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Abstract

In this work, we are computing the matching between 2D manifolds and 3D man-

ifolds with temporal constraints. That is, we are computing the matching among

a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds

to a common domain, and then builds their matching by composing the forward

mapping and the inverse mapping.

At first, we solve the matching problem between 2D manifolds with temporal

constraints by using mesh-based registration method. We propose a surface pa-

rameterization method to compute the mapping between the 2D manifold and the

common 2D planar domain. We can compute the matching among the time se-

quence of deforming geometry data through this common domain. Compared with

previous work, our method is independent of the quality of mesh elements and

more efficient for the time sequence data.

Then we develop a global intensity-based registration method to solve the match-

ing problem between 3D manifolds with temporal constraints. Our method is based

on a 4D (3D+T) free-from B-spline deformation model which has both spatial and

temporal smoothness. Compared with previous 4D image registration techniques,

our method avoids some local minimum. Thus it can be solved faster and achieve

better accuracy of landmark points prediction.

We demonstrate the efficiency of these works on the real applications. The first

one is applied to the dynamic face registering and texture mapping. The second

one is applied to lung tumor motion tracking in the medical image analysis.

In our future work, we are developing more efficient mesh-based 4D registration

method. It can be applied to tumor motion estimation and tracking, which can

vi



be used to calculate the read dose delivered to the lung and surrounding tissues.

Thus this can support the online treatment of lung cancer radiotherapy.
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Chapter 1
Introduction

1.1 Background

A classical problem in computer vision and computer graphics is aligning two geom-

etry data, taken from different time or different viewpoints. This problem is known

as registration, and its objective is to recover the spatial alignment between these

two geometry data. Dynamic registration is considering the registration among a

time sequence of the data. Time series of data are acquired for various reasons,

such as monitoring of bone growth in children (long time interval), monitoring

of tumor growth(medium interval), or post-operative monitoring of healing(short

interval).

Registration plays an important in data processing ([1]), matching and recogni-

tion. Typically, registration is required in remote sensing (multi-spectral classifica-

tion, environmental monitoring, change detection, image mosaicing, weather fore-

casting, creating super-resolution images, integrating information into geographic

information systems (GIS)), in medicine (combining computer tomography(CT)

and MR data to obtain more complete information about the patient, monitor-

ing tumor growth, treatment verification, comparison of the patient’s data with

anatomical atlases), in cartography (map updating), and in computer vision (target

localization, automatic quality control), to name a few.

The literature treating registration methods is very extensive (e.g., [2] for a

survey). On one side are mesh-based algorithms, which compute the registration

through geometrical surface mapping approaches [3]. The main applications of

these methods are facial animation and expression analysis.
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On the other side are intensity-based algorithms, which use most of the intensity

information in the data set [4]. The main application based on this technique is

medical image analysis. For example, in the lung cancer treatment, the intensity-

based registration algorithms are used to predict the growth of the tumor and its

surrounding organs which can improve the precision of the radiotherapy treatment.

1.2 Main Contributions

First, we formulate the face registration problem as a feature-aligned surface map-

ping problem. As we known, feature aligned surface mapping can improve the effect

of texture mapping by enforcing feature correspondence between 3D meshes and

image. We present a novel constrained texture mapping computation framework

based on the method of fundamental solution (MFS). We first flatten the surface

onto planar domain, then compose a 2D harmonic map with user specified feature

aligned with corresponding texels in the texture image. We demonstrate that our

framework can efficiently conduct feature-aligned texture mapping with dynamic

deforming geometry data (Chapter 3).

Then, we also develop a feature-aware 4D spatiotemporal image registration

method. Combined with segmentation method, this method can be used for 3D

manifold registration with temporal constraint. Our proposed model is based on

a 4D(3D+t) free-form B-spline deformation model which has both spatial and

temporal smoothness. We first introduce an automatic 3D feature extraction and

matching method based on an improved 3D SIFT descriptor, which is scale- and

rotation- invariant. Then we use the results of feature correspondence to guide an

intensity-based deformable image registration. Experimental results show that our

method can lead to smooth temporal registration with good matching accuracy;

therefore this registration model is potentially suitable for dynamic tumor track-

2



ing. Thus it can provide more accurate guidance in the planning and delivery of

lung tumor radiotherapy treatment (Chapter 4).

1.3 Organization

There are five chapters in this thesis. Chapter 1 is a brief introduction of regis-

tration method and its applications. Chapter 2 mainly gives the related work of

this thesis. Chapter 3 presents harmonic surface mapping algorithm and its ap-

plication in the dynamic facial registration. Chapter 4 gives an algorithm of the

feature-aligned 4D image registration. Chapter 5 is the summary of the whole

thesis.

3



Chapter 2
Related Work

2.1 Harmonic Maps and Surface

Parameterization

Surface mapping computes a one-to-one continuous map between a 2D-manifold

and a target domain with low distortions. It has been playing a critical role in

various applications ranging from graphics, CAGD, visualization, vision, medical

imaging, to physical simulation. Having been extensively studied in the literature

of surface parameterization, harmonic maps are usually addressed from the point

of view of minimizing Dirichlet Energy. Its discrete version was first proposed by

Pinkall and Polthier [5] and later introduced to computer graphics field in work of

Eck et al. [6]. By discretizing the energy defined in [5], Desbrun et al. [7] construct-

ed free-boundary harmonic maps. Surface maps that minimize harmonic energy or

other stretch-distortion energy are directly used for shape blending [8] and in later

shape morphing applications [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Most pa-

rameterization techniques handle surfaces with disk topology. When surfaces have

non-trivial topology, local approaches or global approaches can both be used to

generated texture maps. Generally, local methods segment input surfaces into a set

of topological disks then apply disk paramterization, while global methods direct-

ly compute holomorphics forms ([20],[21]) or flattened metrics ([22], [23]) over the

global atlas. Texture mappings using local methods need to carefully handle dis-

tortion along cutting boundary while global methods should take care of artifacts

on singularity points.

