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Abstract

We combine static analysis techniques with model-based deductive verification using SMT solvers

to provide a framework that, given an analysis aspect of the source code, automatically generates

an analyzer capable of inferring information about that aspect.

The analyzer is generated by translating the collecting semantics of a program to a formula

in first order logic over multiple underlying theories. We import the semantics of the API invoca-

tions as first order logic assertions. These assertions constitute the models used by the analyzer.

Logical specification of the desired program behavior is incorporated as a first order logic for-

mula. An SMT-LIB solver treats the combined formula as a constraint and solves it. The solved

form can be used to identify logical and security errors in embedded programs. We have used

this framework to analyze Android applications and MATLAB code.

We also report the formal verification of the conformance of the open source Netgear WNR3500L

wireless router firmware implementation to the RFC 2131. Formal verification of a software sys-

tem is essential for its deployment in mission-critical environments. The specifications for the

development of routers are provided by RFCs that are only described informally in English. It is

prudential to ensure that a router firmware conforms to its corresponding RFC before it can be de-

ployed for managing networks. The formal verification demonstrates the usefulness of inductive

types and higher-order logic in software certification.

vii



Chapter 1

Introduction

Software programs can be uncertified and may contain malicious code or vulnerabilities that can

be exploited to leak confidential data, perform pernicious activities, and destroy or modify valu-

able information. Hence, the correctness and reliability of these systems software have become

issues of utmost importance. In this chapter, we first give a brief introduction on program anal-

ysis and formal verification techniques. Then, we describe our motivation and objectives of this

dissertation.

1.1 Program Analysis

Software systems routinely manage mission-critical activities in organizations that rely on de-

pendable, situation-aware, and timely delivery of classified or sensitive information. Information

flows in such enterprises are processed by custom-built, open-source, software programs. These

software programs can be uncertified and may contain malicious code or vulnerabilities that can

be exploited by an insider or an outsider to leak confidential data, misclassify documents, per-

form pernicious activities, and destroy or modify valuable information. Hence, the correctness

and reliability of software driving these systems have become issues of utmost importance.

1



Application-independent errors in software systems like buffer overflows and null derefer-

ences can be exploited by malicious applications to create security holes through which confi-

dential data can be leaked. Many of these bugs are not detected until much later when catastrophic

effects are already visible [83] making difficult the task of runtime fault handling mechanisms

for ensuring recovery. A more important concern is the lack of proper tool support for detecting

logical application-dependent errors in programs. An examination of a list of well known inci-

dents resulting from software glitches reveals that application-dependent logical errors were the

causes of most [20] [11] [8] (e.g., the USS Yorktown breakdown and the failure of the Patriot

missile). Many of these logical errors were deep (as opposed to simple typos) and are difficult to

detect using state-of-the-art testing techniques alone [32].

While model checking techniques [39] have been able to uncover deep logical errors in hard-

ware [34], the success has not been carried forward to the domain of software. One reason for

the lack of success of software model checking is the infinite state nature of software. Most

well-known program analysis tools (e.g., Uno [58], Splint and LCLint [48], Polyspace [16],

Codesurfer [26], PREfix and PREfast [49], and ESP [44]) perform lightweight data flow anal-

ysis. Tools like CCured [72] analyze programs to determine a set of dynamic checks that can

prevent memory leaks. Logical errors such as those reported in [20] [11] [8] evade such ana-

lyzers. On the other end of the spectrum, tools such as CMC [71], MAGIC [34], CBMC [40],

and SLAM [28] perform finite state model checking of programs. These tools first generate a

finite model from the source code using predicate abstraction techniques (while SLAM, CBMC,

and MAGIC generate the model a priori, CMC generates the model on the fly). Analysis is then

carried out on this finite model (similar to hardware model checking). Once verified, this finite
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model is discarded; the effort spent developing it is wasted. Furthermore, it is difficult to relate

the analysis (counterexamples) obtained at the abstraction level of the finite state model to the

source code. Finite state analyses (as in CBMC, SLAM and MAGIC) tend to lose information

before the analysis even starts. They do not take into account that in many cases infinite state

analysis might terminate in a reasonable amount of time without losing any information.

Program analysis tools like Coverity [5] perform path simulation and interprocedural dataflow

analysis through every method in the code for C, C++, Java, and C]. However, typically the

source code is unavailable for a large number of methods; hence such techniques will not be able

to deal with deep security flaws resulting from subtle interactions of these methods with the rest

of the code. Tools like JavaPathFinder [75] simulate Java code up to a certain depth and hence

are likely to miss security flaws that are usually deep.

1.2 Formal Verification and Certification

Formal certification of software has been the holy grail of formal methods and verification re-

search for several decades [21]. While this has been the original aim of the field of formal meth-

ods, and a tremendous amount of effort has been invested in creating practical tools for proving

the correctness of software systems since the 1970’s, in the initial years, success was limited to

deductive verification of toy examples with a few lines of code [68]. Despite the fact that formal

verification techniques like theorem proving are routinely being used in hardware, their failure to

scale in case of software has prevented the evolution of a formal codesign framework. The lack

of practicality has led to the effort getting diverted to developing techniques and tools that can

detect errors in models of software systems [39] rather than formally verifying them. Recently
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however, there has been a tremendous amount of interest in formally certifying software that has

been spurred by several unprecedented successes in this area [67, 63, 65]. These successes have

been achieved by leveraging the accumulated knowledge and the tools that have been developed

in the formal methods community over the past three decades and applying them to ensure high

assurance in significantly large software systems.

1.3 Motivation and Objective

Google Android provides an open source customizable platform for Google Android mobile

phones. Android applications are written in the Java programming language. Since applications

that run on a phone can be written by any developer, there is always a possibility that program-

ming flaws introduced inadvertently or maliciously can be exploited by malicious individuals.

For example, a malicious individual can inject code that will enable an application downloaded

on a phone to make calls to an international number exploding the phone bill to thousands of

dollars.

While Androids security model can prevent an application, e.g., from making phone calls,

once an application has been given that permission, the security model is not fine-grained enough

to prevent all malicious activity. Hackers also may be able to use malicious code to remotely con-

trol the phone and use the private data stored in it for malicious purposes. A recent vulnerability

related to Android involves using a malformed SMS to cause a Java ArrayIndexOutOfBounds

exception resulting in the phone getting disconnected from the network. Uncertified programs

running on the Android platform may contain vulnerabilities that can be exploited to leak confi-

dential data, misclassify documents, and destroy or modify valuable information.
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We combine static analysis techniques with model-based deductive verification using SMT

solvers to provide a framework that, given an analysis aspect of the source code, automatically

generates an analyzer capable of inferring information about that aspect. A model-based tech-

nique is necessary since for many of the APIs invoked as well as the objects instantiated, the

(source) code is not available. The only information that the analyzer can get about the properties

of these artifacts is from their models. The analyzer is generated by translating the collecting se-

mantics of a program to a “marked” formula in first order logic over multiple underlying theories.

The “marking” can be thought of as a set of holes or contexts corresponding to the “uninterpreted”

APIs invoked in the program. Just as a program imports packages and uses methods from classes

in those packages, we import the semantics of the API invocations as first order logic assertions.

These assertions constitute the models used by the analyzer. Logical specification of the desired

program behavior (rather its negation) is incorporated as a first order logic formula. An SMT-LIB

formula solver treats the combined formula as a “constraint” and “solves” it. The “solved form”

can be used to identify logical (security) errors in Java (Android) programs.

The Netgear WNR3500L router is the first product, encouraged in industry, for which cus-

tomers can choose between the manufacturer’s router firmware and several open source alter-

natives. Netgear has come to recognize that there are many customers who transform low-cost

router equipment into high-end network devices by using advanced firmware. They openly sup-

port and encourage people to publish their updated firmware [12]. It is essential to ensure that a

router firmware contributed by the open source community conforms to its corresponding RFC

before it can be deployed for managing mission-critical networks.
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In the Netgear forums, users complained that the Netgear WNR3500L wireless router has

problems such as frequently getting IP address allocation errors, etc., it is clear from reading

the RFC that such malfunctions should not have occurred if the RFC was strictly adhered to.

This served as our principal motivation in attempting to formally verify the conformance of the

implementation with respect to the RFC.

We report the formal verification of the conformance of the open source C implementation

of the Netgear WNR3500L wireless router firmware to the RFC 2131 [24] based on which it is

designed. The C source code of the router firmware consists of 2580 lines of C code. The formal

verification effort led to the discovery of several possible problems in the implementation. We

have used the Coq proof assistant extensively in this verification effort.
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Chapter 2

Related Works

Techniques for software verification and validation fall into three main categories. The first

category involves informal methods such as software testing and monitoring. Such techniques

scale well; this is by far the most used technique in practice to validate software systems. Testing

accounts for forty to sixty percent of the development effort [32] [82]. Traditional software

testing methods [41], however, are too ad hoc and do not allow for formal specification and

verification of high-level logical properties that a system needs to satisfy. In the realm of safety

critical software where exponential blow up in the number of possible situations to be dealt

with is inevitable, traditional testing techniques can hardly be used to provide any amount of

confidence. The second category of techniques for software verification and validation involves

formal methods. Traditional formal methods such as model checking [39] and theorem proving

[35] are usually too heavy and rarely can be used in practice without considerable manual effort.

Model checking is an automatic approach to verification, mainly successful when dealing

with finite state systems. It not only suffers from the infamous state explosion problem but also

requires construction of a model of the software. Such a construction effort not only requires skill

and ingenuity in model building but also a deep understanding of the operational underpinnings

of the target software. Theorem proving is not only labor intensive but also requires considerable

skill in formal logic.
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The third category of techniques for software verification and validation are static analysis

[73] and abstract interpretation [42]. Static analysis refers to the technique(s) for automatically

inferring a program’s behavior at compile time. While static analysis tools have met with tremen-

dous practical success and have been routinely integrated with state of the art compilers, such

tools can only detect shallow and simple errors due to their lack of deductive power. For exam-

ple, traditional static analysis tools cannot detect the presence of deadlocks or the violation of

mutual exclusion in concurrent programs. Abstract interpretation is a technique for collecting,

comparing, and combining the semantics of programs. It has been successfully used to infer run

time properties of a program that can be used for program optimization. The next few paragraphs

review the most successful approaches to program analysis.

2.1 Static Code Analysis

In recent years, much work has been done on static analysis of software. Some static analysis

tools, such as Uno [58], Splint [48], Polyspace [16], Codesurfer [26], PREfix and PREfast [49],

ESP [44], and PAG [69] perform lightweight data flow analysis. Coverity [56] performs data

flow analysis as directed by checkers written in MetaL, a language designed to encode check-

ing automata. Astree is a static program analyzer that is aimed at proving absence of runtime

errors in embedded programs. Astree can handle only a “safe” subset of C, rather than the full

C language. Also, it applies only to particular runtime errors rather than general properties of

programs. Halbwachs et al [55] use linear relation analysis for discovering invariant linear in-

equalities among the numerical variables of a program. Their techniques have been used to

validate (e.g., analyze delays) in synchronous programs written in the language Lustre. Several
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abstractions have been considered to provide an approximate (conservative) answer to the vali-

dation problem such as widenings, convex approximations and Cartesian factoring [54]. These

approximations are implemented using the polka [55] polyhedral library. Alur et al [25] have

used predicate abstraction for analyzing hybrid systems. In this technique, a finite abstraction

of a hybrid automaton is created a priori using the initial predicates provided by the user. Set

based techniques for detecting races in relay ladder programmable logic controllers have been

described in [23]. Context-sensitive analysis using deductive database techniques [64] are simi-

lar to ours. However, this technique alone is insufficient to achieve the goals we aim for due to the

limited expressiveness of Datalog. Typed assembly languages help detect security flaws in code.

