
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2012

An extensible and scalable Pilot-MapReduce
framework for data intensive applications on
distributed cyberinfrastructure
Pradeep Kumar Mantha
Louisiana State University and Agricultural and Mechanical College, pmanth2@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Mantha, Pradeep Kumar, "An extensible and scalable Pilot-MapReduce framework for data intensive applications on distributed
cyberinfrastructure" (2012). LSU Master's Theses. 3487.
https://digitalcommons.lsu.edu/gradschool_theses/3487

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3487?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

AN EXTENSIBLE AND SCALABLE PILOT-MAPREDUCE FRAMEWORK FOR DATA INTENSIVE
APPLICATIONS ON DISTRIBUTED CYBERINFRASTRUCTURE

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Systems Science

in

The Department of Computer Science

by
Pradeep Kumar Mantha

B.Tech., Jawaharalal Nehru Technological University, 2006
August 2012

Acknowledgments

First and foremost, I express my gratitude to my advisor, Dr. Shantenu Jha for giving me the

opportunity to work under him. His continuous guidance, encouragement and patience helped me

immensely in my research. I sincerely thank Dr. Andre Luckow upon whose previous work I continued

to build on and for his support and involvement in this work. I thank the members of my committee,

Dr. Gabrielle Allen and Dr. Randall Hall for their valuable time. I would like to thank Dr. Joohyun

Kim for the excellent discussions over the time. I thank all the people in the SAGA-Devel team, who

were always responsive and helpful. I thank LONI, XSEDE and FutureGrid for the HPC resources

I used. I sincerely thank LBRN, LA-SIGMA for important funding for my Masters, and Cybertools

project (PI Jha) for SAGA with additional support from the Louisiana Board of Regents. Lastly, I

thank my parents for all the love, support and encouragement.

ii

Table of Contents

Acknowledgements . ii

List of Tables . v

List of Figures . vi

Abstract . vii

Chapter 1: Introduction . 1

Chapter 2: Pilot Abstractions . 5
2.1 Distributed Cyber-Infrastructure . 5
2.2 Traditional compute and data management . 5
2.3 Pilot abstractions for compute and data . 7

2.3.1 BigJob - SAGA Pilot Job . 7
2.3.2 BigData - SAGA Pilot Data . 8
2.3.3 Pilot API and Affinities . 10

2.4 Scalability and Usability of Pilot Abstractions . 11
2.5 Pilot-MapReduce – A Pilot-based MapReduce Implementation 11

2.5.1 Architecture of Pilot-MapReduce . 12
2.5.2 Compute and Data Management . 14
2.5.3 Distributed and Hierarchical MapReduce . 15

Chapter 3: Evaluation of Pilot-MapReduce . 17
3.1 MapReduce-Based Applications . 17

3.1.1 Word Count . 17
3.1.2 Genome Sequencing (GS) . 18
3.1.3 Short Read Alignment . 18
3.1.4 Post-Alignment . 18

3.2 Characterizing Word Count . 19
3.3 Characterizing Genome Sequencing . 20
3.4 Distributed and Hierarchical MapReduce . 22

3.4.1 Word Count . 22
3.4.2 Genome Sequencing . 24
3.4.3 Extensibility and Parallelism . 25

Chapter 4: Workflow Management Using BigJob on XSEDE and LONI 28
4.1 Extended Collaborative Support Service (ECSS) on XSEDE 28

4.1.1 Developments and Testing . 28
4.2 Workflow Execution on LONI . 29

Chapter 5: Conclusions and Future Work . 31

iii

Bibliography . 33

APPENDIX (Permission to Reprint Publications) . 37

Vita . 38

iv

List of Tables

3.1 Data Volumes for different Applications . 22

4.1 BigJob configurations used to execute 8 subjobs(16 cores each) on LONI Eric machine
at different resource available situations. 29

4.2 BigJob configurations used to execute 8 ensembles(16 cores each) on LONI Eric, Po-
seidon, Oliver, Louie machines when 90% of cluster resources are in use. 29

v

List of Figures

2.1 BigJob Architecture: The core of the framework, the BigJob-Manager orchestrates a
set of pilots. Pilots are started using the SAGA Job API. The application submits
WUs, the so-called sub-jobs via the BigJob-Manager. Communication between the
BJ-Manager and BJ-Agent is done via a shared data space, the Advert Service. The
BJ-Agent is responsible for managing and monitoring sub-jobs. From Ref. [22] 9

2.2 BigData Architecture and Interactions . 10

2.3 Pilot-based MapReduce: Each pilot (both compute and data pilot) can be associated
with an affinity label. The BigData and BigJob Manager will ensure that CUs and
DUs are placed with respect to these requirements. 12

2.4 Pilot-MapReduce Deployment Scenarios: In the distributed scenario (left), the map-
ping tasks are run close to the data; reduced tasks are then run on a single resource.
In the hierarchical scenario (right) two full MapReduce runs are conducted. 15

3.1 Word Count PMR vs. Hadoop: The performance of Hadoop and PMR is comparable.
The runtime increase with the input data size. Hadoop tasks have a notable higher
startup time. 20

3.2 Seqal and GS/PMR: GS/PMR provides a marginal better performance that Seqal.
The overhead of Seqal is mainly attributed to the used HDFS configuration using a
shared file system. 21

3.3 Word Count on 16 GB Data Using Hadoop, Hierarchical Hadoop, Distributed PMR
and Hierarchical PMR . 23

3.4 GS/PMR Using Hierarchical and Distributed PMR 24

3.5 Comparison of runtimes for the map phase. The map phase of Seqal, local-PMR(BWA),

distributed-PMR(BWA), local-PMR(Bowtie), distributed-PMR(Bowtie), and Crossbow(Bowtie)

are compared. The aligner used for each case is indicated in a parenthesis. For this exper-

iment, the number of nodes, Nnode is 4, the number of Workers, NW is 8, and the number

of reads in each chunk is 292,763. For the distributed-PMR, two machines of FutureGrid,

Sierra and Hotel were used, whereas Sierra was used for other cases [25]. 25

3.6 The map phase runtimes of PMR(Bowtie) and Crossbow(Bowtie) are compared, by varying

number of threads for each map task. Number of workers/Node = 2 and input data size is

8 GB. The maximum number of cores assigned to a worker is 4, so we used 4 threads to

achieve maximum fine-grain parallelism [25] . 26

vi

Abstract

The volume and complexity of data that must be analyzed in scientific applications is increasing

exponentially. Often, this data is distributed; thus, the ability to analyze data by localizing it will

yield limited returns. Therefore, an efficient processing of large distributed datasets is required, whilst

ideally not introducing fundamentally new programming models or methods. For example, extend-

ing MapReduce - a proven effective programming model for processing large datasets, to work more

effectively on distributed data and on different infrastructure (such as non-Hadoop, general-purpose

clusters) is desirable. We posit that this can be achieved with an effective and efficient runtime

environment and without refactoring MapReduce itself. MapReduce on distributed data requires ef-

fective distributed coordination of computation (map and reduce) and data, as well as distributed

data management (in particular the transfer of intermediate data units). To address these require-

ments, we design and implement Pilot-MapReduce (PMR) - a flexible, infrastructure-independent

runtime environment for MapReduce. PMR is based on Pilot abstractions for both compute (Pilot-

Jobs) and data (Pilot-Data): it utilizes Pilot-Jobs to couple the map phase computation to the nearby

source data, and Pilot-Data to move intermediate data using parallel data transfers to the reduce

computation phase. We analyze the effectiveness of PMR over applications with different character-

istics (e. g. different volumes of intermediate and output data). Our experimental evaluations show

that the Pilot abstraction for data movement across multiple clusters is promising, and can lower

the execution time span of the entire MapReduce execution. We also investigate the performance of

PMR with distributed data using a Word Count and a genome sequencing application over different

MapReduce configurations. We find that PMR is a viable tool to support distributed NGS analytics

by comparing and contrasting the PMR approach to similar capabilities of Seqal and Crossbow, two

Next Generation Sequencing(NGS) Hadoop MapReduce based applications. Our experiments show

that PMR provides the desired flexibility in the deployment and configuration of MapReduce runs

to address specific application characteristics and achieve an optimal performance, both locally and

over wide-area multiple clusters.

vii

Chapter 1
Introduction

There are various challenges associated with processing of data at extreme scales: which has become

a critical factor in many science disciplines, e. g. in the areas of fusion energy (ITER), bioinformatics

(metagenomics), climate (Earth System Grid), and astronomy (LSST) [6, 13]. The volumes of data

produced by these scientific applications is increasing rapidly, driven by advanced technologies (e. g.

increasing compute capacity and higher resolution sensors) and decreasing costs for computation,

data acquisition and storage [12]. The number of scientific applications that either currently uti-

lize, or need to utilize large volumes of potentially distributed data is immense. Recent advances

in high-throughput DNA sequencing technologies such as Next-Generation Sequencing (NGS) plat-

forms have resulted in unprecedented challenges in the areas of bioinformatics and computational

biology [29, 37, 39, 4, 27]. These challenges are to some extent novel because of the need of the cross-

cutting and integrated solutions leveraging algorithmic advances, tools and services, and scalable

cyberinfrastructure and middleware.The challenges faced by these applications are interoperability,

efficiently managing compute tasks, and moving data to the scheduled compute location.

