∞ 

Normal distribution [37], is a theoretical function commonly used in inferential statistics as an 

approximation to sampling distributions. It is very important class of statistical distribution. In 

general, the normal distribution provides a good model for a random variable, when, there is a 

strong tendency for the variable to take a central value, positive and negative deviations from this 

central value are equally likely and the frequency of deviations falls of rapidly as the deviations 

become larger [38]. The probability density functions is given by  

PDFnormal = P (x) = (1/ (√2πα2) e-((x-β) ^2/ (2α^2)),  x ϵ (-∞ ∞) 

2.3.3 Zipf’s Distribution 

The Internet is comprised of networks on many levels, and some of the most exciting 

consequences have been discovered in this area [39]. Zipf-type plot delineates the dependency 

between the number of occurrences of a variable and its rank. The Zipf’s law states that for each 

following rank, the number of occurrences is α times less than the previous rank. Zipf’s 

distribution is often correlated with Power-law and Pareto. Zipf’s law usually refers to the size 

‘y’ of an occurrence of an event relative to its rank ‘r’. George Kingsley Zipf, a Harvard 

linguistics professor, sought to determine the size of the 3rd or 8th or 100th most common word. 

Size here denotes the frequency if use of the word in English text, and not the length of the word 
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itself. It further states that the size of the r’th largest occurrence of the event is inversely 

proportional to its rank.  Y ~ r-b, with b close to unity. A power law distribution tells us not how 

many people had an income greater than x, but the number of people whose income is exactly x.  

Claiming a Zipf’s law in a dataset seems to be simple enough: if n values, xi (i = 1, 2… n), are 

ranked by x1≥ x2 ≥ ….xr ….≥ xn, Zipf’s law states, 

X(r) = C * r-α 

Where the parameter value, α , is usually close to 1, implies that ‘xr’ versus ‘r’ plot on a log-log 

scale will be a straight line with a negative slope α close to -1. Hence, we assumed ‘xr’ as the 

data (random variable), from statistical modeling point of view, Zipf’s law is a model of average 

of ‘xr’ or log(‘xr’) as a linear function (linear regression) of log(r) (with c = log(c)): 

E (log (xr)) = c – αlog(r) 

2.4 Box plot 

Apart from the distributions mentioned in section 2.3, we will study the five-number summary, 

the mean and the standard deviation (SD) for the data set. This kind of data representation is 

known as box plot. Its definition and usage is reviewed here. Box plots [40] are an excellent tool 

for conveying location and variation information in datasets, particularly for detecting and 

illustrating location and variation changes between different groups of data. When conducting a 

distribution study, the shape, the centre, and the variablility of the distribution are of primary 

concern [41]. The shape of the distribution can either be symmetric or skewed. The left and right 

portions about the middle value are symmetric, in a symmetric distribution. However, in real life, 

symmetric distributions rarely occur but the distribution might be considered as approximately 

symmetric. On the other hand, a skewed distribution is the one that tails off gradually but slowly 
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on one side than other. The distribution could either be skewed towards high or low values. The 

centre of distribution is commonly measured by the mean, the mode, and the median. The mean 

is calculated by dividing the sum of observations in the data set by the frequency of observations. 

The mode is the most frequent occuring observation in the data set. The median is the central 

value which splits the data exactly in two halves. A significant difference between mean and 

median is that the mean is more susceptible to extreme values than the median. Thus, median is 

more robust as it is less sensitive to outliers in the data set. We have considered three measures 

of variability: the range, the interquartile range (IQR), and the standard deviation (SD). The 

range is the width of the distribution which is calculated as the difference between the largest and 

the smallest value. It is sensitive to outliers. The interquartile range is the width of the 

distribution measured from lower quartile to the upper quartile of a distribution. In other words, 

the lower quartile may be considered as the median of the lower half of distribution ranging from 

lower extreme to the median of original distribution, and the upper quartile is vice versa. The 

interquartile range follows the median and unlike the range, it is more robust against outliers. 

The standard deviation is the widely used measure of variability.  

The five-number summary consists of the median, the two quartiles, and the two extremes for the 

box plot as shown in Figure 2.5. The median indicates the centre of the data, quartiles indicate 

variability, and their difference is the interquartile range. The extremes provide information 

about the outliers and the bounds for data. The distance of the median to the quartile gives an 

indication of whether the distribution is skewed or symmetrical [41]. The box plot preserves all 

the information of the data set, there by distinguishing outliers. Since, it plots all the outliers in a 

large data set, the plot obtained might not be correct due to the large number of outliers. The box 

plot utilized in the data set is slightly modified in order to show two extreme values in the plot. 
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Figure 2.5: Box plot parameters 

2.6	Conclusion	

In this chapter, we discussed the importance of the 5-layer TCP/IP model. Further, the IP 

network traffic was categorized according to the 5-layer TCP/IP model. We studied the protocols 

and its importance at the network and transport layers. In order to filter TCP/UDP ports, we 

introduced the algorithm used in our research to filter the required ports without ambiguity. We 

provide a basic understanding of the general features of the flow. Studies suggest that the number 

of flows share an inverse relationship with timeout values, which is proved in chapter 5. Later, 

we discussed short and long tail distributions and its relevance to the network traffic, which is 

further described in Chapter 5. Apart from the above distributions, we discussed the use of box 

plot and Zipf’s distribution. The terms studied under this chapter, immensely aids in 

understanding the underlying distribution of network traffic. The next chapter discusses the 

various tools utilized in our research. 

Sc
al
e
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CHAPTER 3: ANALYSIS TOOLS 

The tools used in our study are mainly open source and free with the exception of Matlab, which 

is a commercial product. The programs used throughout this thesis are: tcpdump [42] (for 

reading captured packet traffic), CoralReef  [33] (for pre-processing the captured traffic traces), 

tcptrace [43] (for analysis of TCP dump files), tcpstat [44] (for packet statistics), Perl (for 

scripting to normalize the data), and Matlab (for statistical analysis and visualization of the 

results). 

3.1 Software utilized 

3.1.1 Tcpdump 

The tcpdump [42] program was written by Van Jacobson, Craig Leres, and Steven McCanne and 

all of the Lawrence Berkeley National Laboratory at the University of California at Berkeley. 

Tcpdump is one of the most popular network sniffing and analyzing command line tool. In 

addition, the choice of using tcpdump was favored by the fact that we can further analyze the 

traces. Further, tcpdump can also be used for network monitoring, protocol debugging and data 

acquisition. The major function of tcpdump is to monitor packets on the attached network and 

dump headers and payloads of packets to a human-readable format. In order to monitor the 

network traffic, tcpdump sets the network interface in the promiscuous mode to capture all the 

packets on the attached network. Here promiscuous mode means receiving a copy of every 

frame. Normally, our network interface will ignore any packet which is not addressed to our 

system. It uses Packet Capture Library (libpcap), which was originally developed by Van 

Jacobson et al., to retrieve packets from the network interface. After this, the packet passes 
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through Berkley Packet Filter (BPF), which can then be further analyzed by inclusion or 

exclusion of packets based on particular criteria. 