However, it is difficult to provide any insight to the developer in the event of such detection.

Tools like SofCheck Inspector [19] inspect every method of Java programs and compute their

pre and post conditions. However, for many packages source code is not available. Findbugs

[27] analyzes Java byte code and detects bugs due to common programming mistakes based on

bug patterns. However, it is difficult to provide any meaningful insight to the developer from

bugs found at the byte code level. Besides, it is difficult to provide bug patterns for deep logical

errors. The program analysis tool that uses an approach closest to ours is Fortify’s [7] source

code analysis engine based on verification condition generation. However, unlike our approach,

their tool cannot automatically generate a specialized analyzer for a particular aspect. Boon [79]

uses range analysis techniques to check for array bounds violations in C programs. However, it

is not able to deal with “high level” languages like Java where typically a program is a chain of

method invocations. Chaudhuri [36] describes a language-based approach for ensuring security

in the Android platform. However, his type-based analyzer provides a coarse-grained analysis, is
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not directed towards Java application code. Fuchs, Chaudhuri, and Foster [52] provide a program

analysis framework for Android applications. They use a core calculus for modeling Android

applications. However, it is difficult to incorporate deductive techniques into their framework

for deep logical analysis. Klocwork provides a static analysis framework for Java intended for

the Android platform [10]. However, unlike the presented framework, their framework is not

model based. Kirin [47] provides a policy-driven lightweight security certification service that

can certify Android apps before they are downloaded by examining the manifest. In contrast

our framework statically analyzes source code and tries to infer “deep” vulnerabilities. Jif [9] is

a tool for guaranteeing noninterference properties in Java programs. In contrast our framework

uses model-based deductive static verification to uncover bugs in Android apps.

Techniques for system verification and validation fall into three main categories. The first cat-

egory involves informal methods such as testing and monitoring [32] [82]. Such techniques scale

well; they are extensively used in practice to validate systems. Traditional testing methods [41],

however, are too ad hoc and do not allow for formal specification and verification of high-level

logical properties that a system needs to satisfy. In the realm of mission-critical systems where

exponential blow up in the number of possible situations to be dealt with is inevitable, traditional

testing techniques can hardly be used to provide any amount of confidence. The second cate-

gory of techniques for verification and validation involves formal methods. Traditional formal

methods such as model checking [39] and theorem proving [35] are usually too heavyweight and

rarely can be used in practice without considerable manual effort.

Model checking is an automatic approach to verification, mainly successful when dealing

with finite state systems. It not only suffers from the infamous state explosion problem but also

10



requires construction of a model of the system. Such a construction effort not only requires skill

and ingenuity in model building but also a deep understanding of the operational semantics of

the target system. Theorem proving approaches are not only labor intensive but also requires

considerable skill in formal logic.

The third category of techniques for software verification and validation are static analysis

[73] and abstract interpretation [42]. Static analysis refers to the technique(s) for automatically

inferring a program’s behavior at compile time. While static analysis tools have met with tremen-

dous practical success and have been routinely integrated with state of the art compilers, such

tools can only detect shallow and simple errors due to their lack of deductive power. For exam-

ple, traditional static analysis tools cannot detect the presence of deadlocks or the violation of

mutual exclusion in concurrent programs. Abstract interpretation is a technique for collecting,

analyzing, and comparing the semantics of programs. It has been successful in analyzing proper-

ties of complex programs [42]. The next few paragraphs review the most successful approaches

to program analysis.

2.2 Proof Assistants and Theorem Provers

Many automated proof tools exist based on different forms of higher-order logic such as HOL

[84], Coq [4], PVS [17], Isabelle [74], ACL2 [62], and Mizar [53]. Different engines implement

different proof systems and provide different input languages for specifying theories and tactics.

Coq is a proof assistant for the Calculus of Inductive Constructions, a higher order logical

framework that includes dependent types and a primitive notation for inductive types [50]. It

allows interactive construction of formal proofs from higher order theories as well as creation

11



of provably correct functional programs consistent with their specifications [4]. Coq has been

written in the OCaml programming language.

HOL implements a classical higher order logic based on Church’s simple theory of types [38]

extended with polymorphic types and inference rules for definition. In HOL, specifications are

typed in the sense that terms have types, where types can be constants, function types, compound

types, or type variables for polymorphism [84].

The PVS proof checker provides a collection of primitive inference procedures including

propositional and quantifier rules, induction, rewriting, data and predicate abstraction, and sym-

bolic model checking. Users can combine these primitive inferences with user-defined proce-

dures to yield higher-level proof strategies. PVS includes a BDD-based decision procedure for

the relational mu-calculus and thereby provides an experimental integration between theorem

proving and CTL model checking [17].

Like HOL, Isabelle allows writing specifications in the constructive portion of Church’s sim-

ple theory of types. It implements a higher-order flavor of resolution. Automated proof genera-

tion techniques like tableaux are also built into Isabelle.

The Mizar proof checker was aimed at formalizing mathematics and for machine-assisted

checking of mathematical proofs. ACL2 is an automated theorem prover that implements quantifier-

free first order logic. The Nuprl system [31] provides a logical framework based on constructive

type theory.

Given such a plethora of formal verification tools, the choice of an appropriate proof assistant

for the given verification problem is a difficult task. We believe that using an interactive theorem

prover for verifying a software system provides the prover/developer with significant insights into
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the system that can be used to uncover defects as well as conceptualize new ways to implement

the system. It is difficult without these insights to analyze the system behavior for bugs if the

proof fails. Besides the insight gained can facilitate the creation of proper abstractions/refine-

ments that can greatly simplify the verification process.

Most of the proof tools mentioned above have been used for significant industrial strength

case studies. We have already stated why we would prefer an interactive proof tool rather than

a completely automated one like ACL2 for verifying a system such as router firmware. While

other interactive proof tools like HOL, Isabelle, and PVS are good candidates, Coq provides an

OCaml-based specification language that enables writing modular specifications. Besides it is

easy to reuse proof components in Coq. In addition, like [37], we prefer Coq in our verification

effort for the mature proof environment that it provides.

Model checking techniques [39] have been used to uncover bugs in significantly large soft-

ware designs [29]. However the goal of our effort is not only to uncover non-conformance errors

but also to prove the formal correctness of the implementation with respect to the appropriate

RFC. Static analysis techniques [73] have been used to uncover application-independent errors

(like array bounds violation, buffer overflow, etc.) in C programs. In this verification effort we

are concerned with application-dependent errors rather than application-independent ones.

2.3 Software Certification

In [63], seL4, a member of the L4 microkernel, is the first OS kernel that is fully formally verified

for functional correctness. The kernel comprises 8,700 lines of C code and 600 lines of assembler.

The authors report the construction of a Haskell prototype, which is proved by a refinement proof
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in Isabelle/HOL, to model the implementation of the kernel design, then manually re-implement

the model in the C programming language.

A compiler needs to determine an appropriate memory layout to store a data structure. Since

the semantics of the C++ language gives a flexibility for this memory layout, many optimized

object layout algorithms have been proposed. Ramananandro, Dos Reis, and Leroy [77] provide

a specific C++ object layout algorithm and prove its correctness against the operational semantics

of C++ multiple inheritance as formalized by [81].

Malecha et. al. [67] describe the implementation of a lightweight, fully verified relational

database management system. They construct a complete specification of the relational algebra

model for defining schemas, relations, and query operation. The SQL abstract syntax and deno-

tational specification are provided. They also implement a B+ tree for insertion and iteration with

a run-time cost model and proved that certain transformations do not increase the runtime cost.

Leroy reports the development of a formally certified compiler for a C-like imperative lan-

guage with the PowerPC assembly code as the target [65]. The formal verification of this com-

piler proves that safety properties satisfied by the program source code also hold for the compiled

code.

In [45], Deng et.al. proposed a general formalization of self-stabilizing population protocols.

They proved that the leader-election in this protocol is self-stabilizing for a network of arbitrarily

large size.

In [70], Moller translated an informal specification of an asynchronous message router into

the formal language of the modal µ−calculus. They then described the implementation of a

router in the Calculus of Communicating Systems (CCS). They used the Concurrency Workbench
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to verify that the CCS term corresponding to the router implementation satisfied the µ−calculus

specification. The commercial router as well as its specification that we consider here are an order

of magnitude more complex than the one considered in [70]. Hence a powerful proof assistant

such as Coq is necessary for performing such a verification task.

In [61], the authors describe a Hoare-like logic for specifying and verifying protocol layers in

communication networks. The possibility of using theorem provers for Hoare-logic to formally

verify existing implementations of protocols or build provably correct implementations of pro-

tocols is mentioned in the conclusion of this work, though not attempted in the paper itself. In

[66], the authors describe the development of a provably correct group communication system

called Ensemble using the Nuprl reasoning system. Zave [85] describes a formal framework for

describing patterns of identifier binding during communication. In [80], the authors describe a

declarative framework for rapid prototyping of network protocols. A theorem prover is used to

formally verify declarative specifications of network protocols. In contrast with the above works,

we report the formal verification of the conformance of the industrial strength open source Net-

gear WNR3500L wireless router firmware to the RFC 2131 [24] based on which it is designed.
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Chapter 3

Model-Based Static Source Code Analysis
of Java Programs

We combine static analysis techniques with model-based deductive verification using SMT solvers

to provide a framework that, given an analysis aspect of the source code, automatically gener-

ates an analyzer capable of inferring information about that aspect. The analyzer is generated

by translating the collecting semantics of a program to a “marked” formula in first order logic

over multiple underlying theories. The “marking” can be thought of as a set of holes or contexts

corresponding to the “uninterpreted” APIs invoked in the program. Just as a program imports

packages and uses methods from classes in those packages, we import the semantics of the API

invocations as first order logic assertions. These assertions constitute the models used by the

analyzer. Logical specification of the desired program behavior (rather its negation) is incorpo-

rated as a first order logic formula. An SMT-LIB formula solver treats the combined formula as

a “constraint” and “solves” it. The “solved form” can be used to identify logical (security) errors

in Java (Android) programs. Security properties of Android are represented as constraints and

the analysis aims to show that these constraints are respected.
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3.1 Overview of the Android Platform

Android is a software stack for mobile devices that includes an operating system, middleware and

key applications. A central feature of the Android system is that an application can make use of

elements of other applications. To accomplish this, the system needs to start a process when any

part of an application is needed. Android doesn’t have a single entry point (no main() function).

They have essential components that the system can instantiate and run as needed. The four main

types of components are

1. Activity: an application component that provides a user interface with which users can

interact with the device, such as dial the phone, take a photo or view a map. Each Android

application needs to contain at least one activity.

2. Service: an application component that can perform long-running computations in the

background and does not provide any user interface. For example, a service might han-

dle network transactions, play music, perform file I/O, or interact with a content provider

from the background.

3. Broadcast receivers: a component that responds to system-wide broadcast announcements.

For example, messages may be send to all applications that the system language setting has

been changed

4. Content providers: application components which are used to store and retrieve data and

make it accessible to all applications.
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Android uses intent to activate the first 3 components. For activities and services, the intent is the

pair: <action name, data>, which indicates the predefined action that the receiver needs to take

and the data to process. In our program analysis framework, this intent object is our keyword, we

use this intent object to perform data flow analysis and function call analysis.

