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Abstract 

Clearly conveying and enforcing the proper ordering of method calls on objects has become a 

common problem among developers and interface designers.  Without the ability of the 

compilation environment to enforce these constraints, programmers must rely on clear 

documentation being provided and diligence in programming to ensure that a proper sequence of 

operations is performed.  Commonly, though, type-checking becomes the only tool to help 

support the correctness of operation sequences as API documentation rarely describes inter-

object communications.  Thus, the likeliness of producing erroneous and buggy software 

increases. 

Object protocols provide a simple and straight-forward approach to solving this problem.  They 

do so by providing simple grammatical constructs for expressing valid call sequences on objects.  

These constructs can be parsed by a compiler and then used for conformance analysis on 

subclasses and objects that implement interfaces.  Once parsing is complete, the compiler will 

implement code in the target binaries for run-time enforcement of sequencing constraints.   

This thesis builds upon the foundation provided by Butkevich et al. to provide the design of a 

comprehensive tool for utilizing object protocols within the Java compilation and runtime 

environments.  In addition to the existing work, we provide language constructs that allow the 

enforcement of object protocols on classes and the designation of objects and interfaces to be 

traced programmatically.  We will consider the problems that are introduced when protocols are 

enforced upon classes and discuss the strategy for resolving these issues.  

We present the results of testing the object tracing framework to determine the impact of 

protocols on the performance of software.  Baseline timings are drawn on the operations of data 
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types and then protocols are manually added to the code in the same manner that would be done 

by the compiler in a fully working implementation; including the implementation of the tracing 

framework.  We show that the overhead introduced is minimal, making the run-time monitoring 

of protocols practical. 

Along with support for basic sequencing constraints, we also show how other constraints, such as 

timing constraints, can be added to the framework with minimal adjustments.  Such applications 

of constraints can help debug different environments, such as embedded, real-time, and near real-

time environments.  
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1. Introduction 
When Java emerged, it broke ground not only as a platform-independent language, but as a 

programming language that eliminated several classes of programming errors as well [7].  It 

handles common programming issues – such as strong type-checking, checks for invalid memory 

access requests, and garbage collection – on behalf of the programmer.  Java provides developers 

with the tools to write more reliable, stable software.  In order to support these features Java 

employs both static and run-time analysis.  Static analyses are often comprised of type-checking, 

tree traversals, and attribute grammars paired with dataflow analysis to verify conditions at 

compile time.  Some examples of the run-time analysis methods utilized are: checking null 

pointer references, implementing array bounds checks, and garbage collection of objects [2, 4]. 

What is common to the resolution to each of these issues is the practice of programmatically 

enforcing the formalisms of the problem.  For example, ensuring that unused memory is freed 

and ensuring only certain data types can be used for certain operations are formalisms that 

require attention in software development to ensure they are followed.  The ability to enforce 

these formalisms in the compiler and run-time environment is what allows for the prevention of 

many bugs in Java software development.  Object protocols implement the formalism of the 

required sequence of operations performed on classes and interfaces, and several benefits arise 

from such functionality as noted by Butkevich et al. [12]: 

• Errors can be found in client implementations 

o Clients that do not obey the corresponding server’s protocol 

o Protocols that do not properly conform to those of their parent class and/or 

interface 
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• Protocols can be tested to ensure proper run-time behavior 

• Protocol violations can be handled as prescribed by the implementer 

1.1 Problem Definition 

The RandomAccessFile class in the Java I/O package provides us with a simple, yet clear 

example of the problem.  The class implements both the DataInput and DataOutput interfaces to 

support I/O operations that may occur at random positions in the file/byte stream.  The logical 

(and intended) ordering of operations is to open the file (done during object construction), 

perform some number of – if any – a read and/or write operations, and then close the file. The 

compiler, however, will compile code like that shown in Figure 1 below into bytecode, leaving 

the error to be handled by the Java Virtual Machine (JVM) at run-time.  A read operation should 

not occur after a close operation has been performed on the file (as noted by the documentation); 

however the compiler is unable to enforce this constraint. 

/* ... */ 

RandomAccessFile rf = new RandomAccessFile("/tmp/protocols.txt"); 

byte datum = rf.read(); 

rf.write(datum << 2); 

rf.close(); 

datum = rf.read(); 

/* ... */ 

 

Figure 1 – Sample problematic Java code 

Compilers are unable to detect and report these problems because there are no mechanisms for 

representing the states of an object throughout its lifetime.  Type systems allow for the detection 

of potentially meaningless code or invalid code.  Such checks are generally based upon argument 

patterns, return types, and dynamic type resolution.  While compilers leverage type systems as 

much as possible, there are still classes of errors that cannot be detected.  Monitoring and 

reacting to method call sequences is an interesting class of problems that has not been solved by 
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current type system implementations.  Object protocols provide a solution for the method call 

sequencing problem by offering developers the grammatical constructs and run-time mechanisms 

to trace objects throughout their execution.  

In Java, object interactions can be seen in a client-server model.  Client objects send requests to 

server objects in the form of method calls.  This interface is clearly defined in terms of method 

signatures (the name, return type and number, order and type of arguments); however there is no 

determination as to whether the call being made is appropriate.  This is where object protocols 

come into play.  They intercept the method calls made on class and interface objects and ensure 

that the execution of the call would not violate the object’s protocol. 

Object protocols are presented as a member of class and interface types, originally described by 

Butkevich et al [12].  The protocol specification is extracted during the compilation phase and 

checked for conformance any interfaces implemented or classes that are derived from.  The 

necessary code to intercept method calls is put in to the bytecode during the generation process.  

We adapt this work along with notions on tracing requests depicted by DeLine and Fӓhndrich 

[14] to construct a set of enhancements to the Java language that provide a rich debugging 

environment for monitoring the interactions objects in a Java program. 

