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Abstract

This dissertation attempts to make a contribution within the fields of distributed systems, secu-

rity, and formal verification. We provide a way to formally assess the impact of a given change in

three different contexts. We have developed a logic based on Lewis’s Counterfactual Logic. First

we show how our approach is applied to a standard sequential programming setting. Then, we

show how a modified version of the logic can be used in the context of reactive systems and sensor

networks. Last but not least we show how this logic can be used in the context of security systems.

Traditionally, change impact analysis has been viewed as an area in traditional software en-

gineering. Software artifacts (source code, usually) are modified in response to a change in user

requirements. Aside from making sure that the changes are inherently correct (testing and ver-

ification), programmers (software engineers) need to make sure that the introduced changes are

coherent with those parts of the systems that were not affected by the artifact modification. The

latter is generally achieved by establishing a dependency relation between software artifacts. In

rough lines, the process of change management consists of projecting the transitive closure of the

this dependency relation based on the set of artifacts that have actually changed and assessing how

the related artifacts changed.

The latter description of the traditional change management process generally occurs after the

affected artifacts are changed. Undesired secondary effects are usually found during the testing

phase after the changes have been incorporated. In cases when there is certain level of criticality,

there is always a division between production and development environments. Change manage-

ment (either automatic, tool driven, or completely manually done) can introduce extraneous de-

fects into any of the changed software life-cycle artifacts. The testing phase tries to eradicate a

relatively large portion of the undesired defects introduced by change. However, traditional testing

viii



techniques are limited by their coverage strength. Therefore, even when maximum coverage is

guaranteed there is always the non-zero probability of having secondary effects prior to a change.
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Chapter 1

Introduction

For Mission Critical Systems (MCS) applications, requirements dynamically change in a rapid,

unpredictable, and continuous fashion. In applications such as those driving search and rescue

missions, any operational expansion/contraction requires that systems be updated with minimum

occurrence of secondary effects. For these application scenarios, any additional downtime resulting

from upgrade of the control system leads to unacceptable disruption of service. As a result, being

able to change these systems while preserving the correctness of both the changed and un-changed

portions is very important. We need to develop techniques, tools, and methods that allow software

engineers to specify change based on changing requirements; also, these methods and tools should

be able to guarantee the correctness of the changes and the whole system after such changes have

been applied.

Traditional software development methodologies assume that requirements are well understood

and available, in the form of a formal or extensive specification, of the required system behavior.

However, this assumption fails to hold for software that is meant to control MCS applications

deployed in rapidly evolving scenarios. While it is possible to develop logically precise require-

ments for software computing mathematical functions, the behavior of a software system depends

on extraneous factors that are not usually foreseen during its development. These include factors

such as platform of deployment (e.g., the word length of the machine on which the software is

run), the communication protocols used, the amount of memory available, etc. In software solving

real world problems, such extraneous factors are compounded by those from the system’s physical

environment that expect the software to cope with changing business constraints. In some cases,

given time and money, it is possible to get the original developers to update the software to meet

the changed business requirements. However, updating the system through traditional methods

1



which consist in changing the code and then testing may introduce undesirable secondary effects.

In these situations, the system must be phased out with millions of dollars in software development

cost wasted.

1.1 Problem Statement

Conventional approaches used in industry cope very poorly with an scenario in which software

requirements change rapidly and constantly. Traditional testing approaches operate by first chang-

ing the system’s source code (hopefully within a development environment separated from the live

production environment), testing the changed system’s modified fragments; testing the whole sys-

tem in conjunction with the changed modules and committing the change. However, even the most

robust testing procedures/methodologies are constrained by the coverage limit (citation). Even for

relatively simple programs, it is not easy to foresee the impact of change without first changing

the source code. It follows that for larger code bases (several thousands or millions of KLOC),

the problem is amplified further especially if we take into account that systems of such dimensions

tend to support critical operations. Since the state of the art (traditional change management within

Software Engineering) does not provide a way in which we could foresee the effect of a change

without incorporating the changed artifacts, we are in need of tools, processes, and methodologies

by which the latter may be achieved.

In large software projects with dynamically changing requirements are usually encountered

in the development of MCS applications, instead of manually performing development iterations

every time a requirement changes, we need to implement techniques and strategies for automatic

incremental update of system or subsystem components comprising the deployed software, in re-

sponse to changing requirements. We need a requirements engineering paradigm that can give an

idea on how the changes would affect the system in an a-priori manner.

2



Chapter 2

Related Work

The theory of counterfactuals allows us to reason about hypothetical situations. It has been used

in Philosophy, Probability Theory, and Econometrics [34] for decision making in a hypothetical

environment. In Physics, it has been used for reasoning about measurements in quantum mechanics

[47], [33]. The main idea exposed by Fisler et al. in [14] is to gain knowledge regarding the effects

of changing access control policies before actually making such changes. The work of Fisler

et al. is similar to the one presented in this paper as it tries to find the effects of a change a

priori. The work of Chockler et al. in [9] employs counterfactual reasoning also in the context of

model checking. In this instance, the authors emphasize their work in coverage issues. They use

counterfactual reasoning to enhance the coverage information. This work differs from ours given

that they use counterfactual logic to explore alternative scenarios whereas, in our case, we explore

a single alternative version given an initial version.

Also, in [18], Groce et al. use counterfactual theory to detect failures, isolate errors, and aid in

repairing modifications of program code in the context of model checking. They construct a model

of program executions and establish a metric among them. This metric lets them analyze faulty

executions by examining those executions which lie at some distance from a given faulty execution.

The work of [18] relates to ours in the sense that the authors define a notion of distance among

possible execution traces in the same sense we implicitly define the number of transformation

steps between program versions. In [18], however, the authors go beyond just defining a notion

of proximity and actually define, given a system execution trace, the set of neighboring traces

whereas our work only characterizes a single future version, given an initial actual version of some

program. The work of Ren et al. in [40] exposes a tool (i.e. Chianti) that analyzes two different

versions of a given program and a set of test cases for such program and determines which tests are

3



affected due to the changes that lead from one version to another. Furthermore, for each affected

test, the tool determines a set of method-level changes that most probably affected the test. The

work presented in this article differs from the work in [40] in the sense that we do not require a

second version and a set of test cases. Our approach just needs the changes to be expressed in

our logical calculus. The correctness that pertains to the changes is decided based on the current

properties of the original program and the desired future properties.

The approach given by Guo et al. in [19] exhibits a method by which change impact analysis

is modeled and verified in a distributed setting. This approach is based on model checking. Their

model is in essence a network of state machines that communicate either via shared variables

or queues. Changes are modeled as adding and/or deleting transitions from the composite state

machine that represents the distributed system. The work in [19] is similar to ours in the context of

two aspects: 1) the authors are formally representing change in a system; however, their approach

targets distributed computations and is based on model checking whereas our approach targets

sequential computation and it is based on theorem proving; 2) this approach prunes the global state

space by using partial order reduction in order to infer the valid transitions when a change occurs;

our approach deals with change at the source code level and the validity of the change is inferred

by our logical calculus. In [50], Subramaniam et al. enhance the approach shown in [19]. The

changes are still represented by adding and/or deleting transitions of a composite state machine.

However, this work addresses the issue of test suite coverage when changes occur. This approach

detects the affected tests based on whether or not these include the affected transitions. Using

formal verification techniques similar to the ones presented in [19], the authors are able to reduce

the total regression test suite based on which tests are relevant after a given change. Our approach

goes in a different direction by formally characterizing the source code-change and determining if

the changes to the current source code version are logically consistent with its properties and the

future desired properties.

4



The work presented in [38] uses symbolic execution to establish whether or not too source

code versions are equivalent. In the negative case the proposed approach generates the deltas

which characterize the input values that induce the behavior difference between the two versions.

Our approach, being based on proof theoretic method, relies mostly on the syntactic nature of

change and hence we consider two versions identical as long as they have equivalent logical char-

acterizations. The latter also means that we are only interested on cases where our two versions

(the actual and the potential version) are logically different.

Significant research has been performed in massively distributed environment-aware comput-

ing (also known as “swarm computing” [13], [30]), in particular for creating and reasoning about

swarm programs. Most of these works have been focused on developing programming paradigms,

tools, and languages for swarm computing. EnviroTrack [1], an object-based distributed mid-

dleware system, raises the level of programming abstraction for distributed s by providing a con-

venient and powerful interface to the application developer geared towards tracking the physical

environment. Menezes et al. [30] study different abstractions in the field of swarms. However,

none of these works are concerned with the problem of developing formal methods for building

sensor-based systems that provide provable guarantees of meeting their requirements.

Roemer et. al. [42] survey middleware challenges in the area of wireless sensor networks.

According to [42], adaptability and data-centric communication should be important issues in co-

ordinating services in networks that involve wireless sensors. We augment the desirable properties

of coordination frameworks for wireless sensor networks stated in [42] with the capability of in-

telligent data/service fusion.

The work shown in [11] uses Datalog rules to express security policies. Their approach is based

on model checking. The model used is a composite state machine. The states in this automaton

are relational structures and the transitions are labeled by events and policy rules. The transitions

of this automaton are restricted to be those that preserve the security policy’s integrity (i.e. avoid a

security breach). Furthermore, their approach requires two policies as inputs. To replace a security

5



policy, the old and the new policies need to be linked by the policy containment relationship which

amounts to the new policy subsuming the decisions that pertain to the old one. The semantics

for our agent-based networks are also based on security automatons whose transitions formally

guarantee that security and safety properties are respected. Additionally, our approach does not

require two versions of the access control matrix. Instead, we express the new version in terms of

the desired changes. Besides, while this approach heavily relies on model theory, ours is mainly

proof-theoretical. It is widely known that the size of the model is a decisive factor when considering

the space-efficiency of model-checking. In many real-world systems the size of the model may be

so large a model-checking-based approach may turn out to be prohibitive.

Ginsberg [15] pioneered the application of counterfactuals for reasoning about change in Ar-

tificial Intelligence. In particular, [15] applies the logic of counterfactuals to hardware design

problems. Our work, however, deals with reasoning about change in terms of security and safety

in sensor networks where arbitrary changes can compromise the system.

The approach followed in [10] targets large customized Enterprise Resource Planning (ERP)

systems. They analyze two different customization code versions. They apply static analysis in the

form of program slicing to examine two subsequent code versions. The change impact is denoted

by the difference in the outputs when the two versions are analyzed using a given set of inputs,

i.e., there is a change if the two versions are not observationally equivalent. This approach, similar

to the work reviewed in the previous paragraphs, still requires two different versions. Although

this approach is clearly applicable to large scale ERP systems, it lacks the ability to manipulate

a representation of the source code (security model in our case) and deduce whether or not there

would be a security breach if the changes were incorporated.

6



Chapter 3

Literature Review

Zhang, Ji; Cheng, Betty H.C. “Model-Based Development of Dynamically Adaptive Software”.
Proceedings of the International Conference of Software Engineering (ICSE’06) 2006. pp. 371-
380. [54]

The authors propose an approach for dynamic software update which could be described as

generic. This approach’s contribution consists on regarding the dynamic update problem from a

multi-threaded perspective. After all, in conventional software development, it is the integrated

effort of a team of programmers that serves the purpose when a software system needs to undergo

any sort of non-trivial modification.

Other interesting characteristics of this approach rely on the fact that it permits dynamic update

while maintaining current system state, while other approaches (those based on process-algebraic

methods) are not capable of achieving this. The latter is related to the fact that, according to the

authors, other techniques tend to conceive the dynamic update problem from a structural perspec-

tive; the latter may not be so useful, given that dynamic update mechanisms should strive for

transparency.

Zhang, Ji; Cheng, Betty H.C. “Specifying Adaptation Semantics” Workshop on Algorithms and
Data Structures (WADS’05) 2005. pp. 1-6. [53]

In this paper, the authors present a specification language based on linear temporal logic. They

characterize the system states in which updates can be performed as mutually consistent assertions

in temporal logic. Also, the authors introduce a graph based complementary technique in order to

make their approach more understandable in practice.

Although effective, their approach may be considered as not entirely efficient, due to the fact

that the algorithms that undertake the verification of their models have exponential complexity.
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Kogekar. S., Neema, S. et al.“Constraint-Guided Dynamic Reconfiguration in Sensor Networks”
Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN’04)
2004. pp. 379-387. [26]

This article presents an approach by which sensor network - based software can be dynamically

adapted. The authors use a technique by which they can characterize the operation environment

(all allowed values for the control parameters) as formal constraints.

System states are represented as specific points within the operation space and reconfiguration

or dynamic update is regarded as transitions along those points. Thus, software update is regarded

as the exploration of the operation space; given the nature of the parameters for these types of

systems (Sensor Networks) and without adequate heuristics, this problem may imply some level

of combinatorial explosion.

Poizat, P., Salan, G. and Tivoli, M. “On Dynamic Reconfiguration of Behavioral Adaptations.
Proceedings of the 3rd International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT’06) 2006. pp. 61-69. [39]

This article considers the problem of dynamic update from an additive perspective. Modifica-

tions on the software system will be done by integrating software components called ”adaptors”

whose behavior will change based on changes in the set of requirements. The specific role of the

adaptors is to modify the interfaces exposed by system modules.

The authors also discuss an important concept in the realm of dynamic update, they denominate

it the silent behavior portion. By the latter they mean that, in the face of a change in the system

specification, the system part(s) which suffer(s) the change should be isolated and stopped. The

latter partially guarantees that, after the update, the system invariants will still be consistent.

Stoyle, G., Hicks, M. “Mutatis Mutandis: Safe and Predictable Dynamic Software Updating”.
Symposium on Principles of Programming Languages (POPL’05) 2005. pp. 183-189. [49]

In this article, the authors consider the problem of dynamic update from a type theoretical

perspective. The authors develop a calculus-based formalism (Proteus) which characterizes the

changes in software behavior as changes in the types in a function signature. The change is char-

8



acterize by a set of type transformer functions, by which, explicit use of some changed data type

are casted into the modified data type.

Taenzer, G., Goedicke, M., et al. “Dynamic Accommodation of Change: Automated Architec-
ture Configuration of Distributed Systems.” 14th International IEEE Conference on Automated
Software Engineering. (ASE’99) 1999. pp. 287-291. [51]

In this article, the authors present an approach by which, module interfaces are modified via

graph transformation methods. Dynamic update, thus, is modeled as sequence of graph trans-

formations where a particular graph represents the current or potential state of a give distributed

system.

One of the major contributions regarding this paper is the definition of a quiescent state. In

order to apply an update to some set of modules within a software system, all of its components

(nodes) must be in a consistent state and all communication should have been suspended. It is only

under these conditions that the dynamic update is guaranteed not to violate the system’s invariants.

Shen, j., Xi, S,. Huang, G. Jiao, W., et al. “Towards a Unified Formal Model for Supporting Mecha-
nisms of Dynamic Component Update”. 4th Joint Meeting of the European Software Engineering
Conference and the Symposium of the Foundations of Software Engineering. (ESEC-FSE’05)
2005. pp. 80-89. [46]

In this article, the authors try to envisage the dynamic update problem from a software-architectural

point of view. Their solution to the problem is realized as a special kind of connector; where the

idea of connector is directly borrowed from the work by Shaw and Garland. Concurrently, the au-

thors try to abstract their approach from any platform/hardware-dependent issues; hence, they de-

fine the behavioral dynamics of their approach using CSP (Communicating Sequential Processes).

One particular aspect about this approach is the authors’ intention to make a case about the

feasibility of it based on real application to well-known distributed systems frameworks, namely,

CORBA and J2EE. They also consider how to apply their approach to a web services-based archi-

tecture. A common underlying issue in these three separate cases was the problem of maintaining

and transferring state when updating the system.
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Batista, T., Rodrguez, N. “Dynamic Reconfiguration of Component-Based Applications.” Pro-
ceedings of the International Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE’00) 2000. pp 32-39. [3]

In the context of this article the authors put the runtime emphasis on dynamic update. This

approach relies on the dynamic nature of interpreted languages in order to achieve automatic sys-

tem reconfiguration. According to the authors, the main reason for using an interpreted language to

achieve this is because doing so will eliminate the need for compilation phases in between software

updates.

This approach also relies on the CORBA standard to guarantee distributed model encapsulation

via the separation between interface and specification. It also achieves dynamic update due to a

characteristic inherent to the CORBA standard; this characteristic consists on partially-expressive

interfaces. Given that interfaces are not strongly expressed, behavioral variations are determined

by characterization of the type of messages that the modules use to communicate; functionality is

thus determined at runtime which smoothly implies dynamic update capabilities.

Chen, W., Hiltunen, M., Schlitchting, R. “Constructing Adaptive Software in Distributed Systems.”
Proceedings of the 21st International Conference on Distributed Computer Systems (ICDCS’01)
2001. pp. 413-420. [8]

This article situates the problem of dynamic update within the realm of sensor networks. Simi-

lar to other approaches, it conceptualizes the dynamic update problem as a finite sequence of state

transitions. The state space is denominated as the operation space. Given that system requirements

are characterized as all the possible values of the operational parameters, the operation space is

the feasible zone determined by the union of all constraints induced by the legal values of all

operational parameters.

Thus, the set of all possible configurations is modeled as the set of system components (mod-

ules) and their alternative configurations along with the relationships among modules. The latter

intuitively indicates that the dynamic update process is plagued with inefficiency due a combina-

torial explosion derived from all the possible configurations available in the operation space.
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Gupta, D,. Jalote, P. And Barua G. A Formal Framework for On-Line Software Version Change.
IEEE Transactions on Software Engineering. Volume 22, Issue2. 1996. pp. 120-131. [20]

This article exposes the dynamic update problem from a software version change perspective.

Hence, dynamic update is achieved, by source code substitution at run-time. The authors assume

the existence of correct source code version before and after the change. This approach, although

dated, elaborates a very illustrative model that deals with two important aspects in dynamic update:

overall correctness and consistent state transitions. Also, the authors suggest other important issues

such as quiescent state of the system when the update process is being executed.

One particular issue of this approach is that it relies on an imperative programming scheme to

model the dynamic update process. Also, the scope for this approach does not go beyond a stand-

alone sequential setting, where a centralized processor and the idea of global time can be relied on.

They succinctly suggest that their approach could be extended to a distributed setting. However,

as it is shown in standard distributed system literature, just the idea of a consistent distributed state

is somewhat complicated to achieve.

The authors emphasize on the fact of the instrumentality of the module invariant. Which they

define as the set of conditions with denote the state in which is safe to a modification on the system.

This approach relies on the programmer to specify this invariant.

Bierman, G., Hicks, M. et al. “Formalizing Dynamic Software Updating”. In Proceedings of the
2nd International Workshop on Unanticipated Software Evolution (IWUSE’03) 2003. pp. 1-17. [7]

This article presents and approach that strives to present a solution to the dynamic update

problem via a λ Calculus-based method. Their main motif is to provide an update mechanism

which, aside from being simple provides precise mathematical semantics.

Their approach implies a two-fold methodology. In one aspect they provide the syntax of their

update calculus; which, according to the authors is a first order, simply-typed, call-by-value lambda

calculus. The other side of their approach is the semantics, which is composed of a set of reduction

rules whose purpose is to realize an expression transformation mechanism.
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The authors justify their approach by asserting that it follows two principles which ultimately

guarantee correctness: Type Safety by use the module wide signature (the set of types of the

module’s public members) they can implement a subtype operator to distinguish between different

module versions at runtime. The other principle is Correctness and this one is weakly justified

given that the authors assert that when an update happens, the updating actions are not initiated

while ongoing computations are active; however, this is asserted by way of an example. Also,

they justify that the latter case is a rough approximation to a Hoare-based scheme, in which a

mechanism of pre and post conditions is used to guarantee consistencies across updates.

Zhang, S., Huang L. “Formalizing Class Dynamic Software Updating”. In Proceedings of the 6th
International Conference on Quality Software (QSIC’06) 2006. pp. 403-409. [55]

This article shows the type theoretical side of dynamic update problem and also emphasizes

on the object oriented aspect of it. The authors assert that although some approaches deal with

the dynamic software update (DSU) problem from an object oriented point of view. These ap-

proaches still lack an adequate degree of rigor and hence their type safety cannot be objectively

characterized.

Given that the objective of this approach is rigor, the authors show that their solution is ade-

quate via a calculus for the DSU problem. Their result section is a set proofs (theorems and their

correspondent lemmas) on the consistency induced by each and one of their type judgments (as-

sertions in the form of theorems proper of type theory). Their approach emphasizes on type safety

and thus, the proofs shown in the article are instrumental for the validity of their approach.

