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ABSTRACT

Signal detection and estimation has been prevalent in signal processing and communications

for many years. The relevant studies deal with the processing of information-bearing sig-

nals for the purpose of information extraction. Nevertheless, new robust and efficient signal

detection and estimation techniques are still in demand since there emerge more and more

practical applications which rely on them. In this dissertation work, we proposed several

novel signal detection schemes for wireless communications applications, such as source local-

ization algorithm, spectrum sensing method, and normality test. The associated theories and

practice in robustness, computational complexity, and overall system performance evaluation

are also provided.
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1. INTRODUCTION OF DETECTION AND ESTIMATION

Signal detection [2–5] and estimation [5–8] is to extract information about some phenomena

related to the random observation Y , which may be a set of vectors, waveforms, numbers,

and so on. The detection problem is to decide among a finite number of possible situations or

“states of nature”, and the estimation problem is to estimate the values of some parameters

that cannot be observed directly. In either case, the relation between the observation and the

desired information is probabilistic rather than deterministic, in the sense that the statistical

behavior of Y is affected by the states of nature or the values of the parameters to be

estimated. Thus, the corresponding mathematical model involves a family of probability

distributions of Y . Given such a statistical model, the detection and estimation problems

are to find the optimal approaches to process the observation Y in order to extract the

desired information. The differences in the fundamental attributes of these approaches can be

reflected by the characteristics of the desired information, the amount of a priori knowledge,

and the associated objective measures [8].

1.1 Existing Solutions and Limitations

There exist many different kinds of signal detection and estimation applications and tech-

niques [4, 7, 9–13]. The binary- and multiple-hypothesis tests, for example, Bayesian and

Neyman-Pearson (NP) tests, are widely used [14, 15]. For the binary-hypothesis tests, the
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optimal decision rules can be expressed in terms of likelihood ratio (LR) statistics and the

test performances can be analyzed using the receiver operating characteristic (ROC). How-

ever, one may ask how to make sure that those decisions are subject to a high degree of

reliability. In the signal detection, two different strategies can often be employed to reach

the highly reliable decisions. The first strategy is to mandate the signal detector to operate

at a sufficiently high signal-to-noise ratio (SNR). But this is not always possible. The second

strategy is to repeatedly acquire measurements until the reliability of the decision is attained.

Thus, the tests based on repeated measurements are developed for the second strategy.

For all the aforementioned detection techniques, the probability distributions of observations

under all hypotheses are known exactly. However, this assumption is not true in practice;

either the probability distribution functions cannot be characterized precisely or there ex-

ist some unknown parameters associated with the underlying probability density function,

which depend on the observations. The estimation of unknown parameters from observations

depends on whether the unknown parameters are deemed random or deterministic. Different

methods can be devised to facilitate the estimates. Bayesian methods in [14] treat these pa-

rameters random but with a known a priori probability distribution. This distribution can

be acquired from long-term measurements or presumption. The minimum mean-square er-

ror (MMSE) and maximum a posteriori (MAP) estimators are two commonly used Bayesian

approaches [14, 16]. On the other hand, the deterministic approach treats the unknown

parameters deterministic and relies exclusively on the available data. The best-known deter-

ministic method is the maximum likelihood (ML) estimator which maximizes the probability

density function of the observations subject to the unknown parameters. Usually, the ML

estimate converges almost surely to the true parameter value, but the corresponding com-

2



putational complexity is increased with the sample size [11].

In addition, Gaussian signal detection is one of the most important signal detection problems

because the Gaussian model is prevalent in all practical applications. Often, it can be found

that a received signal is assumed deterministic possibly involving some unknown parameters,

and it is impaired by Gaussian noise. A typical example can be found in the detection of

the received M -ary phase-shift keying (PSK) or frequency-shift-keying (FSK) signals [17].

Besides, a received signal itself may constitute a Gaussian process involving some unknown

parameters [11]. Dependent on the type of applications, usually a Bayesian test or a gener-

alized likelihood ratio test (GLRT) can be adopted for the Gaussian signal detection [18]. To

detect such Gaussian signals [11], one needs to undertake a GLRT detector incorporated with

the ML estimators [19] and the unknown parameters can be determined thereby. This task

can be undertaken using standard iterative methods, such as Gauss-Newton iteration [20].

However, among all iterative techniques, the expectation-maximization (EM) algorithm fa-

cilitates a convenient approach to simplify the maximum likelihood [21]. Whenever the

solution of the maximum likelihood cannot be achieved in a closed form, the available ob-

servations should be augmented by “missing data” until the “complete data” constituting

both observations and missing data lead to a new solvable maximum likelihood. Since the

missing data are unavailable, they need to be estimated at each iteration. Consequently,

the EM algorithm proceeds by two steps: in the expectation step (E-step), the missing data

are estimated using the available data (observations) subject to the current estimates of the

unknown parameters; in the maximization step (M-step), the estimated likelihood function

subject to the complete data is then maximized so as to obtain a set of updated parameters.

In conclusion, for different applications and problems, different signal detection and esti-

3



mation methods need to be used. Before designing an appropriate approach to solve any

problem, one needs to answer the two following questions.

• Given a particular application or problem, how do we extract the “best” features from

the observations?

• Given a particular application or problem, how do we design a “robust” and “efficient”

algorithm to solve it?

Since the answers to the two aforementioned questions are surely application- or problem-

dependent, many on-going research works are still in pursuit in the scientific society nowa-

days [22–25]. In this dissertation work, we would also like to dedicate our point of view in

dealing with the relevant detection/estimation problems.

1.2 Research Motivation and Applications

Based on our previous discussion, it is obvious that the most important issue in signal de-

tection and estimation is to find the “reliable features” which can represent the “crucial”

statistical information of all observations (signals), and also to develop the robust statis-

tical methods, tests, or algorithms to extract/estimate these features. There exist many

signal detection and estimation techniques nowadays. However, because more and more new

applications emerge in signal processing and communications, researchers are still making

continual efforts to design novel robust statistical methodologies for signal detection and

estimation. Thus, we will dedicate this dissertation work to exploring the robust statistical

features and the associated computationally-efficient detection and/or estimation algorithms

for some focused applications.
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Among a wide variety of statistical features, probability density function (PDF) is one of

the most important features, since PDF is the only complete mathematical representation

for any random process. By simply maximizing the PDF with respect to the unknown

parameters, one can carry out the estimation or detection. This general inference procedure

is the well-known maximum likelihood method. In order to deal with noise and determine a

reliable analytical statistical model of the signal, Gaussian distribution is commonly adopted

for signal detection or estimation. Based on the central limit theorem [26], most noises could

be modeled as Gaussian processes in practice. Nevertheless, Gaussian distribution is not a

simple polynomial function. Thus, the analytical statistical model for the signal based on

the Gaussian distribution is usually not mathematically tractable. Moreover, the maximum

likelihood problem is generally quite complicated. For example, when the underlying PDF is

assumed to be a Gaussian mixture, the corresponding optimization solution will not be easy

to obtain. Thus, robust and efficient iterative algorithms need to be designed to approximate

the optimal solution step by step [27]. On the other hand, though the Gaussian model

is a nominal assumption which may often be valid, it turns out that in many cases the

optimal signal processing schemes can still suffer a drastic degradation in performance even

for apparently small deviations from such a nominal assumption. Thus, other types of PDFs,

such as Rayleigh distribution, Gamma distribution, etc. [28], were also employed to facilitate

the statistic features of the signals in practice. One can discover that based on different PDFs,

one needs to employ different statistical methods to fully extract the reliable information of

the signal. Thus, above all, one has to make sure whether the observations satisfy a specific

distribution. Since the Gaussian model is the most commonly used statistical model, it would

be very desirable to check whether the observation data satisfy a Gaussian distribution or

5



not before any detection or estimation task is carried out.

To demonstrate our proposed signal detection/estimation schemes, three practical problems

(applications) will be illustrated as typical examples in this dissertation, namely source local-

ization, normality test, and spectrum sensing. These three applications are briefly introduced

as follows.

• Source Localization: Source localization problem is to target the locations of the

sources using the collected data at low-cost and low-complexity passive sensor arrays,

which are transmitted from the sources. This has been the underlying problem in radar,

sonar, wireless systems, radio-astronomy, seismology, and many other applications for

long.

• Normality Test: It is well known that Gaussian PDF is the widely adopted underlying

statistical model due to the central limit theorem and this statistical model has been

exhaustively used in all engineering and science applications. Desirable mathematical

properties can be found subject to the underlying Gaussian PDF. However, before

adopting the Gaussian model for some arbitrary observations, one needs to determine

if such observations satisfy the Gaussian distribution. This decision-making task is

called Gaussianity (normality) test, which is essential for many signal processing ap-

plications [29–33].

• Spectrum Sensing: The increasing demand for wireless connectivity and the crowded

unlicensed spectra have prompted the regulatory agencies to be more aggressive in

coming up with new ways to use spectra more wisely [34]. Hence, spectrum sensing

(see [35, 36]) arises as a feasible solution to the aforementioned spectral congestion

6



problem by introducing the opportunistic usage of the frequency bands that are not

heavily occupied by licensed users [37,38].

When the iterative algorithms are employed for detection or estimation, one must con-

sider how fast they can converge or whether they would be easy to be trapped into local

minima/maxima [39, 40]. For some methods, their convergence can be analyzed by rigor-

ous mathematical manipulations, while for other algorithms, they are not mathematically

tractable. Thus, for those iterative algorithms whose convergence can only be empirically

justified, one needs to undertake sufficiently many random tests to investigate their conver-

gence behaviors. Computational complexity is another important factor, and it depends on

the required sample size and iteration number, and so on.

The “robustness” factor is also very important for researchers in designing any detection

or estimation method. The “robust techniques” (techniques leading to a satisfactory per-

formance even if there involves some uncertainty in the assumption of the system model)

will help us get much more reliable results in practice. Moreover, the detection/estimation

methods must be efficient as well. In this dissertation work, we will explore novel detec-

tion/estimation methods which are both robust and efficient.

To measure the performance of a detection or estimation technique, Cramer-Rao lower

bounds (CRLBs) and ROCs are often used. By comparing the CRLBs or ROCs, one can

easily determine which method is superior. On the other hand, Monte Carlo (MC) simula-

tions should be investigated as well. Together with CRLB/ROC analysis and MC simulation

results, one can evaluate and compare the performances of different estimation or detection

methods.

7



1.3 Literature Review

Signal detection and estimation theory is based on mathematical statistics. Fundamental

monographs written by A. Kolmogorow, V. Kotellnikow, N. Wiener, and K. Shannon ex-

plored the techniques of statistics for signal processing in general and for detection and

estimation in particular [41–43]. The first fundamental research devoted to the systematic

use of statistics for solving the problems of signal detection and estimation was carried out

by J. Marcum, P. Swerling, and V. Kotelnikow [41,42]. Many results of fundamental impor-

tance were presented by these authors. Much of the early work in detection and estimation

theory was undertaken by radar researchers [44]. Moreover, signal detection and estimation

theory was applied in 1966 by John A. Swets and David M. Green for psychophysics [45].

Nowadays, signal detection and estimation theory is used in many different areas, especially

telecommunications. The basic knowledge about signal detection and estimation can be

found in the existing literature [5, 9, 11,26,28,46–48].

1.3.1 Source Localization

Recently, the wide-band source localization in the near field has drawn a lot of research

interest in the signal processing applications [49–52]. Extensive studies for the wide-band

source localization can be found in [49, 50]. Among them, the maximum-likelihood (ML)

approach in [49] has been regarded as the optimal and robust scheme for coherent source

signals. However, when multiple sources are present, the ML approach facilitates a nonlin-

ear optimization problem, which is impractical especially for the energy-constrained sensor

networks. In addition, many of the existing ML estimators are based on the unrealistic

8



spatially-white noise assumption across different sensors [51–53], where the noise process at

each sensor is assumed to be spatially-uncorrelated-white-Gaussian with an identical vari-

ance. It is shown that under this assumption, the ML estimates of the unknown parameters

(source waveforms/spectra and noise variance) can be expressed as the respective functions

of the source locations and the number of independent parameters to be estimated is greatly

reduced. Thus, this assumption, although unrealistic, substantially reduces the search space

and usually leads to more efficient localization algorithms. Hence, various wide-band ML

source location estimators were proposed in [49]. However, this spatially-white noise assump-

tion is unrealistic in many applications. In several practical applications [53], the sensors

are sparsely placed so that the sensor noise processes are spatially uncorrelated. However,

the noise variance of each sensor can still be quite different due to either the variation of

the manufacturing process, the imperfection of the sensor array calibration or the ”unquiet”

background. As a result, the spatial noise covariance matrix (across the sensors) can be

modeled as a diagonal matrix where the diagonal elements in general are not identical. Note

that this noise model is definitely not a special case of the ARMA model as was explained

in [54]. Furthermore, the source location estimators derived from the spatially-white noise

(SWN) assumption would often not provide satisfactory results in the real environment since

the algorithms derived from the SWN assumption blindly treat all sensors equally in the esti-

mated likelihood. Motivated by the arguments above, a narrow-band ML DOA (direction of

arrival) estimator under the realistic spatially-non-white noise (SNWN) model has been re-

cently proposed [54]. In [53], two DOA calculation algorithms, namely stepwise-concentrated

maximum likelihood estimator (SC-ML) and approximately-concentrated maximum likelihood

algorithm (AC-ML), were presented for the multiple wide-band sources instead. Although
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both SC-ML and AC-ML methods can be extended for the source localization, the robustness

issue still remain challenging in this research area.

