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Abstract

Utilizing wireless sensor network (WSN) is a novel idea in a variety of applications. How-
ever, the limited resources allocated to the sensor nodes make the design of WSNs a
challenging problem. We consider the problem of hypothesis testing in a bandwidth-
constrained, low-power wireless sensor network operating over insecure links. Sensors
quantize their observations and transmit their decisions to an intended (ally) fusion center
(AFC) which combines the received messages to detect the state of an unknown hypothesis.

In many applications the sensor messages are vulnerable to unauthorized eavesdropping.
The scarce bandwidth and processing power for the sensors rule out the utilization of ad-
vanced encryption techniques. To protect their transmissions from an unauthorized (third
party) fusion center (TPFC), the sensors use a simple encryption whereby they randomly
flip their quantization outcomes, similarly to what happens in a discrete memoryless chan-
nel. It is assumed that AFC is aware of the encryption probabilities (keys) but TPFC is
not.

For the AFC the decision rule is formulated as a constrained optimization problem where
one constraint is a lower bound on the error probability of TPFC. The optimal decision
rules for the two fusion centers are then derived. It is shown that by appropriate design of
the encryption probabilities and the AFC decision rule, it is possible to degrade the error
probability of the TPFC significantly and still achieve very low probability of error for the
AFC. Numerical results are presented to show that it is possible to ensure that TPFC does
not gain any information from the observation of sensors transmissions.

viii



Chapter 1

Introduction

Sensor networks have originally emerged from application in military surveillance sys-
tems [27]. The sensor networks at that time included a few sensors wired to a central
processor which was in charge of all signal processing. Technological advances in elec-
tronics and wireless communication, facilitated the emergence of wireless sensor networks
(WSNs) involving a multitude of small, low-power sensors which can network themselves
to accomplish a variety of tasks in a distributed way. Over the last decade WSNs have
contributed to a wide range of applications in environmental monitoring, healthcare con-
trol, mechanized agriculture and etc. These are achieved by virtue of distinct features of
WSNs, like easy utilization and autonomous operation [1], [13].

The distributed sensing is the idea that has fundamentally shaped WSNs to fit with the
current demands. AWSN with a distributed function can be well exemplified by a swarm of
ants. The individual ants are very small and of limited capabilities, but their cooperation in
the swarm makes them a resilient and intelligent form of life. Similarly the wireless sensors
have very limited individual resources for sensing and processing but these are multiplied
in a WSN. To build a WSN, a large number of wireless sensors are randomly deployed in
the monitoring region, and they form an ad-hoc network according to a program assigned
to them so as to communicate their collected data with a central node (f usion center) [21].
The fusion center, having information from different geographic locations in the monitoring
region, can hence make a reliable decision about the events of interest [25]. In many cases
where the location of the event is unknown and the environment is not well suited for
communication, having a dense distributed network is preferred to a sparse network of
fully-supplied sensors. This can be accounted for the fact that a dense network reduces the
chance of blind spot in the monitoring region and can remain connected in the presence of
communication obstructions [13].

Sensor networks are usually destined to be used in hostile and unaccessible environments,
like bottom of oceans and polluted areas, where designers do not have the luxury of a
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wired network to supply sensors and establish direct communication channels. There are
also many scenarios where sensors need to be of small size, like in battle fields, to be
invisible to an enemy [1]. The production of tiny radio transceivers solved these problems
by developing WSNs and made wireless communication an indispensable component of
sensor networks. Wireless communication also enables connectivity of mobile sensors, such
as the sensors built-in microrobots.

Although WSNs seem to be a panacea for many of today’s applications, there are many
technical challenges regarding their scarce resources such as power supply, memory, size,
bandwidth and processing power. Since the individual sensors usually have no power
supply more than their internal batteries, they eventually die and this will continue till the
WSN fails to accomplish the distributed tasks. Thus there is a limited lifetime for a WSN
which has spurred design of energy-efficient communication protocols for WSNs [32].

1.1 Sensor Design and Network Architecture

As mentioned, individual sensors in a WSN are meant to handle simple tasks. The block
diagram of the main components of a sensor node is depicted in Fig. 1.1 [1]. The signal
emitted by the phenomenon of interest (for example temperature, light, or a combination
of them) is received by the sensing unit and converted to an analog electric signal. Then
the analog signal is sent to the ADC unit which samples, quantizes and feeds them to the
processor in the form of sample frames. Finally the processor unit processes each frame and
converts the result into a binary sequence. Then depending on the transmission schedule,
it may either immediately send the bits to the wireless transceiver to be transmitted in as
packets, or store them. A processor unit typically has very limited storage and processing
capacities (for example processing speed 4 MHz and storage of 128 KB [26]) which are
mostly allocated to manage communication. Therefore the processor does not have the
resources to control the ADC or the the sensing unit in order to adapt them during the
lifetime of the device. All the units are once configured before deployment, and during
utilization they are not likely to change their operation routines. The processing speed
also limits the data rate can be handled by each sensor node that enforces a bandwidth
constraint.

Sensing ADC
Processor

Storage
Transceiver

Power Unit

Figure 1.1: The main components of a sensor node
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The power unit, as illustrated in Figure 1.1, occupies considerable space in a sensor node.
Due to the size constraints the power unit usually includes one or two batteries supplying
the other units. Since failure due to lack of power is an inevitable fate of each sensor, a
sensor must budget its power during the course of operation. Usually the power consumed
by the radio transceiver unit is more significant than the the other units. This is the moti-
vation for developing energy efficient network architecture. To reduce power dissipation in
transmission, the sensors are densely scattered in the monitored area such that each node
can communicate with multiple nodes within a short range. There are also sleep periods
scheduled for each node to switch off its transceiver when not in use [32].

Fusion
Center

Sensors Monitored
Area

.
.
.
.

. . . .

.

.

.

.

.

.

.

.

Figure 1.2: The network architecture in WSNs

After the sensors are deployed, each of them tries to reach out its closest neighbors. Then
they form a self-organizing tree-structured network, exhibited in Figure 1.2, to deliver their
messages (packets) to the fusion center. A routing protocol must then be developed for
such networks which must be energy efficient, and robust to topology changes due to link
and node failures [15]. Many routing protocols have been developed in recent years and are
often based on the shortest-path-tree idea such that each node forwards its own packets
together with its received packets to a node among its neighbors which is closest to the
fusion center [2].

1.2 Distributed Detection Using Sensor Networks

The tasks of sensor networks include detection, estimation and tracking of a physical
quantity such as temperature, sound or light intensity. The complexity of sensor network to
handle these tasks respectively increases. For detection, sensors only observe the existence
of a certain phenomenon where estimation requires them to measure its qualities. Whereas
detection and estimation need observation shots, tracking involves continuous observation
of the variations in a phenomenon such that it is sometimes impractical for WSNs. Here we
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concentrate on the detection operation appearing in a broad range of WSNs’ applications
[25].

In the traditional sensor networks, the sensors did not have the processor unit (and neither
the power nor transceiver unit in wired cases) compared to the wireless sensors as shown in
Figure 1.1. They sent their raw samples to the fusion center which performs the detection
operation. This type of detection is called centralized detection. Due to the limitations
in communication, processing power and power supply mentioned above, centralized de-
tection in WSNs is impractical. Hence the detection scheme tailored to WSNs is named
decentralized detection where each sensor node partially processes its collected samples and
then sends the result to the fusion center using few packets [29, 31].

Depending on the network architecture of a WSN, decentralized detection can be performed
in different topologies such as: star, serial and tree [30]. In the serial and tree topology,
each sensor processes its own sensed data together with the content of its received packets
during the routing. Then it may route only the result of the process [14]. In the star
topology sensors’ messages are directly routed to the fusion center. The star topology is
commonly used in applications where the sensors have very limited processing capability,
fusion center needs to immediately detect a target, or the messages from the individual
sensors are used to localize a phenomenon. In this work our attention is on the star
topology.

Distributed detection using WSNs is a research problem that has been extensively inves-
tigated [27]. What is related to our work involves the optimal design of the fusion rule
under different conditions of quantization at the individual sensors.

The classical Bayesian detection was used in [27] to draw out the optimal binary detection
individually performed by the sensors. Then Chair and Varshney proposed the k-out-of-n
rule in [6] as the optimal fusion rule for binary hypothesis testing where the sensors are
equipped with identical binary quantizers. In [18] the authors have investigated the optimal
fusion rule for the binary hypothesis testing where the sensors make soft local decisions
(non-binary quantization). It is worth to note that the communication channel has been
assumed to be error-free in the above methods.

In [7] error exponents for probability of error are derived for star networks with capac-
ity constraints. There the authors have analyzed the problem of detecting deterministic
signals in the presence of Gaussian noise. They have proved that the information loss
in decentralized binary detection can be compensated for by a large number of sensors.
Later Tsitsiklis investigated the decentralized detection problem for multiple hypothesis
testing in [28,29]. Having M hypotheses, he proved that a very large set of sensors can be

partitioned into M(M−1)
2

subsets where the optimal local decision rule is identical for the
sensors in each subset. Particularly for binary hypotheses testing, this implies that it is
asymptotically optimal to let the sensors make their local decisions based on an identical

4



likelihood-ratio rule.

