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ABSTRACT  

 

      In this work we extend the work done by Bob Coecke and Keye Martin in their paper “Partial 

Order on Classical States and Quantum States (2003)”. We review basic notions involving 

elementary domain theory, the set of probability measures on a finite set {a1, a2, ..., an}, which 

we identify with the standard (n-1)-simplex  ∆
n
 and Shannon Entropy. We consider partial orders 

on ∆
n
, which have the Entropy Reversal Property (ERP) : elements lower in the order have 

higher (Shannon) entropy or equivalently less information . The ERP property is important 

because of its applications in quantum information theory. We define a new partial order on ∆
n
, 

called Stochastic Order , using the well-known concept of majorization order and show that it 

has the ERP property and is also a continuous domain. In contrast, the bayesian order on ∆
n
 

defined by Coecke and Martin has the ERP property but is not continuous. 



CHAPTER 1

INTRODUCTION

The notion of a �domain� was introduced more than forty years ago by Dana Scott as

an appropriate mathematical universe for the semantics of programming languages.

In simple terms, a domain is a poset (partially ordered set) with the intrinsic notions

of completeness and approximation. For example, the powerset of the set of natural

numbers ordered by inclusion or the binary strings (possibly in�nite) under pre�x

order. These are classic examples of partially ordered sets. In the former, the only

approximants of an in�nite set (e.g. {2, 4, 6, ...}) are its �nite subsets. In the second

poset, any �nite or in�nite string x < y is approximant to y.

We explore various properties and interrelationships of partial orders that one may

de�ne on the set of classical information states ∆n = {→xε[0, 1]n :
n∑
i=1

xi = 1}, n≥2,

including the the Bayesian order, the majorization order, and the stochastic order.
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CHAPTER 2

TERMINOLOGY

2.1 Posets and Preorders

A set P with a binary relation v is called a partially ordered set or poset if the
following holds ∀ x, y, z ε P.

� xvx (Re�exivity)

� xvy ∧yvz =⇒xvz (Transitivity)

� xvy ∧yvx =⇒x = y (Anti-symmetry)

P is called a preorder if we only have re�exivity and transitivity.

2.2 Notation from Order Theory [1]

We will use the following notations for a poset (P, v).

� The upper set of an element xεP is ↑{x} = {yεP : ywx} ⊆P. When no confusion

is likely, we abbreviate ↑{x} as ↑x. The upper set of a subset A of P is the set

of all elements above some element of A, i.e., ↑A = ∪
xεA
↑{x}. The dual notion

is lower set ↓A which is the set of all elements which are below some element

of A. Clearly, yε↓{x} ⇒x ε ↑{y}

2



� An element x ε P is called an upper bound for a subset A⊆ P, if x is above every

element of A. We often write A v x in this situation. We denote by ub(A) the

set of all upper bounds of A. Dually, lb(A) denotes the set of all lower bounds

of A.

� An element x ε A is called a maximal element of A if there is no other element

of A above it: ↑x ∩ A = {x}. Minimal elements are de�ned similarly. For a

subset A ⊆ P the minimal elements of ub(A) are called minimal upper bounds

of A. The set of all minimal upper bounds of A is denoted by mub(A).

� If all elements of P are below a single element x ε P, then x is said to be the

largest element. The dually de�ned least element of a poset is also called bottom

and is commonly denoted by ⊥. In the presence of a least element we speak of

a pointed poset.

� If for a subset A ⊆ P, the set ub(A) of A has a least element x, then x is

called the supremum or join of A. We write x = t A in this case. In the other

direction we speak of in�mum or meet and write x = uA.

� A partially ordered set P is a t-semilattice (u-semilattice) if the supremum

(in�mum) for each pair of elements exists. If P is both a t-semilattice and a

u-semilattice, then P is called a lattice. A lattice is complete if suprema and

in�ma exist for all subsets.

3



2.3 Directed Set

Let P be a poset. A subset A of P is directed if it is nonempty and each pair of

elements of A has an upper bound in A. If a directed set A has a supremum then

this is denoted by t↑A

2.4 Directed Complete Partial Orders

2.4.1 De�nition

A poset D in which every directed subset has a supremum is called a directed-complete

partial order, or dcpo for short. Equivalently, a poset D is a dcpo if and only if each

chain in D has a supremum.[1]

2.5 Approximation

The notion of approximation is central to our study of partial orders on ∆n. In

Computer Science, the notion of approximation applies to machine learning, where

one tries to learn the probability distribution on a �nite set from a sequence of

individual observations and the resulting frequency distribution. Each frequency

distribution is a point in ∆n. The notion of approximation is inherent to domain

theory but can have largescale applications to a lot of �elds which need to be explored.

In general this idea can be applied to any recursive process where you cannot actually

reach the limit of computation.

4



2.5.1 De�nition

Let x v y be elements of a dcpo D. (The de�nition below actually applies to any

poset.) We say that x approximates y if ∀ directed A⊆D, yv t↑A⇒xva for some a

ε A. In other words, x approximates y if xv y and for every chain x1@ x2@...@t ↑ xi

w y⇒x v xi for some i. We use the notation x�y to indicate x approximates y. The

relation '�' is traditionally called the �way below relation�.