1.3.2 Normality Test

For the time-domain approach, the existing techniques are summarized as follows. The

classical goodness-of-fit tests based on the χ2 or Kolmogorov-Smirnov statistic can be em-

ployed to verify the Gaussianity [55]. The most commonly-used technique is the Pearson’s

χ2 test. Other popular tests include the Shapiro-Wilk test in [56] and the D’Agostino test

in [57]. In addition, the Lilliefors test in [58] is a special case of the Kolmogorov-Smirnov

goodness-of-fit test. In the Lilliefors test, the Kolmogorov-Smirnov test is implemented us-

ing the sample mean and the standard deviation as the mean and the standard deviation

of the theoretical (benchmark) population with which the observed sample is compared.

Jarque-Bera (JB) test in [59] based on the sample kurtosis and the sample skewness is very

promising. The JB statistic used in this method has an asymptotic chi-square distribution

with two degrees of freedom. In this test, the null hypothesis is that the data consist of a

normal (Gaussian) distribution. This null hypothesis is a joint hypothesis of both skewness

and excess kurtosis being zero, since a Gaussian process has an expected skewness of 0 and

an expected excess kurtosis of 0 (or a kurtosis of 3). As shown in [59], any deviation from

the Gaussianity increases the JB statistic. Moreover, some statistical tests based on the

characteristic functions were proposed in [60] and they usually required the estimation of

much more parameters than the aforementioned simple tests. On the other hand, the main

frequency-domain Gaussianity test was originally proposed by Hinich, which was based on

the bispectrum. Although Hinich’s bispectrum test drew many applications, it is not suit-
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able for the symmetric PDFs [61]. This test was later extended to the trispectrum based

technique by [62]. Both bispectrum and trispectrum based statistics have the nonparametric

advantage. However, a large amount of data are required for reliable spectral estimates and

the additional time-consuming bootstrap technique may also often be in demand [61].

1.3.3 Spectrum Sensing

To combat the spectrum sensing problem, several methods have been proposed, such as

the matched filtering approach [34, 63, 64], the feature detection approach [65, 66] and the

energy detection approach [63, 67–70]. For the matched filtering method, it can maximize

the SNR inherently. However it is difficult to do detection without signal information such

as pilot and frame structure. And for feature detection method which is basically performed

based on cyclostationarity, it also must have information about received signal sufficiently.

However, in practice, cognitive radio system can not know about primary signals structure

and information. For the energy detection method, although it doesn’t need any information

about the signal to be detected, it is prone to false detections since it is only based on

the signal power [69, 70]. When the signal is heavily fluctuated or noise uncertainty is

big [63,64,69], it becomes difficult to discriminate between the absence and the presence of the

signal. In addition, the energy detection is not optimal for detecting the correlated (colored)

signals, which are often found in practice. To overcome the shortcomings of the energy

detection approach, some methods based on the eigenvalues associated with the covariance

matrix of the received signal were proposed in [37, 71, 72]. However, the corresponding

computational complexities are quite large. A method based on the higher-order-statistics

(HOS) was proposed and it would be promising especially in the low SNR conditions [73].
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1.4 Notations

The sets of all real and complex numbers are denoted by R and C, respectively. A vector is

denoted byA and a matrix is denoted by Ã. The statistical expectation operation is expressed

as E{ }. Besides, ÃT , Ã∗, ÃH , det(Ã), Ã†, and trace(Ã) stand for the transpose, conjugate,

Hermitian adjoint, determinant, pseudo-inverse, and trace of the matrix Ã, respectively.

In addition, ⊙ stands for the Hadamard matrix product operator, and ∥ ∥ stands for the

Euclidean norm.
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2. SOURCE LOCALIZATION1

In this chapter, we would like to discuss the source localization problem. Weak signal detec-

tion is the crucial challenge in source localization applications. Besides, the realistic scenario

that the source signal waveform is unknown would impose difficulty to source localization

as well. Hence, the robustness against sparse weak signals and the efficiency of the relevant

methods will be investigated in this dissertation work.

2.1 Source Localization

Figure 2.1 illustrates a simple example of source localization. Two acoustic sources and five

sensors (receivers) are placed in a given territory. Based on the PDFs of the received data

at each sensor, the locations of the two sources could be estimated using the ML approach.

This chapter is organized as follows. The problem formulation and the signal model are

introduced in Section 2.1.1. The maximum-likelihood source-location estimators for both

SWN and SNWN models are introduced in Section 2.1.2. The novel EM algorithm for

1 c⃝ [2011] IEEE. Reprinted, with permission, from [Lu Lu, Hsiao-Chun Wu, Kun Yan, and Iyengar, S.S.,
“Robust Expectation-Maximization Algorithm for Multiple Wideband Acoustic Source Localization in the
Presence of Nonuniform Noise Variances”, IEEE Sensors Journal, March/2011].
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way

imply IEEE endorsement of any of Louisiana State University’s products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must be obtained
from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all
provisions of the copyright laws protecting it.
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wide-band source localization in the near field under the SNWN assumption is derived and

discussed in Section 2.1.3. Then the computational complexity comparison among our new

EM algorithm, the conventional SC-ML and AC-ML methods is presented in Sections 2.2.1

and 2.2.2. In addition, the Cramer-Rao lower bound (CRLB) derivation will be manifested

in Section 2.2.3. Conclusion will be drawn in Section 2.2.4.

2.1.1 Problem Definition

Considering a randomly distributed array of P sensors to collect the data from M sources,

we assume a problem structure illustrated in Figure 2.1. Since the sources are assumed to be

in the near field, the signal gains are different across the sensors. Thus, the signal collected

by the pth sensor at a discrete time instant ı is given by

æp(ı) =
M∑

m=1

a(m)
p s(m)

(
ı− ϱ(m)

p

)
+ wp(ı), (2.1)

for ı = 0, 1, . . . , L− 1, p = 1, . . . , P , m = 1, . . . ,M , where a
(m)
p is the gain of the mth source

signal arriving at the pth sensor; s(m)(ı) denotes the mth source signal waveform; ϱ
(m)
p is the

propagation delay (in data samples) incurred from the mth source to the pth sensor; wp(ı)

represents the zero-mean independently identically distributed (i.i.d.) noise process. Several

crucial parameters are specified as follows:

ϱ
(m)
p

def
= Fs

∥rs(m)−rp∥
v

: the propagation delay from the mth source to the pth sensor,

rs
(m) ∈ R2×1: the mth source location,

rp ∈ R2×1: the pth sensor location,

v: the source signal propagation speed in meters/second,

Fs: sampling frequency.
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Taking the ȷ-point discrete Fourier transform (DFT) of both sides in Eq. (2.1) and reserving

a half of them due to the symmetry property, we have

X(k) = D̃(k)S(k) + U(k), for k = 0, 1, . . . ,
ȷ

2
− 1, (2.2)

where

X(k)
def
= [X1(k), · · · , XP (k)]

T ∈ CP×1 (2.3)

and Xp(k) is the k
th DFT point of xp(n), p = 1, . . . , P . The symbols for the right-hand side

of Eq. (2.2) are clarified as follows.

D̃(k)
def
= [d(1)(k), · · · , d(M)(k)] ∈ CP×M (2.4)

consists of M steering vectors, each given by

d(m)(k)
def
= [d

(m)
1 (k), · · · , d(m)

P (k)]T ∈ CP×1, m = 1, . . . ,M, (2.5)

where

d(m)
p (k)

def
= a(m)

p e−
j2πkt

(m)
p

ȷ , (2.6)

and j
def
=

√
−1. Note that

S(k)
def
= [S(1)(k), · · · , S(M)(k)]T ∈ CM×1 (2.7)

consists of M individual source signal spectra, each given by S(m)(k) where S(m)(k) is the

kth DFT point of s(m)(n), m = 1, . . . ,M .

In reality, the source signal spectral vector S(k) is unknown and deterministic. The noise

spectral vector U(k) ∈ CP×1 is a complex-valued zero-mean spatially-uncorrelated Gaussian

process with the following covariance matrix:
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Q̃
def
= E

{
U(k)U(k)H

}
=



q1 0 · · · 0

0 q2
. . .

...

...
. . . . . . 0

0 · · · 0 qP


∈ CP×P , ∀k. (2.8)

In general, qp, p = 1, 2, . . . , P , are not necessarily identical to each other under the SNWN

assumption. Hence, we need to deal with the realistic source localization problem in the

presence of the non-uniform noise variances thereupon.

2.1.2 Maximum-Likelihood and Simplification

Prior to the establishment of the log-likelihood for the source localization in the presence

of the non-uniform noise variances as stated by Eq. (2.8), we start from the conventional

maximum-likelihood formulation for the identical noise variance across the sensors.

Conventional Maximum-Likelihood for Source Localization in the Presence of

Identical Noise Variance (SWN)

According to the signal model given by Eq. (2.2) together with the noise variance constraint

as Q̃ = σ2 Ĩ, where σ2 is the noise variance and Ĩ is a P ×P identity matrix, the maximum-

likelihood source localization formulation can be facilitated as [49, 53, 74]. We highlight the

relevant pivotal formulae here.

Let rs, S̃, σ
2 represent all the unknown parameters in Eq. (2.2) necessary to be estimated,

where

rs
def
=
[
rs

(1)T , · · · , rs(m)T , · · · , rs(M)T
]T

∈ R2M×1, (2.9)
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S̃
def
=
[
S(0)T , · · · , S (ȷ/2− 1)T

]T
∈ C(

Mȷ
2 )×1. (2.10)

In addition, we denote the residual vector as

g(k)
def
= [g1(k), · · · , gP (k)]T = X(k)− D̃(k)S(k) ∈ CP×1. (2.11)

Thus, the likelihood function is given by

f(rs, S̃, σ
2)

def
=

1

πPȷ/2σPȷ
exp

− 1

σ2

ȷ/2−1∑
k=0

∥∥g(k)∥∥2
 . (2.12)

Taking the logarithm of Eq. (2.12) and neglecting all the constant terms, we can derive the

corresponding maximum likelihood estimates are(
r̂s,
̂̃
S, σ̂2

)
= argmax

(rs,S̃,σ2)

{
L
(
rs, S̃, σ

2
)}

= argmin
(rs,S̃,σ2)

ȷ/2−1∑
k=0

∥∥g(k)∥∥2
 . (2.13)

Thus, according to Eq. (2.13), we can write

Ŝ(k) = D̃(k)†X(k) =
(
D̃(k)HD̃(k)

)−1

D̃(k)HX(k), (2.14)

and

r̂s = argmin
rs

ȷ/2−1∑
k=0

∥∥∥X(k)− D̃(k)†X(k)
∥∥∥2 . (2.15)

Maximum-Likelihood for Source Localization in the Presence of Non-uniform

Noise Variances (SNWN)

In this subsection, we will introduce the nonuniform maximum-likelihood source localization

formulation according to the recent literature [53,54] for a more realistic SNWN model. Let

rs, S̃, q be the parameters to be estimated for this case, where q
def
= [q1, ..., qP ]

T ∈ RP×1 is the

vector consisting of the diagonal elements in Q̃ given by Eq. (2.8). The likelihood function

of
(
rs, S̃, q

)
can be expressed as
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f
(
rs, S̃, q

)
def
=

1(
πp det(Q̃)

)ȷ/2 exp
−

ȷ/2−1∑
k=0

g(k)HQ̃−1g(k)

 . (2.16)

Then we have the following log-likelihood function L
(
rs, S̃, q

)
by taking the logarithm of

Eq. (2.16) and neglecting all the constant terms:

L
(
rs, S̃, q

)
= − ȷ

2

P∑
p=1

log (qp)−
ȷ/2−1∑
k=0

∥∥ġ(k)∥∥2 , (2.17)

where

ġ(k)
def
= Q̃−1/2g(k) = Ẋ(k)− ˜̇D(k)S(k), (2.18)

Ẋ(k)
def
= Q̃−1/2X(k), (2.19)

˜̇D(k)
def
= Q̃−1/2D̃(k). (2.20)

Consequently, we may obtain the maximum-likelihood estimates for
(
rs, S̃, q

)
as(

r̂s,
̂̃
S, q̂

)
= argmax

(rs,S̃,q)
L
(
rs, S̃, q

)
. (2.21)

Similar to the derivation in Section 2.1.2, we can obtain the estimate of the pth element in q

as

q̂p =
2

ȷ

ȷ/2−1∑
k=0

|gp(k)|2 =
2

ȷ

∥∥∥gp∥∥∥2 (2.22)

where gp(k) denotes the p
th element of the residual vector g(k) and

gp
def
=
[
gp(0), · · · , gp

( ȷ
2
− 1
)]T

∈ Cȷ/2×1. (2.23)

Substituting Eqs. (2.23), (2.22) into Eq. (2.16), we can convert the log-likelihood function

to a new version in terms of rs and S̃ only as
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L(rs, S̃) = − ȷ

2

P∑
p=1

log (q̂p)−
ȷ/2−1∑
k=0

P∑
p=1

|gp(k)|2

q̂p

=
ȷ

2

{
P
[
log
( ȷ
2

)
− 1
]
−

P∑
p=1

log
∥∥∥gp∥∥∥2} . (2.24)

Thus, the ML estimators for rs and S̃ are given by(
r̂s,
̂̃
S

)
= argmax

(rs,S̃)

(
−

P∑
p=1

log
∥∥∥gp∥∥∥2) , (2.25)

and

Ŝ(k) = ˜̇D(k)† ˜̇X(k). (2.26)

Substituting Eq. (2.26) into Eq. (2.25), we can obtain the maximum-likelihood estimates of

rs and q as (
r̂s, q̂

)
= argmax

(rs,q)
L
(
rs, q

)
(2.27)

where

L
(
rs, q

)
= −

P∑
p=1

log
∥∥∥gp∥∥∥2, (2.28)

gp is defined by Eq. (2.23), and

g(k) = X(k)− D̃(k) ˜̇D(k)† ˜̇X(k). (2.29)

2.1.3 EM Source-Localization Algorithm for Distinct Noise Variances

Individual Likelihood Formulation for Source Localization

The EM algorithm is a well-known iterative algorithm for the maximum-likelihood estima-

tion. The complicated nonlinear optimization problem in Eq. (2.21) and Eq. (2.27) can be

19



simplified using the EM procedure incorporated with the augmented (complete) data cor-

responding to the individual incident source signals. First, we denote the received signal

spectrum as X
(m)
p (k), 1 ≤ p ≤ P, 1 ≤ m ≤ M, 0 ≤ k ≤ ȷ − 1 from the mth source to the pth

sensor. Then we define the augmented data as
{
X(m)(k); 1 ≤ m ≤M, 0 ≤ k ≤ ȷ− 1

}
where

X(m)(k)
def
=
[
X

(m)
1 (k), . . . , X

(m)
P (k)

]T
∈ CP×1.