Tcpdump is a simple and easy-to-use tool. It supports many command line options for flexibility 

and ease of convenience. Typically, the number of bytes parsed in the header of a captured 

packet determines the level of information we can gather. The longer the parsing length, the 

more we can discover. We can specify the parsing length i.e. the number of bytes (from the 

beginning of the packet). Since we are interested only in the headers of the packet, tcpdump can 

be set to capture only the first N bytes of a packet. By default the length is 68, which is adequate 

for Internet Protocol (IP), Internet Control Message Protocol (ICMP), Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP). Figure 3.1 shows the various command 

line options for tcpdump. 

tcpdump [ -AdDefIKlLnNOpqRStuUvxX ] [ -B buffer_size ] [ -c count ] [ -C file_size ] 

[ -G rotate_seconds ] [ -F file ] [ -i interface ] [ -m module ] [ -M secret ] [ -r file ] [ -s snaplen ] 

[ -T type ] [ -w file ][ -W filecount ][ -E spi@ipaddr algo:secret,... ][ -y datalinktype ] 

[ -z postrotate-command ] [ -Z user ] [ expression ] 

Figure 3.1: Command line options for tcpdump [45] 

It is very easy to run this tool but can only be initiated with administrative privileges. Figure 3.2 

shows raw output of tcpdump, passed with additional parameters as shown below. 

tcpdump -ttttnnr 200608241400.dmp 
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2006-08-24 00:00:00.794858 IP 192.114.235.26.43924 > 192.77.128.86.22755: Flags [.], seq 
2951648224:2951649672, ack 1347586929, win 32768, options [nop,nop,TS val 778726674 ecr 
4213600849], length 1448          

2006-08-24 00:00:00.794864 IP 192.114.235.26.43924 > 192.77.128.86.22755: Flags [.], seq 1448:2896, 
ack 1, win 32768, options [nop,nop,TS val 778726674 ecr 4213600849], length 1448   

2006-08-24 00:00:00.794867 IP 145.120.109.103.1541 > 214.206.48.97.80: Flags [.], ack 1998939210, 
win 65535, length 0            

2006-08-24 00:00:00.794870 IP 192.114.235.26.43924 > 192.77.128.86.22755: Flags [.], seq 2896:4344, 
ack 1, win 32768, options [nop,nop,TS val 778726674 ecr 4213600849], length 1448   
         

Figure 3.2: tcpdump output format [45] 

-tttt Print a delta (micro-second resolution) between current and first line on each dump line. 

-nn Don't convert addresses (i.e., host addresses, port numbers, etc.) to names. 

-r Read packets from file (which was created with the -w option). 

Figure 3.3: tcpdump options 

Figure 3.3 explains the parameters passed with tcpdump command. We could see that the raw 

output always prints out the name of the network interface on which it is listening. It provides 

direction of the packet with symbol “>”, timestamps in the form of YYYY-MM-DD with time 

resolution in milliseconds and shows IP addresses instead of names. The format is easy for user 

to understand, however it is difficult for our script to analyze, since the position of certain 

parameters may vary depending upon the packet. Instead, we select other options when running 

tcpdump to generate a better output. The command used in the thesis, is as follows:  

tcpdump –nlq –r 200608241400.dmp 

The new output format suitable for analyzing the traffic data is illustrated in Figure 3.4 with 

options described in Figure 3.5. Hence, we observe that the format is in the form of timestamp, 
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192.114.235.26.43924(SourceIP.SourcePort), 

192.77.128.86.22755(DestinationIP.DestinationPort), protocol and the length of the data. 

Hence, the source port is 43924, the destination port is 22755, protocol is TCP and packet length 

is 1448. It is very easy to parse through the file output shown in Figure 3.4, to extract ports and 

packet lengths. The output generated is passed through a perl script to extract packet length, 

source and destination ports. Further, tcpdump has a default standard output based on the 

protocol. The main difference between the TCP formats from others is the TCP flags, sequence 

numbers, acknowledgements, acknowledgement numbers and TCP options.  

00:00:00.794858 IP 192.114.235.26.43924 > 192.77.128.86.22755: tcp 1448 
00:00:00.794864 IP 192.114.235.26.43924 > 192.77.128.86.22755: tcp 1448 
00:00:00.794867 IP 145.120.109.103.rds2 > 214.206.48.97.http: tcp 0 
00:00:00.794870 IP 192.114.235.26.43924 > 192.77.128.86.22755: tcp 1448 
00:00:00.794873 IP 152.223.152.140.32819 > 201.196.236.252.domain: UDP, length 31 
00:00:00.794963 IP 193.84.6.33.ott > 193.188.196.52.microsoft-ds: tcp 0 
00:00:00.794967 IP 201.41.68.131.nntp > 197.117.111.242.informatik-lm: tcp 0 
00:00:00.795089 IP 46.254.176.252.domain > 192.114.237.128.37044: UDP, length 151 
00:00:00.795093 IP 161.32.137.50.64571 > 180.41.155.110.ftp-data: tcp 0 
00:00:00.795340 IP 193.176.202.69.optilogic > 93.108.39.55.linogridengine: tcp 1440 

Figure 3.4: Simplified tcpdump output format 

-l Make stdout line buffered. Useful if you want to see the data while capturing it. 

-n Don't convert addresses (i.e., host addresses, port numbers, etc.) to names. 

-r Read packets from file (which was created with the -w option). 

-q Quick (quiet?) output. Print less protocol information so output lines are shorter. 

Figure 3.5: tcpdump options used 

The output generated using tcpdump depends on the options used. It allows the user to extract 

particular kinds of network traffic. The basic syntax for a tcpdump filter is as follows: 

<header>[<offset>:<length>] <relation> <value> 
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The filter syntax of tcpdump is very robust. We can employ the filters to extract connections 

involving specific networks, hosts, and ports. Hence, it is a great utility for studying network 

protocols. We could also analyze the set up phase of a TCP connection, which is generally 

referred to as a three-way handshake. Further, it can also be used to create a powerful, network-

based Intrusion Detection System (IDS). In order to efficiently filter the required contents from a 

packet, one has to have a deep understanding of the header structure of the protocols. 

3.1.2 Tcpstat 

Tcpstat [44] periodically reports TCP-related statistics on a given network interface. These 

statistics include number of packets exchanged, average packet size of a TCP stream, standard 

deviation of packet size, bandwidth been used, and so on. It further provides information by 

either monitoring a specific network interface, or by reading a previously saved tcpdump data. 

Like tcpdump, tcpstat also makes use of the libpcap library and can be used to analyze/capture 

packets on the specified network interface by setting the network interface to promiscuous mode 

similar to tcpdump. We have utilized tcpstat to generate traffic statistics like average packet size, 

average bandwidth achieved from a tcpdump file. Further it is used as post processing tool for 

the raw data captured by tcpdump. Figure 3.6 shows various command line options for tcpstat. 