A thorough survey on surface parameterization techniques is beyond the scope

of this work, and we refer readers to reports of [24], [25], and [26] for details.
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2.2 Volumetric Mapping

In recent years, volumetric mapping have gained great interest due to its rich

applications in many fields such as computer-aided manufacturing [27], meshing

[28, 29], shape registration [30, 31, 32], and trivariate spline construction [33, 34,

35]. Wang et al. [31] discretize the volumetric harmonic energy on the tetrahedral

mesh using the finite element method, parameterized volumetric shapes over solid

spheres by a variational algorithm. Xia et al.[29] and Han et al.[28] use this discrete

harmonic volumetric map in polycube parameterization. Most closely related to

this work, in [32], we compute the harmonic volumetric mapping between two

solid objects using fundamental solution methods. Later, we incorporate feature

alignment in this volumetric mapping framework [36].

Volumetric interpolation is a powerful tool for shape deformation. Ju et al. [37]

generalize the mean value coordinates [38] from surfaces to volumes to get a s-

mooth volumetric interpolation for cage based deformation. Joshi et al. [39] present

harmonic coordinates with non-negative weights for volumetric interpolation and

deformation in concave regions. Martin et al. [33] parameterize volumetric model

with trivial topology to a cylinder using the finite element method, and later gener-

alize the algorithm [34] to more complicated models with medial surfaces. Lipman

et al [40] develop Green’s coordinates for volumetric deformation. Patanè[41] uses

Radial Basis Function to approximate volumetric function along the volume data.

2.3 Dynamic Data Registration

According to the type of processing data, registration method can be classified

to mesh-based registration and image-based registration. When the input data

consists of a time sequence of the data, the registration can be computed through

pairwise optimization or global optimization.
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Compared with the image-based registration, mesh-based registration has less

computational cost and can be solved faster. We can build more physical mean-

ingful model based on the mesh structure to simulation the real world situation.

[42] used conformal maps to analyze similarities of 2D shapes and [43, 44] also

computed the 3D face meshes and brain meshes registration by using conformal

maps. [45] developed a non-rigid registration algorithm of 3D dynamic facial da-

ta by using least-squares conformal maps with additional feature correspondences.

However, all previous mesh-based registrations are solved by finite element method

which is highly depends on the quality of the mesh elements. It will become very

ill-condition when the mesh quality is very bad. In our work, we developed a mesh-

less method to solve the mesh-based registration based on the harmonic mapping,

which follows the physical institution and independents on the quality of the mesh

element.

On the other hand, image-based method is applied in more general images and

uses the full image information to compute the registration. So usually image-

based method can get more accurate results than mesh-based method. Currently,

spatio-temporal schemes become popular, which consist in a global formulation of

the motion estimation problem for temporal image sequences. Rather than com-

puting frame-to-frame matching individually [46, 47, 48], the entire sequence is

considered simultaneously, allowing to enforce the temporal coherence of the de-

formation across the sequence. By making assumptions such as smoothness about

the temporal variations of the transformation, these approaches often enable a

more compact and restrictive description of the full motion estimation problem.

Spatio-temporal deformable registration has received considerable attention in lit-

erature, mostly in cardiac image analysis and respiratory-correlated image analysis

[49, 50, 51].
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However, most of the current spatiotemporal dynamic images are fully guided

by the image’s intensity which does not consider any feature guided. As we known,

feature constraints can guide the optimization and avoid some local minimal. In

our work, we developed a feature-aligned 4D spatiotmeporal image registration

algorithm to match deforming volume images. It can achieve better result, both in

accuracy and efficiency.

2.4 Boundary Method and MFS

We construct the mapping through a meshless procedure by using a boundary

method called method of fundamental solution (MFS). Notable work among bound-

ary methods for solving elliptic partial differential equations (PDEs) includes the

classical boundary integral equation and boundary element method (BIE/BEM),

which has been widely used in many engineering applications [52], and was intro-

duced into computer graphics for the simulation of deformable objects in [53]. One

of the major advantages of the BIE/BEM over the traditional finite element method

(FEM) and finite difference method (FDM) is that only boundary discretization is

required rather than the entire domain discretization needed for solving the PDEs

numerically. Compared with the BIE/BEM approach, the MFS uses only the fun-

damental solution in the construction of the solution of a problem, without using

any integrals over boundary elements. Furthermore, the MFS is a true meshless

method, since only boundary nodes are necessary for all the computation. ”Mesh-

less” has the advantage of simpilicity that neither domain nor mesh connectivity

is required in storage and computation; so it becomes very attractive in scientific

computing and modeling [54],[55]. A comprehensive review of the MFS and kernel

functions for solving many elliptic PDE problems was documented in [56].

7



2.5 Feature-aligned Texture Mapping

Compared with conventional surface parameterization methods, constrained tex-

ture mapping considers the additional feature correspondence between 3D model

and texture images. Levy [57] proposed a method to satisfy the user-specified

constraints in the least-squares sense. And it works well for a small number of

constraints but can lead to invalid parameterization while dealing with a large

set of constraints ([58]). Desbrun et al.[7] used Lagrange multipliers to incorpo-

rate positional constraints into the formulation of parameterization, and Eckstein

et al.[59] used Steiner vertices to satisfy the constraints. Matchmaker [60] auto-

matically partitions a mesh into genus-0 pathches, and satisfied the user-specified

correspondences between the patches and one or two texture image(s). Cross-

parameterization [61]and inter-surface mapping [62] proposed a similar approach

for the design of mapping between two surfaces instead of between a surface and

texture space, and can also handle feature correspondences. Further Zhou et al.

[63] suggested a similar approach between a surface and multiple texture images.