An interesting twist shown in this approach is the use of FeatherWeight Java [24]. According

to the references FWJ is a reduced version of the JAVA programming language; and its purpose

rests on making type theoretical proof about JAVA programs in an easy manner.

Duggan D. “Type-Based Hot Swapping of Running Modules”. In Proceedings of the International
Conference on Functional Programming (ICFP’01) 2001. pp. 62-73. [12]

In this article, the authors expose an approach which conceptually takes advantage of the ma-

jority of existing object oriented languages. The main contribution of this article is the novel use
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of reflection capability on a given language to realize what they call Hot Swapping; which is de-

fined as changing the implementation of a given module and have it be transparent to its respective

clients.

This article improves on an approach which establishes isomorphism between old types and

new types. This scheme is based on the co-existence of instances of the new and old types as

a result of a modification on the types of formal parameters, a return type for a function or, in

general, the interface of a given module. Their contribution is based on considering an equivalence

relation between the old type and the new type which differs from the referred approach in that a

subtype relationship is not symmetric while the equivalence is.

This approach requires the existence of a pair of isomorphisms (structure-preserving transfor-

mations) between the old and new type and hence, a way to implement the coexistence of corre-

sponding types in an update. More precisely, if a type isomorphism can be constructed the types

are structurally equivalent and hence an instance of one may be an instance of the other.
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Chapter 4

Code-Change Impact Analysis Using Counterfactuals

4.1 Introduction

In this chapter we present a framework for what-if analysis of programs based on Lewis’ theory

of counterfactuals [29]. The framework can be used to statically perform change-impact analysis

for source code. It enables us to verify assertions about a changed version of the program with-

out actually incorporating the changes. We present a logical calculus that precisely characterizes

structural modifications to source code and their impact on the behavior of the program.1

In the software development life-cycle, the majority of costs are usually incurred during the

testing and maintenance phase. Addition of new features, optimizations, refactoring and fixing of

defects necessitates modifications of the software system’s source code. While a combination of

formal methods and testing as it has been shown in [2], [4] can lead towards a defect-free software,

aggressive optimizations and other modifications can undo the quality resulting from thousands of

hours of verification and validation efforts. In many cases, such optimizations and modifications

are done without a complete understanding of the system (specially in the cases of parallel pro-

grams). Due to the complexity and size of today’s software systems, completely understanding

a system by code review is out of question. Regardless of how a programmer modifies the pro-

gram, extensive regression tests are needed in order to verify that (1) the new program version still

complies with its correctness constraints and/or (2) the new version complies with the properties

implied by the new requirements. While regression tests make sure that the modified software

system passes the test cases, defects that were detected through static analysis techniques and

1Portions of this chapter were published in:

Manuel Peralta and Supratik Mukhopadhyay. Code-Change impact analysis using counterfactuals. Computer
Software and Applications Conference, Annual International, 0:694–699, 2011.
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subsequently removed may creep-in as a result of modifications and will remain undetected by re-

gression tests. We need automated tool-support that enables us to understand software systems and

the effects of the changes on them; automated tools should be able to statically determine whether

a set of modifications applied to a software system resulted in modifications of its semantics.

In this chapter we present a framework for what-if analysis of programs based on Lewis’ theory

of counterfactuals [29]. The framework can be used to statically perform change-impact analysis

for source code. It enables us to verify assertions about a changed version of the program with-

out actually incorporating the changes. We present a logical calculus that precisely characterizes

potential structural modifications to source code and their impact on the program’s behavior. Our

framework blends model theoretic verification techniques with proof theoretic ones. The space of

program versions under modifications is treated as a Kripke structure with neighborhood seman-

tics. The completeness and soundness theorems for counterfactual logic described below are used

to transfer model theoretic facts to proof theoretic ones and vice versa. We use the expression

counterfactual logic to precisely mean propositional counterfactual logic.

One can argue that it is possible to actually apply the modifications to the program and then

statically analyze the modified program to check if it conforms to the expected behavior. However,

if we expect a certain behavior to emerge after the changes are applied and it turns out, based on

the result of static analysis, that the applied changes do not enforce the desired behavior, the entire

effort spent in modifying the code is wasted. Our framework allows a programmer to think of

alternate ways of implementing a program and prevents waste of efforts in writing code that does

not meet the objectives.

4.2 Counterfactual Theory

The logic of counterfactuals helps us reason about assertions that are not matter of fact. In [29]

Lewis provided a sound and complete proof system and proved its decidability. Based on the logic

of counterfactuals we derive a logical calculus that allows us to assert properties that would hold
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for a future version of a given program and verify that these would indeed hold if the changes

needed to obtain that version were actually implemented.

4.2.1 The Language of Counterfactual Theory

In coherence with [29] we will briefly introduce the language regarding the logic of counterfactuals

below 2:

φ ::= pi|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|φ� φ

The counterfactual sentence φ � ψ should be read as: if it had been the case that φ, it

would have been the case that ψ. Thus, if we had an assertion whose antecedent ranged over

the properties of some given program and also the changes needed to produce a new version and

whose consequent ranged over the properties that a new version would have, then we could use

counterfactual logic to code such an assertion.

4.3 Program Transform Model

In this section we provide a formal exposition of the two-fold model we use to formalize coun-

terfactual change. On one side (subsections: 4.3.1, 6.4.3) we introduce our the part of our logical

calculus that let us encode change at the source code level based on higher order logic. On the

other side (subsections: 7.4.4, 7.4.5 ) we provide the semantics of our approach using Lewis’

approach [29] based on neighborhood semantics of Kripke.

4.3.1 Logical Description of a Program

The programs we will be dealing with are initially well formed strings over the following syntax 3

shown in Figure 4.1.

2pi denotes a propositional variable.
3For the sake of brevity the non-expanded non-terminals shall be interpreted as usual.
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〈Stat〉 ::= skip | 〈AsgStmt〉 | 〈IfStmt〉 | 〈LoopStmt〉 | begin | end | else
〈AsgStmt〉 ::= 〈VarName〉 := 〈IntExp〉
〈IfStmt〉 ::= if 〈BoolExp〉 then begin
〈LoopStmt〉 ::= for 〈AsgStmt〉 to 〈IntConst〉 do begin

Figure 4.1: Restricted grammar for our ALGOL-like language

Furthermore, we define U ⊆ N to be a prefix set of the natural numbers. Moreover, let Stat

also denote the set of strings obtained from the grammar show in Figure 4.1. Hence, we can further

define our set of well-defined programs as the following:

P = {f : U → Stat}

Any program f0 ∈ P is just a mapping from a subset of the natural numbers (which denote line

numbers) to the set of well-formed strings from the grammar in Figure 4.1. Since P is a function

space, it may contain more functions that the ones that interest us, hence it is necessary to charac-

terize the class of functions we are interested in.

First of all, our programs need a relation among line numbers to capture the notion of nested

statements or more intuitively, the notion of matching begins and ends. For each program

f ∈ P we have a relation R ⊆ U × U such that:

1. (∀u ∈ U)f(u) = 〈IfStmt〉 or f(u) = 〈LoopStmt〉

2. (∃v ∈ U)(u < v) ∧ (f(v) = end) ∧ (u, v) ∈ R

3. (∀u, v ∈ U)(u, v) ∈ R→ (w, v) 6∈ R where (∀w ∈ U)w 6= u

4. (∀u, v, w, x ∈ U)(u, v) ∈ R ∧ (u ≤ w ≤ v) ∧ (w, x) ∈ R→ (x ≤ v)

Furthermore, we choose to model possible program transformations using the following rule:
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(∀u ∈ U)(u 6= ui) ∧ (u 6= uj) → (f(u) = f ′(u))

∧ (f(ui) = f ′(uj))

∧ (f(uj) = f ′(ui))

The latter expression denotes the existence of a new program f ′ ∈ P that happens to differ

from our original program f ∈ P only by swapping two statements (i.e. ui and uj).

4.3.2 Program Transformers

In the context of Hoare Logic the notion of predicate transformer [17] is widely known. A pred-

icate transformer may be regarded as a first order logic formula which via existential quantifier

elimination produces the weakest precondition for a given command and its respective post con-

dition. Following the same notion of predicate transformers we have thought of specifying our

programs and their transformations as Program Transformers.

Let ΨP denote the rules given in section 4.3.1 and let ΨS denote the rule shown below. Thence,

we can formally express our program transformer expression as:

ΨT , (∃f)(∃R)ΨP ∧ΨS

Notice that ΨT is a second order logic formula since we are quantifying over one function

symbol and one relation symbol. Also, let us assume that we have a fixed program f0 ∈ P . By

definition, f0 is a finite list of statements in Stat. Thence, we can logically express f0 : U → Stat

by a finite conjunction of equalities as it is expressed below:

Φf ,
∧
i∈U

f(i) = Stati
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Where Φf is the logical formula that represents f0 and Stati is a statement in Stat. Therefore,

we can ”apply” ΨT to Φf by joining them by conjunction which produces the following formula:

ΨT ∧ Φf , (∃f)(∃R)ΨP ∧ΨS ∧ Φf

Also, do notice that, we may only eliminate the quantified f in the latter formula. The resulting

formula will be the logical expression that denotes our new version of f0, namely, f ′, however,

notice that, since we cannot eliminate the quantified variable R (as elimination of n-ary quantified

relation symbols is an open problem), the resulting expression is not quite the corresponding for-

mula for f ′ in the same manner Φf denoted f0.

Furthermore, notice that our notion of a relation R ⊆ U × U may be critiqued as being too

vague. To the latter we assert that for each f ∈ P R will be the least relation that satisfies ΨP .

Moreover, R’s unique characterization may be provided by the following second order logic for-

mula:

∃R(ΨR
P ∧ (∀R′ΨR′

P ∧ (∀x, yR′(x, y))

→ R(x, y))→ (∀u, vR(u, v)→ R′(u, v)))

Where ΨR0
P denotes the same formula ΨP with R substituted for R0. Intuitively, the latter

formula means that R is the least relation that satisfies ΨP since if there is any ohter relation R′

that also satisfies ΨP then both relations are equivalent. More simply, the latter assertion may be

formalized using set-theoretic notation, this yields a more succinct expression.

∃RR |= ΨP ∧ (∀R′R′ |= ΨP ) ∧ (R ⊆ R′)→ (R′ ⊆ R)
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4.3.3 Kripke Versioning Model

In [29] the author provides the semantics of his counterfactual propositional logic using a multiple-

world interpretation. In that same manner we have chosen to interpret our program transformation.

In our case, each program version will represent a world. When we applied a program trans-

former (as it is defined in the last section) we obtain a new version. Below, we provide a formal

interpretation based on a Kripke model.

Definition 4.3.1 (Kripke Version Model) A Kripke Version ModelR is a triple 〈P ,⇒, P0〉where:

1. P = {Pk}k∈N is the set of all n-line programs which are the different program versions.

2. P0 is the initial program.

3. ⇒⊆ P × P is a binary relation defined the set of all possible program versions. Where⇒

is the smallest relation such that the following properties hold:

(a) si ← si , statement si is left unchanged. This stands for the do nothing transforma-

tion.

(b) si ← sj , statement sj replaces statement si, where sj ∈ Pk. We usually call this

primitive transformation, a swap.

(c) si ← sj , statement sj replaces statement si, where sj 6∈ Pk. Thence, sk is a new

statement.

(d) (∀i)si ∈ Pk can be changed only once.

Furthermore, we assume that the relation ⇒ complies with the properties of reflexivity, sym-

metry, and transitivity. Below, we justify each property based on the latter definition of⇒:

1. Reflexivity: For any program Pi ∈ P , it is obvious that the do-nothing transformation will

yield that any program can be transformed into itself. Therefore, Pi ⇒ Pi given that for all

sj ∈ Pi, Pi = Pi[sj/sj]
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2. Symmetry: For any programs Pi, Pj ∈ P any of the above transformations can be reversed

and thence, Pi ⇒ Pj implies Pj ⇒ Pi.

3. Transitivity: For any programs Pi, Pj, Pk ∈ P , applying two or more transformations to a

program will yield intermediate versions; this is equivalent to transforming the initial version

by composing the transformations into one. Thus, Pi ⇒ Pj and Pj ⇒ Pk imply that Pi ⇒+

Pk. Where⇒+ , ⇒ ◦ ⇒n−1 and n > 1.

4.3.4 Interpreting the Counterfactual Implication

As it was stated earlier, the purpose of our model is to help interpret assertions in the language

of counterfactual logic. Let P0 denote our given source program. Also, let us assume we had a

counterfactual assertion, namely φ� ψ in which:

• φ stands for assertions regarding P0 and some transformation si ← sj that implies that

P1 = P0[si/sj]

• ψ stands for assertions regarding P1

Thence, following the model-theoretic interpretation proposed by Lewis in [29], our version of

the counterfactual implication is interpreted as:

R |= φ� ψ . (4.1)

Where R denotes our previously defined Kripke Versioning Model. Moreover, letting αi, βi

denote propositional statements about the structure of Pi and Pj respectively, then, we can state

that:

φ , (
n∧

i=1

αi) ∧ (Pi ⇒+ Pj)

ψ ,
m∧
j=1

βj
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Where ⇒+ denotes the positive/transtive closure for the relation ⇒. Furthermore, given an

initial program version, namely P0, we produce several versions by applying one or more trans-

formations to it. In the context of a counterfactual assertion, the properties regarding the current

version and the changes applied to it (in order to produce a new version) imply properties pos-

sessed the new version and hence:

R |= φ� ψ , (∃mink ∈ N)(
∧n

i=1 αi)

∧(P0 ⇒k P ′)→ (
∧m

j=1 βj) .

The latter should be interpreted as there exists a minimal number of transformation steps such

that given the properties of our initial program P0 (namely,
∧n

i=1 αi) and the transformation be-

tween the two program versions implies the desired properties of the future program version

(namely,
∧m

j=1 βj).

4.4 Fragment of Counterfactual Logic

Since our final objective is to produce an algorithm and a tool to enable us to reason about the

properties that will hold for future versions of a given program, we need a logical calculus as a

principal enabling component which will permit us infer these properties in a mechanical manner.

Hence, we present below a proof-theoretical fragment that pertains to the logic of counterfactuals

as it is presented in [29]:

1.
φ� φ

Reflexivity rule

2.
φ� ψ

φ→ ψ
Counterfactual-Elimination rule

3.
` λ→ ψ

` (φ� λ)→ (φ� ψ)
Conditional Deduction rule

4.
` (φ→ χ) ∧ (χ� ψ)

` φ� ψ
Partial Transitivity theorem
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Notice that the last statement above is a theorem and not a rule. Hence, we are required to

present a brief proof which will assure its validity. Such proof is given below4:

1. (φ→ χ) ∧ (χ� ψ) Hypothesis

2. χ� ψ ∧-Elimination in 1

3. χ→ ψ Counterfactual Elimination rule in 2

4. φ→ χ ∧-Elimination in 1

5. φ→ ψ Hypothetical Syllogism in 3, 4

6. (φ→ ψ)→ [(φ� φ)→ (φ� ψ)] Conditional Deduction rule

7. (φ� φ)→ (φ� ψ) Modus Ponens in 5, 6

8. φ� φ Reflexivity rule

9. φ� ψ Modus Ponens in 7, 8

10. (φ→ χ) ∧ (χ� ψ) ∴ φ� ψ Conditional Proof from 1 to 9

4.5 First Example

Assume that we are provided with the simple program shown in Figure 4.2. We introduce a set of

propositions to characterize different statements of the program.

4.5.1 Program Structure Predicates

The objective of using counterfactual logic is to decide upon assertions about the properties of

potential program versions and their structure. In the context of this example, we will need propo-

sitional assertions like the ones below:
4We saw fit to include this proof in the chapter as this theorem is not part of the work presented in [29].
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f u n c t i o n foo ( var x : I n t e g e r ) : I n t e g e r
var

1 y : I n t e g e r := 1 ;
2 z : I n t e g e r := 0 ;

begin
3 i f x > 0 then
4 z := 2∗y ;
5 e l s e
6 z := 2∗y + 1 ;
7 foo := z

end

Figure 4.2: Example source code

• α , f(1) = y : Integer := 1

• β , f(2) = z : Integer := 0

• γ , f(3) = if x > 0 then

• δ , f(4) = z := 2 ∗ y

• ε , f(5) = else

• π , f(6) = z := 2 ∗ y + 1

• ρ , f(7) = foo := z

The latter propositions imply that we can denote a program by a conjunction of a finite number

of propositions like the ones shown above. Hence,

P0 , α ∧ β . . . ∧ ρ . (4.2)

Potential program versions will also be denoted by conjunction of propositions about the pro-

gram’s structure. Hence, a new version of P0 could be a program where γ and δ hold true. Fur-

thermore, we can use our logical program description expression to specify the structure a new

version may have, based on a given program which, in this case, is P0. Therefore,
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(u 6= 4) ∧ (u 6= 6) → (f(u) = f ′(u))

∧ (f(4) = f ′(6))

∧ (f(6) = f ′(4))

(4.3)

Where f ′ denotes the member of P which denotes P1 our new version of P0. Hence, P1 is the

version constructed from P0 by swapping the statements labeled byD andE. Therefore, according

to our definition for the versioning model 〈P ,⇒, P0〉, then P0 ⇒+ P1. Furthermore, we can see

that the change applied to P0 may affect its behavior. Initially, from Figure 4.2, we can infer that

whenever the input is greater than 0, the output of this program is an even number and it will be an

odd number otherwise. Now, if we take P1 into account, we see that the latter is no more the case

and now it holds that if the input is greater than 0, the output is odd and it will be an even number

otherwise.5

However, the latter assertions cannot be fully accepted since they fall in one of the following

categories: 1) they are assertions regarding P0 and hence, we would have to verify its code in

order to prove them; 2) they are assertions regarding P1 and we do not have the source code for

it (although we know precisely how to transform P0 in order to get P1). Therefore, we can assert

that the latter still bares the question of how can we infer properties of non-existent programs? The

following sections will answer this query.

4.5.2 Counterfactual Proof

In this section we will show how to use the logic of counterfactuals as a calculus to prove the

following assertion.

Given a program P0, if we had swapped the contents of statements D and E then it would

have been the case that whenever the input is a positive integer, then the output is an odd

integer.
5For the sake of simplicity, we will employ the notation P , P ′[si/sj ] to denote a swap in terms of program

transformers.
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We can see that the latter sentence is actually a counterfactual implication by definition and

thus, we can encode it in order to express it in our already-defined language. Hence, we can write

the following:

P0 ∧ swapP0
4,6� [(x > 0)→ (2 6 |z)] . (4.4)

where swapP0
4,6 stands for the proposition that denotes interchanging the lines 4 and 6 in P0 and

hence it also shortly denotes the program transformer that yields P1 from P0. Our main objective

is to show that the latter assertion is actually a theorem in the logic of counterfactuals. In order to

do so we need the proof theoretical fragment we proposed earlier and some lemmas and theorems

we will present in the following sections.

4.5.3 Facts Based on Model Theory

Some of the assertions we will use are firmly grounded in the program versioning model we defined

earlier. Thence, let R = 〈P ,⇒, P0〉 be the model we defined before. Thus, we claim that the

following assertions are valid in this model:

1. P0 → α ∧ β

2. (α ∧ β ∧ swapP0
4,6)� γ ∧ δ

The first assertion follows trivially from the definition of P0 as a proposition based on the

structure of its source code. The second assertion is based on the fact that the future version P1 is

based on valid transformations applied to P0, more precisely P1 , P0[s4/s6][s6/s4] which implies

that P0 ⇒ P1. Hence, we have a minimal number of transformation steps that, based on the

structure of P0 yielded the structure of P1 which in turn implies that γ ∧ δ is a true assertion. The

latter is the model theoretical justification for the second assertion above. Thence, by completeness,

the two assertions above are theorems of our counterfactual logic.
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In what follows we will divide the proof regarding the assertion (4.4) in three claims each one

representing an intermediate steps that will ultimately lead to the proof of (4.4).

