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Abstract

Delay Tolerant Networks are wireless networks that have sporadic network connectivity,

thus rendering the existence of instantaneous end-to-end paths from a source to a destina-

tion difficult or impossible. Hence, in such networks, message delivery relies heavily on the

store-and-forward paradigm to route messages. However, limited knowledge of the contact

times between the nodes poses a big challenge to effective forwarding of messages.

In this thesis, we discuss several aspects of routing in DTNs and present one algorithm and

three variants for addressing the routing problem in DTNs: (i) the Look-ahead Protocol, in

which the forwarding decision at each node to its immediate or one-hop neighbor is based

on the position of the packet / message in the queue of the neighboring node(ii) Backpres-

sure based lookahead, where a lookahead factor is introduced with the basic backpressure

equation. This factor takes into account the difference of queue lengths from the neighbors,

(iii) a two-step lookahead protocol, where the forwarding decision is sometimes based on

the instantaneous one-hop neighbors of the neighboring node.

We also present simulation results of these protocols and compare these results to the

existing standard routing protocols for DTNs. In all the algorithms, we look to opti-

mize the amount of network bandwidth used by looking one step ahead before making a

forwarding decision. By considering the queue in the neighboring nodes, the amount of

network resources consumed decreases. The protocols that we propose may come with a

slightly higher hop-count per packet than most protocols, but we have tried to maintain a

comparable delivery ratio with the existing standard protocols.

vi



Chapter 1

Introduction

The pervasive nature of wireless communications in the present day communication sce-

nario has seen a rapid rise in heterogeneous networks. A heterogeneous network is defined

as a network that connects computers and other devices which run different operating

systems and operate on diverse communication protocols or access technologies. For ex-

ample, a wireless network that provides a service through wireless LAN and is able to

maintain its service when switching to a cellular network is a good example of a wireless

heterogeneous network. Some heterogeneous networks that operate in mobile or extreme

terrestrial environments lack continuous network connectivity. Delay Tolerant Networking

is an approach that seeks to address the issues that render communication in heterogeneous

networks difficult [22].

The advent of wireless protocols and their increased use in common communication envi-

ronments invigorated research in the field of mobile ad-hoc networking (MANETs) and ve-

hicular ad-hoc networks. The motivation and necessity for a Delay Tolerant Network(DTN)
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was first discussed by Kevin Fall [7]. Since then, there has been a tremendous amount of

research in making DTNs more suitable for usage in real world scenarios [22].

1.1 Challenges with Routing in DTNs

The ability to successfully route data from a source to a destination is a fundamental

property desired in any communication protocol. DTNs are characterized by their lack of

connectivity, thus a lack of instantaneous end-to-end paths. Traditional routing protocols

like Optimized Link State Routing Protocol (OLSR) [10] and Ad-hoc On Demand Distance

Vector Routing (AODV) [16] rely on the existence of end-to-end paths between source and

destination. These protocols use deterministic routing approaches which perform well when

the routes are known a priori. They first establish a complete route and then forward the

actual data.

Consider the sample DTN as shown in Figure 1.1. If D has a packet to send to B, there is

no path from D to B. However, at T4, the packet can be forwarded to B by C if D forwards

the packet to C in T1. An important consideration here is a prediction by D about its

probability of meeting C.

In a disconnected network like in the case of DTNs, end-to-end paths are difficult or

impossible to establish. This established a need for a new approach to routing, that works

around the limitation of a lack of instantaneous end-to-end paths.
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Figure 1.1: Sample DTN Scenario

1.2 Approaches to Routing in DTNs

In DTNs, opportunistic routing protocols are used. The concept of opportunistic routing is

well-suited to mobile networks where there are significant disruptions to node availability.

These protocols use redundancy among the nodes. They use the node that is available

for routing at the time of transmission as opposed to pre-defined routes from source to

destination. The forwarding decision is made by the protocol that is employed for rout-

ing. These protocols use the store-and-forward approach where data is stored and moved

through the network incrementally, in the hope that the data will eventually reach the

destination.
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The most basic form of opportunistic routing is Epidemic dissemination [21]. This protocol

preceded many other protocols proposed to address the issues of routing in DTNs.

In most protocols, there are multiple copies of the message present in the network, which

increases the probability that the message is delivered to its destination and reduces delay.

However, these protocols are expensive when the local storage and inter-node bandwidth

are both limited. When the local storage and the inter-node throughput are more tightly

constrained, more discriminate algorithms are needed. Therefore, while designing a routing

protocol for a delay tolerant network, the important considerations must be

• The number of copies that are distributed in the network for each message

• The selection of nodes to which the message is replicated and forwarded

Routing in delay tolerant networks is seen as a trade-off between the message delivery

ratio, the network overhead and the delivery delay in the network.

