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ABSTRACT

Wireless communication encompasses cellular telephony systems (mobile communica-

tion), wireless sensor networks, satellite communication systems and many other applica-

tions. Studies relevant to wireless communication deal with maintaining reliable and efficient

exchange of information between the transmitter and receiver over a wireless channel. The

most practical approach to facilitate reliable communication is using channel coding. In this

dissertation we propose novel coding and decoding approaches for practical wireless systems.

These approaches include variable-rate convolutional encoder, modified turbo decoder for lo-

cal content in Single-Frequency Networks, and blind encoder parameter estimation for turbo

codes. On the other hand, energy efficiency is major performance issue in wireless sensor

networks. In this dissertation, we propose a novel hexagonal-tessellation based clustering

and cluster-head selection scheme to maximize the lifetime of a wireless sensor network.

For each proposed approach, the system performance evaluation is also provided. In this

dissertation the reliability performance is expressed in terms of bit-error-rate (BER), and

the energy efficiency is expressed in terms of network lifetime.
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1. INTRODUCTION

Channel coding, in telecommunication applications, is a technique commonly used for

detecting and correcting errors during data transmissions over unreliable or noisy channels.

The on-going studies on theory of coding are to discover efficient coding and decoding tech-

niques that facilitate reliable communications over any noisy channel. The fundamental

theorem regarding the achievable efficiency of channel coding was established by C. Shan-

non in his 1948 paper [2]. For a channel with capacity C, Shannon stated his theory as

follows:

It is possible to send information at the rate C through the channel with as
small a frequency of errors or equivocation as desired by proper encoding. This
statement is not true for any rate greater than C.

Although this distinguished paper pronounces the achievable rate for a reliable communica-

tion, it does not facilitate any practical coding/decoding scheme that achieves this optimal

rate. After Shannon’s aforementioned contribution, the field of coding theory has experi-

enced tremendous evolution starting from the discovery of Hamming Codes to the discovery

of Turbo Codes. However, there still exists a need for development of new efficient codes that

are suitable for various specific applications under given circumstances.

To address the urgent demands for new efficient coding/decoding methodologies, this

dissertation is dedicated to exploration on advanced coding and decoding techniques that
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enhance the reliability of the communications for different types of applications in wireless

networks and systems. The reliability is measured in terms of bit error rate (BER) for certain

channel conditions.

1.1 Existing Solutions and Limitations

Error-control coding, or channel coding, plays a crucial role in modern digital communi-

cation systems. A simplified block diagram of a digital communication system is depicted

by Figure 1.1.

Information
source

Source 
encoder 

Modulator

DemodulatorChannel 
decoder 

Source 
decoder 

Channel 
encoder 

ChannelNoise

Destination

Figure 1.1: Block diagram of a typical digital communication system.

In many applications, such as telephony, the original information source generates an

analog signal, which is digitalized by the analog-to-digital convertor (A/D) [3]. The resultant

digital signal is then passed to the source encoder, which maps the input information bits into

an efficient representation by eliminating redundancy so as to provide a small expected data

length [4]. This mechanism is also called compression. After compression, a channel encoder

transforms the information sequence into a discrete-time coded sequence [5]. Channel coding

is performed on the information data in such a way to mitigate the negative effects of noise
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and interference incurred in the communications channel by involving redundancy, where

the extra bits are included for the future error correction or error detection at the receiver.

The coded bits are modulated to generate an analog signal by the modulator. To undertake

an efficient transmission of signals over the channel and to enable channel sharing, the

modulated signal is up-converted to a higher radio frequency (RF). This RF signal passes

through a channel and is received by the receiver.

At the receiver, the incoming signal is first demodulated by the demodulator. The output

sequence from the demodulator is then decoded at the channel decoder. The output bit

sequence from the channel decoder is then further decoded by the source decoder to recover

the original information bits, which will be utilized at the destination.

The capability of the demodulator to restore the transmitted signals is hampered by

different channel factors including noise, interference, Doppler shift, multipath fading, etc.

These factors result in demodulation errors and hinder reliable communication. The purpose

of a channel encoder is, therefore, to facilitate a way to combat these errors caused by the

unfavourable channel conditions.

Today’s error correction codes can be generally classified into two major categories: (i)

block codes and (ii) convolutional codes [5]. In block coding, the information sequence is

segmented into blocks, each of them consists of k symbols, and then each block of symbols

is independently transformed into an n-tuple codeword. In addition to the parameters k and

n, block codes may also be characterized by the minimum distance, dmin, which is actually

the minimum weight of a nonzero codeword in a given code [5]. Accordingly, block codes are

represented as (n, k) or (n, k, dmin). Owing to their beautiful structured nature, the block

codes were explored first in history. Among all block codes, Hamming codes were developed
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first [6], which are linear block codes with parameters given by (2m − 1, 2m − m − 1, 3)

for m ≥ 3, and are capable of correcting a single error at maximum per every codeword.

For m = 2, Hamming codes become trivial repetition codes. Golay codes (see [7]) were

also developed early, which include triple-error-correcting binary (23, 12, 7) code and double-

error-correcting ternary (11, 6, 5) code. Another early class of codes are the Reed-Muller

multiple-error-correcting codes. The Reed-Muller codes were discovered by Muller in 1954 [8]

and the decoding algorithm was first developed by Reed in 1954 [9]. Next, cyclic codes were

invented by Prange at the Air Force Cambridge Research Center (AFCRC) [10]. A class of

cyclic multiple-error-correcting codes known as Bose-Chaudhuri-Hocquenghem (BCH) codes

were discovered in 1959 [11, 12]. Similar codes, known as Reed-Solomon (RS) codes, were

based on the idea of employing the elements of a finite field as alphabets. Reed-Solomon (RS)

codes are non-binary cyclic error-correcting codes [13]. After an efficient decoding algorithm

for RS codes was developed by Berlekamp [14, 15], the RS codes have been widely used in

industrial and consumer electronic devices. The RS codes are the prevalent channel coding

schemes in modern telecommunications related industrial standards.

The second class of codes, namely the convolutional codes, were first introduced by Elias

in 1955 [16]. In [16], it has been shown that there exist the exponential upper- and lower-

bounds of the error probability in terms of a function of delay. Elias also indicated that it is

possible to transmit at a rate equal to the channel capacity, error-free with probability of one.

At a convolutional encoder, a stream of k incoming bits is applied to the shift registers. At

the output of the convolutional encoder, the combinations of the intermediate bits of those

shift registers, namely n code bits, will be delivered. Hence, the code rate is k
n
. The error

correcting capability of a convolutional encoder, in terms of error probability, is expressed

5



as a function of the corresponding constraint length, ν, which denotes the sum of all shift-

registers’ lengths. Large constraint-length codes tend to facilitate low error probabilities at

the receiver. Unfortunately, the transceivers equipped with large constraint-length convo-

lutional coding mechanisms are inflicted with high decoder complexity. There are several

effective decoding algorithms for convolutional codes, but the most popular is the Viterbi

algorithm, invented by Andrew Viterbi in 1967 [17].

In the various coding techniques as previously discussed, lowering bit-error-rate requires

either rate reduction or bandwidth expansion to accommodate the incremented parity bits.

A new coding technique was designed by Ungerboeck [18], which improves the error per-

formance without sacrificing data rate or expanding bandwidth. This is achieved by using

a novel technique called trellis coded modulation (TCM) which combines modulation with

coding so as to increase the free Euclidean distance, or the minimum distance between any

two symbols in the same coset.

In 1993, a new class of codes, namely Turbo codes, were first introduced by Berrou,

Glavieux, and Thitimajshima [19,20]. These codes are constructed using a parallel concate-

nation of two recursive systematic convolutional-encoders (RSC). The information bits get

through the first RSC directly and pass the second RSC through the interleaver. At the

receiver, two separate decoders will be used accordingly. Each decoder invokes an extrinsic

information from the other decoder and utilizes it in the maximum a posteriori (MAP) algo-

rithm. Berrou, Glavieux, and Thitimajshima have designed a coding scheme that achieves

a bit-error-rate as low as 10−5 using a rate 1/2 code over an additive white Gaussian noise

(AWGN) channel and binary phase shift keying (BPSK) modulation at the signal-to-noise

ratio of 0.7 dB.
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Nevertheless, advanced coding/decoding techniques are still in demand for the future

telecommunication systems. The rationale is very clear. The protocols to be developed

under way will be much more complicated than the basic transceiver model depicted in Fig-

ure 1.1. The quality-of-service requirements will be rather different from one application

to another. The tradeoffs among hardware implementation cost, resource dependence, and

quality-of-service can vary a lot among different telecommunication applications and indus-

trial standards. Therefore, we try to address the needs of some applications by designing

innovative coding/decoding techniques to advance telecommunication technologies in this

dissertation work.

1.2 Research Motivation and Application

In the previous section, we have introduced the major developments in coding theory, an

area of study drawing enormous research interest and great discoveries. In addition, we have

mentioned that there is still need for further research and developments on application-

oriented reliability and efficiency improvement. This need for more application-specific

schemes is manifested by the demand for various coding/decoding techniques in different

communication standards.

In [21], an overview was presented on techniques to select an appropriate code for a

particular application. For example, when the application requires a decoding scheme that

is executed using combinatorial circuits, as in computer memory and data-storage systems,

block codes are the top choice. In computer memories, since computational efficiency is also

a major requirement, single-error-correcting and double-error-detecting codes are preferred.
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On the other hand, for storage devices such as compact discs, the primary requirement for

the codes is that they should be robust against burst errors, and hence RS codes are widely

used in this application. Another concern in practical error control coding is bandwidth limi-

tation for communications over telephone channels. The best suited code for this application

is trellis coded modulation, where the error protection is facilitated by expanding the signal

constellation while keeping the bandwidth fixed [22]. Current standards of mobile communi-

cations and digital video broadcast adopt turbo codes and convolutional codes, mainly due

to their superior bit-error-rate performance.

Motivated by the general reality that different applications work optimally with respect

to different codes, in this dissertation, we will develop new coding techniques, new decod-

ing algorithms, and new encoder estimation techniques for future wireless communication

applications. Our general objective is to improve the bit-error-rate performance, which is

a crucial measure to evaluate the data transfer reliability. Furthermore, to enhance the

efficiency of data communications in battery-power limited wireless systems, we develop a

novel algorithm which maximizes the lifetime of any network subject to the limited energy

(battery) resource.

The solutions to different reliability and efficiency problems encountered in wireless com-

munications presented in this dissertation include: variable-rate encoders for mobile com-

munications, blind encoder estimation method for turbo codes, local-content extraction for

single-frequency networks used in digital video broadcast (digital television), and sensor-

clustering for increasing the lifetime of any wireless sensor network. We will investigate

these solutions for three different wireless systems later on throughout this dissertation.
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1.2.1 Mobile Communications

Mobile (cellular) communication technology is a prevalent wireless communication tech-

nology. In cellular communications, the primary source of performance degradation is not

thermal noise generated in the receiver, which is modeled by the classic additive white Gaus-

sian noise (AWGN) channel. Rather, it is the multi-path fading [23]. In cellular commu-

nications, small-scale fadings characterize the rapid variations in the received signal power,

which occur due to a short-distance movement by the mobile device or any motion in its

surroundings. Since the transmitted signal may arrive at the receiver through a direct line of

sight (LOS) propagation or after being reflected from the ground or the surrounding objects,

the signals experience a multipath channel. Hence, the impulse response of the channel is a

train of impulses inferring the time dispersive nature of the channel [3]. If the mobile radio

channel has a constant gain and a linear phase for the underlying frequency band (in use)

greater than the bandwidth of the transmitted signal, then the signal dispersion behavior

of the channel is categorized as frequency-nonselective (flat) fading. Otherwise, it is called

frequency-selective fading. The dynamism of the environment around a mobile device and

the motion of the device itself give rise to the multipath variations, or the time-variation

property of the channel. If the channel impulse response changes at a rate higher than that

of the transmitted signal, then the channel is categorized as fast-fading. Otherwise, it is

called slow-fading [24]. In this dissertation, we will concentrate on the flat and slow fading

channels.

Under fading channels, the changes in BER are linearly inversely proportional to SNR

while in non-fading AWGN channels, BER decreases exponentially with the increment of
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SNR [3]. Due to the limitation on the battery size and other technical concerns, one can-

not simply increase the transmitting power arbitrarily to upgrade the system performance.

This limitation is yet more important for mobile devices as their physical sizes stringently

limit their battery capacity. Therefore, to improve the system performance, one needs to

employ channel coding along with other techniques such as diversity subject to the limited

transmitting signal power. In this dissertation, we will design a new coding scheme which is

robust over different time-varying channels.

1.2.2 Digital Video Broadcasting-DVB

Digital video broadcasting (DVB) has been playing an important role in the current elec-

tronic technologies since its universal deployment in 2009. In this dissertation work, among

the varieties of DVB standards, we will concentrate on the Digital Video Broadcasting-

Satellite services to Handhelds (DVB-SH) standard. DVB-SH systems broadcast video sig-

nals to the target receivers over a hybrid satellite and terrestrial infrastructure. The services

are thus provided to handheld terminals or devices characterized as light-weight and battery-

powered apparatus, such as mobile phones, laptops, etc. This DVB-SH technology provides

broadcasting services at the frequencies below 3 GHz through a single-frequency network. A

Single Frequency Network (SFN) is a network of transmitters that use the same frequency to

transmit the same information. Since DVB is a one-way communication technology, SFNs

can help to extend the coverage area without the need of extra frequency bandwidth resource.

Besides, DVB-SH systems provide other services including radio programs as well as

download services [25]. The DVB-SH system coverage is obtained by combining a Satellite

Component (SC) and a Complementary Ground Component (CGC). The main purpose of
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incorporating CGC is to ensure service continuity in the areas where the satellite alone

cannot provide the required quality-of-service (QoS). The SC, transmitted via a satellite,

can cover a wide area, whereas the CGC, transmitted via terrestrial transmitters, provides a

cellular-type coverage. This localized nature of the CGC broadcasting allows the terrestrial

broadcasters to insert local content into the CGC. This local-content insertion is performed

using hierarchical modulation.

In this dissertation work, we will develop an innovative scheme to extract the local content

from the received signal effectively. To decode the extracted local content, we design a new

modified turbo decoder. In addition, we invent a new blind estimation technique for the

tubo code identification in a wireless receiver.

1.2.3 Wireless Sensor Networks

Wireless sensor networks (WSNs) are a current scientific and engineering research fo-

cus. WSNs are composed of low-cost sensor nodes cooperating in gathering and reporting

application-specific data. Broad WSN applications can be found thanks to the compactness

of modern electronic devices as well as the inventions of the efficient and robust imple-

mentations of digital signal processing algorithms and wireless network protocols. Current

WSN applications range from military tactics to weather monitoring tools, from deep-water

sensing to land-surface navigation, from home-security surveillance to nuclear-radiation mea-

surement, and so on. In most applications, the sensor nodes are scattered over the coverage

area and have the capabilities of sensing and collecting data, processing data, and routing

data to the sink or base station (BS) [26]. Each sensor is equipped with a battery whose

size is constrained by the dimensions of the sensor node. Since energy density of any battery

11



is limited, it is clear that the size limitation imposes a significant constraint on the power

capacity of sensor nodes. This constraint is related to the limitation on both transmission

range and throughput in sensor communications.

As we have mentioned above, most applications of WSNs preclude the recharging or

replacement of battery. Therefore, if the battery power of a WSN node is depleted, then

this sensor node will cease sensing and processing information and will stop forwarding data

during routing. Hence, the major objective of performance improvement in wireless sensor

networks is obviously to increase the battery lifetime. Battery life time of a sensor node

has a direct consequence on the lifetime of the entire network thereby. In this dissertation

research, the lifetime of a sensor network is considered to be the time elapsed between the

deployment of the network and the first death of any sensor node. In our research, we

propose a new method of organizing the sensor nodes in groups, called clusters, in order to

elongate the entire network lifetime.

12



2. VARIABLE-RATE CONVOLUTIONAL CODING

In this chapter we will discuss the coding scheme for a time-varying channels in mobile

communication. Since the channel condition is time-varying, the constant-rate convolutional

encoder cannot facilitate the best error protection that can be achieved in practice. To miti-

gate this drawback, we propose a new variable-rate convolutional encoder which can adapt to

the dynamical channel conditions subject to the channel state information (CSI) available at

the transmitter. Moreover, we also discuss the design of adaptive coded-modulation system

built upon our proposed variable-rate convolutional encoder.