2.5.2 Compact Elements

We say that x is compact (or �nite or isolated) when x approximates itself. In other

words, there exists no chain x1@ x2@...@t ↑ xi = x

2.5.3 Examples

1. Consider a �nite set of elements {a1, a2, ..., an}, with the only �≤� relation

ai ≤ ai for all i. Here, every element is an approximant to itself and is also

equal to its lower set. So, approximant(ai) = ↓ ai = {ai} for all 1 ≤ i ≤ n.

2. Consider the poset of natural numbers N = {1, 2, 3, 4, ...} with i @ i+1. It is

not complete because the chain 1 @ 2 @ 3 @ ... has no supremum but satis�es

approximants(x) = ↓x.

3. If we add an element w to N with i @ w for i ε N, approximants(x) = ↓x ∀ x

6= w and approximants(w) = {1, 2, 3, 4, ...} ⊂ ↓w.
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2.6 Entropy

We study partial order on probability distributions (on a �nite set) where the ordering

is related to the randomness (entropy) of the distribution.

The Shannon entropy was �rst introduced by Claude E. Shannon in 1948 in his

landmark paper �A Mathematical Theory of Communication.� Shannon entropy is a

measure of the uncertainty of (individual observations of) a probability distribution

as well as a measure of information content. U�nk(1990) provides an axiomatic
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characterization of measures of uncertainty, deriving a general class of measures

Ur(
−→p ), of which the Shannon entropy is one (see also Maassen and U�nk, 1989).

The key property possessed by these measures is Schur Concavity.

2.6.1 Entropy of a Discrete Random Variable

Let A be a discrete random variable on a �nite set {a1, a2, ..., an} with probabilities

p(ai) = Pr(A = ai). The Shannon entropy Hn(p1, p2, ..., pn) = H(A) of the random

variable A is de�ned as H(A) = =
∑
i

p(ai)log p(ai). The convention 0log0 = 0 is

adopted in the de�nition. The logarithm is usually taken to the base 2, in which case

the entropy is measured in �bits,� or to the base e, in which case H(X) is measured

in �nats.�

2.6.2 Relative Entropy

Kullback�Leibler Divergence[3] or Information Divergence or Information Gain or

Relative Entropy H(A‖B) is a non-symmetric measure of the di�erence between two

probability distributions PA and PB on the same set of events ai = bi = ei, 1 ≤ i ≤ n.

It measures the expected number of extra bits required to code samples from PA

when using a code based on PB, rather than using a code based on PA. H(A‖B) =
n∑
i=1

PA(ei)[log PA(ei) - log PB(ei)] =
n∑
i=1

PA(ei) log
PA(ei)
PB(ei)

= - H(A) -
n∑
i=1

PA(ei).log PB(ei)

= H(PA, PB) - H(A) where H(PA, PB) = -
n∑
i=1

PA(ei).log PB(ei) is called the Cross

Entropy.

7



2.6.2.1 Properties

1. H(A‖A) = 0 and H(A‖B) ≥ 0

Proof: We need to prove only the second part. Since - log x ≥ 1
ln2

(1 - x ) for x > 0,

H(A‖B) =
n∑
i=1

PA(ei) log
PA(ei)
PB(ei)

≥
n∑
i=1

PA(ei)
1−PA(ei)

PB(ei)

ln2
=

n∑
i=1

[PA(ei)−PB(ei)]
ln2

= 0

Corollary. log(n) is the maximal entropy and it happens only for the uniform

distribution.

Proof: Consider the uniform probabilities PB(ei) = 1
n
. Then, H(B) = log(n) and from

above we get H(A‖B) = - H(A) + log n ≥0 ⇒H(A) ≤log (n). So any probability

distribution that is not uniform is not going to have maximal entropy.

2.7 Characterization of Entropy Function and Unique-

ness as a Consequence

The Shannon entropy satis�es the following properties[5].

1. For any n, Hn(p1, p2, ..., pn) is a continuous and symmetric function on vari-

ables p1, p2, ..., pn, i.e, Hn(pσ(1), pσ(2), ..., pσ(n)) = Hn(p1, p2, ..., pn) for any

permutation σ of indices.

2. Event of probability zero does not contribute to the entropy, i.e.∀n,

Hn+1(p1,p2, ..., pn, 0) = Hn(p1,p2, ..., pn).

8



3. Entropy is maximized when the probability distribution is uniform, i.e, ∀n,

Hn(p1,p2, ..., pn)≤Hn( 1n ,
1
n
, ..., 1

n
). This follows from Jensen inequality, H(A)

= E[log(1/p(A)]≤log(E[1/p(A)] = log(n).