1.3 Our Contribution

In this thesis, we propose a new opportunistic routing protocol for DTNs and three variants

of the protocol. This protocol uses just one copy of the packet in the network for routing

instead of multiple copies. We analyze the problems of routing on homogeneous and

heterogeneous environments. The protocol and its variants that we propose try to reduce

the cost of delivering messages to their destination. The basic features of the protocols are

the following:
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• We propose a look-ahead factor in the protocols. This factor takes into account the

number of packets with greater priority in the queues of the neighboring nodes and

the position of the current packet in the queue of the neighbor. None of the preceding

protocols have a lookahead property in them. In this protocol and its variants, there

is only one copy of the message in the network as opposed to the multiple copies as

with the other opportunistic protocols.

• The first variant of the protocol is one in which, depending on the queue information

received, the neighbors are placed into discrete buckets. From the bucket of least

value, a node is picked randomly. We call this the Random Look-ahead Protocol.

• We propose another variant of the Lookahead protocol. In this variant, we check if

the destination of the packet is a one-hop neighbor of one of the neighbors. In other

words, we check if the final destination of a packet is two-hops from the current node.

• A third variant is the Backpressure Look-ahead protocol. The Backpressure Collec-

tion Protocol [15] is one of the recent protocols that has been proposed for routing in

sensor networks. To the native Backpressure equation that deals with the difference

in queue lengths of two nodes and the Packet Reception Rate (PRR) between the

two, we add a new factor, LA (for lookahead).

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 discusses the previous work that led to this

thesis. Chapter 3 explains the Look-ahead protocol and its variants. Chapter 4 gives

the simulation results and discusses the behavior of the protocol. Chapter 5 looks at the

conclusions and the future work that can be done to improve the protocol.
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Chapter 2

Related Work

More than a decade has passed since Kevin Fall [7] discussed the need for DTNs. The

primary focus of the research on DTNs has been the routing problem. There has been a

lot of work done to handle the intermittent connectivity between the nodes in a DTN and

provide for successful and efficient delivery of messages.

2.1 Classification of Routing Protocols for DTNs

2.1.1 Classification Based on the Knowledge Available at Nodes

The routing protocols for DTNs can be classified based on the knowledge of the network

available at the nodes. Figure 2.1 gives a good representation of the categories of routing

protocol based on the knowledge of the network available at the node.
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Figure 2.1: Classification of DTN Routing Protocols based on Knowledge of Network at
the Nodes [3]

In some studies, it is assumed that each node in the network has absolute knowledge of

node meeting times and durations. Based on this knowledge, messages were routed from

a source to a destination using pre-determined paths. This type of routing is called as

deterministic routing.

However, in DTNs, due to sporadic connectivity between the nodes, deterministic infor-

mation about a path from a source to a destination is not available. There are a significant

number of studies that assume zero knowledge of a pre-determined path between a source

and destination. Epidemic Routing [21], Prophet Router [14], Spray and Wait [19] are some

examples of non-deterministic or opportunistic protocols. Some of the protocols randomly

forward the messages to neighboring nodes while some of the protocols use some decision

making to choose the nodes to which the messages are forwarded.

2.1.2 Classification Based on Number of Carriers

In some DTN routing protocols, there is only one node that carries the message. This

node forwards the message to the neighbor that has the highest probability of meeting the
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Figure 2.2: Classification of DTN Routing Protocols based on Number of carriers [3]

destination. Examples of such protocols are Prophet [14], MaxProp [4]

Another approach to routing is when there are multiple carriers that carry the message.

In some of these protocols, the message is replicated and distributed to different nodes.

Some protocols process k data blocks into a large set of φ blocks. Each of these blocks

is distributed in the network. If a node receives sufficient number of blocks, then it can

reconstruct the original message.

2.2 Some Popular DTN Routing Protocols

The Epidemic Routing protocol [21] is the pioneering protocol for routing in DTNs. This

protocol is a flooding algorithm. The nodes continuously replicate and transmit messages.

When a node comes within transmission range of another node, it checks whether its new

neighbor has a copy of the message that needs to be transmitted. If it does not, then a

replica of the message is forwarded to that node. This is done using Summary Vectors.
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Each host has a buffer of messages that it originated as well as messages that it is buffering

on behalf of other nodes. It maintains a hash table that indexes this list and keys that

uniquely identifies each message. Each host maintains a bit vector called summary vector

that indicates which entries in the hash table are set. When two hosts come in communi-

cation range of one another, the hosts exchange their summary vectors to determine which

messages stored remotely have not been seen by the local host. Each host then requests a

copy of the messages that it has not seen yet. The receiving host has complete autonomy

to accept or reject a message.