Tai et.al [64] presented an approach to reduce texture distortion via texture syn-

thesis to better fit the 3D geometry. FlexiStickers [65] combined the photography

effects with the constrained parameterization approach for texture mapping using

casual images. [66] used the parameterization of [57] to get the first texture map-

ping for 3D object, then found 2D-to-2D matching between video images to get a

video sequence texture mapping. [67, 68] developed texture mapping methods for

supporting point sets of 3D objects.

8



Chapter 3
Dynamic Harmonic Texture Mapping
using Methods of Fundamental Solutions

3.1 Introduction

In real-time computer graphics, texture mapping is an important technique that

enhances the visual effects of simple geometric shapes by wrapping image textures

to 3D meshes. Many complicated scenes with detailed textures and materials can

therefore be rendered efficiently. A key ingredient that dictates its quality is a lowly

distorted surface mapping between the surface and the image domain (assigning

(u, v) texel coordinates to the mesh vertices). Surface parameterization ([24], [25])

has been studied to generate angle-preserving or area-preserving texture mappings.

Surface parameterization methods that do not consider the feature matching (i.e.

enforcing the registration of specific feature points or lines) could lead to less

desirable results in texture mapping applications. Feature-aligned texture mapping

techniques have been developed by employing constrained parameterization if user-

defined constraints are given [57],[58],[69], [70], [64], [65], [60]. In these techniques, a

distortion metric is usually minimized while feature constraints are being enforced.

For example, in the Figure 3.1(c), through a constrained texture mapping, we could

get a better visual result with more precise alignment of the eyes, mouth, etc.

When we have the dynamic texture image (e.g. a video) or geometric shape (e.g.

a sequence of tracked motion), to get a sequence of texture-mapped meshes, a lot

of mappings need to be computed efficiently. For example, [66] used the method of

[57] to get the first texture mapping for 3D object, then found 2D-to-2D matching

between video images to get a video sequence mapping effect. Most existing work

9



FIGURE 3.1. Texture mapping a male face.

on texture mapping are mesh-based methods, [67], [68] developed texture mapping

algorithms on point sets of 3D objects.

Methods of fundamental solutions (MFS) have been used as an effective routine

for solving elliptic partial differential equations (PDEs). Unlike the classical bound-

ary integral equation and boundary element method (BIE/BEM), which has been

widely used in many engineering applications [52] and computer graphics tasks

such as deformable objects simulations [53], the MFS uses only the fundamental

solution kernel functions in the construction of the solution of a problem, with no

need of integrals over boundary elements. MFS is a meshless method, since only

boundary nodes are necessary for all the computation. Dynamic motion data cap-

tured by motion scanners usually output the acquired shapes as range data (by

low quality triangle meshes) or point clouds. A meshless approach to handle their

textures will be desirable.

Contribution and Overview. The main contributions of this paper include

• An efficient meshless texture mapping framework has been presented

using methods of fundamental solutions. The 2D harmonic mapping with

feature alignment has been studied in this framework. The distortion is low

and the features are aligned with small fitting errors.

10



FIGURE 3.2. Processing pipeline of our algorithm

• We use this framework to efficiently compute dynamic texture mapping,

which can handle the texture mapping from a dynamic sequence of images

like a video to a model, and the texture mapping from a static texture to

a dynamic morphing meshes. The computation is very efficient, the texture

mapping for each frame only take a matrix-vector multiplication to compute.

The rest of this paper is organized as follows. We describe the basic idea of

our approach in Section 3.2 and introduce the algorithm and implementation in

Section 3.3 and Section 3.4. The experimental results are shown in Section 3.5.

Finally, we discuss the limitation and future work of our framework, and conclude

the paper in Section 3.6.

3.2 Overview

The input of our algorithm consists of a surface M , a texture source image Is, and

two sets of corresponding user-defined features (constraints) {ri, ti}, i = 1, . . . , n

where ri ∈ M and ti ∈ Is. We are seeking a harmonic map h : M → T ⊂ Is, s.t.

∆h = 0 and h(ri) = ti.

Our computational pipeline has two steps, where in the first step, the 3D surface

M is parameterized onto the planar domainD ⊂ E2 by a harmonic map g : M → D

without enforcing feature alignment, where many robust discrete algorithm for

computing harmonic maps have been studied; in the second step, the planar surface

D is mapped to a region on the texture space by another harmonic map f : D →

T ⊂ Is. The final texture mapping h is the composition h : M → T = f ◦ g:

11



Figure 3.2 shows our algorithm pipeline, which will be elaborated in the following

sections.

1. g : M → D: Without feature points, parameterize 3D surfaces onto the 2D

domain (Section 3.3).

2. f : D → T : With feature alignment, compute the 2D harmonic map using

MFS (Section 3.4).

The computation of g is the well studied surface parameterization problem.

Without the feature restrictions, parameterization of genus-0 surfaces M can be

efficiently solved by linear systems or variational optimizations. However, enforc-

ing feature alignments directly in this step is not straightforward, pinning specific

vertices could lead to serious local flip-over. Therefore, we leave the feature align-

ment to the second step, which is a planar harmonic mapping problem, where

we can efficiently compute f using a set of harmonic functions using methods of

fundamental solutions, meanwhile aligning feature points.

3.3 Conformal Surface Flattening

In the first step of our computation, we flatten surfaces onto the planar domain.

As addressed in Chapter 2, many paramterization techniques have studied the

conformal parameterization of topological disks ([71], [38], [72]), topological spheres

([73], [74]), and high-genus surfaces ([20], [21]) represented by triangular meshes.

[55] studied the global parameterization of point cloud surfaces. Most of these work

focus on reducing the angular distortion of the flattening, so that the geometric

shape is best preserved on the domain (infinitely small circles on tangent plane

are mapped to infinitely small planar circles instead of ellipses). Parameterizations

using other metrics such as distance-preserving or area-preserving are also studied.