4.5.4 First Claim : (δ ∧ γ)→ [(x > 0)→ (2 6 |z)]

Our general proof strategy is based on the Conditional Deduction rule whose deduction rule we

give below for reference purposes:

` λ→ ψ

` (φ� λ)→ (φ� ψ)
. (4.5)

We provide the necessary instantiation that this case requires:

λ , γ ∧ δ

φ , α ∧ β ∧ swapP0
4,6

ψ , (x > 0)→ (2 6 |z)

Hence, the next step is to prove the first claim, which in this case is (δ ∧ γ) → [(x > 0) →

(2 6 |z)]. In order to do so, let us assume that the propositions δ and γ hold true. Moreover, let us

assume that the program’s input is a positive number, i.e., x > 0. Thence we will use predicate

transformers as it is shown in [17] in order to deduce the required implication. The predicate

transformers’ rule are given below:

postA , ∃〈x,y,z〉(x′ = x′) ∧ (y′ = y) ∧ (z′ = z)

postB , ∃〈x,y,z〉(x′ = x′) ∧ (y′ = y) ∧ (z′ = 0)

postC , ∃〈x,y,z〉[(x > 0) ∧ (x′ = x′) ∧ (y′ = y)

∧(z′ = z)] ∨ [(x ≤ 0) ∧ (x′ = x′) ∧ (y′ = 1) ∧ (z′ = z)]

postD , ∃〈x,y,z〉(x′ = x′) ∧ (y′ = y) ∧ (z′ = 2y + 1)

postE , ∃〈x,y,z〉(x′ = x′) ∧ (y′ = y) ∧ (z′ = 2y)

postF , ∃〈x,y,z〉(x′ = x′) ∧ (y′ = y) ∧ (z′ = z)
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Applying the predicate transformer functions to the proposition x > 0 we get

postA(x > 0) , (x′ = x) ∧ (y′ = 1) ∧ (z′ = z) ∧ (x > 0)

ρ1 , (x′ > 0) ∧ (y′ = 1)

postB(ρ1) , (x′ = x) ∧ (y′ = y) ∧ (z′ = 0)

∧(x > 0) ∧ (y′ = 1)

ρ2 , (x′ > 0) ∧ (y′ = 1) ∧ (z′ = 0)

postC(ρ2) , (x < 0 ∨ x ≥ 0) ∧ (x′ = x) ∧ (y′ = y)

∧(z′ = z) ∧ (x > 0) ∧ (y = 1) ∧ (z = 0)

ρ3 , (x′ > 0) ∧ (y′ = 1) ∧ (z′ = 0)

postD(ρ3) , (x′ = x) ∧ (y′ = y) ∧ (z′ = 2y + 1)

∧(x > 0) ∧ (y = 1) ∧ (z = 0)

ρ4 , (x′ > 0) ∧ (y′ = 1) ∧ (z′ = 3)

postF (ρ4) , (x′ = x) ∧ (y′ = y) ∧ (z′ = z)

∧(x > 0) ∧ (y = 1) ∧ (z = 3)

ρ5 , (x′ > 0) ∧ (y′ = 1) ∧ (z′ = 3)

Thus, we have concluded that the final value for the variable z is 3 and thence, we have con-

cluded that 2 6 |z. Since we had assumed that x > 0 then the implication (x > 0)→ (2 6 |z) holds.

Furthermore, given that we first assumed that δ and γ held then (δ ∧ γ)→ [(x > 0)→ (2 6 |z)]. �

4.5.5 Second Claim : α ∧ β ∧ swapP0
4,6� [(x > 0)→ (2 6 |z)]

Using the first claim and the Conditional Deduction Rule, then we can assert that:
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(α ∧ β ∧ swapP0
4,6)� γ ∧ δ

α ∧ β ∧ swapP0
4,6� [(x > 0)→ (2 6 |z)]

. (4.6)

Notice that the premise of this instantiated rule already holds since it is a valid assertion in the

context of our model. Once again, by the completeness of the counterfactual logic we can use

Modus Ponens and infer the required assertion, i.e. α ∧ β ∧ swapP0
4,6 � [(x > 0) → (2 6 |z)] and

this proves the second claim. �

In order to prove this claim, we need to employ the last rule of the fragment of counterfactual

logic we proposed. We will use the partial transitivity theorem which we re-state below:

` (φ→ χ) ∧ (χ� ψ)

` φ� ψ
. (4.7)

Notice that the first claim is what we first asserted about our intuition regarding the transfor-

mation from P0 to P1. Based on our modelR and the second claim, we can assert the following:

1. (P0 ∧ swapP0
4,6)→ (α ∧ β ∧ swapP0

4,6)

2. (α ∧ β ∧ swapP0
4,6)� [(x > 0)→ (2 6 |z)]

Thus, if we instantiate the variables in the latter rule like we show below:

φ , P0 ∧ swapP0
4,6

χ , α ∧ β ∧ swapP0
4,6

ψ , (x > 0)→ (2 6 |z)

Therefore, we can see that, by the first two assertions and the partial transitivity theorem stated

above, then the assertion [P0∧swapP0
4,6]� [(x > 0)→ (2 6 |z)] holds and this proves the theorem.

�
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1 a : I n t e g e r := 3 0 ;
2 b : I n t e g e r := 9 − a / 5 ;
3 c , d : I n t e g e r ;
4 begin
5 c := b ∗ 4 ;
6 i f c > 10 then
7 c := c − 1 0 ;
8 d := c ∗ ( 6 0 / a )
9 end

Figure 4.3: Source code for the second example

4.6 Second Example

In the second example, we want to prove that if a constant propagation transformation were to

be applied to a program then its semantics would have remained unchanged. Below, we show the

source code for the initial version of our program.

In order to apply a constant propagation transformation to the source code in Figure 4.3, we

define the following transformation steps:

1. Do-nothing transformation on statement 1. ∴ P1 = P0[s1/s1]

2. In statement 2, replace the RHS of the assignment with the constant value 3. ∴ P2 =

P1[s
′
1/s1]

3. Do-nothing transformation on line C. ∴ P3 = P2[s3/s3]

4. Replace RHS of the assignment for constant value 12 on line D. ∴ P4 = P3[s
′
4/s4]

5. Replace current boolean expression with the constant True in line E. ∴ P5 = P4[s
′
5/s5]

6. Replace RHS of the assignment for constant value 2 on line F . ∴ P6 = P5[s
′
6/s6]

7. Replace RHS of the assignment for constant value 4 on line G. ∴ P7 = P6[s
′
7/s7]
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Via the latter set of statement replacements we can surely assert that the pair (P0, P7) is con-

tained in the transitive closure of ⇒ and thence P0 ⇒+ P7. Furthermore, based on our first

example, in this instance, we will also provide the propositions which denote the structure of each

program version (i.e. P0 and P7). In the following set of statements each statement label denotes

a singleton statement set. The corresponding statement replacement will be given by the corre-

sponding primed Greek variable as it is shown below.

α , f(2) = b := 9− a/5V α′ , f ′(2) = b := 6

β , f(5) = c := b ∗ 4V β′ , f ′(5) = c := 12

δ , f(6) = if c > 10 then V δ′ , f ′(6) = if True then

γ , f(7) = c := c− 10V γ′ , f ′(7) = c := 2

ε , f(8) = d := c ∗ (60/a)V ε′ , f ′(8) = d := 4

Furthermore, it follows that P0 , α ∧ β ∧ γ ∧ δ ∧ ε and similarly, P7 , α′ ∧ β′ ∧ γ′ ∧ δ′ ∧ ε′.

Moreover, let us define the following predicate which will denote the transformation applied to P0

by cfold(P0) , (P0 ⇒+ P7) and therefore, cfold(P0) , α′ ∧ β′ ∧ γ′ ∧ δ′ ∧ ε′. Thence, in this

example. we are required to prove that:

P0 ∧ cfold(P0)� (d = 4) . (4.8)

4.6.1 Proof

Since the transformations were done via our already defined versioning model, then we can assert

that

R |= (α ∧ . . . ∧ ε ∧ cfold(P0))� (α′ ∧ . . . ∧ ε′) . (4.9)
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var :
1 x : I n t e g e r := 1 ;
2 y : I n t e g e r := 2 ;
3 z : I n t e g e r := 3 ;
4 i : I n t e g e r := 0 ;
5 w : I n t e g e r := 0 ;
6 s k i p ;
7 begin
8 f o r i := 1 to 100 do begin
9 w := i ;
10 z := x + y
11 end
12 end

Figure 4.4: Source code for the loop hoisting example

By a simple post-condition analysis (which we will not include here given its trivial nature) we

can also assert that (α′ ∧ β′ ∧ γ′ ∧ δ′ ∧ ε′) → (d = 4) and thence, by the conditional deduction

axiom we can assert that:

[α ∧ . . . ∧ ε ∧ cfold(P0)]� (d = 4) . (4.10)

Since P0 , α ∧ β ∧ γ ∧ δ ∧ ε, we can directly conclude that [P0 ∧ cfold(()P0)]� (d = 4)

which is exactly what we had claimed. �

4.7 Third Example

In this example we will show that after a code hoisting modification on the provided source code

still behaves the same. Below we provide the example source code which consists of a simple loop

whose original loop body consists of two assignments. The first statement is surely dependent on

the loop variable (i.e. i) and thus it will not be affected by code hoisting. The second statement is

composed of a LHS and a RHS which does not depend on the loop variable and hence, the whole

statement may be extracted from the loop body.
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Let us denote the code in Figure 4.4 as P0. Notice that, in Figure 4.4 we have only labeled

two lines given that the loop hoisting program transformation will consist of a swap of these two

lines. Furthermore let us declare the following predicates which will let us integrate the programs’

structure into our proof:

• α , f(6) = skip

• β , f(10) = z := x + y

• δ , f ′(10) = skip

• γ , f ′(6) = z := x + y

Thus we can declare an alternative version in which statements sA and sB will be swapped.

Thence, P1 , P0[s6/s10][s10/s6]. The latter implies that in P1 the statement z := x + y is removed

from the loop body. Moreover, in the same manner as we did in section 4.6, we claim that a simple

static analysis similar to the one done in section 4.5 will let us assert that:

P0 → (w = 5050) . (4.11)

At this point we can use the proof theoretical fragment that pertains to our approach. More

specifically, we can invoke the conditional deduction rule which will assert below for reference

purposes,

` λ→ ψ

` (φ� λ)→ (φ� ψ)

For this purpose we will use the following instantiation:

λ , P0

φ , P0 ∧ swapP0
6,10

ψ , w = 5050
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We can see that by 4.11 the needed hypothesis regarding the conditional deduction rule already

holds. Hence, by Modus Ponens we can assert that:

[(P0 ∧ swapP0
6,10)� P0]→ [(P0 ∧ swapP0

6,10)� (w = 5050)] . (4.12)

If we look at the antecedent for the implication in 4.12, we can readily verify that according to

the model theory (semantics) exposed in [29] we have that for any well-formed expressions σ, τ ,

(σ∧τ)� τ and (σ∧τ)� σ are valid assertions. Thence, by the completeness of counterfactual

logic, it follows that these are axioms in the proof-theoretical sense. Thus, by Modus Ponens, in

our case it readily follows that (P0 ∧ swapP0
6,10)� (w = 5050) which is want we wanted to prove.

�

4.8 Conclusion

We have introduced a logical calculus based on Lewis’ theory of counterfactuals. Additionally

we have shown that if we know how to unambiguously characterize the transformation from the

initial version to the future desired version then, the conjunction between the structural properties

of the initial version and the predicates that characterize the transformation, imply the desired

future version’s properties. The proof we presented could be easily expressed in terms of a natural

deduction system and be automated.

If we think about the implications regarding the capabilities of our counterfactual calculus, it

would not be hard task to extend it up to the point where we can also verify refactoring-based

development without actually having to produce the new versions and subjecting them to the usual

regression test-based debugging process.
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Chapter 5

Counterfactually Reasoning About Security

5.1 Introduction

In this chapter, we provide the background to counterfactual logic and give very general sugges-

tions on how we could employ this logic to help us reason about security policies. It seems very

appropriate to use this kind of logic to anticipate a change that will compromise the security con-

cerns of a given system before actually applying the changes1

.

In the realm of software security, changes regarding security policies are pervasive. It is in

this constant changing environment where a system’s security becomes compromised. In practice,

security policies are changed and, in the worst case, any defect or undesired effect is usually found

after the fact and often too late. Requiring that the security policies remain unchanged is out of

the question and blatantly unrealistic. Therefore, we are in need of mechanisms that enable us to

formalize the security policies, the changes regarding security policies and the future effect of said

changes.

In this chapter we present a framework for what-if analysis of security policies based on Lewis’

theory of counterfactuals [29]. The framework can be used to statically perform change-impact

analysis for access control matrices. It enables us to verify assertions about a changed version of

an access control matrix without actually incorporating the changes. We present a logical calculus

that precisely characterizes potential structural modifications to source code and their impact on

the program’s behavior.

1Portions of this chapter were published in:

Manuel Peralta, Supratik Mukhopadhyay, and Ramesh Bharadwaj. Counterfactually reasoning about security. In
Proceedings of the 4th international conference on Security of information and networks, SIN ’11, pages 223–226,
New York, NY, USA, 2011. ACM.
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5.2 Counterfactual Theory

The logic of counterfactuals helps us reason about assertions that are not a matter of fact. In [29]

Lewis provided a sound and complete proof system and proved its decidability. Based on the logic

of counterfactuals we derive a logical calculus that allows us to assert properties that would hold

for a future version of a given program and verify that these would indeed hold if the changes

needed to obtain that version were actually implemented.

5.2.1 The Language of Counterfactual Theory

In coherence with [29] we will briefly introduce the language regarding the logic of counterfactuals

below (pi denotes a propositional variable):

φ ::= pi|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|φ� φ

The counterfactual sentence φ � ψ should be read as: if it had been the case that φ, it

would have been the case that ψ. Thus, if we had an assertion whose antecedent ranged over

the properties of some given access control matrix and also the changes needed to produce a new

version and whose consequent ranged over the properties that a new version would have, then we

could use counterfactual logic to code such an assertion.

5.2.2 Formal Representation of A Security Model

In this section we will define a simple variation of the Access Control Matrix (ACM) model. This

model was first introduced in [28] and [16]. We have chosen this model due to its simplicity and

readily intuitive nature and widespread use as it is stated in [28]. First of all, we will define three

sets: S,O and A which are respectively the set of : subjects, objects and actions. The set of

subjects contains the active entities on the system (i.e. users, computer systems, etc.); the set of

objects denotes the set of entities over which subject are allowed or denied a certain action. The
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set of actions denotes those tasks which a subject can perform on a given object. Hence:

S = {si}i∈I The set of subjects

O = {oj}j∈J The set of objects

A = {Read,Write} The set of actions

Thus, we can now formally define an access control matrix as a function M : S × O → 2A

which takes an ordered pair composed of a subject and an object and assigns to them a subset of

the possible set of actions. Moreover, in this instance we will have to work with M ’s intentional

or set representation and thence:

M , {(si, oj, αk)} where αk ∈ 2A

Encoding Change in the ACM model

Let M = {(si, oj, αk)i,j,k∈N} be the current version of the access control matrix. We can encode

the state of any ACM by using the following formula:

ΨM ,
n∧

i=1

m∧
j=1

p∧
k=1

(si, oj, αk) ∈M

We will simplify the latter expression using the following notation:

ΨM ,
∧
i,j,k

(si, oj, αk)

For the sake of simplicity we will define a change to the ACM as a change to the members of

the action-set of a given triple. Hence, a change may be represented as:

(si, oj, αk)⇒c (si, oj, α
′
k)
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It can be readily inferred that⇒c is a three-place-relation over S × O × A. Furthermore, let

M denote the class of all possible ACM versions. Therefore, ⇒c can be thought of as a binary

relation overM and

M ⇒c M ′ iff M ′ ,M [αk/α
′
k]

Moreover we define⇒c to be the smallest relation such that the following holds:

(si, oj, αk)⇒c (si, oj, α
′
k) iff:

1. α′k 6= ∅ when αk 6= ∅

2. α′k 6= A when αk = A

Undesirable Configurations

In any system, there is a set of undesirable states. These states may be very possibly members of

the entire set of possible states. One of the fundamental purposes of any security mechanisms is to

guarantee that for any possible transition (that originates in a safe/legal state) the target state will

not be an illegal/undesirable state. In this instance an undesired state will be denoted by a given

configuration/triple of subject, object and action. Therefore, let U ⊆ S×O×A be the set of illegal

configurations and let τu range over this set.

We want to avoid allowing a configuration change in which we enable an undesirable triple be

part of the new version of the ACM. Hence, we want to avoid the following:

M ⇒c M ′ where τu ∈M ′
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Secure Counterfactual Change

Our objective is to enable counterfactual logic to let us decide whether or not a change to the

current version of the ACM implies that at least one illegal triple is part of the future resulting

version. Thence our secure counterfactual implication can be expressed as:

[
∧

i,j,k∈N

(si, oj, αk)] ∧ (s0, o0, α0)[α0/α
′
0]� (τu 6∈M ′)

5.2.3 Kripke Versioning Model

In [29] the author provides the semantics of his counterfactual propositional logic using a multiple-

world interpretation. In that same manner we have chosen to interpret our access control matrix

transformation. In our case, each ACM version will represent a world. In the following definition,

we take the liberty of writing ti ← tj to denote that the tuple ti was swapped by tuple tj . Below,

we provide a formal interpretation based on a Kripke model.

Definition 5.2.1 (Kripke Version Model) A Kripke Version ModelR is a triple 〈M,⇒,M0〉where:

1. M = {Mk}k∈N is the set of all access control matrix versions (ACM states).

2. M0 is the initial access control matrix.

3. ⇒⊆M×M is a binary relation defined the set of all possible ACM versions. Where⇒ is

the smallest relation such that the following properties hold:

(a) ti ← ti : tuple si is left unchanged. This stands for the do nothing transformation.

(b) ti ← tj : tuple tj replaces statement ti, where tj ∈ Mk. We usually call this primitive

transformation, a swap.

(c) ti ← tj : statement tj replaces statement ti, where tj 6∈ Mk. Thus, sk is a new

statement.
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(d) (∀i)ti ∈Mk can be changed only once.

Furthermore, we assume that the relation ⇒ complies with the properties of reflexivity, sym-

metry, and transitivity. Below, we justify each property based on the latter definition of⇒:

1. Reflexivity: For any ACM Mi ∈ M, it is obvious that the do-nothing transformation will

yield that any ACM can be transformed into itself. Therefore, Mi ⇒ Mi given that for all

sj ∈Mi, Mi = Mi[sj/sj]

2. Symmetry: For any ACMs Mi,Mj ∈ M any of the above transformations can be reversed

and therefore, Mi ⇒Mj implies Mj ⇒Mi.

3. Transitivity: For any ACMs Mi,Mj,Mk ∈ M, applying two or more transformations

to a program will yield intermediate versions; this is equivalent to transforming the initial

version by composing the transformations into one. Thus, Mi ⇒ Mj and Mj ⇒ Mk imply

that Mi ⇒+ Mk. Where⇒+ denotes⇒ ◦ ⇒n−1 and n > 1.

5.2.4 Interpreting the Counterfactual Implication

As it was stated earlier, the purpose of our model is to help interpret assertions in the language of

counterfactual logic. Let M0 denote our given initial ACM version. Also, let us assume we had a

counterfactual assertion, namely φ� ψ in which:

• φ stands for assertions regarding M0 and some transformation ti ← tj that implies that

M1 = M0[ti/tj]

• ψ stands for assertions regarding M1

Thus, following the model-theoretic interpretation proposed by Lewis in [29], our version of

the counterfactual implication is interpreted as:
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R |= φ� ψ . (5.1)

Where R denotes our previously defined Kripke Versioning Model. Moreover, letting αi, βi

denote propositional statements about the structure of Mi and Mj respectively, then, we can state

that:

φ , (
n∧

i=1

αi) ∧ (Mi ⇒+ Mj)

ψ ,
m∧
j=1

βj

Where ⇒+ denotes the positive/transtive closure for the relation ⇒. Furthermore, given an

initial ACM version, namely M0, we produce several versions by applying one or more transfor-

mations to it. In the context of a counterfactual assertion, the current version’s structure and the

changes applied to it (in order to produce a new version) imply properties possessed the new ver-

sion and hence:

R |= φ� ψ , (∃mink ∈ N)(
∧n

i=1 αi)

∧(M0 ⇒k M ′)→ (
∧m

j=1 βj) .

The latter should be interpreted as there exists a minimal number of transformation steps such

that given the properties of our initial ACM M0 (namely,
∧n

i=1 αi) and the transformation be-

tween the two program versions implies the desired properties of the future ACM version (namely,∧m
j=1 βj).