In this thesis, we demonstrate that: 

• protocols are useful as a method of enforcing and debugging object method call 

sequences 

• and the run-time monitoring introduced by protocols is efficient.  
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2. Language Support 

Section 1.1 shows a clear example of the need for sequencing constraints on method calls.  What 

is needed is a solution to the problem.  Regular languages can provide us with the ability to 

define the structure of the expression needed to represent such sequences.  We can see that the 

regular expression (read|write)*,close represents our acceptable sequence of operations on a 

RandomAccessFile object.  Protocols leverage the use of REs and a labeled transition system 

(LTS) to represent the state of the object and govern access to method execution.  This chapter is 

dedicated to describing the proposed implementation of protocols in Java.  We will use a simple 

stack interface in examples and figures.  The Java definition of our example interface is 

illustrated in Figure 2. 

interface Stack { 

  public void push(int i); 

  public int pop(); 

} 

 

Figure 2 – Stack interface declaration 

Protocols are implemented as a language construct in Java, the protocol declaration.  Protocol 

declarations can be defined as a component of a class or interface.  Using our stack example, we 

need to write a protocol that can accept valid call sequences, like (push, pop) or (push, push, 

pop) and can identify invalid call sequences, like (pop, push) or (push, pop, pop).  This cannot be 

accomplished with a regular expression or deterministic finite automata (DFA).  They cannot 

count the number of items on a stack.  As suggested by Nierstrasz [19], an LTS is used whose 

alphabet is the public method signatures of the class or interface being described by the protocol.  

This structure in general is non-deterministic, which allows able us to check the conformance 

with other protocols during compilation [12]. 
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                  protocol { 

                    start final state e; 

                    final state ne; 

                    <*> push <ne> 

                    <ne> pop <*> 

                  } 

 

 

Figure 3 – Stack protocol declaration 

 
Figure 4 – LTS for Stack interface 

 

Figures 3 and 4 illustrate the protocol declaration for our stack example and the corresponding 

LTS, respectively.  These figures illustrate that non-determinism can arise with the LTS.  

Consider the call sequence (push, push, pop, pop).  While the sequence is a valid sequence, the 

LTS cannot know for sure whether a call to pop will leave it in the empty state (e) or the non-

empty state (ne) [12].  Section 2.4 will illustrate how this problem is resolved. 

2.1 Parsing 

Protocol support will require modifications to the javac compiler.  The key modification is the 

introduction of the protocol construct in class and interface declarations.  When a protocol 

declaration is found, the compiler is generates a parse tree, attaches it to the corresponding class 

or interface object, and reports any syntax errors that are found in the declaration. The protocol 

declaration grammar is comprised of three types of statements – state declarations, regular 

expression declarations, and sequencing statements. 

State declarations declare one or more states that can be used later in sequencing statements.  A 

state represents the current overall state of the object being represented.  There is a default start 

and final state that can reach and be reached by, respectively, any state.  A protocol can have 

only one start state declared, overriding the default start state, via the “start” modifier.  Protocols 

can have multiple final states; they are identified by use of the “final” modifier.  Each state can 

also contain a predicate, which is a Boolean expression used check the validity of the state.  In 
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Section 2.4 we show how state predicates are utilized to validate state conditions at run-time that 

cannot be checked statically due to non-determinism. 

Regular expression declarations are aliases for regular expressions.  This shorthand notation is 

useful when writing more complex protocols. 

Sequencing statements represent the transitions in the protocol’s LTS.  Statements are composed 

of an optional state list of starting states, a regular expression of method calls that can be made, 

and an optional state list of ending states.  If omitted then the default state of the DFA is used as 

the start or ending state, respectively.  A single state value is found in the sequence statements 

starting or ending state list, then that state is set as the start or ending state of the DFA, 

respectively.  If the starting or ending state list has multiple values, then the DFA can be seen as 

a Cartesian product of the starting state list and ending state list. [12] 

2.1.1 Wildcard State 

The wildcard state, “*”, represents the list of all states declared in the protocol.  The default state 

is not included in the wildcard state. [12] 

2.1.2 Regular Expressions 

Protocols employ conventional regular expressions for expressing method call sequences.  The 

pattern described by a regular expression, using the set of all method calls defined for the object 

as the vocabulary, can clearly describe a sequence of method calls.  In our regular expressions, 

the comma operator corresponds to concatenation. [12] 

2.1.3 Grammar Modifications 

The grammar originally proposed by Butkevich et al. [12] provides all the groundwork needed to 

support protocols in Java.  It only requires a few small modifications to work in javac.  Since 

javac is a LL(1) parser, the RegExp portion of the grammar must be rewritten so that the left-
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recursion is removed.  This is accomplished by breaking down the clauses into groups of terms 

and factors and utilizing right-recursion.  Operator precedence is then put into place to ensure 

that the proper associativity is maintained. 

Additionally, the RegExpDec clause contains an ambiguity, since the component { "," <JavaId> 

"=" <RegExp> } ";" conflicts with the <RegExp> "," <RegExp> component of the RegExp 

clause.  This ambiguity in regular expressions is corrected by removing the { "," <JavaId> "=" 

<RegExp> } construct from the RegExpDec clause.  In doing so the ability for defining multiple 

regular expressions in one statement is taken away from the user, but this is only a trivial loss. 

Figure 5 illustrates the adjusted grammar. 