Processing large volumes of data is a challenging task. MapReduce is an effective programming

model for addressing this challenge. MapReduce involves two major computation phases called map

and reduce, separated by a shuffle phase, which involves movement of intermediate data. MapReduce

starts with chunking of the input data with user configured chunk size and assign each chunk to

a single user defined mapper function in map phase. Once the map phase is completed i.e., when

all the mapper functions completed, the output of map phase is scattered equally to the reduce

phase based on a partitioning function. The reduce phase involves gathering of input data relevant

to a reduce and execute the user defined reducer function on the data. MapReduce [8] as originally

developed by Google aims to address the big data problem by providing an easy-to-use abstraction

for parallel data processing. The most prominent framework for doing MapReduce computations is

Reprinted by permission of ”MAPREDUCE’12 Workshop”

1

Apache Hadoop [3]. However, there are limitations to the current MR implementations: (i) They lack

a modular architecture, (ii) are tied to specific infrastructure, e. g. Hadoop relies on the Hadoop File

System (HDFS), and (iii) do not provide efficient support for dynamic and processing distributed

data, e. g. Hadoop is designed for cluster/local environment, but not for a high degree of distribution.

It is a challenging requirement for the distributed application to manage the coupling between

tasks and the resources. It becomes more complex in case of distributed cyber-infrastructure(DCI)

model since the computing resources varies in load and capability dynamically. The ability to utilize

a dynamic resource pool is an important attribute of any application that needs to utilize distributed

cyberinfrastructure (DCI) efficiently. Pilot abstractions enable the clean separation of resource man-

agement concerns and application/frameworks. In particular, Pilot-Jobs have been notable in their

ability to manage large numbers of compute units across multiple high performance clusters, provid-

ing decoupling application-level scheduling and system-level resource management. But, there is also

a need of an abstraction to liberate applications from the challenging task of compute-data placement

and scheduling. The Pilot-API [23] aims to address this issue by providing a unified API for manag-

ing both compute and data pilots. BigData (BD) is an extension of the BigJob framework (BJ) [36]

to data. Both BigJob and BigData provide a full implementation of the Pilot-API and enable the

management of resources, compute & data units as well as the relationships between them. Specifi-

cally, the Pilot-API promotes affinities as a first class characteristic for describing such relationships

between compute and data elements and to support dynamic decision making.

A critical aspect of MapReduce, is the management of data and compute localities as well as

the management of data movements, e. g. between the map and the reduce phase. In this thesis,

we demonstrate the efficient support of these capabilities via the Pilot abstractions. We design and

implement Pilot-MapReduce – a novel Pilot-based MapReduce implementation which enables clean

separation of resource management and MapReduce application. Our Pilot-MapReduce framework

demonstrates how Pilot abstractions are used for managing the map and reduce tasks and intermedi-

ate shuffle data between them and the advantages of the Pilot-based architecture in terms of flexibility,

extensibility, scalability and performance; for example, we discuss the usability of Pilot-abstractions

in designing dynamic execution workflows which involves multiple MapReduce computations.

2

Before we proceed further, it is critical to emphasize that it is not the aim of this thesis to suggest

PMR as a replacement to Hadoop. However, we posit that where MR-based applications need to

be employed over distributed data, including but not limited to clusters connected over WAN, or

production distributed cyberinfrastructure such as XSEDE, EGI, PMR provides a flexible, extensible

implementation of MR that is also efficient.

At this point, I would like to clarify my contribution to this work. The Pilot-API was developed in

[23]. I used this Pilot-API to develop the Pilot-MapReduce framework. I evaluated the performance

and scalability of the different MapReduce configurations using the Word Count application on

natural language and on random data as well as the genome sequencing application. The work was

published and accepted at MapReduce 2012 [26] and ECMLS 2012 workshops [25]. I was also a

part, in profiling Pilot abstractions on a variety of infrstrucures like XSEDE [2], FutureGrid [10] and

OSG [41]. This work was done as part of a publication [24] submitted to SC 2012, which is currently

under review. My contributions also involve extending BigJob capabilities on FutureGrid/XSEDE

machines, which lack necessary software infrastructure support for scaling applications on distributed

clusters. For example, due to the non-availability of Globus on FutureGrid, BigJob usage was limited

only to a single cluster. This led to the development of pbs-ssh plugin, which extended BigJob

capabilities to utilize multiple clusters of FutureGrid. Later the capabilities of pbs-ssh are further

enhanced to support Kraken (CRAY XT5) XSEDE cluster, which enabled remote job submissions

to Kraken. To enable application scaling completely across different infrastructures and scheduling

systems, developed a sge-ssh plugin (similar to pbs-ssh plugin), to support remote job submissions

to SGE XSEDE machines like LoneStar and Ranger. Both these plugins provide flexibility and

extensibility of BigJob to support distributed workflows on XSEDE, FutureGrid and LONI. As a

part of supporting users of BigJob on production infrastructures like LONI and XSEDE, I was

involved in providing the templates and documentation to develop workflows using BigJob. The

documentation involves the deployment and usage aspects of BigJob. The documentation and the

developments were used by Extended Collaborative Support Service (ECSS) project for running

Molecular Dynamic simulations on large number of cores. The work related to ECSS [35] project

has been submitted to XSEDE 2012 and is currently under review.

3

This thesis is organized as follows: Chapter 2 describes the limitations of traditional compute and

data management and provides an overview of Pilot abstractions as a solution to these problems

and then discuss the design and implementation of the Pilot-MapReduce framework for distributed

data analysis. In Chapter 3 we evaluate the performance and scalability of Pilot-MapReduce. Chap-

ter 4 provides an overview of BigJob applications/workflows executed on XSEDE and LONI. The

conclusion and future work are given in Chapter 5.

4

Chapter 2
Pilot Abstractions

In this section we describe some of the different components of Pilot Abstractions that are important

for understanding this work, and their application and importance on distributed cyber infrastructure.

First, in Section 2.1 we will describe distributed cyber-infrastructure, In Section 2.2 we focus on

the traditional job submission methodologies and their problems. In Section 2.3 we describe the Pilot

Abstractions and their implementation for both compute and data . In Section 2.4 we describe how

Pilot-Jobs and Pilot-Data provide effective management of distributed cyber-infrastructure.

2.1 Distributed Cyber-Infrastructure

Distributed cyber-infrastructure(DCI), in contrast to a static resource utilization model utilizes com-

puting resources, which varies in load and capability. Domain Scientists understand scientific appli-

cations related to their field by experimenting on DCI. Some of the requirements and characteristics

of these applications require broad usage of DCI which are significantly different from regular HPC

applications in several fundamental ways. Often, distributed applications are designed to support

peak utilization of resources by a number of tasks. On distributed dynamic resource pool, it is an

important attribute of any application to utilize the infrastructure efficiently. Production Grid Infras-

tructures (PGIs) as well as the Programming Systems and Tools (PST) used to develop distributed

applications need to address these and other fundamental distributed application characteristics [22].

2.2 Traditional compute and data management

Existing PST support number of applications to utilize DCI. Even though several distributed appli-

cations use distributed infrastructures successfully, either those applications failed to use distributed

infrastructures effectively or have had to implement new capabilities at one or more levels, which in-

cludes application, programming system, middleware and/or infrastructure level. The urge to utilize

Reprinted by permission of ”MAPREDUCE’12 Workshop”

5

distributed infrastructures effectively made the design and development of distributed applications

more complex task [23]. For example, many programming systems and tools for distributed appli-

cations are either incomplete and/or often out-of-phase with requirements or inflexible with respect

to application needs, e.g. tools that support the master-worker paradigm often only address failures

of workers and not of the master. Additionally, tools and development systems often don’t support

the specific usage modes that maybe required for a certain application scenario, with the level of

robustness and scalability required, i.e., solutions work well in small or controlled environments, but

not at-scale. These and other concerns have motivated developers to ”roll out their own” capabilities,

in turn further adding to an existing large range of tools, programming systems and environments

and adding to challenges of providing interoperability. Thus to the extent possible, extensibility and

interoperability must be built as fundamental design objective of PST for distributed applications

and infrastructure. Although it will not be possible to support all of the following properties, PST

should address some of these aspects: (i) new application domains and usage-modes, (ii) extending

the functionality supported, (iii) extension to new infrastructures, (iv) extend across scales of opera-

tion, (v) uptake by communities other than the developer (community usage) and, (vi) reuse and

support patterns and abstractions for distributed computing. The extend to which the above de-

sign objectives will succeed depends not only on the resulting programming system, but also on the

availability of usable and extendable abstractions and their suitability for given production infras-

tructures. Interestingly, the Pilot-Job abstraction has been widely used across several different PGIs.

However, the existing Pilot-Job frameworks are all heavily customized and often tightly coupled to

a specific infrastructure, and not extensible or usable across different systems, e.g. there is no such

”unifying” and ”extensible” Pilot-Jobs that supports a range of application types and characteristics.

[22, 23]

Many scientific applications have immense data requirements, which are projected to increase

dramatically in the near future [23]. The management of data in distributed systems remains a

challenge due to various reasons: (i) the placement of data is often decoupled from the placement of

Compute Units i. e. the application must often manually stage in and out its data using simple scripts;

(ii) heterogeneity, e. g. with respect to storage, filesystem types and paths, often prohibits or at least

6

complicates late bind- ing decisions; (iii) higher-level abstraction that allow applications to specify

their data dependencies on an abstract, logical level (rather than on file basis) are not available; (iv)

due to lack of a common treatment for compute and data, optimizations of data/compute placements

are often not possible. In addition, applications must cope with various other challenging, data-related

issues, e.g. varying data sources (such as sensors and/or other application components), fluctuating

data rates, transfer failures, optimizations for different queries, data-compute co-location etc. While

these issues can be in principal handled in an application-specific way, the usage of higher-level

abstractions, such as a common Pilot-based abstraction for compute and data is preferable.

2.3 Pilot abstractions for compute and data

Pilot-abstractions provide effective management of compute and data units and the relationships

between them(affinities). They liberate the applications from the challenging requirement of assign-

ing/scheduling the compute or data unit onto a particular resource.