2.1 Literature Review

As mentioned in Chapter 1, the channel gain in mobile communications, for most urban

and suburban areas, is usually characterized by the Rayleigh-distributed fades where the co-

herence time is determined by the random motion of the mobile receiver or the surrounding

objects [24]. If the coding or modulation scheme does not adapt to the dynamical fading

channel conditions, the communication sessions cannot be maintained at an acceptable per-

formance level. The performance of any convolutional code depends on the free distance

dfree, which is the minimum distance between any pair of finite-length codewords [5].

Thus, to achieve a lower bit error rate (BER), a communication system should rely on

a convolutional channel encoding scheme with a large free distance [5]. In a fading channel,
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this objective can be easily achieved by adopting low-rate convolutional codes having a free

distance that is large enough in the presence of deep fades. This pessimistic design incurs the

inefficient utilization of the available resources such as bandwidth and transmitting power [27].

Hence, different adaptive modulation and coding approaches have been proposed in order to

establish the variable-rate coding schemes that provide robust error protection in different

channel conditions.

Adaptive coding and modulation approaches were proposed for fading environments in

the presence of additive white Gaussian noise (AWGN) in [27–33]. The transmission strate-

gies were adapted to different channel conditions by varying the symbol rate or the con-

stellation size, controlling the transmitting power, adjusting the coding scheme, etc. These

strategies were performed to achieve a better link spectral efficiency, a lower BER, and

less transmitting power dissipation, while different system requirements such as signal-to-

interference ratio, transmission delay, data rate, and BER are still satisfied. For example,

in [27], the separability of code design and modulation design for trellis and lattice codes,

which were the special cases of the coset codes [34], was exploited for the benefit of the

adaptive transmission strategy.

Similarly, in [35, 36], an adaptive transmission scheme known as adaptive trellis-coded

multiple-phase-shift-keying was proposed. In this scheme, a 1
2
-rate convolutional encoder was

employed to construct a family of pragmatic trellis codes and then a slightly modified Viterbi

decoder was used at the receiver. To exploit the time-varying characteristics of the channel,

more information is transmitted via high-rate pragmatic trellis codes when a good channel

condition is attained. Nevertheless, when the channel condition becomes bad, the lower-rate

trellis codes and the repetition codes are applied to secure reliable communications.
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In all of the aforementioned methods, the adaptive coded-modulation strategy is gener-

ally facilitated by varying the number of uncoded bits that are used to select a particular

constellation point from a given coset. This coset is determined by the outputs of the under-

lying convolutional encoder. Note that the channel encoders involved in all these schemes

were just fixed-rate binary encoders. Different from the aforementioned adaptive transmis-

sion mechanisms, all of which were built upon fixed-rate convolutional encoders, there exist

variable-rate channel encoders on the other hand. In [37], variable-rate turbo codes were pro-

posed using the parallel concatenation of tailbiting recursive systematic multi-binary (m-ary)

convolutional codes ; the rate variability could range from 1
2
to 7

8
subject to a variable number

of input bits to the encoder. In [38], the non-uniform error protection capabilities of the fam-

ily of rate-compatible punctured-convolutional codes were studied; moreover, the interleaver

was also used to mitigate the fading effect. In [39], rate-compatible punctured-convolutional

codes were adopted to enable the variable-rate error protection in direct-sequence code-

division multiple-access (DS-CDMA) systems. In [40], a variable-rate coding scheme was

implemented with the help of punctured and repetition codes, where punctured codes were

generated by periodically deleting coded bits prior to transmission.

Our proposed approach here is different from all of these existing methods relevant to

variable-rate convolutional codes, since we do not need to rely on punctured codes and rep-

etition codes. Our proposed scheme is also different from other adaptive coded-modulation

schemes because the binary encoder we adopt is a variable-rate encoder. Therefore in this

dissertation, we present a novel method for employing variable-rate convolutional codes. In

our design, a single shift register is used to implement all possible convolutional codes with

different rates. The coded bits will be picked by a rate selector for the ultimate modulation
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in the transmitter. This new scheme can have a great and promising advantage over other

existing methods based on punctured and repetition codes since our proposed method can

exploit the good convolutional codes with a large free-distance. The good convolutional codes

(see [41]) at different rates are used in our new scheme without any repetition or puncturing

mechanism; therefore, the desirable free distance property will not be altered.

2.2 Our Proposed New Transmitter with Adaptive Convolutional

Coding

In this section, we will present our proposed new transmitter built upon adaptive coding.

This new transmitter can be widely adopted for all kinds of digital communication systems.

The details are introduced in the subsequent subsections.

2.2.1 Adaptive Convolutional Coding

In our proposed adaptive coding system, we assume that the transmitter can acquire

the complete knowledge about the channel state information. For slow fading channels,

this assumption is valid with the help of an approximately error-free, low-capacity feedback

channel. The instantaneous rate of our proposed variable-rate convolutional encoder is a

function of the instantaneous channel state information. The proposed variable-rate encoder

has three main components: a fixed-rate convolutional encoder, a rate selector, and a queue.

The fixed-rate convolutional encoder serves as a core element with k input bits and η coded

bits, each of which is an output of an adder (see Figure 2.1). These η output bits will be fed

to the rate selector, which determines the rate of the transmitted codewords based on the

current knowledge of the fading channel. Therefore, the rate selector is a function R from a
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Figure 2.1: Our proposed new transmitter involving a variable-rate convolutional encoder.

vector of length η to a vector of length n(α) over the binary field F2. It is given by

R : F η
2 → F

n(α)
2 , (2.1)

where α is the instantaneous channel gain and n(α) is the number of coded bits given the

instantaneous channel gain α.

Since the rate selector generates n(α) coded bits, the instantaneous rate of the variable-

rate encoder given a channel gain α will therefore be R(α) = k
n(α)

. Nevertheless, for a

communication system where the transmission rate is considered to be fixed, we cannot

directly modulate and transmit the coded bits arising from this rate selector in real time.

To ensure that the transmitter conveys message at a fixed rate in practice, we propose to

employ a queue that will buffer coded data prior to the actual modulation. Consequently, our

proposed transmitter is depicted in Figure 2.1, where a simple example consisting of a four-

state convolutional encoder with k = 1, η = 2, and a constraint length ν = 2 (refer to [5] for

the definition of constraint length) is illustrated. Later, in Subsection 2.2.3, we will discuss
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in detail how the rate selector can be used to implement the variable-rate convolutional

encoder.

2.2.2 Our Proposed New Adaptive Coded Modulation System

With our aforementioned variable-rate convolutional encoder stated in Subsection 2.2.1

as a basic building block, we can design a new adaptive codded-modulation strategy. In

a generic coded-modulation scheme, the system contains a binary channel encoder, a coset

selector, and a signal point selector [34]. In the conventional non-adaptive coset code design

in [34], the number of coded bits and the number of uncoded bits are predetermined as

some fixed values. In such a non-adaptive coded-modulation scheme, the binary encoder

can be a block encoder or a convolutional encoder. When a block encoder is adopted, the

corresponding coset codes will turn out to be lattice codes. On the other hand, when a

convolutional encoder is used, the corresponding coset codes will be trellis codes instead.

In our proposed adaptive coded-modulation scheme, the binary encoder is a variable-rate

convolutional encoder where the adopted constellation is an M-ary quadrature amplitude

modulation (M-QAM). Thus, the constellation has M signal points and each signal point can

represent m = log2M bits. In the coded modulation, these 2m signal points are partitioned

into 2k+r(α) subsets, where k is the number of input information bits to the binary encoder

and r(α) is the redundancy of the encoder given the channel gain α. A popular partitioning

method can be found in [34]. How to determine r(α) will be introduced in Subsection 2.2.3.

After partitioning, each subset will be composed of 2m−k−r(α) signal points which can be

represented by the m− k − r(α) uncoded bits.

Figure 2.2 illustrates the structure of our proposed adaptive coded-modulation scheme.
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Figure 2.2: Our proposed new adaptive coded modulation scheme involving a variable-rate
convolutional encoder.

Note that the general structure for coded-modulation involves every subsystem in Figure 2.2

except that our proposed variable-rate convolutional encoder is substituted with a simple

fixed-rate channel encoder by other existing techniques. The first block in our proposed

adaptive coded-modulation system determines the number of uncoded bits, namely m −

k − r(α), subject to the channel state information (CSI) available at the transmitter. The

CSI is also provided to the variable-rate convolutional encoder which takes k input bits to

generate k + r(α) coded bits at the output. These coded bits are sent to the coset selector.

Then, the coset selector will choose one of the 2k+r(α) subsets from a pre-partitioned signal

constellation. In parallel, the uncoded bits are also sent to the signal point selector and they

will be modulated by a signal point drawn from the 2m−k−r(α) constellation points in the

particular subset just chosen by the coset selector.

In order to exploit the time-varying characteristics of the channel, the redundancy r(α)
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and the number of uncoded bits m− k− r(α) should both vary in our scheme. Accordingly,

the total number of information bits per channel use, namely m− r(α), in other words, the

spectral efficiency, is varied with respect to the dynamical channel gain. Higher spectral

efficiency can be attained in good channel conditions by decreasing the redundancy so that

the information bits per channel use can increase. On the other hand, when the channel

condition becomes bad, the redundancy is increased in the trade-off of spectral efficiency for

reliable communications.

2.2.3 Details of Variable-Rate Convolutional Encoder

We have provided the general description of our proposed adaptive coded-modulation

system. The details of its core element, namely variable-rate convolutional encoder, will be

introduced here. Convolutional codes that have identical coding rate and equal constraint

length may have different bit-error-rate performances when they are decoded using the max-

imum likelihood decoding scheme (Viterbi algorithm). Some codes may lead to a better

performance than others in a way that their performance will approach the lower-bound of

the bit-error-rate more closely. Codes that attain such a superior performance are termed

as good codes [5].

In this dissertation, we propose to generate variable-rate codes based on good codes only.

We consider a variable-rate channel encoder which can switch the code rate among three

different values at any time. These three candidate rates are set to be 1
2
, 1

3
, and 1

4
. The

probability for selecting each candidate is set to be P 1
2
, P 1

3
and P 1

4
, respectively. The overall
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average transmission rate Rave of our proposed system is thus given by

Rave =
1

2 P 1
2
+ 3 P 1

3
+ 4 P 1

4

. (2.2)

In this dissertation, we are interested in comparing our proposed method with the fixed-rate

convolutional encoder of rate 1
3
, which is the medium value of the range of Rave. Therefore,

we will set P 1
2
= P 1

4
and P 1

3
= 1 − 2P 1

2
so as to achieve the same average rate Rave = 1

3
in

our proposed scheme as the fixed-rate convolutional encoder.

In our proposed scheme depicted in Figure 2.1, the fixed-rate convolutional encoder at

the first stage is to provide the rate selector with all the inputs needed to generate the

variable-rate convolutional codes. The rate selector utilizes all or some of its inputs to build

the corresponding codes based on the channel conditions. Note that the output of the fixed-

rate convolutional encoder at the first stage in Figure 2.1 is independent of the channel

state information. On the other hand, the rate selector operates based on the knowledge

of the channel state information. It is responsible for selecting the appropriate rate for

a given channel condition. Then, at this particular rate, the rate selector generates the

coded bits in accordance with the good convolutional codes. For illustration, let’s consider a

convolutional encoder with a constraint length ν = 3. According to [41], the corresponding

generating matrices of the good codes at different rates are given as follows.

For 1
2
rate,

G 1
2
(D) =

[

1 +D2 +D3, 1 +D +D2 +D3

]

. (2.3)

For 1
3
rate,

G 1
3
(D) =

[

1 +D2 +D3, 1 +D +D3, 1 +D +D2 +D3

]

. (2.4)
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For 1
4
rate,

G 1
4
(D) =

[

1 +D2 +D3, 1 +D2 +D3, 1 +D +D3, 1 +D +D2 +D3

]

. (2.5)

To generate the convolutional codes with different rates, the rate selector relies on three

unique generating polynomials:

1 +D +D3,

1 +D2 +D3,

1 +D +D2 +D3.

(2.6)

Hence the convolutional encoder needed in our proposed system may include only three

binary adders for each generating polynomial given by Eq. (2.6), which can provide the rate

selector with the required information.

Table 2.1: Candidates for Good Convolutional Codes

ν Rate Generating Polynomials dfree

2

1
4

5 5 7 7 10
1
3

5 7 7 - 8
1
2

5 7 - - 5

3

1
4

13 13 15 17 13
1
3

13 15 17 - 10
1
2

15 17 - - 6

4

1
4

25 27 33 37 16
1
3

25 33 37 - 12
1
2

23 35 - - 8

Possible candidates for good convolutional codes of various constraint lengths and rates

are listed in Table 2.1 (refer to [41]). In this table, the connections from the shift register to

each adder are expressed in octal form (see [41]). For example, if a generating polynomial

is 1 +D +D3 with a constraint length ν = 3, the first, second, and fourth bits will thus be
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connected with the adder and then its octal representation is 15. From Table 2.1, one can

observe that the number of adders (number of unique generating polynomials) required to

facilitate a variable-rate channel encoder is 2, 3, and 5 for the constraint lengths 2, 3, and

4, respectively. It is clear from Table 2.1 that the free distance for a given constraint length

decreases with the increasing rate. Therefore, if we consider a constraint length ν = 2, the

free distance dfree is 10, 8, and 5 for rates 1
4
, 1

3
, and 1

2
, respectively. Consequently, for our

variable-rate convolutional encoder that switches its rate among the aforementioned different

rates, we may have codewords that have a Hamming distance of 5. This implies that in the

variable-rate codes, the free distance assumes the smallest value among the the free distances

corresponding to different possible rates. However, when this smallest free distance occurs

due to a good channel condition, the bit transition probability resulting from the underlying

symmetric memoryless channel should also be small. Otherwise, our rate selector would

have chosen a smaller-rate coding scheme with a higher free distance. Hence, even though

there is some chance that the resultant free distance from the variable-rate coding would be

smaller than that from the fixed-rate coding, the average BER of the former scheme would

still be better than that of the latter scheme. To explain this phenomenon more clearly,

we will investigate the input output weight enumerating function (IOWEF ) of our proposed

variable-rate channel encoder for an example.

2.2.4 Input Output Weight Enumerating Function

Figure 2.3 depicts the state diagram for the variable-rate encoder shown in Figure 2.1.

In the state diagram, each state transition is labeled with a branch gain, which is a function

of p, q, Ww, Xx, Y y, and Zz where p is the probability of selecting a rate 1
2
encoder (which is
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Figure 2.3: Finite state machine for a four-state variable-rate convolutional encoder.

equal to the probability of selecting a rate 1
4
encoder), q is the probability of selecting a rate

1
3
encoder, w is the Hamming weight of the input information bits, and x, y, and z are the

Hamming weights of the encoded bits for the rates 1
2
, 1

3
, and 1

4
, respectively. Accordingly, if

a branch gain is labeled as W (pX2+qY 3+pZ4), it means that the input is a “1” and there is

a chance of having the 1
2
-rate coded bits of weight 2 with probability p, or the 1

3
-rate coded

bits of weight 3 with probability q, or the 1
4
-rate coded bits of weight 4 with probability

p. Based on the state diagram in Figure 2.3, we can determine the IOWEF by measuring

the gain of the paths leaving the state (00) and returning to it. These paths represent the

possible first event error paths or the paths in the trellis that depart from the all zero event
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and return to it for the first time. The IOWEF A(W,X, Y, Z) is given by

A(W,X, Y, Z) =

∞
∑

z=0

∞
∑

y=0

∞
∑

x=0

ax,y,zX
xY yZz, (2.7)

where ax,y,z is a function of p, q, and W .

To evaluate our proposed variable-rate convolutional encoder in terms of BER, we need

to consider the bit weight enumerating function B(X, Y, Z) such that

B(X, Y, Z) =
∂A(W,X, Y, Z)

∂W

∣

∣

∣

∣

W=1

=

∞
∑

z=0

∞
∑

y=0

∞
∑

x=0

∂ax,y,z
∂W

∣

∣

∣

∣

W=1

XxY yZz

=

∞
∑

z=0

∞
∑

y=0

∞
∑

x=0

βx,y,z X
xY yZz, (2.8)

where

βx,y,z
def
=

∂ax,y,z
∂W

∣

∣

∣

∣

W=1

.