In addition, the relationship between the observed (incomplete) data X(k) and the complete

data is established as

X(k) =
M∑

m=1

X(m)(k). (2.30)

According to Eqs. (2.2), (2.5), (2.7) and (2.30), for a single source signal (the mth source),

we have

X(m)(k)
def
= d(m)(k)S(m)(k) + U (m)(k), for k = 0, 1, . . . , ȷ/2− 1, (2.31)

where U (m)(k) ∈ CP×1 is the complex-valued zero-mean uncorrelated Gaussian noise in the

sole presence of the mth source.

According to Eqs. (2.21), (2.27), (2.31), we have

(
r̂s

(m), Ŝ
(m)
, q̂(m)

)
= argmax

(rs(m),S(m),q(m))
L
(
rs

(m), S(m), q(m)
)
, 1 ≤ m ≤M, (2.32)

where S(m) def
= [S(m)(0) · · · S(m)(ȷ/2 − 1)]T ∈ Cȷ/2×1 and q(m) def

=
[
q
(m)
1 , ..., q

(m)
P

]T
∈ CP×1 is

the vector consisting of the diagonal elements in Q̃(m) def
= E

{
U (m)(k)

(
U (m)(k)

)H}
∈ CP×P ,

∀k. Let

ḋ
(m)

(k)
def
=
(
Q̃(m)

)−1/2

d(m)(k), (2.33)

and also let
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Ẋ
(m)

(k)
def
=
(
Q̃(m)

)−1/2

X(m)(k). (2.34)

According to Eq. (2.23), we denote the pth element of the particular residual vector g(m)(k)

as g
(m)
p (k) when only source m is present, where

g(m)(k) = X(m)(k)− ḋ
(m)

(k) ḋ
(m)

(k)† Ẋ
(m)

(k). (2.35)

Similar to the derivation in Section 2.1.2, Eq. (2.32) yields

q̂(m)
p =

2

ȷ

ȷ/2−1∑
k=0

∣∣[g(m)
p (k)

]∣∣2 = 2

ȷ

∥∥∥gp(m)
∥∥∥2 , (2.36)

where

gp
(m) def

=
[
g(m)
p (0), · · · , g(m)

p (ȷ/2− 1)
]T ∈ Cȷ/2×1. (2.37)

Consequently, the maximum-likelihood estimates r̂s
(m), q̂(m) are given by

(
r̂s

(m), q̂(m)
)
= argmax

(rs(m), q(m))
L(rs

(m), q(m)), (2.38)

where

L
(
rs

(m), q(m)
)
= −

P∑
p=1

log

(∥∥∥gp(m)
∥∥∥2) . (2.39)

According to Eqs. (2.38) and (2.39), the source localization problem can be formulated as the

independent maximization sub-problems with respect to the individual likelihood functions

in each iteration. Note that the log-likelihood for the source localization problem stated by

Eqs. (2.32)-(2.39) can be carried out for different sourcesm in each iteration. In other words,

we can carry out the maximum likelihood independently and separately for each individual

source m in each iteration. Hence the computationally efficient techniques based on the

parallel paradigm can be used in our proposed scheme especially for many sources.
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New Expectation-Maximization Algorithm for Source Localization

In contrast to other existing algorithms for the source localization using the sensor signals in

the presence of noises with identical variance [49,74–76], we present a new EM algorithm here

to solve the realistic source localization problem for sensor signals in the presence of noises

with different variances, which has been tackled by [53] recently. Nevertheless, our proposed

EM algorithm can be demonstrated to be more robust and more computationally-efficient

than the method proposed by [53].

The details of our proposed EM algorithm are introduced as follows (since our proposed

algorithm can be decoupled across different sources, we only need to address the steps for

the source m and it can be run for other sources as well in parallel in each iteration):

Initialization:

Randomly initialize [r̂s
(m)][0]. Set the initial values for the entries in [̂q(m)][0] and [q̂][0] as

[̂q(m)][0] =
1

M
× [1 1 · · · 1]T ∈ RP×1 (2.40)

and

[q̂][0] = [1 1 · · · 1]T ∈ RP×1, (2.41)

respectively.

Input (Given) Parameters at Iteration i: [̂q(m)][i−1], [r̂s
(m)][i−1].

Output Variables at Iteration i: [̂q(m)][i], [r̂s
(m)][i].

Given the input parameters, the EM algorithm for the ith iteration is stated below.

Expectation Step (E-Step):

Calculate
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̂̃
Q

(m)

= diag
{
[̂q(m)][i−1]

}
, (2.42)

where diag{ } converts the vector inside the associated braces into a diagonal matrix con-

taining the vector’s entries as the diagonal elements in the same order. Compute

Q̃ =
M∑

m=1

̂̃
Q

(m)

(2.43)

and

α =

[
trace

(̂̃
Q

(m)
)]2

[
trace

(̂̃
Q

)]2 . (2.44)

Calculate

ϱ(m)
p = Fs

∥∥∥[r̂s(m)][i−1] − rp

∥∥∥
v

. (2.45)

According to Eqs. (2.45), (2.6), (2.5), (2.4) and a
(m)
p = 1, ∀p based on [53], determine d(m)(k)

and D̃(k). Next, follow Eqs. (2.19), (2.20), (2.26) to determine Ŝ(k) and Ŝ(m)(k), k =

0, 1, . . . , ȷ/2− 1, where Ŝ(m)(k) is the mth element of Ŝ(k). Then determine

X̂
(m)

(k) = E
{
X̂

(m)
(k) |X(k)

}
= d(m)(k)Ŝ(m)(k)+α(X(k)−D̃(k)Ŝ(k)), k = 0, 1, . . . , ȷ/2−1.

(2.46)

Maximization Step (M-Step):

Now let

ϱ(m)
p = Fs

∥∥∥rs(m) − rp

∥∥∥
v

, (2.47)

where rs
(m) is the variable coordinate and it has to be estimated in this step. Then, follow

Eqs. (2.47), (2.6), and (2.5) to facilitate d(m)(k), k = 0, 1, . . . , ȷ/2 − 1, which involves the
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variable coordinate rs
(m). Then according to d(m)(k), construct the following parameters

ḋ
(m)

(k) =

(̂̃
Q

(m)
)(−1/2)

d(m)(k), k = 0, 1, . . . , ȷ/2− 1, (2.48)

which also involves the variable coordinate rs
(m). According to the result from Eq. (2.46),

calculate

̂̇X(m)

(k) =

(̂̃
Q

(m)
)(−1/2)

X̂
(m)

(k), k = 0, 1, . . . , ȷ/2− 1. (2.49)

Then, construct

ĝ(m)(k) = X̂
(m)

(k)− d(m)(k) ḋ
(m)

(k)† ̂̇X(m)

(k), k = 0, 1, . . . , ȷ/2− 1, (2.50)

which involves the variable coordinate rs
(m) as well. Denote the pth element of ĝ(m)(k) as

ĝ
(m)
p (k). Facilitate

ĝp
(m) =

[
ĝ(m)
p (0), · · · , ĝ(m)

p (ȷ/2− 1)
]T
, (2.51)

which involves the variable coordinate rs
(m) ∈ R2×1. Carry out

[r̂s
(m)][i] = argmin

rs(m)

P∑
p=1

log

(∥∥∥ĝp(m)
∥∥∥2) . (2.52)

Besides, calculate ϱ
(m)
p = Fs

∥[r̂s(m)][i]−rp∥
v

. Let a
(m)
p = 1,∀p. Enumerate the parameters given

by Eqs. (2.46), (2.6), (2.5), (2.33), (2.49), (2.50), and (2.51) in this sequential order. Then

calculate

[q̂p
(m)][i] =

2

ȷ

∥∥∥ĝp(m)
∥∥∥2 , p = 1, 2, . . . , P. (2.53)

Thus, obtain

[̂q(m)][i] =
[
[q̂1

(m)][i], · · · , [q̂P (m)][i]
]T

∈ RP×1. (2.54)

2
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The above algorithm facilitates a recursive solution to multiple wide-band source localization.

Note that the source location estimates rs
(m), m = 1, ..,M , can be carried out simultaneously

in each iteration. Thus, the computational complexity can be greatly reduced if the parallel

computation is feasible.

we provide the simulation results for our proposed EM source localization scheme in Sec-

tion 2.1.3 and SC-ML method and AC-ML method in paper [53]. The sampling frequency is

100 kHz. The propagation speed is 345 meters/sec. The data is simulated for a circularly-

shaped array of five sensors using the recorded acoustic data acquired from [53] as shown

in Figure 2.2 (squares denote the sensor locations and circles denote the actual source loca-

tions). The sample size is L = 200 and the DFT size is ȷ = 256. Throughout the simulation,

the minimization in our EM method characterized by Eq. (2.52) is performed by Nelder-

Mead direct search [49], while the optimization steps in both SC-ML and AC-ML methods

are performed using the alternating maximization (AM) algorithm, which would lead to

better performance than Nelder-Mead direct search in these two schemes [49,53]. Moreover,

the additive noises in all experiments are randomly generated by a Gaussian process using

the computer and the signal-to-noise ratio (SNR) is defined according to [53], [54].

Then we investigate the performance of the EM algorithm for estimating the two source

locations in the presence of sensor noises with non-uniform variances, and compare with

the SC-ML and AC-ML algorithms. The noise processes across different sensors have the

covariance matrix as Q̃ = σ2 diag {2, 3, 1, 5, 9}. A hundred Monte Carlo experiments are

carried out using our EM method with randomly initialized source locations for a particular

signal-to-noise ratio (SNR=10 dB). The localization result from a certain experiment is

depicted in Figure 2.2 where the ultimate locations are achieved after three iterations of EM
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algorithm. We default the number of EM iterations as 3 in all Monte Carlo experiments.

For each SNR value ranging from 0 to 40 dB, we fix the initial source location estimates

as depicted in Figure 2.2 and carry out a hundred Monte Carlo experiments to obtain the

average localization accuracy in terms of the root-mean-square (RMS) error in meters. The

three corresponding RMS error curves to the three aforementioned schemes are depicted

in Figure 2.3. Then, we vary the initial location estimates around the circular areas with

a one-meter diameter with respect to the two initial source-location estimates depicted in

Figure 2.2 and redo a hundred Monte Carlo experiments similar to the set-up generating

Figure 2.3. The results are depicted in Figure 2.4. It is obvious that the accuracies of all

three methods degrade from Figure 2.3 to Figure 2.4 since the initial conditions change.

To further study this effect, we spread the initial location estimates over a broader area as

depicted in Figure 2.5 and redo a hundred Monte Carlo experiments similar to Figure 2.4.

The average RMS error curves are demonstrated in Figure 2.6.

Next, we would like to investigate the performances of the three aforementioned localization

methods for the sensor noises with identical variances (SWN). Thus, we choose the sensor

noise covariance matrix as Q̃ = σ2 diag {1, 1, 1, 1, 1} now. With this new noise covariance

matrix, we redo the Monte Carlo experiments similar to those generating Figures 2.3, 2.4,

and 2.6. The corresponding results are plotted in Figures 2.7, 2.8, and 2.9, respectively.

According to these two sets of experiments, our proposed EM algorithm greatly outperforms

both SC-ML and AC-ML methods in all conditions. In addition, the accuracies of all three

methods degrade due to the changes in the initial conditions for the SWN scenario as well.

Besides, the performances of all these three schemes for the SWN case are not much different

from those for the SNWN case, since the SWNmodel is a particular case of the SNWNmodel.
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2.2 Computational Complexities Studies and Robustness Analysis
for Source Localization Algorithms

In addition to the localization accuracy, the computational complexity is also an important

factor to be considered in practice. Therefore, the studies of the computational complexities

for three major source localization algorithms are presented in the following subsections.

2.2.1 Computational Complexities for Complex Multiplications

The first computational complexity comparison is focused on the required complex multi-

plications. For simplicity, in our computational complexity studies, we only consider the

computational burden for the primary complex multiplications. The computations of the

discrete Fourier transforms are neglected.