5.3 Applications of Counterfactual Theory to Security

Each change to the access control matrix modifies the state of the security system. Hence, each

change reflects a change in the set of valid policies. It seems very promising to use counterfactual

logic to 1) encode the changes to the ACM, 2) express the undesirable state-tuples, and 3) assert

whether or not the changes counterfactually imply the undesirable tuples are part of the future state
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of the ACM. Given all the risks involved in changing security policies, it would be nice to foresee

their effect before incorporating them into production systems.

5.4 Conclusion

We have introduced a logical calculus based on Lewis’ theory of counterfactuals. Additionally we

have shown that if we know how to unambiguously characterize the transformation from the initial

ACM state to the future desired ACM state, the conjunction between the structural properties of

the initial ACM version and the predicates that characterize the transformation, imply the desired

future ACM state’s properties.

This chapter has presented a powerful and promising suggestion which consists of jointly using

a perhaps modified version of the ACM model and our counterfactual logical calculus. The latter

mix would enable practitioners verify a-priory the effects of a change to the ACM without actually

applying the change to production systems. Although it is widely known that the question of

whether or not a given security model enforces a given policy is a non-decidable problem, we are

confident that our simplified ACM model and our counterfactual logic will be helpful to enough

non-trivial applications.
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Chapter 6

Reasoning About Sensor Networks

6.1 Introduction

In this chapter, we study an approach for dynamically reconfiguring sensor networks that oper-

ate under dynamically changing environments. We show how dynamic reconfiguration can be

achieved using our Secure Operations Language for JAVA - based approach. We show how to

specify a reconfiguration using a counterfactual logic and provide techniques that enable us to

understand the impacts of change1.

Sensor networks are embedded networked systems that receive percept streams from the envi-

ronment and constantly react to them. From a software-based point of view, modifications done

to any system (SNS) should be performed under utmost caution as SNSs are often deployed in

mission-critical applications. The latter means that any disruption that inhibits the system in sat-

isfying its operational semantics will definitively yield catastrophic results. Also, sensor networks

are required to react dynamically to ever-changing environmental conditions without human in-

tervention. Therefore, one should strive to provide methods that ensure the correctness of SNSs

under reconfiguration is preserved i.e. the SNS respects it operational requirements while the sys-

tem structure changes in response to an evolving environment.

For SNS applications, requirements dynamically change in a rapid, unpredictable, and contin-

uous fashion. In applications such as those driving search and rescue missions, any operational

expansion/contraction requires dynamic reorganization of the system. For these application sce-

narios, any downtime resulting from upgrade of the control system leads to unacceptable disruption

1Portions of this chapter were published in:

Sitharama Iyengar and Richard Brooks, editors. Distributed Sensor Networks, Second Edition: Image and Sensor
Signal Processing, volume 2 of Computer & Information Science Series, chapter 31, pages 693–710. Chapman and
Hall/CRC, 2 edition, September 2012.
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of service. As a result, continued availability of such systems in a mission-critical setting, even

under dynamically changing requirements, is of utmost importance. We need to develop tech-

niques, tools, and methods that can build, manage, and maintain SNS systems whose requirements

keep changing perpetually during their lifecycle. Such systems should be able to autonomously

re-engineer themselves rapidly online under changing requirements, with minimal or no disruption

in service, and yet meeting all constraints of timeliness, cost, and performance in a reasonable way.

Traditional software development methodologies assume that requirements are well understood

and available, in the form of a formal or rigorous specification, of the required system behavior.

However, this assumption fails to hold for software that is meant to control SNS applications de-

ployed in rapidly evolving scenarios. While it is possible to develop logically precise requirements

for software computing mathematical functions, the behavior of a software system depends on ex-

traneous factors that are not usually foreseen during its development. These include factors such

as platform of deployment (e.g., the word length of the machine on which the software is run),

the communication protocols used, the amount of memory available, etc. In software solving real

world problems, such extraneous factors are compounded by those from the system’s physical en-

vironment that expect the software to cope with dynamically changing business constraints. In

some cases, given time and money, it is possible to get the original developers to update the soft-

ware to meet the changed business requirements. However, in certain cases, such an update may

not be possible even with adequate time and money (e.g., the original developers may have moved

away from the technology and it may not be possible to acquire a suitable team to build on their

work). In these situations, the system must be phased out with millions of dollars in software

development cost wasted.

Conventional approaches used in industry are inadequate in rapidly evolving mission-critical

scenarios, due to (1) the unpredictable nature of the evolution of the system requirements, (2)

dynamically changing situational environments driven by the dynamics of the market/mission-

partners, including rapid mergers, disinvestment, formation of coalitions, noisy and unpredictable
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communication channels, and cyber-attacks aimed at disruption of the network. We use the phrase

”Perpetual Requirements Engineering” to denote an approach where we address dynamically chang-

ing requirements throughout the software lifecycle, including autonomous rapid reconfiguration

and persistent redeployment of distributed software systems without disruption to service com-

mitments, in an expeditious manner. Our approach improves on the agile development paradigm.

Traditionally, agile development has been used successfully for software projects with rapidly

changing requirements. One example of the agile development approach is extreme programming.

In agile development, activities generally alternate between modeling and coding, with major por-

tions of the design being generated as implementation proceeds. Traditional agile development

approaches, however, suffer from a lack of automated support. Manual effort is needed to incor-

porate any changes in the requirements into a software artifact. Extensive manual refactoring of

code is often needed to ameliorate the effects of dynamically changing code requirements. Sys-

tem updates are developed manually, at a huge cost and in an untimely and unpredictable manner.

This is one inhibiting factor on the scalability of agile development methods, thereby making them

suitable only for development projects of a small or moderate size. This is also the reason why

traditional agile development methods tend to succeed only when an experienced development

team is available. Lack of dynamic adaptation means frequent shipping of new code in response

to ever-changing requirements. This not only adds to the cost but also results in increased down-

time of deployed software due to frequent updates to the running code. While the involvement of

the customer is an essential component of the agile development method, in many situations, it

becomes difficult for the development team to stay in touch with the customer, especially in the

post-deployment stage (e.g., consider projects whose development is outsourced).

In large software projects with dynamically changing requirements as usually encountered in

the development of SNS applications, instead of manually performing development iterations every

time a requirement changes, we need to implement techniques and strategies for automatic incre-

mental update of system or subsystem components comprising the deployed software, in response
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to changing requirements. We need a requirements engineering paradigm that can automatically

reflect incremental changes in the requirements by a dynamic reconfiguration and persistent update

of the running software.

6.2 Perpetual Requirements Engineering for Sensor Networks

In the context of perpetual requirements in SNSs we have developed an approach that relies on

two technological elements. The first is Secure Operations Language for Java (SOLj) [6] which

is an event-based domain-oriented synchronous programming extension of Java used to write the

specification for agents which, in this context, are the software counterparts of one or more sen-

sors. The second element is the Secure Infrastructure for Networked Systems (SINS). SINS a is a

distributed run-time system in which the SOLj agents are deployed. The SINS run-time and frame-

work provide a set of security policies which help avoid compromising the SOLj agents behavior

and interactions.

6.2.1 SOLj - Secure Operations Language-JAVA

SOLj: Secure Operations Language-Java. Given that SOLj is an extension of Java, it is presented

as modular extensions to its core language, i.e., Java. A module comprises the specification unit in

SOLj; it is composed of type definitions, variable declarations, service declarations, assumptions

and guarantees and definitions. In the future we will use the word agent to denote a module

instance. A SOLj module may include attributes as they are described below:

deterministic Declares a module that does not exhibit nondeterministic behavior. The compliance

with this attribute is checked by the SOLj compiler.

reactive Declares a module that will cause a state change only when its (visible) environment

fires an event via a state change or by invoking a method. Also, this attribute denotes that

the module’s response to an event will happen in the next immediate step.
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The type definition section contains user-defined types as well as enumerated types. The Java

comment //@type definitions precedes the “type definitions” section. It provides SOLj

directive to the compiler indicating the start of the type definition section. The variable declaration

section defines three types of variable which are explained below:

monitored variables variables in the environment that influence the agent’s behavior.

controlled variables variables in the environment that are changed by the agent’s behavior.

internal variables this variables reflect the agent’s internal state.

The Java comment //@Services precedes the “service declarations” section which declares

the agent’s external interface. It contains the methods that realize the services the module pro-

vides. For each method declaration within a service, the SOLj language provides the capability of

declaring the corresponding preconditions and postconditions which denote the conditions under

which each service should start and terminate. The preconditions and postconditions are encoded

as arithmetic expressions and type declarations. A type declaration is denoted by a type judgement

expression T:x where x is a variable and T is a type. These constraints are enforced at runtime

in a dynamic manner. Also, each service invocation must use a “continuation variable”. This vari-

able includes a boolean field called “done” which is assigned a value of true once the service

invocation is ready to provide a return value.

The //@Assumptions comment denotes the start of the assumptions section which includes

assumptions that determine the agent’s correct way to operate. If any of these assumptions is vio-

lated by the environment, the agent’s execution is aborted. The guarantees section contains the

agent’s required safety properties. The definitions section provides update functions which

denote variable definitions. These specify the corresponding values for internal and controlled vari-

ables. For the sake of future references, we will distinguish between monitored variables whose

values are given by the environment, and dependent variables which are those whose values that
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are the result of SOLj agents computations. These values are obtained using the values of moni-

tored variables and (possibly) past dependent variable’s values.

6.2.2 SOLj Events

Based on the Software Cost Reduction (SCR) method’s SCR Abstract Language (SAL), SOLj has

been provided with the capability of defining events [23]. Intuitively, SCR events can be inter-

preted as state changes. Moreover, the occurrence of an event is triggered when a variable has its

value changed. This is done by update functions which change the dependent variable’s value.

@T(c) =def ¬@PREV(c) ∧ c

@F(c) =def @PREV(c) ∧ ¬c

@C(c) =def @PREV(c) 6= c

An initialization method (init) assigns starting values to all dependent variables (controlled

or internal). Each module contains an init method. Each dependent variable is updated by just

one of the update functions. Moreover, a dependency relation is induced by the interplay between

update functions and dependent variables. We denote this relation with Dm. Let a and b be two

dependent variables, then we say that (a, b) ∈ Dm if and only if a is updated by the function

corresponding to b. The fact that a may depend on the previous values of other variables and itself

does not influence the dependency relation. Also, a dependency graph may be derived from Dm

by interpreting the set of dependent variables as the nodes and each (a, b) ∈ Dm as the edges 2.

For each module, we need to consider its corresponding dependency graph as acyclic.

From a simplified point of view, a SOLJ program executes in a sequence of steps and each step

is preceded by the triggering of an event. The module’s dependency relation induces the order in

which the variable updates and service invocations are carried out. Each computation step may be

decomposed as follows:

2The notion of a dependency relation is easily extended to the entire system.
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1. The environment or the agent itself triggers an event in a nondeterministic manner

2. Each agent responds to this event by modifying the values of its dependent variables

From an external point of view, the updates and service invocations can be thought of hap-

pening in a synchronous manner (as it is dictated by the Synchrony Hypothesis and exemplified

by languages such as Esterel and LUSTRE [21]. The latter implies that all dependent variable

updates and service invocations that occur as a response to an event triggering, happen before the

next event is triggered.

6.2.3 SOLj Definitions

The main part of a SOLj module is the definitions section. This section declares and de-

fines the update function that corresponds to each dependent variable. Update functions provide

the value of the updated dependent variable. An update function’s body is comprised of return

statements which are constrained by conditional expressions. These are activated by events trig-

gers initiated by the environment and/or the agent. Syntactically, these conditional expressions are

denoted by Java conditional expressions with the difference that the guards are SOLj events.

SOLj expressions can be service invocations such as A:B(varList)ˆcont. The identifier

A denotes the name/URL of the service; B denotes the name of the invoked method; varList

denotes the set of formal parameters that are provided to the invoked method and cont denotes

the unique continuation variable associated with the invocation. When the “done” field in the

continuation is assigned “true” the service invocation has terminated. Finally, a compiler derives

Java code from the SOLj definitions. This derived code executes on the Secure Infrastructure for

Networked Systems (SINS).
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6.2.4 SINS

SOLj module instances interact in a runtime environment called Secure Infrastructure for Net-

worked Systems (SINS). Generally, a SINS implementation consists of a set (one or more) SINS

Virtual Machines (SVM). Each of these virtual machines acts as a container for one or more agents

in a given host node. Distributed SVMs communicate amongst themselves using the Agent Control

Protocol (ACP) [52] with the purpose of exchanging agent and control information. A supplemen-

tary protocol, known as the Module Transfer Protocol (MTP) takes care of the code distribution,

digital signatures, authentication, and code integrity. Complying with locally enforced security

policies, SOLj agents are allowed to access local resources in a host. Compliance with these se-

curity policies is verified using an inductive theorem prover. Observer agents (termed “security

agents”) are in charge of enforcing other safety property and security requirements. These agents

monitor the execution of application-specific agents and also engage in corrective actions once a

violation is detected.

6.3 A SOLJ Example - Auto-regulated Power Generation Network

The following example will be employed as a didactic tool in order to illustrate how our SOLj-

SINS-based approach looks like in a practical setting.

6.3.1 General Aspects

In the realm of power generation and considering a very simple perspective, we have the interplay

of three interrelated variables: voltage, current and resistance. In large scale power distribution

networks such interplay of these variables can mean the difference between efficient or wasteful

power distribution. It would be desirable, thus, to have a sensor-network-based system, which

would adequately react to changes in this quantities in a dynamic manner.
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6.3.2 System Description

Our simplified sensor network for power generation system is comprised mainly by two types of

agents:

Distribution Line Agent (DistLineAgent) This agent type is in charge of communicating the

state of the distribution lines to the GenAgents i.e. it reports the conditions regarding

voltage and resistance. Figure 7.2 shows the SOLj source code for this type of agent.

Generation-Engine Agent (GenAgent) This agent type is responsible of regulating the electrical

current that is input into the electrical distribution system based on the voltage and resistance

on distribution lines. Figure 7.3 shows the SOLj source code for this type of agent.

6.3.3 System Operation

Let us assume that we are dealing with an electrical distribution network comprised of several

GenAgents and multiple DistLineAgents. Furthermore, let us assume that the environment

temperature variations (the material’s own reaction to conducting current and environmental heat)

dilate and contract the inner core of the conducting cables. Therefore, the conducting cables’ re-

sistance is also variable. From general Physics we know that these three quantities are interrelated

by the following formula:

I =
V

R

Where I stands for the electrical current in the system (measured in Amperes), V stands for the

system’s voltage (measured in Volts) and R stands for the conducting cables’ resistance (measured

in Ohms).

The DistLineAgents via sensors placed along the distribution lines, have the knowledge

of the actual current and resistance along the distribution line system and they communicate this
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information back to the set of GenAgents which in turn regulate the electrical generators that

provide the input electrical current to the distribution network. When, for instance, the environment

exhibits a high temperature (due to heat wave perhaps), the resistance in the distribution lines will

increase. Provided that the voltage remains the same, the correct reaction of the system would be

to increase power production. The GenAgents monitor the resistance and can thus react to this

change in the distribution system by actuating the generation engines to produce more power.

6.4 Counterfactuals in Sensor Networks

Counterfactual logic aids us in reasoning about statements that are not matter of fact. Lewis [29]

provided a sound and complete inference system and also stated that this logic was a decidable

one. We have created a logical calculus based on counterfactual logic. This calculus allows us

to express properties that would take place in a future version of a given program and verify that

indeed these properties would hold if the changes between the new and old version were applied.

6.4.1 The Language of Counterfactual Theory

As it is shown in [29] we will shortly define the language that comprises the logic of counterfactuals

(pi denotes a propositional variable)

φ ::= pi|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|φ� φ

The counterfactual expression φ� ψ should be read as: if it had been the case that φ, it

would have been the case that ψ. Therefore, if we had a statement that contained an anteceded

that expressed the properties of a given program and the required changes to create the new version

and the consequent expressed the properties that the new version would exhibit, then it seems

plausible that we can encode such a statement using counterfactual logic.
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//@Module Declaration
deterministic reactive module DistLineAgent

//@Type definitions
Voltage = floatStream;
Current = floatStream;
Resistance = floatStream;

//@Controlled variables
Voltage currVoltage;
Current currCurrent;
Resistance currRes;

//@Monitored variables
Voltage observedVoltage;
Current observedCurrent;
Resistance observedRes;

//@definitions
//@initialization
void init(){

currVoltage = null;
currCurrent = null;
currRes = null;

}

//@update functions
Resistance outputResistance(){

if(@C(observedRes) && @T(observedRes >= thresholdRes))
return currRes;

}

Voltage outputVolatge(){
if(@C(observedVoltage) &&
@T(observedVoltage >= thresholdVoltage))

return currVoltage;
}

Current outputCurrent(){
if(@C(observedCurrent) &&
@T(observedCurrent >= thresholdCurrent))

return currCurrent;
}

Figure 6.1: SOLJ code for the DistLineAgent module
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//@Module Declaration
deterministic reactive module DistLineAgent

//@Type definitions
Voltage = floatStream;
Current = floatStream;
Resistance = floatStream;
Revolutions = floatStream;

//@Controlled variables
Revolutions rpm;

//@Monitored variables
Voltage currVoltage;
Current currCurrent;
Resistance currRes;
Revolutions currRevs;

//@Services
//@ Revolutions EGenerator:RevUpEngine(revDelta)
//@ pre = (currCurrent >= thresholdCurrent) &&
//@ (currVolate <= thresholdVoltage)
//@
//@ post = currRevs > rpm

//@ Revolutions EGenerator:RevDownEngine(revDelta)
//@ pre = (currCurrent < thresholdCurrent) ||
//@ (currVoltage > thresholdVoltage)
//@
//@ post = currRevs < rpm

//@Update Functions
Revolutions UpdateRPMs(){

if(@C(currVoltage) && @C(currCurrent))
return EGenerator:RevUpEngine(revDelta)ˆrevUpCont;

else
return EGenerator:RevDownEngine(revDelta)ˆrevDownCont;

Figure 6.2: SOLj source code for GenAgent
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6.4.2 Formal Description of SOLj Agent Network

Given what was presented in earlier sections, we can abstract a sensor network, by considering

the set of SOLj agents that realize its behavior. Let Mi denote the syntactically correct code for a

given agent, then, we can denote a SOLj agent network by the following parallel composition:

SN0 ,M1||M2|| . . . ||Mn

A new version of a given sensor network will be created when at least the code of one agent is

changed (as indicated by our Program Transformer Approach). Hence, a new version of a given

by the following expression:

SN1 ,M1||M2|| . . . ||Mi[sj/s
′
j] . . . ||Mn

Where Mi is the changed SOLj agent module and sj and s′j are the changed (swapped) state-

ments within Mi’s specification code. In general, any number of modules within the parallel com-

position may be changed by an arbitrary number of statement swaps. In terms of logical descrip-

tions we can also denote the SOLj agent network by the following extended conjunction:

ΨSN ,
n∧

i=1

Mi

Where each Mi is denoted by:

ΨMi
,

m∧
j=1

f(j) = Statj

Where f(j) is the (uninterpreted) function symbol that denotes line in the SOLj agent’s code

and Statj is a well- formed statement in the SOLj specification language. The two latter expres-

sions yield that the logical expression corresponding to a SOLJ network will be:
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ΨSN ,
n∧

i=1

m∧
j=1

fi(j) = Statj

The latter expression does not imply that all SOLJ agents have the same number(i.e. m) of

statements. We can freely assume that m is just the number that denotes the longest SOLj module

in the system.

6.4.3 Program Transformers

In [17] the authors define the notion of predicate transformer; it can be defined as a first order logic

formula which yields (via existential quantifier elimination) the weakest precondition for a given

command (a statement in a imperative language) and its corresponding post-condition. Inspired by

the latter notion we have found a way to logically express program transformation using what we

call Program Transformers.