12



For surface texture mapping applications, although has larger angular distortion,

such a map prevents large area distortion and uneven sampling of the texture

space. However, in the first step of our pipeline, we choose to use the conformal

parameterization. We try to preserve the shape as much as possible in the first

step, and balance the area-distortion using planar harmonic maps, by following

user specified feature-alignment.

In this work we focus on texture mapping genus-0 surfaces, i.e. topological disks

and topological spheres, while our proposed framework can be easily extended to

general surfaces by applying global conformal parameterization in the first step. We

first discuss our algorithm in handling closed genus-zero surfaces, then we explain

how it works for open genus-zero surfaces.

We compute the spherical harmonic map g1 from a closed genus-zero surface

M onto a unit sphere, then we use the stereographic projection g2 to project it

onto the complex plane C, with a planar Möbius transformation g3, we can get

the conformal transformation of the interested (for texture mapping) region on the

surface to a bounded planar region: g : S → D = g3 ◦ g2 ◦ g1.

First, we use the spherical parameterization [75], [76] to map the input surfaceM

onto the unit sphere S2 harmonicly. This harmonic map g1 : M → S2 is conformal

([75]) and preserves local geometric shapes. The conformal mapping is not unique

but forms a Möbius group differ by the Möbius transformation.

Then we project S2 to the complex plane C. Formally, the stereographic projec-

tion g2 from the north pole to the complex plane (virtually locates on the south

pole) is defined by

g2(P ) = (
x

1− z
,

y

1− z
), P = (x, y, z) ∈ S2. (3.1)
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FIGURE 3.3. Stereographic Projection.

In Figure 3.3, (a) illustrates such a stereographic projection, and the result of

the stereographic projection from unit sphere (b) to the plane is shown in (c).

Definition 1 (Möbius Transformation). The mapping g2 : C → C is a Möbius

transformation if

g3(z) =
az + b

cz + d
, z, a, b, c, d ∈ C, ad− bc = 1.0 (3.2)

A Möbius transformation has six degrees of freedom, thus we sample a triplet

of three random points from the 3D mesh, which uniquely defines one Möbius

transformation. In practice we use the following three constrains on the complex

plane: 0, 1, and∞, and requiring three sample vertices onM to be mapped to them

correspondingly. Figure 3.3(d) shows the mesh after the Möbius transformation.

It is well know that the stereographic projection g2 and the Möbius transforma-

tion g3 are also conformal mappings from sphere S2 to C, and C to C, respectively.

Therefore, together with the conformal spherical map g1, we get g = g3 ◦ g2 ◦ g1 is

a conformal (and harmonic) mapping.

3.4 Harmonic Planer Mapping using MFS

3.4.1 Planar Harmonic Mapping

We want to compute a harmonic vector function f : D(⊂ C) → T (⊂ Is). This is

equivalent to computing two harmonic scalar fields f 0, f 1. In each direction, f i(z)

maps the 2D point z to a corresponding row or column in the texture space Is. If
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we extract the boundaries of D and T which are two simple closed loops, denote

them as ∂D and ∂T , and assign a boundary loop mapping f ′ : ∂D → ∂T ; then

the computation of f is reduced to





∆f(p) = 0, p ∈ D

f(p) = f ′(p), p ∈ ∂D

where the operator ∆ is the 2D-Laplacian operator

∂2

∂x2
+

∂2

∂y2
,

and ∆f = 0 is equivalent to both harmonic scalar functions ∆f 0 = 0 and ∆f 1 = 0.

3.4.2 Planar Harmonic Mapping using MFS

We denote the fundamental solutions of the operator ∆:

K(p, q) = −
1

2π
log |p− q|, (3.3)

where p and q denote points in the plane R2.

The method of fundamental solutions is a meshless algorithm that approximates

the boundary data. It is described as follows:

A.1 Place Ns points q1, q2, ..., qNs
in the exterior of D;

A.2 The approximate solution is sought by:

fNs
(w,Q;p) =

Ns∑

n=1

ωnK(p,Qn), p ∈ D, (3.4)

where {ωn} are constants to be determined;

A.3 Determine {ωn} by requiring that fNs
satisfies the boundary condition ap-

proximately.
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fNs
satisfies Laplace’s equation exactly. Therefore, here for both f 0 and f 1,

we compute the corresponding {ω0
n} and {ω1

n} in order to enforce the boundary

condition of f 0
Ns

and f 1
Ns
.

The boundary fitting has two steps:

B.1 Select Nc points p1, p2, . . . , pNc
from boundary ∂D;

B.2 Solve {wi
n} for f i, (i = 0, 1) by the following Nc equations:

f i
Ns
(ωi

n,Q; pm) = f ′i(pm), m = 1, 2, . . . , Nc, (3.5)

or equivalently (following Eq.(3.3))

Ns∑

n=1

ωi
nlog|pm − qn| = −2πf ′i(pm), m = 1, ..., Nc, (3.6)

We explain more details about their implementation in the following subsections.

3.4.3 Boundary Fitting

In our framework, the user-defined constraint points R = {ri} include several

boundary points RB = {rj} and some interior feature constrains RI = {rk}. After

the flattening, these points in R are mapped onto the plane by conformal map-

ping g. Then the boundary fitting processing is performed as follows. We use the

Dijkstra algorithm to trace the shortest boundary paths connecting these planar

boundary points in g(RB), the entire path forms a closed loop ∂D ⊂ R2. We linear-

ly interpolate the mapping of each point p on ∂D (e.g. if p is on the path between

the interval from g(ri) to g(rj), the image of p is the linear interpolation of ti and tj

using the arc-length ratio of p on the path [g(ti), g(tj)]). All these boundary points

plus the feature constraints are called constraint points or collocation points.

The source points qn ∈ R2, n = 1, . . . , ns should lie outside of D. In other words,

they locate on the boundary ∂D̃ of a region D̃ containing D (i.e.D ⊂ D̃ ⊂ E
2).
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Following [77], we choose a big disk as D̃, and sample source points on its boundary

circle ∂D̃.