2.2 Automata Generation 

During semantic analysis, protocols are translated into their corresponding LTS.  Translation 

takes 3 steps.  First, each regular expression in the protocol is translated into a non-deterministic 

finite automata (NFA) using Thompson’s construction.  Next, each NFA generated in the 

previous step is translated into a DFA using the subset construction.  Finally, each DFA 

generated by the subset construction is connected corresponding to the transitions described in 

the sequencing statements of the protocol.  After generation, the LTS is stored in the class or 

interface object for later reference. [12] 
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<ProtocolDeclaration>  ::= "protocol" "{" <ProtocolStatementList> "}" 

<ProtocolStatementList>  ::= 

    | <ProtocolStatement> <ProtocolStatementList> 

<ProtocolStatement>   ::= <StateDec> | <RegExpDec> | <SeqStatement> 

<StateDec>   ::= [ "start" ] [ "final" ] "state" <StateDecList> 

<StateDecList>   ::= <JavaId> <StateDecListAssign> <StateDecListTail> ";" 

<StateDecListAssign>  ::= 

    | "=" <JavaBoolExp> 

<StateDecListTail>  ::= 

         | "," <StateDecList> 

 

<SeqStatement>   ::= [ "<" <StateList> ">" ] <RegExpDec> [ "<" <StateList> ">" ] ";" 

<StateList>   ::= "*" 

    | <JavaId> <JavaIdList> 

<JavaIdList>   ::= 

    | "," <JavaId> <JavaIdList> 

<RegExpDec>   ::= <RegExpTerm> <RegExpTail> 

<RegExpTail>   ::= 

    | "|" <RegExpDec> 

<RegExpTerm>   ::= <RegExpFactor> <RegExpTermTail> 

<RegExpTermTail>  ::= 

    | "," <RegExpTerm> 

<RegExpFactor>   ::= <MethodCallPattern> 

    | [ "~" ] "[" <MethodCallPatternList> "]" 

    | "(" <RegExpDec> ")" <RegExpFactorTail> 

<RegExpFactorTail>  ::= 

    | "*" <RegExpDec> 

    | "+" <RegExpDec> 

    | "?" <RegExpDec> 

<MethodCallPattern>   ::= <JavaId> "(" <PatternArgumentList> ")" 

<MethodCallPatternList>  ::= <MethodCallPattern> "," <MethodCallPatternList> 

<PatternArgumentList>  ::= <PatternArgument> <PatternArgumentListTail> 

<PatternArgument>  ::= "*" 

    | <JavaId> 

<PatternArgumentListTail> ::= 

    | "," <PatternArgumentList> 

 

Figure 5 – Modified grammar for protocols 

2.3 Conformance Check 

The compiler performs a conformance check when a class or interface extends or inherits another 

class or interface and both objects have protocols associated with them. The LTSs of the objects 

are compared using a slightly modified version of Nierstrasz’s algorithm [19] during the type-

checking phase of compilation.  Nierstrasz’s algorithm assumes that all states in the LTS are 

final states.  A designation of non-final states allows us to detect a protocol violation when an 

object is garbage-collected in a non-final state.  To support this, the algorithm is modified to 
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support non-final states.  If the subtype’s protocol does not conform to the supertype, then a type 

error is reported and compilation will fail. Otherwise, the protocol information is stored in the 

class file as an attribute of the object [12]. 

2.4 State Predicates 

State predicates are Boolean expressions that can be used to validate the state of an object. 

Figure 6 illustrates a protocol declaration for our stack example.  These expressions allow 

designers and developers to provide richer descriptions of states.  They also allow for the 

resolution of the internal non-determinism in the LTS.  Consider the call sequence (push, pop, 

pop).  The sequence is invalid, but without state predicates the erroneous condition cannot be 

identified.  State predicates allow for the protocol to determine which state is appropriate for the 

object.  Using the predicates in Figure 6, the protocol can identify that after the first pop, the 

object is in the empty state.  When the next call to pop is made, the protocol will raise the error 

condition and be handled as prescribed [12]. 

protocol { 

start final state e = isEmpty(); 

final state ne = !isEmpty(); 

<*> push <ne> 

<ne> pop <*> 

} 

 

Figure 6 – Stack protocol declaration with state predicates 

2.5 Bytecode Generation 

After a successful conformance check, the protocol must be stored in bytecode.  To do so, the 

parse tree of the code being compiled must be altered. In order to do this, the wrapper class is 

generated as described next in Sections 2.5.1.  Once the necessary wrapper classes have been 

generated, the parse tree can be altered.  The abstract syntax tree (AST) object representing the 
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class being instantiated is replaced with the appropriate tree node for the wrapper class.  This 

ensures that during bytecode generation the wrapper class is executed by the JVM enforcing the 

protocol upon the interface. 

2.5.1 Wrapper Classes 

Wrapper classes are generated by the compiler when an interface with a protocol is defined.  The 

class is generated dynamically by the compiler to accomplish in order to: 

• Generate the run-time representation of the LTS (as an instance of ProtocolInformation) 

• Surround the wrapped object’s methods with tracing statements. 

• Implement the verify method for the protocol 

Each method in the wrapped class is implemented as a sequence of three calls in the wrapper 

class: 

1. A call to announce() to check if the request is valid (i.e., the transition can be made) 

2. A call to the corresponding method of the server interface 

3. A call to advance() to transition the LTS and verify state predicates. 

The verify() method removes any states whose predicates are not satisfied from the current state 

set. This method must be defined in the wrapper since no knowledge of the protocol itself is 

known to the underlying tracing system. [12] 

2.6 Run-time Tracing 

Run-time tools are needed to trace the sequence of calls on objects and ensure the conformance 

to their protocol when applicable.  In order to accomplish this, wrapper classes are utilized to 

invoke an LTS corresponding to the object’s protocols and manage conformance checks.  Figure 

7 shows the UML diagram of the tracing system for our stack example.  Butkevitch et al. 
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illustrate how this modeling can be successful for interfaces, but limit their research to the study 

of tracing interfaces.  We will show in Section 3.1 how this framework can be adapted for 

supporting class tracing. 

 

Figure 7 – UML diagram of tracing system for Stack 

2.6.1 Tracer Class 

The Tracer class is invoked in three methods – announce, advance, and finalize – throughout the 

lifecycle of the object to manage the LTS.  The announce method is used to verify that an 

upcoming transition is appropriate.  To do so it must iterate over the current state list and see if 

any of the states have an outgoing transition that allows that method call.  The advance method is 

called after the method has been invoked on the wrapped object.  It updates the list of current 

states to be that of the new set of states which the server may be in.  An empty current state list 

indicates that an error has occurred.  The finalize method leverages Java’s garbage collection 

system to perform the check to ensure that the protocol ends in a final state.  If the object is being 

in a non-final state when the garbage collector calls the wrapper objects finalize method, then the 

error handler is invoked [12]. 