For our proposed EM method in Section 2.1.3, it requires MPȷ
2

complex multiplications

to carry out Eq. (2.46), where MPȷ
2

and M2Pȷ multiplications respectively to determine

Ŝ(k) and D̃(k) in Eq. (2.46), and Pȷ
2

multiplications to carry out Eq. (2.52), and Pȷ + P 2ȷ

multiplications to carry out Eq. (2.50) are also needed in addition. Consequently, in our

proposed EM algorithm, the number of complex multiplications for M sources per iteration

is

κ×EM =M
[ ȷ
2
P + Pȷ+ P 2ȷ

]
+M2Pȷ+MPȷ. (2.55)

If the parallel computation per iteration is allowed (given M microprocessors), the compu-

tational complexity per computer per iteration can be further reduced to

κ×EM =
ȷ

2
P + Pȷ+ P 2ȷ+M2Pȷ+MPȷ. (2.56)

Two other existing source localization algorithms in [53] are compared here, namely SC-ML

and AC-ML methods. The details of these two methods can be referred to as [53]. It is
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easy to derive the number of complex multiplications for the SC-ML method, κ×SC−ML, with

respect to M sources per iteration such that

κ×SC−ML =M
[ ȷ
2
P +

ȷ

2
(2M2P + P 2M + P 2)

]
. (2.57)

On the other hand, the number of complex multiplications κ×AC−ML for the AC-ML method,

with respect to M sources per iteration, is given by

κ×AC−ML = (M + 1)
[ ȷ
2
P +

ȷ

2
(2M2P + P 2M + P 2)

]
. (2.58)

Note that both SC-ML and AC-ML methods in [53] cannot be decoupled across differ-

ent sources for every iteration, and hence the complexity measures given by Eqs. (2.57)

and (2.58) will not change even with the help of the parallel computation. Furthermore,

from the simulation, we know that the EM, SC-ML, and AC-ML methods will need almost

the same number of iterations to achieve the best results. Thus obviously, the complexity

measure for our proposed algorithm given by Eq. (2.55) is in O(M2) which is less than

those for two other methods given by Eqs. (2.57) and (2.58) (in O(M3)). According to

Eqs. (2.55), (2.57), and (2.58), we depict the computational complexity measures in terms

of the required primary multiplications versus the number of sources (M) in Figure 2.10. As

shown in Figure 2.10, the complexity difference between our proposed EM method and the

two other methods is huge as the number of sources is large.

2.2.2 Computational Complexities for Minimization

Furthermore, the search for the minimum objective-function values is needed by all the

three aforementioned schemes. For simplicity, we arbitrarily denote Υ by the computational

complexity for the direct search method to determine a functional minimum. Assume that all
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of the methods require ς iterations to achieve the final source location estimates. Hence, our

proposed EM algorithm will require MςΥ totally for M sources. The SC-ML and AC-ML

methods both also require the complexity of MςΥ for the optimization of the corresponding

objective function since both schemes rely on the AM (alternating minimization) method [53].

With the help of the parallel computation, the complexity of our proposed EM algorithm

can be further reduced as ςΥ for the minimization of the objective function per computer.

Nevertheless, the SC-ML and AC-ML algorithms have to undertake the minimum search for

each source location estimate sequentially instead (impossible to benefit from the parallel

computation) [53]. Thus, the EM method requires only 1
M

times as many as the complexity

of the SC-ML and AC-ML algorithms for seeking the objective-function minimum if the

parallel computation is available.

2.2.3 Robustness Analysis for Source Localization Algorithms

Since the CRLB is the minimum achievable variance for any unbiased estimator, it is often

used to characterize the robustness of the estimation methods. In this section, we derive the

CRLB of the location estimates for the source localization problem by extending the CRLB

in [53] for the simple DOA estimation problem.

By extending the CRLB presented in [53] for the DOA estimation problem, we derive the

CRLB for the source localization problem to benchmark our EM method and the SC-

ML/AC-ML schemes as

1

CRLB
= 2ℜ


ȷ/2−1∑
k=0

{[˜̇G(k)HP̃⊥
D̃(k)

˜̇G(k)]⊙ R̃s(k)
T
} , (2.59)

where

29



˜̇G(k) def
= Q̃−1/2G̃(k), (2.60)

G̃(k)
def
=

[
∂

∂rs(1)
d(1)(k), ...,

∂

∂rs(M)
d(M)(k)

]
, (2.61)

P̃⊥
D̃(k)

def
= Ĩ − ˜̇D(k) ˜̇D(k)†, (2.62)

R̃s(k)
def
= S(k)S(k)H . (2.63)

Note that Q̃, d(m)(k), ˜̇D(k), and S(k) are given by Eqs. (2.8), (2.5), (2.20), (2.4), (2.7). We

can rewrite Eq. (2.61) as

G̃(k) =
∂D̃(k)

∂rsT
= −jFsk

2π

vȷ
× z̃ (2.64)

where

z̃ def
=



a
(1)
1 e−

j2πkϱ
(1)
1

ȷ λ1
(1) a

(2)
1 e−

j2πkϱ
(2)
1

ȷ λ1
(2) . . . a

(M)
1 e−

j2πkϱ
(M)
1

ȷ λ1
(M)

a
(1)
2 e−

j2πkϱ
(1)
2

ȷ λ2
(1) a

(2)
2 e−

j2πkϱ
(2)
2

ȷ λ2
(2) . . . a

(M)
2 e−

j2πkϱ
(M)
2

ȷ λ2
(M)

...
... · · · ...

a
(1)
P e−

j2πkϱ
(1)
P

ȷ λP
(1) a

(2)
P e−

j2πkϱ
(2)
P

ȷ λP
(2) . . . a

(M)
P e−

j2πkϱ
(M)
P

ȷ λP
(M)


∈ CP×2M , (2.65)

λp
(m) def

=

[
∂d

(m)
p

∂χ
(m)
s

,
∂d

(m)
p

∂y
(m)
s

]
=
rs

(m)T − rp
T

∥rs(m) − rp∥
∈ R1×2, (2.66)

∂d
(m)
p

∂χ
(m)
s

=
χ
(m)
s − χp√(

χ
(m)
s − χp

)2
+
(
y
(m)
s − yp

)2 , (2.67)

∂d
(m)
p

∂y
(m)
s

=
y
(m)
s − yp√(

χ
(m)
s − χp

)2
+
(
y
(m)
s − yp

)2 . (2.68)

Note that rs
(m) def

= [χ
(m)
s , y

(m)
s ]T and rp

def
= [χp, yp]

T are used in Eq. (2.66).

We fix the initial source location estimates as those generating Figure 2.2 and carry out a
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hundred Monte Carlo experiments again. The corresponding CRLBs for our EM method,

the SC-ML (or AC-ML) method are depicted in Figure 2.11. We also depict the average

RMS error curves in the same figure. According to Figure 2.11, we discover that the RMS

errors resulted from our EM algorithm are much closer to the CRLBs than the SC-ML and

AC-ML methods. Note that all the three source localization schemes in comparison are quite

sensitive to the initial condition. This still remains as a very challenging problem for the

wide-band source localization. Note that our experimental results illustrated in this paper

can be generalized for other conditions. It means that if we change the source locations

and use all the three algorithms subject to the same initial conditions, the experimental

results under every different condition specified in Sections 2.1.3-2.2.3 will be very similar to

Figures 2.3-2.11.

2.2.4 Conclusion

In this chapter, we propose a novel EM-based multiple wide-band source localization scheme

in the presence of non-uniform noise variances. For our EM w method and the conven-

tional SC-ML and AC-ML methods, the performance is rather sensitive to the initial source

location estimates. Our proposed EM algorithm can lead to an outstanding localization per-

formance given a reasonably good initial condition. Moreover, our proposed EM algorithm

can always outperform the conventional SC-ML and AC-ML methods when the initial source

location estimates are randomly chosen. The Monte Carlo simulation results demonstrate

the superiority of our proposed EM method. To provide the robustness analysis for the

source localization algorithms, we present the CRLB associated with these three schemes.

The CRLB analysis demonstrates that our proposed EM algorithm is much closer to the
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achievable minimum variance than the two other methods in all signal-to-noise ratio con-

ditions. In addition, according to our complexity analysis, the complexity measure for our

proposed algorithm is of O(M2) which is much less than those for the SC-ML and AC-ML

methods (both with a complexity measure of O(M3)).
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Figure 2.1: Localization of two wide-band sources in the near field.
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Figure 2.2: The localization of two wide-band (acoustic) sources in the near field corrupted
by the noises with non-uniform variances (signal-to-noise ratio is 10 dB). The initial location
estimates and the ultimate location estimates resulted from the EM algorithm (3 iterations
are taken) are also demonstrated.
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Figure 2.3: Average RMS localization errors versus SNR for the sources corrupted by the
noises with non-uniform variances. The initial location estimates are plotted in Figure 2.2.
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Figure 2.4: Average RMS localization errors versus SNR for the sources corrupted by the
noises with non-uniform variances. The initial source location estimates here are randomly
chosen within the areas which are one meter around the initial location estimates used in
Figure 2.2.
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Figure 2.5: The eighteen different initial source location estimates.
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Figure 2.6: Average RMS localization errors versus SNR for the sources corrupted by the
noises with non-uniform variances. The initial source location estimates are plotted in Fig-
ure 2.5.
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Figure 2.7: Average RMS localization errors versus SNR for the sources corrupted by the
noises with identical variances. The initial source location estimates are plotted in Figure 2.2.
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Figure 2.8: Average RMS localization errors versus SNR for the sources corrupted by the
noises with identical variances. The initial source location estimates are randomly drawn
from the areas which are one meter around the initial source location estimates in Figure 2.2.
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Figure 2.9: Average RMS localization errors versus SNR for the sources corrupted by the
noises with identical variances. The initial source location estimates are plotted in Figure 2.5.
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Figure 2.10: The computational complexity curves (the number of complex multiplications
per iteration) versus the number of sources M for the three schemes in comparison (ȷ = 256
and P = 5).
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Figure 2.11: Cramer-Rao lower bounds and simulated (actual) RMS localization errors versus
different SNR values for the three schemes in comparison.
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3. NORMALITY TEST

In this chapter, we would like to tackle the normality test problem and it’s applications for

weak signal detection. Similar to the source localization problem in Chapter 2, normality

tests can also be used for signal detection. The major difference between them is that nor-

mality tests can be carried out in the time domain and they can be based on a much simpler

model than the source localization techniques. Besides, normality tests can be adopted for

general signal detection purpose without any given knowledge about the source’s spectral

information such as frequency range which is required by source localization techniques.

3.1 Normality Test

The problem of identifying the probability distribution from which a particular random sam-

ple has been drawn is a naturally ”fuzzy” problem: a given sample may, by chance, be drawn

from any of an infinite number of quite different parent populations. Classification of random

samples is a true example of uncertainty modeling. The greater part of modern statistical

theory is built on the assumption that samples are drawn at random from underlying distri-

butions which are normal. When sample size is large the issue of normality may be without

practical significance because of the Central Limit Theorem, but when sample size is small

the question of normality becomes important. Thus, in this chapter, we will propose a novel

robust normality test which could be based on small sample size.
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This chapter is organized as follows. In Section 3.1.2, we introduce the Kullback-Leibler

divergence (KLD) studies to facilitate the Gaussianity analysis. In Section 3.1.3, the Gaus-

sian and generalized Gaussian PDF models are employed to characterize the signal data’s

statistics under the Gaussian assumption. In Section 3.1.4, the skewness and the two-sample

t-test are introduced to evaluate the symmetry of the actual PDF for the observations and

they are very useful for further enhancing the robustness of the aforementioned KLD based

Gaussianity test. In Sections 3.2.1 to 3.2.3, we present our novel Gaussianity test-KGGS

test and its application for the weak signal detection [77, 78] of binary phase-shift keying

(BPSK) and quadrature phase-shift keying (QPSK) signals. Conclusion will be drawn in

Section 3.2.4.

3.1.1 Problem Definition

Let fX(x) be an unknown distribution function of a real-valued stationary stochastic process

X and suppose that we have N observations x1, x2, . . . , xN where each xi is drawn from X, ∀i.

In general, we would like to check if fX(x) can be considered Gaussian when the observations

x1, x2, . . . , xN are given.

3.1.2 Kullback-Leibler Divergence Analysis

In the probability theory and the information theory, the Kullback-Leibler divergence is a

non-commutative measure for quantifying the difference between two PDFs f(x) and q(x).

Typically, f(x) represents the true distribution of the random variable x or the precisely

calculated distribution. The functional q(x) denotes the approximation or the modeled PDF

for f(x). We assume that both functionals f(x) and q(x) satisfy the probability axioms and
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the KLD between f(x) and q(x) is defined as

DKL(f ∥ q) def
=

∫ ∞

−∞
f(x) log

(
f(x)

q(x)

)
dx. (3.1)

Obviously, we have

DKL(f ∥ q) =

∫ ∞

−∞
f(x) (log(f(x))− log(q(x)))

=

∫ ∞

−∞
f(x) log(f(x))dx−

∫ ∞

−∞
f(x) log(q(x))dx. (3.2)

In addition, as a result of Gibbs’ inequality, the Kullback-Leibler divergence is always non-

negative such that ∫ ∞

−∞
f(x) log(f(x))dx ≥

∫ ∞

−∞
f(x) log(q(x))dx, (3.3)

where the equality in (3.3) holds if any only if f(x) = q(x). Note that the left-hand side

of (3.3) depends only on the observations if f(x) specifies the true PDF of the data while

the right-hand side is subject to the chosen PDF model q(x).