The bit weight enumerating function for the finite state machine of a four-state variable-rate

convolutional encoder depicted in Figure 2.3 is given by

B(X, Y, Z) =
∂A(W,X, Y, Z)

∂W

∣

∣

∣

∣

W=1

= p3X5 + 4p4X6 + 4p4X5Z + 4p3qX5Y + 26p4qX6Y

+(2p2q2 + p2q)X4Y 2 + (4p3q)X4Y Z + (26p5)X6Z + 2p4X4Z2

+X26p4q5Y Z + 13p5X5Z2 + (13p3q2 + 6p3q)X5Y 2 + 2p2qX3Y 3

+(8p2q2)X3Y 4 + (8p3q)X3Y 3Z + (2p3)X3Z4 + pq2XY 6

+(4pq3 + 2pq2)X2Y 5 + (2p2q)X2Y 3Z3 + (4p3q)X2Y 3Z2 + . . .

For the fixed-rate convolutional encoder of rate 1
3
, constraint length ν = 2, and generating
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matrix [1 +D2 1 +D2 1 +D +D2], its bit weight enumerating function is given by

B(Y ) = 3Y 8 + 15Y 10 + 58Y 12 + 201Y 14 + 655Y 16 + 2052Y 18 + . . . .

Note that for fixed-rate convolutional codes the low-order terms of the bit weight enumerating

function would dominate the system performance. This is a result from the fact that the

exponent in each term represents the Hamming distance between codewords. For instance,

the presence of X5 implies that there are codewords with a Hamming distance 5 from our

variable-rate convolutional coding scheme. Hence, an all-zero coded bit stream may be

decoded incorrectly if there is a chance of erroneously converting three or more bits from “0”

to “1” among the five given bit positions during transmission. According to [5], the error

probability for decoding this bit stream incorrectly is given by

Pdecoded error, variable−rate ≈
5
∑

i=3

(

5

i

)

pib(1− pb)
5−i, (2.9)

where pb denotes the bit transition probability of the memoryless binary channel.

On the other hand, when we consider the case for a fixed-rate convolutional code of rate

1
3
, the smallest order among the terms of its bit weight enumerating function in Eq. (2.9)

is 8, which is also the free distance. Hence, an all-zero coded bit stream may be decoded

incorrectly if there is a chance of converting four or more bits from “0” to “1” among the

eight given bit positions during transmission. The error probability for decoding this bit

stream incorrectly is given by

Pdecoded error, fixed−rate ≈
1

2

(

8

4

)

p4b(1− pb)
4 +

8
∑

i=5

(

8

i

)

pib(1− pb)
8−i. (2.10)

Comparing Eq. (2.9) with Eq. (2.10), one may suggest that our proposed variable-rate

encoder leads to a worse BER performance than the conventional fixed-rate encoder subject
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to the same pb. However, the values of pb in Eqs. (2.9) and (2.10) are different. The overall

advantage of our proposed scheme lies on the fact that if an X appears in Eq. (2.9), then

it means that the rate selector is obliged to use rate 1
2
and the bit transition probability pb

should be small accordingly.

Consequently, we have to determine the different bit transition probabilities pb for dif-

ferent rates. Let pX , pY , and pZ represent the bit transition probabilities when a 1
2
-rate,

1
3
-rate and 1

4
-rate encoders are employed, respectively. These bit transition probabilities are

characterized by both the channel property and the probabilities P 1
2
, P 1

3
, P 1

4
for our proposed

rate selector choosing rates 1
2
, 1

3
, and 1

4
, respectively. Consider P 1

2
= P 1

4
= p and P 1

3
= q.

The underlying channel is a wireless fading channel. Under such a channel, the received

signal envelope α is assumed to have a Rayleigh distribution fA(α) such that

fA(α) =



















(

α
σ2

)

e−
α2

2σ2 , if 0 ≤ α ≤ ∞

0, if α ≤ 0

(2.11)

where 2σ2 is the time-average power of the received signal prior to the envelope detection [24].

For a wireless channel with instantaneous gain α, the instantaneous probability of error is

given by pe(α). This error probability is a function of channel gain α and varies with the

modulation scheme in use. The average error probability incurred by the channel under the

condition that a specific rate R(α) = % is being used is given by

P%{error} =
3 %

P%

∫

A%

pe(α)
( α

σ2

)

e−
α2

2σ2 dα,

where A% = {α | rate is selected to be %}, and % = 1
2
, 1

3
, or 1

4
. The region A% can be repre-

sented as a half-open half-closed interval [αmin(%), αmax(%)) where αmin(%), αmax(%) are the
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corresponding lower- and upper-bounds. It yields

P%{error} =

∫ αmax(%)

αmin(%)
pe(α)

(

α
σ2

)

e−
α2

2σ2 dα
∫ αmax(%)

αmin(%)

(

α
σ2

)

e−
α2

2σ2 dα
. (2.12)

Specifically, for a binary phase shift keying (BPSK) modulation system over a flat fading

channel, the instantaneous error probability is given by

pe(α) = Q

(

√

2α2Eb

No

)

, (2.13)

where Eb is the average bit energy, No

2
is the noise power spectral density, and Q(ρ) =

1√
2π

∫∞
ρ

e−
ρ2

2 dρ. Consequently, the average error probability subject to the channel gain α

and the rate % is given by

P%{error} =
3 %

P%

∫ αmax(%)

αmin(%)

Q

(
√

2α2Eb

No

)

( α

σ2

)

e−
α2

2σ2 dα

=
3 %

P%

∫ α2
max(%)

Eb
No

α2
min(%)

Eb
No

Q
(

√

2γ
) 1

Γ
e−

γ
Γ dγ (2.14)

where γ
def
= α2Eb

No
and Γ

def
= 2 σ2Eb

No
. Furthermore, Eq (2.14) can be rewritten as

P%{error} =







3 %Q
(√

2α2
min(%)

Eb

No

)

e−
α2
min(%)

2σ2 − 3 %
√

Γ
1+Γ

Q
(√

2α2
min(%)

Eb

No

1+Γ
Γ

)

P%







−







3 % Q
(√

2α2
max(%)

Eb

No

)

e−
α2
max(%)

2σ2 − 3 %
√

Γ
1+Γ

Q
(√

2α2
max(%)

Eb

No

1+Γ
Γ

)

P%






.

(2.15)

Observe Eq. (2.15) and one can find that P%{error} is actually a function of αmin(%) and

αmax(%). Therefore, we can express

P%{error} = P% (αmin(%), αmax(%)) . (2.16)

Based on the fact that the probability of selecting the rate 1
2
, 1

3
, and 1

4
encoders are p,
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q = 1 − 2p, and p respectively and according to the probability density function of channel

gain given by Eq. (2.11), we can determine the corresponding subintervals [αmin(%), αmax(%))

of channel gain to these rates. It yields

A 1
2

=

[
√

2σ2 ln

(

3

2p

)

, ∞
)

, (2.17)

A 1
3

=

[
√

2σ2 ln

(

3

3− 4p

)

,

√

2σ2 ln

(

3

2p

)

)

, (2.18)

A 1
4

=

[

0 ,

√

2σ2 ln

(

3

3− 4p

)

)

. (2.19)

According to Eqs. (2.15)-(2.19), the bit transition probabilities pX , pY , and pZ can be eval-

uated as follows:

pX
def
= P 1

2

(
√

2σ2 ln

(

3

2p

)

, ∞
)

=
3

2p

{

Q

(
√

4σ2
Eb

No

ln

(

3

2p

)

)

e− ln( 3
2p) −

√

Γ

1 + Γ
Q

(
√

4σ2
Eb

No

ln

(

3

2p

)

1 + Γ

Γ

)}

=
3

2p

{

Q

(
√

2Γ ln

(

3

2p

)

)

e− ln( 3
2p) −

√

Γ

1 + Γ
Q

(
√

2(1 + Γ) ln

(

3

2p

)

)}

, (2.20)

pY
def
= P 1

3

(
√

2σ2 ln

(

3

3− 4p

)

,

√

2σ2 ln

(

3

2p

)

)

=
1

q

{

Q

(
√

2Γ ln

(

3

3− 4p

)

)

e− ln( 3
3−4p) −

√

Γ

1 + Γ
Q

(
√

2(1 + Γ) ln

(

3

3− 4p

)

)

− Q

(
√

2Γ ln

(

3

2p

)

)

e− ln( 3
2p) +

√

Γ

1 + Γ
Q

(
√

2(1 + Γ) ln

(

3

2p

)

)}

, (2.21)

pZ
def
= P 1

4

(

0,

√

2σ2 ln

(

3

3− 4p

)

)

=
3

4p

{

1

2

(

1−
√

Γ

1 + Γ

)

−Q

(
√

2Γ ln

(

3

3− 4p

)

)

e− ln( 3
3−4p)

+

√

Γ

1 + Γ
Q

(
√

2(1 + Γ) ln

(

3

3− 4p

)

)}

. (2.22)
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The bit transition probabilities pX , pY , pZ versus average signal-to-noise ratio (Γ) for the

three different code rates and the different rate-selection probabilities p (=1
5
, 1

3
, 7

15
) are

depicted in Figure 2.4 for illustration. Given p = 1
5
, 1
3
, 7
15
, according to Eqs. (2.17)-(2.19), we

can have the following corresponding subintervals. Note that since Γ depends on σ2, we can

normalize σ2 as σ2 = 1/2 and let Γ be an independent variable accordingly.

For p = 1
5
,

A 1
2

= [ 1.4195 , ∞ ) , (2.23)

A 1
3

= [ 0.5569 , 1.4195 ) , (2.24)

A 1
4

= [ 0 , 0.5569 ) . (2.25)

For p = 1
3
,

A 1
2

= [ 1.2264 , ∞ ) , (2.26)

A 1
3

= [ 0.7667 , 1.2264 ) , (2.27)

A 1
4

= [ 0 , 0.7667 ) . (2.28)

For p = 7
15
,

A 1
2

= [ 1.0806 , ∞ ) , (2.29)

A 1
3

= [ 0.9866 , 1.0806 ) , (2.30)

A 1
4

= [ 0 , 0.9866 ) . (2.31)

According to Figure 2.4, one can observe the fact that the bit transition probability

for the signals coded with the 1
2
-rate encoder is less than that coded with the 1

4
-encoder

at least by an order of magnitude. The margin gets even much larger when Γ increases.

30



0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average SNR Γ (dB)

B
it 

T
ra

ns
iti

on
 P

ro
ba

bi
lit

y

 

 

pX (p=
1

5
)

pX (p=
1

3
)

pX (p=
7

15
)

pY (p=
1

5
)

pY (p=
1

3
)

pY (p=
7

15
)

pZ (p=
1

5
)

pZ (p=
1

3
)

pZ (p=
7

15
)

Fading

Figure 2.4: Bit transition probability versus average signal-to-noise ratio (Γ) for three dif-
ferent code rates and different rate-selection probabilities.

This fact supports the argument that even though the adoption of a 1
2
-rate encoder in our

proposed variable-rate encoder would lead to a small Hamming distance, the corresponding

bit transition probability is also very small on the other hand. Hence, in our proposed scheme,

the ultimate symbol detection performance at the receiver would not be compromised when

a high-rate encoder is selected for good channel conditions.

To study the decoder performance, we will analyze the bit error probability for the

maximum likelihood sequence detection. The upper bound of the bit error probability for our

proposed variable-rate convolutional encoder (Pdecoded error, variable−rate as stated in Eq. (2.9))
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can be computed from the aforementioned bit transition probabilities as

Pdecoded error, variable−rate ≤
∞
∑

z=0

∞
∑

y=0

∞
∑

x=0

βx,y,z ps(x, y, z), (2.32)

where ps(x, y, z) is the sequence error probability of a variable-rate convolutional code asso-

ciated with a first event error path which has a bit weight enumeration function given by

βx,y,zX
xY yZz [5]. A maximum likelihood detector picks this path over the all-zero path if

the bit inversion has been incurred by the binary symmetric channel at a number greater

than or equal to x+y+z

2
of bit positions. This sequence error probability is thus given by

ps(x, y, z) =
z
∑

k=0

y
∑

j=0

x
∑

i=0

I(i, j, k)
(

x

i

)(

y

j

)(

z

k

)

× piX(1− pX)
(x−i) pjY (1− pY )

(y−j) pkZ(1− pZ)
(z−k), (2.33)

where pX , pY , and pZ are the bit transition probabilities (see Eqs. (2.20), (2.21), (2.22)) in

the memoryless channel when the codding rate is 1
2
, 1

3
, and 1

4
, respectively. The indicator

function I(i, j, k) specifies the probability of an error event path being picked over the all-

zero path for some particular combination of i, j, and k. When (x + y + z) is odd, the

indicator function I(i, j, k) is given by

I(i, j, k) def
=



















1, if i+ j + k ≥ x+y+z+1
2

0, if i+ j + k < x+y+z+1
2

(2.34)

Otherwise, when (x+ y + z) is even, the indicator function I(i, j, k) is given by

I(i, j, k) def
=







































1, if i+ j + k ≥ x+y+z

2
+ 1

1
2
, if i+ j + k = x+y+z

2

0, if i+ j + k < x+y+z

2

(2.35)
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In the next section, we will present an extensive numerical performance analysis to compare

our proposed variable-rate convolutional encoder and the conventional fixed-rate convolu-

tional encoder.

2.3 Experimental Results and Summary

To compare the fixed-rate and variable-rate convolutional encoders, we have carried out

numerous Monte Carlo simulations over a slowly flat fading channel. The schemes in compar-

ison include our proposed new method, the uncoded scheme (in the absence of any channel

encoder), and the conventional fixed-rate channel coding method. The fading channel gain

is generated from a quadrature uncorrelated zero-mean Gaussian random process with an

identical variance σ2 for both in-phase and quadrature components. The binary phase-shift

keying (BPSK) scheme is adopted here to modulate the coded bits. The channel gain is

considered to stay the same over a few consecutive symbols. We have used minimum mean

square error (MMSE) channel estimation with various training sequence length (Tτ ) and com-

pared its BER performance with the performance under the assumption of perfect knowledge

of CSI. At the receiver, the maximum likelihood decoder (Viterbi algorithm) is employed,

and the associated cost metric is defined as the Hamming distance between codewords.

2.3.1 BER Performance Comparison for Variable-Rate and Fixed-Rate Coding

Schemes

The BER performance is considered over the range of average signal-to-noise ratio (SNR)

values from Γ = 0 to Γ = 20 dB with an increment of 2 dB. In each Monte Carlo trial for each

average SNR condition, we randomly generate 300,000 uncoded bits. For both our proposed
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variable-rate convolutional encoder and the conventional fixed-rate convolutional encoder,

the constraint length is chosen to be 2 as indicated by Figure 2.1. For our proposed variable-

rate convolutional coding scheme, we have undertaken simulations for different values of Tτ ,

which is the number of the training symbols for the channel gain estimation. The probability

of selecting the 1
2
-rate convolutional encoder is set to be p = 1

3
. Note that the probability

of selecting the 1
3
-rate and 1

4
-rate encoders are also 1

3
. The rate selector will select the good

codes among the candidates with rates 1
2
, 1

3
, and 1

4
given by Table 2.1. Then, the coded

(or uncoded) bits are modulated by the BPSK scheme. In our transmission model, the

modulated BPSK symbols are multiplied by the channel gain and added with the white

Gaussian noise samples generated by the computer subject to the underlying SNR value.

The underlying slow and flat fading channel is assumed to be constant over 16 or 18 symbols

(i.e., the channel coherence time spans over 16 or 18 symbol periods), where the first 4 or

6 symbols are reserved for the minimum-mean-square-error (MMSE) channel estimation,

respectively. The remaining 12 symbols are used to transmit the actual information symbols

thereby. Twenty Monte Carlo trials (each involves 300,000 bits) are undertaken to evaluate

the average performance.