2.3.1 BigJob - SAGA Pilot Job

Workload management and resource scheduling can lead to significant dynamic fluctuations in work-

loads and resources, reducing the overall efficiency and speed of the desired calculations. A common

approach for decoupling these competing allocation problems is the use of pilot-jobs (PJ). The PJ

abstraction is also a promising route to address additional requirements of distributed scientific ap-

plications [16, 20], such as application-level scheduling.

A SAGA-based PilotJob, BigJob (BJ) [36, 22], is a general-purpose pilot-job framework. BigJob has

been used to support various execution patterns and execution workflows [38]. For example, SAGA-

BigJob was used to execute scientific applications categorized as embarrassingly parallel applications

and loosely coupled applications on scalable distributed resources [14, 15]

Figure 2.1 illustrates the architecture of BJ. BJ utilizes a Master-Worker coordination model.

The BigJob-Manager is responsible for the orchestration of pilots, for the binding of sub-tasks. For

submission of the pilots, SAGA relies on the SAGA Job API, and thus can be used in conjunction

7

with different SAGA adaptors, e. g. the Globus, the PBS, the Condor and the Amazon Web Service

adaptor. Each pilot initializes a so called BJ-agent. The agent is responsible for gathering local

information and for executing tasks on its local resource. The SAGA Advert Service API is used for

communication between manager and agent. The Advert Service (AS) exposes a shared data space

that can be accessed by manager and agent, which use the AS to realize a push/pull communication

pattern. The manager pushes a sub-job to the AS while the agents periodically pull for new sub-jobs.

Results and state updates are similarly pushed back from the agent to the manager. Furthermore, BJ

provides a pluggable communication & coordination layer and also supports alternative c&c systems,

e. g. Redis [34] and ZeroMQ [42].

In many scenarios it is beneficial to utilize multiple resources, e. g. to accelerate the time-to-

completion or to provide resilience to resource failures and/or unexpected delays. BJ supports a wide

range of application types, and is usable over a broad range of infrastructures, i. e. it is general-

purpose and extensible (Figure 2.1). In addition there are specific BJ flavors for cloud resources such

as Amazon EC2 and Microsoft Azure that are capable of managing set of VMs, as well as a BJ with

a Condor-G based backend.

BJ supports dynamic resource additions/removals as well as late binding. The support of this

feature depends on the backend used. To support this feature on top of various BigJob implementa-

tions that are by default restricted to single resource use (e. g. BJ), the concept of a BigJob pool is

introduced. A BigJob pool consists of multiple BJs (each BigJob managing one particular resource).

An extensible scheduler is used for dispatching compute units to one of the BJs of the pool (late

binding). By default a FIFO scheduler is provided.

2.3.2 BigData - SAGA Pilot Data

Analogous to Pilot-Jobs, Pilot-Data (PD) abstraction provides late-binding capabilities for data by

separating the storage allocation and application-level Data Unit [23]. For this purpose, the API

defines the Pilot-Data (PD) and Data Unit (DU) entity: A PD function as a placeholder object that

reserves storage spaces for a set of DUs.

8

6) pull sub-jobs

2) submit
4) run sub-job

1) run big-job

Resource Manager 1

Application
Kernel

BigJob

Distributed
Coordination

Service

ReplicaApp
Kernel

sub-job

ReplicaApp
Kernel

sub-job

ReplicaApp
Kernel

sub-job

5) create
sub-job entry

Application

ReplicaApp
Kernel

sub-job

BigJob-Agent 1
7) Manage sub-jobs

Resource

Resource 1

Resource Manager N

BigJob-Agent N
7) Manage sub-jobs

BigJob-
Manager

Resource N

Application

2) submit

3) Start
BigJob-Agent

3) Start
BigJob-Agent

FIGURE 2.1: BigJob Architecture: The core of the framework, the BigJob-Manager orchestrates a
set of pilots. Pilots are started using the SAGA Job API. The application submits WUs, the so-
called sub-jobs via the BigJob-Manager. Communication between the BJ-Manager and BJ-Agent is
done via a shared data space, the Advert Service. The BJ-Agent is responsible for managing and
monitoring sub-jobs. From Ref. [22]

BigData (BD) is an implementation of the Pilot-Data abstraction. BigData is designed as an

extension of BigJob [36] – a SAGA-based Pilot-Job implementation. Figure 2.2 provides an overview

of the architecture of BigData. Similar to BigJob, it is comprised of two components: the BD-Manager

and the BD-Agents, which are deployed on the physical resources. The coordination scheme used is

Master-Worker (MW), with some decentralized intelligence located at the BD-Agent. Analogous to

BJ, the SAGA Advert Service [28] provides a distributed communication mechanism in a push/pull

mode.

The BD-Manager is responsible for (i) meta-data management, i. e. it keeps track of all PD and

associated DUs, (ii) for scheduling of data movements and replications (taking into account the

application requirements defined via affinities), and (iii) for managing data movements activities.

BigData supports plug-able storage adaptors – currently an adaptor for SSH, WebHDFS [40] and

Globus Online [9] is provided.

9

file 1 file 2

2) submit du

1) create pd

Resource Manager 1

Application

Pilot-Data Abstraction

Resource 1

BigData-
Manager

Distributed
Coordination

Service
Resource

BigData-Agent 1

file 1 file 2

Resource Manager n

Resource n

BigData-Agent n

FIGURE 2.2: BigData Architecture and Interactions

2.3.3 Pilot API and Affinities

A critical requirement for data-intensive application, is the management of compute and data depen-

dencies, also referred to as affinities. The Pilot-API promotes affinities as a first class characteristic for

describing relationships between data and/or compute supporting dynamic decision making. Unfortu-

nately, most production infrastructure lack system-level support for affinities, e. g. resource localities

cannot be introspected. Data storage in particular in distributed settings, such as in the XSEDE

or the EGI environment, is often a black box for the application with unknown quality of services,

i.e., the application usually does not know what bandwidths and latencies it can expect. To address

these deficiencies the Pilot-API introduces affinities at the application-level: applications can asso-

ciate compute and data units with affinity labels. The BigJob/BigData runtime ensures that CUs

and DUs are placed with respect to the affinity requirements.

The PMR framework assigns each file output from a map task to a reduce partition. For each reduce

partition, a DU containing the respective files is created. Then, PMR submits the reduce CUs and

DUs using the Pilot-API. The affinity-aware scheduler assigns CUs and DUs to appropriate resources

taking into account data localities and minimizing the amount of necessary data movements, i. e. if

possible a CU is always moved to a DU. The Pilot-API and BigJob/BigData provide an effective

10

way to manage both compute and data units and the relationships between them liberating the

applications from the challenging task of assigning/scheduling/managing Compute and Data Unit.

2.4 Scalability and Usability of Pilot Abstractions

Pilot abstractions proved to provide effective scaling at various levels [38, 23, 22] and they can be

defined as

• scale-up: Refers to the ability (performance) of using many cores efficiently

• scale-out: Measures the number of tasks that can be concurrently executed & managed

• scale-across: Measures the number of distinct compute homogenous or heterogenous resources

that an application can utilize.

We demonstrate the usability of Pilot-abstractions to design a flexible, infrastructure-independent

runtime environment for MapReduce application. Pilot-MapReduce heavily relies on Pilot abstrac-

tions for de-coupling the MapReduce runtime, application-level scheduling and resource management

providing a high degree of flexibility and extensibility.

2.5 Pilot-MapReduce – A Pilot-based MapReduce Implementation

Pilot-MapReduce (PMR) is a Pilot-based implementation of the MapReduce programming model. By

decoupling job scheduling and monitoring from the resource management using Pilot-based abstrac-

tion, PMR can efficiently re-use the resource management and late-binding capabilities of BigJob and

BigData. PMR exposes an easy-to-use interface, which provides the complete functionality needed

by any MapReduce algorithm, while hiding the more complex functionality, such as chunking of the

input, sorting the intermediate results, managing and coordinating the map & reduce tasks, etc.,

which are implemented by the framework.

11

Pilot API

BigJob-Manager

Resource 1

Compute PilotData Pilot

3) submit
data units

1) create
pilot data

MR
Worker

2) create
pilot compute

5) submit
compute units

Data
Unit

Data
Unit

MR
Worker

Resource n

Compute PilotData Pilot

MR
Worker

Data
Unit

Data
Unit

MR
Worker

BigData-Manager

4) schedule data units to pilot data

MapReduce-Manager

6) schedule compute
units to pilot compute

FIGURE 2.3: Pilot-based MapReduce: Each pilot (both compute and data pilot) can be associated
with an affinity label. The BigData and BigJob Manager will ensure that CUs and DUs are placed
with respect to these requirements.

2.5.1 Architecture of Pilot-MapReduce

Pilot-MapReduce introduces a clean separation of concerns between management of compute and

data on the one hand, with their scheduling in a distributed context. The pilot abstractions enable

the easy acquisition of both compute and storage resources.

Figure 2.3 shows the architecture of the Pilot-MapReduce framework. PMR relies on BigJob to

launch MapReduce workers through a set of Pilots. The MR Workers are responsible for running

chunk, map and/or reduce tasks. MR-Manager packages data chunks into DUs and associates them

with Pilot-Data objects, which are placed close to Pilot-Computes by BigData. The MR-Manager

can focus on orchestrating this resource pool.