Let N real-valued independently identically distributed (i.i.d.) observations x1, x2, . . . , xN

be drawn from a random process X and its true PDF is f(x) but unknown. According to

Eq. (3.2), the different choices for the PDF model q(x) will only cause the variations in the

second term
∫∞
−∞ f(x) log(q(x))dx. Consequently, we can use this second term or its sample

estimate as the sole measure to quantify how close q(x) is to f(x). It yields∫ ∞

−∞
f(x) log(q(x))dx ≈ 1

N

N∑
i=1

log(q(xi)). (3.4)

Eq. (3.4) manifests itself as a simple goodness-of-fit measure for a chosen PDF model q(x)

since it depends only on the PDF model functional q(x) and the observed data x1, x2, . . . , xN.
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3.1.3 Gaussian and Generalized Gaussian PDFs

In order to establish the Gaussianity test using the KLD analysis stated in the previous

section, we discuss two PDF models here.

Gaussian PDF Model

When the PDF model is chosen as Gaussian, we can write

q(x) = qG(x)
def
=

1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
. (3.5)

Since x1, ..., xN are i.i.d., the maximum likelihood estimates of the mean µ and the variance

σ2 are given by

µ̂ =
1

N

N∑
i=1

xi, (3.6)

σ̂2 =
1

N

N∑
i=1

(xi − µ̂)2 , (3.7)

respectively. A Gaussian (normal) process is often expressed as N(µ, σ).

Generalized Gaussian PDF Model

Next, we will also introduce the generalized Gaussian (GG) PDF model [79]. The PDF

functional for the generalized Gaussian model is given by

q(x) = qGG(x;α, β)
def
=

β

2αΓ
(

1
β

) exp

{
−|x|
α

β
}
, (3.8)

where α characterizes the width of the PDF peak (or standard deviation), β is inversely

proportional to the functional decreasing rate from the peak value and Γ( ) denotes the

Gamma function. Very often, α is referred to as the scale parameter, while β is called the

shape parameter. The GG model constitutes many commonly-used PDF functionals such as
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Gaussian (β = 2) and Laplacian (β = 1) distributions.

The maximum likelihood estimators for the parameters α and β can be found in [79]. We

present them as follows. For the i.i.d. observations x1, x2, . . . , xN, which belong to the

random process X, we can establish the log-likelihood function subject to the GG PDF as

L(X;α, β) = log

(
N∏
i=1

qGG(xi;α, β)

)
, (3.9)

where α and β are the parameters to be estimated. Maximizing L(X;α, β), we get

∂L(X;α, β)
∂α

= −N
α
+

N∑
i=1

β |xi|β α−β

α
= 0. (3.10)

Moreover,

∂L(X;α, β)
∂β

=
N
β
+

Nψ
(

1
β

)
β2

−
N∑
i=1

(
|xi|
α

)β

log

(
|xi|
α

)
= 0, (3.11)

where ψ ( ) is the Digamma function (ψ (z)
def
=
(

dΓ(z)
dz

)
/Γ(z)). Usually we fix β > 0. Then

we obtain a unique, real, and positive solution to Eq. (3.10) as

α̂ =

(
β

N

N∑
i=1

|xi|β
) 1

β

. (3.12)

If we substitute Eq. (3.12) into Eq. (3.11), the solution of the following transcendental equa-

tion yields β̂:

1 +
ψ
(

1

β̂

)
β̂

−

N∑
i=1

|xi|β̂ log |xi|

N∑
i=1

|xi|β̂
+

log

(
β̂
N

N∑
i=1

|xi|β̂
)

β̂
= 0. (3.13)

Although there exists no closed-form solution to Eq. (3.13), β̂ can be solved numerically using

the Newton-Raphson iterative procedure together with the initial guess from the moment

method [79]. A generalized Gaussian process is often referred to as GG(α, β). The Gaussian

and generalized Gaussian PDF functionals can effectively model f(x) when it is actually
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symmetric. However, when f(x) is asymmetric, both PDF models cannot provide reliable

estimates for the observations.

3.1.4 Skewness and Two-Sample t-Test

Skewness is a measure for the asymmetry of the probability distribution of any real-valued

random variable. For N i.i.d. random samples x1, x2, . . . , xN, its sample skewness ς̂ is given

by

ς̂
def
=

1
N

N∑
i=1

(xi − µ̂)3(
1
N

N∑
i=1

(xi − µ̂)2
) 3

2

, (3.14)

where µ̂ is defined by Eq. (3.6). In addition, the skewness statistic can be transformed to

satisfy the χ2
1 distribution as follows: ς̂√

6
N

2

∼ χ2
1. (3.15)

Thus, we can test the sample skewness according to Eqs. (3.14) and (3.15) for the PDF

asymmetry.

The two-sample t-test is often used to determine if two population means are identical (for

example, populations X1 and X2). When the sample size for both populations is equal to N,

the t-statistic to test whether their means are different or not is calculated as

t
def
=

X1 − X2

SX1X2

√
2
N

, (3.16)

where SX1X2

def
=

√
S2
X1

+S2
X2

2
(SX1 , SX2 are the standard deviations for these two populations)

and X1, X2 are the sample means for populations X1 and X2, respectively. For the significance

test, t satisfies the t-distribution and the degree of freedom for this test is 2N− 2.
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The t-test has a requirement that both populations should arise from the Gaussian distribu-

tions when the sample size is N ≤ 30. When the sample size gets larger (N ≥ 100), such a

requirement is not necessary due to the central limit theorem.

3.2 New KGGS Test and Its Application for Signal Detection

According to our previous discussions in Sections 3.1.2-3.1.4, we design a new Gaussian-

ity test, which in brief we call Kullback-Leibler-Divergence Gaussian Generalized-Gaussian

Skewness (KGGS) test, as follows.

3.2.1 KGGS Test

Suppose that the observations x1, ..., xN are drawn from a stationary random process X

whose true PDF f(x) is unknown. We wish to check if these observation data fit the normal

(Gaussian) distribution. From Section 3.1.2, we can use the sample average of log (q(xi)) to

determine how well the model PDF q(x) fits the underlying random process. In addition,

according to our studies in Section 3.1.3, the Gaussian PDF model is a special case of

the generalized Gaussian model with β = 2. It means that if we use both Gaussian and

generalized Gaussian PDF models (q1(x) and q2(x) respectively) to fit the observations with

the true normal distribution, then theoretically speaking, we get f(x) = q1(x) = q2(x) and

thus
∫∞
−∞ f(x) log (q1(x)) dx =

∫∞
−∞ f(x) log (q2(x)) dx. As the sample size approaches to

infinity (N → ∞), there will appear to be very little difference in the sample averages of

log (q1(xi)) and log (q2(xi)). However, for a random process X whose actual PDF f(x) is

not Gaussian and such difference would not be negligible. Hence we can establish a new
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rule based on this difference in the two sample means of the two populations log (q1(xi))

and log (q2(xi)) to determine if the true PDF f(x) of the random process X is the normal

distribution.

The steps for our proposed new Gaussianity test are stated as follows:

Step 1) Use the Gaussian PDF to fit the observations x1, x2, . . . , xN, estimate the sample

mean µ̂ and variance σ̂2, and obtain the values of log (q1(xi)), for i = 1, 2, . . . ,N where

q1(x) = 1/(σ̂
√
2π) exp

(
− (x− µ̂)2/(2σ̂2)

)
.

Step 2) Use generalized Gaussian PDF to fit the observations instead and calculate the values

of log (q2(xi)), for i = 1, 2, . . . ,N where q2(x) = qGG(x; α̂, β̂) defined by Eq. (3.8). Note that

the parameters α̂, β̂ are estimated using Eqs. (3.12), (3.13).

Step 3) Use the composite rule to determine whether f(x) is Gaussian or not (see below).

3.2.2 Composite Rule for Step 3 in 3.2.1

We will clearly describe the judgement rule for Step 3 in 3.2.1 now. As previously discussed,

we use the differences 1
N

N∑
i=1

log (q1(xi)) − 1
N

N∑
i=1

log (q2(xi)), for i = 1, . . . ,N, to determine if

f(x) is Gaussian. The proposed statistic is denoted by Υ such that

Υ =

∣∣∣∣∣
[
1

N

N∑
i=1

log (q1(xi))−
1

N

N∑
i=1

log (q2(xi))

]∣∣∣∣∣ . (3.17)

Theoretically speaking, if the random process X satisfies the Gaussian PDF and the sample

size is infinity large, Υ in Eq. (3.17) should be zero. However, Υ ̸= 0 when N is finite.

Note that Υ → 0 for a Gaussian random process X as N → ∞. Heuristically speaking, for

a Gaussian process, Υ decreases from around 0.01 as N increases from 1. The judgement

rule for Step 3 in 3.2.1 is split into the three parts as follows. Any random process will
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be considered Gaussian only if all of the three following sub-tests justify this process as

Gaussian.

Composite Rule Part (i)

First, Gaussian PDF and generalized Gaussian PDF models are both symmetric. If we use

these two models to fit the random data with an asymmetrical distribution, the parametric

estimation for q1(x) and q2(x) would be very unreliable. Consequently, the variation of Υ

would arise and it leads to the inaccurate Gaussianity test. If the random process X has a

normal distribution, its skewness should always be close to 0. Therefore, the skewness test

as stated in Section 3.1.4 can be employed to reject the asymmetrically distributed data. In

our scheme, we set the significance level of the skewness test to be 0.015. In other words, if

the observations satisfy the normal distribution, then P value should be larger than 0.015, or

otherwise we reject the Gaussian assumption. Note that setting P = 0.015 is equivalent to

setting the threshold for |ς̂| to be around 0.5. This is a very loose criterion for the Gaussianity

test. The precise theoretical skewness value of a Gaussian process is 0 [56].

Composite Rule Part (ii)

Second, according to Stein’s lemma in [80], the Kullback-Leibler divergence is the expo-

nential rate of the optimal classifier performance probabilities. If X is a random vector

consisting of N statistically independently and identically distributed components. We try

to model these N random processes by qα(x) or qβ(x). The optimal classifier in the sense of

maximum-likelihood results in the classification error probabilities with the following asymp-

totic identity:
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lim
N→∞

log

(
PF

N

)
= −DKL (qα(x) ∥ qβ(x)) , (3.18)

where PF is the corresponding false alarm rate. Specifically, if X has a normal distribution,

its underlying statistical model fits both q1(x) and q2(x). Thus, according to Eq. (3.19), we

can approximate the optimal threshold for Υ as − log
(
PF

N

)
. When N = 250 and PF = 0.05,

the threshold for Υ can be obtained as

log

(
PF

N

)
≈ 0.01. (3.19)

On the other hand, according to our simulation results, we have also found that for any

non-Gaussian random process whose skewness is between -0.5 and 0.5, Υ does not have the

monotonically decreasing trend towards 0 as N increases and Υ is seldom less than 0.01 when

N ≥ 250. However, the value of Υ for a Gaussian process is rarely larger than 0.01 when

N ≥ 250. Note that the larger N, the smaller Υ for Gaussian processes. In fact, according to

both our theoretical analysis and simulation results, Υ ≤ 0.01 when N ≥ 250, if the random

data are normally distributed. In addition, we can choose a threshold of Υ smaller than

0.01 for a larger N according to Eq. (3.19). Generally speaking, the threshold 0.01 could be

appropriate for a wide range of N.

Composite Rule Part (iii)

Third, for any random process whose distribution is similar to Gaussian (but non-Gaussian),

the Υ value is close to that resulting from a Gaussian process no matter how large N is

chosen. In order to differentiate this subtle statistical discrepancy, we simply transform the

two populations into 10log(q1(xi)) and 10log(q2(xi)), for i = 1, . . . ,N, and then use the t-test with
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a certain significance level to determine if they have the same means. If so, we accept the

Gaussian assumption, or otherwise we reject this assumption.

We compare our KGGS test with other commonly-used normality tests, such as Pearson’s χ2

test, Shapiro-Wilk test, D’Agostino test, Jarque-Bera test and Lilliefors test. We randomly

generate data samples associated with different PDFs to take 10,000 Monte Carlo trials.

In each trial, we select two sample sizes as N = 250, N = 500 to imitate the sparse data

and set the significance level as 0.05 to compare the rejection percentages arising from the

aforementioned normality tests. The results are shown in Tables 4.1 and 4.2. Note that in

all the tables and figures, the distributions are N: Normal, GG: Generalized Gaussian, U:

Uniform, t: t-distribution, L: Laplacian, S: Alpha-Stable, W: Weibull, LN: Log-Normal, χ2
8:

chi-squared distribution (with mean 8), β: β-distribution, B: Binomial, E: Exponential, Γ:

Gamma; SW stands for Shapiro-Wilk test; χ2 stands for Pearson’s χ2 test; Dag stands for

D’Agostino test; JB stands for Jarque-Bera test; Lillie stands for Lilliefors test. According

to Tables 4.1 and 4.2, our proposed KGGS test can almost always outperform other existing

tests in terms of these two objectives.

3.2.3 Our Proposed KGGS Test for Signal Detection

In practice, we can deem the observations x1, x2, . . . , xN as the received random signal trav-

eling through the additive white Gaussian noise (AWGN) channel such that

xi = si + wi, i = 1, 2, . . . ,N, (3.20)

where si is the i-th transmitted information symbol and wi, i = 1, 2, . . . ,N, constitute an i.i.d.