Let ΨSN denote the conjunction of formulas shown in section 6.4.2. Furthermore, we choose

to model possible program transformations using the following formula:

(∀u ∈ U)(u 6= ui) ∧ (u 6= uj) → (f(u) = f ′(u))

∧ (f(ui) = f ′(uj))

∧ (f(uj) = f ′(ui))

The latter expression denotes the existence of a new SOLj module f ′ that happens to differ

from our original SOLj module f only by swapping two statements (i.e. ui and uj). In the rest of

the section we shall use ΨS to refer to the implication above. With ΨSN defined as above, we can

formally express our program transformer expression as:

ΨT , (∃f)(∃R)ΨSN ∧ΨS
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Notice that ΨT is a second order logic formula since we are quantifying over one function

symbol and one relation symbol. Also, let us assume that we have a fixed SOLj module f0. By

definition, f0 is a finite list of statements in Stat. Thence, we can logically express f0 : U → Stat

by a finite conjunction of equalities as it is expressed below:

Φf ,
∧
i∈U

f0(i) = Stati

Where Φf is the logical formula that represents f0 and Stati is a well-formed statement in

SOLj. Therefore, we can ”apply” ΨT to Φf by joining them by conjunction which produces the

following formula:

ΨT ∧ Φf , (∃f)(∃R)ΨP ∧ΨS ∧ Φf

Notice that we can only eliminate the quantifier f in the formula above. As a result we obtain a

logical expression that denotes f0’s new version (f ′). Also, since we cannot eliminate the quantified

variable R (an n-ary relational symbol) given that elimination of relation symbols is still an open

problem in second order logic. Therefore, the resulting formula for f ′ is relatively more complex

compared to the one for f0.

Also, do notice that, we may only eliminate the quantified f in the latter formula. The resulting

formula will be the logical expression that denotes our new version of f0, namely, f ′, however,

notice that, since we cannot eliminate the quantified variable R (as elimination of n-ary quantified

relation symbols is an open problem), the resulting expression is not quite the corresponding for-

mula for f ′ in the same manner Φf denoted f0.
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6.4.4 Kripke Versioning Model

The author of [29] defines the semantics of propositional counterfactual logic using a multiple-

world-based model. Therefore, we have opted to use a similar model to interpret our program

transformations. In this instance, each version of the program will represent a possible world. Once

we apply a program transformer (as it was defined in the last section) we produce the formula for

a new version i.e. the transformation establishes the relationship between two possible worlds in

our model (the two program versions). In what follows, we take the liberty of writing si ← sj

to represent the fact that the statement si was swapped by statement sj . The following definition

provide a formal interpretation of our counterfactual logic.

Definition 6.4.1 (Kripke Version Model) A Kripke Version ModelR is a triple 〈P ,⇒, P0〉where:

1. P = {Pk}k∈N is the set of all n-line programs which are the different program versions.

2. P0 is the initial program.

3. ⇒⊆ P × P is a binary relation defined the set of all possible program versions. Where⇒

is the smallest relation such that the following properties hold:

(a) si ← si , statement si is left unchanged. This stands for the do nothing transforma-

tion.

(b) si ← sj , statement sj replaces statement si, where sj ∈ Pk. We usually call this

primitive transformation, a swap.

(c) si ← sj , statement sj replaces statement si, where sj 6∈ Pk. Thence, sk is a new

statement.

(d) (∀i)si ∈ Pk can be changed only once.

Moreover, we have assumed that the relation⇒ is reflexive, symmetric, and transitive. Below

we justify the latter statement.
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1. Reflexivity: For any program Pi ∈ P , it is obvious that the do-nothing transformation will

yield that any program can be transformed into itself. Therefore, Pi ⇒ Pi given that for all

sj ∈ Pi, Pi = Pi[sj/sj]

2. Symmetry: For any programs Pi, Pj ∈ P any of the above transformations can be reversed

and thence, Pi ⇒ Pj implies Pj ⇒ Pi.

3. Transitivity: For any programs Pi, Pj, Pk ∈ P , applying two or more transformations to a

program will yield intermediate versions; this is equivalent to transforming the initial version

by composing the transformations into one. Thus, Pi ⇒ Pj and Pj ⇒ Pk imply that Pi ⇒+

Pk. Where⇒+ , ⇒ ◦ ⇒n−1 and n > 1.

6.4.5 Interpreting the Counterfactual Implication

Based on what was stated earlier, the main purpose of the model we have defined is to provide the

interpretation for our counterfactual-based program transformers. To that end, we let P0 denote

the source code of a given program. Furthermore, we assume we have a counterfactual statement

that expressed a change being done to the program as φ� ψ, where

• φ stands for assertions regarding P0 and some transformation si ← sj that implies that

P1 = P0[si/sj]

• ψ stands for assertions regarding P1

Thus, following the model-theoretic interpretation proposed by Lewis in [29], our version of

the counterfactual implication is interpreted as:

R |= φ� ψ . (6.1)
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Where R denotes our previously defined Kripke Versioning Model. Moreover, letting αi, βi

denote propositional statements about the structure of Pi and Pj respectively, then, we can state

that:

φ , (
n∧

i=1

αi) ∧ (Pi ⇒+ Pj)

ψ ,
m∧
j=1

βj

The ⇒+ symbol denotes the positive/transitive closure regarding the relation ⇒. Moreover,

from an initial version source-code version P0 we generate future alternative versions via the ap-

plication of one ore more transformations. The current version’s properties and the changes made

to this version imply the desired properties the new version would have. Therefore:

R |= φ� ψ , (∃mink ∈ N)(
∧n

i=1 αi)

∧(P0 ⇒k P ′)→ (
∧m

j=1 βj) .

The expression above means that there is a minimal number of transformation steps such that

provided that the properties of our initial program P0 (
∧n

i=1 αi) and the transformation that leads

from the initial version to the desired future version are true, then it follows that the desired prop-

erties (encoded in our logic) of the future version also hold.

6.4.6 Fragment of Counterfactual Logic

Given that we are striving to provide programmers with an mechanical procedure and a tool whose

purpose is to aid in reasoning about the properties that would hold for future versions of a given

program, we provide a logical calculus which will enable us to infer such properties in a algorith-

mic manner. Thus, we provide the set of inference rules taken from [29] and known as VC logic;

these rules will help us formalize realize our approach’s proof theoretical fragment.

1.
` φ→ ψ, φ

` ψ
Modus Ponens
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2.
` ¬ψ� ψ

` φ� ψ
Vacuity

3.
φ� φ

Reflexivity rule

4.
φ� ψ

φ→ ψ
Counterfactual-Elimination rule

5.
` (

∧n
i=1 λi)→ ψ

` [
∧n

i=1(φ� λi)]→ (φ� ψ)
Conditional Deduction rule

6.
` 2(φ→ ψ)

` φ� ψ
Counterfactual Necessity Theorem

The reader may wonder about the Counterfactual Necessity Theorem (CNT). First of all, a

simple intuitive argument can be made in order to show why this is a theorem of VC. If we recall

Lewis’s system of spheres [29] and taking into account that VC subsumes many of the standard

proof-theoretical system of modal logic, then it is easy to see that the strict implication 2(φ→ ψ)

will hold for all worlds in the system of spheres. Hence, the counterfactual implication φ� ψ

follows immediately by definition.

If the reader is still unconvinced about the theorem-hood regarding the CNT we suggest she

skips to our appendix and/or review [22] in which the authors give sufficient arguments about why

CNT is a theorem of VC.

6.4.7 Temporal Logic Fragment

Since a SOLj network exhibits a concurrent form of computation, we have to employ a more

expressive inference system than the one used for sequential computations (i.e. first order logic).

Thence, we need a fragment of temporal logic in order to encode properties of a SOLj network.

Such fragment is given below 3.

1.
` φ
` 2φ

3φ ranges over all the well-formed first-order logic expressions
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2. 2φ↔ φ ∧©2φ

3. 2(φ→ ψ)→ (2φ→ 2ψ)

4. ©(φ1 ∨ φ2)↔©φ1 ∨©φ2

5.
` φ1 →©(φ1 ∨ φ2)

` φ1 → φ1 U φ2

6.5 A Counterfactual Example - Auto-Regulated Power Generation Network

Using the agent types defined in section 6.2, we will briefly show how to apply our counterfactual-

based approach to a practical situation.

6.5.1 Formal Characterization of a SOLJ Network’s Behavior

As it has been stated before, a SOLJ network is a reactive system and thus it continually responds to

different stimuli. In [35], we used counterfactual logic to assert properties of sequential programs.

However, in this instance, we are dealing with a perpetually functioning reactive system and thus

we need to integrate temporal logic constructs into our logic.

In the most simple case, a run in our system is just an infinite sequence of the basic actions

(function/service calls) performed by the network agents. Therefore, the following expression

denotes a run of the system we specified in 6.2

ρ1 , [(oC ∧ oR ∧ oV ) ∧ (rD ∧ ¬rU ∨ rU ∧ ¬rD)]

Where oC, oR, and oV denote the calls to the outputCurrent, outputResistance,

and outputVoltage update functions respectively. While ru and rD denote calls to the revUpEngine

and revDownEngine services. Thus, in terms of temporal logic, the runtime behavior exhibited

by the agents defined in Figures 7.2 and 7.3 is:
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2ρ1

Which is interpreted as an infinite sequence of calls to the services shown in ρ1.

6.5.2 Source Code Change

Let us assume that there has been a change in the requirements of the system which imply that the

genAgent modules need only to augment the generators revolution when the current voltage ex-

ceeds certain threshold and decrease the revolutions when the current goes below certain threshold.

In terms of our logic, the actual state of the genAgent module is given by the following list:

• f(1) = “if (@C(currVoltage) && @C(currCurrent))”

• f(2) = “return EGenerator:RevUpEngine(revDelta)ˆrevUpCont”

• f(3) = “else”

• f(4) = “return EGenerator:RevDownEngine(revDelta)ˆrevDownCont”

Our intended change would alter the latter formulas into the ones shown in the following list:

• f ′(1) = “if (@C(currVoltage))”

• f ′(2) = “return EGenerator:RevUpEngine(revDelta)ˆrevUpCont”

• f ′(3) = “if (@C(currCurrent))”

• f ′(4) = “return EGenerator:RevDownEngine(revDelta)ˆrevDownCont”

The desired basic behavior for this new version of the SOLj agent network is given by the

following expression:
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ρ2 , [(oC ∧ oR ∧ oV ) ∧ (rD ∨ rU)]

Let ΨSN represent the current network structure in the same manner as the formulas defined in

6.4.2. Also, let swapSN1,3 denote the following formula:

(u 6= 2) ∧ (u 6= 4) → (f(u) = f ′(u))

∧ (f(1) = f ′(3))

∧ (f(3) = f ′(1))

6.5.3 Proof

In this section we will show the counterfactual implication statement that encodes the desired

program transformation and its effects. Let Ψ1
SN and Ψ2

SN respectively denote the logic expressions

for the current and desired configurations of the SOLj network. Furthermore, let ρ1 and ρ2 denote

the operation sequences that respectively correspond to Ψ1
SN and Ψ2

SN . Moreover, let swapSN1,3 be

defined as before (i.e. the formula that encodes the change between Ψ1
SN and Ψ2

SN ). In an intuitive

way our claim may be formulated as:

Given the initial structure of the system (ΨSN
1 ) and the desired change (swapSN1,3 ), then the

system would eventually transition from the initial behavior (denoted by 2ρ1) to the desired

behavior (denoted by 2ρ2.)

Hence, using the already known fragments of counterfactual and temporal logics, we can sym-

bolize the latter assertion as:

Ψ1
SN ∧ swapSN1,3 � (2ρ1 U 2ρ2)
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SOLj Network Axioms

We need to assume several facts in order to derive the desired counterfactual proof. First of all,

we readily assume that the formulas that denote each version configuration (i.e. Ψ1
SN and Ψ2

SN )

materially implies their respective behaviors. Thence:

1. Ψ1
SN → 2ρ1

2. Ψ2
SN → 2ρ2

Also, by definition of 2 in the fragment of temporal logic we are using, we can assert:

1. Ψ1
SN → ρ1 ∧©2ρ1

2. Ψ2
SN → ρ2 ∧©2ρ2

Using Propositional Logic we can weaken the consequent on both implications and hence we

have:

1. Ψ1
SN →©2ρ1

2. Ψ2
SN →©2ρ2

Temporal Logic Proof

The following step requires us to recall the definition of both ρ1 and ρ2:

ρ1 , [(oC ∧ oR ∧ oV ) ∧ (rD ∧ ¬rU ∨ rU ∧ ¬rD)]

ρ2 , [(oC ∧ oR ∧ oV ) ∧ (rD ∨ rU)]

By simple propositional logic we can assert that ρ1 → ρ2. Since temporal logic allows us to

use the Necessitation Rule then we know 2(ρ1 → ρ2) which in turn entails 2ρ1 → 2ρ2. Since we
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already know that Ψ1
SN → 2ρ1 therefore, by transitivity of material implication, we can state that

Ψ1
SN → 2ρ2. Again, taking into account the definition of 2 and by weakening the consequent we

can assert:

1. Ψ1
SN →©2ρ1

2. Ψ1
SN →©2ρ2

Notice that it is the case that ρ1 implies ρ2, however, they are not equivalent. Hence, the system

could exhibit either of the two behaviors. Thence, given the latter implications and by weakening

and strengthening the consequent and antecedent respectively, we can assert the following:

Ψ1
SN ∧ swapSN1,3 →©2ρ1 ∨©2ρ2

Strengthening the antecedent in the latter step may seem arbitrary, but regarding our Program

Transformers, it means that we are applying the code transformation to the first version of the

SOLj Network. The temporal logic fragment we are employing allows us to assert Ψ1
SN →

©(2ρ1 ∨2ρ2). Based on the last step and using temporal logic again, we can assert what fol-

lows:

Ψ1
SN ∧ swapSN1,3 → 2ρ1 U 2ρ2

Counterfactual Proof

Temporal logic allows us to use the necessity rule and thus assert the following:

2[Ψ1
SN ∧ swapSN1,3 → (2ρ1 U 2ρ2)]

Lastly, we employ the CNT from our counterfactual logic fragment and conclude that:
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Ψ1
SN ∧ swapSN1,3 � (2ρ1 U 2ρ2) �

6.6 Theoremhood of The Counterfactual Necessity Theorem within The VC-Logic

Earlier in section 6.5.3 we established how our claim was a theorem of our proposed logic. In

this section we used the Counterfactual Necessity Theorem (CNT) whose proof was not given

immediately. The purpose of this section is to serve as a complement to the simple model-theoretic

justification we used. In what follows, we will provide a two fold argument of why CNT is a

theorem. The first subsection will re-define the notion of necessity (in our case, the global temporal

operator 2) in terms of the counterfactual conditional. The second subsection will establish the

formal proof of CNT’s theoremhood4.

6.6.1 Necessity in Counterfactual Logic

In [22], the authors propose and prove a definition of necessity based on the counterfactual impli-

cation. We provide such definition below:

2α↔ (¬α� ⊥)

Although the justification of such equivalence falls outside of the scope of this section, we can

intuitively and readily justify it based on Lewis’s model of spheres. A statement is necessary in this

model when it cannot counterfactually entail a contradiction. Moreover, if there are no α-worlds

in which contradiction holds then α must be a necessary statement. A more involved explanation

and a proof-theoretical justification of this can be found in [22].

In order to show the theoremhood of CNT we need to prove an additional auxiliary equivalence:

4The proofs given in this section are adaptations of those shown in [22]. We saw the need of expanding the proofs
as we found that they were too succinct.
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(¬α� ⊥)↔ (¬α� α)

By proving that the latter equivalence holds in VC we would be in position to assert 2α ↔

(¬α� α). Let α and β range over well-formed expressions in temporal logic. Let DWC be an

abbreviation of the Deduction Within Conditional rule of VC. Last but not least, we expand our

language’s vocabulary with⊥ to denote proof-theoretical contradiction.The required proof is given

below:

1. (α ∧ ¬α)→ ⊥⊥-Definition

2. [(¬α� α) ∧ (¬α� ¬α)]→ (¬α� ⊥) DWC in 1

3. ¬α� ¬α Reflexivity

4. ¬α� α Assumption

5. (¬α� ¬α) ∧ (¬α� α) ∧-Intro in 3,4

6. ¬α� ⊥Modus Ponens in 2 and 5

7. (¬α� α)→ (¬α� ⊥)→-Intro in 4-6

8. ⊥ → α ⊥-Triviality

9. (¬α� ⊥)→ (¬α� α) DWC in 8

10. [(¬α� ⊥)→ (¬α� α)] ∧ [(¬α� α)→ (¬α� ⊥)] ∧-Intro 7 and 9

11. (¬α� ⊥)↔ (¬α� α)↔-Intro in 10 �
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6.6.2 Proof of CNT

Using the latter subsection’s results we will give the derivation which shows that CNT is a theorem

of VC.

1. 2(α→ β)→ [¬(α→ β)� (α→ β)] 2-def, ∧-elim

2. ⊥ → (α→ β) ⊥-Triviality

3. [¬(α→ β)� ⊥]→ [¬(α→ β)� (α→ β)] DWC in 2

4. [¬(α→ β)� (α→ β)]→ [α� (α→ β)] Vacuity

5. 2(α→ β)→ [α� (α→ β)] Transitivity in 1 and 4

6. [α ∧ (α→ β)]→ β Instantiation of Modus Ponens

7. [(α� α) ∧ (α� (α→ β))]→ (α� β) DWC in 6

8. 2(α→ β) Assumption

9. [α� (α→ β)] Modus Ponens in 8 and 5

10. α� α Reflexivity

11. (α� α) ∧ [α� (α→ β)] ∧-Intro in 9 and 10

12. (α� β) Modus Ponens in 7 and 11

13. 2(α→ β)→ (α� β)→-Intro in 8-12 �

Since CNT is indeed a theorem in VC we can freely use it in our main proof. Additionally,

although the authors of [22] use 2 as metaphysical necessity or simply alethic necessity, they also

assert that any logic which complies with the axioms of system K will be able to incorporate this

definition of 2. Since both VC and temporal logic subsume K we can assert that the redefinition

of this operator based on the counterfactual implication is not conflictive.
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6.7 Conclusion

We have introduced a framework for guaranteing safe source-code changes regarding reactive sys-

tems (i.e. sensor networks). The principles exhibited by this framework are realized by two pieces

of technology. The first is SOLj which is a domain-centric language based in the Software Cost

Reduction project (SCR). This language lets us precisely specify the desired behavior the reac-

tive agents will exhibit during execution. In a nutshell, the SOLj language allows us to provide

the functional specification regarding a given reactive system. Moreover, we are able to readily

compile the agents’ SOLj code into standard JAVA source code. The next piece of technology that

allows us to realize our approach is known as Secure Infrastructure for Networked Systems (SINS).

SINS provides a run-time environment that enables a set of SOLj agents to run in a manner which

does not compromise system’s integrity (i.e. SINS helps us realize non-functional requirements as

general security, access policies, etc.).

Also, we have shown that our counterfactual verification approach (defined for sequential cases

in [35]) can also be used in simple reactive systems. We defined the language for counterfactual

logic, its syntax and semantics via program transformers formulas and Kripke structures respec-

tively. In this instance, we were required to augment our logical language with a fragment of

temporal logic (as shown in [43]). The reason for the latter is that reactive systems exhibit proper-

ties that are expressed in terms of safety and liveness which can be conveniently expressed using

temporal logic. We first conjectured and then showed that the desired change and the current struc-

ture of the SOLj code counterfactually implied the desired change by encoding it as a sentence in

our logical language and then proving it was a theorem in the logic.
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Chapter 7

Reasoning About Security in Sensor Networks

7.1 Introduction

We present a formal framework for reasoning about security concerns in the context of embedded

sensor networks. We first provide an agent-based programming model for sensor networks. A

logical framework enables reasoning about security, safety, and integrity with respect to usage

of resources in this model. Embedded sensor networks often operate in rapidly changing mission-

critical environments where both functional and non-functional requirements can alter dynamically

in an unforeseen manner. The network may need to be reconfigured and reprogrammed in response

to changes in its operating conditions. We provide a framework based on counterfactual logic to

formally represent changes to the system and perform what-if reasoning about their impact on

security and safety even before they have been applied.

Sensor network systems (SNSs) are distributed embedded monitoring and control systems that

receive percept streams from the environment and generate reactions that can be actuated through

actuators [25]. They often operate in rapidly changing mission-critical environments where both

functional and non-functional requirements can alter dynamically in an unforseen manner. The

system may need to be reconfigured and reprogrammed in response to changes in its operating

conditions. Since they are often deployed in mission-critical applications, modifications to SNSs

should be performed under utmost caution. Any disruption that results in system failure and/or

malfunction can yield catastrophic results. Therefore, we should strive to develop methods that

ensure that the correctness, security, and trust of SNSs are preserved even under structural changes

and reconfigurations in response to an evolving environment.