The figure 2.3 is a representation of the exchange between two hosts when they come into

transmission range of one another.

Figure 2.3: Epidemic Routing Protocol when two hosts, A and B, come into transmission
range of one another

The PROPHET routing algorithm [14] address this issue. Lindgren et al. believe that the

movement of nodes in a typical ad hoc network is not random as assumed. They claim

that the nodes move in a predictable fashion. The PROPHET router uses this observation

and aims to reduce the amount of local storage and network bandwidth being used. In this

protocol, when two nodes meet, they exchange summary vectors and delivery predictability

information. The delivery predictability P(a,b) ∈ [0, 1] is a probabilistic metric at node A

for every known destination B.
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The predictability is updated using three rules. These are:

• When node A encounters node B, then, the delivery predictability is updated as:

P(a,b) = P(a,b)old + (1− P(a,b)old) ∗ Pinit

Pinit ∈ [0, 1] is the initialization vector.

• This protocol runs periodically. Hence, if two nodes have not encountered each other

in a while, then there is an aging factor that will reduce the delivery predictability

for the source destination pair.

P(a,b) = P(a,b)old ∗ γ
k

γ ∈ [0, 1) is the aging constant. k is the number of time units since the encounter

between a and b.

• If A encounters B and B encounters C, then C has good forwarding predictability

from A. To calculate this,

P(a,c) = P(a,c)old + (1− P(a,c)old) ∗ P(a,b) ∗ P(b,c) ∗ β

β ∈ [0, 1] is the scaling constant that represents how much the delivery predictability

is affected by the transitivity.

The values for P(a,b) for each node is updated regularly. When a node A encounters another

node B, then the message is forwarded to B only if P(a,b) for the destination at B is greater

than the value at A.
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Burgess et al. [4] proposed a method based on prioritizing both the schedule of the packets

being transmitted and the schedule of the packets being dropped. MaxProp lets each node

keep track of the probability of meeting other nodes. f ij denotes the probability that node

i is connected to node j. This is initialized to 1
|s|−1 where s is the is the total number of

nodes. In each meeting of i with j, the value of f ij is incremented and then all the values

of f are normalized. Every time two peers meet, these values are exchanged.

Once a node has the values of the delivery likelihood for the other nodes, then it calculates

the cost of each possible path, c(i, i+1, ..., d) to a destination upto n (defined by protocol)

hops according to:

c(i, i+ 1, ..., d) =
d−1∑
x=i

[1− (fxx+1)]

Here, n represents how long the path must be. In other words, n is the number of hops

upto which the value of c needs to be calculated.

After the costs to all the paths are calculated, the path with the lowest cost is selected to

be the cost of the reaching the destination.

Another protocol presented by Spyropoulos et al. [19] is significant in the area of routing in

DTNs. The authors propose a routing scheme that has fewer transmissions than flooding

based protocols and deliver a message faster than an existing single or multi-copy scheme.

There were two algorithms proposed for this:

1. Spray and Wait Protocol : This protocol works in two phases:

• Spray Phase : A limited number of copies, say L is spread in the network by the

source node and some other nodes which have received copies from the source.

11



An important consideration here will be the number of copies that are spread

and the neighbors to which the copies of messages are forwarded.

• Wait Phase : After the spreading of all the copies of the message is done, and

if the destination has not received the message, then each node that has the

message tries to deliver the message to the destination by direct transmission

independently.

2. Spray and Focus : A limitation of the Spray and Wait protocol is that, once all the

copies of the message are spread to some nodes and the wait phase starts, but if the

mobility of each node is restricted to a small local area, then it may not be possible

to deliver one of the copies to the destination. This algorithm attempts to overcome

this limitation [20]. It has two phases of operation:

• Spray Phase : For every message originating at a source, L copies of the message

are spread in the network to L nodes.

• Focus Phase : Once the spraying phase is done, the nodes start to roam around

to find the destination. Each copy in a single node is routed to a closed node via

a utility based scheme. If UX(Y ) denotes the utility of node X for node Y, then a

node having a message for node D (with immediate neighbors node A and node

B) forwards it to a new node B in its range if and only if UB(D) > UA(D)+Uth.

Uth is the utility threshold parameter.

Moeller et al.[15] presented the Backpressure Collection Protocol for sensor networks. In

this protocol, when the forwarding queue is non-empty, weights are calculated for each link

using the following equation:

w(i,j) = (δQ(i,j) − V ∗ ETX(i,j)) ∗R(i,j)

12



Here w(i,j) is the link weight, δQ(i,j) is the difference in queue length between i and j, V is

the parameter that trades system queue occupancy for penalty minimization, ETX(i,j) is

the expected time of transmission between i and j for a packet to get delivered as described

in [5] and R(i,j) is the estimated link rate.