4. If pij≥0, 1≤i≤m, 1≤j≤n where
n∑
j=1

pij =1 and qi=
n∑
j=1

pij, then Hmn(p11, ...,

pmn) = Hm(q1, q2, ..., qm) +
n∑
j=1

qi Hn(
pi1
qi
, pi2

qi
, ..., pin

qi
). If we partition the

mn outcomes of the random experiment into m groups, each group contains n

elements, we can do the experiment in two steps: �rst determine the group to

which the actual outcome belongs to and second �nd the outcome in this group.

The probability that you will observe group i is qi. The conditional probability

distribution of given group i is (pi1
qi
, pi2
qi
, ..., pin

qi
) . The entropy Hn(

pi1
qi
, pi2
qi
, ..., pin

qi
)

is the entropy of the probability distribution conditioned on group i. Property

4 says that the total information is the sum of the information you gain in the

�rst step, Hm(q1, q2, ..., qm), and a weighted sum of the entropies conditioned

on each group. A. I. Khinchin in 1957 showed that the only function satisfying

the above assumptions is of the form: H(A) = - k
∑
i

pilog pi; where k is a

positive constant, essentially a choice of unit of measure.

2.8 Barycentric Subdivision [7]

Creating a barycentric subdivision is a recursive process. In dimension one, start with

an interval; the mid-point of an interval cuts the interval into two intervals, giving a

barycentric subdivision in one dimension. In dimension two, we start with a triangle,

9



subdivide each side at its mid-point to obtain its barycentric subdivision and then

draw lines from the centre of the triangle to the mid-points and to the corners. This

cuts the triangle into 6 smaller triangles, giving the barycentric subdivision of the

triangle. Note that each of the smaller triangles is itself a simplex in dimension two.

Given a pyramid in dimension three, subdivide each triangular face as above, then

draw walls from the center of the pyramid to the lines that subdivide each triangular

face. In general, an n-simplex is cut in this way into (n+1)! smaller simplexes of the

same dimension giving the barycentric subdivision of the n - simplex.

10



CHAPTER 3

BAYESIAN ORDER[9]

Consider a point (state) −→x = (x1, x2, ..., xn+1) ε 4n+1 as the probabilities PX(ai)

= xi for an experiment with the possible outcomes {a1, a2, ..., an+1}. Given that

the outcome {ai} has not occured in a particular experiment (hence xi < 1), we

can update the probabilities of other aj as : PX({aj} | ¬{ai}) = Prob(aj∩(¬{ai}))
Prob(¬{ai}) =

Prob(aj)

Prob(¬{ai}) =
xj

1−xi , following Bayes' Rule. This leads us to the de�nition pi : ∆n+1 \

{ei}→ ∆n , where pi(
−→x ) = 1

1−xi (x1, ..., xi−1, xi+1, ..., xn+1) ε ∆n. These mappings

pi are called Bayesian Projections and they lead one to the following partial order

on 4n+1.

3.1 De�nition of Bayesian Order

For −→x , −→y ε∆2, x v y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) ... (1)

The ordering (1) is derived from the graph of Shannon entropy H as follows:

For −→x , −→y ε 4n+1, n≥2, xvy ≡ (∀i)(x, y ε dom(pi) ⇒ pi(x) v pi(y)) ... (2)

The relation v on 4n+1 is called the Bayesian order.

11



For the next few sections, we shall denote −→x just by 'x'.

To motivate (2), if x v y, then observer x has more equidistribution than observer

y. If something transpires which enables each observer to rule out exactly ei as a

possible state of the system, then the �rst now knows pi(x) while the second knows

pi(y).

Example One can actually see from Fig. 5 that p1(x) and p1(x') are on the opposite

sides of (1/2, 1/2) the bottom element of 42. So, they are not comparable. In fact

we will �nd out later that, for two di�erent points in 43 to be comparable, they have

to belong to the same barycentric subdivision of the simplex 43 (4n, in general).

3.1.1 Proposition

There is a unique partial order on 42 which has ⊥ .=(1/2, 1/2) and satis�es the

mixing law x v y and p ε [0, 1] ⇒ x v (1 - p)x + py v y . It is the Bayesian order

on classical two states. The least element in a poset is denoted ⊥, when it exists.

12



3.1.2 Observation

(∆n,v) is a dcpo with maximal elements max(∆n) = {ei : 1 ≤ i ≤ n} and least

element ⊥ = (1/n, . . . , 1/n). The next theorem shows that the Bayesian order v

can also be described in a more direct manner, called the symmetric characterization.

Let S(n) denote the group of permutations on {1, . . . , n} and Λn := {x ε 4n : (∀i

< n) xi ≥ xi+1} denote the collection of monotone classical states.

3.1.3 Theorem

For x, y ε 4n, we have x v y i� there is a permutation σ ε S(n) such that

13



x Â·σ, y Â· σ εΛn and (x Â· σ)i(y Â· σ)i+1 ≤ (xÂ· σ)i+1(y Â· σ)i ∀ i with 1 ≤ i < n.