3.1.1 Security Mechanism

The Android architecture supports building applications with phone features and protecting users

by minimizing the consequences of bugs and malicious software. In Android, an application

can share its data and functionality with other applications. These accesses must be controlled

carefully for security. Here are some key access control mechanisms in Android.

• Isolation: The two isolation postulates used in the Android platform are

1. Each Android application runs in its own Linux process.

2. Each application has its own virtual machine, runs in isolation from the code of all

other application.

• Permissions: Any application needs explicit permissions to access other applications. These

permissions are set at install time.

• Signatures: An Android application must be signed with a certificate whose private key is

held by the developer.

The process isolation alleviates the need for complicated policy configuration files and gives

applications the flexibility to use native code without compromising security or granting the

application additional rights.
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Android permissions are rights given to applications to allow them to perform functions like

take pictures, use the GPS, or make phone calls. When applications are installed, they are given

a unique UID, and each application always runs under that UID on that particular device. The

UID of an application is used to protect its data sharing with other applications.

Android requires users to validate the permission list of programs that can do dangerous

things like:

• directly dial calls;

• disclose user’s private data, such as access some local files;

• destroy address books, email, etc.

Consider the following code that tries to call a phone number input by a user

p u b l i c c l a s s T e s t ex tends A c t i v i t y {
p u b l i c vo id o n C r e a t e

( Bundle s a v e d I n s t a n c e S t a t e ) {
super . o n C r e a t e ( s a v e d I n s t a n c e S t a t e ) ;
s e t C o n t e n t V i e w (R . l a y o u t . main ) ;
f i n a l E d i t T e x t phoneNumber

= ( E d i t T e x t ) f indViewById
(R . i d . phoneNumber ) ;

f i n a l I n t e n t C a l l I n t e n t = new I n t e n t
( I n t e n t . ACTION CALL ,

Ur i . p a r s e ( ” t e l : ”
+ phoneNumber . g e t T e x t ( ) ) ) ;

c a l l B u t t o n . s e t O n C l i c k L i s t e n e r
( new O n C l i c k L i s t e n e r ( ) {

p u b l i c vo id o n C l i c k ( View v ) {
s t a r t A c t i v i t y ( C a l l I n t e n t ) ;

}
} ) ;}}
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Figure 3.1: Android Runtime Error

Launching of this application results in the error shown in Figure 3.1.

The program constructs an Intent named CallIntent. Then it uses this intent to start

a new activity Intent.ACTION_CALL which will call a phone number input from the text

box phoneNumber. However this application will fail and crash the system because it has no

permission to perform this Intent.ACTION_CALL action.

Android uses manifest permissions to track what the user allows applications to do. An

application’s permissions are expressed in its Manifest.xml and the user agrees to them upon

installation.

Permissions must be associated with some goal that the user understands. For example, an

application needs the READ_CONTACTS permission to read the users address book. A contact

manager application needs the READ_CONTACTS permission. If an application requests too

few permissions; it is underprivileged and easy to detect. If an application requesting more

permissions than it needs; it is overprivileged. In overprivileged applications an attacker can

exploit the unnecessary permissions and takes control of the application.
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Figure 3.2: Setting Up Permission in Android SDK

3.1.2 Dalvik VM

Android uses Dalvik as the virtual machine to run the Java platform on mobile devices. Android

programs are compiled into .dex (Dalvik Executable) files, which are in turn zipped into a single

.apk (Android Package) file on the device. .dex files can be created by automatically translating

compiled applications written in the Java programming language.

Dalvik is optimized for low memory requirements, and is designed to allow multiple VM in-

stances to run at once, relying on the underlying operating system for process isolation, memory

management and threading support. Dalvik is not the standard Java Virtual Machine. The archi-

tecture is register-based. A tool called dx is used to convert Java .class files into the .dex format.

Multiple classes are included in a single .dex file. Duplicate strings and other constants used in

multiple class files are included only once in the .dex output to conserve space. Java bytecode

is also converted into an alternate instruction set used by the Dalvik VM. An uncompressed .dex

file is typically a few percent smaller in size than a compressed .jar derived from the same .class

files.
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3.1.3 Architecture of Our Model

Figure 4.1 shows the architecture of our model-based static analysis approach. The abstract

collecting semantics of Java programs are represented as “marked” constraints. The “marking”s

can be thought of as a set of holes or contexts corresponding to uninterpreted APIs, i.e., library

APIs whose semantics are not known. Just as a program imports packages and uses methods

from classes in those packages, we import the semantics of the API invocations as first order

logic assertions or constraints. These assertions are the models that are used to “unmark” the

abstract collecting semantics constraints, i.e., “filling in” the “holes” left by uninterpreted APIs.

Analysis aspects are specified as constraints. Basic constraint solving is done using a combination

of decision procedures provided by the Yices [46] constraint solver.

Figure 3.3: Architecture of Our Verification Framework for Java Programs

The key steps involved in our analysis framework are:

1. Verify the permissions of the Android APIs invoked in the Java source code based on the

Manifest.xml. The results of the permission verification are used to modify the models

of the APIs
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2. Generate abstract collecting semantics constraints from the Java source code,

3. Import models of uninterpreted methods and objects as assertions into the already gener-

ated constraints; uninterpreted methods/objects need to be annotated by the programmer;

annotation is needed since a particular method might be overridden by the developer and

hence importing its “conventional” model from a model library may result in unsoundness

of the analysis, and

4. Generate an analyzer by adding appropriate analysis “aspect” constraints,

5. Analyze by solving the constraints.

To carry out the four steps above, we describe the following technologies and tools that we

have developed following tools and use Stowaway [22] as our permission verification tool.

1. An engine for extracting constraints (collecting semantics) from Java programs,

2. An engine for importing model assertions into the extracted constraints,

3. A transformation scheme for weaving in the analysis aspects into the body of the extracted

constraints

4. An engine combining decision procedures for solving constraints.

3.1.4 Permission Verification

In this section, we discuss how we verify whether an application has the correct permission

settings. In Table 3.1, Android permissions are categorized into different protection levels [33]

[78].
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Table 3.1: Android Permission Protection Levels

Normal
Permissions for applications whose consequences are minor such as VI-
BRATE which lets applications vibrate the device.

Dangerous

Permissions, such as WRITE SETTINGS or SEND SMS are danger-
ous since they could be used to reconfigure the device or incur tolls.
Android needs to warn users about the need for these permissions on
installation.

Signature and System
These permissions can only be accessed by other applications signed
with the same keys as this program. This protection is to help integrate
system builds and not provided by developers.

Permissions are defined in the Mainifest.xml file. Our framework will examine this file

and retrieve the permission information. We build a required permission list by analyzing the

APIs invoked in a program and compare it with the permission information P retrieved from the

Mainifest.xml file. Consider the following example

p u b l i c c l a s s C a l l I n t e n d s ex tends A c t i v i t y {
p u b l i c vo id o n C r e a t e ( Bundle s a v e d I n s t a n c e S t a t e ) {

super . o n C r e a t e ( s a v e d I n s t a n c e S t a t e ) ;
s e t C o n t e n t V i e w (R . l a y o u t . main ) ;

}
p u b l i c vo id c a l l I n t e n t ( View view ) {

I n t e n t i n t e n t = n u l l ;
i n t e n t = new I n t e n t ( I n t e n t . ACTION CALL ,

Ur i . p a r s e ( ” t e l : ( + 4 9 ) 12345789 ” ) ) ;
s t a r t A c t i v i t y ( i n t e n t ) ;
}

p u b l i c vo id o n A c t i v i t y R e s u l t ( i n t r eques tCode ,
i n t r e s u l t C o d e , I n t e n t d a t a ) {

i f ( r e s u l t C o d e == A c t i v i t y . RESULT OK && r e q u e s t C o d e == 0) {
S t r i n g r e s u l t = d a t a . toURI ( ) ;
T o a s t . makeText ( t h i s , r e s u l t , T o a s t . LENGTH LONG) ;

}
}

}

24



This application tries to call a phone number (+49)12345789, which is hard coded in the

program. To process this action, the application needs a CALL_PHONE permission, for example:

<uses-permission android:name="android.permission.CALL_PRIVILEGED"/>

<uses-permission android:name="android.permission.CALL_PHONE"/>

We map the Android API calls to the required permission list using Stowaway [22]. If every

required permission is provided we consider that the application has no permission violation.

Otherwise, any API calls which have no appropriate permissions provided will be asserted as

returning -1 in the analysis that follows.

In this simple example, we cannot find the CALL_PHONE permission from Mainifest.xml.

So there is a permission underprivilege error.

3.1.5 Constraints, SMT-LIB Solvers, and Satisfiability

Constraints are special formulas of first order logic [51]. A constraint system formally specifies

the syntax and semantics of constraints. The following definitions are based on [57] and [60].

Definition 1 (Constraint System). A constraint system is a tuple (Σ, D,CT,C), where

• Σ, the signature, is a finite set of function and relation symbols including the constants true

and false and the binary relation symbol = for equality.

• D, the domain, is a set together with an interpretation of the function and relation symbols

in Σ.

• CT , the constraint theory, is a non-empty set of first order logic formulas (axioms) over

the signature Σ.
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• C, specifying the syntax of the constraints, is the set of all (allowed) first order logic formu-

las closed under existential quantification over the signature Σ that contains the constraints

true, false, and =.

CT defines the semantics and C the syntax of the constraint system.

A constraint solver implements an algorithm for checking satisfiability/consistency of a set

of constraints using the constraint theory, i.e., determining if there exists an assignment of the

variables that satisfies the constraints. A solver uses axioms of the constraint theory together

with simplification rules as rewrite rules to transform the constraints to a “normal” form called

the “solved form”. The final constraint that results from such a computation is called the answer.

Definition 2 (Satisfiability Condition for Constraint Solver). For a set of constraints C a con-

straint solver returns false if C is inconsistent.

For example, X > Y
∧
Y > X is inconsistent, and X > Y

∧
Y > X is consistent. A solver

implements a decision procedure for checking satisfiability of constraints.

3.2 SMT-LIB and Yices

Satisfiability Modulo Theories (SMT) libraries [30] provide a framework for checking the sat-

isfiability of first-order formulas with some background logical theories. SMT-LIB is an SMT

library that provides a standard description of the background theories used in SMT systems; it

gives a common input and output languages for SMT formula solvers.

An SMT-LIB formula instance is a formula in first-order logic in SMT-LIB syntax, where

some function and predicate symbols have additional interpretations, and SMT formula satisfia-
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bility is the problem of determining whether such a formula is satisfiable. We can consider SMT

satisfiability as an instance of the Boolean satisfiability problem (SAT) in which some of the bi-

nary variables are replaced by predicates over a suitable set of variables that range over different

domains. The predicates include linear inequalities, such as 3x+2y−z > 0 or equalities involv-

ing uninterpreted functions; for example, f(f(u, v), v) = f(u, v) where f is some unspecified

function of two unspecified arguments.

The predicates are classified according to the theory they belong to. For instance, linear

inequalities over real variables are evaluated using the rules of the theory of linear real arithmetic,

some predicates involving uninterpreted terms and function symbols are evaluated using the rules

of the theory of uninterpreted functions with equality. Other theories include the theories of arrays

and list structures, and the theory of bit vectors.

Yices [46] is an efficient SMT-LIB formula solver that decides the satisfiability of arbitrary

formulas containing uninterpreted function symbols with equality, linear real and integer arith-

metic, scalar types, recursive datatypes, tuples, records, extensional arrays, fixed-size bit-vectors,

quantifiers, and lambda expressions. An example of constraints in the SMT-LIB formula syntax

is given below. In this example, we use the theory QF_LIA, quantifier-free linear integer arith-

metic, to declare two functions which return integer values. The satisfiability problem is to check

if there exists an assignment of the functions x and y that satisfies these assertions.