The command utilized to classify packets according to their types, and compute packets per 

second statistics for each type is: 

tcpstat  –r 200608241400.dmp – o “%r %A %C %I %T %U %V %l %b\n” > 200608241400stat.log  

tcpstat [-?haeFlp] [-B bps] [-b bps] [-f filter expr] [-i interface][-o output] 

[-R seconds] [-r filename] [-s seconds] [interval] 

Figure 3.6: Command line options for tcpstat [44] 
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2.500000 0 762 75870 64917 8786 405 1.00 74895836.80 
7.500000 0 561 82176 71439 8782 352 0.93 80809864.00 
12.500000 0 889 75968 65568 8234 427 0.94 78703870.40 
17.500000 0 871 75957 65098 8932 432 0.94 77782824.00 
22.500000 0 867 79878 70313 7765 511 0.92 82804331.20 
27.500000 0 639 75596 66017 7923 411 0.92 77049424.00 
32.500000 0 709 72233 62596 7712 487 0.92 73864659.20 
37.500000 0 742 71456 61928 7729 494 0.92 75586312.00 
42.500000 0 729 73476 63260 8284 548 0.92 77935491.20 
47.500000 0 752 74439 64099 7990 262 0.92 79662100.80 
52.500000 0 678 73975 64203 7630 450 0.93 78349310.40 
57.500000 0 685 76483 66526 7888 434 0.93 81196268.80 
62.500000 0 743 81304 70718 8417 457 0.93 81091350.40 
67.500000 0 693 77268 67157 8276 695 0.94 79107052.80 
72.500000 0 834 80176 69946 8118 444 0.93 84293918.40 
77.500000 0 748 73671 64071 7646 379 0.93 78273076.80 
82.500000 0 754 83826 73832 7949 314 0.89 88736915.20 
87.500000 0 865 86414 75941 8244 356 0.86 92651355.20 
92.500000 0 780 80411 70086 8179 260 0.87 84763854.40 
97.500000 0 656 69963 60713 7441 279 0.86 74493004.80 

Figure 3.7: tcpstat output format 

-r 
Read all data from filename ,which may be a regular file,  
a named pipe or "-" to read it's data from standard input 

-o Set the output format when displaying statistics 
%A The number of ARP packets 
%C The number of ICMP and ICMPv6  packets 
%I The number of IPv4 packets 
%T The number of TCP packets 
%U The number of UDP packets 
%V The number of IPv6 packets 
%l the network "load" over the last minute, like in uptime( ) 
%b The number of bits per second 

Figure 3.8: tcpstat options used 

In this step, we make use of several tcpstat options, option ‘–r’ to read data file (in tcpdump 

format) and option ‘–o’ for specifying the output format suitable for the later processing by 

Matlab. Figure 3.8 shows the information about parameters passed along with the tcpstat 

command. The output could be in any format, but we preferred it as a log file. The log file was 
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read in Matlab to generate the relevant plot. The posts processing tasks performed in our analysis 

was to classify all packets found in the trace file according to their protocol types (TCP, UDP, 

etc.) and further derive various statistics of individual packet types. Finally, the results obtained 

are visualized using Matlab.  

3.1.3 Tcptrace 

Tcptrace [43] was developed by Shawn Ostermann at Ohio University, for the analysis of TCP 

dump files. It is a TCP connection analysis tool. By incorporating the use of tcptrace, one can 

study the effect of retransmissions. Tcptrace understands various network dump file formats like 

tcpdump, snoop, ns, nlanr and others. We can pass multiple command-line options to perform 

various tasks. In order to study TCP connections reassembly, this tool is capable of providing 

output in terms of number of retransmitted data packets and average Round-Trip Time (RTT) 

value for each TCP connection. The command used is as follows: 

tcptrace –l –r –n - - csv 200608241400.dmp > 200608241400tcp.csv 

Figure 3.9 explains various parameters passed with tcptrace command. We confine the use of 

tcptrace in our analysis to retransmissions occurred during the captured time. The tool can 

produce detailed statistics of TCP connections from dump files when given the ‘–l’ or the long 

output option. RTT (Round-Trip Time) statistics are generated when ‘–r’ option is specified 

along with ‘–l’ option. 

-l long output format 
-r print rtt statistics (slower for large files) 
-n no lookup of DNS names 

--csv display the long output as comma separated values 

Figure 3.9: tcptrace options used 
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It can further report statistics on the estimated congestion window with the ‘–W’ option when 

used in conjunction with ‘–l’ option. Since there is no direct way to determine the congestion 

window at the TCP sender, the outstanding unacknowledged data is used to estimate the 

congestion window. One can also use the outputs generated by this tool in conjunction with Tim 

Shepard’s xplot program in order to visualize different types of graphs illustrating various 

parameters of a TCP connection. The tool comes with various command-line options to filter the 

data and tailored it according to the needs. When tcptrace is run trivially on a dump file, it 

generates the output similar to the one discussed in Chapter 4. 

3.1.4 CoralReef 

CoralReef [33] is a versatile open source packet collector/analyzer software suite developed by 

Cooperative Association for Internet Data Analysis (CAIDA). It can collect and analyze data 

those obtained by either active/passive monitoring. It is designed to be flexible and a highly 

configurable internet traffic data collection and analysis tool. The CoralReef suite is completely 

a passive monitoring system which does not require any additional network 

infrastructure/resources and does not interfere with network traffic or other network devices. The 

usage of this tool is bolstered by the fact that it is used and tested extensively by researchers in 

the open source community which projects its reliability and credibility to the analysis results. 

CoralReef is a software suite which is built in layers. It is able to achieve the flexibility and 

efficiency by incorporating a 3-level layered design [46]: 

a) API  
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It can read from live pcap interfaces and contains the code for physical devices such as 

ATM, DAG and POS cards .Further, a low level API is included with these devices to 

offer an interface for traffic analysis applications. 

b) Traffic applications 

It includes various tools for accessing the raw API for performing the most frequently 

used operations, such as tracing individual packets and packet flows as well as providing 

traffic rate information. 

c) Traffic Flow applications are used to analyze the packet and flow traces. It can further be 

used to convert the captured pcap data to traffic matrices   

Our analysis is confined to the third layer from the above mentioned layers. The most important 

aspect of the software is its ability to convert raw traces to flow data and thereby enhancing the 

flow based analysis. The features of the first layer are not utilized in this thesis as it comprises of 

mainly the hardware components and its configuration since we obtained the captured traces 

from online. The main CoralReef software tools utilized are crl_flow, t2_convert and IP_matrix. 

The option crl_flow is used to convert packet data to flow data; t2_convert along with IP_matrix 

is used to convert flow data to an aggregated IP matrix for each origin-destination pair. 

3.1.5 Matlab and Perl2 

Matlab is a very powerful mathematical tool which can be used for performing tasks involving 

high speed numerical calculations and visualization. Further, it provides its own scripting 

                                                            

2 Perl is a scripting language and details can be found on http://www.perl.org/ 
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language for automating complicated operations. There are various special purpose toolboxes 

available which further enhance the ease of use of the software. It is highly customizable and we 

can write various scripts tailored to the needs. Matlab is the only commercial tool used in our 

study. The usage of Matlab as an analysis tool was influenced by the fact that, we already had the 

campus license and further it suits our needs. There are other statistical applications available in 

the market, some of them are commercial and others are open source/free. The use of the 

application depends on the availability and familiarity with the software. 

Practical Extraction and Reporting Language (Perl), is an interpreted scripting language which 

facilitates data manipulation and rapid application development. It is very powerful tool when it 

comes to data parsing and navigation. We have utilized various perl scripts for preprocessing 

data and further making it suitable for analysis with Matlab. 