The optimal design of decentralized detection schemes in the presence of channel imper-
fections has been recently studied [24]. Practically channel noise and fading cannot be
overlooked in WSNs. The optimal binary fusion rule for identical sensors in generalized
Gaussian noise has been discussed in [23]. Dependency of likelihood-ratio based fusion rules
on the fading channel information is investigated in [9], where the authors have proposed
tow methods to reduce the effect of fading: maximal ratio combining and two-stage Chair-
Varshney rule. There the latter method first estimates the channel coefficients and then
forms likelihood ratios for detection. There is also the binary fusion rule stated in [19]
which only relies on the statistics of Rayleigh fading channels assuming all the sensors
experience the same SNR.

1.3 Motivation for This Work

As applications of WSNs become more wide-spread, security issues become more important
concerns in mission-critical applications [22]. Examples include surveillance in a hostile or
unattended environment such as a battlefield, a protected area, or the site of a (natural
or man-made) disaster. While a WSN is on duty, third-parties, which are not authorized
participants of the WSN, attempt to attack the WSN to fulfill their own interest. They
may either steal the sensitive data collected by the sensors (eavesdropping), or disable
the communication between the sensors and the fusion center (jamming) [11]. In many
scenarios an attacker takes both actions. Due to the aforementioned resource limitations in
WSNs, involving the security precautions makes the design of WSNs even more challenging
[12].

In this thesis we consider the problem of distributed detection in a bandwidth-constrained
WSN operating over insecure links. Due to the limited power and low bandwidth, we
assume that each sensor node transmits a quantized decision of its observation. In addition
to the ally (intended) fusion center (AFC), a third-party (unauthorized) fusion center
(TPFC) may also be observing the sensor transmissions and attempting to detect the
state of the unknown hypothesis. Our goal is to design the system parameters so as to
deteriorate the error probability of the unauthorized fusion center while maintaining an
acceptable error probability for the intended ally fusion center.

Security encoding is a typical technique to protect the raw messages from the TPFC
access. However it increases the packet length which is not tolerable where the bandwidth
and energy consumption are strictly limited. Hence to this end, each sensor node uses
a simple encryption mechanism whereby its decision result is flipped around (within the
possible quantization decisions) with given probabilities, similar to the operation of a
discrete memoryless channel. It is assumed that the AFC is aware of the encryption keys
(probabilities), and can minimize its probability of error accordingly, whereas the TPFC is
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unaware of the encryption keys and can only base its decision on the encrypted bits. This
encryption operation was firstly discussed in [4] where the authors considered the problem
of decentralized estimation when transmission of sensor decisions is over insecure links.
Later Sriram in [25] applied a binary cipher with fixed probabilities to the distributed
detection problem where each node sends a binary decision.

We show that when appropriately designed, the proposed method ensures that a high
error probability can be imposed on the TPFC to the extent that it cannot gain any
information from the sensors’ transmissions. Applying the security precautions will also
degrade the detection performance at the AFC. However, given enough sensors in the
network, an acceptable performance can be achieved by this fusion center. Given the
power and bandwidth constraints of WSN, this is an attractive method to protect the
sensors’ data.
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Chapter 2

Secure Distributed Detection Using

Binary Decision at the Sensors

In this chapter we first describe the distributed detection problem and the operation of
the sensors in the case where the sensors use binary local decisions. Next we discuss the
encryption mechanism used by each node and present the error probabilities of both the
AFC and TPFC. Similarly to [25] we assume both the sensors and the fusion center perform
Bayesian detection. The TPFC, which is unaware of the encryption, presumes that the
sensors transmit their raw decisions. Knowing the local decision rule of the sensors, it
adjusts its fusion rule in order to minimize its assumed error probability. The AFC can
also perform the same optimization and, therefore, is aware of the TPFC’s decision rule.
Then it investigates the fusion rule and the encryption which minimize its error probability
with respect to a lower bound on the TPFC error probability. The solution region for the
AFC optimization is considerably reduced in a few steps such that the optimal solution
can be analytically evaluated. Finally in the section on numerical results, the deterministic
signal detection in the presence of Gaussian noise is examined. The results confirm that
for a given lower bound on the TPFC error probability, the AFC error probability can be
reduced to any small value.

2.1 System Model

We consider a system of n sensors observing the state of an unknown hypothesis H where
H ∈ {H0, H1} and with prior probabilities of H0 and H1 being q0 and q1, respectively. Let
Xi denote the observation of the ith sensor, i = 1, 2, 3, ..., n. It is assumed that given the
hypothesis Hη, (η = 0, 1), the observations X1, X2, · · · , Xn are independent and identically
distributed. The conditional PDF of Xi under Hη is denoted by pη(x).

Each sensor i, i = 1, 2, · · · , n, makes a decision ui ∈ {0, 1} regarding the state of the
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hypothesis H using the likelihood ratio test

p1(x)

p0(x)

ui=1

≷
ui=0

λ (2.1)

where λ is a threshold which is assumed to be identical for all the sensors. The false alarm
probability P0 and the detection probability P1 of individual sensors are given by

Pη = P (ui = 1|Hη), η = 0, 1 (2.2)

For a fixed λ, the binary model in Fig 2.1 exhibits the binary detection process [30].

H0 0

H1 1

P0

P1

1 − P0

1 − P1

ui

Figure 2.1: Binary model for the sensors’ detection rule

In general assuming an identical threshold for local sensors does not lead to an optimum
system. However, this assumption has been previously used in the literature in order to
make the problem mathematically tractable [10,23,33]. For a two sensor system it is shown
in [16] that no optimality is lost when identical thresholds are used. Furthermore, it is
shown in [28] and [10] that identical thresholds are asymptotically optimal in the number
of sensors n. Relying on these results and in order to make the problem tractable we have
also assumed an identical threshold λ for all the local sensors.

The decisions of individual sensors are to be transmitted to the (allied) fusion center which
must detect the state of H from the received information. We assume that the channel
between the sensors and the FC is error free. This can be achieved using an appropriate
error control coding scheme. The transmission of the sensors, however, may be observed
by a third party (enemy) fusion center (TPFC) who also wishes to detect the state of H.
In order to protect the decisions of the sensors from this unauthorized fusion center during
transmission, we employ the following simple, probabilistic cipher. As depicted in Figure
2.2, the decision ui of sensor i is encrypted to obtain zi, where P (zi = 1|ui = 0) = π0 and
P (zi = 0|ui = 1) = π1. This can also be described as zi = ui⊕vi, where vi ∈ {0, 1}, {vi}ni=1

are independent random variables with P (vi = 1|ui = 0) = π0 and P (vi = 1|ui = 1) = π1,
and where ⊕ is the mod−2 addition. The encrypted binary output zi is then transmitted
to the allied fusion center (AFC) and may also be observed by the TPFC. Let

θ0 , P (zi = 0|H0) = 1− P0 − π0 + (π0 + π1)P0

θ1 , P (zi = 0|H1) = 1− P1 − π0 + (π0 + π1)P1.
(2.3)

8



It is assumed that the AFC has prior knowledge of the values of π0 and π1 but not the
actual values of v1, v2, · · · , vn. On the other hand, the TPFC has no knowledge of π0 and
π1 and, in the absence of this information, it can only assume that it has received the
original decisions ui, i = 1, 2, · · · , n.

H0 0

1

1 −

1 −
1

0

ui z i

Figure 2.2: Binary model for the encryption

We consider a Bayesian detection problem where the performance criterion for each of the
fusion centers is the probability of error. Specifically, our goal is to design the system
parameters so as to minimize P a

E, the probability of error for the AFC, subject to a lower
bound on P t

E, the probability of error for the TPFC.

The likelihood ratio test practiced at each of the fusion centers AFC or TPFC is given by

P (z1, z2, · · · , zn|H1)

P (z1, z2, · · · , zn|H0)

H1

≷
H0

Λ (2.4)

where Λ is a threshold assigned by each fusion center to minimize its error probability. Since
the sensors’ messages are independent the above ratio is broken down into the product of
the likelihood-ratio for individual sensors,

n
∏

i=1

P (zi|H1)

P (zi|H0)

H1

≷
H0

Λ. (2.5)

Then considering (2.3), the above equation can be rewritten as

θn−m
1 (1− θ1)

m

θn−m
0 (1− θ0)m

H1

≷
H0

Λ (2.6)

where m is the number of 1’s in the sequence of received messages, z1, z2, · · · , zn. In other
words, m =

∑n

i=1 zi. In order to express the decision rule in terms of m, the logarithm is
performed on (2.6) to get

(n−m) ln (
θ1
θ0
) +m ln (

1− θ1
1− θ0

)
H1

≷
H0

ln Λ (2.7)
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Following a simple rearrangement, we end up with a k-out-of-n rule given by

Ĥ =



















H1, if
n

∑

i=1

zi ≥ k

H0, if
n

∑

i=1

zi < k.

(2.8)

where,

k =

⌈

ln Λ− n ln θ1
θ0

ln θ0(1−θ1)
θ1(1−θ0)

⌉

(2.9)

and where ⌈x⌉ denotes the smallest integer no less than x. It is noted that the above
decision rule also includes the maximum a posteriori (MAP) rule with Λ = q0/q1 [30]. The
block diagram of the above fusion rule is demonstrated in Figure 2.3, where the binary
quantizer and binary cipher blocks, respectively, correspond to Figure 2.1 and 2.2.

z1

z2

zn

Binary Quantizer Binary CipherX1

X2

Xn

u1

u2

un

Binary Quantizer Binary Cipher

Binary Quantizer Binary Cipher

+
.