(set-logic QF_LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
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3.3 Inferring Collecting Semantics of Java Programs

We need to perform both intraprocedural and interprocedural analysis for analyzing deep logical

properties of Java programs. In intraprocedural analysis, from a data flow analysis of the source

code, in a series of steps we build a constraint system that captures its collecting semantics. In

case of interprocedural analysis, we need to build a call graph and define some external rules

relating the different API invocations and detect if the analyzed code breaks these rules.

3.3.1 Constraint System of Intraprocedural Analysis

In our analysis framework, we follow the following sequence of steps to check if the a program

satisfies a user-defined analysis aspect.

1. We first perform a dataflow analysis of the Java source code and generate its collecting

semantics

2. Based on the dataflow analysis results, we generate the static single assignment [43] graph

of the program

3. We convert the SSA graph to the SMT-LIB formulas (see below)

4. Finally, we import models of uninterpreted API invocations as first order logic assertions

We illustrate the above steps using the following example:
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c l a s s udhpcd{
i n t g e t S o c k e t ( i n t l i s t e n m o d e ) {

i n t fd = 0 ;
i f ( l i s t e n m o d e == 2) {

fd = l i s t e n s o c k e t ( ) ;
}
e l s e {

fd = r a w s o c k e t ( ) ;
}

}
}

In the program above, listen_mode is the user input. listen_socket() is a method,

which will return a positive integer; raw_socket() is a method provided by operating system,

which will return a specific integer number greater than zero.

First, we perform a data flow analysis of the source code. Figure 3.4 describes the results of

dataflow analysis with the output constraints representing the collecting semantics of the program

and Figure 3.5 represents the data flow of the program; the integer number in the data flow graph

indicates the line number of each statement in the program.

At line 13 the value of the variable fd can be the return value of listen_socket() or

raw_socket(); since this program has two branches. At compile time, we cannot determine

which path the control will follow; so we consider the value of fd is {listen mode = 2
∧
fd =

listen socket(); listen mode 6= 2
∧
fd = raw socket()} where the semicolon represents dis-

junction.

To construct SMT-LIB logic formulas capturing the collecting semantics of the program, we

need to convert the program to a static single assignment graph as in Figure 3.6.
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Figure 3.4: Collecting Semantics of Java Program
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Figure 3.5: Dataflow of Java Program
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Figure 3.6: Static Single Assignment of Java Program

From the SSA graph in Figure 3.6, we create an assertion for each node. For example, the first

node in the graph is fd1=0, we can create ( assert (= fd1 0)). The node of “fd4=Phi{fd3,fd2

}” is a φ function, we build a disjunction (or (= fd4 fd3)(= fd4 fd2) ). There are two labeled

edges, so we need to create two implications: (=> (= listen mode 2) (= fd2 listen socket ) )

and (=> ( distinct listen mode 2) (= fd3 raw socket ) ). The semantics of the APIs are incor-

porated as follows. If an API has no permission provided, we assert the API returns −1. Else we

import an assertion characterizing the API from a model library.

For example, for the listen_socket and raw_socket, we import the assertion:( assert

(and (>= listen socket 0) (= raw socket 1)) ).

The SMT-LIB formulas resulting from the SSA graph in Figure 3.6 is shown below.

(set-logic AUFLIA)
(declare-fun listen_mode () Int)
(declare-fun listen_socket() Int)
(declare-fun raw_socket() Int)
(declare-fun fd1() Int)
(declare-fun fd2() Int)
(declare-fun fd3() Int)
(declare-fun fd4() Int)
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(assert (and (>= listen_socket 0) (= raw_socket 1)))
(assert (or (= fd4 fd3) (= fd4 fd2)))
(assert (= fd1 0))
(assert (and (=> (= listen_mode 2) (= fd2 listen_socket))

(=> (distinct listen_mode 2) (= fd3 raw_socket))))
(assert (and(and(and (= listen_socket 3) (= raw_socket 1))

(or (=> (= listen_mode 2) (= fd2 listen_socket))
(=> (distinct listen_mode 2) (= fd3 raw_socket))))
(or (= fd4 fd3)(= fd4 fd2))))

(check-sat)

The post condition of the program considered above is fd> 0. Verifying whether this post-

condition holds is considered the analysis aspect for this program. This analysis aspect is in-

corporated into the SMT-LIB formula characterizing the collecting semantics of the program by

adding the conjunct (<= fd4 0). The combined SMT-LIB formula was found to be unsatisfiable

by the Yices solver indicating the program satisfies the specification.

We now describe an algorithm for converting an SSA graph of a program to SMT-LIB for-

mulas that capture its collecting semantics. Let G = 〈N , E〉 be the SSA graph of the program.

In this graph, each node represents a statement in the program. We represent the if and loop

conditions as edge labels in the graph. We can generate SMT-LIB formulas capturing collecting

semantics of the program using algorithm 1 that formalizes the intuition described above.
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Algorithm 1 Converting SSA to SMT Algorithm
for n ∈ N do

if n is a simple assignment statement V AR = EXP then
Create an assertion (assert (= VAR EXP)) in SMT;

end if
if n is a assignment statement with API call V AR = API then

Create an assertion (assert (= VAR API));
end if
if n is a φ function statement then

Let v be the variable in this statement and the set W be the values of this φ function;
Create a disjunction v = wi, where wi ∈ W ;

end if
if n is a function call statement FUN() then

Create an assertion (assert (= FUN FUN SUMMARY));
end if
for e ∈ E do

if e is labeled then
Let n be the node directed by this edge;
Create a conjunction of implication formula e→ n;

end if
end for
if The API permission is provided then

Provide the API model as (assert (= API API specification value));
else

Set the API model as −1 (assert (= API −1);
end if
Provide the function summary as the function return value after the function analyzed (assert
(= FUN SUMMARY FUN return value)).

end for

34



3.3.2 Call Graph and Logic Formulas of Interprocedural Analysis

We consider another example to illustrate the interprocedural analysis.

c l a s s camera {
p u b l i c vo id o n C r e a t e ( Bundle s a v e d I n s t a n c e S t a t e ) {

super . o n C r e a t e ( s a v e d I n s t a n c e S t a t e ) ;
s e t C o n t e n t V i e w (R . l a y o u t . main ) ;
p r ev i ew = ( Sur faceView ) f indViewById (R . i d . p rev i ew ) ;
p r e v i e w H o l d e r = prev i ew . g e t H o l d e r ( ) ;
p r e v i e w H o l d e r . a d d C a l l b a c k ( s u r f a c e C a l l b a c k ) ;
p r e v i e w H o l d e r . s e t T y p e ( S u r f a c e H o l d e r .

SURFACE TYPE PUSH BUFFERS ) ;
}
p r i v a t e vo id t a k e P i c t u r e ( ) {

camera . s t o p P r e v i e w ( ) ;
camera . t a k e P i c t u r e ( nul l , nul l , p h o t o C a l l b a c k ) ;

}
}

In this example, an Android application creates a camera object and uses this object to preview

and take picture. The Android class documents [3] define clearly that “Important: Call start-

Preview() to start updating the preview surface. Preview must be started before you can take a

picture.” So we consider the safe property of this program is that the predicate startPreview

must be true when the program needs to call the function takePicture().

Figure 3.7 visualizes a call graph of this program; here we also include the line numbers of the

function call statements. Our analysis tool automatically creates SMT-LIB formulas by defining

predicates on the set of line numbers of the program. The predicates are defined as external rules

in an XML file. We provide an user interface to help users define these rules. To construct these

rules, users need to provide the predicate names and the tool needs to construct the relations.
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Figure 3.7: Function Call Graph of Interprocedural Analysis

In this example, we define predicates startPreview, stopPreview, and takePicture.

At line number 15, where the function takePicture() is called, we consider the predi-

cate takePicture to be true. So the formula stopPreview
∧

takePicture holds

true for line 15 since stopPreview is called in line 14. Our tool examines each program

statement to set the appropriate values to these predicates; at line number where the function

stopPreview() is called, so at line number 15, we have stopPreview() as True. The

SMT-lib formulas can be constructed using Algorithm 1 as follows

( s e t−l o g i c AUFLIA)
( d e c l a r e−fun t a k e P i c t u r e ( I n t ) Bool )
( d e c l a r e−fun s t o p P r e v i e w ( I n t ) Bool )
( a s s e r t ( e x i s t s ( ( x I n t ) ) (=> ( and ( t a k e P i c t u r e x ) ( n o t (

s t o p P r e v i e w (+ x 1) ) ) ) ( t a k e P i c t u r e (+ x 1) ) ) ) )
( a s s e r t ( and ( f o r a l l ( ( x I n t ) ) (=> ( s t o p P r e v i e w x ) ( s t o p P r e v i e w

(+ x 1) ) ) ) ( n o t ( s t o p P r e v i e w 19) ) ) )
( a s s e r t ( and (= x 14) (= ( s t o p P r e v i e w x ) t rue ) )
( check−s a t )
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The Android class documents [3] define clearly that “Important: Call startPreview() to start

updating the preview surface. Preview must be started before you can take a picture.” So we con-

sider the safety property of this program to be the following: the predicate stopPrivew holds

false when the program needs to call the function takePicture(). So we can construct the

specification assertion S as (assert (and (= x 15) (and (takePicture x) (stopPreview x)))) assuming

that the user inputs line 15 and takePicture as the test predicate and add a conjunct express-

ing its negation to the SMT-LIB formula above to incorporate the specification. The combined

SMT-LIB formula was found to be satisfiable by the Yices solver. Analyzing the solution, we find

that at line 15, the stopPrivew is called before takePicture violating the specification.

3.4 Experiments

In this section, we describe experiments that we conducted using our analysis framework.

We analyzed the source code from Android Bluetooth ChatServices application. This ap-

plication builds a Bluetooth network platform to allow a device to exchange data with other

Bluetooth devices. It has three main functionalities: 1. Discover the Bluetooth devices, 2. Paire

and connect the devices, 3. Transfer data among these devices. The application uses several API

calls such as: BluetoothAdapter.getDefaultAdapter(), BluetoothSocket and

BluetoothChatService.

We provide these API models based on the Android Development Documentations. For this

application, we simply consider that the application can set up the Bluetooth service and can con-

nect to any devices discovered. So we set BluetoothChatService to return a non-null

object, and in the SMT specification, we model the API function value as (not −1). The source
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code analyzed satisfied the specification. We downloaded several free android application source

code and ran our static analysis tool to the source code. In Table 3.2, we report some possible pro-

gram vulnerabilities we detected from the analysis. In the application Android SMSPopup,

we detected a possible command injection error; the command statement is an array that comes

from another function which may possibly provide a wrong statement. In openGPStracker,

we found that it has more permissions than required; this may lead to the overprivileged permis-

sion problem.

38



Table 3.2: Android Application Verification Experimental Results

Android SMSPopup [18]

1. In class SmsReceiverService.java there is a false null checker
for statement. The branch “ if (message.isSms()&&message.
getMessageClass() ==MessageClass.CLASS 0)” will never be
reached.

2. in class SmsPopupUtils.java the method getUnreadSmsCount(
Context context) is never called.

3. in class SmsPopupUtils.java there is a system command
call “Runtime.getRuntime().exec(commandLine.toArray (new
String [0]) ) . getInputStream () )”, this statement may lead to a
command injection error.