It is important to note here that there is nothing special about σ ε S(n). This

inequality needs to be satis�ed for any pair of points in Λn to be in Bayesian Order

and it is immaterial which permutation takes the original pair of points x, y ε 4n to

Λn. So, σ ε S(n) is just a representative of any common permutation among possible

permutations {σ−→x : −→x.σ ε Λn} and {σ−→y : −→y.σ ε Λn}.

Thus, the Bayesian order is order isomorphic to n! many copies of Λn identi�ed

along their common boundaries. This fact, together with the pictures of ^x and

_x at representative states x will give a good feel for the geometric nature of the

Bayesian order.

3.2 Lemma

Consider 4n with the Bayesian order. Each −→y ε (Λn)o, has an approximation, where

(Λn)o = := {−→x ε 4n : (∀i < n) xi > xi+1} denote the collection of strictly monotone

classical states. .

Proof :

Let −→w (k)−→−→w −→y ≤−→w ε (Λn)oand −→x = (1-t)−→y + t⊥, 0 < t < 1. Now from Symmetric

Characterization of Bayesian Order,

yiwi+1 ≤ yi+1wi ∀ i with 1 ≤ i < n.

Now, ∀ i with 1 ≤ i < n : xiwi+1 = [(1-t) yi+t ( 1n)]wi+1

14



= (1-t) yi wi+1 + t ( 1
n
)wi+1 ≤(1-t) yi+1wi + t ( 1

n
)wi+1

[Using the given condition yiwi+1 ≤ yi+1wi ]

< (1-t) yi+1wi + t ( 1
n
)wi [Using the fact that −→w ε (Λn)o whence wi+1< wi ]

= xi+1wi . Thus, xiwi+1 < xi+1wi .

⇒ ∀ ε > 0, ∃ N such that | xiw(k)
i+1 − xiwi+1 |< ε

2
& | xi+1w

(k)
i − xi+1wi |< ε

2
, k≥N

⇒ ∃ N such that xiw
(k)
i+1 ≤xi+1w

(k)
i , k≥N

⇒ ∃ N such that −→x v −→w (k), k≥N.

15



3.2.1 Observations

The lemma works for −→y ε (Λ3)o, −→x = (1-t)−→y + t⊥ and −→y ≤−→w ε (Λ3)\ {two closed

boundary lines ⊥ to e1 and ⊥ to (e1 + e2)/2} in the barycentric subdivision. The

bottom element ⊥ is special to the proof, in the sense, that if we replace ⊥ by −→z

= (z1, z2, ..., zn)6=⊥ the proof fails because we no longer have zi = 1/n for all i.

16
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CHAPTER 4

MAJORIZATION [6]

We begin by introducing the theory of majorization, a mathematical relation that

has recently been shown to have applications to quantum information theory. Ma-

jorization constraints have been shown to govern transformations of quantum en-

tanglement, to restrict the spectra of separable quantum states, and to characterize

how quantum states change as a result of mixing or measurement. It has even been

suggested that all e�cient quantum algorithms must respect a majorization principle.

4.1 De�nition and Motivation

From the historic perspective, the concept of Majorization evolved in Economics

out of the need to quantify or have a measure for Distribution in Wealth in a �xed

population over a period of time with the assumption that wealth of the entire pop-

ulation also remains �xed. If the total wealth is not �xed, we can normalize the

wealth of each person in a population by the total wealth of that population, so

that the sum of the ratios of wealth is one in both populations. Now suppose the

richest person in the �rst person is richer than the richest person in the second pop-

18



ulation, the combined wealth of the two richest persons in the �rst population is

more than the combiined wealth of the two richest persosn in the second popula-

tion (higher entropy) and so on. Then, it is but natural to argue that the second

population has more equi-distribution of wealth than the �rst one and hence better.

Fig. 10 shows that given a −→y in ∆2, the set −→x : −→x≺−→y is the convex hull of

the set of all vectors obtained by permutation of the co-ordinates of −→y . Intuitively,

if −→x and −→y are probability vectors such that −→x≺−→y (≺ means less than or equal

to in majorization order), then −→x describes a more equidistribution than does −→y .

For example, in R2, we have that (0.5, 0.5)≺ (0.8, 0.2) and (0.5, 0.5)≺ (0.2, 0.8). In

fact, (0.5, 0.5) is majorized by every vector in R2 whose components sum to unity.

In particular '≺' is a preorder ((0.8, 0.2)≺ (0.2, 0.8)≺ (0.8, 0.2)). But in a later

section, we will de�ne such an order that will help eradicate this issue and actually

give us a partial order instead of just a preorder.
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4.1.1 De�nition

Let −→x = (x1, ..., xd) and
−→y = (y1, ..., yd) ε Rd. We will be most interested in

the case where x and y are are d-dimensional probability vectors; in other words,

their components are nonnegative and sum to unity. However, for most results in the

theory of majorization, this restriction is not needed. Let x↓ denote the d-dimensional

vector obtained by arranging the components of x in non-increasing order: −→x ↓ =

(x↓1,..., x
↓
d), where x

↓
1≥x

↓
2≥...≥x

↓
d. Then we say that x is majorized by y, written

−→x≺−→y , if the following relation holds:
j∑
i=1

x↓i≤
j∑
i=1

y↓i (1≤ j ≤ d) (Note that for classical

probability states we also have
d∑
i=1

x↓i=
d∑
i=1

y↓i=1).