.

.

.

Sensors

H 1

≷
H 0

k

Fusion Center

Ĥ

Figure 2.3: Block digram for the binary data fusion

The error probability for the two fusion centers has the same formula given by

PE = q0P (Ĥ = H1|H0) + q1P (Ĥ = H0|H1) (2.10)

Using (2.8) and the distribution of zi given by (2.3) we calculate PE as

PE(k, θ0, θ1) = q0ψ(k, θ0) + q1(1− ψ(k, θ1)) (2.11)
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where ψ(k, θ) is a sum of binomial terms,

ψ(k, θ) ,
n

∑

i=k

(

n

i

)

(1− θ)i(θ)n−i (2.12)

Figure 2.4 depicts the contour plots of PE(k, θ0, θ1) as a function of θ0 and θ1 for fixed
valued of k and q0. It can be seen that PE(k, θ0, θ1) is comprised of four plateaus near the
four corner with values 1, q1, 0 and q0, in clockwise order beginning from northwest. There
is also an inflection point in between which slides along θ1 = θ0 line with respect to the
value of k.
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Figure 2.4: Contour plots of PE with respect to θ0 and θ1 for n = 30

As evident from (2.10), the formulas for the false alarm and detection probabilities, and
the probabilities of error are the same for the two fusion centers AFC and TPFC. However,
these two fusion centers have different views of the network and thus their fusion rules are
different.

Before studying the error probabilities of AFC and TPFC, we note that θ0 and θ1 both
depend on P1 and P0 whose values in turn depend on the choice of λ. Unlike the cipher
parameters, π0, π1, which are assigned during message transmission, λ is a built-in sensor
parameter usually chosen to minimize the error probability in the absence of any encryp-
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tion, i.e., when π0 = π1 = 0 [33]. Therefore hereafter we assume that the value of λ is the
fixed value calculated accordingly and is known to both fusion centers. This implies that
the TPFC can evaluate its fusion threshold, kt, to minimize its assumed error probability
for the corresponding λ. Note that this implies that P1 and P0 are also fixed.

2.2 Problem Statement

Both the AFC and TPFC tend minimize their error probabilities as cost functions in
the following optimization problems. Note that the constraints in the two problems are
different, since the fusion centers have different perspectives of the system.

2.2.1 Optimization from TPFC’s Point of View

As mentioned previously, TPFC is assumed to be unaware of the encryption process and
therefore assumes that π0 = π1 = 0. However, TPFC is aware of the threshold value λ
and chooses its fusion threshold, denoted kt, to minimize its probability of error. Since λ
is also chosen to minimize the probability of error in the absence of any encryption, then
the optimal λ and kt are obtained from the solution of the following problem.

P1 : min
k,λ

PE(k, 1− P0(λ), 1− P1(λ))

subject to: 0 ≤ k ≤ n

where the objective function above is obtained from (2.11) for π0 = π1 = 0, (θi = 1 −
Pi(λ), i = 0, 1). We denote the optimal k and λ obtained from P1 by kt and λ∗, respectively.
The AFC can also solve this problem independently and so it is aware of the values of λ∗

and kt. Now in the presence of encryption (πi 6= 0, and θi 6= 1−Pi(λ
∗), i = 0, 1), the actual

performance of TPFC is given by

P t
E = PE(k

t, θ0, θ1) (2.13)

To simplify our notation, hereafter we denote P ∗

i = Pi(λ
∗) for i = 0, 1.

2.2.2 Optimization from AFC’s Point of View

The allied fusion center must choose its fusion threshold ka along with the encryption
parameters π0 and π1 so as to minimize its probability of error. In addition it must en-
sure that the performance of TPFC is degraded through the application of the encryption
process. From (2.3) we can see that the AFC may equivalently choose θ0 and θ1 to min-
imize its probability of error. Therefore AFC attempts to solve the following constrained
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optimization problem.

P2 : min
ka,θ0,θ1

PE(k
a, θ0, θ1) (2.14)

subject to:

0 ≤ ka ≤ n (2.15)

θ1 ≤ θ0 (2.16)

emin ≤ P t
E(k

t, θ0, θ1) ≤ 0.5 (2.17)

θ0 − θ1 ≤ θ0P
∗

1 − θ1P
∗

0 (2.18)

θ0P
∗

1 − θ1P
∗

0 ≤ P ∗

1 − P ∗

0 . (2.19)

In the above, (2.16) excludes the cases where P t
E(k

a, θ0, θ1) ≥ 0.5 that are not of interest
(see Figure 2.4). In (2.17), emin is a design parameter to ensure a minimum probability of
error for TPFC. Moreover, since TPFC makes a binary decision, the case of P t

E ≥ 0.5 is
not of interest. Finally, (2.18) and (2.19) correspond to the fact that π1 ≥ 0 and π0 ≥ 0,
respectively. These can be simply derived from (2.3).

Having computed the optimal values of θ0 and θ1 from P2, the cipher probabilities π0 and
π1 can be obtained from (2.3). In the following we pursue analytical solutions to P1 and
P2 in the same order.

2.3 Optimization for TPFC

This problem has been investigated in [33] where an algorithm has been proposed that
consists of two steps: First, for each 0 ≤ k ≤ n the optimum threshold λk, which minimizes
PE, is computed. Then kt and λ∗ are selected as the pair (k, λk) that achieves the minimum
PE among all such pairs. The following theorem in [33] shows that gradient based methods
can be sued for the computation of the optimum λk.

Theorem 1. Given k, PE(k, 1− P0, 1− P1) is a quasi-convex function of λ and there is a
unique λ that minimizes it.

Proof See [33, Theorm 1]. �

When n is large, the computational complexity of the above algorithm becomes prohibitive.
Below an alternative algorithm is proposed to compute kt and λ∗ by approximating the
binomial function in (2.12) with the Q function.
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2.3.1 Alternative Algorithm for TPFC Optimization

For large n ( e.g n ≥ 20 ), ψ(k, θ) can be well approximated by [20]

ψ(k, θ) ≈ Q(
(k − 0.5)/n− (1− θ)

√

θ(1− θ)/n
)−Q(

√

nθ

1− θ
) (2.20)

The following lemma provides justification for gradient-based algorithms for obtaining the
optimal solution for kt.

Lemma 1. For any θ0 and θ1, there is only a unique k that minimizes PE(k, θ0, θ1).

Proof This results from the concavity of the ROC curve corresponding to the k-out-of-n
fusion rule and has been discussed in detail in [30]. �

Using the approximation in (2.20), the error probability can be written as a function of
ρ , (k − 0.5)/n and λ as

PE(ρ, 1− P0(λ), 1− P1(λ)) = q0



Q(
ρ− P0

√

P0(1− P0)/n
)−Q(

√

n(1− P0)

P0

)



+

q1



1−Q(
ρ− P1

√

P1(1− P1)/n
) +Q(

√

n(1− P1)

P1

)



 (2.21)

Then one can calculate the partial derivatives of PE with respect to ρ and λ and set them to
zero. This results in two nonlinear equations that can be solved efficiently using numerical
methods. However, since 0 ≤ λ < ∞ does not have a finite range, such methods become
very sensitive to the initial choice for λ. To overcome this problem, we replace λ by P0 as
the independent variable (0 ≤ P0 ≤ 1). Then P1 is a monotone-increasing function of P0

whose derivative with respect to P0 can be obtained from the sensors’ ROC curve. Thus
the following set of equations are used to obtain the optimal P0 and ρ (denoted P ∗

0 and ρ∗,
respectively).

∇(P0,ρ)PE(ρ, 1− P0, 1− P1) = 0 (2.22)

Finally, λ∗ and kt can be obtained from P ∗

0 and ρ∗ according to

kt = ⌈0.5 + nρ∗⌉ , λ∗ =
dP1

dP0

∣

∣

∣

∣

P ∗

0
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2.4 Optimization for AFC

The optimization for AFC is more complicated than for TPFC due to the additional
constraints. A graphical representation of the constraints is provided below which helps
us in obtaining the optimal solution analytically. Given kt and λ∗, the shaded area in
Figure 2.5 demonstrates the feasible values for θ0 and θ1 with respect to the constraints
in (2.16)-(2.19). As depicted in Figure 2.5, the three constraints in (2.16), (2.18) and
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Figure 2.5: The feasible region for AFC optimization

(2.19) form the triangle ∆OIA in which the set of feasible points (θ0, θ1) must reside. The
dashed trajectory represents the curve (1 − P0(λ), 1 − P1(λ)) (as λ varies) and the point
A corresponds to λ∗. This triangle is always obtuse and resides above the dashed curve
due to the concavity of this curve. The three sides OI, OA, and AI correspond to the
boundaries of the three constraints in (2.16) where θ0 = θ1, (2.18) where π1 = 0, and (2.19)
where π0 = 0, respectively. In Figure 1 we have also included the contours of constant
P t
E such that depending on the value of emin in (2.17), one of these contours may play an

active role on the set of feasible (θ0, θ1). A typical example of such a constraint is indicated
by the arc MN in Figure 2.5. Considering this constraint some portion of ∆OIA around
the vertex A is excluded from the feasible set of (θ0, θ1). Before proposing an analytical
optimization, we can further restrict the feasible region through the following lemma.