3.2 Workflow 

Our analysis is mainly categorized into following sets: per-packet, per-flow and per-connection 

levels.Our analysis is mainly categorized into following sets: per-packet, per-flow and per-

connection levels. Network traffic related parameters are derived from the data gathered from the 

real network. Several freely availabe tools such as tcpdump, tcpstat, tcptrace, CoralReef 

software suite and perl have been utilized to process raw packet captures. The raw data is further 

processed in order to understand the traffic parameters both at packet and flow level. The overall 

principle of data gathering and result analysis is illustrated in Figure 3.10. First, the raw tcpdump 

files are processed using tcpdump along with perl to generate data at packet and flow level. The 

data is gathered seperately for each level of analysis: packets, flows, origin-destination pairs and 

TCP-specific statistics. The data is further tailored in suitable format for analyzing statistics and 
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further discuss about the observations on fitting theoretical distributions. Matlab is utilized to 

carryout all the analysis and generate the plots. 

 

 

 

 

 

 

 

  

 

 

Figure 3.10: Workflow of research 

3.3 Conclusion 

We have studied various tools utilized in our research and their contribution in deriving network 

traffic related parameters. The results achieved by incorporating these tools are visualized in 

Chapter 5. The knowledge gained by understanding the syntax of these tools, aids in generating 

the relevant output from a raw dump file. Chapter 4 elaborates the approach adopted at different 

granularity levels – packets, flows, origin-destination pairs and TCP connections. We have 

utilized different preprocessing steps at different levels of traffic data. Further, Chapter 4 

discusses the structure of the data considered and traffic analysis at different levels. 

Matlab

tcpstat/tcptrace/tcpdump

Perl translation

Captured 
tcpdump/ file

Packet/Flow Analysis/TCP statistics

Results
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CHAPTER 4: METHODOLOGY 

This chapter provides an insight about the network whose traffic traces are taken into account. 

Further, we pursue the analysis of the data from different perspectives, meaning different 

preprocessing steps at various levels of granularity. After each step, we try to provide an insight 

on how the data appears and how it is encorporated in our research. Finally, we provide a 

workflow of our research showing various tools utilized in combination to analyze relevant 

statistics. 

4.1 Network Data 

The traffic data to be analyzed is from a backbone network with 100Mbps link. The dataset 

consists of a set of labels locating traffic anomalies in the MAWI [1] archive (sample points B 

and F). The labels available in the dataset are sample points3 A,B,C,D,E and F, respectively. The 

MAWI traffic repository archives the traffic data collected from the WIDE backbone networks. 

The WIDE network (AS2500) is a Japanese academic network connecting universities and 

research institutes. It has been provoding anonymized packet traces since 1999 ( total volume of 

available data exceeds 1TB). The data used here are all publicly available on the website. The 

packet traces are captured daily, from 2:00 pm to 2:15 pm (Japanese standard Time, UTC+9). 

The traces have anonymized IP addresses and no payloads, and are made available to public 

along with a summary information web page about the traffic. The topology of the network is 

                                                            

3 All sample point names are used to match the description provided on http://tracer.csl.sony.co.jp/mawi/ 
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unknown and it does not affect the analysis performed as we have confined our research to one 

sample point, sample point F. Table 4.1 shows the summary of a sample trace file: 

Table 4.1: Summary of sample trace file 

Traffic Trace Info 
  

Dump File: 200608241400.dump 
File Size: 1009.67MB 

Id: 200608241400 
Start Time: Thu Aug 24 14:00:00 2006 
End Time: Thu Aug 24 14:15:01 2006 

Total Time: 900.22 seconds 
Total Capsize: 792.02MB Cap Len: 96 bytes 

# of packets: 14259282 (9342.30MB) 
AvgRate: 87.06Mbps stddev:13.45M 

  
IP flow (unique src/dst pair) Information 

  
# of flows: 363070 (avg. 39.27 pkts/flow) 
Top 10 big flow sizes (bytes/total in %): 

5.3% 2.2% 2.0% 1.8% 1.6% 1.6% 1.5% 1.4% 1.4% 1.2% 
  

IP address Information
  

# of IPv4 addresses: 189342 
Top 10 bandwidth usage (bytes/total in %): 

22.0% 6.7% 5.3% 4.8% 4.6% 4.4% 2.3% 2.1% 2.1% 2.0% 
# of IPv6 addresses: 1463 

Top 10 bandwidth usage (bytes/total in %): 
39.8% 39.5% 12.5% 6.8% 5.9% 3.8% 3.6% 3.3% 3.3% 3.0% 

 

The sample point F consists of daily traces at another trans-Pacific line which further includes 

48/78/83/96 long hour traces. Moreover the dataset is daily updated to include new traffic from 

upcoming applications and anomalies. Several papers have been published using the above 

mentioned dataset [1, 7, 47]. The traces collected in the corresponding sample point F last over a 

period of five months and each month has traces collected on different days. Of all the traces, we 

analyse seven of them contributing to total of one hour and forty five minutes. The traffic traces 
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are captured using tcpdump and the IP addresses in the traces have been anonymized by a 

modified version of tcpdriv [48] in order to preserve privacy of the users. 

4.2 Traffic Analysis 

4.2.1 Packet Based Analysis 

Packet analysis was performed by implementing a simple heuristic as discussed in Chapter 2.1.3. 

We analyzed the per-packet characteristics of the data confined to the transport layer protocols. 

For port distribution, the raw dump files were read using tcpdump [42] along with a small perl 

script in order to get port numbers from packet data. The command utilized to filter ports 

numbers from the packet data is as follows: 

[root@MACBOOK~]# tcpdump -nlq -r 200608241400.dump | perl -lne '/IP\s+ (\d+\.\d+\.\d+\.\d+) 

(\.(\d+))?\s+>\s+(\d+\.\d+\.\d+\.\d+) (\.(\d+))?\:\s+(\w+)/&&print $3," ",$6' > 200608241400ports 

The file obtained after preprocessing it comprises of source and destination ports. For traffic 

volume, a perl script was utilized again to extract packet lengths from the dump files. 

Furthermore, packet data was extracted in similar way with the help of perl script resulting in 

selected timestamps and packet lengths. Since the packet length is extracted from the IP header, 

the 14 bytes of ethernet header do not contribute to the results. We confined out research to the 

distribution of most commonly used ports, contribution of different protocols, analysis of traffic 

volume as function of time, distribution of packet lengths and analytical fits for packet length. 