2.6.2 TraceState Class 

TraceState objects contain the information necessary to capture the state of a protocol.  As the 

LTS is updated, the TraceState object must be as well.  TraceState objects are kept in a static list 

in memory throughout the execution of the program.  This allows the querying of state 

information by the user [12]. 
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2.6.3 TraceFilter Interface 

The TraceFilter interface can be used to query the set of TraceStates stored based on specified 

conditions.  An enumerable object is returned to the user for parsing/processing [12]. 

2.6.4 ProtocolInformation Class 

The ProtocolInformation object is the representation of the LTS in the tracing system, and are 

generated during compilation and tied to the wrapper classes generated during run-time.  

ProtocolInformation objects store and operate on the following data 

• Names of methods 

• Names of states (declared and internal) 

• Name of interface 

• Starting state 

• Final states 

• Transition matrix 

The transition matrix allows for fast querying of the LTS to find the set of states that can be 

transitioned to from.  This is done by structuring the matrix in a 2D array where each element in 

the array is a set of states that can be transitioned to.  The rows of the array represent the state to 

be transitioned from and the columns represent the method name on the outgoing transition [12]. 

2.6.5 Error Handling 

The error handling system provided allows users to create their own classes for handling the 

processing of errors.  They can be silently ignored, logged, handled with exceptions, or in any 

way the user desires.  This is done by the ErrorHandler interface, which follows the Strategy 

design pattern [17].  There are 3 kinds of errors that can be detected by the tracing system: 



13 

• Invalid method errors – these errors occur when a method is requested that has no 

outgoing transition in the LTS and are discovered in the announce method. 

• Invalid state – these errors occur after a method has been executed on the server and none 

of the resulting states can be verified; this occurs in the advance method. 

• Non-final state – these errors occur when a wrapper object has been garbage collected 

and is not in a final state. 

Whenever an erroneous condition is detected, the corresponding method on the object 

instantiating the ErrorHandler interface is invoked [12].  
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3 Framework Modifications 

As described in Chapter 2, Butkevich et al. [12] have provided a framework for the tracing of 

object protocols when these protocols are applied to interfaces in the Java language.  This 

chapter outlines several modifications/enhancements that can be made to the framework to 

provide additional features to the framework or to enhance those features already provided by the 

framework. 

3.1 Support for Classes 

While there are variances between the structures of classes, abstract class, and interfaces [3, 4, 

7], there are advantages that can be gained from the enforcement of protocols on class objects.  

Let us consider abstract classes.  They may or may not include abstract methods and they cannot 

be instantiated directly, thus they are always subclassed.  This proves to be a prime opportunity 

to use protocols as a debugging tool.  Abstract classes rely on the programmer to implement 

those pieces of code in which behaviors are application specific.  As with interfaces, when using 

abstract class and/or traditional class hierarchies it is not possible to guarantee that the proper 

sequence of method calls is followed.  Thus, protocols can be leveraged to do so, acting on 

behalf of the developer/API designer. 

3.1.1 Type Casting 

Figure 8 shows the basic form of the assignment of an object of type C to an interface reference 

a, of type I.  We will assume that both I and C have protocols and the protocol of C conforms to 

the protocol of I.  Section 2.5 defines how the wrapper class will be inserted into the parse tree 

and executed by the JVM. 

I a = new C(); 

Figure 8 – Simple assignment of a class to an interface 
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What are not clearly defined are the mechanisms for handling casting of objects that have been 

replaced by protocol wrappers.  Such a situation is illustrated by the code listed in Figure 9. 

public interface I { 

    protocol { ... } 

    ... 

} 

... 

public interface IPlus extends I { 

    protocol { ... } 

    ... 

} 

... 

public class C implements IPlus { 

    protocol { ... } 

    ... 

} 

... 

IPlus a = new C(); 

... 

I b = (I)a; 

... 

IPlus d; 

if (a instanceof IPlus) 

  d = (IPlus)a; 

else 

  d = new C(); 

 

Figure 9 – Casting objects bound by protocols 

The outcome of the casts from objects of C to IPlus or from IPlus to I, with respect to protocols, 

are not defined – what should be done to their protocols?  In order for the run-time environment 

to understand and properly handle the issues, some modifications will need to be made to the 

architecture of the compiler [10, 16].  Type casts are base-checked during compilation for those 

that cannot possibly succeed (like comparing a double to a boolean).  However, the actual 

subtype checks for reference types occur at run-time [21]. 
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When casting an object with a protocol to an object of a superclass, the resolution is straight-

forward.  We will call the object receiving the cast on the left-hand side of the expression LHS, 

and similarly we will call the object being cast on the right-hand side of the expression RHS.  If 

the type of the LHS also has a protocol, then the current state set of the LHS is set to the subset 

of states from the RHS that are also found in the LHS protocol.  Afterwards, the wrapper around 

the RHS should be discarded as the state of the protocol can no longer be traced.  Downward 

casts to subclasses can be handled in the same manner.  If the LHS has no protocol, then the 

wrapper around the RHS is discarded as mentioned above. 