Following Eq.3.5, we can assemble the coefficient matrix A and reduce the

boundary fitting process to a linear system: Awi = ti. We solve two linear system-

s, and compose the final harmonic map using the harmonic functions determined

(Eq.3.4) by source points and the two resultant vectors ω0, ω1.

Solving Linear System using SVD. When we have Nc collocation points and

Ns source points, then we need to solve the Aωi = bi system where the coefficient

matrix is with the dimension of nc×ns. This is a dense matrix since any source point

will have contribution to every constraint point. Furthermore, A is ill-conditioned,

and to solve such MFS linear system. As suggested in [78], we use Singular Value

Decomposition (SVD) to decomposeA because it (1) generates accurate and stable

results when the coefficient matrix is highly ill-condition, and (2) flexibly gets to

the least-square solution for over constrained boundary conditions (which always

happen in our MFS solving for feature alignment). In our approach, we also use

the diagonal matrix Σ to adaptively remove redundant singularity points. When

the singular value is small (in all our experiment, we set the threshold to 1e-5), the

corresponding source point does not contribute much to the approximation, and

therefore we remove them in the source point set for MFS evaluations.

3.4.4 Feature Alignment

Feature points can be aligned in the least square sense together with boundary

fitting process, so that they are treated as soft constraints. Since all points traced

on the boundary are parts of the fitting, compared to feature points provided by the

user, they have a much larger number. In order to prevent boundary points from

totally dominating the boundary fitting, we shall assign each sample feature point
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an extra integer weight α. Then in matrix A, we add in α rows of corresponding

feature constraints. This effectively leads to precise feature alignment.

3.4.5 Source and Collocation Points Placement

The location of source and collocation points is an important issue since it dictates

the numerical stability of the fitting. The coefficient matrix is determined by pi

and qj, which can be ill-conditioned[79]. In general, the condition number of the

matrix increases as the distance from ∂̃D to ∂D increases, though the accuracy of

the MFS approximation increases under this situation [80].

Extensive research has been conducted from computational mathematic points

of view, in order to suggest their placement. Usually, the assumptions such as that

∂D is an analytic Jordan curve, and that the given boundary condition is analytic

on ∂D, etc. are used. Numerical convergence discussions are then based on these.

Generally, current literatures suggests two strategies for source point locations.

(1) To place source points on a circle within three times the diameter of ∂D, and

(2) To sample them on an offset surface of ∂D. As shown in [10], source point

locations desirable for analytic cases might work perfectly for discrete surfaces.

We conducted experiments by evaluating fitting error under different shapes of

D̃ and different distances from ∂D. The boundary constrain error is defined as:

∑
p ‖f

′(p) − fNs
(p)‖2 for all collocation points p. Figure 3.4illustrates different

source point placement in our experiments. We scale each D to a unit box to get a

normalized boundary constrain error. In Figure 3.4(a), the source points are placed

on a circle with the radius equals to 1.02 ∗ R where R is the radius of D; in this

case, the boundary constraint error is 1.145823. In (b) and (c), we place the source

points in an offset boundary ∂̃D. d means the distance from ∂̃D to ∂D. (b) shows

the source points are sampled on an offset surface while d = 0.02. (c) shows source
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FIGURE 3.4. Source Points Placement.

are sampled on a bounded circle while d = 0.8. (d) plots the boundary constraint

error with respect to d when source points are placed on offset boundaries. The

x-axis indicates the d value while the y-axis show the corresponding constraint

error.

Our experimental results indicates that: (1) f gets smaller constrain error when

source points are closer to ∂D; (2) source points in an offset boundary leads to bet-

ter fitting than a circle; (3) when d < 0.02, the approximation for the fundamental

solution becomes unstable, and the boundary constrain error increases drastically.

In all our experiments, we take d = 0.02.

3.4.6 Algorithm Pipeline

Algorithm discussed in this section can be formulated as follows. Suppose ri and

ti are the user specified feature constraints. After the conformal flattening, we use

the g(ri) to denote the feature ri on the plane.

• Input: D, Is, {g(ri) ∈ D} and {ti ∈ Is}i = 1, ..., n.

• Output: f i for i = 0, 1.

1 Use Dijkstra algorithm to trace the boundary on M , and interpolate the

boundary mapping of h from the loop on M to a loop in Is. With g, this

induces the boundary condition f ′(∂D).
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2 Place the source points and set the collocation points ( including boundary

constraints and feature constraints).

3 Compute the coefficient matrix A. Its element Auv takes the value of the

kernel function K on the collocation point pu and the source point qv.

4 Decompose the coefficient matrix using Singular Value Decomposition.

5 Solve this linear system of step 3, and get the harmonic map f = (f 0, f 1).

3.5 Experimental Results

Based on algorithm described above, we have implemented an interactive system

for dynamic harmonic texture mapping. Our experiments are conducted on a PC

with Pen-tium IV 2.66GHz and 2.00GB RAM. In Figure 3.5, a face model (a) is

mapped to a male image (b). The green points on the 3D mesh and the yellow

dots in the image denote the feature constrains. The mapping result is illustrated

in (c). (d) shows the checker board texture mapping, indicating the low distortion

of our method. Figure 3.6 shows another mapping example from the Igea model

(a) to a female image (b). The texture mapping of the face and checkerboard are

illustrated in (c) and (d).

In Figure 3.7, our texture mapping effect from the cow model (a) to a tiger image

(b) is compared with [57]. With less angular distortion under feature-alignment,

our harmonic texture mapping (c) has better visual effect than [57] in (d).

Table 3.1 shows the computation time for static texture mappings. An advantage

of our framework is discussed in the following section: once the mapping between

meshes and the images has been computed once, it can be efficiently applied for

dynamic data.
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FIGURE 3.5. Texture mapping result for the male face model

FIGURE 3.6. Texture maaping result for the Igea model

FIGURE 3.7. Texture mapping result for the cow model
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3.5.1 Sequential Maps: Handling Dynamic Data

Texture mapping from a sequential images(videos) onto a 3D surface can be com-

puted efficiently by only one SVD decomposition. The recomputation of planar har-

monic maps under different boundary conditions only takes a few multiplications.