4.1.2 T-transformations

A linear map T : Rd → Rd is a T-transformation if ∃ 0 ≤ t ≤ 1, indices j, k and

T(−→y ) = (y1, y2, ..., yj−1, tyj+(1-t)yk, yj+1, ..., (1-t)yj+ tyk, yk+1, ..., yd).

The T-transform for t = 1/2, d = 3, j = 2 and k = 3 takes, for example, (0.4, 0.4,

0.2) to (0.4, 0.3, 0.3). It is not hard to see that if −→y ε Λ3 and 0 < t < 1, then T(−→y )

≺ −→y . Note that for t = 1, T is an identity transformation and for t = 0, T is a

permutation with yj and yk interchanged.

4.1.3 Theorem [6]:

Let −→x , −→y ε Rd, then, −→x≺ −→y ⇐⇒ −→x can be obtained from −→y by a �nite number

of T-transforms.

In fact it can also be shown that such �nite composition of T-transforms is what
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is called a doubly stochastic matrix, the row sums and column sums for each row

and column being one. It is pertinent to note that such matrices have already been

characterized and so the theory of majorization gets a giant leap in that regard while

applying to partial orders.

4.2 Upper Sets of a Generic Point in Λ3 under Ma-

jorization Order

Let −→x = (x1, x2, x3) be a generic point in the barycentric subdivision Λ3 under
Majorization Order.

� Fix x1 and try see a line of points (y1, y2, y3) where:

1. y1= x1;

2. y1+ y2≥ x1+ x2;

3. y1+ y2+ y3 = x1+ x2 + x3 = 1;

4.2.1 Conclusion Keeping First Co-ordinate Fixed

Clearly this line is parallel to the boundary where x1= 0

� Fix x3 and try see a line of points (y1, y2, y3)

where:

1. y3= x3;

2. y1 ≥ x1;

3. y1+ y2≥ x1+ x2;

4. y1+ y2+ y3 = x1+ x2 + x3 = 1;
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4.2.2 Conclusion Keeping Third Co-ordinate Fixed

Clearly this line is parallel to the boundary where x3= 0. But this line ends as it is

intercepted by a line equidistant from two extreme points and passing through one

of them. The point where it ends has a co-ordinate (1 - 2 x3, x3, x3). And from here

on, really the order goes up to (1, 0, 0), both the 2nd and 3rd co-ordinate diminishing

equally and 1st co-ordinate rising to highest value one.

4.3 Theorem

Consider 4n with the Majorization order. Then −→y ε (Λn)o has an approximation.
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Proof : (We use v in place of ≺ in this proof to simplify notation)

Let −→x = (1-t)−→y + t⊥, 0 < t < 1 and −→w (k) is an increasing chain with

t↑−→w (k) = −→w w −→y where −→w (k), −→wε(Λn)o. For 0 ≤ j ≤ n,
j∑
i=1

xi ≤
j∑
i=1

[(1-t) yi + t ( 1
n
)] ≤

j∑
i=1

[(1-t) wi + t ( 1
n
)] = (1-t)

j∑
i=1

wi + t ( j
n
).

We show j
n
<

j∑
i=1

wi. Suppose not. Then,
j
n
≥

j∑
i=1

wi. ⇒wj < 1
n

⇒1 =
n∑
i=1

wi =
j∑
i=1

wi +
n∑

i=j+1

wi <
j
n
+ n−j

n
(since wi > wi+1, 0 ≤ i < n) = 1

=⇒⇐= contradiction.

So indeed we have :
j∑
i=1

xi≤(1-t)
j∑
i=1

wi + t ( j
n
) < (1-t)

j∑
i=1

wi + t
j∑
i=1

wi =
j∑
i=1

wi

So, −→xv −→w (k) ∀ k ≥ N for some N > 0. Hence −→x�−→y . The last lemma clearly

implies that Λn under Majorization Order is a continuous dcpo.

4.4 Unrestricted (Classical) Majorization Order

In this order, we drop the assumption that there has to always be a common permu-

tation σ ε S(n) such that ∀ −→x , −→y ε 4n, the permuted states −→x.σ, −→y.σ ε Λn. In this

case, clearly, for 43, the bottom element is (0, 0, 1) and the top element is (1, 0, 0).

4.4.1 Upper Sets in 43 under Unrestricted Majorization Order.

The upper sets of a generic point in 43 under unrestricted majorization order are lot

di�erent in the sense that the bottom element is changed now to e3 and the elements

in di�erent subdivisions can now easily be compared because we lift the restriction
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of the existence of a common permutation which has to take a pair of states to the

smaller subset of classical monotone states. This is much general and comes in right

from the perspective of �Unequal Distribution of Wealth� which I have talked about

in the beginning of this chapter.