Lemma 2. An optimal pair of (θ0, θ1) meets at least one of the three constraints in (2.17),
(2.18) and (2.19), with equality.
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Proof Consider the point S within the shaded region in Figure 2.5, where all the con-
straints are met with inequality, and suppose S is an optimal point. Calculating the
partial derivatives of PE(k, θ0, θ1) with respect to θ0 and θ1, we can show that it is a
monotone-decreasing function of θ0 and a monotone-increasing function of θ1. This is true
independent of the value of k. Thus, moving S toward south east in the direction of the
arrows in Figure 2.5 will reduce the objective function PE(k

a, θ0, θ1). This violates the
optimality of S. Clearly, such changes are possible unless S satisfies one of the constraints
(2.17)-(2.19) with equality. �

The above lemma limits the solution region to be along a path such as ONMI in Figure
2.5.

The solution to P2 must satisfy the Karush-Khun-Tucker (KKT) conditions. Avoiding
trivial solutions and considering Lemma 2, the augmented objective function is written as

J =PE(k
a, θ0, θ1) + ζ1(emin − PE(k

t, θ0, θ1))+

ζ2((1− P ∗

1 )θ0 − (1− P ∗

0 )θ1)+

ζ3((1− θ1)P
∗

0 − (1− θ0)P
∗

1 ) (2.23)

where ζ1, ζ2, ζ3 ≥ 0, are the multipliers corresponding to the constraints in (2.17)-(2.19),
respectively. From KKT conditions, ζi = 0 implies that the optimal solution meets the
corresponding constraint with inequality (inactive constraint) [5]. Then an optimal pair
(θ0, θ1) must satisfy the following equations along with the constraints.

∇(θ0,θ1)J = 0 (2.24)

ka(θ0, θ1) =

⌈

ln q0
q1
− n ln θ1

θ0

ln θ0(1−θ1)
θ1(1−θ0)

⌉

(2.25)

∂J

∂ζi
= 0 for ζi 6= 0 (2.26)

A remark is in order. The KKT condition for ka cannot be written in terms of derivatives
as ka is integer valued. However, examination of (2.23) reveals that the ka which minimizes
the augmented objective function J is the same as that which minimizes the cost function
in (2.14), namely PE(k

a, θ0, θ1). On the other hand, the minimizing ka for PE(k
a, θ0, θ1)

can be obtained from the maximum a posteriori (MAP) rule from (2.9) and is given by
(2.25). Note that (2.24)-(2.26) should be viewed as a set of simultaneous equations for the
optimal solution.

The following two lemmas and Theorem 2 completely characterize the optimal solution for
(θ0, θ1).

Lemma 3. An optimal (θ0, θ1) cannot satisfy only (2.17) with equality and (2.18)-(2.19)
with inequality, i.e, in (2.23) we cannot have ζ1 6= 0, and ζ2 = ζ3 = 0.
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Proof Suppose that PE(k
t, θ0, θ1) = emin is the only constraint met with equality. Thus

the KKT augmented cost function in (2.23) is reduced to the following

J =PE(k
a, θ0, θ1) + ζ1(emin − PE(k

t, θ0, θ1)) (2.27)

We now set the partial derivatives of J with respect to θ0 and θ1 to zero, as in (2.24). This
yields the following pair of equations.

nq0

(

n− 1

ka − 1

)

(1− θ0)
ka−1θn−ka

0 =

ζ1nq0

(

n− 1

kt − 1

)

(1− θ0)
kt−1θn−kt

0 . (2.28)

nq1

(

n− 1

ka − 1

)

(1− θ1)
ka−1θn−ka

1 =

ζ1nq1

(

n− 1

kt − 1

)

(1− θ1)
kt−1θn−kt

1 . (2.29)

Then dividing (2.28) by (2.29) we get

(
1− θ0
1− θ1

)k
a
−kt = (

θ0
θ1
)k

a
−kt (2.30)

Since ka 6= kt, the above equation implies that θ0 = θ1 which, in view of the fact that
π0 + π1 < 1, cannot hold. Thus it is impossible for the optimal solution to solely meet
(2.17) with equality. �

Using the illustration in Figure 2.5, Lemma 3 implies that if the optimal solution resides
on the arc MN , then it can only be at M or N .

Lemma 4. An optimal (θ0, θ1) cannot only satisfy either (2.18) or (2.19) with equality and
the remaining constraints with inequality, i.e, in (2.23) we cannot have ζ2 6= 0, ζ1 = ζ3 = 0,
or ζ3 6= 0, ζ1 = ζ2 = 0.

Proof Suppose that (2.18) is the only constraint met with equality implying that π1(θ0, θ1) =
0. Thus the KKT augmented objective function in (2.23) is now given by

J =PE(k
a, θ0, θ1) + ζ2((1− P ∗

1 )θ0 − (1− P ∗

0 )θ1) (2.31)

Again we calculate the partial derivatives of J with respect to θ0 and θ1 and set them to
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zero. Dividing the resulting equations as in the proof for Lemma 3 we get

q0
q1

(
θ0
θ1
)n−ka(

1− θ0
1− θ1

)k
a
−1 =

1− P ∗

1

1− P ∗

0

(2.32)

Moreover from π1(θ0, θ1) = 0 we get

1− P ∗

1

1− P ∗

0

=
θ1
θ0

(2.33)

Therefore,

q0
q1

(
θ0
θ1
)n−ka(

1− θ0
1− θ1

)k
a
−1 =

θ1
θ0

(2.34)

This, however, implies that

ln q0
q1
− n ln θ1

θ0

ln θ0(1−θ1)
θ1(1−θ0)

= ka − 1 (2.35)

which contradicts (2.25). Consequently, the initial assumption is incorrect so (2.18) cannot
be the only constraint met with equality by the optimal solution. A similar argument can
be used in the case of (2.19). �

Again Lemma 4 implies that if the optimal solution resides on line ON , (resp. MI), then
it must be at N (resp. M). The following theorem summarizes the above lemmas and
completely characterizes the optimal solution to (2.14)-(2.19).

Theorem 2. The optimal solution for (θ0, θ1) satisfies (2.17) and either (2.18) or (2.19)
with equality.

According to Theorem 2 the optimal solution of P2 lies where P t
E = emin contour inter-

sects the lines π0(θ0, θ1) = 0 and π1(θ0, θ1) = 0, i.e., the point M or N in Figure 2.5.
Depending on the choice of emin there are one or two such intersection points. The con-
tours of PE(k

a(θ0, θ1), θ0, θ1) have been drawn in Figure 2.6, where ka(θ0, θ1) is the MAP
rule threshold assigned in (2.25). The feasible region indicated in Figure 2.6 is the same
as what in Figure 2.5. In Figure 2.6, one can verify that the points M and N are the
only points in the feasible region which are likely to produce the least error probability.
Therefore, the optimal solution can be obtained by solving the following two nonlinear
equations simultaneously using some efficient numerical method.

{

P t
E(k

t, θ0, θ1) = emin

π0(θ0, θ1) π1(θ0, θ1) = 0
(2.36)

18



θ
0
 

θ
1

pe−t

P         

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I

O

E

t

0 1

M

N

for n=30 , q
0
 =0.35(k

a
 (θ

0
,θ

1
),θ

0
,θ

1
)

E

A = (1−P
*
 , 1−P

*
 )

P   = e
min

Figure 2.6: The error probability for the MAP rule practicing AFC

where

π0(θ0, θ1) =
(1− θ0)P1 − (1− θ1)P0

P1 − P0

(2.37)

π1(θ0, θ1) =
(1− P0)θ1 − (1− P1)θ0

P1 − P0

(2.38)

2.5 Numerical Results

Consider the case of additive Gaussian noise where the signal Xi received by sensor i is
given by

Xi = s+Ni,

where s = d under hypothesis H1, s = −d under hypothesis H0, and where {Ni}ni=1 are
iid Gaussian random variables with mean zero and variance σ2. Then each sensor node
makes a decision according to (2.1) with the preassigned threshold λ∗. The detection and
the false alarm probabilities for any individual sensor are given by

P0 = Q

(

λ∗ + d

σ

)

, P1 = Q

(

λ∗ − d

σ

)

We define γ = 20 log(d/σ) as the sensors’ detection quality factor. It can be seen that
larger γ implies a lower P0 and a higher P1 which finally reduces the error probability of
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Table 2.1: AFC Optimized Performance

n γ (dB) q0 P t
E P a

E π0 π1 ka

20 3 0.50 0.30 4.38 e-03 0.48 0 16
20 3 0.30 0.30 3.10 e-03 0 0.48 4
20 6 0.50 0.40 1.76 e-03 0.56 0 18
40 0 0.50 0.50 8.45 e-03 0 0.60 7
40 3 0.50 0.30 9.83 e-05 0 0.47 9
40 3 0.50 0.40 2.38 e-04 0.52 0 33
40 3 0.50 0.50 9.61 e-04 0 0.61 6
40 3 0.30 0.30 6.74 e-05 0 0.45 9
40 6 0.50 0.50 6.82 e-05 0 0.62 5
80 -3 0.50 0.50 7.81 e-04 0 0.45 22
80 0 0.50 0.50 3.05 e-05 0.37 0 50

the fusion centers. Therefore γ may be viewed as the SNR for individual sensors. Table
2.1 shows the performance of the proposed algorithm for several values of n, γ and q0. It
can be seen from Table 2.1 that using the proposed method, very low error probabilities
can be achieved at AFC while imposing high error probabilities on TPFC.