Once the SVD for the coefficient matrix A has been computed (A = UWVT),

under a new boundary condition b′, the MFS weights ωi can be immediately com-

puted by the product of VW−1UTb′.

We apply this framework to the face expression database (JAFFE database,

http://kasrl.org/jaffe.html) for demonstrating our dynamic texture mapping. Fig-

ure 3.8(b) shows the samples of the dataset. In this case, we use OPENCV2.0 to

detect face in the image which shows in green rectangle. Figure 3.8(a) shows the

3D object flatten in the 2D plane. And we detect the boundary constraint points

automatically which show the outside green rectangle. Then we use this two cor-

responding rectangle as our boundary constraint to solve our texture mapping

automatically. The important point is that we use SV D to solve AX = B prob-

lem. When we change different texture images, we just need one decomposition of

A to get all results which is very efficient. Figure 3.9(a) shows the feature points in

3D object; (b) shows the feature points in the image by manually setting; c shows

our mapping result of Jaffe Face Database.

Second, we apply our method for one image to N 3D objects. In this case,

we place the source points in the image. Figure 3.10(a) shows the source points

and feature points in the image. Figure 3.10(b) shows the samples of our 3D face

database. Figure 3.11 shows our mapping results with one time decomposition.

If both the image and mesh are dynamic, we can still efficiently apply our frame-

work by computing two planar maps f1 and f2 from a common planar domain C to
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FIGURE 3.8. 2D flatten face and Jaffe Face Database

FIGURE 3.9. 3D feature points and results of Jaffe Face Database.

both the flatten surface D and the texture space T , then by linear interpolation we

can still get the correspondence between surfaces and images. The sequential de-

viations of both the mesh and image can still be treated as the changed boundary

conditions, and therefore solved using the pre-computed decomposition results.

FIGURE 3.10. Texture image and samples of face dataset
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FIGURE 3.11. Mapping results for face dataset

TABLE 3.1. Performance results
Model/Texture #Tris/Vers Running times(s)

Cow/tiger 4315 5.81
Fandisk/checkboard 6475 6.26
Igea/female 12002 17.34
Face/male 54831 150.82

3.6 Summary

In this paper, we have presented a meshless constrained texture mapping; it pro-

vides a robust solution to the mesh structure. Experimental results show that this

new method is efficient and promising in the dynamic facial registration.
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Chapter 4
Feature-aligned 4D Spatiotemporal
Image Registration

4.1 Introduction

Advancing modern 4-D (3D spatial + 1D temporal) CT techniques provide abun-

dant spatial and temporal data of the patient for clinical monitoring and diagnosis.

Temporally parameterizing these scan data can facilitate many clinical analysis and

planning tasks. For example, in lung cancer radiation radiotherapy, 4D-CT images

can be used to model the motions and deformations of the tumor and surrounding

organs, to guide treatment planning [81]. Image registration plays an important

role in the current motion estimation methods by establishing temporal correspon-

dences [49, 50].

Compared with the conventional image registration techniques, 4D spatiotempo-

ral registration can avoid the bias caused by a predetermined reference frame, and

can enforce both spatial and temporal smoothness of the transformations, which

indicates physically natural deformations [82].

However, most of the current spatiotemporal dynamic images are fully guided

by the image’s intensity [49, 50, 51]. The aligning computation therefore reduces to

minimizing a non-linear problem having many local minima, which usually has high

computational cost and, more importantly, requires a good initial guess to reach

a desirable matching. Feature constraints can effectively guide the optimization

from getting trapped on locally. For example, in many video tracking tasks, the

SIFT descriptor has demonstrated great efficacy and been widely used due to

its discriminative feature [83]. Directly generalized SIFT descriptor in 3D [84],
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however, could be sensitive to scalings and rotations of the deforming objects in the

volume images. In this paper, we first introduce a modified 3D-SIFT descriptor that

can handle these more reliably, then we develop a feature-constrained 4D dynamic

registration algorithm to spatially and temporally match deforming volume images.

This paper has two main contributions.

1. We propose an improved 3D feature extraction and matching algorithm based

on N-SIFT method. The new method can detect more corresponding features

and have less matching error.

2. We formulate a 4D spatiotemporal feature alignment metric that minimizes

the position invariance over time to guide the image registration which leads

to more accurate results.

4.2 Method

4.2.1 Feature Point Extraction and Matching

To handle the registration of volumetric images, Scovanner et al. [85] proposed a

3D SIFT descriptor and applied it in action recognition. Cheung and Hamarneh

extended SIFT to N-Dimension SIFT [84] (N-SIFT) and showed its effectiveness

on volumetric images. However, neither descriptor is scale or rotation invariant.

To adequately describe images of deforming organs, we shall improve the existing

3D SIFT descriptor.

The procedure of N-SIFT includes scale space extrema detection, orientation

assignment, descriptor construction and matching [84]. For an input volume image,

we first extend method [83] to locate its keypoints with sub-pixel accuracy.

One limitation of N-SIFT is its sensitivity against local rotation. To more robust-

ly handle this, we can assign multiple directions (rather than just one dominant
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direction used in [85]) to a keypoint region. We calculate an orientation histogram

of a region around the keypoint with width 6∗σ where σ is the scale of the keypoint.

This orientation histogram has 36× 36 bins covering 360◦ of the orientations. The

highest peak of the histogram corresponds to the dominant direction. Here, we

consider local peaks within 80% of the highest peak also to be the directions of the

keypoint region. Region that is chosen in the construction of the descriptors can

be reoriented according to its directions by multiplying its rotation matrixes [85].