4.5 Theorem

−→x≺−→y ⇒ H(−→x )≥ H(−→y )

Proof : By Theorem 5.1.2, it is enough to prove the above where −→x = T(−→y ) for a

T-transform. Now, to prove −→x = T(−→y )⇒ H(−→x )≥ H(−→y ), we seek resort to the fact

that entropy is a concave function. Now, let −→y = (y1, y2, ..., yj−1, yj, ..., yk, yk+1,
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..., yd) and let −→w = (w1, w2, ..., wj−1, wj, ..., wk, wk+1, ..., wd) So, ∃ 0 ≤ t ≤ 1, and

indices j, k such that:

−→x = T(−→y ) = (y1, y2,..., yj−1, tyj+(1-t)yk, yj+1, ..., (1-t)yj+tyk, yk+1, ..., yd)

= t−→y + (1-t)−→w . Now from concavity of Shannon entropy, the inequality is trivial.
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CHAPTER 5

THE RESTRICTED STOCHASTIC

ORDER

We again start with the classical probability states ∆n = {→xε[0, 1]n :
n∑
i=1

xi = 1},

n≥2 where
→
x= (x1, x2, x3, ..., xn) =

n∑
i=1

xi
→
ei. Let V (∆n) := {e1, e2, ...,en} denote

the standard basis of unit vectors in Rn. Note that V (∆n) is the set of vertices or

extreme points of the simplex ∆n. We will denote them from now on as En. We

may alternatively identify a standard basis vector ei with the point measure δei and

a classical n-state (x1, x2, x3, ..., xn) with the probability measure
n∑
i=1

xiδei on En,

and we pass freely between the two characterizations. We denote by βV (∆n) or

equivalently P ∗En the set of vertices of the barycentric subdivision of the simplex

∆n. These points are obtained by taking any non-empty subset J ⊆{1, 2, ..., n}

and setting eJ =
∑
jεJ

( 1
|J |)ej ε4

n. We de�ne a partial order on the set βV (∆n) (or

equivalently P ∗En) by eI veJ i� I⊇J. Note that e{i} = ei. We �x n and denote∆n, En

and P ∗En simply by4, E and P ∗E respectively. We will now take the example of E3

and show the partial ordering of its subsets and how it is a probabilistic powerdomain.

This helps us de�ne Stochastic Order on entire ∆3.
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5.1 Hasse Diagram for P ∗E3

Let {x, y, z} be a �nite set with three elements. Then the subsets of {x, y, z} form

a partial order. If x, y, z are identi�ed with E3, then every subset of {x, y, z} can

be ideni�ed with the corresponding barycentre in the barycentric subdivision of ∆3.

5.2 Construction of Probabilistic Power Domain

Consider the set P ∗E of all nonempty subsets of E ordered by reverse inclusion: F1 v

F2 i� F1 ⊇ F2. We view P ∗E as the free meet-semilattice on E (the meet operation

being union), where we identify E with the singleton subsets. The probabilistic power

domain P1(P
∗E) on P ∗E can then be identied with the set of all probability measures
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on P ∗E equipped with the stochastic − order: µ ≤ ν if and only if µ(U)≤ν(U) for

every upper set U in P ∗E. We de�ne a map β: P1(P
∗E)→4 by taking the unique

convex extension of the restriction of β to P ∗E, where β is de�ned for F ε P ∗E by

β(F ) =
∑
eεF

1
k
δe, where k = | F |. Since β carries the singleton subset {ei} ε P ∗E to

δei , the image of β is a convex set containing the set of extreme points of 4. We

thus have:

5.2.1 Lemma

The map β is surjective.

Any member of P1(P
∗E) is a convex sum of point measures of P ∗E. The support of

µconsists of all points for which the coe�cient in the convex sum is nonzero. We are

particularly interested in those probability measures on P ∗E for which the support

is a chain: P̃1(P
∗E):= {µε P1(P

∗E) : supp is a chain}.

5.2.2 Proposition

The restriction of β to P̃1(P
∗E) is a bijection from P̃1(P

∗E) to 4

Proof : Every element of 43 (or 4n) can be written uniquely as a convex combina-

tion of the vertices of the barycentric subsimplex in which it lies. That these vertices

form a maximal chain in (P ∗E) is a standard fact of simplicial geometry.

The next section shows that we improved our order one step towards obtaining

the Entropy Reversing Property (ERP) and and also the space of probability distri-

butions has also been reduced to only the monotone classical states.
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5.3 Connection between Unrestricted Majorization

Order and Stochastic Order

Consider the map from Θ : 43(under unrestricted majorization)→ Λ3(under stochas-

tic order) de�ned by :

(w1, w2, w3) 7→ w1δe1 + w2δe{1,2} + w3δe{1,2,3}

One can easily see that this is an order isomorphism. So, we have got hold of an

order whereby we can restrict our computations only to the classical monotone states

and still get hold of a continuous domain.
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CHAPTER 6

VERIFICATION OF CLOSEDNESS

OF THREE ORDERS

It is of utmost importance to Computer Science, speci�cally in Semantics that the

computational limit exists in every directed set of a partial order. Indeed we will show

here for the three orders described above : namely, Bayesian Order, Majorization

Order and Stochastic Order, the supremum exists for every directed set.