Gaussian process. The binary hypothesis test can be performed using the Bayesian criterion.
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Table 3.1: Rejection Percentages for the Gaussian Hypothesis (at a 0.05 level of significance)

N = 250
KGGS SW χ2 Dag JB Lillie

N(0, 1) 0.05 0.05 0.05 0.05 0.05 0.05
GG(1, 1.8) 15.70 8.61 6.20 11.10 12.09 8.12
GG(1, 1.5) 62.64 38.32 15.93 40.39 44.97 29.55
β(4, 4) 51.07 18.12 12.69 0.01 13.55 13.00

t5 91.92 87.48 42.76 88.92 90.94 65.38
t8 68.00 60.50 17.00 62.00 63.00 32.00

L(0, 1) 100.00 99.00 92.10 97.80 98.60 98.30
U(0, 1) 100.00 100.00 98.97 99.75 100.00 98.85
χ2
8 100.00 100.00 97.50 100 100.00 98.40

W (1, 3) 15.20 10.40 8.40 6.90 7.80 9.10
Γ(100, 1) 15.00 14.80 8.00 14.00 14.00 11.00
Γ(8, 1) 96.00 96.00 72.00 93.00 95.00 83.00

S1.6(1, 0, 0) 100.00 99.90 96.60 99.80 99.90 98.70
E(1) 100.00 100.00 100.00 100.00 100.00 100.00

Table 3.2: Rejection Percentages for the Gaussian Hypothesis (at a 0.05 level of significance)

N = 500
KGGS SW χ2 Dag JB Lillie

N(0, 1) 0.05 0.05 0.05 0.05 0.05 0.05
GG(1, 1.8) 22.10 10.80 6.70 14.80 17.80 10.40
GG(1, 1.5) 87.50 63.10 32.30 65.70 70.00 53.30
β(4, 4) 87.00 57.40 20.80 25.40 66.20 24.50

t5 99.50 98.40 77.20 98.50 99.30 91.50
t8 89.00 79.00 24.00 82.00 86.20 45.80

L(0, 1) 100.00 100.00 99.90 100.00 100.00 99.90
U(0, 1) 100.00 100.00 100.00 100.00 100.00 100.00
χ2
8 100.00 100.00 100.00 100.00 100.00 100.00

W (1, 3) 35.00 34.90 13.60 25.10 33.30 19.40
Γ(100, 1) 29.10 28.70 13.10 28.80 28.30 22.80
Γ(8, 1) 100.00 100.00 95.80 100.00 100.00 98.70

S1.6(1, 0, 0) 100.00 100.00 100.00 100.00 100.00 100.00
E(1) 100.00 100.00 100.00 100.00 100.00 100.00
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When si, i = 1, 2, . . . ,N are all drawn from a communication constellation, the conventional

Bayesian hypothesis test involves the computationally-inefficient clustering-and-estimating

classifier which is not robust when the sample size N is not large and/or the signal-to-noise

ratio (SNR), E{|si|2}/E{|wi|2}, is not large. The Gaussianity test would therefore be a

good alternative. Thus, we would like to perform the weak BPSK (QPSK) signal detection

subject to the transmission model given by Eq. (3.20). For both BPSK and QPSK cases,

the sample size of the received signal is selected as N = 500 and the SNR is set at -1 dB

when the signal exists. For a variety of thresholds (confidence levels), 10,000 Monte Carlo

runs are undertaken to compare the detection probabilities and the false alarm probabilities

resulting from different normality tests. The receiver operating characteristic (ROC) curves

are depicted in Figure 3.1 and Figure 3.2. They clearly demonstrate that our proposed

KGGS test greatly outperforms all others for weak BPSK signal detection and weak QPSK

signal detection.

3.2.4 Conclusion

In this chapter, we propose a novel normality test-KGGS test. When the sample size N is

larger than 250, our proposed KGGS test is very robust for the random processes with sym-

metric distributions compared to other existing tests. In addition, we can apply our newly

designed normality test for the weak signal detection. The receiver operating characteristic

curves indicate the superiority of our proposed KGGS test to other existing normality tests.

The normality test is an important and fundamental technique for a wide variety of engi-

neering and scientific applications. Our robust KGGS test relying on a quite small sample

size can be easily employed for many real-time signal processing systems.
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Figure 3.1: Receiver operating characteristic (ROC) curves for BPSK signal detection. Note
that the confidence level for Lilliefors test can not exceed 0.2 (see [1]).
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Figure 3.2: Receiver operating characteristic (ROC) curves for QPSK signal detection. Note
that the confidence level for Lilliefors test can not exceed 0.2 (see [1]).
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4. SPECTRUM SENSING1

In this chapter, we would like to investigate the spectrum sensing problem. Similar to source

localization methods, spectrum sensing techniques would be quite sensitive to the sparsity

and the weak signal conditions in practice. Therefore, the current challenges would be the

demands for the robust and efficient methods (algorithms) for spectrum sensing. Spectrum

sensing technology may be used to detect the existence of the operating wireless devices in

the surrounding environment.

4.1 Spectrum Sensing

The topology of a wireless regional area network (WRAN) is illustrated in Fig. 4.1, where

the primary users are television receivers, and the secondary users are WRAN base stations

(BSs) and WRAN customer premise equipments (CPEs). The WRAN systems are designed

to provide wireless broadband access to rural and suburban areas. The operating principle

of WRAN is to provide any secondary user with an opportunistic access to the temporarily

1 c⃝ [2011] IEEE. Reprinted, with permission, from [Lu Lu, Hsiao-Chun Wu and S.S. Iyengar, “A Novel
Robust Detection Algorithm for Spectrum Sensing”, IEEE Transactions on Selected Areas in Communica-
tions, February/2011].
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way

imply IEEE endorsement of any of Louisiana State University’s products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must be obtained
from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all
provisions of the copyright laws protecting it.
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unused TV spectrum. To avoid interference to the primary users, the secondary users can

access to the TV channel only when the primary users are inactive. This concept is called

cognitive radio [37].

This chapter is organized as follows. The problem formulation and the signal model are

introduced in Section 4.1.1. The higher-order-statistics (HOS) based detection algorithm is

introduced in Section 4.2.1. The novel Jarqur-Bera (JB) statistic based detection algorithm

is derived and discussed in Section 4.2.2. Then the simulations for HOS detection and JB

detection for DTV and microphone data are presented in Section 4.2.3. Next, the normality

analysis for the received signal spectral waveform by Edgeworth Expansion method and

KGGS test are presented in Sections 4.3.1 and 4.3.2. In addition, the spectral analysis for the

received signal spectral waveform is stated in Section 4.3.3. The computational complexities

analysis for HOS detection and JB detection are given in Section 4.3.4. Conclusion will be

drawn in Section 4.3.5.

4.1.1 Problem Definition

Denote the continuous-time received signal by rc(t) during the sensing stage. The underlying

signal from the primary users is denoted by sc(t) and wc(t) is the additive white Gaussian

noise (AWGN). Hence, we have

rc(t)
def
= sc(t) + wc(t). (4.1)

Assume that we are interested in the frequency band with the central frequency fc and the

bandwidth W . We sample the received signal at a sampling rate fs, where fs ≥ W . Let

Ts =
1
fs

be the sampling period and N be the sample size. For convenience, we denote
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rd(n)
def
= rc(nTs), n = 1, . . . , N, (4.2)

sd(n)
def
= sc(nTs), n = 1, . . . , N, (4.3)

wd(n)
def
= wc(nTs), n = 1, . . . , N. (4.4)

According to [37], for the signal detection (spectrum sensing) problem, there involve two

hypotheses, namely H0: signal is absent and H1: signal is present. The discrete-time received

signals under these two hypotheses are given by

H0 : rd(n) = wd(n), (4.5)

H1 : rd(n) = sd(n) + wd(n), (4.6)

where rd(n) denotes the received signal samples including the effect of path loss, multipath

fading and time dispersion, and wd(n) is the discrete-time AWGN with zero mean and

variance σ2. Here sd(n) can be the superposition of the signals emitted from multiple primary

users. When the received signal rd(n) consists of multiple sources (from either multiple

independent sources or a single source signal traveling through multiple paths), it is usually

modeled as the correlated signal [37]. It is assumed that signal and noise are uncorrelated

with each other. The spectrum sensing (or signal detection) problem is therefore to determine

whether the signal sd(n) exists or not, based on the received signal samples rd(n) [37, 72].

In reality, the recorded DTV channels are sampled at fs = 21.524476 MHz and then down-

converted to a low central intermediate frequency (IF) of 5.381119 MHz [81]. The acquired

signal samples are used to detect if any DTV signal exists.
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4.2 Efficient Spectrum Sensing Techniques

The signal detection has been a fundamental but ever-intriguing problem in telecommuni-

cations, signal processing, etc. The Bayesian hypothesis test has served as the mainstream

theoretical framework for signal detection. However, the Bayesian classifier can be deemed

optimal only when the complete statistic information is known for the observed signal. It is

impossible in practice. Besides, the accurate probability density function (or the complete

statistic information), which facilitates the Bayesian optimality, has to depend on a large

amount of data and it is not feasible for low-cost, low-power, computationally-efficient hand-

held (mobile) devices. Instead of estimating the probability density function (PDF), the

computationally-efficient detection methods using the partial statistics have been attracting

a lot of research interest for decades. In this section, we first present an existing spectrum

sensing technique based on the higher-order statistics. Then, we propose a novel spectrum

sensing algorithm based on the JB-statistic, which is more robust than the former method

especially when the sample size of the received signal is quite small.

4.2.1 Higher-Order-Statistics Spectrum-Sensing Algorithm

In this subsection, we will discuss about the higher-order-statistics (HOS) based detection

algorithm (see [73]). This sensing technique is based on Gaussian noise statistics. The higher-

order statistics can be used to evaluate how well the distribution of the test statistic matches a

Gaussian distribution. In this method, the received signal is converted down to the baseband

and then filtered. Next, the nominal ATSC pilot frequency is aligned to the DC and the

down-converted signal is filtered again by a narrow-band low-pass filter. The resultant signal

62



is transformed to the frequency domain using the fast Fourier transform (FFT). Often, a

2,048-point FFT is recommended, since it is also used in the OFDM modulator/demodulator

for the digital video broadcasting systems. Then, the higher-order moments and cumulants

(higher than the second-order) for the real and imaginary parts of the signal spectra are

calculated. If only noise is present, then the real and imaginary parts of the signal spectra

are both Gaussian. The corresponding higher-order cumulants are thus all zero. Hence, in

this sensing technique, a Gaussianity test is performed using the estimates of the higher-

order cumulants. If it fails the Gaussianity test, then the hypothesis that the ATSC pilot

signal is present holds true. The HOS detection algorithm has to use the third- to sixth-order

cumulants and central moments [73]. The estimation variances of such high-order cumulants

are usually quite large especially when the sample size is small [82]. Hence, it is obvious that

the HOS approach cannot be robust when we do not have much received signal data or the

channel model is time-varying. It motivates us to design a new spectrum sensing method to

combat this problem.

4.2.2 Jarqur-Bera (JB) Statistic Based Detection Algorithm

Our goal is to design a robust spectrum sensing method involving estimates with less vari-

ances and leading to a computationally efficient solution. The JB statistic based on skewness

and kurtosis is adopted here because kurtosis and skewness, which are composed by the sec-

ond, third and fourth central moments only, could lead to more robust estimators than the

HOS scheme relying on the higher-order moments or cumulants. Since JB statistic only

depends on the second to fourth central moments, it would result in much less estimation

variance than the variance of the HOS-based estimator (see [73, 82]) using the second to
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sixth cumulants and central moments altogether according to the k-statistic and h-statistic

theory. In addition, the HOS detection method (see [73]) tests the normality using the real

and imaginary parts of the complex received samples subject to the property that all higher-

order cumulants of a Gaussian PDF are zero. We propose to adopt the JB statistic to work

on the norms of the complex signal samples, and the associated normality test is thus subject

to the Rayleigh distribution instead. It is well known that the variance of a Gaussian process

(for either its real or imaginary part) is much larger than the variance of the corresponding

Rayleigh process (constituting the absolute values of the complex Gaussian random data).

Hence, it can be foreseen that our proposed spectrum sensing method based on the signal

norms can have the advantage over the method in [73]. Our proposed new spectrum sensing

algorithm will be presented subsequently in Sections 4.2.2- 4.2.2.

Pre-Processing

The pre-processing steps in our proposed algorithm for transforming the received signal rd(n)

into the frequency domain are the same as the HOS detection method [73]. Nevertheless, in

our new detection method, we use the Jarque-Bera statistic of the signal spectrum’s absolute

values. The block diagram of our proposed new spectrum sensing method is depicted in

Figure 4.2.

The signal flow in Figure 4.2 is described as follows. When the signal rd(n) is received,

first we multiply rd(n) by e−j2πfcnTs to down-convert it to the baseband, where fc is the

low central IF frequency of 5.381119 MHz. Then, this baseband signal is sent through a

digital image rejection low-pass (LP) filter with bandwidth BWr = 8 × 106 × 2π
fs

radians.

The image rejection filter is placed in the receiver so that the image frequencies along with
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other unwanted signals are filtered out to enhance the signal quality.

Next, the enhanced signal r2(n) is further multiplied by e−j2πfvnTs , where fv=2.69 MHz.

Then, the resulted signal r3(n) goes through the operations consisting of a down-sampler

following a digital anti-aliasing filter whose bandwidth is given by

BWa =
NFFT

Tsensing
× 2π

fs
, (4.7)

whereNFFT is the FFT window size, and Tsensing =
n
fs

is the sensing time. The down-sampling

rate fd is given by

fd = floor

(
2π

BWa

)
, (4.8)

where the function ”floor” is the operation to round 2π
BWa

to the nearest integer less than

or equal to 2π
BWa

. The down-sampled signal r5(n) is sent to a serial-to-parallel port and

then the NFFT-point FFT will be taken to result in a half-period FFT-sequence Rout(k),

k = 0, 1, . . . , NFFT

2
− 1.