Dvir and Vasilakos [6] suggested using the Packet Reception Rate (PRR) as a measure of

the link rate. They proposed the following forwarding decision making policy.

w(i,j) = (δQ(i,j) −
V

PRR(i,j)

)

Here w(i,j) is the link weight for the link between node i and node j, δQ(i,j) is the difference

in the queue lengths of i and j, PRR is the Packet Reception Rate between the two nodes

which represents the channel condition between the two nodes. It is assumed that the two

nodes are capable of exchanging queue length information before a forwarding decision is

made by the sending node.

PRR takes into account the distance between the neighbors, power, path lost etc. When

PRR is taken into consideration, the ”bad” channels get a low link weight and thus have

lower probability of transmitting the packet. PRR can be calculated using the following

formula as proposed in [24]:

PRR(d) = (1− 1

2

(− γ(d)
2

1
0.64

)

)ρ8f

where d is the transmitter-receiver distance, γ is the signal to noise ratio, ρ is the encoding

ratio and f is the frame length.
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Once the source node calculates the w(i,j) for all its immediate neighbors, the message at

the head of the queue is forwarded to the node with the highest value of w(i,j).

This algorithm showed an improvement compared to the Collection Tree Protocol [8].

Also, the authors empirically demonstrated that the Backpressure Collection Protocol had

superior delivery performance even in dynamic network conditions.

Ying et al. [23] presented a new routing/scheduling algorithm based on the backpressure

protocol that guarantees network stability and minimizes the average path lengths between

the source and destination. Ryu et al.[18] presented a backpressure routing algorithm for a

network with groups or clusters of nodes intermittently connected via mobile carriers (the

carriers provide connectivity over time among different clusters of nodes). Pujol et al. [17]

presented the Fair-Route, a routing algorithm for DTNs inspired by the social processes

of the perceived interaction strength, where messages are forwarded to users that have a

stronger social relation with the target of the message. This limits the exchange of messages

to those users with similar social status.

A more detailed routing protocol for routing in socially selfish networks was proposed by

Li et al. [13]. There are three steps to this protocol design:

• When a node receives and buffers a packet, a priority p is assigned to the packet.

This is stated as :

pi = pi−1 ∗ ω

Here, pi is the priority of the packet in the ith hop and ω is the ith hop’s willingness

to forward the packet. The initial priority p0 is set by the node where the packet

originated.
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• Next, the delivery probability is estimated using the equation:

Pdelivery ≥ (1− P (texp ≤ tc))(1− P (tover ≤ texp))

Here, Pdelivery is the overall delivery probability, texp is the expiration time for the

packet, tc is the time when the nodes will come in contact, tover is the time at which

there will be a buffer overflow at the node where the packet is buffered. P (texp ≤ tc)

is the probability that the packet expires before the nodes come in contact. P (tover ≤

texp) is the probability that the buffer overflows before the packet expires.

The probability that the packet is dropped because it expired is denoted by Pexp.

This is calculated as:

Pexp =
P (X > texp − t) ≤ E(X)

(texp − t)

Here, X is a random variable that denotes the inter-contact time between source and

destination, E(X) is the mean of X and t is the most recent contact time between

the source and destination.

The probability that a packet is dropped because of buffer overflow is given by:

Pover =
|Sdrop|
|S|

Here, S is the set of similar packets and Sdrop is the subset of S that is dropped.

• The node then calculates the subset of neighbors to transmit the message and the

order in which to forward the packets to the neighbors. If a neighbor does not have

sufficient buffer space, then the packet is not forwarded to that neighbor. Then the

sending node tries to maximize its selfish gain through this contact.
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In all the studies that we have surveyed here, there is no discussion of a decision based on

the forwarding probability for the message after it has been sent to a neighbor. We propose

a novel algorithm where we use information about the queue length and the position of

the packet in the queue of the neighbor for making routing / forwarding decision. This

algorithm aims to reduce the latency in the network and the buffer time while sustaining

the delivery ratio.
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Chapter 3

The Look-ahead Protocol

In this chapter, we discuss the Look-ahead Protocol and its variants. We will first list a

few assumptions that we make and then move to the actual description of the protocol.

We assume that there are M nodes moving on a
√
N by

√
N 2D torus finite lattice. All the

nodes move according to some stochastic mobility model. The meeting times of the nodes

are approximately exponentially distributed. It has been shown that some of the popular

mobility models like Random Walk [9], Random Waypoint [11] and Random Direction [2]

exhibit (approximately) exponential meeting probability [6]. There is no contention in the

network. We assume that any communicating pair of nodes do not hinder communication

at the same time between another pair of nodes. The nodes do not have unlimited buffer

space, old messages are dropped to make room for new ones if there is a buffer overflow.