3.2 On-demand Tracing 

In DeLine and Fӓhndrich’s paper on protocols in low level software [14] they introduce the 

notion of tracked types and objects.  We adapt this notion to our implementation of protocols in 

Java.  As mentioned above when discussing supporting classes with protocols, a large number of 

objects being traced could potentially degrade system performance.  In large systems where the 

number of objects being traced could be in the hundreds or thousands, the increased execution 

time could introduce significant lag in the overall performance of the system.  By providing the 

functionality for programmers to choose which objects will be traced, the overhead costs of 

protocols can be kept under control. We introduce the keyword traced to the grammar of class 

creation statements and array creation statements [5] using the Tracedopt construct, whose value 

is either “traced” or null.  Figure 10 outlines the new grammar for class and array creation 

statements.  While some variable declarations may contain creation expressions, Figure 11 

demonstrates several class and array declarations which do not instantiate objects [5].  Since no 

objects are instantiated in these cases, protocols are not utilized unless a traced objects is 

assigned to one of the variables. 
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ClassInstanceCreationExpression: 

    new Tracedopt TypeArgumentsopt TypeDeclSpecifier TypeArgumentsOrDiamondopt 

                                                            ( ArgumentListopt ) ClassBodyopt 

    Primary . new Tracedopt TypeArgumentsopt Identifier TypeArgumentsOrDiamondopt 

                                                            ( ArgumentListopt ) ClassBodyopt 

 

ArrayCreationExpression: 

    new PrimitiveType DimExprs Dimsopt 

    new Tracedopt ClassOrInterfaceType DimExprs Dimsopt 

    new PrimitiveType Dims ArrayInitializer  

    new Tracedopt ClassOrInterfaceType Dims ArrayInitializer 

 

Tracedopt: 

 

    traced 

Figure 10 – Modified creation expression for classes 

int[]     ai;  // array of int 

short[][] as;  // array of array of short 

Object[]  ao;  // array of Object 

Collection<?>[] ca; // array of Collection of unknown type  

Figure 11 – Array and class declarations that do not instantiate objects 

The traced option will be identified during parsing and leveraged during semantic analysis and 

code generation to generate and run the protocols at run time.  In order to prevent misuse of the 

statement, a new check will have to be implemented in the type-checking.  This check will 

identify when a traced statement is in use and ensure that it is being used on a class object.  
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Primitive data types and enumerations are not supported by protocols and use of a declaration 

such as “new traced int[11];” are considered erroneous expressions. 

Allowing for the explicit declaration of objects to be traced forces some changes on the original 

framework.  Section 3.1 demonstrated how protocols are enforced upon assignment of an object 

to an interface when the object has a protocol conforming to the interface’s protocol.  The 

conformance checking phase of compilation described in Section 2.3 will need a minor 

modification to support this functionality.  The conformance analysis algorithm will need to be 

adjusted so that instead of searching for classes or interfaces that extend or inherit another class 

or interface, it simply checks the flag set by the scanner as to whether or not the traced option is 

enabled.  If the option is enabled, then the conformance analysis will be performed and upon 

successful completion the wrapper classes will be added as they normally would. 

3.3 Timing Constraints 

We have shown how object protocols provide the capability for exercising sequencing 

constraints upon objects.  The framework described provides a utility that can be utilized for 

more than originally intended.  It provides developers with the ability to define more 

comprehensive descriptions of object behavior within the language itself, and to leverage the 

compiler and run-time environment to enforce those behaviors. In this section, we consider 

another property of software that can be used for debugging other types of problems in software 

engineering – execution time.  The execution time of software plays a critical role in a variety of 

software systems, such as real-time computing and embedded systems.  The ability to ensure that 

an action occurs within the correct time frame and detecting when it does not is critical in such 

systems.  Protocols can be enhanced to provide developers with the ability to define such timing 

constraints and detect when the constraints are not satisfied.  Using the error handling 
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mechanisms provided by the framework, the error can be dispatched and handled as prescribed 

by the implementer. 

Deng [15] provides one example of a grammar for timing constraints in automata.  His 

implementation uses only one clock, which represents the length of time the automaton has been 

in its current state.   Supporting such an environment in the tracing framework would require 

some modifications, namely the introduction of a clocking mechanism to support multiple named 

clocks.  Using such a clock mechanism, the generated wrapper objects would call the clocking 

mechanisms as necessary to enforce the defined timing constraints.  The existing error handling 

mechanisms in the framework can be utilized to support reporting the errors that can occur when 

using a timed automaton. 

3.4 Optimizations 

By allowing a flexible representation of the automata, several optimizations can be leveraged.  

The manner in which a protocol is defined can allow the compiler to determine what type of 

automata will be used to represent the protocol’s transition system.  Protocols that do not utilize 

state predicates can be optimized to a DFA implementation rather than an NFA.  The removal of 

the run-time checks allows the transformation to the DFA since all choices are known in 

advance.  This increases the speed of the algorithm since the run-time checks can be discarded 

and a transition matrix can be used for lookups in O(1) time. 

Optimizations are found for the NFA representation of the automata as well.  Some protocols 

may not introduce epsilon transitions.  During the announce() phase of a transition, an epsilon 

closure is performed to add any state that can be reached via an epsilon transition to the list of 



20 

possible states the automata can be in after the transition.  If no epsilon transitions are found in 

the automata, the compiler will utilize an NFA structure that does not perform an epsilon closure. 

Augmenting the underlying storage mechanism of the automata yielded excellent results.  The 

tracing framework was originally implemented using 3-dimensional arrays to store the 

representation of available states on a transition from another state.  The Java BitSet library [10] 

is used instead.  The BitSet library, while implemented uniquely to each target platform, is 

specially crafted to make efficient use of storage and indexing to represent large binary strings as 

well as providing efficient manipulation of the data – even when the number of binary digits in 

the string is unknown and greater than 32.  The BitSet storage implementation aides 

tremendously in the reduction of the tracing framework’s execution times.  One such example is 

calculating an epsilon closure or the set of states that can be reached on an input.  The array 

implementation required several nested loops to calculate this information.  Using BitSets, the 

operation can be performed as a union operation on BitSets representing the transitions on a 

state.  This yields one loop over the number of states, and a union operation is performed during 

each iteration of the loop.  The union operation on the BitSet can be performed as a logical or – 

which is a much faster operation than the array operations. 