The flow of a typical MapReduce application involves the chunking of the data, the execution of

the map compute tasks, shuffling and moving the intermediate data to the reduce task and finally

the execution of the reduce tasks. Pilot-MapReduce utilizes a set of compute and data pilots for this

application workflow:

12

A. Initially, the MR-Manager allocates a set of compute and data resources by starting one (or most

often a set of) compute and data pilots on different resources. In general, on each resource one

compute and one data pilot is co-located. The data pilot is either created with reference to local

input data or the input data is moved to the data pilot after its creation.

B. Chunking: The MR-Manager executes a CU on each resource, which splits the input data on

the respective resource with respect to the defined chunk size. Each chunk is stored in a new

DU. BigJob and BigData – in particular the ComputeDataService – are used as the common

abstraction for managing the Compute Units and Data Unit.

C. Mapping: The MR-Manager assigns a map CU to each chunk created in step B. Again, BJ is

used for managing the CUs. BJ and BD ensures that each CUs is co-located with an appropriate

DU taking into account data localities and minimizing the amount of data movements.

D. Shuffling: After the map phase is completed the output data is sorted and partitioned. For each

partition a DU is created. Each partition is then processed by a reduce task. For this purpose,

the MR-Manager assigns each reduce CU to a DU. Each DU comprises of a group of sorted,

partitioned map output files. CUs and DUs are then submitted through the ComputeDataService

of BJ and BD. The affinity-aware scheduler ensure that CUs are assigned to local DUs minimizing

the amount of data transfers. For each reduce task a Data Unit containing the necessary input

files is created and submitted.

E. Reducing: The reduce tasks are prepared and executed on the DUs representing the intermediate

data. The management of the data transfers is done by BJ/BD taking into account the specified

affinities.

F. The Pilots are terminated.

The PMR relies on the master/worker coordination model, i. e. a central MR-Manager orchestrates

a set of MapReduce workers, which in turn are responsible for executing map and reduce tasks. The

MR-Manager utilizes BigJob and BigData, and in particular the central ComputeDataService for

executing mapper and reduce tasks. This architecture can also efficiently support workloads that

currently not supported well enough by Hadoop, e. g. iterative applications.

13

2.5.2 Compute and Data Management

The Pilot-API provides a well-defined interface for supporting the late-binding of compute and data

units decoupling resource assignment from resource usage. Using BJ and BD, PMR can allocate both

storage and compute resources, which can then be flexibly utilized for executing map and reduce

tasks as well as for storing both intermediate and output data.

The API also allows the expression and management of relationships between data units and/or

compute units. BigJob and BigData provide an implementation of the Pilot-API. These frameworks

ensure that the data and compute affinity requirements of the MapReduce applications are met for

each step of the MapReduce workflow. For example, in the shuffle phase for each reduce task a DU

and CU is generated. These are then submitted to BigJob and BigData framework, which handles

the scheduling, transfer of the DU and execution of the CU. PMR assigns a resource affinity to each

DU and CU. BJ and BD then ensure that each CU is co-located to the right DU.

The efficiency of PMR on multiple resources depends on the management of the the intermediate

data. BigData not only provides flexibility to manage the relationship between data and compute

units, but also allows parallel data transfers between machines and between data units. BigData is

used for moving the intermediate output files of the mapper tasks to the resource where the reduce

compute units are executed.

Interestingly, Hadoop also utilizes a job and task tracker: the job tracker is the central manager

that dispatches map and reduce tasks to the nodes of the Hadoop cluster. On each node the task

tracker is responsible for executing the respective tasks. The main limitation of this architecture is the

fact that it intermixes both cluster resource management and application-level task managements.

Thus, it is not easily possible to integrate Hadoop with another resource management tool, e. g. PBS

or Torque. Also, the job tracker represents a single point of failure and scalability bottleneck.
pds = PilotDataService ()

pd_desc=

{"service_url":"ssh :// india.futuregrid.org/pilotdata",

"size":100,

"affinity_datacenter_label":’india’,

"affinity_machine_label":’india’}

pd=pds.create_pilot(pilot_data_description=pd_desc)

cds.add_pilot_data_service(pds)

Listing 2.1: Pilot Data Creation: Instantiation of a Pilot Data using Pilot Data Description

14

Reduce

Resource 1

Map

Resource N

MapData Data

Reduce

Resource

Map (Combine)

Resource 1

Map

Resource N

MapData Data

ReduceReduce

FIGURE 2.4: Pilot-MapReduce Deployment Scenarios: In the distributed scenario (left), the mapping
tasks are run close to the data; reduced tasks are then run on a single resource. In the hierarchical
scenario (right) two full MapReduce runs are conducted.

2.5.3 Distributed and Hierarchical MapReduce

An increasing amount of data that scientific applications need to operate on is distributed. Often

data generation and processing are far apart: For example, the Earth Science Grid federates data of

various climate simulations [5]. Meta-genomic workflows need to process and analyze data generated

by various sequencing machines [13]; the localization onto a single resource is often not a possibility.

Several options for running Hadoop on distributed data have been proposed [7]: (i) in a global

MapReduce setup one central JobTracker and HDFS NameNode is used for managing a distributed

set of resources; (ii) in a hierarchical MapReduce setup multiple MapReduce clusters are used: a

MapReduce cluster close to the data source for pre-processing data and a central cluster for aggre-

gating the different de-central data sources. The volume of the pre-processed data is generally lower

and thus, can be easily moved to another processing resource.

Ref [7] shows that a hierarchical Hadoop configuration leads to a better performance than a global

Hadoop cluster for some applications. A drawback of this approach is the increased complexity:

Hadoop is not designed with respect to a federation of multiple MapReduce clusters. Setting up such

a system typically requires a lot of manual effort.

Pilot-MapReduce supports different distributed MapReduce topologies: (i) local, (ii) distributed

and (iii) hierarchical. A local PMR performs all map and reduce computations on a single resource.

15

Figure 2.4 shows options (ii) and (iii): A distributed PMR utilizes multiple resources often to run

map tasks close to the data to avoid costly data transfers; the intermediate data is then moved to

another resource for running the reduce tasks. BigJob and BigData are used for managing CUs and

DUs and the necessary data movements. In contrast, in a hierarchical PMR the outputs of the first

complete MapReduce run are moved to a central aggregation resource. A complete MapReduce run

is then executed on this resource to combine the results.

Pilot-MapReduce uses the Pilot-API as an abstraction for compute and data resources, as well as

managing both Compute Units (i. e. map and reduce tasks) and Data Unit. Using these abstractions,

PMR can efficiently manage data and compute localities and operate on a dynamic and distributed

pool of storage and compute resources. Using descriptive affinities label the data flow between CUs,

i. e. the transfer of the intermediate data, can be efficiently managed. Using this capability PMR can

be easily scaled out to multiple resources to support scenarios (ii) and (iii).

16

Chapter 3
Evaluation of Pilot-MapReduce

In this chapter we analyze the performance and scalability of Pilot-MapReduce and compare it

to Hadoop MapReduce using different applications. For this purpose we run several experiments

on FutureGrid [10]. We run the experiment on the following FutureGrid resources: India, Sierra and

Hotel. Each experiment is repeated at least three times. For our Hadoop experiments, we use Hadoop

0.20.2. At the begin of each run a Hadoop cluster is started via the Torque resource management

system on a specified number of nodes. The first assigned node is used as master node running the

Hadoop JobTracker and the NameNode. The HDFS replication factor is set to 2 and number of

reduces to 8.

3.1 MapReduce-Based Applications

MapReduce has been utilized in various science applications. A key performance factor is the amount

of data that must be moved through the MapReduce system. The degree of data aggregation of the

map tasks is thus, an important characteristic of a MapReduce application [7].

MapReduce application can be classified with respect to different criteria: (i) the volume of the

intermediate data (i. e. the size of the output of the map tasks), and (ii) the volume of the output

data, (i. e. the size of reduce phase output), and the relative proportion of these data volume. In the

following we investigate two application scenarios: Word Count and a Genome Sequencing application.

3.1.1 Word Count

The Word Count application is the basis for many machine learning use cases, used e. g. for the

classification of documents or clustering. Word Count generates a large volume of intermediate data

(∼200%). The volume of the output data depends on the type of input data, e. g. the size of the

output data is larger for a random input than for an input in a natural language.

Reprinted by permission of ”MAPREDUCE’12 Workshop”

17

3.1.2 Genome Sequencing (GS)

High-throughput genome sequencing techniques provided by Next Generation Sequencing (NGS)

platforms are changing biological sciences and biomedical research. The data volumes generated

by sequencing machines is increasing rapidly. The distributed processing of this data requires a

sophisticated infrastructure. For this purpose, we utilize MapReduce to model an important part of

the sequencing workflow i.e, the read alignment and the duplicate removal.

3.1.3 Short Read Alignment

Short reads alignment and the de-novo assembly are the required first steps in every pipeline software

tool that aims to analyze sequencing data from NGS platforms. De-novo assembly still remains a

challenge, because of complications arising from the short length of sequencing reads from NGS ma-

chines. In most of situations, read alignment (or mapping process) is the first task of NGS workflows,

and two Hadoop-based tools, Seqal and Crossbow provided two mapping tools, BWA and Bowtie,

respectively.

In general, for RNA-Seq data analysis, in particular with eukaryote genomes, the spliced aligner

such as TopHat [31] is used. In our work, we consider an alternative strategy, to use a non-spliced

aligner and later splicing events are detected separately, justifying the use of non-spliced aligners

such as BWA and Bowtie for the RNA-Seq data. These non-spliced aligner tools mapped reads onto

human reference genome hg19.

3.1.4 Post-Alignment

Duplicate read removal step might be required after short read alignment, because sample preparation

processes before sequencing might contain artifacts stemming from high-throughput read amplifica-

tion; many duplicates introduced are not relevant to true biological conditions.