In Figure 2.5, we plot the BER performances of the uncoded schemes under the perfect

knowledge of CSI, the estimated CSI based on 6 training symbols, and the estimated CSI

based on 4 training symbols (denoted by “Uncoded”, “Uncoded MMSE (Tτ = 6)”, and

“Uncoded MMSE (Tτ = 4)”), respectively, together with the BER performances of the fixed-

rate convolutional coding schemes under the perfect knowledge of CSI, the estimated CSI

based on 6 training symbols, and the estimated CSI based on 4 training symbols (denoted by

“Fixed Rate Coding”, “Fixed Rate MMSE (Tτ = 6)”, and “Fixed Rate MMSE (Tτ = 4)”),
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Figure 2.5: BER comparison versus average signal-to-noise ratio (Γ) for three different
schemes.

respectively, as well as our proposed variable-rate convolutional coding scheme under the

perfect knowledge of CSI, the estimated CSI based on 6 training symbols, and the estimated

CSI based on 4 training symbols (denoted by “Variable Rate Coding”, “Variable Rate MMSE

(Tτ = 6)”, and “Variable Rate MMSE (Tτ = 4)”), respectively. The rate selector will divide

the channel conditions in terms of the estimated channel gain into three separate categories

so as to facilitate the aforementioned rate-selection probabilities. Consequently, the average

rate is equal to 1
3
. As one can see from Figure 2.5, our variable-rate convolutional encoder

considerably outperforms the fixed-rate encoder with same average transmission rate across

all SNR conditions. Our proposed new scheme can even register more than 3-dB margin
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over the conventional fixed-rate encoding method.

The performance of our proposed decoder can be improved by incorporating the maxi-

mum likelihood detector with the estimated channel state information [42, 43]. For a given

base-band received signal sequence ζ = {ζj}, the set of quantized channel state information

C = {cj}, and the set of information sequence candidates S = {S(l)} (as the output of the

decoder) where S(l) def
=
{

s
(l)
j

}

and j is the symbol index, the maximum likelihood decision

rule is given by

max
l

∑

j

Λ
(l)
j , (2.36)

where

Λ
(l)
j

def
= logP

{

ζj, cj|s(l)j
}

, (2.37)

and P
{

ζj, cj|s(l)j
}

denotes the probability for the candidate symbol s
(l)
j to cause ζj given the

CSI cj in the jth symbol period. For our simulation, we adopt the BPSK modulation scheme

and the channel state information is categorized into three regions (specified by Eqs. (2.17)-

(2.19)) with bit transition probabilities pX , pY and pZ . On this circumstance, the metric

Λ
(l)
j in Eq. (2.36) can be redefined as

Λ
(l)
j

def
=







































ζj s
(l)
j log

(

1−pX
pX

)

, if α ∈ A 1
2

ζj s
(l)
j log

(

1−pY
pY

)

, if α ∈ A 1
3

ζj s
(l)
j log

(

1−pZ
pZ

)

, if α ∈ A 1
4

(2.38)

In Figure 2.6, we plot the BER performances of the uncoded scheme (denoted by “Uncoded

Theoretical BER”), the fixed-rate convolutional coding scheme based on the Hamming dis-

tance metric, and the fixed-rate convolutional coding scheme based on the metric given by
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Figure 2.6: BER comparison versus average signal-to-noise ratio (Γ) for the fixed-rate convo-
lutional coding scheme and the variable-rate convolutional coding scheme incorporated with
two different decoding methods.

Eq. (2.38) with the perfect knowledge of CSI (denoted by “Fixed Rate (Hamming)” and

“Fixed Rate (CSI)”, respectively). In addition, we also plot the BER performances of the

fixed-rate convolutional coding schemes based on the Hamming distance metric with the

estimated CSI using four training symbols and the metric given by Eq. (2.38) with the esti-

mated CSI using four training symbols (denoted by “Fixed Rate MMSE Tτ = 4 (Hamming)”

and “Fixed Rate MMSE Tτ = 4 (CSI)”, respectively). And our proposed variable-rate con-

volutional coding scheme when used with Hamming distance metric and the metric provided

in Eq (2.38) with perfect knowledge of CSI (denoted by “Variable Rate (Hamming)” and
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“Variable Rate (CSI)” respectively) and with approximated CSI with training length of four

(denoted by “Variable Rate MMSE Tτ = 4 (Hamming)” and “Variable Rate MMSE Tτ = 4

(CSI)” respectively). For the proposed variable-rate convolutional coding scheme, we have

run simulations for p = 1
3
. Since it is not practical to compute the values of pX , pY , and

pZ in Eq. (2.38) for each Γ, we simplify the decoder by just picking a set of fixed numerical

values. We suggest to set pX , pY , and pZ (according to Figure 2.4 for p = 1
3
and Γ = 4 dB)

to be 7.9640−4, 0.0174, and 0.1601, respectively. From the simulation results, it is evident

that our proposed method performs better than the conventional fixed-rate coding scheme

subject to both metrics.

2.3.2 BER Performance Comparison for Different Coded-Modulation Schemes

We have also carried out Monte Carlo simulations to measure the performance of the

adaptive trellis coded modulation (TCM) and the non-adaptive TCM. In the adaptive coded-

modulation scheme, the binary encoder is a variable-rate convolutional encoder. We use the

16-QAM signal constellation, wherem = log2 16 = 4. The input to the convolutional encoder

is a single bit (k = 1). The encoder generates coded bits with redundancy r(α)= 1, 2, or 3

subject to the channel condition. Then the number of uncoded bits, namely m− k − r(α),

will be 2, 1 or 0, respectively. For the variable-rate convolutional encoder, the constraint

length is chosen to be 3. The octal representations of the generating polynomials depend on

the redundancy; when the redundancy is 1, they are 15 and 17; when the redundancy is 2,

they are 13, 15, and 17; when the redundancy is 3; they are 11, 13, 15, and 17. It is clear that

the total number of information bits per channel use is 2 for this adaptive coded-modulation

scheme. Thus, we will compare this adaptive scheme to a non-adaptive TCM scheme with

38



k = 1, r = 2 where the number of uncoded bits is set to 1. The underlying slow and flat

fading channel is assumed to be constant over 18 symbols, where the first 6 symbols are

used for the MMSE channel estimation. The remaining 12 symbols are used to transmit

the actual information data. Ten Monte Carlo trials are undertaken, and 300,000 16-QAM

symbols are randomly generated by the computer for each trial.
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Figure 2.7: BER comparison versus average signal-to-noise ratio (Γ) for adaptive and non-
adaptive trellis coded-modulation schemes.

In Figure 2.7, we plot the BER performances of our proposed adaptive trellis coded-

modulation schemes with the perfect CSI knowledge and the estimated CSI (denoted by

“Adaptive TCM” and “Adaptive TCM MMSE (Tτ = 6)”, respectively). Moreover, we also

depict the BER performances of the non-adaptive trellis coded-modulation schemes with
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the perfect CSI knowledge and the estimated CSI (denoted by “TCM” and “TCM MMSE

(Tτ = 6)”, respectively), in the same figure. According to Figure 2.7, one can observe that

our proposed adaptive TCM scheme demonstrates a remarkable advantage over the existing

non-adaptive TCM scheme. Our proposed scheme can lead to a margin of more than 4-dB

over the existing non-adaptive TCM method at high SNR values.

To sum up, wireless communications over fading channels still remain fairly challenging

to researchers. To address this crucial problem, we proposed a novel variable-rate channel

coding strategy that exploits the channel state information available at the transmitter

via feedback. From Monte Carlo simulation results, our proposed new transceiver greatly

outperforms the conventional system using the fixed-rate convolutional encoder at the same

transmission data rate. The performance gain of our proposed scheme over the conventional

method can reach up to 3 dB. Our proposed new variable-rate convolutional coding scheme

can serve as the core part of the next generation adaptive coded-modulation transceivers.

40



3. MODIFIED TURBO DECODER

In this chapter, we propose and investigate a novel approach of removing the global

content from the received signal. Moreover we will design a modified turbo decoder to decode

the local content. Our new global content removal technique would relieve the receiver

from performing coding and modulation on the detected global content so as to ensure

less computational burden and a smaller latency than the current technology. To mitigate

the bit-error-rate performance degradation on the local content, we propose to modify the

turbo decoder so that the systematic bit streams and the parity bit streams will be decoded

differently with respect to their corresponding signal-to-noise ratios.

3.1 Literature Review

Mobile television services, carried by cellular and satellite networks, are becoming more

and more popular due to users’ convenience. These services are expected to expand widely

in the near future and dominate the mass-media markets. A fully-established standard in

this area is the Digital Video Broadcasting-Satellite Services to Handheld Devices (DVB-

SH) Standard [1]. DVB-SH systems broadcast video signals to the target receivers over

a hybrid satellite and terrestrial single-frequency network [1]. The broadcasted service is

thus provided to handheld terminals (devices). These systems operate at the central fre-

quencies below 3 GHz. This frequency range is allocated to help deploy the TV service in
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a less congested spectrum of the S-band. In a DVB-SH system, coverage improvement is

achieved by combining a satellite component (SC) and a complementary ground component

(CGC) [25]. The SC, transmitted via a satellite, covers a wide geographical area whereas

the CGC, transmitted via terrestrial transmitters, leads to a cellular-type coverage. A cov-

erage comparison between satellite TV service and hybrid satellite-terrestrial service can

refer to [44]. This comparative study was based on field measurements and simulations.

According to the results demonstrated in [44], for a particular combination of modulation,

forward-error-correction, and interleaving schemes, the DVB-SH system operating via a sole

satellite can provide up to a coverage of 90% of the entire area. On the other hand, the

DVB-SH system operating in the hybrid mode using a satellite and a terrestrial network can

provide a broader coverage of more than 99% of the entire area.

Henceforth, users would demand the DVB-SH systems operating in the hybrid mode due

to its superior coverage in the future. The localized nature of the CGC broadcasting allows

the terrestrial broadcasters to insert local content (LC) in addition to the global content (GC)

which is transmitted by both the satellite and terrestrial transmitters. The LC insertion is

performed using hierarchical modulation [45].

The hierarchical modulation for DVB systems has been investigated by many researchers.

The tradeoff between the rate increment due to the addition of local component and the cor-

responding bit-error-rate (BER) degradation was investigated by [45], where a method was

proposed to embed an LP (low-priority) data stream for OFDM-based wireless communi-

cation systems. In addition, a new receiver design was introduced where the two decoders

for LC and GC could be incorporated [45]. A recent study on hierarchical modulation for

DVB-SH systems in [46] analyzed the system performances for both GC and LC under the
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assumption that the noise, experienced by the global content, appeared to be additive white

Gaussian noise (AWGN). The feasibility of terrestrial digital video broadcast to mobile re-

ceivers employing hierarchical modulation and turbo coding was also studied in [47]. In [48],

the use of Mobile WiMAX for the terrestrial local content transmission was suggested. The

insertion of local content into the CGC has also been investigated in [49]. A concatenated

encoding scheme mixed the two bit streams in order to make the encoding of the LP stream

depend on the well-protected high-priority (HP) stream [49]. Besides, the system perfor-

mance in terms of spectrum efficiency was analyzed when hierarchical modulation combined

with error correction codes were employed in the DVB-SH systems [50].

In the aforementioned studies on DVB-SH systems, the received signal was treated as

a noisy GC stream and hence demodulation and decoding were performed to detect the

transmitted GC stream. Then, to detect the local content, the most widely used approach

was to encode and modulate the estimated GC stream and to remove it from the received

signal for acquiring the noisy LC. Ultimately, the transmitted LC stream can be estimated

from the noisy LC. However, this existing method tends to have large latency since additional

encoding and modulating operations on the estimated GC bit stream are required at the

receiver.

In this dissertation, we propose a new scheme to remove the global content from the

received signal. This is accomplished by generating a hybrid stream composed of two com-

ponents. The first component is an output of a turbo decoder that estimates the global

content and the second component is a stream consisting of directly detected parity bits of

the global content. Our approach relieves the receiver from the tedious task of encoding and

modulation, and hence the corresponding computational burden and latency are reduced.
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Furthermore, to alleviate severe bit-error-rate performance degradation of the local content,

we modify the conventional turbo decoder so that it can be used for local content decoding.

3.2 Hierarchical Modulation in DVB-SH

The basic DVB-SH transmitter includes turbo encoder, bit interleavers, symbol inter-

leaver, and a modulator which employs hierarchical modulation and OFDM modulation.

The global content, which is carried by an HP data stream, and the local content, which is

carried by an LP data stream, are encoded separately (by the turbo encoder) as specified

by [1]. To combat burst errors, the encoded bits are interleaved using a bit block interleaver

and a convolutional time interleaver [1]. Then, at a terrestrial transmitter, these two streams

are combined together and modulated. During the modulation process, the bit streams are

mapped onto the non-uniform constellation points as shown in Figure 3.1. Then, the mod-

ulated symbols are interleaved and converted to the time domain by IFFT (inverse Fast

Fourier transform) in the OFDM modulator.

Let the transmitted global content and local content streams be denoted by uG and

uL, respectively. These two bit streams are then encoded using turbo encoder specified

in the DVB-SH standard [1]. Through a 1
3
-rate encoder, the global content data stream

will engender the systematic bit stream uG, the parity bit stream from the first encoder,

say vG1 , and the parity bit stream from the second encoder, say vG2 , and then these three

resultant streams will be multiplexed together. Similarly for the local content, one can obtain

a multiplexed stream from uL, vL1 , and vL2 . We will modulate the two aforementioned

multiplexed streams independently, that is, we do not use Gray coding here. The modulated
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Figure 3.1: A typical constellation for hierarchical modulation (2d1 denotes the minimum
“intercluster” Euclidean distance for modulating HP symbols while 2d2 denotes the minimum
“intracluster” Euclidean distance for modulating LP symbols).

QPSK (quadrature phase-shift keying) symbol sequences for global content and local content

are denoted by sG and sL, respectively. Accordingly, the complementary ground component

from the terrestrial transmitter, say sT , and the global content from the satellite, say sS, are

expressed by

sT = sG +

(

1

1 + %

)

sL, (3.1)

sS = sG, (3.2)

where the parameter % is the minimum distance between two constellation points carrying

different HP-bit values divided by the minimum distance between any two constellation

points [1]. For the constellation given by Figure 3.1 we have % = d1−d2
d2

.

In the satellite and terrestrial transmitters, pilots are inserted into the information sym-

bols and OFDM symbols are transmitted. The details of these procedures can be found
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in [1, 25].

When the signal travels through the communication channel and arrives at the receiver,

the receiver demodulates and decodes the received signal. The schematic of our proposed

new DVB-SH receiver is depicted in Figure 3.2. The received signal is passed through FFT

and the OFDM-demodulated signal, y, can be written as

y = sT + η sS + n (3.3)

= (1 + η)sG +

(

1

1 + %

)

sL + n, (3.4)

where η is the channel gain of the satellite signal and n is the AWGN. At the receiver, we

execute the channel estimation which involves the estimation of %. The channel estimation

technique in [46] is adopted here. The channel gain compensation subsystem illustrated in

Figure 3.2 produces two symbol streams as given by

yG =
y

(1 + η)
(3.5)

= sG +
1

(1 + %)(1 + η)
sL +

n

(1 + η)
, (3.6)

yL = (1 + %)y (3.7)

= sL + (1 + %)(1 + η)sG + (1 + %)n. (3.8)

Next, the “demodulator”, which actually does not carry out symbol detection, will con-

vert the complex-valued received noisy symbol streams yG, yL to the respective real-valued

streams xG and xL, each of which consists of the corresponding real components followed by

the imaginary components. As shown by [46], the noisy stream xG can be approximated by

a standard AWGN channel model with the signal-to-noise ratio given by

SNRglobal =
(1 + η)2(1 + %)2

1 + CNR + (1 + η)2(1 + %)2
CNR, (3.9)
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Figure 3.2: Our proposed new DVB-SH receiver consisting of the novel computationally-
efficient global content removal scheme.

where CNR is the carrier-to-noise ratio, defined as the ratio of total signal power to noise

power at the receiver.

For the local content, the signal-to-noise ratio can be given by

SNRlocal =
CNR

1 + (1 + η)2(1 + %)2
, (3.10)

when the global content is removed correctly. Feeding xG to the standard turbo decoder

provided by [19] one can estimate the global content as ûG. Then, we have to estimate

the local content. This is where our main contribution lies. We propose a new approach

to estimate the local content for achieving a better computational-efficiency and a shorter

processing delay. Decreasing processing delay in decoding the local content is of crucial

importance, since the use of the turbo decoder by itself has already incurred processing

delay due to its need to buffer the received bit stream before decoding.