NPR application [13]

1. The method execute () in Client.java does not perform any null
checker before parsing XML, which gives an attacker the oppor-
tunity to supply malicious input.

2. The method constructList () in NewsTopicActivity.java does not
perform any null checker for the list variable groupings before
starting the loop, this problem may crash the program.

openGPStracker [14]

1. In class Constants.java on line 98, there is a hardcoded password.

2. The function serializeWaypoints () in GpxCreator.java fails to
perform a null checker for variable mediaUri on line 440.

OpenSudoku [15]
1. The method saveToFile () in FileExportTask.java returns in a

catch block on line 156, which may lead to a return value lost
error.

Andar [2] 1. The method run () in CameraPreviewHandler.java calls a thread’s
run () method, but it should use start () method.

DaisyReader [6]
1. The method obtainEncodingStringFromFile () in ExtractXM-

LEncoding.java on line 74 fails to perform a null checker for the
return value of readLine () , which might be null.
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Chapter 4

Model-Based Static Code Analysis for MAT-
LAB Models

MATLAB is widely used in scientific, engineering, and numerical computations. Complex sys-

tems such as digital signal processors, process control systems, etc. are modeled in MATLAB

and analyzed; C implementation of the system can be automatically generated from the validated

MATLAB model. We combine static analysis techniques with model-based deductive verifica-

tion using SMT solvers to provide a framework to analyze MATLAB code. The analyzer is

generated by translating the collecting semantics of a MATLAB script to a formula in first order

logic over multiple underlying theories. Function calls in a script can be handled by importing

SMT assertions obtained by analyzing MATLAB files containing function definitions. Logical

specification of the desired program behavior (rather its negation) is incorporated as a first order

logic formula. An SMT-LIB formula solver treats the combined formula as a “constraint” and

“solves” it. The “solved form” can be used to identify logical errors in the MATLAB model.

4.1 MATLAB Features

MATLAB is a dynamically typed language. A variable in MATLAB is considered as an array by

default; so every value has some number of dimensions. Variables need not be declared, they can
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accept any values that are assigned to them. The type of a numerical value in MATLAB is by

default double. The built-in types of MATLAB can be summarized as follows:

• double, sin: floating point values;

• int8, int16,int32,int64: integer values;

• logical: boolean values;

• char: character values;

MATLAB functions are defined in .m files which have the same names as the functions. A

function named comp() needs to be defined in a file with name comp.m. This file needs to

be placed in the “current” directory or included in the MATLAB path. MATLAB functions can

accept input arguments and output results in contrast with MATLAB scripts that can not accept

any input nor generate outputs (other than printing on the workspace). MATLAB scripts are

sequences of commands for simple computations and can invoke functions.

4.2 Verification Approach

Fig 4.1 describes the architecture of our verification approach. The abstract collecting semantics

of a MATLAB script (or a function) is a represented as a first order logic constraint in the SMT-

LIB syntax. This constraint will have “holes” or “markings” corresponding to invocation of

functions in the script/function which need to get interpreted. Models of functions are created

from collecting semantics of functions described in function files (represented as first order logic

constraints in the SMT-LIB syntax). These models are used to unmark the abstract collecting
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Figure 4.1: Architecture of Our Verification Framework for MATLAB Model

semantics by filling in the “holes”. The negation of the property specification expressed as a

formula in the SMT-LIB syntax is added to the combined constraints. The result is an “unmarked”

first order logic formula that is presented to the decision procedure for satisfiability checking. We

explain the steps in detail below. Let’s consider the following example:

f u n c t i o n s=comp ( d )
advance = 0 ;
f o r x =1:50

d = d +1;
i f d<50

advance = 1 / d ;
end

end

f u n c t i o n bug ( )
x = 1 0 ;
comp ( x ) ;
x = −4;
comp ( x ) ;
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In the example above, d is (the integer) is the formal parameter to the function comp() (call-

by-value). It is incremented by 1 every time the loop executes. It is then used to determine the

value of the variable advance. Checking whether the division operation at line 6 will cause a

division-by-zero requires an interprocedural analysis to determine which values will be passed to

the function comp().

In the code example, two values are passed to the function comp(). When called with x=10,

d increases from 11 to 49. Line 6 will not result in a division by zero. However, when comp()

is called with argument x=-4, d increases from -3 to 49. At some point, d will be equal to 0,

causing a division by zero at line 6. A simple syntax check will not detect this run-time error.

We, first, generate a set of abstract constraints to describe the collecting semantics of the

program (function or script), which overapproximates all the possible values for each variable.

The constraints serve as an abstract intermediate representation of the code. Based on these con-

straints, we generate a dataflow graph of the program. The dataflow graph is used to generate

SMT-LIB formulas describing the abstract collecting semantics. The dataflow graph of the func-

tion comp is described in Fig 4.2. In this figure, the integer number in each node is used to

indicate the line number in the program.

From the dataflow graph, we create an assertion for each label. For example, the first node in

the graph is advance=0, we can create ( assert (= advance(0) 0)). This indicates that advance

is initialized to 0. The SMT-LIB formulas resulting from the dataflow graph in Figure 4.2 is

shown below.
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Figure 4.2: Dataflow of MATLAB Program

( s e t−l o g i c AUFLIA)
( d e c l a r e−fun advance ( ) I n t )
( d e c l a r e−fun d ( ) I n t )
( a s s e r t (= advance ( 0 ) 0 ) )
( a s s e r t ( f o r a l l x I n t ) (=> ( and (< x 50) (> x 2) )

( and ( and (= d ( 1 ) (+ d ( 0 ) 1 ) )
(= d ( x ) (+ d ( x−1) 1 ) ) ) )
( and (=> (< d ( 1 ) 50) (= advance ( 1 ) ( d i v 1 d ( 1 ) ) ) )

(=> (< d ( x ) 50) (= advance ( x ) ( d i v 1 d ( x ) ) ) ) ) ) )
( check−s a t )

For the for-loop ranging from 1 through 50, we first describe the update of d and advance

in the first iteration of the loop; here d(0) represents the initial value of d, i.e., the value with

which the function comp is invoked. A universal quantifier over x with domain [2, 50] is used to

define the updates of d and advance during the second through the fiftieth iteration of the loop.
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To detect if the program has a divide-by-zero error, we need to check if d can become zero

within the for loop; this is the analysis aspect for this program. This analysis aspect is in-

corporated into the SMT-LIB formula characterizing the collecting semantics of the program

by adding the conjunct ( assert ( exists x Int ) (and (and (<= x 50) (>= x 1)) (= d(x) 0)) )

. The combined SMT-LIB formula was found to be satisfiable by the Yices solver indicating the

program can have a division by zero error. While Yices is incomplete for quantified formulas, in

most practical cases it was able to come up with a proof.

Let’s consider another example in MATLAB:

i f e d g e s t o p ==1
k=K;
a =1;

e l s e i f e d g e s t o p ==2
k=K∗ ( 2 ˆ 0 . 5 ) ;
a = 1 / ( 2∗ exp (−0 .5) ) ;

e l s e i f e d g e s t o p == ’ t k y ’
k=K∗ 5 ˆ 0 . 5 ;
a = 2 5 / 3 2 ;

end
Gn=[ I ( 1 , : , : ) ; I ( 1 : row − 1 , : , : ) ]− I ;
Gs =[ I ( 2 : row , : , : ) ; I ( row , : , : ) ]− I ;
Ge=[ I ( : , 2 : co l , : ) I ( : , co l , : ) ]− I ;
Gw=[ I ( : , 1 , : ) I ( : , 1 : co l −1 , : ) ]− I ;
i f e d g e s t o p ==1

Cn = 1 . / ( 1 + ( Gn / k ) . ˆ 2 ) . ∗ a ;
Cs = 1 . / ( 1 + ( Gs / k ) . ˆ 2 ) . ∗ a ;
Ce = 1 . / ( 1 + ( Ge / k ) . ˆ 2 ) . ∗ a ;
Cw= 1 . / ( 1 + (Gw/ k ) . ˆ 2 ) . ∗ a ;

e l s e i f e d g e s t o p ==2
Cn=exp (−(Gn /K) . ˆ 2 ) . ∗ a ;
Cs=exp (−(Gs / k ) . ˆ 2 ) . ∗ a ;
Ce=exp (−(Ge / k ) . ˆ 2 ) . ∗ a ;
Cw=exp (−(Gw/ k ) . ˆ 2 ) . ∗ a ;

end

45



In this example, there is a typical mistake that almost all the developers make. In line 22, the

statement should be Cn=exp(−(Gn/k).ˆ2).∗a;; but in the program, the developer typed in the

wrong variable name K. This error cannot be detected by the compiler; no error is reported at

runtime either; but the program will simply spit out wrong results. Our approach can detect this

problem, since we need to generate constraints to overapproximate all the possible values of each

variable. In this example, if the variable edgestop is 1, the value of k is K∗(2ˆ0.5), and the value

of variable Cn is exp(−(Gn/k).ˆ2) .∗a. We can build the constraints as (edgestop=1) ⇒ (k=K

∗(2ˆ0.5))
∧

(Cn=exp(−(Gn/k).ˆ2).∗a). To verify the correctness of this MATLAB code, we need

to set the post condition. Since the value K∗(2ˆ0.5) > K, we can set the condition Cn<exp(−(Gn

/15).ˆ2).∗a; as the post condition to detect this variable misuse error. If the solver returns sat for

the formula above, the program has a variable misuse error. The SMT formulas are followings:

( s e t−l o g i c AUFLIA)
( d e c l a r e−fun e d g e s t o p ( ) I n t )
( d e c l a r e−fun k ( ) I n t )
( d e c l a r e−fun K ( ) I n t )
( d e c l a r e−fun Cn ( ) I n t )
( d e c l a r e−fun Gn ( ) I n t )
( d e c l a r e−fun a ( ) I n t )
( d e c l a r e−fun s q r t ( I n t ) )
( d e c l a r e−fun pow ( Rea l I n t ) Rea l )
( d e c l a r e−fun exp ( Rea l ) Rea l )
( d e f i n e−fun d i v ( ( x Rea l ) ( y Rea l ) ) Rea l

( i f ( n o t (= y 0 . 0 ) )
( / x y )
0 . 0 ) )

( a s s e r t (= K 15) )
( a s s e r t (= e d g e s t o p 1) )
( a s s e r t (=> (= e d g e s t o p 2 ) (= k (∗ K ( s q r t ( 2 ) ) ) ) ) )
( a s s e r t (=> (= e d g e s t o p 2 ) (= Cn exp (∗ ( pow ( d i v Gn k ) 2 ) a ) ) ) )
( a s s e r t (=> (= e d g e s t o p 2 ) (>= Cn exp (∗ ( pow ( d i v Gn K) 2) a ) ) ) )
( check−s a t )
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We now describe an algorithm for converting an dataflow graph of a program to SMT-LIB formu-

las that capture its collecting semantics. Let G = 〈N , E〉 be the dataflow graph of the program.

In this graph, each node represents a statement in the program. We represent the if and loop

conditions as edge labels in the graph. We can generate SMT-LIB formulas capturing collecting

semantics of the program using algorithm 2 that formalizes the intuition described above.