Seqal is a Hadoop MapReduce application which implements the alignment in map phase using

BWA aligner and a duplicate removal step using the same criteria as the Picard MarkDuplicates [33,

32] in reduce phase. We use two implementations of the workflow: the Hadoop-based Seqal [33]

18

application and a custom implementation of this workflow GS/PMR. Both application implement

the read alignment in the mapping phase of the application using BWA aligner [18]. In the Seqal case

the duplicate removal in the reduce phase is implemented using Picard’s rmdup [30]. The GS/PMR

reduce phase is not an exact implementation of Seqal’s Picard rmdup implementation.We developed

a custom script in python which is based on duplicate removal description provided in [33]. The

GS/PMR reducer removes duplicate reads based on the key fields-chromosome, position, strand of

GS/PMR mapper output.

Crossbow [17] is a scalable software automatic pipeline, combines Alignment and SNP finding tools

for DNA sequencing analysis. Crossbow contains 4 steps - preprocessing, Alignment, SNP finding and

post processing. Each step is a Hadoop streaming-based MapReduce application and the output of

each step is stored in HDFS and read from HDFS by the next step. In our experiments we focused

on Crossbow alignment which uses Bowtie aligner in map phase and has a dummy reducer.

3.2 Characterizing Word Count

In the first experiment, we benchmark the performance of Pilot-MapReduce and Hadoop using a

simple Word Count application on a single resource. For both frameworks, 8 nodes on India machine

are used. In all scenarios the input data is pre-staged on the respective resources, i. e. for Hadoop

the data is located in HDFS, for PMR the data is stored on a shared file system. We set the total

number of reduces to 8 for both Hadoop and Pilot-MapReduce; further, the default chunk size of

128 MB is used. A HDFS replication factor of 2 is used.

The runtime of PMR includes the time to chunk input data, running the mapping CUs, shuffling

(which again comprises of sorting and the intermediate data transfer, and finally running the reduce

CUs. Figure 3.1 shows the results. The runtime of Hadoop MapReduce includes the time to load

input source data into HDFS and MapReduce runtime.

The time to solution increased linearly as data size increased; the performance of both Hadoop

and PMR is comparable up to 8 GB. However, for the largest volumes of input data we examined,

PMR shows a better performance than Hadoop. In particular, the setup, map and shuffle phase in

the Hadoop case are longer. Both the map and shuffle phase are the most data-intensive phases –

19

 0

 1,000

 2,000

 3,000

H
ad

o
o
p

P
M

R

H
ad

o
o
p

P
M

R

H
ad

o
o
p

P
M

R

H
ad

o
o
p

P
M

R

H
ad

o
o
p

P
M

R

R
u
n

ti
m

e
in

 s
ec

Input text data in GB
1 2 4 8 16

Reduce
Shuffle
Map
Setup

FIGURE 3.1: Word Count PMR vs. Hadoop: The performance of Hadoop and PMR is comparable.
The runtime increase with the input data size. Hadoop tasks have a notable higher startup time.

Word Count needs to read all input files and generates intermediate data with the size of about 200 %

of the input data. The worse performance of Hadoop indicates a potential issue with HDFS. PMR

relies mostly on the shared file system for handling the intermediate data.

3.3 Characterizing Genome Sequencing

In this section, we compare and contrast GS/PMR and Seqal. For both applications, we utilize the

same set of input data comprising of different sizes of read files and the reference genome. Seqal,

however, expects the input data in a different format (prq instead of fastq); thus, the data was

previously converted to meet the Seqal requirements. For PMR, the fastq files from sequencing

machines are directly used; further, a custom chunk script is used to chunk the fastq files based

on the number of reads. We make sure that the chunk size for both Seqal and PMR is equal. For

both frameworks, a total of 4 nodes on FutureGrid Sierra machine, 8 reduces, 2 workers/node, default

chunk size of 128 MB is used. For Hadoop based Seqal, the replication factor of two is used. Since Seqal

and GS/PMR utilize different duplicate removal tools in the reduce phase, we focus our investigation

on the map phase.

20

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

 10,000

S
E

Q
A

L

P
M

R

S
E

Q
A

L

P
M

R

S
E

Q
A

L

P
M

R

R
u

n
ti

m
e

in
 s

ec

Read Size in GB
2 4 8

Reduce
Shuffle
Map
Setup

FIGURE 3.2: Seqal and GS/PMR: GS/PMR provides a marginal better performance that Seqal. The
overhead of Seqal is mainly attributed to the used HDFS configuration using a shared file system.

Figure 3.2 shows the results of both applications. In the setup time of Seqal, Hadoop copies the

reference genome archive to all the nodes and extracts it so it is available locally. In comparison to

Word Count both GS applications are more compute intensive, i. e. the ratio between computation

in the map phase and the size of the input data is significant larger. Notably, Seqal requires a

longer time-to-completion than GS/PMR. Both the map and reduce phase of Seqal are longer. While

the map phase of Seqal relies on the same BWA implementation as GS/PMR, the reduce phase uses

Picard’s rmdump [30] for duplicate removal, which has a significant longer runtime than the duplicate

removal process in the reduce phase of GS/PMR.

This is mainly caused by a non-optimal configuration of Hadoop: The local disks available on

FutureGrid is too small for the used input data; thus, HDFS had to be configured to utilize a shared,

distributed file system, which leads to a non-optimal performance during the I/O intensive map

phase. The difference in the reduce phase mainly originate from the different implementations of the

duplicate removal process in Seqal and GS/PMR.

21

3.4 Distributed and Hierarchical MapReduce

In this section, we evaluate the performance and scalability of the (i) distributed and (ii) hierarchical

PMR configuration (see section 2.5.3) using the Word Count application on natural language and on

random data as well as the genome sequencing application. In the distributed scenario (i) the map

CUs are distributed across two machines, in the hierarchical scenario (ii) two resources are used each

executing an independent MR run. The MapReduce run for combining and aggregating the output

of the first round is executed on one of these machines. The performance of each application depends

on the amount of generated intermediate and output data. Table 3.1 summarizes the characteristics

of the used applications.

Application Input Intermediate Output

GS/PMR 80GB 71GB 17GB

Word Count

(English)

16GB 26GB 20MB

Word Count

(random)

16GB 30GB 30GB

TABLE 3.1: Data Volumes for different Applications

3.4.1 Word Count

For Word Count we compare a distributed and hierarchical PMR configuration with the performance

of two Hadoop configurations: a single resource Hadoop configuration (half of the data is initially

moved to that cluster) and a hierarchical Hadoop setup with two resources. We utilize two machines,

Sierra and Hotel. The initial input data of 16 GB is equally distributed on these two machines. As

mentioned, for the single resource Hadoop configuration half of the input data needs to be moved

from Sierra to Hotel prior to running the actual MapReduce job. Unfortunately, the FutureGrid

firewall rules prohibited the usage of a distributed Hadoop setup. For all configurations, we use 8

nodes.

Figure 3.3 shows the results. For natural language input, both Hadoop and PMR show a comparable

performance. A major performance factor for Hadoop in the case of distributed data is the necessity

to move parts of the data (half of the input data) to the central Hadoop cluster. The performance of

PMR is determined by the runtime of the map and reduce phase, which are slightly longer than for

22

Hadoop mainly due to the resource heterogeneity and the resulting scheduling overhead: the slowest

node determines the overall runtime of both the map and reduce phase.

Both the hierarchical Hadoop and PMR perform better than the distributed PMR and single

resource Hadoop configuration. The performance is mainly influenced by the data that needs to be

moved. In the distributed case half of the intermediate data needs to be moved to the other resource;

in the hierarchical case half of the output data requires movement. Since the output data in the

hierarchical case is a magnitude smaller than the intermediate data in the distributed case (cmp.

table 3.1) – 20 MB in comparison to 30 GB – the performance in the hierarchical case is significant

better.

For random data, the distributed PMR and single resource Hadoop perform better than the hierar-

chical PMR and Hadoop configuration. In this case the output data is about equal to the intermediate

data (30 GB), i. e. the advantage of a reduced transfer volume does not exit. In this case the additional

MapReduce run represents an overhead. In the Hadoop case, the moved data needs to get loaded

into HDFS, which represents another overhead.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

Natural language Random

R
u
n
ti

m
e

in
 s

ec

Hadoop
Hierarchical Hadoop
Distributed PMR
Hierarchical PMR

FIGURE 3.3: Word Count on 16 GB Data Using Hadoop, Hierarchical Hadoop, Distributed PMR and
Hierarchical PMR

23

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

20 40 80

R
u
n
ti

m
e
 i

n
 s

e
c

Read Size in GB

Hierarchical PMR
Distributed PMR

FIGURE 3.4: GS/PMR Using Hierarchical and Distributed PMR

3.4.2 Genome Sequencing

For the genome sequencing application, we utilize India and Hotel, a total of 32 nodes and different

input data size between 20 and 80 GB. Figure 3.4 shows the results. In both scenarios the runtime

increases with the input data size. For the distributed PMR, a significant part of the performance

is determined by the movement of the intermediate data – 71 GB for the 80 GB problem set (see

table 3.1). In the hierarchical PMR scenario, the main overhead arises from the additional MapReduce

run. For GS/PMR the hierarchical configuration shows a slight advantage over the distributed setup

since the amount of data that needs to be transferred is significant less: half of the output, i. e.

8.5 GB, respectively, of the intermediate data, i. e. 36 GB. However, a great amount of the time

saving is absorbed by the overhead of the additional MapReduce run in the hierarchical case.