JB-Statistic Based Detection

In statistics, the Jarque-Bera test is a goodness-of-fit measure of departure from normality,

based on the sample kurtosis and the sample skewness. The test is named after Carlos M.

Jarque and Anil K. Bera. The test statistic, JB, is defined as

JB
def
=
ns

6

(
S2 +

(K − 3)2

4

)
, (4.9)

where ns is the number of observations (or degrees of freedom in general); S is the sample

skewness and K is the sample kurtosis. They are defined as
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S def
=

µ̂3

σ̂3
=

µ̂3

(σ̂2)3/2
=

1
ns

∑ns

i=1

(
x̀i − ¯̀x

)3(
1
ns

∑ns

i=1

(
x̀i − ¯̀x

)2)3/2 , (4.10)

K def
=

µ̂4

σ̂4
=

µ̂4

(σ̂2)2
=

1
ns

∑ns

i=1

(
x̀i − ¯̀x

)4(
1
ns

∑ns

i=1

(
x̀i − ¯̀x

)2)2 , (4.11)

where µ̂3 and µ̂4 are the estimates of the third and fourth central moments, respectively;

x̀i, i = 1, . . . , ns are the observations; ¯̀x is the sample mean and σ̂2 is the estimate of the

second central moment or the variance. Therefore, this JB test can be considered as a sort

of portmanteau test, since the four lowest moments about the origin are used jointly for its

calculation.

Because Rout(k), k = 0, 1, . . . , NFFT

2
−1 are complex-valued, if we try to directly apply JB test,

we have to forsake either real-parts or imaginary-parts and thus the complete information

is not utilized. For our proposed spectrum sensing method, we do not directly use the JB

statistic as the conventional approach thereby. Here we check the absolute values of Rout(k),

k = 0, 1, . . . , NFFT

2
− 1. Then, we invoke Eqs. (4.9), (4.10), and (4.11) to calculate the JB

statistic of |Rout(k)| and compare it with the threshold rThreshold to decide if there exists the

signal sd(n). If JB > rThreshold, we say that the signal exists; otherwise (JB ≤ rThreshold), we

say that the signal is absent. We will present the theoretical study about how to select the

threshold rThreshold subsequently.

Threshold Analysis for Our Proposed Method

In this subsection, we will discuss about how to select the threshold rThreshold for the proposed

JB-statistic-based detection scheme according to both theoretical and heuristical analyses.
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Let’s review the Rayleigh distribution first, which is closely related to our proposed fea-

ture |Rout(k)| under the JB test (|Rout(k)| is Rayleigh distributed when signal is absent).

The Rayleigh distribution is composed by random complex numbers whose real and imag-

inary components (xReal and yImag) are both identically independently distributed (i.i.d.)

Gaussian. The Rayleigh PDF with respect to r =
√
x2 + y2 is given by

f (rRayleigh;σr) =
rRayleigh

σ2
r

exp

(−r2Rayleigh

2σ2
r

)
, (4.12)

where rRayleigh ∈ [0,+∞), and σr is the mode. For the Rayleigh PDF given by Eq. (4.12),

the skewness SRayleigh and the kurtosis KRayleigh are given as follows [83]:

SRayleigh =
2
√
π (π − 3)

(4− π)
3
2

≈ 0.631, (4.13)

and

KRayleigh = −6π2 − 24π + 16

(4− π)2
+ 3 ≈ −0.245 + 3 = 2.755. (4.14)

When there is no signal, the input of the pre-processor (as presented in Section 4.2.2) is

rd(n) = wd(n). Then, after the pre-processing of the input signal, if there is no aliasing,

the output Rout(k), k = 0, 1, . . . , NFFT

2
− 1 will be a complex Gaussian process whose real

and imaginary components are both i.i.d. Gaussian. Thus, |Rout(k)|, k = 0, 1, . . . , NFFT

2
− 1

will be Rayleigh-distributed. Substituting Eqs. (4.13) and (4.14) into Eq. (4.9), we can

calculate the theoretical JB statistic value for Rayleigh distribution as 0.0344NFFT (here we

set ns = NFFT

2
). According to the central limit theorem and the law of large numbers, we

know that when we apply different signal-absent observations (rd(n) = wd(n)) for ~ times

(~ is large enough), the JB statistic values in these different experiments will approximately

satisfy a Gaussian distribution with a mean around 0.0344NFFT. That is, the distribution of
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these JB statistics will be approximately symmetric with respect to this mean. In addition,

according to Eq. (4.9), the JB statistic is non-negative. It means that the smallest possible

JB statistic value can only be zero, so subject to the symmetric property we can conclude that

most (over 97% of the total population) of the JB statistic values will be smaller than twice

of the mean 0.0344NFFT. On the other hand, if there is signal, Rout(k), k = 0, 1, . . . , NFFT

2
−1

will not satisfy a Gaussian distribution. Thus, the skewness and the kurtosis of |Rout(k)|,

k = 0, 1, . . . , NFFT

2
− 1 would become larger. According to the aforementioned analysis, we

set the threshold rThreshold for our JB-statistic based detector as

rThreshold = 0.0688NFFT. (4.15)

For instance, when we select NFFT = 2, 048, which is the defaulted FFT window size ac-

cording to the DVB standards, the threshold will be rThreshold = 141. Figure 4.3 depicts

the histogram of the JB statistics for a complex Gaussian process over 1,000 random ex-

periments. It can be clearly seen that all JB statistic values in Figure 4.3 are below the

threshold rThreshold = 141. In addition, the ensemble means of the calculated JB statistics

and the (false-alarm) percentages of the JB statistics larger than rThreshold = 141 are listed

in Table 4.1. Provably, when the FFT window size is chosen as 2,048, the means of the JB

statistics are always close to 0.0344 ∗ 2048. Its double, rThreshold = 141, can be selected as

the threshold, and the corresponding false alarms are always very small.

Table 4.1: JB Statistic Analysis

Sample Size N
150,000 200,000 250, 000 300,000 350,000 400,000

Mean 73.5 75.6 72.5 76.3 74.2 74.3
False-Alarm Percentage (JB > 141) 1% 2% 4% 3% 2% 3%
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4.2.3 Simulation for HOS Detection and Our Proposed JB Detection

In our simulation, we test two types of commonly-used signals, namely DTV signal and

microphone signal to benchmark the spectrum sensing methods. The simulation details are

stated as follows.

Signal Acquisition and System Set-up

Subject to the IEEE 802.22 standard, the recorded DTV channels were sampled at 21.524476

Msamples/sec and then down-converted to a low central IF frequency of 5.381119 MHz (a

fourth of the sampling rate). The real DTV data were acquired from [72]. On the other

hand, according to [84], we simulate the microphone signal smic(t) as follows:

smic(t) = cos

(
2π

∫ t

0

[fcm + f△ wm(τ)] dτ

)
, (4.16)

where fcm is the same frequency as that of the DTV pilots; f△ is the frequency deviation

around 100 KHz; wm(τ) is the source signal which is randomly generated from the uniformly-

distributed number in (-1,1). In addition, the sampling frequency for smic(t) is 21.524476

MHz, which is the same as that of the captured DTV signal.

According to [85,86], the receiver noise characteristic consists of a typical noise power spectral

density (PSD) and a noise uncertainty. The noise uncertainty specification is necessary since

even though the sensing mechanism may involve calibration based on the noise power esti-

mation, the estimate often exhibits some inaccuracy, which must be modeled. The thermal

noise PSD is N0 = −174 dBm/Hz. The receiver noise level is larger than the thermal noise

level. Considering the effects of low-noise amplifier (LNA) noise figure, coupling losses, radio

frequency (RF) switch losses and other issues, the TV industry typically specifies a composite
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receiver noise figure of 11 dB. Hence the average receiver noise PSD is N̄ = N0+11 = −163

dBm/Hz.

Moreover, according to the IEEE 802.22 document [81], for the purpose of employing the

captured signal to evaluate different detection schemes, it is necessary to initially process

the captured ATSC-DTV signals. In particular, the SNR can be precisely controlled in the

same way by using this initial process for all different spectrum sensing methods. Quoted

from [81], the specific steps for the initial process are given as follows.

Step 1): Read an appropriate number of samples from one of the DTV signal files.

Step 2): Filter the signal using a passband filter with a 6 MHz bandwidth and a center

frequency of 5.38119 MHz. The filter shall be a ”brick wall” filter (i.e. it shall have a flat

frequency response with unity gain) which can allow some rare exceptions.

Step 3): Measure the power in the received signal.

Step 4): Generate white noise sampled at 21.524476 MHz and filter it through the same

filter used in Step 2. The noise power used is the receiver noise power.

Step 5): Scale the signal power to meet the target SNR.

Step 6): Add the filtered noise with the scaled and filtered signal.

Spectrum Sensing Performance Comparison

In the following, we will present the simulation results for comparing our JB-statistic based

detector and the HOS detector. First, the wireless microphone signals according to [72, 84]

(randomly generated from computer) and the captured DTV signals from [72] (from the real

world) are generated for the benchmark. In the simulation, we set NFFT = 2048, which

is also used in the OFDM modulator/demodulator, NFFT may vary. To the best of our

70



knowledge, the required sample size N is at least 100,000 for almost all existing spectrum

sensing techniques [34,37,38,72,73]. However, our proposed JB detection method can easily

rely on the relatively much smaller sample size around N = 30, 000 to achieve satisfactory

results.

In Figure 4.3, we set the sample size N as 150,000 and depict the histogram of the JB statistic

values from 1000 random experiments. The associated means and the false-alarm rates (for

the JB statistics which are larger than rThreshold = 141) are listed in Table 4.1 for different N

values. In Figure 4.4, we delineate the false detection rates resulting from the HOS detector

and our JB-statistic based detector versus the sample size N in the sole presence of AWGN.

According to Figure 4.4, it is obvious that when the sample size is larger than 50,000, both

our JB-statistic based detector and the HOS detector have very low false detection rates. As

the sample size gets smaller (< 50000), in other words, when the sensing time is short, the

HOS detector leads to an extremely high false detection rate. Nevertheless, our proposed

JB-statistic based detector can still work very well. In Figure 4.5, we depict the detection

rates for the simulated wireless microphone signals from a single source over 1000 Monte

Carlo experiments with N = 70, 000 and N = 150, 000, respectively. In Figure 4.6, we plot

the detection rates for the real DTV signals from a single source over 1000 Monte Carlo

experiments with N = 70, 000 and N = 150, 000, respectively. According to Figures 4.5

and 4.6, for the single-source case, our JB-statistic based detector always outperforms the

HOS detector across different signal-to-noise ratios in terms of detection rate. Next, we

will explore the multiple-source case, where the received signal is the correlated signal. In

Figure 4.7, we plot the detection rates for the real DTV signals collected from two sources

over 1000 Monte Carlo experiments with N = 70, 000 and N = 150, 000, respectively. In
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this case, our JB-statistic based detector leads to a much better performance than the HOS

detector, even when the sample size for the former method is 70,000 but that for the latter

technique is 150,000. Obviously, the HOS detector does not work very well for the correlated

signals.

4.3 Normality, Spectral and Computational Complexity Analysis

Via the thorough numerical evaluation, it is discovered that the performances of both our

proposed JB detection method and HOS detection scheme significantly vary with respect

to the sample size. The larger the sample size, the better the detection results. The HOS

detection scheme is much more sensitive to the sample size. When the sample size is not

sufficiently large (below 70,000), the HOS detection method would lead to a very high false

alarm rate and fail. On the other hand, our proposed JB detection method can still lead to

satisfactory results for the sample size is around 30,000. The reason is that when the sample

size is small, Rout(k), k = 0, 1, . . . , NFFT − 1 may not constitute a Gaussian process even

in the sole presence of AWGN. To explain this interesting phenomenon, we first employ the

Gaussianity test for the received signal involving the AWGN only.

The received signal spectral waveform as illustrated in Figure 4.2 is given by

Rout(k) = Re {Rout(k)}+
√
−1 Im {Rout(k)}

=

NFFT−1∑
n=0

cos

(
2πkn

NFFT

)
rd(n) (4.17)

+
√
−1

NFFT−1∑
n=0

sin

(
2πkn

NFFT

)
rd(n),

k = 0, 1, . . . ,
NFFT

2
− 1. (4.18)

Note that for the HOS detection method, we have to use the full-period Rout(k), k = 0, 1,
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. . ., NFFT − 1 instead. According to Eq. (4.17), we can measure the normalities separately

for the real and imaginary parts of Rout(k). The following subsections are presented to study

why Rout(k), k = 0, 1, . . . , NFFT − 1 do not satisfy the Gaussian assumption.

4.3.1 Edgeworth Expansion for PDF Characterization

As previously stated, the small sample size would often lead to the non-Gaussian charac-

teristics of the received signals even in the sole presence of AWGN [87]. The Edgeworth

expansion has been used to characterize the unknown PDF based on the estimated moments

and cumulants. We adopt the Edgeworth expansion (see [88, 89]) to model the actual PDF

of the aforementioned signal Re {Rout(k)} and then evaluate the mismatch between the ac-

tual PDF and the underlying Gaussian model. Similar techniques can be used to study the

statistical behavior for Im {Rout(k)} as well and we omit this redundant discussion.