In this algorithm, we first visit each label in the dataflow graph to declare functions in SMT

for all variables that are used in the code. Then, we visit each node to detect if there are any nodes

that have children which have smaller line number than itself; such a node indicates a loop in the

code. Assume that the conditions on this loop are given by expr1 : expr2. For each assignment

statement inside this loop, we translate the statement as follows. Let d be the variable in the left

side of the assignment statement with assexpr on the right side. We create an assertion (assert

(= d(exp1) assexpr(0))) as the base condition to indicate the update of d the first time the loop

is executed where assexpr(0) is obtained from assexpr by replacing each variable x occurring in

it by x(0), and create an assertion (assert forall (i Int) (=¿ (and (>= i exp1) (<= i exp2) (= d(i)

assexpr(i)/(i-1)) where assepr(i)/(i-1) represents replacing each variable x by x(i) if x has been

updated in a predecessor node in the loop else by x(i-1) (obtained from use-define links) for each

statement inside the loop body to express the updates in the remaining executions of the loop. If

there is no loop, we can simply create assertion (assert (= VAR EXP)). To convert the if/else

block in the code, we create a conjunction of implication formula.
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Algorithm 2 Converting MATLAB Program to SMT Algorithm
for e ∈ E do

if e is a simple assignment statement V AR = EXP then
Create a definition (define-fun VAR (EXP)) in SMT;

end if
if e is a function call statement FUN() then

Create an assertion (assert (= FUN FUN SUMMARY));
end if
for n ∈ N do

if n has two children then
Create a conjunction of implication formula e→ the children labels;

end if
if n has child whose line number is less than n then

Evaluate the expression of the label from n to it’s child;
Let exp1 be the initial condition, exp2 be the end condition;
for all the labels from the child of n to n do

Let d be the variable in the left side of the assignment statement with assexpr on the
right side;
Create an assertion (assert (= d(exp1) assexpr(0))) where assexpr(0) is obtained from
assexpr by replacing each variable x occurring in it by x(0);
Create an assertion (assert forall (i Int) (=¿ (and (>= i exp1) (<= i exp2)
for all the labels from the child of n to n do

(= d(i) assexpr(i)/(i-1)) where assepr(i)/(i-1) represents replacing each variable x
by x(i) if x has been updated in a predecessor node in the loop else by x(i-1)
(obtained from use-define links)

end for
end for

end if
end for
Provide the function summary as the function return value after the function analyzed (assert
(= FUN SUMMARY FUN return value)).

end for
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4.3 Experimental Results

We implemented our analysis framework in Java (using ANTLR) with Yices as SMT solver. We

analyzed the MATLAB examples including matrix computation and signal processing obtained

from [1]. Many of the examples were found to meet their specifications. However in several

examples, our analysis framework found logical errors. These results are summarized in Table

4.1. All experiments were run on desktop with a Pentium dual-core CPU 2.6 GHz running

Windows XP. The time needed for verification was never more than a minute.
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Table 4.1: MATLAB Verification Experimental Results

GPC timu.m

Line 113: The “if ite1 < N” block is never reached.

Line 151: the statement may have division by zero error; since
“k-tao-i2” can be zero.

GAconstrain.m
Line 63: The statement “if nmutationR>0” is not valid, since
nmutationR is always larger than 0.

GA.m

Line 186: The if statement “if maxvalueRAND(m-
m0)<maxvalueRAND(m-(m0+1))” is not valid, since m-m0 is
greater than m-(m0+1). The random return value may make this
condition always false.

PSK carrier timing est.m

Line 178: the matrix index may be out of bound.

Line 187: the statement “nco l(k)=exp(-
j*(2*pi*f0*Ts(start diff+n+round(Kc2*err tao(k))-8)
+Kc*Uc(k)));” is not valid. It should use “fe” not ”f0”.

Felics.m Line 63: the matrix index may be out of bound.

Kalman filtering.m
Line 63: The parameters in function “lmodeini-
tial(T,r,zx,zy,vxks,vyks,perr2)” are invalid.

emd.m
Line 159: the matrix index may not match.

Line 352: the statement may have division by zero error.

TV denoise.m

Line 37: The loop “while(i<niter)” may never terminate, since
the value of variable “iflamda” is not assigned, the statement
“i=i+1” may never be reached.

Line 53: the statement may have division by zero error.

smooth diffusion.m

Line 79: The statement uses a wrong parameter “K”.

Line 105: the function “imshow” has an invalid parameter
“uint8()”, since the function “uint8()” needs input.
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Chapter 5

Formal Verification of Commercial Wire-
less Router Firmware

Formal verification of the trusted computing base of a software system is essential for its de-

ployment in mission-critical environments. Commercial-of-the-shelf routers are nowadays being

used for managing traffic in high-assurance networks. The specifications for the development of

these routers are provided by RFCs that are only described informally in English. It is essential

to ensure that a router firmware conforms to its corresponding RFC before it can be deployed for

managing mission-critical networks.

We report the formal verification of the conformance of the open source Netgear WNR3500L

wireless router firmware implementation to the RFC 2131 [24] based on which it is designed. The

formal verification effort led to the discovery of several possible problems in the implementation

that we report in this paper. We have used the Coq proof assistant extensively in this verification

effort. The formal verification process demonstrates the usefulness of inductive types and higher-

order logic in software certification.
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5.1 Coq Preliminaries

We first provide a brief introduction to the Coq proof assistant. We start with the definition of

inductive type. For example: nat, the simplest inductive type can be defined as

I n d u c t i v e n a t : S e t :=
O : n a t
| S : n a t −> n a t .

Here, O and S are called constructors; O stands for the natural number zero and S is the

successor function. We can also define an inductive type by enumerating its elements.

I n d u c t i v e month : Type :=
Jan | Feb | Mar | Apr | May | Jun
| J u l | Aug | Sep | Oct | Nov | Dec .

I n d u c t i v e s e a s o n : Type :=
S p r i n g | Summer | F a l l | Winte r

The various names Jan, Feb, etc., are constructors. After we have defined this inductive type,

we can compute values according to which element it is matching. For example:

D e f i n i t i o n g e t S e a s o n (m: month ) :=
match m wi th
Apr => S p r i n g | Jun => Summer
| Sep => F a l l | Nov => Winte r
end .

We can define recursive functions using the type nat. For example, the sum of two natural

numbers can be defined as follows [4].
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F i x p o i n t p l u s ( n m : n a t )
{ s t r u c t n } : n a t

:= match n wi th
O => m
| S p => S ( p l u s p m)

end .

where {struct n} is used to denote that successive recursive calls of the function plus

are invoked with decreasing values of n.

Coq has the type Prop for propositions. We can define a predicate P: nat ->Prop for

all natural numbers using the type Prop. Assume that we have already provided a proof of P 0

and a proof for forall n, P n -> P (S n) that we call nextstep, we can construct a

proof of P n for all natural numbers n, using the following functional program:

P a r a m e t e r P : na t−>Prop .
P a r a m e t e r n e x t s t e p : f o r a l l n ,

P n −> P ( S n ) .
F i x p o i n t n a t i n d ( n : n a t )
{ s t r u c t n } : P n
:= match n re turn ( P n ) wi th
| 0 => P 0
| S q => n e x t s t e p q ( n a t i n d q )

end .

The type of the recursive function natind is forall n, P n, which is a dependent type,

since the type of this result depends on the value of the argument. nextstep is a function takes

natural number n and proof of P n as arguments returning a proof of P (S n) [45].
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5.2 Formal Verification of Router Firmware

The Netgear WNR3500L router is the first product, encouraged in industry, for which customers

can choose between the manufacturer’s router firmware and several open source alternatives.

Netgear has come to recognize that there are many customers who transform low-cost router

equipment into high-end network devices by using advanced firmware. They openly support and

encourage people to publish their updated firmware [12]. It is essential to ensure that a router

firmware contributed by the open source community conforms to its corresponding RFC before

it can be deployed for managing mission-critical networks.

5.2.1 Verification Strategy

RFC 2131

Higher-order logic
theory in Coq

C2

Higher-order logic
specification

C implementa-
tion of firmware

C1

Coq

C1 |= C2

Figure 5.1: The Higher-order Logic Refinement
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Figure 5.1 describes our verification strategy. The RFC 2131 defining the implementation of

the firmware for the Netgear WNR3500L router is formalized as a theory in Coq. We call this

specification C2. Similarly, a Coq model for the C code implementing the firmware is developed.

We call this C1. The verification effort intends to show that C1 refines C2, i.e., it intends to prove

the following theorem. Verification is carried out in Coq by showing C1 |= C2.

THEOREM 1. The firmware conforms to RFC 2131 iff C1 refines C2 iff C1 |= C2

5.3 Formalization of the RFC

We first show the formalization of the RFC 2131 in Coq. For illustrative purposes, we show

the formalization of the DHCP protocol as described in the RFC through informal English and

sequence diagrams in Coq. The rest of the Coq specification for the RFC can be downloaded

from the website listed in the Introduction.

5.3.1 DHCP Protocol

DHCP contains two mechanisms: a protocol for delivering configuration parameters from a

DHCP server to a client and a mechanism for allocation of network addresses to clients. For

the allocation of a network address, DHCP supports three mechanisms:

• Automatic allocation: an IP address is assigned permanently.

• Manual allocation: a client’s IP address is assigned by the user and DHCP is used simply

to confirm the assigned address to the client.
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• Dynamic allocation: a client requests a free address for some period of time. The DHCP

server needs to provide the address and guarantees not to reallocate that address within

the requested time and returns the same network address each time the client requests an

address.

The dynamic allocation is the most widely used one.

5.3.2 DHCP Client-Server Interaction

We give a description of the DHCP message exchange between clients and servers [24]. Figure

5.2 shows the exchange of messages between the client and the server according to the RFC.

• The client broadcasts a DHCPDISCOVERmessage on its local physical subnet. The DHCPDISCOVER

message may include options that suggest values for the network address and lease dura-

tion.

• Each server may respond with a DHCPOFFER message that includes an available network

address in the yiaddr field. When allocating a new address, servers should check that the

offered network address is not already in use.

• The client receives one or more DHCPOFFER messages from one or more servers. The

client chooses one server from which to request configuration parameters, based on the

configuration parameters offered in the DHCPOFFER messages.The client broadcasts a

DHCPREQUESTmessage that includes the ’server identifier’ option to indicate which server

it has selected.
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• The servers receive the DHCPREQUEST broadcast from the client. Those servers not se-

lected by the DHCPREQUEST message use the message as notification that the client has

declined that server’s offer. The server selected in the DHCPREQUEST message commits

the binding for the client to persistent storage and responds with a DHCPACK message

containing the configuration parameters for the requesting client.

• The client receives the DHCPACK message with configuration parameters and the dura-

tion of the lease specified in the DHCPACK message. After waiting for a minimum of ten

seconds the client can start the configuration process.

5.3.3 The DHCP Protocol Specification in Coq

A DHCP client first needs to initialize, that includes creating a random xid used to communicate

with a DHCP server, configure the host name if users input some specific name, and retrieve the

process identification number (pid) from the pidfile. The communication messages can be

enumerated as an inductive type:

I n d u c t i v e DHCP MESSAGE :=
DHCPDISCOVER |DHCPREQUEST |DHCPDECLINE
|DHCPRELEASE |DHCPACK |DHCPNAK|DHCPINFORM.