All the nodes in the environment have a queuing model of priority queuing, where the

packets in the queue are sorted in decreasing order of priority. At any point of time, the

packet in the queue with the highest priority is at the front of the queue.
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3.1 Algorithm for the Look-ahead Protocol

As discussed before, since there is a lack of instantaneous end-to-end paths between a

source and a destination in DTNs, there is no possibility of knowing the path traversed by

a packet before the packet reaches the destination. The concept of look-ahead makes the

forwarding decision based on the priority of the packet that needs to be forwarded and the

queue of the neighbor.

priority = Priority of message to be forwarded;
count = 0 ;
while Current node has an unchecked node do

Get a list of messages of the neighbor;
while List is not fully traversed do

temp = Next Message in the List;
if temp.priority > priority then

increment count
else

continue traverse
end

end

end
Forward packet to neighbor with lowest count

Algorithm 1: The Look-ahead Protocol

Descriptively, every time a node has a message that needs to be forwarded, the following

actions happen at the node:

• The priority of the packet that needs to be forwarded is obtained from the packet

header

• In each of the immediate neighboring nodes, the queue information, that is the

priority of the packets in the queue, is fetched

• In the queue of each node, the number of packets that have a priority greater than

the packet to be forwarded is counted
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• The packet is forwarded to the node that has the least number of packets (or no

packets) with a priority greater than that of the packet that needs to be forwarded

In this algorithm, it is a possible scenario that a packet is forwarded to a neighbor that has

a queue length larger than that of the other neighbors. This can be demonstrated better

by an example. Consider a simple three node network as shown in Figure 3.1

Figure 3.1: A three node network

Figure 3.2: Message Queue Status for Network in 3.1

In this scenario we have three nodes A, B and C. The queues in the nodes are as shown

in the figure 3.2. If A has to transmit the packet that is at the front of the queue, it will
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check the queue status of both its immediate neighbors, B and C. In B, the number of

packets with priority greater than the packet to be forwarded(55) is 1. In C, the number

of packets with priority greater than the packet to forwarded is 2. Hence, although the

queue length of C is lesser than that of B, packet is forwarded to B since the packet will

be forwarded by B quicker than by C.

When Look-ahead protocol is used in nodes, sometimes, the path traversed by a packet

from source to a destination is not the intuitive path. The path traversed is generally

longer. For example, let us consider the scenario in figure:

Figure 3.3: A five node network

If node A has a packet to send to node E, the two paths available are A → D → E and

A → B → C → E. Intuitively, we would expect that the path that the packet traverses

is A → D → E since it is the shortest path and hence the path that has the least delay

from node A to node E. However, this assumption does not consider the time that the

packet is buffered at the intermediate nodes. The time that a packet is buffered adds a

significant amount of delay that is experienced by the packet in going from the source to

the destination. The protocol that we propose aims to reduce the amount of time that a

packet spends in the buffers of intermediate nodes.
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For the network scenario in the Figure 3.3, let us consider the following queue scenario at

each node:

Figure 3.4: Queue Status for the Network in 3.3

If node A has to send the packet with priority 25 to node E, using the Look-ahead protocol,

it first checks the status of the queues in its immediate neighbors, node B and node D. In

node B, there are no packets that have a priority greater than 25. In node D, there are two

packets that have a priority greater than 25. Hence, the packet will be forwarded to node

B. As the node uses the information of the neighboring node at the time of transmission,

this protocols fits the definition of an opportunistic protocol. From node B, using the

Look-ahead protocol, the packet is forwarded to node C and then to E.

One of the issues that can arise from a queuing model like this is that, if a packet has

a low priority, then, there is a possibility that the packet is never delivered. The packet
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may be deleted from the buffer to make room for a new packet or is dropped because its

Time To Live (TTL) expired. To avoid this from happening, another parameter is added

to the packet. This is the delay in queue factor. Periodically, the priority of the packets

in the queue of every node is updated. The frequency at which the update is performed is

a parameter that is specified with the system.

prioritynew = priorityold + delayinqueue

Updating the priority with the queue delay ensures that the packets with low priority are

not dropped or lost.

To explain the second issue, let us consider the five node network in Figure 3.3. For this

network, let us consider the queue status at each node as shown in Figure 3.5:

If node A has a packet that has to be sent to node E. The immediate neighbors are node B

and node D. Node B has no packets with priority greater than 25. Node D has two packets

with priority greater than 25. Hence, the packet is first forwarded to node B.