The straightforward method to decode the local content would be to encode and modulate
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the decoded global content first, multiply this encoded signal by (1 + %)(1 + η), and then

subtract it from yL. This approach would lead to a better performance for small values

of % and small SNR, but the associated encoding and modulation operations incur extra

computational complexity and processing delay. Alternatively, one can perform the symbol

detection on yG, which just determines the signs of its real and imaginary components,

multiply the resultant symbol estimate sequence by (1 + %) (1 + η), and then subtract it from

yL. The latter method can greatly mitigate the computational burden and thus significantly

reduce the processing delay; however, this method has a drawback in terms of poor error

performance for decoding the local content. To combat the aforementioned drawback, we

propose a new method here to improve the BER performance while still maintaining the

computational efficiency. For a 1
3
-rate turbo encoder in the DVB-SH standard, the encoded

bit stream in the transmitter contains the systematic bits and two parity bit streams. To

remove the interfering global content from xL, we first build a hybrid approximation of

global content, namely xH . The stream xH is generated by utilizing the decoder output and

the detector output as depicted by Figure 3.2. This particular process is performed by the

“mixer” and its operation is stated in Algorithm 1, where N is the number of bits in the

output stream from the turbo decoder.

Algorithm 1 Hybrid stream generation

for i = 1 to N do

xH(3(i− 1) + 1) = ûG(i)
xH(3(i− 1) + 2) = sign(xG(3(i− 1) + 2))
xH(3(i− 1) + 3) = sign(xG(3(i− 1) + 3))

end for
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Then, we may remove the global content to generate x′
L. It is

x′
L = xL − (1 + %) (1 + η)xH . (3.11)

Decoding x′
L using the standard turbo decoder would not lead to the best BER performance.

This is due to the fact that the two different components in the hybrid stream have different

signal-to-noise ratios. The part of the hybrid stream coming from ûG has better signal-to-

noise ratio. To improve the ultimate BER performance, we design a modified turbo decoder

in the next section.

3.3 The Modified Decoder

The principle of turbo coding is provided in [19]. The MAP (maximum a posteriori

probability) decoder estimates the transmitted bits based on the logarithm of the a posteriori

probability (LAPP) ratio. For our proposed modified turbo decoder, the noisy local content

signal x′
L should be preprocessed, that is, we should categorize the systematic and parity

bits as in Algorithm 2,where xs
L is the systematic component, and x

p1
L , xp2

L are the parity

components.

Algorithm 2 Separating systematic and parity bits

for i = 1 to N do

xs
L(i) = x′

L(3(i− 1) + 1)
xp1
L (i) = x′

L(3(i− 1) + 2)
xp2
L (i) = x′

L(3(i− 1) + 3)
end for

The decoded local content bit stream ûL is detected using the MAP algorithm in [19]
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such that

ûL(k) =



















+1, if P{uL(k) = +1|x′
L} > P{uL(k) = −1|x′

L},

−1, otherwise.

(3.12)

Alternatively, one may use the LAPP ratio for detection. It yields

ûL(k) = sign{L (uL(k))}, (3.13)

where L (uL(k))
def
= log

(

P{uL(k)=+1|x′

L
}

P{uL(k)=−1|x′

L
}

)

. For a given turbo encoder, L (uL(k)) can be ex-

pressed as

L (uL(k)) = log

(∑

S+ P (sk−1 = p, sk = q,x′
L)

∑

S− P (sk−1 = p, sk = q,x′
L)

)

, (3.14)

where sk specifies the state variable at time index k, S+ def
= {(p, q) | sk−1 = p, sk = q, uk =

+1}, and S− def
= {(p, q) | sk−1 = p, sk = q, uk = −1}.

A well-known approach to solve Eq. (3.14) is the BCJR algorithm [51]. Since the hybrid

signal x′
L which we use as the input to the turbo decoder is not the same as the classical

received signal used as the input to the conventional turbo decoder, we have to modify the

turbo decoder accordingly. To exhibit our modifications, we describe the iterative BCJR

decoding approach (see [19]) as follows.

P (sk−1 = p, sk = q, x′
L) = αk−1(p) γk(p, q) βk(q), (3.15)

where

αk−1(p)
def
= P (sk−1 = p, x′

L(1), . . . , x
′
L(k − 1)), (3.16)

γk(p, q)
def
= P (sk = q, x′

L(k) | sk−1 = p), (3.17)

βk(q)
def
= P (x′

L(k), . . . , x
′
L(N) | sk = q). (3.18)

50



According to Eqs. (3.14) and (3.15), we have to calculate γk(p, q), αk−1(p), and βk(q) itera-

tively in the following sequential order (see [52]):

γk(p, q) = P (x′
L(k)|uk) P (uk)

= Ake
( 1
2
uL(k)L

e(uL(k)))P (x′
L(k)|uL(k)), (3.19)

where Ak is a constant which does not depend on uL(k) and Le(uL(k))
def
= log P (uL(k)=+1)

P (uL(k)=−1)
,

αk(q) =
∑

p

αk−1(p) γk(p, q), (3.20)

where α0(s) = 1 if s = 0 and α0(s) = 0 otherwise, and

βk−1(p) =
∑

q

βk(q) γk(p, q), (3.21)

where for a terminated encoder, βN (s) = 1 if s = 0 and βN (s) = 0 otherwise.

In our modified turbo decoder, the term P (x′
L(k)|uL(k)) in Eq. (3.19) should be treated

differently from the way it is in the conventional turbo decoder. This is due to the difference

in the signal-to-noise ratios of the systematic stream and the parity streams. Hence, in our

proposed method, we will estimate the individual signal-to-nose ratios for the systematic

and parity streams in x′
L. Therefore, for the modified decoder, P (x′

L(k)|uL(k)) is formulated

as

P (x′
L(k)|uL(k)) ∝ exp

(

−(xs
L(k)− uL(k))

2

2σ2
s

− (xpJ
L (k)− vLJ

(k))2

2σ2
p

)

= Bk exp

(

xs
L(k)uL(k)

σ2
s

+
xpJ
L (k)vLJ

(k)

σ2
p

)

, (3.22)

where 1
σ2
s
and 1

σ2
p
denote the estimated signal-to-noise ratios for the systematic and parity

streams, respectively, Bk is a constant which does not depend on uL(k), and J takes values
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1 or 2. According to Eqs. (3.19) and (3.22), we get

γk(p, q) = AkBk exp

(

1

2
uL(k)L

e(uL(k))

)

exp

(

xs
L(k)uL(k)

σ2
s

+
xpJ
L (k)vLJ

(k)

σ2
p

)

.(3.23)

Once the value of γk(p, q) is calculated using our proposed new formula given by Eq. (3.23),

it can be used later in the iterative decoding process.

3.4 Results and Summary

In order to measure the performance of our proposed scheme for the removal of the

global content from the received signal and to observe the performance improvement due

to our designed modified turbo decoder, we have carried out Monte Carlo simulations. We

conducted the experiment for parameter values % = 1, 1.25, 1.5, 1.75, and 2. The channel

gain for the satellite component, η = 1, is considered. Besides, we assume that the CNR

to be the ratio of the signal power (after the CGC and the SC are superimposed) to the

noise power. The frame structure complies with the DVB-SH standard in [1]. Similarly, the

encoder adopts the generating function G(D) specified by [1], which is

G(D) =

[

1
1 +D +D3

1 +D2 +D3

1 +D +D2 +D3

1 +D2 +D3

]

. (3.24)

We implement the 1
3
-rate encoder with the standard pattern. At the turbo decoder, we have

set the number of iterations to 5 for decoding the global content. For the local content,

we vary iteration numbers for comparison. Figure 3.3 depicts the BER performances for

decoding the local content only, as it is the only thing that is impacted by our proposed new

scheme. The BER measure for decoding the global content is orders-of-magnitude smaller

than that for decoding the local content especially at low CNRs. The notations in Figure 3.3
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Figure 3.3: BER performances of the local content for different decoding schemes and % = 1.

are clarified as follows: (i) “Regular Decoding”: we encode and modulate the decoded

global content prior to its removal from the received signal, (ii) “Simplified Decoding”: we

simply undertake the symbol detection process prior to the removal of the global content,

(iii) “Modified Decoding”: we generate a hybrid stream by mixing the decoded systematic

bits and the symbol estimates of parity bits, remove the global content, and then send the

resultant sequence to our proposed modified decoder.

According to Figure 3.3, for % = 1, there is a performance degradation as the tradeoff

of improvement of the computational efficiency and latency from “Regular Decoding” to
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Figure 3.4: BER performances of the local content for different decoding schemes over various
numbers of iterations and % = 1.

“Simplified Decoding”. However, our proposed modified decoding scheme can compensate

some loss in BER performance. The BER improvement is related to the number of iter-

ations taken in our proposed modified turbo decoder and this phenomenon is reflected by

Figure 3.4. If the value of the parameter % gets larger, the performance of our proposed

scheme approaches that of the regular (conventional) decoding scheme. From the results

demonstrated in Figure 3.5, it is evident that for % > 1.5, our method performs as well as

the regular decoding scheme. To understand this phenomenon, let’s examine the required
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SNR for the local content to achieve the BER of 10−5. According to Eq. (3.10), we get

SNRlocal =
CNR

1 + (1 + η)2(1 + %)2
. (3.25)

For η = 1 and % = 1, assume that the BER of 10−5 is achieved when CNR = CNR1.

Therefore, the corresponding SNRlocal is
CNR1

17
. In order to achieve the same BER perfor-

mance for % 6= 1, SNRlocal should be kept constant at CNR1

17
. Accordingly, the value of CNR

should be increased by 10 log10
1+4(1+%)2

17
dB. Therefore, the increments in CNR with respect

to CNR1 for % = 1.25, 1.5, 1.75, and 2 are equal to 0.9691, 1.8452, 2.6440, and 3.3775 dB,

respectively. This can be verified by the simulation results in Figure 3.5. In summary, as we

increase the parameter %, two effects can be perceived. First, the minimum distance between

constellation points carrying different HP bits increases and leads to the better detection of

the global content. Second, the higher requirement of CNR boosts SNRglobal, which also

leads to the better detection of the global content. These two consequences of higher %
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values manifest that our proposed new scheme approaches the same BER performance of

the regular turbo decoding scheme for % > 1.5.

To summarize, in this chapter we investigate a new approach to reduce the complexity

for removing the global content from the received DVB-SH signal. In addition to that we

have designed a new turbo decoder to improve error-rate performance of the local content.

Based on the experimental results, our proposed new decoding technique can be a promising

solution to the next generation DVB-SH receivers.
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4. BLIND TURBO ENCODER ESTIMATION

In this chapter a novel blind parameter-estimation method which identifies a turbo

encoder is discussed. The blind estimator is designed based on an iterative expectation-

maximization algorithm. To implement this blind estimation scheme, we transform the

recursive systematic convolutional (RSC) encoder into a non-systematic convolutional en-

coder preceded by a feedback encoder. The effect of the separate feedback encoder on the

state sequence of the forward convolutional encoder will be studied. And, the effectiveness

of our proposed new scheme will be evaluated using Monte Carlo simulation results.

4.1 Literature Review

Recently, blind signal processing has been used more and more widely for telecommuni-

cation applications [53–57]. Nevertheless, only few blind encoder estimation techniques have

been presented up to now. Besides, there hardly exists any blind encoder estimation tech-

nique for the turbo-coding method. Therefore, we would like to propose a novel blind scheme

to reconstruct the turbo-encoder at the receiver without the knowledge of the transmitted

signal and in the absence of training symbols.

Blind parametric estimation of an encoder has been explored very lately by some re-

searchers, though still at the primitive stage. In [58], the syndrome former of the convo-

lutional encoder was estimated based on the syndrome former properties. This algorithm,
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however, required an exhaustive search over all possible codes. If this algorithm is used for

a fixed constraint length, its complexity will be exponential with respect to the constraint

length. A different approach was proposed by [59], which presented the generalization of

the key-equation and adopted the Euclidean Algorithm for the blind identification of the

encoder parameters. In [60], an iterative method to identify the parameters and to recon-

struct the generator matrix of a rate k
n
convolutional encoder was proposed. This iterative

method could be the solution to the blind decoding problem for the encoders using dual

codes. Generally speaking, all the aforementioned approaches were based on the algebraic

properties of convolutional encoders and the associated dual code.

On the other hand, the expectation-maximization (EM) approach has been used for blind

decoding lately. In [61], an iterative probabilistic method based on the EM algorithm to

estimate the parameters of a convolutional encoder was proposed. This scheme was based

on the log-likelihood algebra and the concept of soft bits. The pioneering idea of blind

estimation related to encoders using expectation maximization can be retrieved back to the

work in [62,63], which can estimate the coefficients of a linear-feedback binary shift-register.

Since the first category of blind decoding approaches (based on the encoders’ algebraic

properties) often encounter high-complexity and difficult-to-solve drawbacks, we would like

to focus on the EM approach instead. In addition, because the turbo-coding schemes have

been widely adopted in prevalent communication systems, in this chapter, we would like to

propose a new blind decoding technique for turbo encoders. In our proposed method, the

reconstruction of a turbo encoder is based on the EM algorithm. Our main contributions

include the development of a new scheme to separate the feedback portion from the forward

path in the recursive systematic convolutional encoder and the innovative model of the
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decomposed encoder as a series concatenation of a “pure” feedback convolutional encoder and

a forward non-systematic convolutional encoder. We then derive emission probabilities and

state probabilities prior to the employment of the gradient ascent procedure for expectation

maximization. Thus, the encoder parameters can be estimated for the further decoding of

the received signal sequences.

4.2 Encoder Estimation Problem Formulation

In this section, the problem for blindly identifying the turbo encoder parameters from

the noisy received signal will be introduced. Once these parameters are blindly estimated,

one can easily reconstruct the encoder without the knowledge of the source information bits

and in the absence of the training symbols. In this study, it is assumed that the constraint

length of the underlying recursive convolutional encoder and the data rate are known at the

receiver. Therefore, the sole objective of our work is to estimate the parameters associated

with the connections in the feedback portion and those associated with the connections in the

forward path. In addition, we cannot use the portion of the received signal that arises from

the interleaved bits (see the lower group of the encoded bits in Figure 4.1). For illustration,

let’s consider a turbo encoder built upon a rate 1
n
recursive convolutional encoder, which has

the forward generating polynomials G1(D), G2(D), . . ., Gn(D), and the feedback polynomial

G0(D) (See Figure 4.1). If we ignore the recursive convolutional encoder connected with the

interleaver (the lower convolutional encoder in Figure 4.1), the coded bits can be represented

by a vector V(D), each of whose elements is a polynomial over a finite field as

V(D) = U(D)

[

1
G1(D)

G0(D)

G2(D)

G0(D)
· · · Gn(D)

G0(D)

]

, (4.1)
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Figure 4.1: A typical example of a turbo encoder built upon a rate 1
n
recursive convolutional

encoder.

where U(D) is a polynomial over a finite field and represents an input information sequence.

To enable the blind encoder identification, we separate the feedback portion from the con-

volutional encoder. It yields

V(D) =
U(D)

G0(D)
[G0(D) G1(D) G2(D) · · · Gn(D)]

= W (D) [G0(D) G1(D) G2(D) . . . Gn(D)] , (4.2)

where, W (D)
def
= U(D)

G0(D)
. According to Eq. (4.2), we can treat the encoder parameter esti-

mation problem in a different way. That is, we need to estimate the parameters associated

with a forward convolutional encoder which receives the input bits from the output of a

feedback convolutional encoder. Henceforth, our modified problem here is very different

from the problem defined in [61], because the input information bits do not come directly

from a source that generates independent and identically distributed (i.i.d.) random sam-

ples. Instead, the source information bits should first pass through a feedback convolutional

encoder 1
G0(D)

in our problem. For illustration, the turbo encoder model and the details of

the recursive convolutional encoder (adopted from the 3GPP2 specifications with omission

of the termination switch) are presented in Figures 4.1 and 4.2. For the encoder depicted
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page 15). Note that the termination switch is omitted here.

in Figure 4.2, we have k = 1, n = 2, G0(D) = 1 + D2 + D3, G1(D) = 1 + D + D3, and

G2(D) = 1 +D +D2 +D3.

After the information bits are encoded, modulated, and transmitted, they will get through

an additive white Gaussian noise (AWGN) channel. At the receiver, the received symbol

vector at time t is denoted by yt
def
= [y0t y1t · · · ynt ]

T , which is

yt = vt + nt (4.3)

=

























g0

g1

...

gn

















































wt

wt−1

...

wt−M

























+ nt, (4.4)

where, gi
def
= [g0i g1i · · · gMi ] specifies the connections of the ith shift-register (M is the length

of the shift-register) and nt is a noise vector, each of whose components is a zero-mean i.i.d.

Gaussian process with a variance of σ2. Denote g
def
= [gT

0 gT
1 · · · gT

n ]
T . One may collect the

instantaneous received signal vectors yt for a period of time to construct the “long” received

signal vector y
def
=
[

yT
t

]T

t=0,1,2,...,τ
.