I n d u c t i v e a r g o p t i o n s := c |H | p .
P a r a m e t e r char : a r g o p t i o n s . P a r a m e t e r random xid : S e t .
P a r a m e t e r c o n f i g u r e h o s t : a r g o p t i o n s−>S e t .
P a r a m e t e r c o n f i g u r e p i d : a r g o p t i o n s−>S e t .
D e f i n i t i o n c l i e n t I n i t ( op : a r g o p t i o n s ) : S e t :=

match op wi th
c => r andom xid

| H => c o n f i g u r e h o s t H
| p => c o n f i g u r e p i d p
end .
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Figure 5.2: Messages Exchanged Between DHCP Client and Servers
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After the initialization, the client will send DHCPDISCOVER and wait for replies from servers;

we formalize this as follows:

P a r a m e t e r i n i t P a c k e t : DHCP MESSAGE −> dhcpMessage .
P a r a m e t e r addS impleOpt ion : ( dhcpMessage )−>na t−> dhcpMessage .
D e f i n i t i o n s e n d D i s c o v e r ( x i d : n a t ) ( r e q u e s t e d i p : n a t ) :=

l e t p a c k e t := i n i t P a c k e t DHCPDISCOVER i n
addS impleOpt ion p a c k e t r e q u e s t e d i p .

According to the RFC specification, the DHCP server first needs to create a socket, and then

use this socket to get packets sent by the DHCP clients; this is formalized as:

P a r a m e t e r l i s t e n s o c k e t : na t−>na t−>s t r i n g −>n a t .
Theorem s e r v e r s o c k e t :

l i s t e n s o c k e t i p p o r t s e r v e r c o n f i g > 0 .
Theorem g e t p a c k e t :

g e t P a c k e t S i z e p a c k e t > 0 −> s e r v e r s o c k e t .

After receiving a valid packet, the DHCP server needs to allocate IP and setup lease. It needs

to check if the requested client has already setup a lease; if not, it will find a new free IP address

to assign to the client. If, unfortunately, there is no free IP address to allocate, it needs to check if

it can find any expired lease to free the corresponding IP address. These properties are formalized

by the following Coq specification.

P a r a m e t e r add r : n a t . (∗ IP a d d r e s s f o r a l l o c a t i o n ∗ )
P a r a m e t e r c ha dd r : n a t . (∗ c l i e n t ha rdware a d d r e s s ∗ )
P a r a m e t e r e x p i r a t i o n : n a t . (∗ The t ime d u r a t i o n f o r e x p i r a t i o n ∗ )
P a r a m e t e r l e a s e s : l i s t n a t . (∗ The l e a s e t a b l e ∗ )
P a r a m e t e r f i n d l e a s e b y c h a d d r : n a t −> l i s t n a t −> n a t .
D e f i n i t i o n s e r v e r c o n f i g e n d := 2 5 5 .
D e f i n i t i o n s e r v e r c o n f i g s t a r t := 0 .
Theorem f i n d F r e e I P :

f o r a l l f r e e a d d r : na t ,
f r e e a d d r> s e r v e r c o n f i g s t a r t /\ f r e e a d d r<s e r v e r c o n f i g e n d /\

f i n d l e a s e b y c h a d d r f r e e a d d r l e a s e s =0 .
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P a r a m e t e r f i n d E x p i r e d I P : na t−> n a t −> n a t .
Theorem f i n d E x p i r e d L e a s e E n t r y :

f i n d E x p i r e d I P l e a s e s e x p i r a t i o n >0.
Theorem a l l o c a t i o n I P :

f i n d l e a s e b y c h a d d r c ha dd r l e a s e s >0 \ / f i n d E x p i r e d I P l e a s e s
e x p i r a t i o n >0.

The above formalizations can be regarded as properties that should hold for a correct firmware

implementation following the RFC.

5.3.4 Formal Modeling of the C Implementation of the Firmware

To verify the conformance of the C implementation of the firmware with RFC 2131, we need

to formalize it in Coq. In [59], the authors provide simplified description of the protocol at an

abstract level; however, in our paper, we focus on the implementation details with assumptions

that there are no failures from the operating systems side (i.e., we assume that sockets can be suc-

cessfully created, etc.). For example, when we attempt to model the implementation of how the

DHCP server allocates IP addresses to clients, when the it receives DHCPDISCOVER messages,

we assume that the server receives the message correctly, i.e., there is no message loss during the

communication between the clients and the server.

In the following, codelets from the C implementation of the firmware are described using

verbatim fonts (including C functions, variables, and references to them in the text) while

Coq specifications are described using sans−serif ML−Style fonts (including variables, func-

tions, formulas, and references to them within the text). We illustrate the specification of the C

implementation assuming only one DHCP server in the network. In this case, the WNR3500L

wireless router is required to respond to every DHCPDISCOVER messages from clients with
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a DHCPOFFER message including an available network address. In the source code of router

firmware, the IP address allocation process is implemented by the following steps:

1. The server checks if the requested client is previously allocated by calling the function

find_lease_by_chaddr(chaddr). If the return value is not null, the server uses

this returned IP address.

2. If the return value is not null but it is expired, the server needs to check if this IP address is

available by calling function check_ip(u_int32_t addr). In WNR3500L wireless

router, it simply sends an arp packet to check if the IP address is in use.

3. If the client is not previously allocated, the server will select the first free IP address in the

range of server_config.start to server_config.end which are defined in the

file /etc/udhcpd.conf. If the server can find a free IP address, then it allocates this

free IP address.

4. If there is no free IP address, the server needs to check already allocated IP addresses which

are expired. If the server can find an expired IP address, it needs to check if it is still in use.

After allocating an IP address, the server needs to set up the lease for this IP address. The server

must choose an expiration time for the lease as follows:

1. If the client already has an assigned IP address, the server returns the lease expiration time

previously assigned to that address unless the client explicitly requests a specific lease to

extend the expiration time.

2. If the client has no assigned IP address, the server assigns a locally configured default lease

time.
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In the WNR3500L router source code, the DHCP server maintains an array leases, which

has type struct dhcpOfferedAddr (C struct as opposed to the Coq keyword), to keep

track of IP address allocation information. Each entry in this array contains the client hardware

address, the allocated IP address, and the expiration time. The data structure dhcpOfferedAddr

can be modeled as a record.

Record dhcpOffe redAddr := mkdhcpOfferedAddr
{

c ha dd r : l i s t n a t ;
y i a d d r : n a t ;
e x p i r e s : n a t ;
hos tname : s t r i n g

} .

After receiving the DHCPDISCOVER message, the steps for the DHCP server include check-

ing the leases table and finding a free IP address. This can be specified in Coq as:

F i x p o i n t f i n d l e a s e b y c h a d d r ( c ha dd r : n a t ) ( l e a s e s : l i s t n a t ) : n a t
:=

match l e a s e s wi th
| n i l => 0
| a : : h => match e q n a t d e c c ha d d r a wi th

| l e f t => S ( f i n d l e a s e b y c h a d d r c ha dd r h )
| r i g h t => f i n d l e a s e b y c h a d d r c ha dd r h
end

end .
D e f i n i t i o n f i n d L e a s e :=

f i n d l e a s e b y c h a d d r c ha dd r l e a s e s = 1 .
Theorem f i n d L e a s e E n t r y :

f i n d l e a s e b y c h a d d r c ha dd r l e a s e s > 0 .
P r o o f .

u n f o l d f i n d L e a s e ; t r i v i a l .
Qed .
F i x p o i n t i n L e a s e ( add r : n a t ) ( l e a s e s : l i s t n a t ) : n a t :=

match l e a s e s wi th
| n i l => 0
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| ( a : : h ) => match a wi th
| add r => 1 + i n L e a s e add r h
end

end .
D e f i n i t i o n s e r v e r c o n f i g e n d : = 2 5 5 .
F i x p o i n t f i n d F r e e I P ( a d d r e s s : n a t ) ( l e a s e s : l i s t n a t ) :=

match a d d r e s s wi th
0 => 0
| s e r v e r c o n f i g e n d => 0
| S p => i n L e a s e p l e a s e s + ( f i n d F r e e I P p l e a s e s )
end .

If the server cannot find any available IP address to allocate, it needs to choose an expired

lease and free the corresponding IP address. The WNR3500L DHCP server simply compares

the expiration value from the leases table with the current time and finds the oldest lease to

replace with a new lease. This is formalized in Coq as follows.

F i x p o i n t max ( n m: n a t ) { s t r u c t m} : n a t :=
match n , m wi th
| 0 , => m
| S n ’ , 0 => S n ’
| S n ’ , S m’ => S ( max n ’ m’ )
end .

F i x p o i n t o l d e s t ( e x p i r a t i o n : n a t ) ( l e a s e s e x p i r a t i o n : l i s t n a t ) {
s t r u c t l e a s e e x p i r a t i o n } : n a t :=

match l e a s e s e x p i r a t i o n wi th
| n i l => e x p i r a t i o n
| a : : h => match ( max e x p i r a t i o n a ) wi th

| e x p i r a t i o n => o l d e s t e x p i r a t i o n h
end

end .
F i x p o i n t f i n d E x p i r e d I P ( add r : n a t ) ( l e a s e s : l i s t n a t ) ( e x p i r a t i o n :

n a t ) { s t r u c t add r } : n a t :=
match add r wi th
| 0 => 0
| S p => ( o l d e s t e x p i r a t i o n l e a s e s ) + ( f i n d E x p i r e d I P p l e a s e s

e x p i r a t i o n ) end .
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To show that the DHCP server can successfully assign IP addresses to clients sending DHCPDISCOVER,

we need to prove the following theorem. It states that after all the IP checking steps are com-

pleted, the DHCP server will be able to find a valid available IP address (a valid IP address is

modeled as a positive one).

Theorem a l l o c a t i o n I P :
f i n d l e a s e b y c h a d d r c ha dd r l e a s e s > 0
\ / ( f i n d F r e e I P s e r v e r c o n f i g e n d l e a s e s )>0
\ / ( f i n d E x p i r e d I P add r l e a s e s e x p i r a t i o n ) >0.

5.4 Deductive Verification of Router Firmware

To verify the conformance of the router firmware to the corresponding RFC we prove that the

Coq specification for the implementation entails that for the RFC. In this section, we show

how to verify that the WNR3500L DHCP server successfully responds to a DHCPDISCOVER

message with a DHCPOFFER message. The rest of the proofs are available from the website

listed in the Introduction. To prove that the WNR3500L DHCP server successfully responds to a

DHCPDISCOVER message with a DHCPOFFER message, we need to verify that the source code

satisfies following rules:

1. The server has an available IP address to allocate.

2. The server can setup lease for this IP address.

3. The IP address is not currently used in the network.
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5.4.1 Detection of Deviation from RFC

To verify the correctness of adding a new lease into the leases array, we need to prove that if the

server has no free IP address to assign to its clients, it must always find an expired lease to replace

the new lease (according to the RFC). However, we fail to obtain such a proof. This is because

the server only keeps the expiration time value and compares it with the current time but does not

update the leases table before allocating an available IP address. In our model, the function

( oldest expiration leases ) will always return a value which is less than expiration , which

means that the formula findExpiredIP is always false. When the server has no free IP address to

allocate, it cannot find any expired lease so as to free the corresponding IP address. This problem

will cause the server to fail to send the DHCPOFFER message resulting in clients failing to get

IP addresses in the network, although the server should have been able to obtain available IP

addresses to allocate. The reason is that the C function sendOffer does not conform to the

RFC specification (i.e., the Coq specification “allocation” above). It fails to check the availability

of an IP address; it only checks the leases table and fails to replace the appropriate expired

lease. In a home wireless network setup, this problem leads to a “limited connection” error.

To fix this problem, we suggest that the server broadcasts an ARP packet [76] to clients for

all the allocated IP addresses in the leases list and waits for valid ARP replies until time out.