At node B, the immediate neighboring nodes are node A and node D. Node B performs

the check for queue status. In node A, there are no packets that have a priority greater

than 25. In node D, there are two packets that have a priority greater than 25. Thus,

node B forwards the packet to node A. This leads to an infinite loop where the packet is

continuously going back and forth between node A and node B. The solutions to this issue

are discussed in the next section.
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Figure 3.5: Queue Status for the Network in 3.3

3.2 Random Node Selection - A Variant

In the Look-ahead protocol, we discussed a scenario where a packet can be stuck moving

back and forth between two nodes. To address this issue, we propose the following two

solutions:

• Firstly, before forwarding a message to a node, a check is performed to ensure that the

packet was not received from the destination node. This means, the protocol checks

that the packet is not sent back to the same node from which it was received. In the

above example, if this condition is applied, node B will first check if the packet came

from node A. If it did (which is true in this case), then the packet is not forwarded

to that node.
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• A second solution to this issue would be a random selection of neighboring nodes to

forward the packet.If there are two or more neighboring nodes that have the same

link weight or have the same position for the packet in their respective queues, then,

among the nodes with equal weight, one is chosen at random. This reduces the

probability that the packet goes back and forth between the same two nodes.

To make the random selection variant of the look-ahead protocol more general, we can

state the condition of link weight assignment as follows:

w(i,j) = n

if QueuePosition > 2(n−1) and QueuePosition < 2n

Here, QueuePosition is the number of packets in the neighbor’s queue that have a priority

greater than the packet to be forwarded.

Consider the example in Figure 3.4. At node B, the immediate neighboring nodes are

node A and node C. Node B performs the check for queue status. In node A, there are no

packets that have a priority greater than 25. In node D, there are two packets that have

a priority greater than 25. Thus, node B forwards the packet to node A. This leads to an

infinite loop where the packet is continuously going back and forth between node A and

node B.

When random selection is used, then, the link weights for both node A and node D is 1.

In this case, one of node A or node D is selected. This reduces the probability that the

packet will be stuck going back and forth between node A and node B.
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In the simulation of the protocols, this method of choosing neighbors randomly has proved

that the probability of a packet getting stuck going back and forth between a pair of nodes

is indeed reduced.

3.3 Double Look-ahead - A Variant

In both the previous versions of the protocol, the forwarding decision of the sending node

does not have any knowledge about the one-hop neighbors of its own neighbors. This

sometimes can lead to a reduced efficiency of delivery.

Consider a network scenario like in Figure 3.6 and the respective queue status like in Figure

3.7,

Figure 3.6: A four node network

Using either the Look-ahead protocol or the protocol with random node selection, the node

that will be chosen to forward the packet from node A is node D. In this case, since there

is no other path forward from node D. Since the protocol does not send the packet back

to the node that the packet originally came from (in this case, the packet is not forwarded

to node A from node D), the packet is queued in node D. If the message buffer of node D
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Figure 3.7: Queue Status for the Network in 3.6

is full the packet is dropped or it is deleted once its TTL expires.

To reduce the probability of a packet being dropped from a condition like the one above, we

propose a variant of the look-ahead protocol. In this, when a node has to make a decision

to forward the packet, the node also gets the one-hop neighbors of the neighboring node.

From this information, the node determines whether the final destination of the packet is

an immediate neighbor of one of its own neighbors. In other words, it checks if the final

destination of the packet is two hops away. If it finds that the destination of the packet is

a one-hop neighbor of one of its neighbors, the neighbor is assigned a very high link weight

so that the packet is forwarded to this neighbor. When a packet is forwarded from a node,

before any protocol is used, the node checks if the packet at the front of the queue has one

of its immediate neighbors as its destination. If it does, then the packet is immediately

forwarded to this node without applying the routing protocol.
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priority = Priority of message to be forwarded;
while Current node has an unchecked node do

Get a list of neighbors of the neighbor;
Check if destination of the packet is a neighbor;
if destination is not a neighbor of current node then

Get a list of messages of the neighbor;
while List is not fully traversed do

temp = Next Message in the List;
if temp.priority > priority then

increment count
else

continue traverse
end

end

end

end
Forward packet to neighbor with lowest count

Algorithm 2: The Double Lookahead Protocol

In the example network in Figure 3.6, if node A has to forward the packet to node C,

it first checks if either node B or node D has node C as an immediate neighbor. In this

case, since node C is an immediate neighbor of node B, the packet is forwarded to node B

even though node D has just one packet that has a priority greater than the packet being

forwarded.