For many applications involving SNSs, requirements change dynamically in a rapid, unpre-

dictable, and continuous fashion. In applications that drive search and rescue missions, any oper-
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ational expansion/contraction requires dynamic reorganization of the system. In surveillance and

monitoring applications using sensor networks, nodes can die changing the network structure or

the environmental parameters can change requiring reconfiguration of the system.

We need to develop techniques, tools, and methods that help build, manage, and maintain SNSs

whose requirements keep changing during their life-cycle. Conventional software engineering

approaches used in industry are inadequate in rapidly evolving mission-critical scenarios since they

do not allow reasoning about changes arising out of dynamically evolving system requirements.

We present a formal framework for reasoning about security and safety concerns in the context

of embedded sensor networks. We first provide an agent-based programming model for sensor

networks. A logical framework enables reasoning about security, safety, and integrity with respect

to usage of resources in this model. We then provide a framework based on counterfactual logic

to formally represent changes to the system and perform what-if reasoning about their impact on

security and safety even before they have been applied.

7.2 A Programming Framework for Sensor Networks

In the context of SNSs we have created a framework for the development of secure sensor network

applications [6]. This framework is embodied by two main components. The first is the Secure

Operations Language for JAVA (SOLj) which is an event-based domain-oriented synchronous pro-

gramming extension of JAVA used to write the specification for agents which, in this context, are

the software counterparts of one or more sensors. The second element is the Secure Infrastructure

for Networked Systems (SINS). SINS a is a distributed run-time system in which the SOLj agents

are deployed. The SINS run-time provides the necessary features that help uphold the system’s

security policies. Also, SINS can run both on the AndroidTM and Sun SPOTTM planforms. For the

sake of brevity we refer the reader to [6] for the details of other SOLj elements such as definitions

and the Secure Infrastructure for Networked Systems (SINS).

72



7.2.1 SOLj - Secure Operations Language-JAVA

Given that SOLj is an extension of JAVA, it is presented as modular extensions to its core language.

A module comprises the specification unit in SOLj; it is composed of type definitions, variable

declarations, service declarations, assumptions, guarantees, and definitions. In the future we will

use the word agent to denote a module instance. A SOLj module may include attributes as they

are described below:

deterministic Declares a module that does not exhibit nondeterministic behavior. The com-

pliance with this attribute is checked by the SOLj compiler.

reactive Declares a module that will cause a state change only when its (visible) environment

fires an event via a state change or by invoking a method. Also, this attribute denotes that

the module’s response to an event will happen in the next immediate step.

The type definition section contains user-defined types as well as enumerated types. The JAVA

comment //@type definitions precedes the “type definitions” section. It provides SOLj

directive to the compiler indicating the start of the type definition section. The variable declaration

section defines three types of variable which are explained below:

“monitored variables” variables in the environment that influence the agent’s behavior.

“controlled variables” variables in the environment that are changed by the agent’s behavior.

“internal variables” this variables reflect the agent’s state.

The JAVA comment //@Services precedes the “service declarations” section which de-

clares the agent’s external interface. It contains the methods that realize the services the module

provides. For each method declaration within a service, the SOLj language provides the capabil-

ity of declaring the corresponding preconditions and postconditions which denote the conditions
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under which each service should start and terminate. The preconditions and postconditions are en-

coded as arithmetic expressions and type declarations respectively. A type declaration is denoted

by a type judgement expression T:x where x is a variable and T is a type. These constraints are

enforced at runtime in a dynamic manner. Also, each service invocation must use a “continuation

variable”. This variable includes a boolean field called “done” which is assigned a value of true

once the service invocation is ready to provide a return value.

The //@Assumptions comment denotes the starts of the assumptions section which in-

cludes assumptions that determine the agent’s correct way to operate. If any of these assumptions

is violated by the environment, the agent’s execution is aborted. The guarantees section con-

tains the agent’s required safety properties. The definitions section provides update func-

tions which denote variable definitions. These specify the corresponding values for internal and

controlled variables. For the sake of future references, we will distinguish between monitored vari-

ables whose values are given by the environment, and dependent variables which are those whose

values that are the result of SOLj agents computations. These values are obtained using the values

of monitored variables and (possibly) past dependent variable’s values.

Based on the work presented in [6] we are fully capable of transforming well-formed SOLj

code (as it is defined above) and produce the equivalent JAVA source via a SOLj-JAVA compiler.

7.2.2 SOLj Events

Based on the Software Cost Reduction (SCR) method’s SCR Abstract Language (SAL), SOLj has

been provided with the capability of defining events [23]. Intuitively, SCR events can be inter-

preted as state changes. Moreover, the occurrence of an event is triggered when a variable has its

value changed. This is done by update functions which change the dependent variable’s value. In

the subsequent @PREV(c) denotes the value of variable c in the previous state. @T(c) denotes

when variable c changes from false to true. @F(c) denotes when the variable c changes from true

to false. @C(c) denotes when the value of the variable c changes between the previous and current
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states.

@T(c) =def ¬@PREV(c) ∧ c

@F(c) =def @PREV(c) ∧ ¬c

@C(c) =def @PREV(c) 6= c

An initialization method (init) assigns starting values to all dependent variables (controlled

or internal). Each module contains an init method. Each dependent variable is updated by just

one of the update functions. Moreover, a dependency relation is induced by the interplay between

update functions and dependent variables. We denote this relation with Dm. Let a and b be two

dependent variables, then we say that (a, b) ∈ Dm if and only if a is updated by the function

corresponding to b. The fact that a may depend on the previous values of other variables and itself

does not influence the dependency relation. Also, a dependency graph may be derived from Dm

by interpreting the set of dependent variables as the nodes and each (a, b) ∈ Dm as the edges 1.

For each module, we need to consider its corresponding dependency graph as acyclic.

From a simplified point of view, a SOLj program executes in a sequence of steps and each step

is preceded by the triggering of an event. The module’s dependency relation induces the order in

which the variable updates and service invocations are carried out. Each computation step may be

decomposed as follows:

1. The environment or the agent itself triggers an event in a nondeterministic manner

2. Each agent responds to this event by modifying the values of its dependent variables

From an external point of view, the updates and service invocations can be thought of hap-

pening in a synchronous manner (as it is dictated by the Synchrony Hypothesis and exemplified

by languages such as Esterel and LUSTRE [21]). The latter implies that all dependent variable

1The notion of a dependency relation is easily extended to the entire system.
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updates and service invocations that occur as a response to an event triggering, happen before the

next event is triggered.

The SOLj-based framework allows us to use a model-driven approach wherein agents are speci-

fied and verified at a high level and then compiled to JAVA code that can run on Sunspot or Android

platforms.

7.3 Example - SOLj Distributed Resource Access System

7.3.1 General Aspects

In the context of this example, the system will exhibit two types of SOLj agents. The first type is

a Resource Monitor Agent (RMA). This type of agent has control of a given subset of the system’s

resources. The latter is due to the fact that the Access Control List (ACL) is allocated to different

nodes in the system. The reason for the latter is to prevent single-point-of-control failures and/or

ill-intended attacks. The other type of system agent is the Resource Requester Agent (RRA). These

agents, aside from executing other specific tasks, use distributed protected resources in order to

carry-out their work. In this example we will only emphasize the security concerns while assuming

that the system carries out a non-specified set of functional requirements.

7.3.2 System Description

Our security distributed system is mainly composed of two agent types:

Resource Monitor Agent (RMA) This agent type is in charge of granting access to protected

resources. Each agent instance oversees accesses to a given set of resources based on

the entries of a given co-located access control list. The security concerns are distributed

and hence, a security agent may grant access to a non-local resource by acting as a proxy-

requester.
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Resource Request Agent (RRA) This agent type has as its main task the duty of requesting ac-

cess to the set of RMAs in the system. Its state is composed of the resources it is currently

using.

The resource controlled by an RMA are physically distributed and co-located with each RMA

instance. Also, the ACL is distributed as well. For a given RMA its corresponding ACL will

contain only entries related to the agents that have permission to use the resources it controls.

Figure 7.1: Distributed security system schematics

An example of an instance of a distributed security system is given in the diagram shown in

Figure 7.1. The SOLj source code examples for both types of agents RMA and RRA are given in

Figures 7.2 and 7.3 respectively.

7.3.3 SOLj Security Features

Based on the work exposed in [41], we explain how enforceable safety and security policies [44]

are expressed in SOLj as enforcement automata (also known as security agents [5], [41]). The

enforcement mechanism of SOLj works by terminating all executions of a program for which the

policy being enforced no longer holds. For reasons of readability and maintainability, we prefer to

use explicit automata for enforcing safety properties and security policies, although any language

that allows references to previous values of variables may suffice. Unlike assertions, where no

additional state is maintained, SOLj enforcement automata may include additional variables that

are updated during the transitions of the automata.
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//@Module Declaration
deterministic reactive module ResourceMonitorAgent

//@Type definitions
Permission = SecurityRecord
ResourceSet = OrderedSet<Resource>
AccessControlLst = OrderedSet<Permission>

//@Controlled variables
ResourceSet resourceList;

//@Internal variables
boolean usedResource2;

//@Monitored variables
%ResourceSet usedResources;
AccessControlList secList;

//@definitions
//@initialization
void init(){

%usedResources = null;
usedResource2 = false;

}
//@update functions
Resource grantResourceAccess(int requesterID, int resourceID1){

if(@F(secList.isInUse(resourceID1) &&
@T(secList.hasPermission(requesterID, resourceID1) &&
@T(!usedResource2)){
resourceList.getResource(resourceID1).setInUse(true);
return resourceList.getResource(resourceID1);

}
if(@F(secList.isInUse(resourceID2) &&

@T(secList.hasPermission(requesterID, resourceID2)){

if(!usedResource2){
usedResource2 = true;

}
resourceList.getResource(resourceID2).setInUse(true);
return resourceList.getResource(resourceID2);

}

Figure 7.2: SOLj code for the ResourceMonitorAgent module
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//@Module Declaration
deterministic reactive module ResourceRequestAgent

//@Type definitions
Permission = SecurityRecord
ResourceSet = OrderedSet<Resource>

//@Controlled variables
ResourceSet heldResources;
int agentID;

//@Monitored variables
AccessControlList secList;

//@Services
//@ Resource ResourceMonitorAgent:grantResourceAccess(resourceID)
//@ pre = !heldResources.contains(resourceID)
//@ post = heldResources.contains(resourceID)

//@Update Functions
void getResourceAccess(int resourceID1, int resourceID2){

heldResources.addResource(grantResourceAccess(resourceID1));
heldResources.addResource(grantResourceAccess(resourceID2));

}

Figure 7.3: SOLj source code for ResourceRequestAgent

The classical way of specifying the correct safe use of shared resources would be to write a

so-called class invariant, often specified as predicates on the “old” and “new” values of program

variables. Languages such as Eiffel [31] with explicit support for Design by Contract [32] include

constructs for specifying and checking such invariants. However, presently popular object-oriented

programming languages lack such mechanisms, and therefore treat class invariants mostly as com-

ments, and provide no tool support to analyze them. A unique feature of SOLj is the ability to

perform such checks on existing implementations in a language-neutral manner.

SOLj Safety Automata

We show how SOLj agents are used to enforce safety properties. Within the example in Section 7.3

we show two types of agents (Resource Monitor Agent and Resource Request Agent) that cooperate
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in order to ensure that a set of distributed resources are used accordingly since no resources shall

be used by a given agent while it is being held by another agent i.e., an RMA will never grant a

resource that is already in use.

SOLj Security Automata

Another aspect shown in our example is security. In this sense, the security policy being upheld

is that an agent may access a resource provided that it has already been given access to it. If the

latter does hold at the moment of the request, access to the resource is denied and the request

has no effect. Furthermore, notice that a given resource can only be requested once, therefore, in

the context of two subsequent requests for a resource only the first one will be honored while the

second one has no effect whatsoever.

7.3.4 Source Code Description

In Figures 7.2 and 7.3 we have already given examples of an RMA and a RRA respectively. In this

section we describe the code presented in the referred figures.

Resource Monitor Agent (RMA)

For the purpose of this example our RMA agent manages a list of resources. Details about this type

of agent are given below. We describe each agent type by outlining the elements that comprise each

of the agent-code sections.

Type Definitions

Permission This type represents the right of any given requester agent to access a resource, as-

suming such resource is not in use. For this type we assume that a special kind of record

type (SecurityRecord) already exists.
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ResourceSet This type represents the group of resources an RMA controls. For this type, we

assume that a the type Resource, a native record type, already exists.

AccessControlLst This type represents the state (free/held) of the resources controlled by the

agent and whether or not a given agent has access to a specific resource.

Controlled Variables

resourceList This variable represents a lists which is used to keep track of the resources currently

in use and controlled by the RMA.

Monitored Variables

secList This variable represents a list that is used to keep track which RRA agents have access to

the set of controlled resources.

Internal Variables

The only internal variable for this module is isUsedResource2 which denotes if the second

controlled resource is being used.

Update Functions

grantResourceAccess This function takes as parameters three integers (resourceID1, resourceID2,

and requesterID) and does the following:

1. Waits (via event-triggers) until resourceID1 is freed.

2. resourceID1 is assigned to the requester provided it has never used resourceID2

indicated by the usedResource2 variable being false. resourceID1 is flagged

as being used.
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3. Waits (via event-triggers) until the resourceID2 is freed.

4. It flags resourceID2 as being used. If resourceID2 was never previously used

by the requester (indicated by the flag usedResource2 being false), the flag usedResource2

is turned on

The above security policy cannot be expressed in JAVA’s built-in security model that either

always allows access to a resource or never.

Resource Requester Agents (RRA)

In the context of this example an RRA, aside from other functional concerns, has the role of asking

RMAs access to resources. We will describe this type of agent by outlining the elements in each

one of its sections. We will not cover the Type Definitions section given that RMAs and

RRAs share the same used types.

Controlled Variables

heldResources This variable denotes a list which keeps track of the resources being used by the

RRA.

Update Functions

getResourceAccess This function calls the grantResourceAccess service on the correspond-

ing RMA and updates the heldResources list with the requested resource.

7.4 Secure Counterfactuals in Sensor Networks

It is widely known that changes regarding security policies are, more often than not, frequent and

pervasive. System administrators always struggle to uphold the security concerns of the systems
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they help manage. The system’s security is under constant threat in this continuous change environ-

ment. Traditionally, changes to security policies are partially tested in a development environment.

However, these environments lack the scale/size that characterizes a live production environment.

The live environment’s sheer size may bring forth defects that were not captured during the testing

phase. The latter will surely mean that the ill-modified security policy will cause a non-trivial

breach. This scenario was mainly caused by changing the security policy. It would be useful to

asses the impact of a changed policy without changing the policy itself. It is in this setting where

counterfactual logic plays a crucial role.

Counterfactual logic aids us in what-if reasoning about statements that are not matter of fact.

Lewis [29] provided a sound and complete inference system and also showed that this logic was

a decidable one. We have created a logical calculus based on counterfactual logic. This calculus

allows us to express properties that would take place in a future version of a given security policy

and verify that indeed these properties would hold if the changes between the new and old version

were applied.

7.4.1 The Language of Counterfactual Logic

As it is shown in [29] we will shortly define the language that comprises the logic of counterfactuals

(pi denotes a propositional variable)

φ ::= pi|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|φ� φ

The counterfactual expression φ� ψ should be read as: if it had been the case that φ, it

would have been the case that ψ. Therefore, if we had a statement that contained an antecedent

that expressed the properties of a given security policy and the required changes to create the new

version and the consequent expressed the properties that the new version would exhibit, then it

seems plausible that we can encode such a statement using counterfactual logic.
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7.4.2 Formal Representation of A Security Model

In this section we will define a simple variation of the Access Control Matrix (ACM) model. This

model was first introduced in [28] and [16]. We have chosen this model due to its simplicity and

intuitive nature and widespread use [28]. First, we will define three sets: S,O and A which are

respectively the set of : subjects, objects and actions. The set of subjects contains the active entities

on the system (i.e., users, computer systems, etc.); the set of objects denotes the set of entities over

which subject are allowed or denied a certain action. The set of actions denotes those tasks which

a subject can perform on a given object. Hence:

S = {si}i∈I The set of subjects

O = {oj}j∈J The set of objects

A = {Read,Write} The set of actions

Thus, we formally define an access control matrix as a function M : S × O → 2A which

takes an ordered pair composed of a subject and an object and assigns to them a subset of the

possible set of actions. Moreover, in this instance we will have to work with M ’s intensional or

set representation and thence:

M , {(si, oj, αk)} where αk ∈ 2A

Encoding Change in the ACM model

Let M = {(si, oj, αk)i,j,k∈N} be the current version of the access control matrix. We can encode

the state of any ACM by using the following formula:

ΨM ,
n∧

i=1

m∧
j=1

p∧
k=1

(si, oj, αk) ∈M

We will simplify the latter expression using the following notation:
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ΨM ,
∧
i,j,k

(si, oj, αk)

For the sake of simplicity we will define a change to the ACM as a change to the members of

the action-set of a given triple. Hence, a change may be represented as:

(si, oj, αk)⇒c (si, oj, α
′
k)

Furthermore, let M denote the class of all possible ACM versions. Therefore, ⇒c can be

thought of as a binary relation overM and

M ⇒c M ′ iff M ′ ,M [αk/α
′
k]

provided that (si, oj, αk) ∈ M and (si, oj, α
′
k) ∈ M ′. Moreover we define⇒c to be the smallest

relation such that the following holds:

(si, oj, αk)⇒c (si, oj, α
′
k) iff:

1. α′k 6= ∅ when αk 6= ∅

2. α′k 6= A when αk = A

Undesirable Configurations

In any system, there is a set of undesirable states that the system should not assume. One of the fun-

damental purposes of any security mechanism is to guarantee that for any possible transition (that

originates in a safe/legal state) the target state will not be an illegal/undesirable state. An undesired

state will be denoted by a given configuration/triple of subject, object and action. Therefore, let

U ⊆ S ×O × A be the set of illegal configurations and let τu range over this set.

85



We want to avoid allowing a configuration change in which we enable an undesirable triple be

part of the new version of the ACM. Hence, we want to avoid the following:

M ⇒c M ′ where τu ∈M ′

Secure Counterfactual Change

Our objective is to use counterfactual logic to let us decide whether or not a possible change to

the current version of the ACM implies that at least one illegal triple is part of the future resulting

version. Therefore our secure counterfactual implication can be expressed as:

[
∧

i,j,k∈N

(si, oj, αk)] ∧ (s0, o0, α0)[α0/α
′
0]� (τu 6∈M ′)

7.4.3 From SOLj to Access Control Matrix And Back

In Section 7.3 we have shown how a network of SOLj agents preserves a security policy expressed

via the assumptions and guarantees that agents satisfy. However, the security policy might need to

be modified in response to a changing requirement. Clearly, an arbitrary change may compromise

the system’s security. We have chosen an access control matrix-based model to express a system’s

security policy. We can derive the corresponding system’s ACM by statically analyzing the SOLj

modules. Then we use our counterfactual logic-based approach to determine whether or not a

given change would compromise the ACM’s integrity. If it is determined that the changes do

not compromise security, they are applied to the ACM. The changed ACM can now be translated

into a first order logic formula as shown in Section 7.4.2 and incorporated in the assumptions and

guarantees section of the SOLj modules.
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7.4.4 Kripke Version Model

In [29] the author provides the semantics of the counterfactual propositional logic using a possible

worlds interpretation. In our case, each ACM version will represent a world. In the following

definition, we write ti ← tj to denote that the tuple ti was swapped by tuple tj . Below, we provide

the formal semantics of the counterfactual implication based on a Kripke version model.

Definition 7.4.1 (Kripke Version Model) A Kripke Version ModelR is a triple 〈M,⇒,M0〉where:

1. M = {Mk}k∈N is the set of all access control matrix versions (ACM states).

2. M0 is the initial access control matrix.

3. ⇒⊆M×M is a binary relation defined the set of all possible ACM versions. Where⇒ is

the smallest relation such that the following properties hold:

(a) ti ← ti : tuple ti is left unchanged. This stands for the do nothing transformation.

(b) ti ← tj : tuple tj replaces tuple ti, where tj ∈ Mk. We usually call this primitive

transformation, a swap.