Our objective is to determine the optimal matrix g∗ such that the probability of y
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conditioned on g, namely P (y|g), is maximized. It yields

g∗ = argmax
g

P (y|g). (4.5)

This is actually the maximum likelihood (ML) estimate of g. Since the coefficients of the

register connections, gji , can only take values of either 1 or 0, gradient search cannot be used

for this maximum-likelihood problem. Alternatively, we propose to employ the common

practice of characterizing the binary values by a sigmoid function qji , which can model the

probability of the parameter gji . Following [62], we define qji
def
= P (gji = 1) as

qji
def
=

1

1 + e−θ
j
i

, −∞ < θji < ∞. (4.6)

For notational convenience, we write qi
def
= [q0i q1i · · · qMi ] and q

def
= [qT

0 qT
1 · · · qT

n ]
T .

4.3 Parameter Estimation Algorithm

In this section, we will present our new blind encoder parameter estimation method based

on the EM algorithm. To use the gradient search at the maximization step, let’s assume that

the current estimate of q is given by q[k] (say at iteration k). We will update this estimate

as q[k+1] at the next iteration (iteration k+1), such that logP (y|q[k+1]) > logP (y|q[k]),

and the difference logP (y|q[k + 1]) − logP (y|q[k]) is maximized. It is equivalent to the

maximization of logP (y|q[k+1]) with respect to q[k+1], since logP (y|q[k]) is independent

of q[k + 1].

Now, let’s include the unobserved dataw, wherew is the output sequence of the separated

feedback encoder (see Figure 4.2) and it is represented by the coefficients of the polynomial

W (D) = U(D)
G0(D)

. Thus, we may express the log-likelihood function with respect to q based
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on the current estimate q[k], which is given by

logP (y|q) =
∑

w

P (w|y,q [k]) log
P (y,w|q)

P (w|y,q [k]) . (4.7)

According to (4.7), we can therefore determine the new ML estimate of q as

q[k + 1] = argmax
q

∑

w

P (w|y,q [k]) log
P (y,w|q)

P (w|y,q [k])

= argmax
q

∑

w

P (w|y,q [k]) logP (y,w|q) . (4.8)

Eq. (4.8) manifests the two major steps of the EM algorithm. In the expectation step,

the expression L(q) def
=
∑

w

P (w|y, g [k]) logP (y,w|q) is evaluated using the current estimate

q[k]; in the maximization step, we update the estimation by q[k+1] = argmax
q

L(q). Next,

we will present the detailed derivation of P (y,w|q) and P (w|y, g[k]). Let’s start from

P (y,w|q) = P (y|w,q)P (w|q) . (4.9)

One may observe that, from Figure 4.2, at a given time t, the term wt is a sum of two

binary bits where one comes from the feedback and the other from a random input. Given

the knowledge of q, let’s assume pf to be the probability that the bit from the feedback is “1”

and pu to be the probability that the input bit is “1”. Then the probability that wt equals

1 is given by pwt
= pu(1 − pf) + (1 − pu)pf . Under the practical assumption of uniformly

distributed input binary symbols, we have pu = 0.5. Therefore pwt
= 0.5 regardless of the bit

from the feedback. Consequently, we may drop the term P (w|q) = 0.5, ∀q from Eq. (4.9),

and only calculate P (y|w,q).

The distribution of yt conditioned on w and q depends on the channel noise solely.
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Hence, we get

P
(

y
∣

∣w,q
)

=
τ
∏

t=0

P
(

yt

∣

∣ [wt wt−1 . . . wt−M ],q
)

, (4.10)

where wt = 0, for t < 0. Let’s denote the states of the encoder as the contents of the memory

elements and the current input bit. That is, st = [s0t s
1
t · · · sMt ]

def
= [wt wt−1 . . . wt−M ]. Thus,

P
(

y
∣

∣w,q
)

=

τ
∏

t=0

P (yt|st,q) . (4.11)

Now, we can express the probability of yt conditioned on the encoder parameters using the

encoded bit sequence vt
def
= [v0t v1t · · · vnt ]

T (see Figure 4.2). Consequently,

P (yt|st,q) =
∑

vt

P (yt|vt)P (vt|st,q) . (4.12)

Assume yit, y
j
t are statistically independent of each other, ∀i 6= j. Hence we can calculate

the marginal probability, one by one, as given by

P
(

yit|st,q
)

= P
(

yit|vit = 1
)

P
(

vit = 1|st,qi

)

+ P
(

yit|vit = 0
)

P
(

vit = 0|st,qi

)

. (4.13)

For the AWGN channel and the binary phase-shift keying (BPSK) modulation, this becomes

P
(

yit|st,q
)

=
1√
2πσ

e−
1

2σ2 (y
i
t−1)2P

(

vit = 1|st,qi

)

+
1√
2πσ

e−
1

2σ2 (y
i
t+1)2P

(

vit = 0|st,qi

)

. (4.14)

Given st and gi, v
i
t can be written as

vit = g0i s
0
t ⊕ g1i s

1
t ⊕ . . .⊕ gMi sMt (4.15)

=
M
∑

j=0

⊕ gji s
j
t , (4.16)

where ⊕ denotes the binary addition operator and
∑

⊕ denotes the summation by binary

additions. In [62], the values of P (vit = 1|st,qi) were calculated using a forward-backward
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algorithm. We design a new approach namely a forward accumulation approach. These

values can be calculated via

P
(

vit = 1|st,qi

)

= P

(

M
∑

j=0

⊕ gji s
j
t = 1|st,qi

)

. (4.17)

Let qmi = P{gmi = 1}. We further define Pm
i as

Pm
i

def
= P

(

m
∑

j=0

⊕ gji s
j
t = 1|st,qi

)

, (4.18)

where

P 0
i = q0i s

0
t . (4.19)

Based on Eq. (4.18)

Pm
i =



















(

1− Pm−1
i

)

qmi + Pm−1
i (1− qmi ), if smt = 1

Pm−1
i , if smt = 0

=
(

1− Pm−1
i

)

smt q
m
i + Pm−1

i (1− smt q
m
i ). (4.20)

Similarly, P

(

m
∑

j=0

⊕ gji s
j
t = 0|st,qi

)

is equivalent to

1− Pm
i =



















(

1− Pm−1
i

)

(1− qmi ) + Pm−1
i qmi , if smt = 1

1− Pm−1
i , if smt = 0

=
(

1− Pm−1
i

)

(1− smt q
m
i ) + Pm−1

i smt q
m
i . (4.21)

Subtracting Eq. (4.21) from Eq. (4.20), we get

2Pm
i − 1 = (2Pm−1

i − 1)(1− 2smt q
m
i )

= −
m
∏

j=0

(1− 2smt q
m
i ). (4.22)
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It yields

Pm
i =

1

2
− 1

2

m
∏

j=0

(1− 2sjtq
j
i ) (4.23)

Substituting Eq. (4.23) into Eq. (4.14) via Eqs. (4.17) and (4.18), we get

P
(

yit|st,q
)

=
1√
2πσ

e−
1

2σ2 (y
i
t−1)2PM

i +
1√
2πσ

e−
1

2σ2 (y
i
t+1)2(1− PM

i )

=
1

2
√
2πσ

(

e−
1

2σ2 (y
i
t+1)2 + e−

1
2σ2 (y

i
t−1)2

)

+
1

2
√
2πσ

(

e−
1

2σ2 (y
i
t+1)2 − e−

1
2σ2 (y

i
t−1)2

) M
∏

j=0

(1− 2sjtq
j
i ). (4.24)

Finally, we rewrite Eq. (4.9) as

P (y,w|q) =
τ
∏

t=0

n
∏

i=0

P
(

yit|st,q
)

(4.25)

In addition, we need to compute P (w|y, g[k]) in (4.8). This can be done using the forward-

backward algorithm introduced in [64] with the observation probability conditioned on the

states given by Eq. (4.24).

According to Eq. (4.25) and the numerical results of P (w|y, g[k]) from the forward-

backward algorithm, we adopt the gradient ascent method to optimize q as follows:

θji [k + 1] = θji [k] + µ∆θji [k],

where

∆θji [k]
def
=

∂

∂θji

∑

t

∑

st

P (st|y,q[k]) logP (yt|st,q) , (4.26)

θji is related to qji according to the definition by Eq. (4.6), and µ is a step size (0 < µ < 1).
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According to Eqs. (4.24) and (4.25), Eq. (4.26) can be rewritten as

∆θji [k] =
∑

t

∑

st

P (st|y,q[k])
1

P (yit|st,q)
1√
2πσ

(

e−
1

2σ2 (y
i
t+1)2 − e−

1
2σ2 (y

i
t−1)2

)

× sjt q
j
i (q

j
i − 1)

M
∏

m=0, m6=j

(1− 2smt q
m
i ). (4.27)

4.4 Numerical Results and Summary

In this section, we will present the experiments to measure the performance of our pro-

posed blind encoder parameter estimation scheme. Considered a rate 1
3
turbo encoder with

the recursive convolutional encoder having one input and one non-systematic output v1t as

depicted in Figure 4.2. The constraint length is set to be 4, and the transfer function (gener-

ating matrix ) is given by
[

1 1+D+D3

1+D2+D3

]

. We undertake our proposed blind encoder parameter

estimator for 4,000 information bits. When the noisy signal arrives at the receiver, we do not

use the portion of the sequence arising from the interleaver. The coded bits are modulated

using BPSK, so that coded bit “1” is mapped to “+1” and coded bit “0” is mapped to

“−1”, respectively. At the beginning of the iterative EM procedure, θji is initialized to be

zero so that qji = 0.5, ∀i, ∀j. The severe AWGN channel is artificially made with the low

signal-to-noise ratios (SNR) of 0, 2, and 4 dB, since turbo encoder is mostly adopted for

low SNR conditions. One hundred Monte Carlo trials have been carried out for each SNR

condition and the average blind estimation performances are evaluated.

After the EM procedure is completed, the encoder parameters gji are estimated from qji
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Figure 4.3: Average estimation error rate ε̄ versus iteration numbers used in the EM algo-
rithm for different signal-to-noise ratio (SNR) values.

such that

ĝji =



















1, if qji > 0.5

0, if qji < 0.5

(4.28)

When qji = 0.5, ĝji can be randomly picked as either 0 or 1. For N Monte Carlo trials, we

define the average estimation error ε̄ as

ε̄
def
=

1

N

N
∑

k=1

εk, (4.29)

where

εk
def
=

1

(1 + n)(1 +M)

n
∑

i=0

M
∑

j=0

ĝji ⊕ gji . (4.30)

The average estimation errors versus the iteration numbers used in the EM algorithm are

plotted in Figure 4.3 for different SNR conditions. Note that to the best of our knowledge,
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there exists no other blind encoder parameter estimator for turbo codes, and thus we cannot

compare with other existing method(s).

To conclude, in this chapter, we make the first-ever attempt to design a novel blind

encoder parameter estimator for turbo codes. The Monte Carlo simulations demonstrate the

average estimation performance can lead to more than 90% accuracy for the severe channel

condition with the signal-to-noise ratio at 4 dB. Once the encoder parameters are blindly

estimated, the corresponding decoder can be facilitated immediately to retrieve the original

information sequence. Our new blind decoding scheme could be very useful in the future

communication technologies.
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5. HEXAGONAL CLUSTERING

In this chapter we will discuss energy efficient clustering and cluster-head selection strat-

egy for wireless sensor networks (WSNs). One of the constraints in designing a deployment

strategy and a routing algorithm for WSNs is the limited battery capacity. To achieve

longer network lifetime subject to this energy constraint, clustering and cluster-head se-

lection have drawn a lot of research interest recently. In this chapter, we propose a new

topology-dependent clustering and cluster-head selection scheme based on the hexagonal

tessellation.

5.1 Literature Review

Wireless sensor networks WSNs are composed of low-cost sensor nodes cooperating in

gathering and reporting the application-specific data. The sensor nodes are scattered over

the coverage area and have the capabilities of sensing and collecting data, processing data,

and routing data to the sink or base station (BS) [26]. Each sensor is equipped with a battery

whose size is constrained by the dimensions of the sensor node. This imposes a significant

constraint on the power capacity for sensor communications, thus limiting both transmission

range and throughput. The aforementioned difficulty has prompted researchers to seek the

ways to maximize the lifetime of a wireless sensor network subject to its limited energy

source (battery). Therefore, various routing methods were proposed in order to minimize
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the power dissipation by implementing the algorithms that utilize low-cost paths [65–70].

Energy-efficient scheduling schemes have also been proposed where sensor nodes stay in a low-

power-consumption idle state, whenever they do not transmit or receive any data [65,71–73].

Another approach to maximize the lifetime of a sensor network is through clustering, where

sensor nodes will transmit their data collectively to a specific node, known as cluster-head,

and the cluster-head will transmit the aggregated data from all nodes to the BS [74–84].

The node clustering problem has been tackled by the grouping or matching approach as

indicated in [79]. The deployment strategy designed in [80] suggested a clustering scheme

for a network with multiple-sized fixed grids. In [81], the clustering problem was modeled as

a hypergraph partitioning and its resolution was based on a tabu search heuristic using cliques

of large size. In [82], a clustering algorithm based on a random contention model without

a priori knowledge of the network was proposed. In [83], a protocol was presented, which

could periodically select cluster-heads according to a hybrid of the node residual energy and

a secondary parameter such as node proximity to its neighbors or number of neighbors.

In [75], it was suggested that the nodes could organize themselves into clusters with randomly

selected cluster-heads responsible for communicating with the base station. The sensor

nodes that are selected as the cluster-heads collect data from other sensor nodes, aggregate

messages, and then transmit the aggregated data altogether to the base station. Therefore,

if the same set of nodes are used as cluster-heads throughout the network lifetime, then the

cluster-heads dissipate more energy than the other sensor nodes. The LEACH algorithm

in [75] dealt with this problem as follows. First, a randomized rotation of cluster-heads was

taken and therefore the energy dissipation could be evenly distributed across the sensors;

second, data compression was performed at the cluster-heads prior to the data transmission
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from the cluster-heads to the base station. The random cluster-head selection in [75] could

perform luckily well only if cluster-head sensors are uniformly distributed in all geometric

areas. Usually, the distribution of the cluster-heads over the coverage area is not uniform in

practice. Hence, some sensor nodes would need to transmit their messages to a cluster-head

over a long distance. As discussed in [77] and [78], it would happen that some cluster-heads

are close-by nodes, some are placed near the network boundaries, and the LEACH algorithm

could not work effectively thereby. On the other hand, static cluster-head assignments can

manage to distribute the cluster-heads uniformly, but the sensor nodes will consume their

energy and die out quickly under these schemes.

Motivated by the aforementioned problems, we attempt to design a new clustering and

cluster-head selection approach to maximize the network lifetime. Our work has two main

contributions. First, we present a dynamic clustering and cluster-head selection approach,

which is different from other existing methods as it ensures the fairness in the cluster-head

selection and can distribute the cluster-heads uniformly over the coverage area. Second, we

will facilitate a detailed lifetime analysis for our proposed method and validate our theory

with simulations.

In our proposed method, the entire coverage area in the Euclidean plane is first parti-

tioned into regular hexagonal clusters. Another tessellation is further employed to break each

hexagonal cluster into smaller hexagons called cells. Then, a cluster-head is selected through

negotiation from a cell located at the center of a hexagonal cluster. The negotiation over-

head in terms of energy dissipated in computation and communication during this period is

negligible, since the number of nodes in a cell can be kept small by controlling the sizes of the

clusters and the cells. After a cluster-head is selected it will transmit the data for all other
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nodes within the same cluster. This is performed through different data-reporting schemes.

We will analytically evaluate the lifetime of a WSN under different data-reporting schemes.

These schemes include direct data reporting by each node to the sink or the base station,

cluster-data reporting based on the hexagonal clustering with arbitrary cluster-heads, and

cluster-data reporting based on the hexagonal clustering with centroid cluster-heads. The

single-hop and multi-hop routing schemes will be studied when our proposed new clustering

method is adopted. Besides, the effect of path-loss exponent on the lifetime of a sensor

network will also be investigated.