In Section 4.2 we will see the timing measurements and the improvements made by the 

optimizations described.  The optimized code can be found in Appendix C. 
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4. Implementation 

4.1 OpenJDK 

An implementation of protocols in Java was begun in the OpenJDK 7 b147 compiler [8].  The 

grammar modified to support javac in Figure 5 was used in the implementation.  Currently, the 

implementation of the parser has been completed.  This work includes: 

• Command-line options for protocol handling 

• The building of parse trees for object protocols which requires the additional methods for 

recursive descent and tree node definitions. 

• The implementation of the corresponding tree traversal mechanisms  

o Pretty printing 

o TreeScanner 

o TreeCopier 

o TreeMaker 

o TreeVisitor 

The work for building the corresponding automata has begun and is nearing completion.  Once 

that has been completed the conformance checks and wrapper generation will begin. 

4.2 Efficiency Analysis 

4.2.1 Experimental Setup 

The experiments were performed on a system with the following hardware and software 

configurations: 

• Intel(R) Core(TM)2 CPU 6320  @ 1.86GHz 

• 2 GB RAM 
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• Debian GNU/Linux v. 6.0.3 

o Base install, plus SSH server 

• Java environment is jdk1.7.0_02 

During each test run, the method call being tested is executed several times prior to being timed.  

This ensures that the code has been loaded in the cache and provides more accurate results since 

the time spent on loading the cache is not reflected in the later calls. 

4.2.2 Experiment Results 

Utilizing the prototype code for the tracing and protocol system provided by the The Brew 

Project [1], performance tests were performed.  In Section 2.6, Figure 7 illustrated the 

architecture of the tracing system.  The Stack_Wrapper subclasses the abstract class Tracer and 

extends the same interface that the wrapped class extends.  The wrapper is designed so that the 

constructor takes the client and server objects as references.  This design was leveraged to 

substitute various implementations of a Stack for testing purposes.  In addition to the base 

framework, the optimizations described in Section 3.4 are tested as well. 

The three types of stack implementations used in testing are: 

1. Stacks with empty method stubs – these method calls simply return right away. 

2. Stacks with an array storage scheme – stack elements are stored in an array and 

manipulated based on an index number. 

3. Stacks with the java.util.Stack library – the stack is implemented using the stack 

implementation from the Java core. 
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Each of these implementations is listed in Appendix B.  Table 1 shows the results of the base 

tests.  These tests time the method calls on each implementation of the stack interface without 

protocols and the tracing framework. 

Table 1 – Control test results (in nanoseconds) 

 

Next, the implementations were tested again using the framework without any optimizations.  

This time protocols were enabled and the operations executed conformed to the desired sequence 

of operations.  The results of these tests are shown in Table 2.  In Table 3 we show the results of 

the protocol tests when run on a protocol that requires an NFA with epsilon closures.  This 

configuration is the least efficient of all of the automata configurations available. 

Table 2 – Unmodified framework test results (in nanoseconds) 
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Table 3 – Framework results using an NFA with epsilon closures 

 

Next, we take a look at the results of the tracing framework using a protocol where the NFA has 

been implemented without epsilon closures, and finally the protocol optimized to a DFA.  The 

testing results for these configurations are show in Tables 4 and 5 respectively. 

Table 4 – Framework results using an NFA without epsilon closures 

 

Looking at the test results we can see that the operational overhead of our optimized tracing 

framework is approximately 400 nanoseconds.  Based on the timing results shown in Table 1 this 

is approximately one-half of the time required to execute an empty method.  Compared to the 

original work by Renedo which took approximately 3500 nanoseconds, this is a decrease in 
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execution time by approximately 88%.  With such a small operational impact, the results of 

using protocols would be minimal in a live operating environment. 

Table 5 – Framework results using a DFA 

 

Another key observation is that the complexity of the underlying objects will have an impact on 

the performance of the tracing system.  This can be seen by looking at the difference in execution 

times from the array and Java stack implementation.  The array implementation is strictly 

memory based and has short, efficient implementations of the interface methods.  The Java stack 

implementation has a bit more overhead.  The java.util.Stack class has several ancestors in the 

class hierarchy, implements 6 interfaces and supports generics as well.  Such overhead certainly 

slows down the overall run-time of the method; however the impact on protocol performance 

originates from the state predicates.  In the worst case, each predicate is executed at each 

transition in the protocol to verify the states.  Combined with more complex protocols, predicates 

could have a more serious impact on performance. 

Overall, the impact of protocols on the execution time of a method call is on the order of 

approximately three quarters of a microsecond.  We plan to do more extensive testing on more 
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complex protocols to see how the complexity of the protocol affects the performance of the 

tracing system.  
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5. Conclusion 

In this thesis, we studied a framework for enforcing the sequence of method calls on classes that 

implement interfaces in Java programs. This framework enables software developers to 

conceptualize the desired behavior of an object and define it within the definition of the class or 

interface.  We show how the Java compiler (javac) and run-time environment (JVM) can be 

extended to analyze and enforce these behaviors.  We present an extension to this framework that 

would allow for class objects to be traced as well, and consider the subtyping needs required by 

such an addition to the framework.  To support these constructs, we provide details on how they 

can be implemented using the Tracer interface of the supplied framework.  These methodologies 

strive to evolve the capabilities provided by traditional compilation environments by providing 

verification methodologies for object behaviors that reach beyond those available in a traditional 

type system. 

To evaluate the efficiency of the environment, we used an implementation of the tracing 

framework to analyze the overhead introduced by the use of protocols.  This data shows that the 

management of automata used in transitioning object states can be done in time on the order of 

nanoseconds to microseconds, with the majority of time being spent on the actual handling of 

protocol violations, not within the LTS itself. 