6.1 Lemma

The Bayesian Order, Majorization Order and Stochastic Order are all closed, i.e.,

the set {(x, y) : x ≤ y} is closed in 4n × 4n}.

Let (Λn)o = {−→x εΛn: x1 > x2 > ... > xn}. The next lemma shows that elements

on the (open) line segment between ⊥ and −→y are almost approximating elements of

−→y . The lemma is veri�ed with all the three di�erent orders that have been de�ned

in previous chapters and the techniques for proof have also been shown in rigorous

details.
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6.2 Closedness in Bayesian Order

First we test closedness in Λn. Let us take two sequences in ~x(k)and ~y(k) ε Λn where

~x(k) ≤~y(k) such that ~x(k) → ~x and ~y(k) → ~y. Let us use the symmetric characterization

of the Bayesian Order : ~x(k) ≤~y(k)⇔x(k)i y
(k)
i+1 ≤ x

(k)
i+1y

(k)
i ∀ i with 1 ≤ i < n. Since,

~x(k) → ~x and ~y(k) → ~y,the convergence is co-ordinate wise, i.e, x(k)i → xi and

y
(k)
i → yi. Now we use the fact that convergence is preserved under product. So,

xiyi+1 ≤ xi+1yiin the limit ∀ i with 1 ≤ i < n⇔~x ≤ ~y . Now, we extend this to entire

4n. Let us take two sequences in ~x(k)and ~y(k) ε 4n where −→x.σ(k)≤ −→y.σ(k), where we

implicitly assume σ is the common permutation which takes both ~x(k)and ~y(k)in Λn.

Now from our earlier argument, −→x.σ≤ −→y.σas the convergence is taking place in Λn.

Now, we just take the inverse permutation to get ~x ≤ ~y.

6.3 Closedness in Majorization Order

First we test closedness in Λn. Let us take two sequences in ~x(k)and ~y(k) ε Λn :

~x(k) ≺~y(k) such that ~x(k) → ~x and ~y(k) → ~y. Then we say that x is majorized by

y, written x≺ y, if
j∑
i=1

x
(k)
i ≤

j∑
i=1

y
(k)
i (1≤ j ≤ n) and

n∑
i=1

x
(k)
i =

n∑
i=1

y
(k)
i = 1 Again, taking

limit on both sides of the inequality, as convergence is co-ordinate wise, we have :
j∑
i=1

xi≤
j∑
i=1

yi(1≤ j ≤ n) and
n∑
i=1

xi =
n∑
i=1

yi = 1. So, ~x ≺~y and hence the majorization

order is closed in Λn. We apply the same argument as in case of Bayesian Order

in extending the closed order from Λn to 4n. We take the common permutation σ

which takes both ~x(k)and ~y(k) ε4nto Λn. Let the new sequences be −→x.σ(k)and −→y.σ(k).

31



So,
l∑

i=1

−→x.σ(k)
i ≤

l∑
i=1

−→x.σ(k)
i (1≤ l ≤ n) and

n∑
i=1

−→x.σ(k)
i =

n∑
i=1

−→x.σ(k)
i = 1 Now from our earlier

argument, −→x.σ≺ −→y.σas the convergence is taking place in Λn. Just taking the inverse

permutation, we get ~x ≺ ~y.

6.4 Closedness in Stochastic Order

This is a known result. [10]

6.5 Lemma

1. Both Orders are invariant under permutations, i.e, ~x ≤ ~y ⇐⇒−→x.σ≺ −→y.σ where

σεS(n)

2. Permutation gives bijections among Barycentric Subdivisions, i.e, given a �xed

Barycentric Subdivision, there is a one to one correspondence between every

σεS(n) and the Barycentric Subdivision which it maps to.

3. The maximal elements are the unit vectors {ei}iε{1,2,...,n}and the smallest ele-

ment is the uniform element ⊥ = ( 1
n
, 1
n
, ..., 1

n
).
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CHAPTER 7

QUANTUM MECHANICS AS A

THEORY OF PROBABILITY[11]

7.1 Introduction

� We develop that the Hilbert Space formalism of Quantum Mechanics is a new

theory of probability.

� The theory like its classical counterpart, consists of an algebra of events and

probability measure de�ned on it.

� The steps of the construction are given herein :

1. Axioms for the algebra of events are introduced following Birkho� and von

Neumann. All axioms except the one that expresses the uncertainty pronciple,

are shared with the classical event space. The only models for the set of axioms

are lattices of closed subspaces of inner product spaces over a �eld K.

2. Another axiom due to Solèr forces K to be the �eld of real or complex numbers

or the quarternions.
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3. Gleason's Theorem fully characterizes the probability measure on the ablgebra

of events, so that Born's Rule is derived.