3.4 Backpressure with Look-Ahead

Moeller et al. [15] proposed the Backpressure Collection Protocol to make forwarding

decisions.

w(i,j) = (δQ(i,j) − V.ETX(i,j)) ∗R(i,j)
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w(i,j) is the link weight assigned to each immediate neighbor, δQ(i,j) is the difference in

queue lengths for node i and node j, ETX(i,j) is the expected time of transmission between

node i and j, R(i,j) is the link rate and V is a parameter that trades system queue occupancy

for penalty minimization. The packet is forwarded to the neighbor with the highest value

of the link weight.

Dvir and Vasilakos [6] suggested using the Packet Reception Rate to assess the channel

quality and eliminate the ”bad” channels. The policy that they used for making the packet

forwarding decision is represented by this equation:

w(i,j) = (δQ(i,j) −
V

PRR(i,j)

)

w(i,j) is the link weight assigned to each immediate neighbor, δQ(i,j) is the difference in

queue lengths for node i and node j, V is a parameter that trades system queue occupancy

for penalty minimization and PRR(i,j) is the Packet Reception Rate between the two nodes.

In the protocol that we propose, we look to include the look-ahead factor to this back-

pressure routing equation. The look-ahead factor LA(i,j) is information obtained from the

neighbors about the number of packets in their queue which have a priority greater than

the packet that needs to be forwarded. The equation can be written as:

w(i,j) = (δQ(i,j) −
V

PRR(i,j)

) ∗ LA(i,j)

w(i,j) is the link weight assigned to each immediate neighbor, δQ(i,j) is the difference in

queue lengths for node i and node j, V is a parameter that trades system queue occupancy

for penalty minimization, PRR(i,j) is the Packet Reception Rate between the two nodes
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and LA(i,j) is the look-ahead factor calculated for that node. The look-ahead factor here

is the number of packets in the queue of the neighbor that have a priority lesser than the

packet that has to be forwarded.

When the link weight is calculated for each node, the number of packets that are forwarded

before the current packet is considered. Adding this parameter to the forwarding policy

ensures that the packet is not queued for a very long time. In a neighboring node, if

there are more packets that have a priority lesser than that of the packet that needs to be

forwarded, then, the link gets a higher weight. If the queue length is very long or there is a

high difference in queues of the two nodes, then, that too is accounted for in the equation

with the δQ(i,j).

priority = Priority of message to be forwarded;
while Current node has an unchecked node do

Get a list of messages of the neighbor;
while List is not fully traversed do

temp = Next Message in the List;
if temp.priority < priority then

increment count
else

continue traverse
end

end
Calculate link weight for current neighbor;

end
Forward packet to neighbor with highest link weight;

Algorithm 3: Backpressure Protocol with Look-ahead

3.5 Implementation Specifics

When this protocol has to be deployed in a real world scenario, some of the specifics have

to be altered.
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• When the information about the position of the packet has to be determined, the

sending node cannot process this information. The sending node will not have access

to the queue information of its neighboring nodes. The sending node should first

send a Request message to the neighbor. Once the neighbor receives this message,

it appropriately calculates the position of the packet in its queue. The result is sent

back to the sending node using a Reply message. The sending node collects all (or a

percentage) of the replies from its neighbors before the forwarding decision is made.

• The Request message is used by the nodes to send a request to its neighbors. This

message contains the priority of the packet to be forwarded. To specify this piece of

information, a new field has to be added to the packet structure. We call this the

la request field. The sending node puts the priority of the packet to be forwarded in

this field. When a node receives a Request message, it checks this field to determine

the position of the packet in its queue.

• Once the position of the packet in the queue is determined, this information has to

be sent back to the sending node. This is done using the Reply message. We use

the la reply field to communicate this information. The position of the packet in the

neighbor’s queue is added in this field. When a node receives a Reply message, the

la reply field is checked for the queue position.

• The Request and the Reply messages should have the highest priority. To ensure this,

the regular data packets are assigned a priority only between 1 - 97. The Request

message is given a priority of 98 and the Reply message is given a priority of 99.

When the priorities of the data packets are updated periodically, it is ensured that

the packet is assigned a priority not higher than 97.

prioritynew = max(prioritynew, 97)
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3.6 Summary of Contributions

In this chapter, we have introcuded a novel protocol for routing in DTNs, the Look-Ahead

Protocol. This protocol is novel in the sense that it gets information from its neighbor

about its queue before a forwarding decision is made.

The look-ahead protocol first determines the priority of the packet to be forwarded. Then

it determines all the nodes whicg are within transmission range at that instant. In each

neighbor’s queue, it checks the number of packets that have a priority greater than that

of the packet the nodde needs to forward. Once it has this information from all the nodes

that are in transmission range, it forwards the packet to the node with the least number of

packets of a higher priority. This way, the protocol ensures that the packet does not stay

in the buffer of a single node for a long time.