Clearly for smaller values of emin the constraint for error probability of TPFC, P t
E is less

stringent. As can be seen, in such cases lower values of P a
E can be achieved. Furthermore,

we note that when q0 = 0.30, the optimization results in π0 = 0, which indicates that
messages corresponding to H0 do not need to be encrypted since this event is less likely to
happen.

We have assumed that TPFC is aware of the priors q0 and q1. Therefore, the worst case error
probability for TPFC is given by P t

max = min{q0, q1}, which results if TPFC completely
ignores the sensors’ transmissions and chooses the more likely hypothesis. Table 2.1 shows
that this worst case scenario can be imposed on TPFC to ensure that P t

E = P t
max. This

implies that TPFC gains no information from the observation of sensors’ transmissions.

In some scenarios it may be possible for TPFC to estimate the encryption keys π0 and
π1 from the sensor transmissions. To defeat such strategies by TPFC, the sensors can
periodically change their key and still impose high probability of error on TPFC. For
example in Table 2.1 for the case of n = 40, γ = 3 dB and q0 = .50, the sensors can
periodically cycle through the encryption keys π1 = .47, π0 = .52 and π1 = .61 resulting
in the error probabilities of P t

E = .30, .40 and .50 for TPFC. In this case AFC must also
change its decision threshold ka accordingly.
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2.5.1 Computational Issues

When n is large (e.g n ≥ 40), the first equation in (2.36) become a polynomial equation
with very large coefficient that cannot be solved thorough ordinary numerical methods.
We can apply approximation to reduce computational complexity. As depicted in Figure
2.5 the contour of P t

E = emin can be well approximated by flat lines away from θ0 = θ1
line. This can be verified by calculating dθ0

dθ1
which repents the slope of local tangents along

the contour of P t
E = emin.

dθ0
dθ1

=
q0(1− θ0)

k−1θn−k
0

q1(1− θ1)k−1θn−k
1

(2.39)

When n ≫ 1 and 0 < k/n < 1, apparently the above function has a zero and a pole,
respectively at θ0 = 1 and θ1 = 0 with high multiplicity. This multiplicity allows us
to approximate the P t

E = emin contour with flat lines where PE(k
t, 1, θ1) = emin or

PE(k
t, θ0, 0) = emin. Considering this together with (2.36) and (2.20), the following set of

equation formed to find the intersection points.

{

(q0ψ(k
t, θ0)− emin)(q1(1− ψ(kt, θ1))− emin) = 0

π0(θ0, θ1)π1(θ0, θ1) = 0
(2.40)

In the above table for n = 80 we have used the approximate solution as in (2.40).
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Chapter 3

Secure Distributed Detection Using

Soft Decision at the Sensors

In this chapter we first describe the distributed detection problem and the operation of
the sensors in the case where the sensors quantize their local observations (soft decision).
Next we discuss the encryption mechanism used by each node and approximate the error
probabilities of both the AFC and TPFC where a large number of sensors are deployed.
Similarly to Chapter 2, we assume the fusion centers perform Bayesian detection. The
TPFC, which is unaware of the encryption, assumes that the sensors transmit their raw
decisions. Knowing the quantization rule of the sensors, it adopts its fusion rule in order to
minimize its assumed error probability. The AFC can also perform the same optimization
and, therefore, is aware of the TPFC’s decision rule. The AFC then explores the fusion
rule and the encryption which minimize its error probability, subject to a minimum error
probability constraint on the TPFC. The resulting optimization problem is mathematically
intractable due to the complexity of the cost function and the constraints. We first deal
with the nonlinear constraint belonging to the lower bound on the TPFC error probability.
Despite Chapter 2 we try to simplify the problem and suffice to a suboptimal solution.
In this regard we formulate a simple optimization problem, similar to section 2.4, whose
solution translates the nonlinear constraint into a set of linear constraints. To avoid the
complexity in the cost function, we use a simpler cost function which is asymptotically
associated with the AFC error probability. Finally in the section on numerical results, the
deterministic signal detection in the presence of Gaussian noise is examined using both
the binary and soft decision at the sensors. For a given lower bound on the TPFC error
probability and identical noise in the sensors, a comparison is made between the numerical
results for the two cases error probability. It indicates that the soft decision system is
superior, in terms of the AFC error performance and the proportional increase in the AFC
error probability for the same TPFC error probability.
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3.1 System Model

We consider a system of n sensors observing the state of an unknown hypothesis H where
H ∈ {H0, H1} and with prior probabilities of H0 and H1 being q0 and q1, respectively.
Let Xi denote the observation of the ith sensor, i = 1, 2, 3, ..., n. It is assumed that
given the hypothesis Hη, (η = 0, 1), the observations X1, X2, · · · , Xn are independent and
identically distributed. The conditional PDF of Xi under Hη is denoted by pη(x). It is
assumed that sensor i quantizes its observation Xi using an M -level quantizer Q such
that Q(Xi) ∈ L , {l1, l2, · · · , lM} for i = 1, 2, · · · , n. The quantizer uses the thresholds
t0, t1, · · · , tM such that

Q(xi) = lj if tj−1 < Xi ≤ tj,

where t0 = −∞ and tM = ∞. Let

aη(lj) , P (Q(Xi) = lj|Hη) = P (tj−1 < Xi ≤ tj|Hη), j = 1, 2 · · · ,M, η = 0, 1 (3.1)

An example is depicted in Figure 3.1 for M = 8, where the thresholds are uniformly
designed. Since the quantization process depends on the sensors’ built-in technology, here-
after it is assumed that aη(lj) for j = 1, 2, · · · ,M are fixed and known to both the AFC
and TPFC. The optimal selection of the quantizer is investigated in [18]. The decision
rule of the sensors can be modeled as a discrete memoryless model which is exhibited in
Figure 3.2 for M = 4 [30]. Again we assume that the channel between the sensors and the
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Figure 3.1: 8-level quantizer

FCs is error free which can be achieved using an appropriate error control coding scheme.
In order to protect the decisions of the sensors from the TPFC during transmission, we
employ the following simple probabilistic cipher at the sensors. As depicted in Figure 3.3,
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the decision Q(Xi) of sensor i is randomly encrypted to obtain Yi, such that

φjk , P (Yi = lk|Q(Xi) = lj) j, k = 1, 2, · · · ,M. (3.2)

The encrypted messages Yi, i = 1, 2, · · · , n, are then transmitted to the allied fusion center
(AFC) over an insecure link. For η = 0, 1 let

bη(lj) , P (Yi = lj|Hη), j = 1, 2 · · · ,M. (3.3)

Clearly bη(lj) =
∑M

i=1 aη(li)φij. For ease of notation, let

αη , (aη(l1), aη(l2), · · · , aη(lM)) , βη , (bη(l1), bη(l2), · · · , bη(lM))

which denote the conditional probability mass functions (p.m.f’s) of, respectively, Q(Xi)
and Yi. This also enables us to view the ciphering process as a linear operation,

βη = αηΦ , where Φ ,













φ11 φ12 · · · φ1M

φ21 φ22 · · · φ2M

...
... · · · ...

φM1 φM2 · · · φMM













M×M

. (3.4)

Similarly to the binary case, it is assumed that the AFC has a priori knowledge of the
encryption matrix Φ. On the other hand, TPFC has no knowledge of Φ and therefore,
it can only assume that it has received the original decisions Q(Xi), i = 1, 2, · · · , n, i.e.
it assumes Φ = IM×M . We again consider a Bayesian detection problem where our goal
is to design the system parameters so as to minimize P a

E, the probability of error for the
AFC, subject to a lower bound on P t

E, the probability of error for the TPFC. The optimum
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Figure 3.2: Quantization model for M = 4
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Figure 3.3: Cipher model for M = 4
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decision rule for the two fusion centers is given by the likelihood ratio test, [30], where for
a received y = (y1, y2, · · · , yn),

T (y) ,
1

n

n
∑

i=1

zi
H1

≷
H0

τ (3.5)

where for the AFC

τ = τa, and zi , log

(

b1(yi)

b0(yi)

)

(3.6)

and for the TPFC

τ = τ t, and zi , log

(

a1(yi)

a0(yi)

)

. (3.7)

The error probability for the two fusion centers is given by

PE = q0P (T (Y ) ≥ τ |H0) + q1P (T (Y ) < τ |H1) (3.8)

where the AFC and TPFC use their respective decision statistic T (Y) and threshold τ . It
can be seen that the values of the quantization levels, lj , j = 1, 2, · · · ,M do not affect
the error probabilities. The block diagram for the fusion rule is displayed in Figure 3.4,
where the log-likelihood-ratio convertor block stands for the operations in (3.6) and (3.7).
Invoking the central limit theorem, [20], for the test statistic we get that for large n and
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Figure 3.4: Block digram for the soft data fusion

conditioned on Hη,
T (Y|Hη) ∼ N (µη, σ

2
η/n) (3.9)

where,

µη = Eβη

[

log

(

b1(Yi)

b0(Yi)

)]

, µa
η , σ2

η = Varβη

[

log

(

b1(Yi)

b0(Yi)

)]

, (σa
η)

2 (3.10)
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for the AFC and

µη = Eβη

[

log

(

a1(Yi)

a0(Yi)

)]

, µt
η , σ2

η = Varβη

[

log

(

a1(Yi)

a0(Yi)

)]

, (σt
η)

2 (3.11)

for the TPFC, where the subscripts for the operators E and Var indicate the distributions
under which these are computed.