7.2 The Axioms

For this we have to make the underlying Hilbert Space as a Lattice structure (L,0,1,≤,

∪, ∩). Let the closed subspaces be events named as x,y,z, etc and let x∪y denote the

closure of the union of two subspaces x and y and x∩y as the intersection of two such

events, x⊥as the orthogonal complement of the closed subset x. Let the certain event

be 1 and null event as 0. Then we can de�ne a probability measure on the closed

subspaces of the Hilbert Spaces which are now events. Let them follow axioms :

1. x≤x (Re�exivity )

2. If x≤y and y≤z , then, x≤z (Transitivity )

3. If x≤y and y≤x, then x = y (Anti-Symmetry )

4. 0≤x ≤1

5. x∩y ≤x and x∩y ≤y and ∀ z≤x & z≤y , we have z≤ x∩y

6. x≤x∪y and y≤x∪y and ∀ x≤z & y≤z , we have x∪y≤z

7. (x⊥)⊥= x

8. x∩x⊥ = 0 and x∪x⊥ = 1
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9. x≤y ⇒y⊥≤x⊥

10. If x≤y , then, y = x ∪(y∩x⊥) (Orthomodularity)

11. If x≤z , then, x ∪(y∩z) = (x∪y)∩z (Modularity )

12. If x�y , then, ∃ an atom p such that p≤y and p�x. Here, by atom we mean

an element 06=p ε L such that x≤p entails x = 0 or x = p (Atomism). If for

atom p and event x we have x∩p = 0, then , x≤y≤x∪p ⇒ y = x or y = x∪p

(Covering Property).

The �rst 11 axioms are true in classical system of propositional logic or more precisely

Lindenbaum-Tarski algebra of such a logic, when we interpret the operations as

logical connectives. Atomism and covering property are introduced to ensure that

every element of the lattice is a union of atoms. The atoms whose existence is

guaranteed by axiom 12 are maximally informative propositions. In classical case

they correspond to points in the phase space whereas in the quantum case, they

correspond to one-dimensional subspaces of the Hilbert Space.

7.3 Isomorphism with Lattice of Closed Subspaces

� There is a division ring K(�eld whose product is not necessarily commutative),

with an involutional automorphism * : K →K, i.e, ∀α,β εK, we have α∗∗=α,

35



(α + β)∗= α∗ + β∗, (αβ)∗= β∗α∗

� There is a left vector space V over K

� There is a Hermitian form < , > : V×V →K satisfying ∀u, v, w εV and α, β

εK,

1. <αu+ βv,w> = α<u,w> + β<v,w>

2. <u,αv + βw> = <u,v>α∗ + <u,w>β∗

3. <u,v> = <v,u >∗

4. <u,u > = 0 ⇔u = 0

7.4 Solèr's Theorem

If L is in�nite dimensional and satis�es SO (If x and y are orthogonal atoms, then

there is a z≤x∪y such that w = H(z; x, y) is orthogonal to z, i.e, w = z⊥∩(x∪y).

Intuitively, such a z bisects the angle between x and y, that de�nes
√

2 in the �eld

K. The extra axiom connects Projective Geometry concept (Harmonic Conjugation)

to the orthogonality structure. ), then K is R or C or the quarternions.
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7.5 Born's Rule

Given a probability function on a space of dimension≥3, ∃ an Hermitian non-negative

operator W on H, whose trace is unity such that P(x) = < x, Wx > for all atoms x

εL , where < , > is the inner product and x is the unit vector along the ray it spans.

In particular, if some x0εL satis�es P(x0) = 1, then P(x) = |< x0,x >|2∀ x εL.

7.6 Alternative Approach of de�ning Partial Order

Instead of de�ning Spectral Order[9] on density operators on Quantum states, we

can now de�ne a partial order on the closed subspaces of the actual Quantum states.

It is pertinent to note at this point that our intuition for de�ning such a partial

order is for the sole reason of measuring how entangled two or more states are. This

stems from the fact that we always start with an entangled state in the EMC model

which has been proven to be a universal mode for Measurement Calculus of Quantum

Computation[12].
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CHAPTER 8

FUTURE DIRECTION OF WORK

We are planning to de�ne Majorization Order and Stochastic Order on Quantum

States of Density Operators of States (vectors in Hilbert Space) by creating a Barycen-

tric Subdivision of that by the aforementioned technique of creating Quntum Events

and looking at atoms for extreme points (pure states) with a vision to make it a

continuous dcpo. This will need to be validated with Birkho� and von Neumann

Logic and can generate a very powerful semantics for Quantum Computation. This

is again in connection to the Spectral Order de�ned on Quantum States by Coecke

and Martin in their paper "Partial Order on Classical and Quantum States" (2003)

based on von Neumann entropy. Instead of looking into the spectrum of the density

operators, we want to look into the simplex of all possible density operators based

on construction probabilistic powerdomain on density operators for atoms and then

assign weights to the barycenters (subsets of the set of atoms) to get a handle on all

density operators.
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