(c) ti ← tj : tuple tj replaces tuple ti, where tj , ti[α
′/α].

We assume that the relation⇒ complies with the properties of reflexivity, symmetry, and tran-

sitivity. Below, we justify each property based on the latter definition of⇒:

1. Reflexivity: For any ACM Mi ∈ M, it is obvious that the do-nothing transformation will

yield that any ACM can be transformed into itself. Therefore, Mi ⇒ Mi given that for all

tj ∈Mi, Mi = Mi[tj/tj]

2. Symmetry: For any ACMs Mi,Mj ∈ M any of the above transformations can be reversed

and therefore, Mi ⇒Mj implies Mj ⇒Mi.
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3. Transitivity: For any ACMs Mi,Mj,Mk ∈M, applying two or more transformations to an

ACM will yield intermediate versions; this is equivalent to transforming the initial version

by composing the transformations into one. Thus, Mi ⇒ Mj and Mj ⇒ Mk imply that

Mi ⇒+ Mk. Where⇒+ denotes⇒ ◦ ⇒n−1 and n > 1.

7.4.5 Interpreting the Counterfactual Implication

Intuitive Interpretation

Figure 7.4: Lewis’ concentric spheres diagram in the context of our formulas

Based on the neighborhood Kripke model [29] Lewis provided an interpretation of the counter-

factual implication. A counterfactual implication is true if and only if the antecedent is true at some

worlds and among these, the ones in which the consequent is true are closer to the actual world than

those in which the consequent does not hold. Additionally, in [29] Lewis states that he does not

attach any fixed interpretation to the notion of closeness or a distance/metric between the worlds in

his model. We precisely establish the notion of distance used in this paper. Let M1 and M2 be the

formal representations of two different versions as defined in section 7.4.2. We also identify each

formula (i.e., ΨM1 and ΨM2) with a specific world in our Kripke Version Model. Then we define

the distance between ΨM1 and ΨM2 as the number of changes (as defined in section 7.4.4) between

them. More precisely, if we were to identify each formula ΨM1 and ΨM2 with its corresponding

string, then, the distance between them would be the Damerau-Levenshtein distance between their
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corresponding strings. In Figure 7.4 we show that each world is identified with the formula ΨMi

that in turn corresponds to the ACM instance Mi.

Formal Interpretation

As it was stated earlier, the purpose of our model is to help interpret assertions in the language of

counterfactual logic. Let M0 denote our given initial ACM version. Also, let us assume we had a

counterfactual assertion, namely φ� ψ in which:

• φ stands for assertions regarding M0 and some transformation ti ← tj that implies that

M1 = M0[ti/tj]

• ψ stands for assertions regarding M1

Thus, following the model-theoretic interpretation proposed by Lewis in [29], our version of

the counterfactual implication is interpreted as:

R |= φ� ψ . (7.1)

WhereR denotes our previously defined Kripke Version Model. Moreover, letting αi, βi denote

statements about the structure of Mi and Mj respectively, then, we can state that:

φ , (
n∧

i=1

αi) ∧ (Mi ⇒+ Mj)

ψ ,
m∧
j=1

βj

Where ⇒+ denotes the positive/transtive closure for the relation ⇒. Furthermore, given an

initial ACM version, namely M0, we produce several versions by applying one or more transfor-

mations to it. In the context of a counterfactual assertion, the current version’s structure and the

changes applied to it (in order to produce a new version) imply properties possessed the new ver-

sion and hence:
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R |= φ� ψ , (∃mink ∈ N)(
∧n

i=1 αi)

∧(M0 ⇒k M ′)→ (
∧m

j=1 βj) .

The latter should be interpreted as there exists a minimal number of transformation steps such

that given the properties of our initial ACM M0 (namely,
∧n

i=1 αi) and the transformation between

the two versions implies the desired properties of the future ACM version (namely,
∧m

j=1 βj).

7.4.6 Fragment of Counterfactual Logic

Given that we are striving to provide a mechanical procedure and a tool whose purpose is to aid

in reasoning about the properties that would hold for future versions of a given ACM, we define a

logical calculus which will enable us to infer such properties in a algorithmic manner. Thus, we

provide the set of inference rules taken from [29] and known as VC logic; these rules will help us

formalize our approach’s proof theoretical fragment. The soundness of these rules can be provided

using a model-theoretic argument that we omit here.2

1.
` φ→ ψ, φ

` ψ
Modus Ponens

2.
φ� φ

Reflexivity rule

3.
φ� ψ

φ→ ψ
Counterfactual-Elimination rule

4.
` λ→ ψ

` (φ� λ)→ (φ� ψ)
Deduction Within Conditionals

5.
` (φ→ χ) ∧ (χ� ψ)

` φ� ψ
Partial Transitivity Theorem

7.5 Example - Security Proof Under Change Using Counterfactuals

First, we assume that all legal Access Control Matrices (ACM) are contained in the class M.

Furthermore, let us assume thatU ⊆ S×O×2A is the set of all illegal tuples. Additionally, we want

2In appendix 7.7 we give a model-theoretic proof for the Partial Transitivity Theorem.
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to emphasize the difference between the set representation of a given ACM and its corresponding

logical formula. The first is a semantic entity while the second is a syntactical entity. Our proofs

proceed by manipulating the syntactical representation of an ACM. Below, we define the classM

of all legal ACMs.

M , {Mi |Mi ⊆ S ×O × 2A , Mi ∩ U = ∅}

Let the ACM initial version beM0, the next future version beM1, and letM3 be the next subsequent

version. Without loss of generality we base our proof just on two subsequent changes. Moreover,

in order to keep our proof short we will replace the following expressions:

(s0, o0, α0) ∧ (s1, o1, α0)∧, . . . ,∧(sn, om, αl) ∈Mi

by their proposed shorthand equivalent:

∧
i,j,k

(si, oj, αk)

In order to precisely define the change we need to give M0’s and M1’s set representation. In the

following, α′ ∈ 2A is the new action to be incorporated to the tuple (s0, o0, α0).

• M0 = {(si, oj, αk) | 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ 4}

• M1 = (M0 − {(s0, o0, α0)}) ∪ {(s0, o0, α′)}

Correspondingly, we also state the logic formula equivalents for M0 and M1.

• ΨM0 ,
∧
i,j,k

(si, oj, αk)

• ΨM1 ,
∧

i,j,k 6=0

(si, oj, αk) ∧ (s0, o0, α0)[α
′/α0]

In order to flesh-out the proof, we need to agree on several facts. First of all, we can (by

definition) assert that our initial ACM version M0 is not compromised (M0 ∩ U = ∅).
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Specifying Change

As it was defined before, a single change consists of renaming the third component on a given

tuple. For readability purposes change will be expressed as a predicate.

change(α′, αk) , (si, oj, αk)[α′/αk]

Moreover, we shall use this predicate to express change being applied to the current ACM version

as follows:

ΨMi
∧ change(α′, α)� ΨMj

The latter implication should be interpreted as Mj being the resulting version if the change

predicate had been applied to the previous ACM version.

The Proof

In this section we will use the counterfactual inference rules (given in section 7.4.6) to deduce

whether or not a changed tuple implies a security breach i.e., an illegal tuple being included in the

new version of ACM. Let us assume that M1,M2, M3, and U be defined as before. Firstly, we

need to take into account that ΨM1 ∧ change(α, α′)� ΨM2 and ΨM2 ∧ change(β, β′)� ΨM3

are model-theoretic facts. Each ACM version can be thought of as a world. Moreover, the formula

corresponding to a given ACM version holds true at this world. Applying the change would imply

that the formula corresponding to the next version is true.

We want to show that a sequence of changes may imply a security breach. Without loss of

generality, let us assume that (s′, o′, α) ∈ M0 and (s′, o′, β′) ∈ U . Furthermore, we will use the

following change predicates in our proof:

change(α, α′) , (s′, o′, α)[α′/α]
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change(α′, β′) , (s′, o′, α′)[β′/α′]

Our main intention is to show that if a sequence of changes had been applied to the initial ACM

version, then some security breach would have occurred. We may be tempted to allow only those

counterfactual implications that denote safe changes as theorems of our logic.

Claim : ΨM1 ∧ change(α, α′) ∧ change(α′, β)� (s′,o′, β′) ∈M3

1. ΨM1 ∧ change(α, α′)� ΨM2 (Model-theoretic fact)

2. ΨM1 ∧ change(α, α′)→ ΨM2 (�-Elimination in 1)

3. ΨM1 ∧ change(α, α′) ∧ change(α′, β)→ ΨM2 ∧ change(α′, β) (Propositional Logic in 2)

4. ΨM2 ∧ change(α′, β)� ΨM3 (Model-theoretic fact)

5. ΨM1 ∧ change(α, α′) ∧ change(α′, β)� ΨM3 (Partial Transitivity in 3 and 4)

6. ΨM3 → (s′, o′, β′) (Propositional Logic)

7. (ΨM1∧change(α, α′)∧change(α′, β)� ΨM3)→ (ΨM1∧change(α, α′)∧change(α′, β)�

(s′, o′, β′)) (Deduction Within Conditionals in 6)

8. ΨM1 ∧ change(α, α′) ∧ change(α′, β)� (s′, o′, β′) (Modus Ponens in 5 and 7) �

By showing that ΨM1 ∧change(α, α′)∧change(α′, β)� (s′, o′, β′) is a theorem of our logic

and considering that we asserted that (s′, o′, β′) ∈ U (i.e., (s′, o′, β′) is an illegal tuple), we have

caught a possible security breach that would have occurred.

Justification for Our Approach

The reader may argue that we could have applied the changes to the security policy and then used

some form of static analysis to verify whether or not the new version suffers from a security breach.

However, in the least risky scenario in which these verification efforts are done in a development
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environment, the developers and IT professionals need to materialize a new version. In the most

risky scenario, the changes are released to the production environment, possibly introducing a se-

curity breach in it. Therefore, it follows that our approach which only manipulates a representation

of the security policy will not yield the scenarios that we just described.

7.6 Implementation Results

We have implemented the proof in Section 7.5 in Prolog. In the following we will define the

predicates that realize the proof system.

matrix(Subject, Resource, Action) This predicate characterizes the tuples that comprise the sys-

tem’s legal configurations. This predicate has been declared as dynamic which implies that

it can be changed during run-time.

prohibited(Subject, Resource, Action) This predicate denotes the system’s illegal tuples.

violation(Subject, Resource, Action) This is an utility predicate that helps us check the consis-

tency of the security model, namely, it checks whether or not Mi ∩ U = ∅.

change(Tuple, NewAction) This predicate will change the current knowledge base as long as

Tuple denotes a current legal tuple in the system.

boxArrow(Tuple1, Tuple2) This predicate will change the ACM’s formal representation pro-

vided that Tuple2 is not an illegal tuple.

transformACM(Tuple1, Tuple2) This predicate succeeds when the change from Tuple1 to

Tuple2 implies that Tuple2 is part of the current legal tuples.

chainTrans(Tuple1, Tuple2, Tuple3) This predicate succeeds when the transformation between

Tuple1 and Tuple2 implies transformation between Tuple2 and Tuple3.
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We have modeled the security policies of the system shown in 7.3 as facts (knowledge base)

against which the chainTrans goal (shown as the first line in Figure 7.5) is verified.

Figure 7.5: Prolog run for the chainTrans predicate

Figure 7.5 shows the proof of the change that consists in initially agent a being given access

to read and write resource1 and subsequently agent a being given access to just read

resource1. We succeed in proving the correctness of the change; the two target tuples are not

illegal tuples. We have trimmed the call-stack by skipping the execution of the change predicate

which in turn just calls system predicates retract and assert. In addition, we verified the

impact of the following changes to security policies in the system shown in Figure 7.3.

chainTrans(matrix(b, resource3, rw), matrix(b, resource3, w), matrix(b, resource3, null)) Agent b is currently

able to read and write resource3, we remove its right to read resource3, and finally we remove all

rights to access resource3.

chainTrans(matrix(c, resource2, w), matrix(c, resource2, null), matrix(c, resource2, rw)) Agent c is currently al-

lowed to write resource2, we remove all access to this resource, and finally we grant agent c access to

read and write resource2.
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chainTrans(matrix(a, resource4, null), matrix(a, resource4, w), matrix(a, resource4, rw)) Agent a is currently not

allowed access to resource4, we give it access to write this resource, and finally we provide agent a rights

to read and write resource4.

chainTrans(matrix(c, resource1, rw), matrix(c, resource1, r), matrix(c, resource1, w)) Agent c is currently able

to read and write resource1, we remove its access to read this resource, and finally we grant agent c

access to just write resource1.

All experiments were done on a dual core Dell Precision T3500 desktop. For the execution

depicted in Figure 7.5 and the executions of the latter four goals the time needed was negligible.

As stated in section 7.4.5, our formulas can be regarded as strings. Hence the proofs (i.e., goal

traces) are strings as well and we can quantify their length using character count (not taking blank

spaces into account). In Table 8.1 we show the length of the trace for each of the goals listed above.

Prolog Goal Proof Length
Goal trace 1 3,165
Goal trace 2 3,274
Goal trace 3 3,227
Goal trace 4 3,199

Table 7.1: Execution lengths for the example goals

7.7 Model-Theoretic Justification for The Partial Transitivity Theorem

As it is stated in [29] the VC-Logic can be interpreted using models of index sets (these models

are a formalized version of Lewis’ model of concentric spheres). In order to establish a complete

context we re-state the Partial Transitivity Theorem (PTT) below.

` (φ→ χ) ∧ (χ� ψ)

` φ� ψ
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Since the VC-Logic is sound, the latter statement must hold in all models. In order to derive a

contradiction, let us assume that there is a model in which the PTT does not hold. Let this model

be denoted by:

S = {Si | i ∈ I}

Furthermore, as it is defined in [29], we identify Lc with the language corresponding to VC-

Logic and Snt(Lc) with the set of sentences of this language. We let I be the index set of maxi-

mally consistent sentences. Also, let I : Snt(Lc)→ 2I be the interpretation function.

As it is stated in [29], we only require S to comply with the centered property, which amounts

to
⋂

i∈I Si = {i0} for some index i0 ∈ I . Additionally, since S is closed under arbitrary unions

we can state S∗ =
⋃

i∈I Si. We provide the interpretation of the sentences that comprise the PTT

below:

1. I(φ→ χ) = (I − I(φ)) ∪ I(χ)

2. I(χ� ψ) = {i ∈ I | I(χ) ∩ S∗ 6= ∅ → ∃S ∈ S(I(χ) ∩ S ⊂ I(ψ))}

3. I(φ� ψ) = {i ∈ I | I(φ) ∩ S∗ 6= ∅ → ∃S ∈ S(I(φ) ∩ S ⊂ I(ψ))}

Based on the non-vacuous interpretation of φ→ χ we can infer that I(φ) ⊂ I(χ). Correspond-

ingly, a non-trivial interpretation of χ� ψ requires us to accept I(χ) ∩ S∗ 6= ∅ as true. For the

sake of deriving a contradiction, let us assume that φ� ψ is false and hence its interpretation is

the empty set. Thus, the following statements hold:

• I(φ) ∩ S∗ 6= ∅

• ∀S ∈ S(I(φ) ∩ S 6⊂ I(ψ))

Thus, we must accept that for all S in S, I(φ) ∩ S 6⊂ I(ψ). Notice also that by assuming

I(χ� ψ) as non-trivially valid and having assumed that I(χ)∩ S∗ 6= ∅ then we must also accept
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that there exists some S0 ∈ S such that I(χ) ∩ S0 ⊂ I(ψ). However, we had assumed that

I(φ) ⊂ I(χ) and thus I(φ)∩S 6⊂ I(ψ) for all S in S cannot hold since I(φ)∩S0 ⊂ I(χ)∩S0 ⊂ I(ψ).

Therefore, we have reached a contradiction and such model S cannot exist. Thus, the PTT must

hold in all models of VC-Logic. �

7.8 Conclusion

We have introduced a framework for formally addressing security concerns in sensor networks.

The SOLj-based framework allows us to use a model-driven approach wherein agents are specified

and verified at a high level and then compiled to JAVA code that can run on Sun SPOTTM or

AndroidTM platforms. Also, we have demonstrated that our counterfactual-based framework can

be used to formally represent changes to SNSs and perform what-if reasoning about their impact

on security and safety even before they have been applied.

98



Chapter 8

Implementation Results

8.1 Introduction

In this chapter we show how the theoretical claims we have made thus far can be effectively realized

by our implementation results. Since our techniques were mainly proof-theoretical in nature, our

implementation relies heavily on theorem proving. We show that what was presented as manual

proofs in Counterfactual Logic can be represented as programs in Prolog. We show that source

code and security policies can be represented as asserted terms in a Prolog program. Furthermore,

we show that in both cases: source-code and security policies, simple properties (e.g, variable

bindings and legal-tuples) are preserved in two scenarios: the manual proof-theoretical derivations

and the implemented Prolog goals.

Many formal verification efforts provide manual proofs that give some idea about the proposed

approach’s correctness. It is not different in our case, since we have already provided proofs

that show how our proposed counterfactual approach can be applied to source code. However,

programmers and software engineers may lack the skill-set and resources (e.g., time, personnel,

etc.) to manually derive proofs that assert that their code is relatively correct in the face of change.

Therefore, we must provide implementation results and tools that deem our approach as effectively

feasible, i.e., it can be successfully realized by means of theorem proving.

We have implemented a proof procedure that guarantees the relative correctness of source

code using Prolog. We capitalized the strong similarity relationship between context-free grammar

production rules and Horn clauses. The latter relationship allows us to parse our source code also

using Prolog. In essence, the parsing phase allows us to transform the source code into Prolog

terms and assert them as facts. Additionally, we are able to express the source-code changes (e.g.,

statement swaps) in Prolog by manipulating the knowledge base of program terms. Additionally,
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we are able to express the properties that need to be upheld by the source code as Prolog terms.

Using all these elements we have reduced our manual proofs to Prolog resolution; i.e., given a

source-code fragment, a set of properties that the need to be preserved and a given change to the

source code, we can decide whether or not the change respects the properties after the change has

been applied. The latter implies that we can decide whether or not a given source code-change will

result in undesired secondary effects without changing the source-code.

8.2 Programming as Theorem Proving

According to the literature the Program as Proofs approach is not a far fetched idea. As it was

stated in [27], a given problem domain can be axiomatized (i.e., be represented as rules and facts)

and a given problem may be represented as a theorem (i.e., a query) that will be derived from the

proposed axiomatization. In this scenario, the syntax is relatively simple. Programs are composed

of sentences in clausal form as shown below:

Q1, . . . , Qn ← P1, . . . Pm

Each Qi and Pj is considered as an atomic formula whose syntax follows that of a First Order

Predicate logic atomic formula and we shall not cover here for the sake of brevity. The semantics

for this approach are given by two well known techniques: Resolution and Unification. Further-

more, our approach requires us to transform the provided source-code fragment into logical formu-

las. This is done entirely via Prolog using its Definite Clause Grammar feature which implements

parsing by deduction-approach presented in [37].

8.3 Implementation Roadmap

This section deals to with the task of using the Program as Theorem Proving approach to provide

an implementation for the code-change impact analysis method shown in section 4.5.
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Figure 8.1: System diagram for the code-change impact analysis implementation

The diagram in Figure 8.1 illustrates the road-map we followed to automatically verify that a

changed code fragment respects a set of future properties. In other words, we are able to verify that

the counterfactual implication between the change in the code (represented as a logical formula)

and the desired properties of the change is a theorem in our logic. Below we enumerate and explain

the steps depicted in the diagram:

Parsing The input to this step is a token list that denotes the program source-code. We use Prolog’s

inherent Definite Clause Grammar (DCG) capability to parse the list and produce a suitable

intermediate representation.

Pre-Processing The intermediate representation is then enriched with information (e.g. line-

numbers, operators, and arguments) to produce the Prolog-terms which denote the logical

representation of the original source-code submitted in the Parsing step. The program terms

are asserted as facts in the Prolog run-time knowledge base.

Change The input for this step is comprised by the logical representation for the source-code

(derived in the latter step) and the properties that should be respected by the change (e.g.,
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variables bindings). More specifically, the change is represented by a swap or transposition

between two program-terms.

8.4 The Parser

Due to Prolog’s inherent DCG feature we can provide the grammar for our source language as

input to the Prolog compiler. The compiler transforms the DCG rules into standard Horn clauses.