5.2 Clustering and Cluster-Head Selection for Sensor Networks

5.2.1 Network Model

Throughout this chapter, a WSN is considered to consist of a BS located at some specified

position near or within the coverage area and sensor nodes are arbitrarily scattered over

the coverage area. The network can be mathematically modeled by a graph. A graph

consists of a set of vertices denoted by V = {v0, v1, . . . , vN} and a set of edges denoted by

E = {e1, e2, . . . , eM}, where N is the total number of sensor nodes, M is the total number of

edges, and v0 indicates the base station. In our network model, the vertex set V represents

the BS and all other sensor nodes. The set of weighted edges E represents the wireless

communication links between the BS and each sensor node as well as the links between any

pair of sensor nodes. Within this underlying network topology, the set of sensor coordinates

is denoted by S = {p|p = (xi, yi) represents the sensor vi’s coordinate, i = 1, 2, . . . , N}.

The general idea of clustering and cluster-head selection is depicted in Figure 5.1. The
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Sensor Nodes


Clusters
 Selected
 cluster-head
  for

a particular cluster


Figure 5.1: The illustration of the clustering and cluster-head selection problem for a sensor
network.

problem of clustering and cluster-head selection can be mathematically expressed as follows.

The clustering problem is to design a partition S1, S2, . . ., SL of S such that
⋃L

l=1 Sl = S and

Sl ⊂ S, ∀l. The cluster-head selection problem is to find a sensor’s coordinate, say (xi∗
l
, yi∗

l
),

within the lth cluster to transmit all the messages for other sensors therein. Here we introduce

hexagonal tessellation based clustering, where each set Sl is composed of points (sensor

locations) within a given hexagonal area (cluster). This idea is manifested by Figure 5.2.

Similarly, our proposed cluster-head selection scheme is also based on further partitioning of

the hexagonal cluster into smaller hexagons (cells). It is illustrated by Figure 5.3.
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Figure 5.2: The illustration of hexagonal clustering. The black dots are the sensor nodes.
The integers in the hexagons are the color indices.

5.2.2 Hexagonal Tessellation

In this subsection, we will present a hexagonal tessellation technique to be used for

partitioning the coverage area of a sensor network. Consider u1 and u2 to be any two

linearly-independent vectors in a two-dimensional Euclidean space (see Figure 5.4). The set

of all points given by

Γ = {p | p = a1u1 + a2u2; a1, a2 ∈ Z} (5.1)

constitutes a lattice [85], where u1 and u2 are referred to as the basis vectors of this lattice.

Any point on the lattice has a unique coordinate representation (a1, a2). If every point on
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Figure 5.3: Hexagonal Clustering and Cluster-Head Selection: Large hexagons represent the
clusters. Different clusters have different “colors” (indexed by red integers). For each large
hexagon, we further divide it into small hexagons. The cluster-head for a cluster (large
hexagon) will be selected from the small hexagon centered at this cluster.

a lattice Λ is also a point on another lattice Γ, then we say that Λ is a sublattice of Γ [85].

For a given lattice, the basis vectors may not be unique. If u1 and u2 are basis vectors, then

u′
i =

∑

j νi,juj , j = 1, 2, i = 1, 2, are also basis vectors when νi,j ∈ Z and
∣
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.

For a given lattice, a fundamental parallelogram with respect to this lattice is defined as
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Figure 5.4: Lattice points which are also centers of hexagons. These hexagons partition the
two-dimensional space (network coverage area). The basis vectors of this lattice, u1 and u2,
are also delineated.

a set of all points P, which is given by [85]:

P = {p|p = β1u1 + β2u2; 0 ≤ β1, β2 < 1}. (5.2)

Here, we focus on the equal-length lattice basis vectors such that ‖u1‖ = ‖u2‖ = r. Let’s

consider the normalized basis vectors with r = 1. We choose a particular basis vector set

such that the two vectors impose an angle of π
3
radians between them. A lattice based on

these vectors will form a hexagonal tessellation. Thus the basis vectors can be given by

u1 =









1

0









, u2 =









1
2

√
3
2









. (5.3)

According to [86], the lattice points generated by the basis vectors in (5.3) will coincide

with the centers of the hexagonal regions and they are at a unit distance from each other.
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These hexagonal regions, centered at every point of the lattice, partition the x-y plane. We

will exploit this partitioning or tessellation to divide an underlying coverage area into the

previously mentioned clusters and cells (see Figure 5.4). Furthermore, we assume that any

sensor node can have a complete knowledge of its own coordinate and hence it can easily

identify exactly in which cluster and cell it resides.

According to the hexagonal tessellation illustrated in Figure 5.4, we can partition the

entire network region (or x-y plane) into small hexagonal clusters and cells by using different

pairs of basis vectors which are of different lengths. This scheme is further illustrated by

Figure 5.3. According to Figure 5.3, each wireless sensor node needs to carry out two things.

First, it needs to figure out in which cluster (a large hexagon) it resides based on the cluster

basis vectors v1 and v2 (the basis vectors for large hexagons). These basis vectors are given

by Eq. (5.4) later on. Next, each sensor node should determine in which cell it is located.

Within each cluster, a different set of basis vectors u1 and u2 can be chosen to further

decompose the cluster (large hexagon) into cells (small hexagons). At every sensor node, we

implement the method introduced in [86] for the purpose of deciding the cluster and the cell

where that node belongs to.

This kind of partitioning should be undertaken to address two crucial issues: (i) each

sensor should take turn to serve as a cluster-head for other nodes within the same cluster in

order to balance the energy consumption and elongate the network lifetime; (ii) the cluster-

head should always reside within the cell at the center of each cluster to avoid distant and

energy-consuming intra-cluster transmissions and save the overall transmission energy within

each cluster. To address the two aforementioned issues, we propose a dynamic clustering

approach which can guarantee the cluster-heads to be always within the cells at the centers

78



of the corresponding clusters. Such a dynamic clustering scheme can be established by a

coloring algorithm, which colors the various cells in each cluster. The cells with an identical

relative position to the corresponding cluster centers have the same color or they are indexed

by the same number as illustrated in Figure 5.3. The cluster-heads, which generally have

the same cell color will transmit the messages to the base station in the same time slots.

The transition between any two cells of identical color on the Euclidian plane can be

given by ju1 + ku2, for integers j and k [86]. According to [86], the set of these identically

colored cell centers will form a lattice with the basis vectors v1 and v2 given by

v1 = ju1 + ku2,

v2 = −ku1 + (j + k)u2. (5.4)

The lattice generated by these new basis vectors will then be

Λ = {p | p = b1v1 + b2v2; b1, b2 ∈ Z} . (5.5)

One interesting property of these basis vectors is that v2 is a π
3
-rads rotation of v1. This

property does exist for the aforementioned basis vectors u1 and u2 as well.

Lattice Λ is a sublattice of Γ given by (5.1), and all points in Λ have the same color. It

means that if a sensor node knows its relative position within a certain parallelogram, which

is a translation of the fundamental parallelogram given by (5.2), then it can determine its

appropriate cell color. The total number of cells in a cluster is the total number of lattice

points of Γ that are in the fundamental parallelogram of lattice Λ. This number is equal to

the order of the quotient group (according to [86]) Γ/Λ such that

Γ/Λ
def
= {γ + Λ | γ ∈ Γ}, (5.6)
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where γ + Λ
def
= {γ + λ|λ ∈ Λ}.

The order Q of this quotient group, referred to as the index of Λ in Γ, is given by (see [85])

Q =

∣
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∣

∣

∣

∣

∣

∣

j k

k j + k

∣

∣
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∣
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∣

∣

∣

∣

∣

∣

∣

1 0
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∣

∣

∣

∣

∣

∣

∣

∣

= j2 + jk + k2. (5.7)

Eq. (5.7) determines the total number of colors we need to use for a given tessellation (or

clustering) in terms of j and k.

5.2.3 Topology-Dependent Distributed Clustering

Our proposed topology-dependent clustering and cluster-head selection scheme is pre-

sented here. Since each sensor node can determine its own cluster and cell (color) indepen-

dently as previously discussed, our scheme is completely distributed (sensor-centric). This

new topology-dependent distributed method involves three major steps, namely (i) hexago-

nal cluster-tessellation, (ii) hexagonal cell-tessellation, and (iii) cluster-head selection. These

steps are introduced in the subsequent subsections.

Hexagonal Cluster-Tessellation

The first procedure of our proposed method is to determine the cluster size and the total

number of colors to be used. Since each cluster will have one cluster-head, we determined the

cluster size based on the required number of cluster-heads. The optimal number depends on

the data-reporting schemes and the communication range between nodes. Empirical results
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in [75] suggested that the optimal number of the cluster-heads should be 5% of the nodes.

Based on the number of cluster-heads needed, the size of a cluster can be determined to

divide the entire network regime into similar hexagons (clusters). According to Eq. (5.4),

we can obtain j and k subject to the appropriate size of each hexagon. Thus, the maximum

number of clusters, Q given by Eq. (5.7), can be found. We assign a natural number between

1 and Q to each cluster (using the coloring method in [86]) and all sensors within such a

cluster should store this cluster index.

Hexagonal Cell-Tessellation

For the cell-tessellation, we first need to determine the number of cells in a cluster, say

Q′ = j′2 + j′k′ + k′2, according to Eq. (5.7) again. It depends on the sensor population

distribution. Consequently, the radius of the cells will be (the radius of a cluster)√
Q′

, and each

cluster will be covered by Q′ cells as depicted in Figure 5.3 (Q′ = 16 in this figure). Each

sensor node uses the information of the cell radius, the values of j′ and k′, and the coordinate

of its own position to determine its cell color based on the method in [86]. Once a cell color

is determined by a node, it will not change throughout the node’s life; therefore it needs to

be carried out only once when the entire sensor network is deployed.

Since j′ and k′ (or Q′) are arbitrary integers to be selected, it is always possible to make

the expected number of nodes in a cell as small as required. Hence, the nodes in a given cell

can negotiate with each other to become the cluster-head alternately. This can be done with

negligible energy loss, not only because the negotiation is undertaken within very few sensor

nodes but also because the communication links are very short and energy-efficient for this

kind of negotiations. Moreover, negotiations need to be done only once in a network life.

81



Cluster-Head Selection

We define the lifetime of a network is the duration between the network deployment and

the first death of a node. In such a period, our proposed cluster-head selection algorithm is

given as below.

Algorithm 3 Cluster-Head selection algorithm

while no node’s death do

Q′ is determined according to Section 5.2.3.
for i = 1 to Q′ do
Step 1: Each cell with color i will contribute a cluster-head sensor.
Step 2: Inorder to undertake clustering, set the the geometric origin at a lattice
point in Γ which has color i {This will also make the cell which is contributing a
cluster-head be at the center of its cluster.}
Step 3: Select a cluster-head within each cell having color i by negotiation.
Step 4: Transmit the aggregated data to the base station through one of the data-
reporting schemes.

end for

end while

Make sure that the cluster-head is always at the vicinity of the cluster center in Step 2.

The cell coloring is fixed throughout the network life, but the clustering performed in Step

2 is continuously changed in order to keep the cluster centers at the respective vicinities of

the cluster-heads.

5.3 Lifetime Anlaysis

5.3.1 Data-Reporting Methods

For the purpose of lifetime analysis, the WSN is considered to be composed of a BS

located at the center of the circular coverage area and sensor nodes arbitrarily scattered over

the coverage area. The distance from the geometric origin (center of the coverage area) to
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each node vi is denoted by di. The reference point or the origin is set as the base station

location, and therefore d0 = 0.

Reporting Without Clustering

When reporting without using any clustering method, each individual node transmits the

sensed information to the base station directly. For a wireless communication channel, both

measurement-based empirical studies and theoretical derivations suggest that the received

signal power decreases exponentially with the distance [24]. Hence, the signal power Pr(d)

received at a distance d is inversely proportional to dα, where α is the path-loss exponent for

the given wireless environment. It yields

Pr(d) ∝
(

1

d

)α

. (5.8)

According to Eq. (5.8), we can determine the average transmitted power Pi from a sensor

node vi to the BS as

Pi = P × dα, (5.9)

where P accounts for the channel gain, antenna gains, and sensitivity of the receiver. Conse-

quently, the direct reporting scheme is associated with a weighted edge set {ej1 , ej2, . . . , ejN},

where eji is the link between node vi and the base station and its weight is specified as the

transmitted power Pi.

Reporting via Random Cluster-Heads in the Hexagonal Clustering

1. Direct Reporting:

In this data-reporting case, we will divide the coverage area into hexagons of equal radius,
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h, as shown in Figure 5.2. The number in each hexagon represents the particular color index

of that cluster [86]. Each node in a hexagonal cluster will determine its own color (identifies

which cluster it actually belongs to) based on its location, and each color class (all nodes

having the same color index) will form a cluster. It is assumed that all nodes within a given

cluster will negotiate and become cluster-heads alternately. While reporting, each node

transmits its data to the cluster-head, and the cluster-head will send the aggregated data

to the BS. During data aggregation, a cluster-head may process the received data so that it

can transmit the compressed data.

2. Multi-hop Routing:

For multi-hop routing, the geographic greedy routing [87] is proposed here, where the

network is considered to be composed of cluster-heads, and each node relays the routed

message to its neighbor closest to the base station.

Reporting via Cluster-Heads Located at the Centers of Hexagonal Clusters

Direct Reporting: In this scheme, the coverage area is partitioned into the regular hexag-

onal cells. Then, once the data is required to be reported, the coverage area is divided into

hexagonal clusters, where each cluster contains many cells within it (see Figure 5.3). The

sensor nodes within a cell which is located at the center of a hexagonal cluster negotiate to

be cluster-heads alternately. Each selected cluster-head is responsible for transmitting the

data collectively for all other nodes within the same cluster. Multi-hop Routing: Similar to

Section 5.3.1, the geographic greedy routing method is also used here. The only difference

is that in this case the cluster-heads are located in an approximate equidistance from each

other.
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5.3.2 Network Lifetime Analysis

In our work, the lifetime of a sensor network is considered to be the time elapsed between

the deployment of the network and the first death of any node. Besides, the sensing and

the reporting will be assumed to be schedule-based, that is, each node reports the sensed

data routinely. In the following subsections, we will discuss the network lifetime subject to

different data-reporting schemes.

Reporting without Clustering

In this case, each node transmits the sensed information to the base station directly.

From Eq. (5.9), we can calculate the amount of transmitted power by each node. If the

length of the transmission slot is given by T , then the energy consumed during a single

report by node vi is

Ei = TPdα
i

= E0d
α
i , (5.10)

where E0
def
= TP .

The lifetime of a sensor network depends on the first death of the first node. This

corresponds to the node that has consumed the maximum energy, Emax given by

Emax = max
i

Ei

= E0

(

max
i

di

)α

. (5.11)

Thus, we first have to determine the distribution of di. Since a circular coverage area of

radius R is considered and the BS is at the geometric center, the probability density function
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fD(di) with respect to the node-distance from the BS, di, is given by

fD(di) =
2di

R2
. (5.12)

Denote z by z
def
= max

1≤i≤N
(di). The distribution of z is thus given by

fZ(z) =

(

2N

R2N

)

z2N−1. (5.13)

Then, the statistical average Eave
def
= E[Emax] in Eq. (5.11) is

Eave = E0 × E [zα]

= E0

(

2N

2N + α

)

Rα. (5.14)

Therefore, for a sensor network consisting of nodes with an initial battery energy E, the

average lifetime of the network Lave will approximately be

Lave =
E

Eave

=
E

E0

(

2N + α

2N

)

R−α

= L0

(

2N + α

2N

)

R−α, (5.15)

where L0
def
= E

E0
. For a large number of nodes (when N is large), the average lifetime of the

network will approximately be Lave ≈ L0R
−α according to Eq. (5.15).

Reporting via Random Cluster-Heads in the Hexagonal Clustering

Assume that we have τ tiers around the cluster containing the BS. Then the total number

of clusters, say C, and the average number of nodes per cluster, say n, will be given by

C = 1 +

τ
∑

i=1

6i, (5.16)

n =
N

C
. (5.17)
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1. Direct Reporting:

In this scenario, each node becomes a cluster-head once per n times of data-reporting,

while in the other n−1 times, it will just forward the sensed information to the cluster-head

served by another node. Hence, the average energy required per data-reporting by node vi

can be approximated as

Ei ≈ 1

n

[

(n− 1)E0d
α
i,CH + γnE0d

α
i

]

=

(

n− 1

n

)

E0d
α
i,CH + γE0d

α
i . (5.18)

In Eq. (5.18), the first term
(

n−1
n

)

E0d
α
i,CH approximates the energy consumption during

the intra-cluster communication, where di,CH is the distance between node vi and the cluster-

head. The second term γE0d
α
i is the energy consumption while the aggregated information

is reported to the BS, where γ is the compression-ratio. If γ = 1, the cluster-head forwards

the received signal from other sensor nodes without any processing. When γ = 1, this

scheme does not appear to be any better than the reporting method without any clustering.