Running MapReduce on distributed data is not a trivial task – the overall performance is deter-

mined by many factors, e. g. the application’s characteristics, current machine and network loads,

etc. Different MapReduce configurations, such as the distributed and hierarchical configuration, can

address certain application characteristics. For example, depending on the volume of the intermedi-

ate and output data, a distributed or hierarchical configuration may show a better performance. In

applications with a smaller volume of output than intermediate data, such as GS and Word Count on

natural languages, a hierarchical MapReduce is a good choice since it involves less data movement.

24

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

2	 4	 8	

Ru
n$

m
e	
(i
n	
se
c)
	

Read	 size	 (in	 GB)	

Seqal(BWA)	

local	 PMR(BWA)	

distribtued	 PMR(BWA)	

0	

1000	

2000	

3000	

2	 4	 8	

Ru
n$

m
e	
(i
n	
se
c)
	

Read	 size	 (in	 GB)	

Crossbow(Bow0e)	

local	 PMR(Bow0e)	

distributed	 PMR(Bow0e)	

FIGURE 3.5: Comparison of runtimes for the map phase. The map phase of Seqal, local-PMR(BWA),
distributed-PMR(BWA), local-PMR(Bowtie), distributed-PMR(Bowtie), and Crossbow(Bowtie) are com-
pared. The aligner used for each case is indicated in a parenthesis. For this experiment, the number of
nodes, Nnode is 4, the number of Workers, NW is 8, and the number of reads in each chunk is 292,763. For
the distributed-PMR, two machines of FutureGrid, Sierra and Hotel were used, whereas Sierra was used for
other cases [25].

PMR provides the flexibility to deploy MapReduce workloads in different configurations optimizing

the performance with respect to the characteristics of different applications. Hadoop, in contrast, is

very inflexible in supporting different kind of MapReduce configurations. In our case e. g. we were

not able to run Hadoop across more than two machines on FutureGrid due to firewall issues.

3.4.3 Extensibility and Parallelism

The extensibility of PMR is demonstrated with two aligners – BWA and Bowtie. One of the important

reasons why multiple aligners are needed is because of the difficulty of validation of an aligner used[19].

It is well studied that each aligner implements different strategies to deal with the requirement

of computational loads, memory usage, and sensitivity associated with decision on algorithms and

computational implementations of indexing, search, and match tasks.

Indeed, the decision of which aligner affects not only alignment results but also investigate down-

stream analysis that aim to study genome variation, transcriptome analysis, and DAN-protein inter-

actions. Therefore, it is not an overstatement to emphasize the importance of supporting multiple

tools as well as providing an effective means for implementing such tools within a reasonably short

development period for infrastructure of NGS data. Fig. 3.5, evaluates the performance of read align-

ment in the map phase of both Hadoop and PMR based applications for Bowtie and BWA aligners.

Hadoop implementations - Crossbow uses Bowtie aligner and Seqal uses BWA aligner. Custom python

25

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

Crossbow	 PMR	 Crossbow	 PMR	

1	 4	

Ru
n$

m
e	
(in

	 s
ec
)	

Number	 of	 Threads	

8	 Nodes	

4	 Nodes	

2	 Nodes	

FIGURE 3.6: The map phase runtimes of PMR(Bowtie) and Crossbow(Bowtie) are compared, by varying
number of threads for each map task. Number of workers/Node = 2 and input data size is 8 GB. The
maximum number of cores assigned to a worker is 4, so we used 4 threads to achieve maximum fine-grain
parallelism [25]

wrappers to Bowtie and BWA aligner are developed to execute alignment in the map phase of PMR.

In the evaluation, both Hadoop based implementations face the problem of non-optimal configura-

tion of Hadoop, i.e usage of shared file system for HDFS, where as both local and distributed PMR

perform better than Hadoop map phase for both aligners. The PMR is extensible and can support

multiple NGS analytic tools.

Extending PMR to support new NGS analytic tools involve development of simple map and reduce

wrapper scripts to the tools. The wrapper scripts could be developed in any language. To some extent,

Hadoop streaming supports this types of extensibility but still requires complexity of managing

computational resources to maintain Hadoop cluster. PMR liberates the user from the complex task

of maintaining and acquiring computational resources and executing map and reduce tasks on them.

PMR supports multiple levels of parallelisms – thread, task and multiple-cores, and enables the

flexible configurations of codes. For example, BWA and Bowtie can be invoked to use varying num-

ber of threads (fine-grained parallelism). In Fig. 3.6, we showed how such options could affect the

performance. Even though it is feasible for other tools such as Seqal or Crossbow to handle such

26

options, the PMR approach of separating the runtime environment (Pilot) from the code invocation

in the map and reduce phases, provides the capability of utilizing the fine-grained parallelism along

with the coarse grain parallelism provided by MapReduce. The fine grain parallelism provided by

Pilot-Job framework is demonstrated in replica exchange implementation [21].

One of the advantages of PMR is it doesn’t impose any restriction on number of compute nodes

that can be assigned to a particular map or reduce task. This leads to a natural and native support

for MPI-based NGS tools. For example, NovoalignMPI [1] is a message passing version of Novoalign,

with claims of a more accurate aligner, allows a single alignment process to use multiple compute

nodes. The MPI versions of Novoalign are more beneficial when large computing infrastructures are

available. Hadoop doesn’t provide flexibility to assign multiple compute nodes to a single compute

task, thus leading to an impedance mismatch between Hadoop MR and MPI based NGS analytic

tools [25].

27

Chapter 4
Workflow Management Using BigJob on XSEDE
and LONI

In this chapter we discuss about how BigJob has been used to support Extended Collaborative

Support Service (ECSS) project on XSEDE and simple workflows on LONI to calculate molecular

distance of a f2 molecule. We also discuss the developments and testing involved as a part of project

support.

4.1 Extended Collaborative Support Service (ECSS) on XSEDE

The ECSS of XSEDE is a means of providing support for advance user requirements that cannot and

should not be supported via a regular ticketing system. Recently two ECSS projects were awarded

by XSEDE management to support the high-throughput of high-performance (HTHP) molecular dy-

namics (MD) simulations; both of these ECSS projects are using SAGA-based Pilot-Jobs approach as

the technology required to support the HTHP scenarios. More significantly, these projects were envi-

sioned as three-way collaborations: between the application stakeholders, advanced/research software

development team and the resource providers.

4.1.1 Developments and Testing

Job submission is another interesting issue on XSEDE. Lonestar and ranger use SGE, Kraken and

Trestles use PBS job scheduling systems. While SAGA retains the ability to submit jobs through its

globus [11] job adaptor, it is an un-necessary burden on users. Furthermore, when globus submitted

jobs fail, they generate a very lengthy error report without much useful information. Both projects

needed an immediate, clear and fail safe mechanism to submit jobs and this lead to the development

of the pbs-ssh and sge-ssh plugins to support both the PBS and SGE scheduling systems. The plugins

enable local/remote launch of BigJob agents using traditional PBS/SGE script over SAGA ssh job

adaptors.

28

4.2 Workflow Execution on LONI

The workflow execution demonstrates the flexibility and scalability of SAGA BigJob by conducting

experiments to execute computationally intensive ensembles in various configurations. The configu-

ration involves BigJob size which is number of cores requested, the wall time which is the expected

time to complete all the jobs associated with that BigJob and the number of machines used to run

the jobs(scale out). The ensembles are computationally intensive, which require 16 cores to execute

and are configured to run 20 monte carlo passes with given molecular distance of f2 molecule.

BigJob %Cluster reso- # of Average waiting Average execution Walltime

size(cores) urces in use Generations time(min) time(min) requested(min)

128 68.5 1 2 36 40
128 90 1 39 36 40

64 68.5 2 1 79 80
32 90 4 1 156 160

TABLE 4.1: BigJob configurations used to execute 8 subjobs(16 cores each) on LONI Eric machine
at different resource available situations.

Table 4.1 shows the trade-off between the number of cores requested,waiting time and the to-

tal execution time depending upon the system resource availablity. The user based on the cluster

resources available can configure BigJob size and wall time of the Job. If the system is busy, it is

hard to get large number of resources and the queue wait time increases, so keeping BigJob size

low yield resources quickly, but the number of jobs per generation decreases and thus increases the

number of generations. The system queue wait time is unpredictable and could be serious bottleneck

for execution of jobs. BigJob proves to be advantegous in this kind of situation, and utlizes resources

effectively yeilding less runtime to solution.

of %BigJob size Average waiting Average execution

machines /machine(cores) time(min) time(min)

2 64 2 37

3 44 2 36
4 32 2 38

TABLE 4.2: BigJob configurations used to execute 8 ensembles(16 cores each) on LONI Eric, Poseidon,
Oliver, Louie machines when 90% of cluster resources are in use.

Table 4.2 shows how BigJob takes advantage of scaling-out ensembles to multiple resources. If

more number of cluster resources are in use, the queue waiting time of request with more number of

29

resources increases on a single machine. BigJob provides interoperability, flexibility to utilize resources

on multiple machines of same/different infrastructure in a uniform manner.

30

Chapter 5
Conclusions and Future Work

Scientists in many science disciplines, where enormous amounts of data is generated, e. g. in the

areas of fusion energy, bioinformatics, climate and astronomy, utilize distributed cyber-infrastructure

to conduct experiments and improve their understanding about the scientific applications. Domain

scientists face various challenges associated with processing of data at extreme scales on distributed

cyber-infrastructures. MapReduce is an effective programming model for processing huge amounts

of data. Hadoop is an open-source implementation of MapReduce programming model but is de-

signed for shared-nothing environments and its performance is affected on a distributed file system.

On DCI like FutureGrid, we were not able to run Hadoop on multiple clusters. Pilot-MapReduce

provides a flexible runtime environment for MapReduce applications on general-purpose distributed

infrastructures, such as XSEDE and FutureGrid.