Therefore, parsing is reduced to normal Prolog resolution. Parsing as resolution, a form of theorem

proving, was a technique first shown in [37]. This form of parsing is possible due to the use of

First Order Logic definite clauses to axiomatize context free grammars [37].

%Entry point for the parsing phase
parse(Source, Structure) :- alProgram(Structure, Source, []).

% Statement parsing rules
alProgram(S) -->
[program], identifier(X), [’;’], statement(S).
statement((S;Ss)) -->

[begin], statement(S), restStatement(Ss).
statement(assign(L,X,V)) -->

[L], identifier(X), [’:=’], expression(V).
statement(if(L, T,S1,S2)) -->

[L], [if], test(T), [then], statement(S1),
[else], statement(S2), {integer(L)}.

statement(while(L, T,S)) -->
[L], [while], test(T), [do], statement(S).

statement(read(L,X)) -->
[L], [read], identifier(X), {integer(L)}.

statement(write(L, X)) -->
[L], [write], expression(X), {integer(L)}.

restStatement((S;Ss)) -->
[’;’], statement(S), restStatement(Ss).

restStatement(void) --> [end].

Figure 8.2: First fragment of the DCG grammar

As it was stated earlier, we implemented the parsing effort using Prolog and its inherent DCG

feature. In Figure 8.2 we show a fragment of the DCG grammar. We can implement parsing via
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alProgram(A, B, C) :-
’C’(B, program, D),

identifier(E, D, F),
’C’(F, (;), G),
statement(A, G, C).

statement(if(A, B, C, D), E, F) :-
’C’(E, A, G),
’C’(G, if, H),
test(B, H, I),
’C’(I, then, J),

statement(C, J, K),
’C’(K, else, L),
statement(D, L, M),
integer(A),
F=M.

statement(while(A, B, C), D, E) :-
’C’(D, A, F),
’C’(F, while, G),
test(B, G, H),

’C’(H, do, I),
statement(C, I, J),
integer(A),
E=J.

Figure 8.3: Prolog clauses corresponding to the DCG rules

resolution due to the fact (first stated in [36]) that parsing is just a constructive way of proving that

a given string belongs to certain context-free language.

We surely could have used any other language/software for parsing purposes, however, it is

undeniably more consistent if the whole effort was executed using Prolog-resolution. For example,

as it will be shown in section 8.8, for metric and benchmark purposes we only need to to look into

the depth of the search tree obtained by chaining the execution of the parsing source-fragment and

the counterfactual-proof source-fragment. In Figure 8.3 we can see how the compiler produced

standard Prolog source using the DCG specification shown in Figure 8.2.
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8.5 Intermediate Code Representation

The parser takes a list of tokens as inputs and produces the intermediate code representation we

use in later phases of the implementation process.

program example ;
begin
1 x := 2 ;
2 i f x > 0 then begin
3 y := 0 ;
4 w r i t e y

end
e l s e begin

5 y := 1 ;
6 w r i t e y ;

end
end

Figure 8.4: Example program

The DCG parser specified in section 8.4 takes the program shown in Figure 8.4 and generates

the following output structure (i.e, S).

S = assign(1, x, number(2));
if(2, compare(>, name(x), number(0)),
(assign(3, y, number(0));
write(4, name(y));void),
(assign(5, y, number(1));
write(6, name(y));void));void

Figure 8.5: Result of the parsing phase

The structure S shown in Figure 8.5 stands for the parse tree generated from the code shown in

Figure 8.4. The structure can be readily identified with a parse tree due to its nested structure.

The tree depicted in Figure 8.6 shows the explicit structure of S (shown in Figure 8.5). The

rest of our Prolog verification effort uses S as input.
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Figure 8.6: Parse tree that corresponds to the structure S

8.6 Program Terms as Facts

If we look at S as it is depicted in Figure 8.5, we can see it is composed of terms such as:

• assign(n, x, 5),

• compare(m, <, name(x), number(2)),

• write(s, name(x))

In the parsing phase each term (e.g., assign, compare, write) denotes the parsed pseudo-

code statement. In the subsequent phases each of these terms will be viewed as an un-interpreted

function symbol. This allows us to readily interpret each program statement as a term in Prolog’s

run-time knowledge base.

We transform S into program terms using the code shown in Figure 8.7. The stmtSplit

predicate takes S, a nested list of atoms, and produces a list of program terms. The resulting

program terms have the form f(n, <statement>), e.g., write(n, name(x)) where n

denotes the line-number in which this statement happens in the source code.

The code shown in Figure 8.8 takes a list of program terms (which should be already asserted

in the knowledge base) as arguments and produces the program properties relevant to the source-

code statement that the program term represents. For example, the program term assign(5,
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stmtSplit((Stmt;Stmts),[Stmt1|Stmts1]) :-
stmtSplit(Stmt, Stmt1),
stmtSplit(Stmts, Stmts1).

stmtSplit(if(X, Y, (Z;Zs), (W;Ws)),
[f(X, if(Y))|Stmts]) :-
stmtSplit((Z;Zs), Stmts1),
stmtSplit((W;Ws), Stmts2),
append(Stmts1, Stmts2, Stmts).

stmtSplit(read(X, Y), f(X, read(Y))).
stmtSplit(write(X, Y), f(X, write(Y))).
stmtSplit(assign(X, Y, Z), f(X, assign(Y, Z))).
stmtSplit(void, []).

Figure 8.7: Prolog code that transforms S into program terms

y, number(2)) shown in Figure 8.5 produces the terms bind(y, 1) and asserts it as part of

the knowledge base.

8.7 Verifying The Change

We implement code changes or transformation by performing swaps between two given program

terms contained in the knowledge base. The later is done via pattern matching; each program term

has a corresponding line-number, the code-change is performed by swapping the line numbers in

two given program terms.

The code fragment shown in Figure 8.9 uses the retract and assert pre-defined Prolog predi-

cates to remove the old program terms from the knowledge base and add the new ones. The new

state of the knowledge base reflects the changed program source code. Now, we are in position to

verify whether or not this new version of the knowledge base is consistent with a desired future

property.

We will use the source-code fragment shown in Figure 8.4 to illustrate how our Prolog ver-

ification code treats a simple example. The program in Figure 8.4 is mainly composed of an

if-then-else-block. The value to which the variable y is bound (i.e., 0 or 1) depends on the value of
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assertProgFacts([ProgTerm|ProgTerms]) :-
progCond(ProgTerm),
assertProgFacts(ProgTerms).

assertProgFacts([]) :- true.

progCond(f(_, assign(Var, number(N)))) :-
Val = N, assert(bind(Var, Val)).

progCond(f(_,
if(compare(>, name(Var), number(N))))) :-
bind(Var, Val),
Val > N,
assert(isGreater(Var, N)).

progCond(f(_, write(name(Var)))) :-
bind(Var,_), assert(isOutput(Var)).

Figure 8.8: Prolog code fragment that extracts the properties of program-terms

programSwap(Line_i, Line_j) :-
retract(f(Line_i, Stmt_i)),

retract(f(Line_j, Stmt_j)),
assert(f(Line_i, Stmt_j)),
assert(f(Line_j, Stmt_i)).

Figure 8.9: Prolog source-code fragment that implements the swap transformation

the input variable, x. If we had swapped the third and fifth statements, the variable y would have

been bound to an alternative value, namely 1.

In Figure 8.10 we show the Prolog code that connects all the elements we have explained so

far. The progChange predicate takes three variables as parameters; the first parameter, L, is

a list of program terms; the second and third parameters are integers that denote the lines that

will be swapped; the fourth and fifth parameters denote the variable and the value to which it

would be bound if the swap occurred. The first three predicates remove all program-facts from

the run-time knowledge base in case the progChange predicate had been run before. Then the

progAssert and assertProgFacts respectively integrate the program terms (e.g., f(2,

assign(name(x), number(2)))) and program properties (e.g., bind(x,2)) to the run-

time knowledge base. As explained earlier, the predicate programSwap(Line1, Line2)
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progChange(L, Line_1, Line_2, Var, Val) :-
retractall(f/2),
retractall(bind/2),
retractall(isGreater/2),
progAssert(L),
assertProgFacts(L),
programSwap(Line_1, Line_2),
isGreater(x,0) -> bind(Var, Val).

Figure 8.10: Prolog code that verifies a binding-variable change

changes the program terms in the knowledge base by swapping the line numbers corresponding to

the terms. In this instance, we want to find out the binding for variable y if the we had swapped the

two statements. Therefore, we need add the predicate isGreater(x,0) bind(Var, Val)

to the set of goals we want to resolve.

Figure 8.11: Result for the resolution of the verification goals

The positively resolved goal shown in Figure 8.11 indicates that if we had swapped the third

and fifth lines, the variable y would have been bound to the value 1. We have to take into account

that this verification effort has not modified the source-code per se. What we have changed is the

program terms that logically denote the source code in Figure 8.4. The program terms are

indeed a simpler representation of a program if we compared them to their corresponding source

code. Changing the program-term representation is far less complex than changing the source-

code.

The result depicted in Figure 8.12 shows how the change has affected the knowledge base.

The new version of the set of program terms complies with the proposed variable binding (i.e., a

desired future property) as it was shown in Figure 8.11. The results shown in this section prove

108



Figure 8.12: Changed program terms in the knowledge base

that we can fully implement the manual proof shown in section 4.5 via Prolog resultion. In both

theoretical and implementation scenarios we have steered away from modifying the code. In both

cases we have found a suitable and simpler source-code representation that aids us in reasoning

about code structure, its meaning and possible changes to it.

8.8 Benchmarks

In this section we show how our implementation behaves in terms of several examples. This section

includes a set of benchmarks that will help us judge the relative efficiency of our implementation

approach. We have decided to use two metrics for our benchmarks:

• Proof length (in characters)

• Proof-tree depth (in call-stack depth)

The use of these metrics is heavily justified by the arguments made in [48] and, more in depth,

in [45]. The use of the first metric, proof length is related to the meaning of a Prolog program.

In simple terms the meaning of a program is the set of instantiated or ground-terms related to

the program. The proof of the program ranges over the meanings of it and thus, the size of the

set of ground-terms is proportional to the length of the proof. Proof-length is thus an adequate
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measure of the effort made to resolve the initial goal. Alternatively, we use the depth of the call

stack to determine the depth of the proof tree. Using the trace predicate we can follow how the

run-time tries to resolve a goal. The traced execution of a goal resolution is equivalent to a proof

tree; each step of the trace shows the selected goal and the variable instantiations/binding used

to resolve the goal. Hence, the maximum depth number reached by the call-stack at run-time

accurately describes the depth of a successful goal search.1 Below we provide the source code for

the different program-change predicates use to obtain the benchmark data.

progChange(L, Line_1, Line_2, TestVar, TestValue, OUVar) :-
clearKnowledgeBase,
progAssert(L),
assertProgFacts(L),
programSwap(Line_1, Line_2),
isGreater(TestVar,TestValue) -> isOutput(OUVar).

Figure 8.13: First program-change predicate

The code in Figure 8.13 takes six variables as input. After asserting the set of program-

terms contained in L, still respects the implication between the isGreater predicate and the

isOutput predicate. The programSwap predicate works as explained in Section 8.6.

The code fragment shown in Figure 8.14 acts on a set of program terms comprised mostly

on assignment statements (or the set of assignment statements of a more general program). The

set of bind predicates denotes the variable bindings the source-transformation affects. The pre-

condition to this change is that the bounded values respect some ordering. The threeWayScramble

predicate perform a permutation between the program terms labeled by Line1, Line2, and

Line3. After the program-terms are modified the values are compared to verify whether or not

the ordering is still respected.

The code fragment shown in 8.15 takes a list of program terms, L and, OperList, a list of

comparison operators. After the program terms and program properties are asserted, we use the
1All benchmarks were done on a dual-core Dell Precision T3500 dual-core desktop.
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progChange2(L, Line_1, Line_2, Line_3) :-
clearKnowledgeBase,
progAssert(L),
assertProgFacts(L),
(bind(Line_1, x, Val1),
bind(Line_2, y, Val2),
bind(Line_3, z, Val3)),

Val1 < Val2, Val2 < Val3,
threeWayScramble(Line_1, Line_2, Line_3),
findall(f(N,S), f(N,S), L2),
assertProgFacts(L2),
(bind(Line_1, x, Val1),
bind(Line_2, y, Val2),
bind(Line_3, z, Val3)),

(Val1 =\= Val2), (Val2 =\= Val3).

Figure 8.14: Second program-transform predicate

progChange3(L, OperList) :-
clearKnowledgeBase,

progAssert(L),
assertProgFacts(L),
getAllIfTerms(IfList),
changeIfStmts(IfList, OperList),
findall(f(N,S), f(N,S), L2),
assertProgFacts(L2),
verifyIfConds(OperList).

Figure 8.15: Third program-transform predicate

getAllIfTerms to collect all the if-program-terms from the knowledge base. The predicate

changeIfStmts applies the new operators (contained in OperList) to the list of if-program-

terms. We modify the knowledge-base (program terms and property terms) via the findall and

assertProgFacts predicates. Finally, the verifyConds predicate which correlates the new

comparison operators used in the if-program-statements with the new property terms that

were incorporated in the program’s knowledge base.

Table 8.1 shows the results of running several successful queries against a set of test programs.

We can see that the all three predicates are progressively more complex (they involve more inter-
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Prolog Goal Proof Length Proof Depth Applied Predicate
Benchmark 1 18,875 15 progChange
Benchmark 2 13,783 15 progChange
Benchmark 3 12,369 14 progChange
Benchmark 5 215,648 36 progChange2
Benchmark 6 80,703 18 progChange2
Benchmark 7 99,178 18 progChange
Benchmark 8 173,073 21 progChange3
Benchmark 9 60,407 16 progChange3
Benchmark 10 27,805 15 progChange3

Table 8.1: Benchmark table for five different program-transformation queries

mediate predicates and modify the knowledge-base more than one time), therefore, for example

progChange2 will yield larger proof length counts than progChange would for the same test

program. We derived the proof-length and proof-depth metrics using Prolog’s trace predicate

which executes a query in a one-step-at-a-time manner. At each step the run-time system shows

which goal has been selected by the resolution process and the set of variable instantiations that

are relevant to that step. We consider each step as a level of the proof-tree. The step count for

the query’s trace is identified with the proof-depth metric. Additionally, we consider the character

count as the length of the trace. The trace’s length is identified with the proof-length metric. There

is a definite positive correlation between the length and depth of different benchmarks. We can

see that certain cases (i.e., benchmarks 5 and 8) the proof lengths seem to be outlying all other

benchmarks. Correspondingly, the depths associated with these benchmarks are also the largest

amongst all other benchmarks.

It is widely known that Prolog resolution (i.e., SLDNF resolution) has a worst time complexity

of O(n3). We assume that the unification that is done within the resolution task incorporates the

occurs-check) where n is the bit-length of the goal to be resolved. Such time complexity is usually

expected for theorem-proving algorithms. Although such time-complexity may yield unfeasible
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resolution times for programs that are exceedingly large, the proof-length and proof-depth metrics

can be seen as more descriptive of the size and computational effort that Prolog resolution requires.
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Chapter 9

Concluding Remarks and Future Work

The work presented in this dissertation dealt mainly with the problem of assessing the impact of

a given source code fragment in different contexts. The logic of counterfactuals has been a com-

monly used tool throughout all these contexts (sequential programming, general security, sensor

network systems, and security within sensor network systems). Although counterfactual logic may

be regarded as a non-traditional tool in the realm of software verification we have found it ideal for

the endeavor of performing source-code change impact analysis in an a priori manner. Given that

our approach is a relatively novel way of formally expressing change-impact concerns, we needed

a new kind of logic which enough expressive power to do the latter. The work presented in this

dissertation suggests that there is a new way by which change-impact analysis can be performed.

This new way of evaluating change is characterized by bypassing any modification to a source code

fragment, expressing the change in a formal manner, formalizing the desired properties, expressing

the source structure as a logical formula, and determining whether or not the formalized changes

follow from the desired future properties and the source-code structure.

In Chapter 4 we have applied our counterfactual logic approach to a sequential programming

scenario. We express the source code structure as a formula in our logic. Subsequently, we for-

malize the source-code modification as a program transformer, i.e., a second-order logical formula

which joins the source-code formula and the change formula and produces the formula correspond-

ing to the new version of the program. Using two examples we were able to successfully prove

that the desired changed formal versions of two programs were theorems of our logic.

In Chapter 5 we adapted our counterfactual logic approach to a general security setting. We

took advantage of the up-front simplicity of the Access Control Matrix (ACM) security model i.e.,

the formulas that encode the ACM are simply statements about set membership. We formalized
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a given ACM instance and expressed it as a formula. In this instance, change was defined as a

modification in at least one of the tuples that pertain to the ACM. Furthermore, we model the set

of illegal configurations as a specific set of tuples. A coherent change is defined as one that does

not produce an illegal ACM i.e., one that contains at least one illegal tuple.

In Chapter 6 we apply our counterfactual logic approach to sensor networks. Due to the reactive

nature of sensor network systems we had to augment our logic with temporal logic operators

and temporal logic inference rules. In this chapter we were able to successfully formalize the

structure of the source code that denotes the parallel composition of a set of [SOLj] agents, express

the behavior of this set of agents as temporal logic formula, and successfully show that for a

given example system changing one of the code modules (agent code) would eventually lead to an

alternative desired behavior (also expressed in temporal logic).

In Chapter 7 we have furthered the work presented in Chapter 5 by using our counterfactual

logic to address security concerns within sensor network systems. We first show the inherent

security characteristics that pertain to sensor network systems comprised of SOLj agents. We do

this by showing that SOLj agents behave as security automata and in this case security policies are

expressed as transition invariants. Furthermore, we provided a concrete example in which a set of

resources must be used in a secure (i.e., an agent can use a resource provided that it has been given

permission to use it via the access control list) and safe (i.e., a given resource can only be acquired

once by an authorized agent and can only be successfully requested once it has been released from

its previous user) manner. We were able to prove that our counterfactual logic approach has enough

expressive power to express the security policy of the example system. Furthermore, we show that

a given change in our system will yield an illegal operating configuration. Therefore, we were

able to catch a security breach even before the change was in fact incorporated into the system.

The latter is very valuable in scenarios as this one were introduction of secondary ill-defects in

live-production environment will mostly lead to relatively large financial losses and even loss of

life.
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In Chapter 8 we showed how our theoretical claims made in previous chapters could be im-

plemented via logic programming. We chose Prolog as a tool due to its widespread use on the

realms of automatic theorem proving. Regarding change-impact-analysis for source code, we de-

veloped a technique by which source code is simplified via a parsing technique which used Pro-

log’s Definite Clause Grammar feature. The input source-code was transformed in Prolog terms.

These terms comprised the knowledge-base which encoded the source code’s structure. Addi-

tionally, we use the program terms to deduce simple program properties (e.g., variable bindings,

if-conditions, etc.). These program properties were also encoded as Prolog terms and asserted

and complemented the knowledge base. Moreover, we modeled a source code transformation

based on swapping line numbers among two or more program terms. Based on the latter we pro-

duced four program-transform predicates. These predicates encoded the counterfactual changes

we theoretically proved in earlier chapters. These change predicates were used as goals which

always succeeded when the proposed change did not conflict with the properties that needed to

be preserved and/or incorporated. In summary, we were able to implement our theoretical proof

strategies using Prolog resolution for parsing the input source code and deducing whether or not

the source-code-transformation was correct.

In terms of future work we have recently discovered a very strong (and very promising) rela-

tionship between fragments of Monadic Second-Order Logic (MSOL) and automata theory. It is

already known that MSOL has enough expressive power to encode finite automata .We are already

capable of expressing a program’s source code as a second-order logic formulas. Furthermore, we

can identify the program source code with a string. This string along with some the usual inter-

preted function and relation symbols comprises the word model for the program’s MSOL formula.

Moreover, using our second-order logic program transformer notion we can produce a formula for

a second version of the program. The literature establishes that one can produce an automaton us-

ing the string’s word model. We conjecture that the transitions on this automaton may be decorated

with properties that the program and/or it’s second version should satisfy. Furthermore, it would
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be interesting to determine whether or not the MSOL formulas that denote the first and second ver-

sion’s of the program can be satisfied by the same word model and hence the same automaton. If

the latter conjecture were to be achievable we could reduce the verifying whether or not a program

complies with a set of properties to the language-emptiness checking problem which is known to

be decidable.
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