Descriptors are constructed on the reoriented regions. Multiple directions make

our 3D SIFT more robust to the image rotation.

N-SIFT is also not scale-invariant, since it computes the descriptor on the orig-

inal image and the size of the region around the keypoint is fixed. We use a scale

selection method to deal with scale change. We construct the descriptors on the

corresponding Gaussian smooth image. The region around the keypoint is defined

and divided into 4×4×4 patches. We set its patch size to be 3 ∗ σ which is related

to its scale. In this way, our descriptor is robust against scaling.

For the matching process, since N-SIFT matches descriptors directly, a point may

be matched to more than one point. Some of the matchings are wrong. Hence, we

further conduct a RANSAC algorithm to deal with this one-to-many correspon-

dence issue and remove the outliers. In our work, before doing 4D registration we

first perform feature extraction and matching between every two consecutive vol-

ume images, then choose those consistent correspondences that appear in all time

frames.

A simple example is given in Fig. 4.1 to demonstrate the rotation invariance of

the new descriptor. A lung CT volume image (dimension 465×300×20) is used as

the reference; its subsequent image has rotated by 20◦ along Z axis (this happens

when the patient rotates). We compare the correspondences found using N-SIFT
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and our improved 3DSIFT. N-SIFT method extracts fewer matching pairs and has

some error matchings while our algorithm works correctly and find more matched

features. Note that this matching is done on volume images although we only

illustrate a 2D cross section.

FIGURE 4.1. Feature extraction and matching.

4.2.2 4D Free-form B-spline Deformation

We present a 4D deformation model, based on a 4D free-form B-spline incorpo-

rating both the spatial and time dimensions [49]. Denote the 4D input image as

I(y), where y = (xT , t)T ∈ R3 × R is a coordinate in I which consists of a spa-

tial location x ∈ R3 and temporal location t ∈ R. The B-spline based coordinate

transformation Tµ is defined as follows:

Tµ(y) = y +
∑

yk∈Ny

pkβ
r(y − yk), (4.1)

where yk is a knot on the parametric domain; βr(·) is the r-th order multidimen-

sional B-spline polynomial; pk is the B-spline control points to be solved, and Ny

denotes the neighboring region providing local support to the B-spline at y. The

knots yk are defined on a 4D regular grid, uniformly overlaid on the image. The

parameter vector µ consists of the collection of the first 3 elements of each pk. The

last element of each pk is fixed to zero, which ensures that only deformation in the
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spatial domain are allowed. In the following Tµ(y) is interchanged with Tµ(x, t) for

convenience.

In order to align all the images, we assume that after correct registration the

intensity values at corresponding spatial locations over time are equal. Hence we

should minimize the image intensity changes over time. An implicit reference frame

is used to eliminate the need to choose a reference time point image. The dissimi-

larity metric, or cost function, is therefore defined as:

C(µ) =
1

|S||Γ|

∑

x∈S

∑

t∈Γ

(I(Tµ(x, t))− Īµ(x))
2, (4.2)

where Īµ(x) is the average intensity value over time after applying transformation

Tµ,

Īµ(x) =
1

|Γ|

∑

t∈Γ

I(Tµ(x, t)), (4.3)

and S and Γ are the set of spatial and temporal voxel coordinates respectively.

As none of the images are chosen as an anatomical reference, it is necessary to

add a geometric constraint to define the reference coordinate frame. Similar to [50],

we define the reference frame by constraining the average deformation to be the

identity transformation

1

|Γ|

∑

t∈Γ

[Tµ(x, t)]x = x, (4.4)

where [·]x means get the position component x from current 4D point (x, t).

The derivative of C(µ) with respect to µ is given by:

∂C

∂µ
=

2

|S||Γ|

∑

x∈S

∑

t∈Γ

(I(Tµ(x, t))− Īµ(x))
∂I(Tµ(x, t))

∂µ
(4.5)
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Then the optimal deformation field can be computed by the adaptive stochastic

gradient descent optimizer (ASGD) [86].

µ̂ = arg minµC(µ), subject to (4.4) (4.6)

After this registration all time point images are aligned in the implicit reference

frame.

4.2.3 Feature-aligned Registration

In order to compute the transformation Tij
µ which maps coordinates from time

point i to time point j, we need to compute the inverse mapping T−1
µ which maps

coordinates from the input image coordinate frame to the reference frame. Since

the mapping Tµ may not be bijective, its inverse mapping T−1
µ may not actually

exist. Here we define an approximate inverse mapping using a B-spline Tv by

minimizing

FPos(v) =
1

|Y |

∑

y∈Y

||Tv(Tµ̂(y))− y|| (4.7)

where Y is the set of knots. In order to prevent foldings in the transformations we

choose smaller grid spacing to yield more accurate results.

After our feature extraction and matching, we get the coherent corresponding

features of all spatial images along temporal dimension. We enforce the feature

matching constraints in the inverse registration.

Suppose we have N coherent features. We denote the ith feature point on time

j (on jth image) as pij , where i = 1, . . . , N, j = 1, . . . ,Γ. Intuitively, after correct

registration the corresponding feature should be at the same point in the reference

frame. That is, for each i, we shall also minimize the variance of Tv(pij, j) in the

reference image, where (pij , j)
T denotes a 4D vector in the spatial-temporal space.
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The cost function for feature alignment is

FFea(v) =
1

N |Γ|

N∑

i=1

∑

t∈Γ

||[Tv(pit, t)]x − [T̄v(pi.)]x|| (4.8)

where

T̄v(pi.) =
1

|Γ|

∑

t∈Γ

[Tv(pi,t, t)]x (4.9)

The final objective function for estimating the optimal deformation field is for-

mulated as:

Fv = FPos + λFFea (4.10)

where λ is the weighting factor controlling the strength of the feature constraint

term. We determine those transform parameters that minimize the total metric as

v̂ = arg minvF (v). (4.11)

We also solve Eq-(4.11) using ASGD where

∂FPos

∂v
=

1

|Y |

∑

y∈Y

1

||Tv(Tµ̂(y))− y||

(Tv(Tµ̂(y))− y)

(
∂Tv(Tµ̂(y))

∂v
)

(4.12)

∂FFea

∂v
=

1

N |Γ|

N∑

i=1

∑

t∈Γ

1

||[Tv(pit, t)]x − [T̄v(pi.)]x||

([Tv(pit, t)]x − [T̄v(pi.)]x)

(
∂Tv(pit, t)

∂v
−

∂T̄v(pi.)