Pilot-MapReduce is a novel Pilot-based MapReduce implementation which enables clean separation

of resource management and MapReduce application. It brings the advantages of the Pilot abstraction

to MapReduce, and enables utilization of federated and heterogeneous compute and data resources.

In contrast to Hadoop, no previous cluster setup, which includes running several Hadoop/HDFS

daemons, is required.The experiment results prove Pilot-MapReduce shows good performance on

distributed cyberinfrastructures and can be a good alternative to Hadoop. PMR provides a extensible

runtime environment, which allows the flexible usage of sorting in the shuffle, more fine-grained control

of data localities and transfer, as well as support for different MapReduce topologies. Using these

capabilities, applications with different characteristics, e. g. compute/IO and data aggregation ratios,

can be efficiently supported.

The effectiveness of MapReduce topology depends on the application’s work load aggregation.

Distributed PMR performs better than hierarchical PMR for applications whose output data is

Reprinted by permission of ”MAPREDUCE’12 Workshop”

31

greater than or equal to input data. Similarly, hierarchical PMR performs better than distributed

PMR in case of applications where the output data is less than input data.

Implemenation of Pilot abstractions, BigJob and BigData proved to be effective tools for devel-

oping PMR. The flexibility to provide affinities between compute/data units and resources, enabled

optimization of runtime by efficient intermediate data transfers and effective placement of compute

and data units. Pilot abstractions are proved to be an effective abstractions to scale out applications

onto multiple cross-domain infrastructures. Since PMR, built on pilot abstractions, the scalability of

PMR depends directly on the scalability of pilot abstractions.

Recent advances in high-throughput DNA sequencing technologies such as Next-Generation Se-

quencing (NGS) platforms resulted in unprecedented challenges in the areas of bioinformatics and

computational biology. Dealing with unprecedented data and required data analytics and downstream

analyses of such high-throughput deep sequencing techniques, MapReduce-based approaches were

added to an arsenal of computational biologist and PMR provides a viable solution for scale-across

and extensible NGS analytics. In fact, PMR not only supports scale-across, it provides some unique

features, viz., support for distributed data analysis and multiple tools that can each exploit multiple

levels of parallelism. PMR provides an extensible runtime environment with which minimally modi-

fied, yet standalone target tools are executed and the overall workflow can be dynamically optimized

by exploiting multiple levels of parallelism. Furthermore, as indicated by results for BWA and Bowtie

for alignment, PMR allows further extensions of existing implementation with other complementary

tools or a flexible pipeline development.

Future work in this research may extend the capabilities of PMR and BigData to support use cases,

such as data streaming, data caching as well as different data/compute scheduling heuristics. Further,

explore scenarios and applications with dynamic data and execution. An obvious and trivial extension

will be to implement Iterative MapReduce using PMR. A clear advantage will be to obviate the need

to distinguish between static and dynamic data, for PMR will be able to treat both symmetrically.

Our future goal also involves to develop an integrative pipeline service for RNA-Seq data, and the

development presented in this thesis is indicative of preliminary progresses toward such a goal.

32

Bibliography

[1] http://www.novocraft.com/.

[2] Extreme science and engineering discovery environment (xsede). https://www.xsede.org/.

[3] Apache Hadoop. http://hadoop.apache.org/, 2012.

[4] A. Bateman and J. Quackenbush. Editorial -Bioinformatics for Next Generation Sequencing.
Bioinformatics, 25:429, 2009.

[5] D. Bernholdt, S. Bharathi, and D. B. et al. The earth system grid. Proc. of the IEEE, 93(3):485–
495, 2005.

[6] G. B. Berriman and S. L. Groom. How will astronomy archives survive the data tsunami? Queue,
9:21:20–21:27, October 2011.

[7] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman. Exploring mapreduce efficiency
with highly-distributed data. In Proceedings of 2nd international workshop on MapReduce and
its applications, pages 27–34, New York, NY, USA, 2011. ACM.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In Pro-
ceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[9] I. Foster. Globus online: Accelerating and democratizing science through cloud-based services.
IEEE Internet Computing, 15:70–73, 2011.

[10] FutureGrid: An Experimental, High-Performance Grid Test-bed. https://portal.futuregrid.org/,
2012.

[11] Globus. http://globus.org/.

[12] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive Scientific Dis-
covery. Microsoft Research, Redmond, Washington, 2009.

[13] S. Jha, J. D. Blower, N. C. Hong, S. Dobson, D. S. Katz, A. Luckow, O. Rana, Y. Simmhan,
and J. Weissman. 3dpas: Distributed dynamic data-intensive programming abstractions and
systems. 2011.

[14] J. Kim, W. Huang, S. Maddineni, F. Aboul-ela, and S. Jha. Exploring the rna folding energy
landscape using scalable distributed cyberinfrastructure. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, HPDC ’10, pages 477–488,
New York, NY, USA, 2010. ACM.

[15] J. Kim, S. Maddineni, and S. Jha. Characterizing deep sequencing analytics using bfast: towards
a scalable distributed architecture for next-generation sequencing data. In Proceedings of the
second international workshop on Emerging computational methods for the life sciences, ECMLS
’11, pages 23–32, New York, NY, USA, 2011. ACM.

33

https://www.xsede.org/
http://hadoop.apache.org/
https://portal.futuregrid.org/
http://globus.org/

[16] S.-H. Ko, N. Kim, J. Kim, A. Thota, and S. Jha. Efficient runtime environment for coupled
multi-physics simulations: Dynamic resource allocation and load-balancing. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
CCGRID ’10, pages 349–358, Washington, DC, USA, 2010. IEEE Computer Society.

[17] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching for SNPs with cloud
computing. Genome Biol., 19(11):R134, 2009.

[18] H. Li and R. Durbin. Fast and accurate long-read alignment with burrows wheeler transform.
Bioinformatics, 26:589–595, March 2010.

[19] H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics, 11(5):473–483, 2010.

[20] A. Luckow and S. Jha. Abstractions for loosely-coupled and ensemble-based simulations on
azure. Cloud Computing Technology and Science, IEEE International Conference on, pages
550–556, 2010.

[21] A. Luckow, S. Jha, J. Kim, A. Merzky, and B. Schnor. Adaptive Replica-Exchange Simulations.
Royal Society Philosophical Transactions A, pages 2595–2606, June 2009.

[22] A. Luckow, L. Lacinski, and S. Jha. SAGA BigJob: An Extensible and Interoperable Pilot-Job
Abstraction for Distributed Applications and Systems. In The 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 135–144, 2010.

[23] A. Luckow, M. Santcroos, O. Weider, A. Merzky, S. Maddineni, and S. Jha. P*: A model of
pilot-abstractions. In Proceedings of The International ACM Symposium on High-Performance
Parallel and Distributed Computing, 2012.

[24] A. Luckow, M. Santcroos, O. Weider, A. Merzky, P. Mantha, and S. Jha. P*: A model of
pilot-abstractions. 2012.

[25] P. Mantha, N. Kim, J. Kim, A. Luckow, and S. Jha. Understanding MapReduce-based Next-
Generation Sequencing Alignment on Distributed Cyberinfrastructure, 2012. Accepted for
ECMLS workshop 2012 (HPDC12).

[26] P. Mantha, A. Luckow, and S. Jha. Pilot-MapReduce: An Extensible and Flexible MapReduce
Implementation for Distributed Data, 2012. Accepted for MapReduce workshop 2012 (HPDC12).

[27] J. D. McPherson. Next-Generation Gap. Nature Methods, 6:s2–s5, 2009.

[28] A. Merzky. SAGA API Extension: Advert API. OGF Document Series 177, http://www.
gridforum.org/documents/GFD.177.pdf, 2011.

[29] M. L. Metzker. Sequencing technologies - the next generation. Nat. Rev. Genet., 11(1):31–46,
2010.

[30] Picard. http://picard.sourceforge.net, 2012.

[31] S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-seq studies. Nature
Methods, 6:S22–S32, 2009.

34

http://www.gridforum.org/documents/GFD.177.pdf
http://www.gridforum.org/documents/GFD.177.pdf
http://picard.sourceforge.net

[32] L. Pireddu, S. Leo, and G. Zanetti. Mapreducing a genomic sequencing workflow. In Proceedings
of the second international workshop on MapReduce and its applications, MapReduce ’11, pages
67–74, New York, NY, USA, 2011. ACM.

[33] L. Pireddu, S. Leo, and G. Zanetti. SEAL: a distributed short read mapping and duplicate
removal tool. Bioinformatics (Oxford, England), 27(15):2159–2160, 2011.

[34] Redis. http://redis.io/, 2011.

[35] M. Romanus, P. Mantha, M. McKenzie, T. Bishop, A. Merzky, Y. E. Khamra, and S. Jha.
The Anatomy of Successful ECSS Projects: Lessons of Supporting High-Throughput High-
Performance Ensembles on XSEDE, 2012. Submitted for XSEDE 2012 (HPDC12).

[36] SAGA BigJob. https://github.com/saga-project/BigJob/wiki, 2012.

[37] The 1000 Genomes Project Consortium. A map of human genome variation from population-
scale sequencing. Nature, 467:1061–1073, 2010.

[38] A. Thota, A. Luckow, and S. Jha. Efficient large-scale replica-exchange simulations on production
infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 369(1949):3318–3335, 2011.

[39] Z. Wang, M. Gerstein, and M. Snyder. RNA-seq : a revolutionary tool for transcriptomics. Nat.
Rev. Genet., 10(1):57–63, 2009.

[40] WebHDFS REST API. http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html, 2012.

[41] OSG: Open Science Grid. https://www.opensciencegrid.org/, 2012.