The traffic rate or traffic volume is analyzed as function of time. Further, the exracted packet 

lengths are anaylzed to fit different analytical distributions. 
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4.2.2 Flow Based Analysis 

In this thesis, we confine our research to flow and packet level. In the flow based approach, we 

aggregated separate packets into flows with the help of crl_flow [33] tool. Flows are identified 

from the network traffic using the 5-tuple attribute of protocol and source and destination IPs and 

ports, as explained in Chapter 2. Flow can be considered as a sequence of packets or a packet 

which belongs to a network session(conversation) between two hosts but delimited by the setting 

of flow generation or analyzing tool [31]. Flow based analysis enhances the investigation of 

network parameters and security concerns. Flow data does not rely on packet payloads, unlike 

deep packet inspection. In addition, a network flow data provides better visibility of the network 

events without the need to perform payload analysis. We have analyzed the flow sizes, flow 

length distribution and flow data. The obtained raw data was converted to flow data using 

crl_flow [33]. The command used for converting the raw data to flow data is as follows: 

[root@MACBOOK~]# crl_flow 200608241400.dump –cl –Tf60 –o 200608241400flow.t2 

By default, the application crl_flow [33] uses 300 second trace interval duration.We aggregated 

separate packets into flows known as flow aggregated data.We have used 60 seconds timeout 

values for inactive flows. Later on, we performed the breakdown of flows by port numbers, 

where only TCP and UDP flows (protocol numbers 6 and 17 respectively) were considered, 

because other protocols do not use port numbers. Flow length distributions and its empirical 

cumulative distribution are produced from flow data. The variation in the flow lengths was 

confirmed with the help of box plot. Next, the flow length density function was fitted to several 

analytical models as discussed in section 2.3. At last, we analyzed the effect of timeouts on the 

number of flows. Table 4.2 shows the flow data for a sample trace file. 
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Table 4.2:  Sample Flow Data 

source ip destination ip protocol ok src port dst port packets bytes flows first latest

145.120.188.50 117.139.135.89 17 1 34817 33466 1 40 1 1156395748 1156395748

198.53.192.94 193.20.182.105 17 1 22239 53 1 74 1 1156395818 1156395818

201.196.236.249 204.8.103.144 17 1 53 2496 1 141 1 1156395716 1156395716

192.114.232.238 44.78.174.12 6 1 80 8371 5 1589 1 1156395729 1156395729

199.98.58.160 145.120.188.51 1 1 11 0 2 112 1 1156395753 1156395759

209.19.254.208 193.20.182.96 17 1 58175 53 1 71 1 1156395607 1156395607

46.57.72.52 193.20.182.105 17 1 32874 53 1 83 1 1156395614 1156395614

164.66.234.200 46.224.123.88 6 1 80 60387 8 3823 1 1156395835 1156395839

193.86.115.104 193.20.182.96 17 1 57585 53 1 75 1 1156395718 1156395718

192.182.105.20 193.188.201.199 6 1 80 3325 9 7344 1 1156395697 1156395701

193.2.72.72 193.20.182.96 17 1 5206 53 1 72 1 1156395730 1156395730

145.120.188.58 117.149.83.99 17 1 58170 33473 1 40 1 1156395615 1156395615

49.185.46.44 193.20.182.105 17 1 22359 53 1 73 1 1156395629 1156395629

161.32.7.65 193.161.161.83 6 1 80 1442 32 17087 1 1156395830 1156395833

208.27.40.51 193.20.180.152 17 1 44558 53 1 72 1 1156395756 1156395756

192.114.235.164 215.246.130.148 1 1 0 0 1 84 1 1156395675 1156395675

46.181.145.211 193.20.182.96 17 1 40170 53 1 73 1 1156395811 1156395811

201.196.236.252 177.0.177.226 17 1 53 1024 1 130 1 1156395646 1156395646

44.206.252.198 145.120.33.176 6 1 80 2747 2 211 1 1156395779 1156395779  

4.2.3 Origin-Destination Pairs Analysis 

We study the amount of data flowing between pairs of IP address (Origin-Destination pairs). We 

compute the number of flows and sum of bytes transferred for each origin-destination pair. An 

important fact is that, the origin and destination IPs can interchange their positions from flow to 

flow. Further we realized that a connection initiated by IP1 can be considered as (IP1IP2) flow 

and later a connection initiated in the reverse direction can be considered as another (IP2IP1) 

flow. Hence, we utilized a script which overcomes the aformentioned realization and counts both 

directions as a single origin-destination pair. Hence, the script  outputs the number of flows for 

each origin-destination pair and the total bytes transferred between two hosts. The flow data was 

processed, so that first source IP, destination IP, amount of bytes, amount of packets and flow 

counts were transformed to an IP matrix. It was achieved by issuing the following command: 

[root@MACBOOK~]# cat *.t2 | t2_convert IP_Matrix > totalmatrix 
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The command option t2_convert , converts the flow data with aggregation of the source and 

destination IP pairs, ports and protocols. Once the IP matrix is obtained, connections occuring 

more than once are summed up along with the removal of additional information in the 

converted IP matrix. The Table 4.3 shows the striped IP matrix after conversion comprising of 

origin-destination pairs, packets, bytes and flows. The results generated after processing are 

explained in Chapter 5. 

Table 4.3: Striped Origin-Destination pair Matrix 

#Origin‐Destination Pairs packets bytes flows

170.2.58.108  200.77.10.225 2 132 2

52.212.25.177 161.32.131.65 2 194 1

213.111.52.200 209.148.187.96 1 108 1

68.253.52.129 206.250.157.11 2 124 1

193.176.202.69 218.12.228.185 1 300 1

92.183.110.126 164.66.46.120 4 650 4

197.228.69.169 197.161.44.172 1 48 1  

4.2.4 TCP Statistics 

Finally, we focus on TCP-specific aspects of the obtained traces. In our research, we confine our 

analysis to retransmissions and packet Round Trip Times (RTT). Passively estimating RTT is 

useful in measuring the congestion window size and retransmission timeout of a connection, as 

well as the available bandwidth on a path [49]. This information can help determine factors that 

limit data flow rates and cause congestion [50]. Additionally, RTT can be used to improve node 

distribution in peer-to-peer and overlay networks [51]. In order to aid with TCP connections 

reassembly, we utilized tcptrace [43] tool which is adequate enough of providing the number of 

retransmitted data packets and average RTT. The command utilized to convert the raw data to 

TCP statistics is: 

[root@MACBOOK~]# tcptrace –l –r –n --csv 200608241400.dump > 200608241400tcp.csv 
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Tcptrace command with option ‘–l –r –n’ produces detailed TCP-specific statistics from dump 

files. The output obtained after issuing the above command is very huge comprising of 128 

columns. We utilize a custom perl script to parse through the CSV file with the ‘- - csv’ option. 

The script outputs the necessary fields from the CSV file. Table 4.4 shows the file output after 

using perl script. Our main aim in selecting the parameters is to investigate if there is any 

correlation between retransmissions and packet RTT. The tool calculates RTT values as 

difference between the sent data packets and received ACKS preventing from dubious cases such 

as retransmissions. Table 4.4 clearly shows that the tool provides RTT values considering both 

directions. However, determining the RTT value from the receivers’ perspective is a very 

intricate task [52]. From the manual inspection of the obtained results, we infer that RTT’s 

observed in both directions vary hysterically. As we mentioned earlier, estimating RTT’s from 

receivers’ perspective is a non-trivial procedure which requires more practical approaches as 

mentioned in [53]. First, the raw data was processed using tcptrace [43] tool to attain the 

required statistics. A custom perl script was utilized to further process the data resulting in a 

custom file providing all the statistics related to retransmissions and Round Trip Times (RTT). 