Our future work includes the completion of the integration of the tracing framework into 

OpenJDK, the introduction and implementation of timing constraints into the tracing framework, 

continued performance testing on more complex protocols and data structures, as well as the 

methodologies needed to perform more analysis during compilation to reduce the impact on 

execution times.  
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Appendix A: Original Protocol Grammar 
<ProtocolDeclaration> ::= "protocol" "{" {<ProtocolStatement>} "}" 

<ProtocolStatement> ::= <StateDec> | <RegExpDec> | <SeqStatement> 

<StateDec>  ::= [ "start" ] [ "final" ] "state" <JavaId> [ "=" <JavaBoolExp> ] 

{ "," <JavaId> [ "=" <JavaBoolExp> ] } ";" 

<RegExpDec>  ::= "regexp" <JavaId> "=" <RegExp> { "," <JavaId> "=" <RegExp> } ";" 

<SeqStatement>  ::= [ "<" <StateList> ">" ] <RegExp> [ "<" <StateList> ">" ] ";" 

<StateList>  ::= "*" | <JavaId> { "," <JavaId> } 

<RegExp>  ::= <MethodCallPattern> 

     | [ "~" ] "[" [ <MethodCallPattern> { "," <MethodCallPattern> } ] "]" 

     | <RegExp> "*" | <RegExp> "+" | <RegExp> "?" 

     | <RegExp> "|" <RegExp> | <RegExp> "," <RegExp> | "(" <RegExp> ")" 

<MethodCallPattern> ::= <JavaId> [ "(" [ <PatternArgumentList> ] ")" ] 

<PatternArgumentList> ::= <PatternArgument> { "," <PatternArgument> } 

<PatternArgument> ::= "*" | <JavaType> 

(From Butkevitch et al. [12].)  
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Appendix B: Testing Implementations of the Stack Interface 

B.1 Stack with Stub Methods 

public class StackImpl implements TestStack{ 

    public int pop() { return 0; } 

    public void push(int x) {} 

    public boolean isEmpty() { return true; } 

} 

B.2 Stack with Array Back-end 

public class StackArrayImpl implements TestStack{ 

    int sp = 0; 

    int [] stack = new int[100]; 

    public int pop() { 

        if (sp <= 0) 

            return 0; 

        sp--; 

        return stack[sp]; 

    } 

    public void push(int x) { 

        if (sp < 100) { 

            stack[sp] = x; 

            sp++; 

        } 

    } 

    public boolean isEmpty() { return (sp == 0); } 

} 



32 

B.3 Stack with java.util.Stack Back-end 

import java.util.Stack; 

public class StackUtilImpl implements TestStack{ 

    private Stack<Integer> stack = new Stack<Integer>(); 

    public int pop() { 

                int val = 0; 

                try { 

                         val = stack.pop(); 

                } 

                catch(Exception e) { ; } 

                return val; 

    } 

    public void push(int x) { stack.push(x); } 

    public boolean isEmpty() { return stack.empty(); } 

} 
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Appendix C: Optimized Tracing Framework Code 

C.1 ProtocolInformationDFA.java 

This code represents the protocol automaton optimized to a DFA. 

package edu.ohio_state.cis.lts; 

import java.util.BitSet; 

public class ProtocolInformationDFA { 

        /** The name of the interface in which this protocol is defined. */ 

        public String interfaceName; 

 

        /** An array contatining all public method names of the interface 

         * (used in the protocol?). 

         */ 

        public String[] methodNames; 

 

        /** An array containing the names of the states, both defined by the user 

         *  and generated internally. 

         */ 

        public String[] stateNames; 

 

        /** Specifies which states are final. */ 

        public boolean[] finalStates; 

 

        public int[][] tMatrix; 

 

        /** Returns the name of the interface in which this protocol is defined. */ 
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        public String getInterfaceName() { return interfaceName; } 

 

        /** Returns the name of the method with the given index. 

         *  @param m the index of the method. 

         */ 

        public String getMethodName(int m) { return methodNames[m]; } 

 

        /** Returns the name of the state with the given index. 

         *  @param s the index of the state. 

         */ 

        public String getStateName(int s) { 

                return stateNames[s]; 

        } 

 

        /** Returns the number of states used in this protocol. 

         */ 

        public int nStates() { 

                return stateNames.length; 

        } 

 

        /** Returns true if the state is final and false otherwise. 

         *  @param s the index of the state. 

         */ 

        public boolean isFinalState(int s) { return finalStates[s]; } 
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        public ProtocolInformationDFA() {} 

 

        public ProtocolInformationDFA(String interfaceName, String[] methodNames, String[] 

stateNames, boolean[] finalStates, int[][] tMatrix) { 

                this.interfaceName = interfaceName; 

                this.methodNames = methodNames; 

                this.stateNames = stateNames; 

                this.finalStates = finalStates; 

                this.tMatrix = tMatrix; 

        } 

} 

C.2 ProtocolInformationNFA.java 

This code represents the protocol automaton as an NFA.  When testing for NFA without epsilon 

closure, the calls to the epsilon closure function were simply commented out. 

package edu.ohio_state.cis.lts; 

import java.util.BitSet; 

public class ProtocolInformationNFA { 

        /** The name of the interface in which this protocol is defined. */ 

        public String interfaceName; 

 

        /** An array contatining all public method names of the interface 

         * (used in the protocol?). 

         */ 

        public String[] methodNames; 

 

        /** An array containing the names of the states, both defined by the user 
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         *  and generated internally. 

         */ 

        public String[] stateNames; 

 

        /** Specifies which states are final. */ 

        public boolean[] finalStates; 

 

        public BitSet[][] tMatrix; 

 

        /** Epsilon transitions from one state to another */ 

        public BitSet[] eTransitions; 

 

        /** Returns the name of the interface in which this protocol is defined. */ 

        public String getInterfaceName() { return interfaceName; } 

 

        /** Returns the name of the method with the given index. 

         *  @param m the index of the method. 

         */ 

        public String getMethodName(int m) { return methodNames[m]; } 

 

        /** Returns the name of the state with the given index. 

         *  @param s the index of the state. 

         */ 

        public String getStateName(int s) { 

                return stateNames[s]; 



37 

        } 

 

        /** Returns the number of states used in this protocol. 