[42] ZeroMQ. http://www.zeromq.org/, 2011.

35

http://redis.io/
https://github.com/saga-project/BigJob/wiki
http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html
https://www.opensciencegrid.org/
http://www.zeromq.org/

APPENDIX (Permission to Reprint Publications)

Pilot-MapReduce: An Extensible and Flexible MapReduce
Implementation for Distributed Data

Pradeep Kumar Mantha
Center for Computation and

Technology
Louisiana State University

216 Johnston
Baton Rouge, LA

pmanth2@cct.lsu.edu

Andre Luckow
Center for Computation and

Technology
Louisiana State University

216 Johnston
Baton Rouge, LA

aluckow@cct.lsu.edu

Shantenu Jha
Center for Autonomic

Computing
Rutgers University

94 Brett Road
Piscataway, NJ

shantenu.jha@rutgers.edu

ABSTRACT
The volume and complexity of data that must be analyzed
in scientific applications is increasing exponentially. Often,
this data is distributed, thus e�cient processing of large
distributed datasets is required, whilst ideally not intro-
ducing fundamentally new programming models or meth-
ods. For example, extending MapReduce – a proven and
e↵ective programming model for processing large datasets –
to work more e↵ectively on distributed data and on di↵er-
ent infrastructure is desirable. MapReduce on distributed
data requires e↵ective distributed coordination of compu-
tation (map and reduce) and data, as well as distributed
data management (in particular the transfer of intermediate
data). We posit that this can be achieved with an e↵ective
and e�cient runtime environment and without refactoring
MapReduce itself. To address these requirements, we de-
sign and implement Pilot-MapReduce (PMR) – a flexible,
infrastructure-independent runtime environment for Map-
Reduce. PMR is based on Pilot abstractions for both com-
pute (Pilot-Jobs) and data (Pilot-Data): it utilizes Pilot-
Jobs to couple the map phase computation to the nearby
source data, and Pilot-Data to move intermediate data using
parallel data transfers to the reduce phase. We analyze the
e↵ectiveness of PMR on applications with di↵erent charac-
teristics (e. g. di↵erent volumes of intermediate and output
data). We investigate the performance of PMR with dis-
tributed data using a Word Count and a genome sequencing
application over di↵erent MapReduce configurations. Our
experimental evaluations show that the Pilot abstractions
are powerful abstractions for distributed data: PMR can
lower the execution time on distributed clusters and that it
provides the desired flexibility in the deployment and con-
figuration of MapReduce runs to address specific application
characteristics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MapReduce’12, June 18-19, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1343-8/12/06 ...$10.00.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming-Distributed pro-
gramming/parallel programming

General Terms
Design, Experimentation, Performance

Keywords
MapReduce, Distributed Computing, Pilot Job and Data,
Simple API for Grid Applications (SAGA), Genome Se-
quence Alignment, BWA

1. INTRODUCTION
There are various challenges associated with processing of

data at extreme scales: which has become a critical factor in
many science disciplines, e. g. in the areas of fusion energy
(ITER), bioinformatics (metagenomics), climate (Earth Sys-
tem Grid), and astronomy (LSST) [13]. The volumes of
data produced by these scientific applications is increasing
rapidly, driven by advanced technologies (e. g. increasing
compute capacity and higher resolution sensors) and de-
creasing costs for computation, data acquisition and stor-
age [11]. The number of applications that either currently
utilize, or need to utilize large volumes of potentially dis-
tributed data is immense. The challenges faced by these ap-
plications are interoperability, e�ciently managing compute
tasks, and moving data to the scheduled compute location.

Processing large volumes of data is a challenging task.
MapReduce is an e↵ective programming model for address-
ing this challenge. MapReduce [5] as originally developed by
Google aims to address the big data problem by providing
an easy-to-use abstraction for parallel data processing. The
most prominent framework for doing MapReduce computa-
tions is Apache Hadoop [1]. However, there are limitations
to the current MR implementations: (i) They lack a modu-
lar architecture, (ii) are tied to specific infrastructure, e. g.
Hadoop relies on the Hadoop File System (HDFS), and (iii)
do not provide e�cient support for dynamic and processing
distributed data, e. g. Hadoop is designed for cluster/local
environment, but not for a high degree of distribution.

Pilot abstractions enable the clean separation of resource
management concerns and application/frameworks. In par-
ticular, Pilot-Jobs have been notable in their ability to man-
age large numbers of compute units across multiple high
performance clusters, providing decoupling application-level

36

7/9/12 Gmail ‑ Permission to reuse the MapReduce2012 publication.

1/1https://mail.google.com/mail/u/0/?ui=2&ik=0863f827de&view=pt&search=inbox&msg=1386a9a46c9a8a…

pradeep kumar Mantha <pradeepm66@gmail.com>

Permission to reuse the MapReduce2012 publication.
Simon Delamare <simon.delamare@inria.fr> Mon, Jul 9, 2012 at 3:18 AM
ReplyTo: simon.delamare@enslyon.fr
To: pradeep kumar Mantha <pmanth2@cct.lsu.edu>
Cc: Shantenu Jha <sjha@cct.lsu.edu>

Le mercredi 04 juillet 2012 à 01:08 0600, pradeep kumar Mantha a
écrit :
> Hi!
>
> I am Pradeep Mantha the primary author of publication "Pradeep Mantha,
> Andre Luckow and Shantenu Jha. PilotMapReduce: An Extensible and
> Flexible MapReduce Implementation for Distributed Data" submitted to
> MapReduce 2012 workshop.
>
> My master's thesis is completely based on the above publication, and
> reused most of the components from paper in my thesis document. As a
> part of my thesis authorization, I need permission from the
> publisher's to reuse the publication. The thesis, once authorized will
> be posted on a electronic digital library, which is publicly
> accessible.
>
> But my grad school is concerned about the part of copyright statement
> of publishers "To copy otherwise, to republish, to post on servers
> or to redistribute to lists, requires prior specific permission and/or
> a fee".
>
> Could you suggest a way or give permission to reuse the publication
> for my thesis.
>
> thanks
> pradeep

Hello Pradeep,

No problem from our side if you reuse your publication in your thesis.

Regards,
Simon

37

Vita

Pradeep Kumar Mantha is a computer science graduate student in the Louisiana State University. His
interests lie in the high-performance grid, distributed and data intensive computing, Next Generation
Sequencing analytics fields. He previously received a bachelor’s degree from Jawaharlal Nehru and
Technological University, Hyderabad, India.

Publications

1. Pradeep Mantha, Andre Luckow, and Shantenu Jha. Pilot- MapReduce: An extensible and flexible
MapReduce implementation for distributed data, 2012. Accepted for MapReduce workshop 2012.

2. Pradeep Mantha, Nayong Kim, Joohyun Kim, Andre Luckow, Shantenu Jha, Understanding
MapReduce-based Next-Generation Sequencing Alignment on Distributed Cyber-infrastructure. Ac-
cepted for ECMLS workshop 2012.

3. Andre Luckow, Mark Santcroos, Ole Weidner, Andre Merzky, Pradeep Mantha, Shantenu Jha. P*:
A Model of Pilot-Abstractions - Under Review submitted for SC 2012.

4. Melissa Romanus, Pradeep Mantha, Matt McKenzie, Tom Bishop, Andre Merzky, Yaakoub El
Khamra, Shantenu Jha. The Anatomy of Successful ECSS Projects: Lessons of Supporting High-
Throughput High-Performance Ensembles on XSEDE - Under Review submitted for XSEDE 2012.

5. Andre Luckow, Andre Merzky, Pradeep Mantha, Melissa Romanus, Ole Weidner, Yaakoub El
Khamra, Shantenu Jha. Introduction to BigJob – A SAGA-based Interoperable, Extensible and
Scalable Pilot-Job for XSEDE. Tutorial Accepted for XSEDE 2012

Other Achievements

Invited for Open Science Grid 2012 summer user school and XSEDE 2012 conferences.

38

	Louisiana State University
	LSU Digital Commons
	2012

	An extensible and scalable Pilot-MapReduce framework for data intensive applications on distributed cyberinfrastructure
	Pradeep Kumar Mantha
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter 1: Introduction
	Chapter 2: Pilot Abstractions
	2.1 Distributed Cyber-Infrastructure
	2.2 Traditional compute and data management
	2.3 Pilot abstractions for compute and data
	2.3.1 BigJob - SAGA Pilot Job
	2.3.2 BigData - SAGA Pilot Data
	2.3.3 Pilot API and Affinities

	2.4 Scalability and Usability of Pilot Abstractions
	2.5 Pilot-MapReduce – A Pilot-based MapReduce Implementation
	2.5.1 Architecture of Pilot-MapReduce
	2.5.2 Compute and Data Management
	2.5.3 Distributed and Hierarchical MapReduce

	Chapter 3: Evaluation of Pilot-MapReduce
	3.1 MapReduce-Based Applications
	3.1.1 Word Count
	3.1.2 Genome Sequencing (GS)
	3.1.3 Short Read Alignment
	3.1.4 Post-Alignment

	3.2 Characterizing Word Count
	3.3 Characterizing Genome Sequencing
	3.4 Distributed and Hierarchical MapReduce
	3.4.1 Word Count
	3.4.2 Genome Sequencing
	3.4.3 Extensibility and Parallelism

	Chapter 4: Workflow Management Using BigJob on XSEDE and LONI
	4.1 Extended Collaborative Support Service (ECSS) on XSEDE
	4.1.1 Developments and Testing

	4.2 Workflow Execution on LONI

	Chapter 5: Conclusions and Future Work
	Bibliography
	APPENDIX (Permission to Reprint Publications)
	Vita