Table 4.4 shows relevant fields after processing. The number of retransmissions for a connection 

from host(a) to host(b) and from host(b) to host (a) are aggregated to obtain the results. Finally, 

we try to find correlation between TCP retransmissions with RTT’s for each connection. 
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Table 4.4:  TCP Statistics 

con

nec

tion

host_a host_b

rexmt_

data_p

kts_a2

rexmt_

data_pk

ts_b2a

rexmt_

data_by

tes_a2b

rexmt_d

ata_byte

s_b2a

RTT_min

_a2b

RTT_

min_b

2a

RTT_m

ax_a2b

RTT_max

_b2a

RTT_avg

_a2b

RTT_avg

_b2a

RTT_stde

v_a2b

1 192.114.235.26 192.77.128.86 258 0 373584 0 0 0 0 0 0 0 0

2 145.120.109.103 214.206.48.97 0 0 0 0 129.2 9 129.2 207.5 129.2 13.1 0

3 193.84.6.33 193.188.196.52 1 0 1 0 0 0 0 0 0 0 0

4 201.41.68.131 197.117.111.242 1 0 54 0 0 0 0 0 0 0 0

5 161.32.137.50 180.41.155.110 0 0 0 0 0 0 0 0 0 0 0

6 193.176.202.69 93.108.39.55 54 0 61200 0 0 0 0 0 0 0 0

7 164.93.60.249 93.110.157.219 7 0 10080 0 0 0 0 0 0 0 0

8 88.165.95.49 164.88.48.135 0 0 0 0 0 0 0 0 0 0 0

9 88.164.75.117 192.114.235.26 0 0 0 0 0 0 0 0 0 0 0

10 46.51.255.42 192.114.235.26 0 0 0 0 8.2 113.1 108.2 227.4 31.3 129.2 40.8

11 193.176.202.69 41.82.216.4 84 0 92580 0 0 0 0 0 0 0 0

12 35.21.253.77 161.32.164.15 0 0 0 0 0 0 0 0 0 0 0

13 161.32.131.65 217.106.145.193 5339 0 111044 0 0 0 0 0 0 0 0

14 194.184.109.64 161.32.38.70 0 0 0 0 2.6 209.3 2.6 442 2.6 236 0

15 182.56.80.63 89.81.212.148 368 0 529920 0 0 0 0 0 0 0 0

16 192.20.47.7 192.114.235.26 0 0 0 0 0 0 0 0 0 0 0

17 209.179.216.226 192.114.227.142 0 223 0 322904 1.3 434.6 51.1 1223.8 12.6 789.5 16.2   

4.3 Conclusion 

This chapter discussed the nature of the traffic data. We learnt that the trace files are in the dump 

file format and last for 15 minutes each. Then, we described how the data is tailored in 

collaboration with the tools discussed in Chapter 3, according to various levels of traffic analysis. 

Further, we have seen the structure of the data and its variability according to the approach 

adopted. Finally, based on the data generated in this chapter, we try to analyze and visualize the 

underlying traffic characteristics in the coming Chapter 5. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Traffic Volume 

We analyze the traffic pattern as a function of time. In this section, the amount of traffic volume 

analyzed is for one week at different resolutions of time.  Since the traces in the data set are 

contiguous, it enables us to analyze patterns in traffic volume up to one week. Figure 5.1(a), 

shows the traffic volume as a function of time. In [54], the author presents the work on 

methodology of traffic analysis and strongly encourages the search for invariants, one of which 

is diurnal patterns. From the results, it infers the presence of lucid patterns of sinusoidal type.   
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Figure 5.1(a): Traffic volume (1 day) 

Figure 5.1(b), depicts the traffic volume as function of time for one week. It is necessary to 

check for variants in traffic from one day to one week. From the results, it infers that there exists 

a sinusoidal-type pattern for traffic volumes both for one day and one week. 
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Figure 5.1(b): Traffic volume (1 week) 

5.2 Packet Analysis 

5.2.1 Packet Distribution by Ports 

In this section, we discuss about the distribution of ports. While manually inspecting the port 

distribution, we could not find sufficient amount of well-known ports to plot its share in a pie 

chart. Even after applying the above method, we saw a lot of ephemeral ports in the data. There 

could be two reasons for the appearance of ephemeral ports. First, due to the epidemic of botnets, 

Internet worms and other malicious network programs that can use some of these ports for 

communication [55]. The second reason could be because of the use of peer-to-peer file sharing 

applications which can use both ports as ephemeral while initiating TCP connection. Thus, after 

implementing the heuristic mentioned in chapter 2.1 on the dump file, we get a list of service 

ports which are used to categorize applications and services used in the data. We manually 
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categorized the data into 3 classes: well-known ports ( 0-1023), registered ports ( 1024-49151) 

and dynamic or private or ephemeral ports (49152-65535). The Figure 5.2 (a), shows the 

categorization of the ports. The total amount of well-known ports found is very small (8) 

compared to ephemeral(5264) and registered ports(11478).  The Figure 5.2(a), shows the bar plot 

of three classes of ports.  

 

Figure 5.2(a): Packet distribution by ports 

5.2.2 Packet Distribution by Protocols 

Further, we classified packets according to their types and computed packets per second statistics 

for each type. The Figure 5.2(b), shows the number of ARP, ICMP and ICMP v6, IPv4, IPv6, 

UDP and TCP packets for every 5 seconds. From the results, it infers that the percentage of IPv4 

packets is very high compared to TCP and UDP. The task is to determine how many packets of a 

particular protocol are observed in a given traffic file. Figure 5.2(c), shows the throughput and 

the load of the observed traffic. Throughput can be defined as the number of application bytes 

transferred in seconds. The effective throughput can reduce significantly either due to an 
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inefficient TCP algorithm or its implementation even if the underlying network provides a high 

speed communication channel. 

 

Figure 5.2(b): Packet distribution by protocols 
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Figure 5.2(c): Load vs. Throughput 

5.2.3 Packet Length Distribution 
 

In this section, we investigated the distribution of packet lengths and tried to fit a theoretical 

probability distribution to it. The following plots in Figure 5.4, Figure 5.5 and Figure 5.6, 

describes the histogram of packet length distribution, its empirical cumulative distribution 

function (CDF) and the five-number summary statistics in the form of a box plot. In case of the 

histogram plot, we tried to plot the distribution using bins of width 1 byte in order to better 

understand the distribution. From the histogram plot, it infers that packets with lengths of 1500 

bytes (the maximum size of IP packet in Ethernet) is quite prominent. 