Nevertheless in practice when the node density is high, since sensor nodes in a single cluster

will be in a close vicinity, their sensed data will be correlated. Therefore, aggregation can

result in a compression-ratio less than one.

To estimate the life time of a network consider the worst case scenario within a cluster,

that is, the cluster-head is right at the border of a cluster. Let’s denote the distance from

the cluster-head to any node within this cluster by dCH,Border. Then the energy consumed
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by this node will be

Emax = max
i

(Ei)

=

(

n− 1

n

)

E0d
α
CH,Border + γE0 z

α. (5.19)

Thus, the average maximum energy consumed by these nodes that determine the lifetime

of a network can be expressed as

Eave =

(

n− 1

n

)

E0E
[

dα
CH,Border

]

+ γE0E [zα] . (5.20)

h

Figure 5.5: The illustration of a distance between a cluster-head and a node within the same
cluster.

To determine E
[

dα
CH,Border

]

, we approximate a hexagonal cluster area as a circular area

shown in Figure 5.5. All nodes falling on the arc l will share the same distance dCH,Border =

2h cos(θ) and the probability density function value of this distance (or with respect to θ in
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Figure 5.5) is proportional to the length of the arc l. Thus, we can express the probability

density function of θ as

fΘ(θ) =
2θ × 2h cos(θ)

∫ π
2

θ=0
2θ × 2h cos(θ)dθ

=

(

1
π
2
− 1

)

θ cos(θ). (5.21)

Based on Eq. (5.21), we can determine E
[

dα
CH,Border

]

as

E
[

dα
CH,Border

]

= E [(2h)α cosα(θ)]

=
(2h)α
(

π
2
− 1
)

∫ π
2

θ=0

θ cosα+1(θ)dθ. (5.22)

On the other hand, according to Eq. (5.13), the term E [zα] in Eq. (5.20) can be determined

as

E [zα] =
2N

R2N

∫ R

0

z2N+α−1d(z)

=

(

2N

2N + α

)

Rα. (5.23)

Therefore, the average maximum energy consumed is given by

Eave =

(

n− 1

n

)

E0
(2h)α
(

π
2
− 1
)

∫ π
2

θ=0

θ cosα+1(θ)dθ + γE0

(

2N

2N + α

)

Rα. (5.24)

Thus, the average lifetime of the network Lave will approximately be

Lave =
L0

(

n−1
n

) (2h)α

(π
2
−1)

∫ π
2
θ=0

θ cosα+1(θ)dθ + γ
(

2N
2N+α

)

Rα
. (5.25)

2. Multi-hop Routing:

When multi-hop routing is considered, at tier t, we have 6 t hexagonal clusters. Any

cluster-head at tier t receives data from tier t+1 and forwards it to tier t−1. A cluster-head

at tier 1 may directly forward the routed data to the base station. The average number of
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messages forwarded per node at tier t, namely M(t), can be calculated in terms of the total

number of tiers, τ :

M(t) = 1 +
number of clusters in tiers beyond t

number of clusters in tier t

= 1 +

∑τ
i=t+1 6 i

6 t

=
1

2

(τ

t
+ 1
)

(τ − t+ 1) .

It is clear that the nodes at the first tier forward the maximum number of messages, which is

1
2
τ(τ + 1). Therefore, the nodes at the first tier will limit the lifetime of the sensor network.

Thus, the lower limit of the network lifetime can be set as the lifetime of a node at the first

tier, that is the farthest from the base station. Let the distance from the BS to node vi be

dBS,i. Then the node which determines the lifetime of the network in this multi-hop routing

is the one with the distance dMH = max
vi

dBS,i from the BS, where vi belongs to the 1st tier.

Then the energy consumed by such a node is given by

Emax = max
i

(Ei)

=

(

n− 1

n

)

E0d
α
CH,Border +

1

2
τ(τ + 1)γE0d

α
MH. (5.26)

Accordingly, the average maximum energy consumed can be expressed as

Eave =

(

n− 1

n

)

E0E
[

dα
CH,Border

]

+
1

2
τ(τ + 1)γ E0E [dα

MH] . (5.27)

We have determined E
[

dα
CH,Border

]

in Eq. (5.22). Here we will derive the expression for

E [dα
MH]. According to Eq. (5.13), the term E [dα

MH] in Eq. (5.27) can be determined by

considering the total number of nodes in the first tier to be 6n and the maximum distance
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from the base station to be 2h. It yields

E [dα
MH] =

2× 6n

(2h)2×6n

∫ 2h

0

d2×6n+α−1
MH d(dMH)

=

(

12n

12n+ α

)

(2h)α. (5.28)

And Lave will approximately be

Lave =
L0

(

n−1
n

) (2h)α

(π
2
−1)

∫ π
2
θ=0

θ cosα+1(θ)dθ + γ
(

12n
12n+α

)

(2h)α
. (5.29)

Reporting via Cluster-Heads Located at the Centers of Hexagonal Clusters

The difference of this data-reporting method from the method stated in Section 5.3.2

is that here the cluster-head is always at the vicinity of the center of the cluster. Thus

Eq. (5.20) can be modified as

Eave =

(

n− 1

n

)

E0E
[

dα
CH,Center

]

+ γE0E [zα] , (5.30)

where E [zα] is given by Eq. (5.23) and dCH,Center is the distance from a node to its cluster-

head when the cluster-head is at the center of the cluster. The probability density function

of this distance is given by

fdCH,Center
(dCH,Center) =

2dCH,Center

h2
. (5.31)

Hence,

E
[

dα
CH,Center

]

=
2

h2

∫ h

0

dα+1
CH,Centerd(dCH,Center)

=

(

2

α + 2

)

hα. (5.32)
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Then, Lave can be expressed as

Lave =
L0

(

n−1
n

) (

2
α+2

)

hα + γ
(

2N
2N+α

)

Rα
. (5.33)

Similarly for the multi-hop routing, the average consumed energy by the nodes that limit

lifetime of the network is given by

Eave =

(

n− 1

n

)

E0E
[

dα
CH,Center

]

+
1

2
τ(τ + 1)γ E0E [dα

MH] , (5.34)

where E
[

dα
CH,Center

]

is given by Eq. (5.32) and E [dα
MH] is given by Eq. (5.28). And, Lave will

be

Lave =
L0

(

n−1
n

) (

2
α+2

)

hα + 1
2
τ(τ + 1)γ

(

12n
12n+α

)

(2h)α
. (5.35)

5.4 Results and Summary

5.4.1 Theoretical Comparison

In this subsection, we will depict the average lifetimes of a particular network subject

to hexagonal clustering. Consider a WSN consisting of 800 nodes on a circular area with a

radius of 400 meters. The base station is considered to be located at the center of the coverage

area. Assume that much power is consumed by the data transmissions. The transmission

power per bit period over a distance of 1 meter is considered to be 10−10 Watts, according

to [75]. During each data gathering, every node transmits 20 bits and initially each sensor

node is assumed to be equipped with a battery of total energy in 20 Joules. Accordingly, we

have

L0 =
E

T P
=

20

20× 10−10
.
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While using hexagonal clustering, we will have two tiers (in a total of 19 hexagonal clusters).

To implement hexagonal-tessellation based cluster-head selection, we set k′ = 0 and j′ = 4

and hence there will be 16 cells in every cluster. Cluster-heads compress the data using a

compression-ratio of 0.1.
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Figure 5.6: The analytical network lifetime versus the path-loss exponent α for different
data-reporting schemes. Note that the unit of lifetime is the number of data reports.

The resultant plot of network lifetime versus path-loss exponent is shown in Figure 5.6.

From now on, the curves for the single-hop transmission by each node directly without clus-

tering are denoted by “No Clustering”. The curves for the single-hop and multi-hop routing

schemes with hexagonal clustering are denoted by “Hexagonal” and “Hexagonal Multihop”,
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respectively. The curves for hexagonal clustering and hexagonal-tessellation based cluster-

head selection are denoted by “Hexagonal C” (single-hop routing) and “Hexagonal C Mul-

tihop” (multi-hop routing).

From Figure 5.6, one can observe that clustering leads to a better performance in terms of

long network lifetime. The main reason is that the clustering technique enables the data

compression at the cluster-heads. One can also observe the fact that the multi-hop routing

can lead to a longer network lifetime than the single-hop routing; the lifetime difference

between these two methods increases as the path-loss exponent increases. Moreover, the

network lifetime can be further elongated when the hexagonal-tessellation based cluster-

head selection is employed because the link distances for intra-cluster communications can

be greatly reduced thereby.

5.4.2 Numerical Evaluation

For all simulations presented in this chapter, an arbitrary network with 800 nodes and

a base station right at the center of the circular coverage area which has a radius of 400

meters are considered. Each node’s position is randomly generated such that the nodes’

population distribution is uniform over the coverage area. The transmission power level

can be adjusted so as to use the minimum energy required to reach the intended next-

hop receiver and thus the energy consumed per transmission depends on the choice of the

next hop. If the distance between the transmitter and the next-hop receiver is d, then the

required transmission energy per bit period will be 10−10 × dα Joules. For data-reporting,

each node generates a 20-bit message, and nodes are all equipped with the 20-Joule batteries.

Therefore, we have L0 = 1010. The subsequent subsections will illustrate the actual lifetimes
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measured from the simulations for different network parameters.

LEACH Algorithm versus Our Proposed Approach
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Figure 5.7: The network lifetime comparison between the LEACH algorithm and our pro-
posed approach for various numbers of cluster-heads (clusters). The path-loss exponent is
fixed at α = 3.5. Note that the unit of lifetime is the number of data reports before any
node in the network dies.

For this experiment, the path-loss exponent of the wireless channel is considered as

3.5 and the compression ratio at the cluster-heads is 0.1. In Figure 5.7, the lifetimes of

the network versus the number of cluster-heads are plotted for the LEACH algorithm [75]

and our approach which employs hexagonal tessellation for both clustering and cluster-head

selection and the data-reporting scheme is multi-hop greedy geographic routing. According
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to Figure 5.7, our approach performs better than the LEACH algorithm. In addition to

leading to a longer lifetime, our approach also has the advantage in computational efficiency.

For the LEACH algorithm, each node has to search for the nearest cluster-head before it

forwards its message. Nevertheless, in our approach, when nodes communicate with their

cluster-heads, the search procedure is not necessary; the cluster-head determination of any

node depends on the same color index and hence it requires a constant time no matter how

many sensor nodes reside in the same cluster.

Comparison between Random Cluster-Head Selection and Hexagonal -Tessellation

Based Cluster-Head Selection: Network Lifetime versus Number of Cluster-

Heads

For this experiment, the path-loss exponent of the wireless channel is considered as 4

and the compression ratio at the cluster-heads is 0.1. In Figure 5.8, we depict the lifetime

curves for the hexagonal clustering method with random cluster-head selection resulting

from both theoretical analysis (according to Eq. (5.25)) and simulations as well as those life-

time curves for the hexagonal clustering method which depends on the hexagonal-tessellation

based cluster-head selection resulting from both theoretical analysis (according to Eq. (5.33))

and simulations. As one can observe from the plots in Figure 5.8, generally, the hexago-

nal clustering method which employs the hexagonal-tessellation based cluster-head selection

gives better results than the hexagonal clustering method with random cluster-head selec-

tion. This phenomenon is reflected by both analytical and simulation results. Note that the

more the clusters, the longer the lifetimes for both methods. It results from the fact that

the more the clusters, the smaller the communication link distances and then the smaller

the power consumption by sensor nodes.
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Figure 5.8: The network lifetime comparison between the hexagonal clustering method with
random cluster-head selection and the hexagonal clustering method with the hexagonal-
tessellation based cluster-head selection for various numbers of cluster-heads (clusters). The
path-loss exponent is fixed at α = 4. Note that the unit of lifetime is the number of data
reports before any node in the network dies.

Comparison between Random Cluster-Head Selection and Hexagonal-Tessellation

Based Cluster-Head Selection: Network Lifetime versus Path-loss Exponent

In this experiment, the number of tiers is fixed at 6 so that we have 127 cluster-heads

(127 clusters), and the compression ratio at the cluster-heads is 0.1. Figure 5.9 delineates

the network lifetime versus the path-loss exponent. The hexagonal-tessellation based cluster-

head selection scheme is advantageous over the random cluster-head selection method when

the multi-hop routing is considered. In all curves shown by Figure 5.9, the network lifetimes

97



3 3.2 3.4 3.6 3.8 4
10

1

10
2

10
3

10
4

10
5

Path−loss Exponent

N
et

w
or

k 
Li

fe
tim

e

 

 
Hexagonal Multihop (Theoretical)
Hexagonal C Multihop (Theoretical)
Hexagonal Multihop (Simulation)
Hexagonal C Multihop (Simulation)

Figure 5.9: The network lifetime comparison between the hexagonal clustering method with
random cluster-head selection and the hexagonal clustering method with the hexagonal-
tessellation based cluster-head selection. The number of tiers is fixed at 6 while the path-loss
exponent α varies. Note that the unit of lifetime is the number of data reports before any
node in the network dies.

decrease with the increase in the path-loss exponent for both methods. The reason is obvious.

The larger the path-loss exponent, the larger the signal attenuation and then the larger the

required transmission power.

To summarize, in this chapter, we present a novel hexagonal clustering method in a

distributed manner, where each node determines which cluster it belongs to. Our proposed

method does not involve any search algorithm, which is generally very time-consuming.

In addition, our proposed method is insensitive to the network dimension and hence it is
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well scalable. Moreover, we theoretically analyze the lifetime of a wireless sensor network

under different data-reporting schemes. Our newly derived lifetime measures can be utilized

as an important tool for the management and coordination of any sensor network. The

new lifetime measures can also be used for selecting an appropriate data-reporting scheme

for a particular sensor network subject to a given compression-ratio. Our new theoretical

results are validated by the simulation results as well. The theoretical analysis matches the

simulation results accordingly.
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6. CONCLUSION

In this dissertation work, we investigate the important reliability and efficiency issues

encountered in wireless communication systems. We proposed and examined different cod-

ing/decoding techniques and energy-saving schemes to enhance the reliability and efficiency

for different practical applications using wireless systems.

The primary topics addressed in this dissertation are variable-rate convolutional coding,

local-content detection through a modified turbo decoder, blind turbo encoder estimation, and

hexagonal-clustering for wireless sensor networks.

The first contribution of this work is to provide an innovative approach for the perfor-

mance improvement of mobile communication systems operating over time-varying wireless

channels. This system performance enhancement has been achieved through the implementa-

tion of a new variable-rate convolutional encoder. This new adaptive channel coding scheme

lowers the data rate in an adverse channel condition so as to maintain a low error probability;

on the other hand, it increases the throughput in a good channel condition. The resultant

low error probability actually reduces the processing delay incurred by retransmissions, com-

monly encountered in current wireless communication systems.

Another major contribution of this dissertation is to facilitate a novel design of the mod-

ified turbo decoder to decode the local content and the development of a computationally-

efficient scheme to remove the global content from the received signal in DVB-SH systems.
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For most practical purposes, the error performance of our proposed new scheme is as good

as that of the standard approach while our scheme can achieve much better computational-

efficiency and smaller latency.

Moreover, we have investigated a very new topic, namely the blind estimation of encoder

parameters for turbo codes. We propose to separate the feedback components from the

forward path in a recursive convolutional encoder so as to blindly estimate the parameters.

Our new scheme does not need the knowledge of the encoder or the transmission of training

symbols. The average blind encoder estimation performance exhibits 90% accuracy for the

channel condition at 4 dB signal-to-noise ratio.

In addition to the coding/decoding studies, we have also investigated the energy efficiency

of wireless sensor networks and propose a clustering and cluster-head selection algorithm

which significantly improves the lifetime of the entire network. Our new clustering and

cluster-head selection method is based on hexagonal tessellation. The individual nodes

determine if they can serve as cluster-heads simply subject to their cell colors. Overall, our

proposed technique is quite computationally-efficient. This new clustering and cluster-head

selection strategy would be very convenient in practice.

Generally speaking, this dissertation addresses crucial issues regarding the reliability

and efficiency of wireless communication systems. Based on our theoretical and algorithmic

studies, we provide scientific and engineering solutions to the practical problems incurred in

the modern wireless communication technologies. The results of this dissertation work would

be a valuable addition to future coding, modulation, estimation, and detection in wireless

communication systems.
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