However, TPFC does not adjust its fusion rule with respect to µt
η and σt

η. It assumes
Φ = IM×M and evaluates its error probability based on the raw statistics.

µr
η , Eαη

[

log

(

a1(Yi)

a0(Yi)

)]

, (σr
η)

2 , Varαη

[

log

(

a1(Yi)

a0(Yi)

)]

(3.12)

The probability of error for the two fusion centers can be approximated by

PE ≈ Pe(τ, µ0, µ1, σ0, σ1) = q0Q(

√
n(τ − µ0)

σ0
) + q1(1−Q(

√
n(τ − µ1)

σ1
)), (3.13)

where τ , µ and σ take on the values corresponding to each fusion center.

To see the dependency of the above parameters on Φ more explicitly, let us define the
following functions which take two row vectors as arguments and produce new row vectors
of the same length.

r , ξ(u,v) , where ri = log

(

ui
vi

)

(3.14)

s , ω(u,v) , where ri = log2
(

ui
vi

)

. (3.15)

The above functions allow us to two rewrite the parameters in (3.10)-(3.12) using (3.4)

µa
η = αηΦξ(α1Φ,α0Φ)T , (σa

η)
2 + (µa

η)
2 = αηΦω(α1Φ,α0Φ)T (3.16)

µt
η = αηΦξ(α1,α0)

T , (σt
η)

2 + (µt
η)

2 = αηΦω(α1,α0)
T (3.17)

µr
η = αηξ(α1,α0)

T , (σr
η)

2 + (µr
η)

2 = αηω(α1,α0)
T (3.18)

Remark Technically in many detection problems, such as signal detection in the pres-
ence of additive noise, the noise distribution is symmetric which results in the conditional
distributions of the observed variables Xi to be symmetric (see Figure 3.1). Hereafter we
assume that p0(x) = p1(−x). This property leads to a symmetric quantization rule [18],
such that

a0(lj) = a1(lM−j+1), j = 1, 2, · · · ,M. (3.19)
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Using (3.18), it can be shown that

µr
1 = −µr

0 , and σr
1 = σr

0 (3.20)

In the following we denote µ̄ = µr
1 and σ̄ = σr

1.

3.2 Problem Statement

Both the AFC and TPFC attempt to minimize their error probabilities as cost functions.
The TPFC only optimizes its fusion threshold, whereas the AFC deals with a more com-
plicated problem to optimize both its fusion threshold and the encryption probabilities.
The TPFC optimization is stated and solved in the subsection below.

3.2.1 Optimization from TPFC’s Point of View

As mentioned previously, the TPFC is assumed to be unaware of the encryption process
and therefore assumes that φij = 1 for i = j, and 0 otherwise. However, the TPFC is aware
of the conditional probability mass function (pmf) ,αη, and chooses its fusion threshold, τ t,
to minimize its probability of error. Therefore the optimal τ t is obtained from the solution
of the following problem.

P1 : min
τ
Pe(τ, µ

r
0, µ

r
1, σ

r
0, σ

r
1) (3.21)

Considering (3.13) and (3.19) and (3.20), P1 becomes the classic problem of ML detection
in the presence of Gaussian noise for which the optimal threshold is given by

τ t =
σ̄2

2nµ̄
ln
q0
q1

(3.22)

The AFC can also solve this problem independently and so it is aware of the values of τ t.
Now in the presence of encryption where Φ 6= I, the actual performance of TPFC is given
by

P t
E = Pe(τ

t, µt
0, µ

t
1, σ

t
0, σ

t
1) (3.23)

The performance of the TPFC is degraded due to the fact that neither τ t is not matched
to the mean and variances µt

1, µ
t
1, σ

t
0 and σt

1 in (3.23).
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3.2.2 Optimization from AFC’s Point of View

The AFC must choose its fusion threshold τa along with the encryption parameters in Φ,
so as to minimize its probability of error. In addition it must ensure that the performance
of the TPFC is degraded due to the encryption process. Therefore the AFC attempts to
solve the following constrained optimization problem.

P2 : min
τ,Φ

Pe(τ, µ
a
0, µ

a
1, σ

a
0 , σ

a
1) (3.24)

subject to:

0 ≤ Φ ≤ 1 (3.25)

Φ1M×1 = 1M×1 (3.26)

emin ≤ Pe(τ
t, µt

0, µ
t
1, σ

t
0, σ

t
1) ≤ 0.5 (3.27)

In the above, it is noted that µa
η, σ

a
η and µt

η, σ
t
η depend on Φ, respectively, according to

(3.16) and (3.17). In the equality constraint (3.26) 1M×1 indicates a column vector of all
elements equal to 1. It should be considered due to the fact that in (3.4), the rows in Φ

must add up to 1. The inequalities in (3.25) are obvious since φij are probabilities. This is
included to be used in the sequel. In (3.27), τ t is available in (3.22) and emin is the lower
bound on the TPFC error probability, P t

E. Moreover, since the TPFC makes a binary
decision, the case of P t

E ≥ 0.5 is not of interest.

From the complexity viewpoint, the above problem is very complex, particularly because
of the nonlinear functions in (3.24) and (3.27). The steep transition of the Q-functions
associated with (3.24) and (3.27) makes intractable for many numerical algorithms. By
simplifying the cost function and trimming the feasible region, we analytically achieve a
reliable suboptimal solution for Φ in the following section.

The threshold τ in (3.24) does not contribute in any of the constraints. Therefore, for
any given values of (µa

0, µ
a
1, σ

a
0 , σ

a
1) the optimal threshold for Pe can be either calculated

according to the classic ML problem or ∂Pe/∂τ
a = 0. Both the approaches yield

(τa − µa
0)

2

2(σa
0)

2
− (τa − µa

1)
2

2(σa
1)

2
=

1

n
ln

(

q0σ
a
1

q1σa
0

)

. (3.28)

3.3 AFC Optimization

In this section, we first try to simplify the constraints in P2 that leads to a problem similar
to the the preceding binary problem. Then we use a surrogate cost function which suits the
Pe for a large n. Finally the proposed algorithm is numerically evaluated for an example
which verifies its efficiency in terms of the minimum achieved error probability for the
AFC.
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3.3.1 Simplifying Constraints

The constraint in (3.27) is a function of (µt
0, µ

t
1, σ

t
0, σ

t
1). This implies that for a given

(µt
0, µ

t
1, σ

t
0, σ

t
1) satisfying (3.27), the elements in Φ only must satisfy the linear equations

in (3.17). Before clarifying this, lets set the following condition on (µt
0, µ

t
1, σ

t
0, σ

t
1) to deal

only with (µt
0, µ

t
1) in our next arguments. Hereafter we choose (µt

0, µ
t
1, σ

t
0, σ

t
1) such that

(σt
η)

2 + (µt
η)

2 = σ̄2 + µ̄2 , ν2 , η = 0, 1 (3.29)

where σ̄ and µ̄ are as termed after (3.20). Since σ̄ and µ̄ do not depend on Φ, the value
denoted by ν2 is a constant. Now lets reformulate P2 with (3.27) replaced by a pair of
linear constraints,

P2 : min
Φ

Pe(τ
a, µa

0, µ
a
1, σ

a
0 , σ

a
1) (3.30)

subject to:

0 ≤ Φ ≤ 1 (3.31)

Φ1M×1 = 1M×1 (3.32)

αηΦξ(α1,α0)
T = µt

η , η = 0, 1 (3.33)

αηΦω(α1,α0)
T = ν2 , η = 0, 1 (3.34)

(3.35)

where µt
η and ν are fixed values such that

εt(τ t, µt
0, µ

t
1) , Pe(τ

t, µt
0, µ

t
1,
√

ν2 − (µt
0)

2,
√

ν2 − (µt
1)

2) ≥ emin. (3.36)

It is clear that µt
0 and µt

1 implicitly affect the minimum error probability in (3.30) by
shaping the feasible region for Φ. By virtue of the lemma below we can formulate an
optimization problem to assign µt

0 and µt
1 somewhat optimally.

Lemma 5. For any given (µa
η, σ

a
η) and (µt

η, σ
t
η),η = 0, 1,

Pe(τ
a, µa

0, µ
a
1, σ

a
0 , σ

a
1) ≤ Pe(τ

∗, µt
0, µ

t
1, σ

t
0, σ

t
1) (3.37)

where τa is given in (3.28) and similarly τ ∗ is obtained from

(τ ∗ − µt
0)

2

2(σt
0)

2
− (τ ∗ − µt

1)
2

2(σt
1)

2
=

1

n
ln

(

q0σ
t
1

q1σt
0

)

. (3.38)

Proof For a fixed matrix Φ, the minimum achievable error probability according to the
MAP rule is represented by Pe(τ

a, µa
0, µ

a
1, σ

a
0 , σ

a
1) for the test statistics described in (3.5)-

(3.6). On the other hand, Pe(τ
∗, µt

0, µ
t
1, σ

t
0, σ

t
1) will be the minimum achievable error prob-
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ability where the terms in the test statistic are in (3.7) which do not correspond to the
MAP rule anymore. Due to the optimality of the MAP rule, it can be concluded that

Pe(τ
a, µa

0, µ
a
1, σ

a
0 , σ

a
1) ≤ Pe(τ

∗, µt
0, µ

t
1, σ

t
0, σ

t
1)

�

The upper bound suggested by Lemma 5 explicitly contains µt
0 and µt

1, so can be used
to find close to optimal values for µt

0 and µt
1, the optimization problem below can be

considered which minimized the upper bound in Lemma 5.