We utilized Matlab’s dfittool to fit a theoretical distribution to the packet lengths data. The 

distributions we tried to fit were exponential and log-normal. Later on, we tried to validate the  

above mentioned distributions by plotting their probability distribution functions.  
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Figure 5.4: Distribution of packet length 

From the results of the fit, it inferred that neither of the distributions fit the packet length data till 

any acceptable degree. We could have tried to cut the heavy tail of the distribution and fit a 

theoretical distribution to the remaining data, but that would not serve the purpose of properly 

fitting a distribution. Further, we plotted the emperical CDF of the packet lengths for different 

sets of traces. At last, we generate a box plot for the packet length data. The box plot provides 

the five-number summary for a sample trace file. From the box plot, we conclude that the number 

of outliers is very small (negligible), the upper quartile range is 1500 bytes with median of 112 

bytes and lower quartile range is zero bytes. 
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Figure 5.5: Empirical Distribution of packet lengths 

Table 5.1 shows the most commonly seen packet lengths. It shows the top ten most frequent 

packet lengths. The highest value (1500 bytes) undoubtedly refers to the maximum size of IP 

packet in Ethernet. The packet lengths of size 52 bytes refer to the TCP pure ACKs due to the 

length of IP and TCP along with 12 bytes of options length in the TCP/IP stack. Another most 

common size of packet length is 40 bytes (29946), which is purely IP and TCP packet lengths. 
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Table 5.1: Top frequent packet lengths 

Packet length 
 (bytes) 

Counts 

1480 148781 
56 149622 
64 159864 
60 166881 
48 222679 

1420 284414 
1492 441591 

52 1740113
40 2995486

1500 3814832
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Figure 5.6: Box plot of packet lengths 
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5.3 Flow Analysis 

5.3.1 Flow Distribution by Ports 

This section analyzes the distribution of flows according to the ports utilized. The analysis is 

very similar to section 5.2.1. We consider only TCP and UDP flows which are identified by the 

protocol numbers 6 and 17 respectively in the data set, as other protocols do not utilize ports 

numbers. The Figure 5.7 shows the categorization of the ports into three categories namely, 

ephemeral ports (16376), registered ports (47770) and well-known ports (160). As seen earlier, 

the share of well-known ports is very small when compared to the other categories. 

 

Figure 5.7: Flow distribution by ports 

The figure depicts the pie chart for the top ports (well-known ports) seen in the flows. From the 

plot, it infers that HTTPS (45%) has the top share followed by NETBIOS (14%) and NTP 

(12%).The plots generated for port distributions at packet-level does not correlates with the one 

at flow level, because each flow may carry an arbitrary number of packets. Since, there were 
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very few packets utilizing the ports at packet level but these packets contributed a large number 

of flows. 

 

Figure 5.8: Flow distribution by ports (protocols) 

 

5.3.2 Flow Length Distribution 

In this section, we analyze the distribution of flow lengths for one complete week. The raw dump 

file was processed and merged to provide the relevant output. Our aim was not only to plot the 

distribuiton of flow lengths, but also to fit theoretical probability distributions. Figure 5.9 shows 

the histogram plot of flow lengths with logarithm of flow lengths  on x-axis and its frequency on 

the y-axis. The plots depicting the histogram of flow length distribution, its empirical cumulative 



 

52 

 

distribution function (CDF) and the five-number summary statistics in the form of a box plot, as 

shown in Figure 5.9, Figure 5.10 and Figure 5.11 respectively.  

The histogram of flow length distribution, with logarithm of flow lengths on x-axis and its 

frequency on y-axis, has been produced using log scale, because of the high variability of the 

data set. Further, the plot on log scale aids in better visualization of the data set. From the plot, it 

infers that the distribution of the flow lengths is heavy-tailed. 
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Figure 5.9: Flow length distribution (log scale) 

The Figure 5.10, shows the  logarithm of ECDF of the flow lengths. At last, we generate a box 

plot for the flow length data. The box plot provides the five-number summary of the flow lengths 
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for an entire week. From the box plot, we conclude that the number of outliers is very high and 

the median of the flow lengths is very close to the lower quartile.  
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Figure 5.10: Empirical distribution of flow lengths (log scale) 

Finally, we have tried to fit a theoretical distribution to the flow lengths data using Matlab. The 

distributions we tried to fit were Log-normal, Normal, Rayleigh and Weibull. The distribution 

parameters are described in Table 5.2. Further, the distributions are confirmed by plotting the 

density of flow lengths on a log scale. From the density plot (Figure 5.12), it is inferred that the 

density of flow lengths on a log scale. From the density plot (Figure 5.12), it is inferred that the 

log-normal fit is the closest one to the distribution of flow lengths, compared to other 

distributions. 
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Figure 5.11: Box plot of flow lengths 

Also, we tried to plot the cumulative distribution function for the logarithm of flow lengths. 

From the Figure 5.13, we infer that the log-normal fit is the closest fit to the flow data, which 

corroborates our hypothesis. We tried to validate the above fitted distributions by plotting their 

probability and cumulative distribution functions and respective QQ-plots. On the contrary, from 

the results, it is understood that neither of the distributions fit the flow length data till any 

satisfactory degree. Apparently, this could happen because of the three outlying bins having high 

frequencies. We could both try to remove the outlier bins having high frequencies or cut the 

heavy tail of the distribution and fit a theoretical distribution to the remaining data, but that 

would not serve the purpose of studying the underlying traffic behavior. Finally, we further 

extend the fit of the distributions by plotting the cumulative distribution function of the logarithm 

of flow lengths on a quantile-quantile (Q-Q) plot. The quantile-quantile (Q-Q) plot is a graphical 

technique for determining if two data sets come from populations with a common distribution 
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[38]. From, the Q-Q plot (Figure 5.14), it is inferred that the log-normal fit is the closest fit to the 

flow lengths data. 

Table 5.2: Distribution parameters (PDF) 

Distributions Mean Variance
Normal 5.23941 2.14742 

Log-normal 5.22684 1.70637 
Rayleigh 4.8215 6.35196 
Weibull 5.20102 2.82613 
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Figure 5.12: Density of flow lengths (log scale) 
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Figure 5.13: Cumulative probability of flow lengths v/s other fits 
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Figure 5.14: Q-Q plot of flow lengths v/s other fits 
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5.3.3 Flows for varying Timeouts 

In this section, we analyze  the dependancy of the number of flows for varying timeout values.  

We utilized the crl_flow tool with different time out values for four separate traces. The number 

of flows were aggregated for each file separately. The Figure 5.15 shows the plot of number of 

flows for different timeout values, where the x-axis is timeout value (in seconds) and y-axis 

corresponds to the number of flows. The timeouts were varied in steps of 1, 10, 60, 120 and 1800 

secs. From the plot, it infers that higher the timeout value, lesser is the number of flows. Ths is 

fair since a larger timeout value means the flow can last for longer duration than before. In other 

words, the timeout values share an inverse relationship with the number of flows. We saw a 

strong correlation between the number of flows detected and the length of the timeout value, as 

corroborated in [32]. The paper shows that the number of flows varies inversely with the length 

of the timeout value.  
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Figure 5.15: Impact of timeout values 
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5.3.4 Origin-Destination Pairs 

In this section, we confine our research to the amount of data flowing between the pairs of IP 

address (Origin-Destination pairs). The preprocessing of the data is carried out as discussed in 

chapter 3 to obtain an aggregated IP matrix comprising of origin-destination pair, packets, bytes 

and flows. From the matrix obtained, we filtered it into origin-destination volume and origin-

destination flows. The total number of unique origin-destination pairs found in the data set is 

2734965. Figure 5.16 shows the histogram plot for the log of total number of bytes transferred 

between each set of IP. The plot infers that it is a heavy tail distribution which is common for 

network traffic [56, 57]. 
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Figure 5.16: Origin-Destination Pairs 

In order to visualize the number of flows per origin-destination pair, we tried to generate a Zipf-

type plot. The reason behind generating Zipf-type plot is that it delineates the dependency 
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between the number of occurrences (x-axis: number of flows) of a variable and its rank (y-axis: 

frequency). The Zipf’s law states that for each following rank, the number of occurrences is α 

times less than the previous rank. We observe that there are very few flows which are greater 

than 2000000. The distribution is so extreme that it exhibits a perfect L-shaped curve in Figure 