If the return value is “0”, it means that the particular IP address is occupied by a client and this

client responds correctly; the server cannot use this IP address. Otherwise, if the return value is

“1” or “-1”, it means that the client is not available or that some errors have occurred; the server

can free this IP address and assign it to other requested clients. The server of course needs to first

initialize the return value rv to “1”. If the clients respond to the above ARP message correctly,
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the return value will be “0”. In the following, we will show how to construct a program to set up

this ARP packet. Then we prove that under the above scheme, the return value to the server will

be “0”.

We first build models for sockaddr, arpMsg and timeval as inductive types:

P a r a m e t e r char : S e t .
P a r a m e t e r t i m e t : S e t .
I n d u c t i v e i l i s t : n a t −> S e t :=
| N i l : i l i s t O
| Cons : f o r a l l n ,

char −> i l i s t n −> i l i s t ( S n ) .

I n d u c t i v e s t r u c t T y p e : Type :=
arpMsg : Z−>Z−>Z−>Z−>Z−>char−>

char−>char−>char−>char−>s t r u c t T y p e
| s o c k a d d r : f o r a l l n , ( i l i s t n )−>s t r u c t T y p e

We define an inductive type ilist to model the array type in the C program; ilist is a

dependent type, since the return result depends on the match of n. Then, we define an inductive

type structType and use sockaddr, arpMsg as constructors.

The constructor arpMsg takes htype (hardware type,must be ARPHRD_ETHER), ptype

(protocol type, must be ETH_P_IP), hlen (hardware address length, must be 6), plen (proto-

col address length, must be 4), operation (ARP operation code), sHaddr (sender’s hardware

address, which is a char array with length 6), sInaddr (sender’s IP address, a char array with

length 4), tHaddr (target’s hardware address), tInaddr (target’s IP address), pad (Ethernet

payload) and returns the structType type. The function sockaddr takes an array of address

data as arguments. The function timeval takes tv_sec which has type _time_t provided

by the operating system (Linux).

After these declarations, the ARP program initiates a socket. Since the DHCP server needs
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this ARP program to return “0” to continue to the next lease offer step, the function socket

must return a positive value. We assume an axiom that states that the socket creation function

will return a correct value since this function is provided by the operating system.

D e f i n i t i o n s o c k e t : Set−>Set−>Z .
Theorem c r e a t e S o c k e t S u c c e s s :

f o r a l l c r e a t e s o c k e t : Z , f o r a l l t : Set , f o r a l l p r o t o c o l : Set ,
f o r a l l (HW: c r e a t e s o c k e t = ( s o c k e t domain t p r o t o c o l ) ) ,

( c r e a t e s o c k e t > 0) .

After successfully creating a socket, the ARP program needs to create an ARP packet and set

appropriate protocol arguments for it by the following steps: 1. allocates memory, 2. sets protocol

type as htons(ETH_P_ARP), 3. sets the destination MAC address as broadcast. Then it calls

the function sendto() to broadcast this ARP packet. Again this function needs to return a

positive value; otherwise, the return value for the ARP program will be set to “0”. In Coq, we

can define this function and build the Coq proof obligations as follows.

D e f i n i t i o n s e n d t o ( s : Z ) ( a r p : s t r u c t T y p e )
( s i z e : Z ) ( a : Z )
( add r : s t r u c t T y p e )
( s i z e : Z ) :=

match a r p wi th
arpMsg h t y p e p t y p e h l e n p l e n

o p e r a t i o n mac i p y i a d d r =>
match add r wi th s o c k a d d r i n t e r f a c e => 1

| => 0
end

| => 0
end .

Theorem sendToSuccess :
f o r a l l s : Z , f o r a l l a r p : s t r u c t T y p e , f o r a l l add r : s t r u c t T y p e ,

( s e n d t o s a r p 0 0 add r ( s i z e o f add r ) ) > 0 .

Here we define the function sendto that only checks if the program provides the appro-
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priate arguments for arpMsg and sockaddr. We assume there are no computational errors for

the arguments accepted by arpMsg; this assumption is based on the fact that variables such as

ARPHRD_ETHER are defined by the operating system as is the function htons which converts

the unsigned short integer from host byte order to network byte order.

For the definition of the function sendto, we need to show that this function will return a

positive number. As we have explained previously, we only need to check the program arguments;

all variables and functions are provided by the operating system and so we can directly assume

this statement as an axiom.

After broadcasting the ARP packet, the program will call the function select() to discover

which of the specified file descriptors is ready for reading, ready for writing, or has an error

condition pending. If the specified condition is false for all of the specified file descriptors,

select() blocks, up to the specified timeout interval, until the specified condition is true for

at least one of the specified file descriptors or until a signal arrives that needs to be delivered. To

accomplish this logic, the program needs to initiate the declared file descriptor fdset to have

zero bits and put it into the system file descriptor set. The Coq definition and obligation rules are

modeled as follows. We will assume the formula selectSuccess as an axiom since the function

select is supported by the operating system.

F i x p o i n t FD ZERO ( s i z e : n a t ) :=
match s i z e wi th 0 => n i l
| S p => 0 : : ( FD ZERO p )

end .

F i x p o i n t FD SET ( s : n a t ) ( f d s e t : l i s t n a t ) :=
match s wi th 0 => f d s e t
| S p => match f d s e t w i th n i l => s : : f d s e t

| h : : t => s : : ( FD SET p t ) end end .
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D e f i n i t i o n s e l e c t ( s : Z ) ( f d s e t R e a d : l i s t Z ) ( f d s e t W r i t e : l i s t Z )
( e x c e p t i o n : l i s t Z )
( t imeVa l : n a t ) : Z .

Theorem s e l e c t S u c c e s s :
f o r a l l s : Z , f o r a l l f d s e t R e a d : l i s t Z , f o r a l l f d s e t W r i t e : l i s t Z

,
f o r a l l t i m e v a l : Z ,
s e l e c t s f d s e t R e a d n i l n i l t i m e v a l > 0 .

In next step, the server needs to call the function recv() to receive the replies after broad-

casting the ARP packet. We can define the function recv() as:

D e f i n i t i o n r e c v ( s : Z ) ( a r p : s t r u c t T y p e )
( s i z e : Z ) ( a : Z ) :=

match a r p wi th
arpMsg h t y p e p t y p e h l e n p l e n
o p e r a t i o n mac i p y i a d d r =>1

| => 0
end .

D e f i n i t i o n a r p p a c k e t := arpMsg h t y p e p t y p e h l e n p l e n o p e r a t i o n
mac i p y i a d d r .

P a r a m e t e r s : Z .
Theorem r e c v S u c c e s s :

f o r a l l s i z e : Z ,
( r e c v s a r p p a c k e t s i z e 0 ) > 0 .

P r o o f .
i n t r o s .
u n f o l d r e c v ; u n f o l d a r p p a c k e t .
omega .
Qed .

We can conclude from the previous discussion that for the value returned by the ARP program

to be “0”, the program needs to create a socket successfully, call the sendto function correctly,

discover an available file descriptor, and receive correct replies from clients before time out. We

will show that the Coq specification of the ARP program will entail the following predicate and

prove that the following theorem holds true for the ARP program.
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P a r a m e t e r a r p : s t r u c t T y p e .
P a r a m e t e r add r : s t r u c t T y p e .
P a r a m e t e r s i z e : Z .
P a r a m e t e r f d s e t R e a d : l i s t Z .
D e f i n i t i o n t i m e v a l := 2%Z . (∗ s e t t h e t ime o u t a s 2 s e c o n d s ∗ )
Theorem a r p p i n g :

f o r a l l rv : Z ,
( s e l e c t s f d s e t R e a d n i l n i l t i m e v a l > 0)
/\ ( s e n d t o s a r p 0 0 add r 128 >0 )
/\ ( r e c v s a r p p a c k e t s i z e 0 > 0) .

P r o o f .
i n t r o s .
s p l i t ; a p p l y ( s e l e c t S u c c e s s s f d s e t R e a d n i l t i m e v a l ) .
s p l i t ; a p p l y ( sendToSuccess s a r p add r ) .
a p p l y ( r e c v S u c c e s s s i z e ) .

Qed .

Based on the construction of the ARP program, we can update the Coq specification of the C

implementation as follows,

D e f i n i t i o n a r p p i n g ( y i a d d r : n a t ) := 0 .
D e f i n i t i o n checkAddr ( add r : n a t ) := ( a r p p i n g add r ) .

and the following theorem holds for the modified specification.

Theorem a l l o c a t i o n I P :
( f i n d L e a s e y i a d d r l e a s e s c ha dd r ) > 0
\ / ( f i n d F r e e I P s e r v e r c o n f i g e n d l e a s e s )>0
\ / ( f i n d E x p i r e d I P add r l e a s e s e x p i r a t i o n )>0
\ / ( ( f i n d E x p i r e d I P add r l e a s e s e x p i r a t i o n )<=0 /\ checkAddr add r

= 0)−> addr >0.

In this specification, we can see that even if ( findExpiredIP addr leases expiration )>0

fails, the server can still find a valid IP address if it can get a response from the clients with

return value 0. Hence the strategy of broadcasting an ARP packet to determine if an IP address is

available will solve the above-mentioned problem under the assumption that the operating system

behaves correctly.
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5.5 Verification Effort

The overall verification effort is summarized in Table 5.1. The verification effort was carried out

by one graduate student and an undergraduate student working 20 hours a week for about six

months. Around 40 percent of this time was spent on the specification while the rest was spent in

discharging the refinement proofs. Both the students were initially familiar with Coq; but none

of them were experts. Some of the time during specification was spent in understanding the Coq

system in greater detail. Significant insight about the router firmware was gained while specifying

the system as well as interactively discharging the proofs. This insight was instrumental in nailing

down the deviation from the RFC.

Table 5.1: Table for Coq Verification Effort
Implementation C code 2580
RFC Coq specification ≥ 367 lines

C code specification ≥ 620
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Chapter 6

Conclusion

In this chapter, we first highlight our contributions of this dissertation. Then, we describe limita-

tions and challenges of this research study, and present open issues for future works.

6.1 Contributions

In this dissertation:

• We developed a novel deductive framework for formal verification of mission-critical em-

bedded software. The framework combines first-order logic theorem proving with auto-

matic SMT solvers.

• We have applied this framework to automatically verify and detect security vulnerabilities

in Android applications.

• We also developed a deductive framework for formal verification of MATLAB models.

The framework combine static analysis techniques with model-based deductive verification

using SMT solvers.

• We provide a formal verification proof of Wireless Router WNR3500L firmware. We report

the formal verification of the conformance of the open source Netgear WNR3500L wireless
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router firmware implementation to the RFC 2131 based on which it is designed. The formal

verification effort led to the discovery of several possible problems in the implementation

that we report in this dissertation.

6.2 Limitations and Challenges

In the Java intraprocedural analysis, the constraint system includes all the possible values of

variables; this may lead to false positives. More accurate abstract interpretation techniques are

required to provide a precise analysis. In the Java interprocedural analysis, we model functions

based on summaries; this abstraction loses accuracy and gives out false negatives. Another prob-

lem is that our tool needs developers to create specification to specify the security properties of

the program; these files may not be easy to construct.

In the wireless router theorem proving verification, we have assumed the correctness of sev-

eral functions because they are supported by operating systems. However, these assumptions may

not be valid in real life; the Coq proof obligations for the program data structures are all based

on the assumption that there are no memory operation errors. For a total correctness proof of the

systems code, we need to incorporate separation logic-based constructs to model the C program

data structure.

In future,we will include the development of a formal system based on this calculus that will

enable specification, verification, and automated code generation for more complex software-

defined routers such as those based on openflow.
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