P2− 1 : min
µt
0
,µt

1

Pe(τ, µ
t
0, µ

t
1,
√

ν2 − (µt
0)

2,
√

ν2 − (µt
1)

2) (3.39)

subject to:

0 ≤ Φ ≤ 1 (3.40)

Φ1M×1 = 1M×1 (3.41)

αηΦξ(α1,α0)
T = µt

η , η = 0, 1 (3.42)

αηΦω(α1,α0)
T = ν2 , η = 0, 1 (3.43)

emin ≤ εt(τ t, µt
0, µ

t
1) ≤ 0.5 (3.44)

where the constraint in (3.44) correspond to that one in (3.36). At above, it is obvious
that |µt

η| ≤ |ν|. Here Φ does not appear in the cost function. However, Φ incorporates
in the constraints in (3.40)-(3.43) to form a feasible region for (µt

0, µ
t
1). Let R denote the

feasible region for (µt
0, µ

t
1) adopted by (3.40)-(3.43). It is easy to investigate that the region

R is convex in the (µt
0, µ

t
1) space [5]. Although the R is convex, it is difficult to formulate

the borders of R and use them to solve P2 − 1. We will limit the choice of (µt
0, µ

t
1) to a

subregion of R with linear borders, disregarding the loss of optimality. Such a subregion
can be built using a few points within R. It is noted that

G = (−µ̄, µ̄) ∈ R for Φ = IM×M .

Lets assume that

∃m , 1 ≤ m ≤M , s.t. log

(

a1(lm)

a0(lm)

)

= ν (3.45)

The above statement depends on the design of the quantization rule which can be simply
implemented in Q(Xi). According to the symmetric property in (3.19), it is immediately
concluded that for such an m

log

(

a1(l(M−m+1))

a0(l(M−m+1))

)

= −ν
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Figure 3.5: The feasible region of interest for P2− 2 optimization

The above facts reveal two more points in R such that

H = (ν, ν) ∈ R for Φ =

{

φij = 1, if j = m

φij = 0, if j 6= m

F = (−ν,−ν) ∈ R for Φ =

{

φij = 1, if j =M −m

φij = 0, if j 6=M −m

It is straightforward to validate the above statements. Now we form the triangle ∆FGH
in R. Since R is convex, every pair (µt

0, µ
t
1) residing in ∆FGH also belongs to R. We will

limit our attention only to the points laying in ∆FGH (see Figure 3.5). Finally we are
able to eliminate Φ from the constraints in P2− 1 and reorganize it as follows.

P2− 2 : min
µt
0
,µt

1

Pe(τ, µ
t
0, µ

t
1,
√

ν2 − (µt
0)

2,
√

ν2 − (µt
1)

2) (3.46)

subject to:

µt
1 ≤ µt

0 (3.47)

(µt
0 − µ̄)(ν − µ̄) ≤ (µt

1 + µ̄)(ν + µ̄) (3.48)

(µt
0 − µ̄)(ν + µ̄) ≤ (µt

1 + µ̄)(ν − µ̄) (3.49)

emin ≤ εt(τ t, µt
0, µ

t
1) ≤ 0.5 (3.50)

where the constraints in (3.47) and (3.48) and (3.49) are met with equality, respectively
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at sides FH, HG and GF . This has been illustrated in Figure 3.5 where the contour
εt(τ t, µt

0, µ
t
1) = emin is plotted such that the shaded area indicates the reduced feasible

region for P2 − 2. Viewing Figure 3.5, one can see a remarkable correlation between this
problem and the AFC optimization problem in Chapter 2. The following theorem, similar
to the Theorem 2 in Chapter 2, completely characterizes the solution to P2− 2.

Theorem 3. the optimal solution (µt
0, µ

t
1) satisfies either (3.48) or (3.49) with equality.

Proof Let

εa(τ, µt
0, µ

t
1) , Pe(τ, µ

t
0, µ

t
1,
√

ν2 − (µt
0)

2,
√

ν2 − (µt
1)

2).

It is easy to investigate that εa(τ, µt
0, µ

t
1) is monotone increasing in µt

1, and monotone
decreasing in µt

0. Thus similarly to Lemma 2 the optimal solution cannot land on line
µt
1 = µt

0.

The solution to P2− 1 must stisfy the Karush-Khun-Tucker (KKT) conditions. We form
the KKT augmented objective function which includes KKT multipliers for each of the
constraints. If we avoid trivial solutions, the augmented cost function will be

C = εa(τ, µt
0, µ

t
1) + ζ3(emin − εt(τ t, µt

0, µ
t
1))

ζ2((µ
t
0 − µ̄)ϑ0 − (µt

1 + µ̄)ϑ1) + ζ1((µ
t
0 − µ̄)ϑ1 − (µt

1 + µ̄)ϑ0) (3.51)

where

ϑ0 , ν − µ̄ , ϑ1 , ν + µ̄

It is clear that 0 ≤ ϑ0 ≤ ϑ1. In (3.51), the variables ζ1, ζ2, ζ3 ≥ 0, are respectively the
multipliers belonging to the constraints in (3.48), (3.48) and (3.50). Then an optimal pair
(µt

0, µ
t
1) must satisfy the following equations along with the previous constraints.

∇(µt
0
,µt

1
)C = 0 (3.52)

∂C
∂ζi

= 0 for ζi 6= 0 (3.53)
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It has been noted that τ and τ t are obtained from MAP rule which also hold in

∂εa(τ, µt
0, µ

t
1)

∂τ
= 0 results

Q′(
√
n

τ−µt
0√

ν2−(µt
0
)2
)

Q′(
√
n

τ−µt
1√

ν2−(µt
1
)2
)
=
q1
q0

√

ν2 − (µt
0)

2

ν2 − (µt
1)

2
(3.54)

∂εt(τ t, µt
0, µ

t
1)

∂τ t
= 0 results

Q′(
√
n

τ t−µt
0√

ν2−(µt
0
)2
)

Q′(
√
n

τ t−µt
1√

ν2−(µt
1
)2
)
=
q1
q0

√

ν2 − (µt
0)

2

ν2 − (µt
1)

2
(3.55)

(3.56)

where Q′(.) represents the derivative of the Q-function. The τ in (3.54) is also optimal for
the augmented cost function C since it does not contribute to any constraint. The claim
in Theorem 3 can be split into the two parts which are separately investigated.

I) Suppose that (3.50) is the only constraint met with equality, i.e, ζ3 6= 0, ζ1 = ζ2 = 0.
Thus the KKT augmented cost function in (3.51) is reduced to

C1 = εa(τ, µt
0, µ

t
1) + ζ3(emin − εt(τ t, µt

0, µ
t
1)) (3.57)

Then

∂C1
∂µt

η

= 0 , η = 0, 1 (3.58)

Considering (3.58) together with (3.54) and (3.55) will lead to the contradiction that
µt
1 = µt

0. Thus (3.50) cannot be the only constraint met with equality.

II) Suppose that (3.48) is the only constraint met with equality, i.e, ζ1 6= 0, ζ2 = ζ3 = 0.
Thus the KKT augmented cost function in (3.51) is reduced to

C2 = εa(τ, µt
0, µ

t
1) + ζ1((µ

t
0 − µ̄)ϑ1 − (µt

1 + µ̄)ϑ0) (3.59)

Then

∂C2
∂µt

η

= 0 , η = 0, 1 (3.60)

Considering (3.60) together with (3.54) and (3.55) will lead to the contradiction that
µt
1 = µt

0. Thus (3.48) cannot be the only constraint met with equality. Similarly the
case where ζ2 6= 0, ζ1 = ζ3 = 0 is also impossible.

Combining the cases I and II, it is concluded that ζ1 = 0, ζ2 6= 0, ζ3 6= 0 and ζ2 = 0, ζ1 6=
0, ζ3 6= 0 are the only possible scenarios. �
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The above theorem states that the optimal point located where the contour εt(τ t, µt
0, µ

t
1) =

emin intersects the sides of ∆FGH, i.e the point U or V in Figure 3.5. Depending on the
choice of emin there are one or two such intersection points. Let (µt∗

0 , µ
t∗
1 ) denote the optimal

solution for (µt
0, µ

t
1). Thus it can be computed through the following pair of simultaneous

equations.














Pe(τ
t, µt∗

0 , µ
t∗
1 ,

√

ν2 − (µt∗
0 )

2,
√

ν2 − (µt∗
1 )

2) = emin

(µt∗
1 − µ̄)(ν − µ̄) = (µt∗

0 + µ̄)(ν + µ̄) or

(µt∗
1 − µ̄)(ν + µ̄) = (µt∗

0 + µ̄)(ν − µ̄)

Having (µt∗
0 , µ

t∗
1 ), we can drop (3.36) in P2 and pursue the solution of the following problem

with linear constraints.