5.17. Whereas the Figure 5.18, below shows the same plot, but on a log-log scale where the same 

distribution shows itself to be linear. This is the peculiar signature of a power-law. We could see 

from the plots that the data is highly variable, hence we employed Zipf-type plot with both axes 

in logarithmic scale. The Zipf’s law is often incorporated in network measurements as described 

in [58, 59]. 
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Figure 5.17: Linear scale plot of number of flows 
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Figure 5.18: Log-log scale plot of the number of flows 

5.4 TCP Statistics 

In this section, we focus on TCP-specific aspects of the obtained traces. We have utilized custom 

scripts to extract necessary columns from the output generated by tcptrace. In total, the tool 

identified 260899 TCP connections in one sample trace file. Our main aim is to relate 

retransmissions and packet round-trip times. As mentioned earlier in section 3.2.4, the tcptrace 

tool calculates the RTT values as difference between the sent data packets and received ACKS 

preventing dubious cases of retransmissions. While manually traversing through the obtained 

results, we found out that the RTTs observed in both directions differ hysterically. The tool 

generates two values for retransmissions as well. For simplicity, we aggregate the two fields 

representing the retransmissions for the each connection. Further, we try to correlate TCP 

retransmissions with RTTs within each connection. The Figure 5.19 shows the plot of RTT value 
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in milliseconds for each TCP connection and Figure 5.20 shows the respective number of 

retransmissions. From the results obtained, it infers that there is no compelling correlation 

between the magnitude of retransmission and the RTT value for each TCP connection. We could 

further deduce that for a group of TCP connections where the RTT value is very high, the 

corresponding retransmission value is very low. Most of the values for retransmissions are in the 

range of 200 milliseconds to 300 milliseconds corresponding to the RTT Values. Finally, 

estimating the correlation coefficients between the two vectors yielded a very low value 

corroborating the fact that there is no correlation between the RTT and retransmissions.  

 

Figure 5.19: Round Trip Times (RTT) of each TCP connection 
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Figure 5.20: Retransmission for each TCP connection 

5.5 Conclusion 

In this chapter, various aspects of traffic have been analyzed. At packet level, we could not 

determine sufficient amount of well-known ports to know its contribution to traffic. We realized 

the distribution of packet lengths and tried different analytical fits to it, to understand the 

variation in packet lengths. At flow level, same principle was applied for distribution of ports 

and protocols as seen at packet level. We discovered that the distribution of flow length depicted 

a heavy tail distribution and of all the fits on different scales, log-normal was the closest fit to the 

distribution. Apart from the analytical fit to the flow lengths data, the five number summaries, 

box plot was studied to understand the variability in the data. We observed the inverse effect of 

timeouts on flows. The flow data was then analyzed as origin-destination pairs. The distribution 

for the number of flows was generated on both linear and log-log scale. It revealed Zipf type 
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nature, for the number of flows against its rank. Finally, TCP specific aspects were studied, in 

particular the effect of retransmissions and RTT’s. Unfortunately, we could not find any 

correlation between them. In the next chapter, we conclude and provide the future scope of work 

based on this thesis. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Summary 

In this thesis, real traffic traces collected over Trans-Pacific backbone links (the MAWI 

repository, providing publicly available anonymized traces) was analyzed to study the underlying 

traffic patterns. One has to have a deep understanding of the packet header structure for various 

protocols to study the traffic pattern. For the given dataset, we investigated traffic volume 

temporal patterns and most common protocols in use.  

During our research, we learnt the functionality of various tools and how they can be 

incorporated together to analyze network traffic effectively. The biggest challenge faced 

throughout this thesis was non-availability of the practical data and source of data. For instance, 

we tried our best to gather data locally from a campus network but it did not materialize. After 

one year of our failed efforts, we eventually managed to gather traces from MAWI. The results 

obtained would have been more compelling if the data utilized was not anonymized. However, 

the anonymity helps preserve the privacy of the clients or network users. 

The size of each trace file is about 1 GB lasting for 15 minutes. Most of the tools available online 

were capable of reading the trace file only up to few megabytes. The tool tcpdump came to 

rescue the limitations imposed by other software applications. It proved to be a very powerful 

command line tool in our analysis. Hence, during the course of our research, we learned about 

several tools like tcptrace, tcpstat and software packages such as perl, CoralReef and Matlab. 

We not only learned the software, but also tried to understand the nature of output generated by 

them.  
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The analysis of the data revealed IP, as the most frequently used protocol. At packet level, we 

studied the contribution of protocols TCP/UDP to the network traffic. Further, we tried to 

analyze the distribution of packet lengths to check the amount of variability in the distribution.  

The packet data was converted to flow data, to study the flow based characteristics. Next, we 

drilled down to the ports utilized at the flow level. In order to study the amounts of data flowing 

between pairs of IP addresses, we computed the number of flows and the sum of bytes 

transferred for each origin-destination pair. We utilized a script to account for both directions of 

flows between the pairs. To confirm our hypothesis for Zipf type distribution, we generated a 

Zipf type plot for the number of flows between origin-destination pairs, which corroborated our 

hypothesis. From the Zipf’s distribution, it inferred that there were very few flows that occur 

frequently.  The distribution for flow lengths was also analyzed and confirmed a heavy tailed 

distribution. We tried to fit various analytical models as discussed in Chapter 2, to the 

distribution of flow lengths. Log-normal distribution was the only distribution, closest to the fit, 

comparatively.  We further analyzed the effect of timeout on the number of flows. The number 

of flows varies inversely with timeouts.  

Finally, we analyzed TCP related statistics such as RTT and retransmission time. Unfortunately, 

we could not find any correlation between them. The data was analyzed from three different 

perspectives: on the per-packet, per-flow and per-connection levels. Further, we have confirmed 

several well-known facts about the general nature of the traffic such as, Zipf-type nature of 

distribution of number of flows and heavy-tailness of flow sizes. Further, we tried to derive and 

evaluate analytical models that would fit the data best. 
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6.2 Future Scope of Work 

The first thing to do is to create the simulation of the network analyzed. Another, interesting 

topic to extend our work is analyzing the multi-fractal nature of the traffic. For instance, network 

measurements done at various time scales (milliseconds, day or month) provide fractal or multi-

fractal behavior of the traffic. This information is vital in the simulation of traffic patterns or 

generating simulated traffic for network analysis. 

The number of traffic traces in the data set was quite large and the work demanded the 

automation of handling and processing the raw data. The distributions incorporated here, were 

primarily selected to be fitted to flow and packet inter-arrival time curves. Applications in other 

areas such as Quality of Service (QoS) and network management need to be investigated. By 

using the analyzed traffic data, a rough guess of the topology can be created in the absence of 

network topology. One could create a Matlab toolkit for carrying out the analysis at various 

levels of granularity. We could extend the same approach for detecting denial of service attacks 

by utilizing the tools from this research. Traffic profiling is another important aspect of network 

traffic analysis. Further, visualizing the network traffic data enhances its understanding. CAIDA 

has developed several tools for visualizing the network traffic data.    
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