∂v
)

(4.13)

Finally, we can get the transformation from time point i to time point j:

T
ij
µ̂,v̂(x) = [Tµ([Tv(x, ti)]x, tj)]x. (4.14)
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TABLE 4.1. The registration error in mm, on 40 landmarks among 0th,5th,9th time
frames of the POPI-data. Ei,j is the matching error from ith to jth frame, Ē is the mean
error for the whole sequence.

E0,5 E0,9 E5,0 E5,9 E9,0 E9,5 Ē

[49] 2.94 0.98 2.88 2.86 0.99 2.91 2.26

Our’s 2.87 0.85 2.77 2.74 0.87 2.84 2.16

4.3 Implementations and Experiments

We implement our model via a multi-resolution strategy and use linear interpola-

tion in the spatial domain for the derivation of intensity values for any point not on

a grid. Our algorithm was implemented in C++ using an Intel Core E7300 @2.66

GHz, 4GB RAM. The registration on the POPI-model and our tumor data take

approximately 45 mins, of which 22 mins were spent to compute the 4D forward

registration and 23 mins were spent to compute the 4D inverse registration.

Experiments on POPI Dataset. Our first experiment is conducted on the

POPI dataset [87]. This dataset contains one 4D CT series including ten 3D vol-

umes representing ten different phases of one breathing cycle. In the 3D vol-

ume at time frame t, the coherent landmarks (a set of 3D points, denote as

Pt = {pt,1, pt,2, ..., pt,|Pt|}) are available and can be used to evaluate the registra-

tion. We use the time frames 0, 5, and 9 with 571 feature correspondences to do

group registration. The registration results were evaluated by the mean target reg-

istration error (MTRE) between the set of landmark points {P0, P5, P9}. Denote

MTRE as Er,t =
1

|Pt|

∑
pt,i∈Pt

||T r,t(pr,i)− pt,i||, where pt,i is a landmark i in time t.

In our experiments, we set the control weight in Eq. (4.10) as λ = 0.1. Table 4.1

shows the comparison between our method and the algorithm of [49]: our method

outperforms [49] by introducing smaller MTRE errors.

Lung Tumor Registration. Our second experiment is to apply our registration

model in dynamic tumor tracking (Fig. 4.2). We detect 202 feature correspondences
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among the image sequence. Before registration, we segment the tumor in the first

frame by using 3D graph-cut segmentation [81]. Then with our registration results,

we track this tumor in the following second/third time sequence (shows in the

second/third column of fig. 4.2). The bottom of this figure depicts the registration

of this tumor among different time sequences.

Furthermore, we compute an unbiased difference image between the deformed

image and the target image to evaluate the registration accuracy. Assume the 3D

source image is I i(X) in i-th frame, the 3D target image is Ij(X) in j-th frame.

The deformed image is I(Tx) where Tx = T ij(x) and x from the source image.

In order to avoid the influence of the gray value of original pixel, we normalize

the difference frame: if I(Tx)+ Ij(Tx) 6= 0 then Id(Tx) = |I(Tx)−Ij(Tx)|
I(Tx)+Ij(Tx)

; otherwise,

Id(Tx) = 0. It is easy to check that this metric is symmetric between the deformed

image and target image. Smaller Id indicates more accurate registration.

Fig 4.3 (a) shows the projection of the difference image between the second

and the third frame. (b) shows the histogram of the computed difference value.

We construct this histogram based on the normalized difference frame between

the deformed second frame and the third frame. We count the occurrence of each

difference value and divide it by the total number of the pixels to get its probability.

We can see in larger than 90% pixels, the difference value is less than 0.1, and the

mean difference value is 0.016. These indicates that our registration introduces very

small error between deformed image and the target image. Thus our registration

can be used for tumor motion tracking (see Fig.4.2).

Also, this visualization (Fig 4.3 (a)) can also help us to identify the region with

large registration errors for subsequent matching refinement. We can see around the

boundary part and the central of left lung part have larger difference value. In the
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future, we will develop hierarchically spline scheme to support adaptive refinement,

so that we can insert more knots in these regions to reduce the registration error.

FIGURE 4.2. Tumor tracking with our registration.

FIGURE 4.3. Difference image and its histogram.

4.4 Summary

We propose an automatic feature-guided 4D image registration framework. We de-

velop an improved 3D-SIFT descriptor for reliable feature extraction and matching.

Compared with existing 4D registration model we achieve better landmark predi-

cation accuracy. Our model also has good ability to do tumor motion estimation

which can greatly facilitate lung tumor radiotherapy planning and management.
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Chapter 5
Conclusion

In this thesis, we study the non-rigid matching of dynamic deforming 2D and

3D data. For the dynamic surface texturing problem, we proposed a a meshless

texture mapping framework, based on conformal flattening and planar harmonic

transformation computed by MFS. This framework can effectively handle feature

alignment and efficiently map deforming face meshes data or 2D image data.

For the dynamic medical volume motion modeling problem, we proposed a reg-

istration method for dynamic motion estimation in medical imaging data. This

registration method combines the feature extraction, global cost function based

on 4D B-spline transformation and feature alignment. We also compare our model

with state-of-art 4D registration method and it shows we can achieve better accu-

racy on the landmark predication. With the segmentation method our method can

also be used to do tumor motion tracking which is important in the lung cancer

treatment.
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