For a random variable Z (Z = Re {Rout(k)} in our application here) with E{Z}= 0 (this

can always be achieved by creating a mean-removed variable Z −E{Z}) and unit variance,

the arbitrary probability density function for Z can be written by Edgeworth expansion as:

fZ(z) = ϑ(z)

{
1 +

+∞∑
k=1

Pk(z)

}
, (4.19)

where ϑ(z) is the zero-mean univariate Gaussian PDF, which is given by

ϑ(z)
def
=

1√
2π

exp

(
−z

2

2

)
, (4.20)

and Pk(z) is a polynomial such that

Pk(z)
def
=
∑
{lm}

Hk+2ϖ(z)
k∏

m=1

1

lm!

(
χm+2

(m+ 2)!

)lm

. (4.21)

Here the set {lm} consists of all non-negative integer solutions to the equation l1+2l2+ . . .+

klk = k, and ϖ = l1 + l2 + . . .+ lk, and χl is given by
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χl = (−1)l
dl

dηl
log f̂Z(η)

∣∣∣∣
η=0

, (4.22)

where f̂Z(η)
def
= E {ejzη} is the characteristic function of Re {Rout(k)} and Hl(z) is the lth-

order Hermite polynomial such that

ϑ(z)Hl(z) = (−1)l
dl

dzl
ϑ(z). (4.23)

Later on, we will compare the actual PDF given by Eq. (4.19) with the Gaussian model

given by Eq. (4.20) for Z = Re {Rout(k)} to test if there is significant statistical mismatch

in between.

In Figures 4.8 and 4.9, we use the Edgeworth expansion and the Gaussian model to charac-

terize the PDFs for the full-period signal sequence Z = Rout(k), k = 0, 1, . . . , NFFT − 1 and

the half-period signal sequence Z = Rout(k), k = 0, 1, . . . , NFFT

2
− 1 in the sole presence of

AWGN (rd(n)=wd(n)). The sample sizes in Figure 4.8 and Figure 4.9 are N = 30000 and

N = 70000, respectively.

4.3.2 Gaussianity Measure Using KGGS Test

Although the Edgeworth expansion can help us to obtain the complete ”actual PDF”, it

cannot provide a simple (scalar) measure for the aforementioned mismatch in practice. We

propose to use the KGGS test stated in Chapter 3 for the robustness analysis of both our

JB detection method and the HOS detection scheme. Note that in the KGGS test, for the

JB detection method, the sample size is M = NFFT

2
while for the HOS detection method, the

sample size is M = NFFT instead. For the two sets of data in Figures 4.8 and 4.9, we perform

the KGGS test to check the normality. The results of the KGGS test are given in Table 4.2.
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According to Table 4.2, the rejection percentages are very high for the normality assumption

when the sample size N is not large enough. It clearly shows that the raw feature of Rout(k)

used in the HOS detector is not robust when only a few dozens of thousands of samples are

acquired or when the sensing time is short.

Table 4.2: Rejection Rates of KGGS Normality Test

N
20,000 30,000 40, 000 50,000 60,000 70,000 80,000

M = NFFT 100% 100% 100% 100% 100% 11% 0%
M = NFFT

2 76% 12% 8% 7% 7% 5% 0%

4.3.3 Spectral Analysis

As previously mentioned, our JB detection method depends on |Rout(k)|, k = 0, 1, . . . , NFFT

2
−

1, but the HOS detection method depends on Rout(k), k = 0, 1, . . . , NFFT − 1 instead.

In this subsection, we will explain the reason why our method does not rely on Rout(k),

k = 0, 1, . . . , NFFT−1 as the HOS detection method. The frequency spectrum of the sampled

received DTV signal rd(n) has a bandwidth of 6× 106 × 2π
fs

radians and a central frequency

5.38119×106× 2π
fs

radians according to [81]. According to Figure 4.2, after down-conversion,

image rejection and frequency shifting, the spectrum of the signal r3(n) will occupy the

digital frequency intervals ranging from 0 to 5.69 × 106 × 2π
fs

= 0.5288π radians (with a

bandwidth 0.5288π radians) over [0, π], and ranging from 2π − (6 − 5.69) × 106 × 2π
fs

=

1.9712π to 2π radians (with a bandwidth 0.0288π) over [π, 2π). Due to the frequency-

shifting operations in Figure 4.2, it can be seen that the magnitude spectrum of r3(n) is

definitely not symmetric over [−π, π]. Next, let the signal r3(n) pass the low-pass filter

with a bandwidth BWa specified by Eq. (4.7), and down-sample r4(n) with a down-sampling
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rate fd given by Eq. (4.8). The half-period FFT sequence Rout(k), k = 0, 1, . . . , NFFT

2
− 1

should correspond to the digital frequency interval [0, π] in where |Rout(k)| would not have

any null band. However, the signal spectrum Rout(k), k = NFFT

2
, NFFT

2
+ 1, . . . , NFFT − 1

corresponding to [π, 2π) would exhibit a null band especially when the sample size N is

smaller than the threshold number ν (ν will be defined in Eq. (4.24)) which makes the low-

pass filter possess a bandwidth of 0.0288π radians (this bandwidth is identical to the signal

bandwidth within [π, 2π)). In other words, we will have Rout(k) = 0, for some k values

when the sample size N is smaller than ν. Besides, if the null band of Rout(k) is too broad,

Rout(k), k = 0, 1, . . . , NFFT − 1 would not fit the complex Gaussian distribution even in the

sole presence of AWGN. Thus when the sample size N is not large enough, if we use the

full-period Rout(k), k = 0, 1, . . . , NFFT − 1 for the spectrum sensing, it will lead to a very

high false alarm rate and the result is not satisfactory. This is the very reason why the HOS

detection method often leads to a very high false alarm rate when the sample size N is small.

It is also the reason why our JB detection scheme should rely on the half-period Rout(k),

k = 0, 1, . . . , NFFT

2
− 1. Based on the previous discussion, the theoretical value for ν can be

calculated as

ν =
π

0.0288π
×NFFT. (4.24)

Eq. (4.24) facilitates the sample size N for the down-sampling rate fd = π
0.0288π

. In other

words, the minimum sample size N = ν is required for the HOS detection method to work.

For example, when the FFT window size is set as NFFT = 2048, we need N ≥ ν ≈ 71, 000.

The effects of sample size can also be found in our previous discussions in Sections 4.3.1, 4.3.2

and in the subsequent simulations.
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According to Table 4.2, the rejection percentages are very high for the normality assumption

when the sample size N is not large enough. It clearly shows that the raw feature of Rout(k)

used in the HOS detector is not robust when only a few dozens of thousands of samples

are acquired or when the sensing time is short. To get more insights into this discovery,

we provide Figures 4.10 and 4.11 to show the magnitude frequency spectra |Rout(k)|, k =

0, 1, . . . , NFFT−1 for N = 30000 and N = 70000, respectively. It can be easily seen that there

exist null bands in the signal spectra as depicted by Figures 4.10 and 4.11 and such null bands

would easily destroy the normality and degrade the detection performance. Besides, the

bandwidth of such a null band increases as the sample size decreases. Hence, the full-period

feature Rout(k) adopted in the HOS detector may not lead to robust performance. According

to Figures 4.8-4.11 and Table 4.2, we can justify our arguments stated in Section 4.3. When

the sample size N is not sufficiently large, the underlying full-period feature Rout(k), k =

0, 1, . . . , NFFT − 1 used in the HOS detector does not satisfy the Gaussian assumption, but

the half-period feature Rout(k), k = 0, 1, . . . , NFFT

2
− 1 would much better fit the Gaussian

hypothesis. Next we would like to investigate how the HOS detector performs if it also uses

the half-period feature Rout(k), k = 0, 1, . . . , NFFT

2
−1. In Figure 4.12, we use the half-period

feature Rout(k) instead in the HOS detector and depict the corresponding detection rates.

The detection rates are similar to those arising from the aforementioned HOS detector and

still lower than the results from our proposed JB statistic based detector.

4.3.4 Computational Complexity Analysis

The computational complexity is always an important factor to be considered in prac-

tice. Therefore, the computational complexity studies for our JB detection method and
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HOS detection method are presented in this section. For simplicity, here we only con-

sider the real-valued multiplications in studying the complexity. Thus, the computational

complexity analysis for the two aforementioned detectors is presented as follows. For our

proposed JB statistic-based detector, we need to take 4× NFFT

2
multiplications to calculate

the absolute values of Rout(k), 0, 1, . . . ,
NFFT

2
− 1. Moreover, in order to obtain S and K

in Eqs. (4.10) and (4.11), we need to compute the second, third, and fourth moments of

|Rout(k)|, 0, 1, . . . , NFFT

2
− 1. Hence, we need to take 3 × NFFT

2
multiplications for achieving

that. At last, we need one more comparison operation to carry out the ultimate hypoth-

esis test. In total, for our JB statistic-based detection, the complexity CJB (in terms of

multiplications) is given by

CJB = 7× NFFT

2
+ 1 = 3.5NFFT + 1. (4.25)

The HOS detection method in [73] depends on Rout(k), k = 0, 1, . . . , NFFT − 1. It needs

to take 10 × NFFT multiplications to calculate the second to sixth moments of both real

and imaginary parts of Rout(k). Furthermore, it needs 10 multiplications to calculate the

required cumulants, and needs to take 3 comparison operations for the ultimate hypothesis

test. Therefore, its total computational complexity CHOS is

CHOS = 10×NFFT + 13. (4.26)

Usually, we choose NFFT to be 2,048, so it is obvious that our proposed JB-statistic based

detector is much more computationally efficient than the HOS detector. We also depict the

trends of the computational complexities versus different NFFT for these two detectors in

the next section. To compare the complexity measures in numerical illustration, Figure 4.13
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depicts the computational complexities in terms of multiplications for the HOS detection

method and our proposed detector. It clearly shows that our method is much more efficient.

4.3.5 Conclusion

In this chapter, we propose a novel JB-statistic based spectrum sensing method, which

can be applied for the IEEE 802.22 systems. Our method outperforms the existing HOS

detection scheme which is based on the higher-order statistics. According to our Monte

Carlo simulation results for the simulated wireless microphone signals and the real DTV

signals, our proposed JB detection method not only leads to a higher detection rate but

also induces less computational complexity than the HOS detector. Besides, our proposed

JB-statistic based detector can be very robust for the small sample size or the short sensing

time. We also provide the normality analysis and the spectral analysis to explore the reasons

why our proposed detector has the significant advantages over the HOS detection method

especially when the sample size is small.
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Figure 4.1: The topology of a wireless regional area network (WRAN).
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Figure 4.2: The spectrum sensing system diagram.
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Figure 4.3: A histogram example of the JB statistics.
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Figure 4.4: False detection rate versus sample size in the sole presence of AWGN.
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Figure 4.5: Detection rate for simulated wireless microphone signals versus SNR in the
single-source case.
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Figure 4.6: Detection rate for real DTV signals versus SNR in the single-source case.
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Figure 4.7: Detection rate for real DTV signals versus SNR in the two-source case.
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Figure 4.8: The actual PDF resulting from the Edgeworth expansion and the PDF using the
underlying Gaussian model for received data (N = 30, 000, NFFT=2048).
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Figure 4.9: The actual PDF resulting from the Edgeworth expansion and the PDF using the
underlying Gaussian model for received data (N = 70, 000, NFFT=2048).
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Figure 4.10: |Rout(k)| versus frequency 2kπ
NFFT

(N = 30, 000).
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Figure 4.11: |Rout(k)| versus frequency 2kπ
NFFT

(N = 70, 000).
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and the HOS detector.
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5. CONCLUSION

In this dissertation work, we investigate some practical signal detection/estimation problems

and design new robust and efficient algorithms for communication applications. Three crucial

topics are addressed, namely source localization, normality test, and spectrum sensing.

First of all, the source localization problem based on maximal likelihood is simplified by

introducing augmented data. We propose a novel EM algorithm which could combat the

source localization problem in the presence of spatially non-white Gaussian noise. Compared

to the existing SC-ML and AC-ML methods, our algorithm has much better localization

accuracy and less computational complexity.

Second, we propose a new normality test, namely the KGGS test, which is quite robust and

based on statistics involving both Gaussian and generalized Gaussian PDFs. Our KGGS

test can lead to the best test performance compared to other existing normality tests.

Third, we propose a novel spectrum sensing algorithm based on the JB statistic, which

is a mathematical combination of skewness and kurtosis. This new method can provide

us with much higher detection rate compared with the existing popular HOS detection

method. Moreover, our new method can lead to a significant performance margin over the

HOS method especially for sparse data. In addition, our new method incurs much less

computational complexity than the HOS method.

Besides, we also evaluate the robustness of the aforementioned techniques by different crite-
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ria, such as CRLB. These theoretical analyses demonstrate the superiority of our proposed

methods to other schemes in terms of performance evaluation and computational complexity.

The scientific contributions and findings in this dissertation would be beneficial to the areas

of signal processing and wireless communications since robust and efficient techniques are

studied and devised for prevalent applications throughout the work.
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ABSTRACT

Signal detection and estimation has been prevalent in signal processing and communications
for many years. The relevant studies deal with the processing of information-bearing sig-
nals for the purpose of information extraction. Nevertheless, new robust and efficient signal
detection and estimation techniques are still in demand since there emerge more and more
practical applications which rely on them. In this dissertation work, we proposed several
novel signal detection schemes for wireless communications applications, such as source local-
ization algorithm, spectrum sensing method, and normality test. The associated theories and
practice in robustness, computational complexity, and overall system performance evaluation
are also provided.
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