P2− 3 : min
Φ

Pe(τ
a, µa

0, µ
a
1, σ

a
0 , σ

a
1) (3.61)

subject to:

0 ≤ Φ ≤ 1 (3.62)

Φ1M×1 = 1M×1 (3.63)

αηΦξ(α1,α0)
T = µt∗

η , η = 0, 1 (3.64)

αηΦω(α1,α0)
T = ν2 , η = 0, 1 (3.65)

3.3.2 Simplifying Cost Function

After simplifying the constraints, we need to find a simpler substitute for the cost function
in P2−3. Viewing (3.8) for large n, it is noted that P a

E is decreasing in µa
1 and increasing in

µa
0. It also can be inferred that comparing to µa

η, the impact of σa
η becomes small. Thus one

can be motivated to maximize µa
1 − µa

1 instead of the cumbersome Pe in P2. The authors
in [18] have utilized the same idea to find the optimal quantizer Q without the security
issue. Reviewing (3.16), it can be seen that µa

1 and µ
a
1 are associated with Kullback-Leibler

divergence.

µa
0 = −D(α0Φ||α1Φ) , µa

1 = D(α1Φ||α0Φ) (3.66)

where D(.||.) denotes Kullback-Leibler divergence. For given p.m.f’s p = (p1, p2, · · · , pN)
and q = (q1, q2, · · · , qN),

D(p||q) ,
N
∑

i=1

pi log

(

pi
qi

)

(3.67)
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Then Then µa
1−µa

1 can be written in form of J-divergence (special case of Jensen-Shannon
divergence).

µa
1 − µa

0 = 2J (α1Φ||α0Φ) , D(α1Φ||α0Φ) +D(α0Φ||α1Φ) (3.68)

Finally, the optimization problem below can be solved for optimal Φ

P̂2 : max
Φ

J (α1Φ||α0Φ) (3.69)

subject to:

0 ≤ Φ ≤ 1 (3.70)

Φ1M×1 = 1M×1 (3.71)

αηΦξ(α1,α0)
T = µt∗

η , η = 0, 1 (3.72)

αηΦω(α1,α0)
T = ν2 , η = 0, 1 (3.73)

In [18] the convexity of J-divergence with respect to its arguments has been investigated.
Since in (3.68) the arguments of J-divergence will be the linear combinations of the elements
in Φ the convexity still applies to the optimization with respect to Φ. The above prob-
lem can be efficiently solved by means of Lagrange multiplier technique or other classical
iterative algorithms.

After computing the optimum Φ, we can obtain τa from (3.28).

3.4 Numerical Results and Comparison

Consider again the case of additive Gaussian noise where the signal Xi received by sensor
i is given by

Xi = s+Ni,

where s = d under hypothesis H1, s = −d under hypothesis H0, and where {Ni}ni=1 are iid
Gaussian random variables with mean zero and variance σ2. Then each sensor quantizes
Xi with M levels according to a quantization rule designed in [18] (designed to obtain
minimum error without the encryption) such that the condition in (3.45) is also satisfied.
We define γ = 20 log(d/σ) as the sensors’ SNR.

Table 3.1 shows the performance of both the binary and soft decision systems for several
values of n, γ and q0. Therein P

a
Eb and P

min
Eb are, in turn, the minimum error probability for

the binary AFC and the minimum achievable error for a binary AFC without P t
E constraint.

In the entire cases presented in Table 3.1, the soft decision systems achieve lower AFC error
probabilities compared to the binary system. This is better illustrated in Figure 3.6 and
3.7, where insecure cases are referred to the AFC error probability minimization without
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Table 3.1: AFC Optimized Error Performance (Soft-Decision vs. Binary)

Case n γ (dB) q0 P t
E P a

Eb P a
E(M = 4) P a

E(M = 8) Pmin
Eb

c1 20 0 0.5 0.3 1.52 e-02 2.14 e-03 1.47 e-04 2.32 e-04
c2 20 0 0.3 0.3 1.37 e-02 1.04 e-03 1.14 e-04 2.50 e-04
c3 20 3 0.5 0.4 6.66 e-03 7.82 e-06 2.86 e-06 4.43 e-07
c4 40 -3 0.5 0.5 2.80 e-02 1.17 e-03 5.66 e-05 2.01 e-04
c5 40 0 0.5 0.3 1.15 e-03 2.34 e-05 1.34 e-07 3.17 e-07
c6 40 0 0.5 0.4 2.28 e-03 5.24 e-05 1.34 e-07 3.17 e-07
c7 40 0 0.5 0.5 7.58 e-03 8.18 e-05 2.13 e-07 3.17 e-07
c8 40 0 0.3 0.3 9.64 e-04 9.76 e-06 1.84 e-07 5.24 e-07
c9 40 3 0.5 0.5 1.15 e-03 4.57 e-08 5.88 e-12 1.37 e-12
c10 80 -6 0.5 0.5 1.40 e-02 1.11 e-03 1.55 e-05 1.00 e-04
c11 80 -3 0.5 0.5 1.83 e-03 3.85 e-06 6.28 e-10 2.38 e-08
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Figure 3.6: Comparing the AFC error performance versus SNR

protection against the TPFC.

In Figure 3.6 for n = 80, q0 = 0.5, emin = 0.4, the soft decision system with M = 4 and
M = 8 evidently outperform the binary detection system for different SNRs. There the
system with M = 8 outperforms even the insecure binary detection system. This confirms
that for a fixed AFC error probability and number of sensors the soft decision system can
work in lower SNRs. Similarly in Figure 3.6 for γ = −6dB, q0 = 0.5, emin = 0.4, the
soft decision system with M = 4 and M = 8 can achieve the same AFC error probability
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Figure 3.7: Comparing the AFC error performance versus n

using fewer sensors that the binary detection system. There the system with M = 8 again
outperforms even the insecure binary detection system.

We now introduce the cost-of-security (CS) which indicates the increase in the AFC error
probability due to the protection against the TPFC for the soft decision system with M
levels.

CS(M) , log10(
P a
E(M)

Pmin
E (M)

) (3.74)

where Pmin
E (M) is the minimum achievable error probability with no encryption andM = 2

refers to the binary case. Obviously the smaller CS, the more efficient the method. The
factor CS in Table 3.2 has been calculated for the cases in Table 3.1. It can be seen that
applying encryption to the binary case drastically increases the AFC error probability, P a

Eb,
compared to minimum achievable error Pmin

Eb (large CS). On the other hand, having soft
decision performed at the sensors helps us to tolerate less loss in the AFC error performance
due to protection against the TPFC.

In Table 3.2 K stands for the number of nontrivial (nonzero or one with 0.01 precision)
elements of Φ∗ where the soft decision with M levels is applied to cases in Table 3.1, i.e.
K(M) can be thought as the hash to store the encryption parameters. Although there are
initially M2 parameters in Φ, the hash for the optimal Φ does not follow the square law.

Similarly to the binary case, the sensors are recommended to periodically cycle their en-
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Table 3.2: AFC Efficiency (Soft Decision vs. Binary)

Case CS(2) CS(4) CS(8) K(4) K(8)
c1 1.8 1.2 0.1 09 13
c2 1.7 0.9 0.1 09 11
c3 4.1 0.6 0.2 10 14
c4 2.1 1.4 0.2 08 15
c5 3.6 2.4 0.2 09 12
c6 3.9 2.7 0.2 09 13
c7 4.4 2.9 0.4 10 12
c8 3.2 1.9 0.4 09 12
c9 8.9 3.2 0.1 10 11
c10 2.1 2.0 0.5 09 27
c11 4.9 3.9 0.6 09 12

cryption keys so as to defeat the strategies used by the TPFC to estimate the encryption
parameters from sensor transmissions. For example in Table 3.1, for n = 40, q0 = 0.5
computes the optimal Φ’s for the three cases c5, c6 and c7 and gives them to the sensors.
Then the senors can shuffle Φ’s according a schedule defined by the AFC.
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Chapter 4

Conclusion and Future Work

We have considered the problem of hypothesis testing in a bandwidth-constrained, low-
power wireless sensor network operating over insecure links. Sensors quantize their obser-
vations and transmit their decisions to an ally fusion center (AFC) which combines the
received messages to detect the state of an unknown hypothesis. The problem of protecting
the wireless sensors’ messages against the unauthorized access of third-party fusion center
(TPFC) has been investigated. Since the sensors possess limited bandwidth and processing
power, applying the simple probabilistic cipher is a suitable solution.

In this scenario the AFC enables the sensors to randomly flip their observation according to
preassigned probabilities. The encryption operation incorporates a controlled uncertainty
in the transmitted messages. this uncertainty deteriorates the performance of both the
fusion centers. For a given lower bound on the TPFC error probability, the AFC seeks
the cipher probabilities which minimize its own error probability. It is worth to note
that the increase in the AFC error probability (compared to the unsecured network) can
be compensated for by adding a few more sensor nodes to the network which is a quite
affordable solution.

For the binary case (binary decision sensors) we have attained an analytical solution for
the AFC optimization problem. However, the AFC optimization problem in the non-
binary case (soft decision sensors) is very complicated. In this case we have obtained a
suboptimal solution. The numerical results verified that, in identical conditions, the soft
decision systems will have a far better error performance for the AFC than the binary
system.

Since we have considered error free channel in the above problem, the first extension to
this work is to involve the channel impairments in the AFC optimization. Although this
problem will be more occurring in practice, the analytical complexity may derive one to
only suffice to numerical optimization.
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The proposed algorithm can be accounted as a quintessential mathematical optimization
where the calculus techniques had the key rules. This problem can be also discussed from
the information theory point of view that may help one to more generalize this idea.
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