         */ 

        public int nStates() { 

                return stateNames.length; 

        } 

 

        /** Returns true if the state is final and false otherwise. 

         *  @param s the index of the state. 

         */ 

        public boolean isFinalState(int s) { return finalStates[s]; } 

 

        public BitSet reachableStates(int method, int state) { return tMatrix[method][state]; } 

 

        public BitSet epsilonTransitions(int state) { return eTransitions[state]; } 

 

        public ProtocolInformationNFA() {} 

 

        public ProtocolInformationNFA(String interfaceName, String[] methodNames, String[] 

stateNames, boolean[] finalStates, BitSet[][] tMatrix, BitSet[] eTransitions) { 

                this.interfaceName = interfaceName; 

                this.methodNames = methodNames; 

                this.stateNames = stateNames; 

                this.finalStates = finalStates; 
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                this.tMatrix = tMatrix; 

                this.eTransitions = eTransitions; 

        } 

} 

C.3 TracerDFA.java 

This code represents the tracer class adjusted to use the ProtocolInformationDFA class. 

package edu.ohio_state.cis.lts; 

 

import java.util.BitSet; 

 

public abstract class TracerDFA { 

 

        /** This references points to the head of the TraceState list 

                stored statically in the Tracer class. */ 

        final static TraceState head = new TraceState(); 

 

        /** This reference points to an empty TraceState after the last 

                element of the TraceState list stored statically in the Tracer 

                class. Very helpful to add new elements to the list without 

                having to run over the whole list. */ 

        final static TraceState tail = new TraceState(); 

 

        static { head.next = tail; tail.prev = head; } 

 

        /** This is the default error handler object. When a wrapper is 
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         *  constructed we assign this error handler to its 

         *  TraceState. 

         */ 

        static private ErrorHandler defaultEh = new DebugLevel0(System.out); 

 

        /** This is the TraceState that is updated by this Tracer object. */ 

        private TraceState ts; 

 

        private int curState; 

 

        /** Sets the error handler that is used when a new 

         *  protocol is started. 

         */ 

        static public final void setDefaultErrorHandler(ErrorHandler eh) { 

                defaultEh = eh; 

        } 

 

        /** This method is used by the user to modify the error handler of 

           *  some of the TraceStates in the TraceState list. It has two 

           *  arguments: the New ErrorHandler object and a TraceFilter that 

           *  selects the TraceStates to be modified. 

           */ 

        static public final void setFilteredErrorHandler (ErrorHandler eh, TraceFilter tf) { 

                for(TraceState t = head.next; t != tail; t = t.next) // if t selected reset ErrorHandler to 

eh. 
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                        if (tf.selected(t)) 

                                t.eh = eh; 

        } 

 

        /** Constructor of the Tracer. This constructor cannot be called 

         *  by the user. It is called only by the Wrapper. 

         *  @param pInfo the protocol information to be used in the tracer 

         *  @param fileAndLine the string containing the name of the file and the number of the 

line where the communication link has been established. 

         *  @client the reference to the object in which the communication link is established 

         *  @server server object whose protocol we will be tracing. 

         */ 

        protected TracerDFA (ProtocolInformationDFA pInfo, String fileAndLine, Object client, 

Object server) { 

                ts = new TraceState(pInfo, defaultEh, fileAndLine, client, server); 

                // add it to the list if necessary 

                if (ts.eh.insertInTraceList()) { 

                        tail.prev.next = ts; 

                        ts.prev = tail.prev; 

                        ts.next = tail; 

                        tail.prev = ts; 

                } 

        } 

 

        /** Called by the wrapper to announce that a method is about to be called. 

         * Does checks whether this method is allowed to be called in the current 
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         * lts state. Does not advance the lts. 

         * @param m the indexe of the method that is about to be called 

         * @see advance() 

         */ 

        protected final void announce(int method) { 

                if (ts.error != TraceState.NO_ERROR) 

                        return; 

                if (ts.pInfo.tMatrix[curState][method] == -1) 

                        ts.eh.invalidMethod(ts); 

        } 

 

   /** Called from the wrapper after a method is called on the server. 

        *  Advances the lts. 

        */ 

        protected final void advance(int method) { 

                // tracing disconnected if there was an error already 

                if (ts.error != TraceState.NO_ERROR) 

                        return; 

                if ((curState = ts.pInfo.tMatrix[curState][method]) == -1) 

                        ts.eh.invalidState(ts); 

        } 

 

        /** Checks the predicate conditions associated to each possible 

         *  state. It rules out the ones that aren't satisfied. 

         */ 
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        protected abstract void verify(); 

 

        /** Is called when the Wrapper that extend this Tracer is garbage collocted. 

         *  Makes sure that the client and server can be garbage-collected as well by 

         *  replacing reference to them in the TraceState object to the references to their 

         *  correspondng classes. Checks whether the lst is in a final state. If not -- 

         *  sends a signal to the error handler. 

         */ 

        final public void finalize() { 

                /* replace objects references by their classes so they can be 

                   garbage collected. */ 

                ts.server = ts.server.getClass(); 

                ts.client = ts.client.getClass(); 

                // check if in final state 

                if (!ts.pInfo.isFinalState(curState)) 

                        ts.eh.notInFinal(ts); 

                return; 

        } 

 

        /** Dumps information about the states of all objects whose lts's are being 

         *  traced using the given default error handler and trace filter. 

         *  eh the error handler to be used for dumping the info 

         *  tf the trave filter that determines which states will be dumped and which will be not. 

         */ 

        final static public void dump(ErrorHandler eh, TraceFilter tf) { 
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                head.next.recDump(eh, tf); 

                return; 

        } 

 

        /** Dumps information about the states of all objects whose lts's are being 

         *  traced using the default error handler and trace filter. 

         */ 

        final static public void dump() { 

                head.next.recDump(); 

                return; 

        } 

}  
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