This protocol inherently forwards packets that are of high priority. Sometimes, packets

with lower priority get stuck in the queues for ever and are eventually dropped to make

room for newer packets. To prevent this from happening, the delay in queue factor is used

to update the priority of the packets so that lower priority packets are also forwarded.

In certain scenarios, packets can get stuck moving back and forth between a pair of nodes

thus having a negative impact on the overall behavior of the protocol. To prevent this, we

propose three variants of the protocol.

In the first variant, the look-ahead factor for all the immediate neighbors is determined.

Once the information is available for all the nodes, the information is put into buckets.

Each bucket has a range of 2n−1 to 2n − 1, where n is the bucket number. Once the

information is in the buckets, the protocol chooses the non-empty bucket with the lowest

value of n. From this bucket, it chooses a random node to forward the packet to.

31



The second variant adds an additional check for the forwarding policy. While checking in

an immediate neighbor about the number of packets in the queue with higher priority, the

node also checks if the final destination of the packet is an immediate neighbor of one of

the neighbors. If the node finds that one of the immediate neighbors is one hop away from

the final destination, then, the packet is forwarded to that node irrespective of the queue

information of that node.

The last variant adapts the backpressure protocol for making the routing decision. We use

the variant of the backpressure equation that uses packet reception rate as an estimate

of the channel quality. Once the node has the information from its immediate neighbors

about the number of packets in their queue with higher priority, then, it multiplies this

number with the backpressure equation to calculate the link weight for each neighbor. It

forwards the packet to the node with the highest link weight.
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Chapter 4

Simulation Results and Discussion

In this chapter, we discuss the simulation of the Lookahead protocol and its variants.

We have used the ONE (Opportunistic Networking Environment) simulator to test the

performance of these protocols. We first describe the simulator and then proceed to an

analysis of the data we have collected from the simulations.

4.1 The ONE Simulator

The ONE simulator [12] is a Java based tool that has a broad range of DTN protocol

simulation capability. This simulator supports mobility and event generation, DTN routing

and application protocols, visualization and analysis interfaces, importing and exporting

mobility traces and a basic notion of energy consumption at each node. The ONE simulator

is very modular. This allows for extending almost all the functions using well defined

interfaces. The differentiating factor of this simulator is modeling the store-and-forward

paradigm of routing.
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The main functions of the ONE simulator are the modeling of the node movement, inter-

node contacts, routing and message handling. The source code for the simulator can be

downloaded from [1].

4.1.1 Nodes

A node is a basic agent in the simulator. It is a mobile endpoint that is capable of store-

and-forward paradigm of routing. Each node has a radio interface, persistent storage,

movement, energy consumption and routing. The radio interface and the storage are

configured through parameters that are provided from an external text file. Movement and

routing are configured through specialized modules that implement a particular behavior

for the capability.

4.1.2 Node Movement

Node movement is implemented through mobility models. Mobility models define the

algorithms that generate the node movement paths. The three types of synthetic movement

that are included are:

• Random Movement

• Map-constrained random movement

• Human behavior based movement

The ONE simulator includes the implementation of the Random Walk[9] and the Random

Waypoint[11] movement models. It also includes three map-based mobility models:
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• Random Map-Based Movement (MBM): The nodes move randomly but follow the

path defined by the map data.

• Shortest Path Map-Based Movement (SPMBM): The nodes choose a random point

on the map and then follow the shortest path to that point using the map data.

• Routed Map-Based Movement (RMBM): The nodes have pre-determined routes that

they follow.

The ONE simulator also includes the Working Day Movement model which tries to increase

the reality of human node mobility.

4.1.3 Routing

The simulator has a framework for defining the algorithms and rules used in routing. It

comes with ready implementations of some of the popular DTN protocols. The protocols

that are included with the package are: Direct Delivery, First Contact, Spray-and-Wait,

PRoPHET, Max-Prop and Epidemic.

To add a new protocol to the ONE simulator, a new routing module needs to be added

for the protocol. The new module can inherit the basic functionality like simple buffer

management and callbacks for message-related events from the MessageRouter module.

The basic functionality for all the protocols is common for all the currently implemented

protocols with internal routing logic. This can be re-used using the ActiveRouter module.

This module provides functionality like checking for messaged that have to be delivered to

immediate neighbors and dealing with message transfers and aborts.
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4.1.4 Application Support

In the ONE simulator, there are two ways to generate application messages:

• Message Generators: Messages are created with a random or fixed source, destination,

size and interval.

• External Event Files: The messages are generated with specified messageID, fixed

source and destination and messages generated at a specified time.

4.1.5 Reporting and Visualization

The results collected from simulation in ONE simulator can be visualized using the Graph-

ical User Interface as shown in Figure 4.1 or by generating images using the information

gathered in the reports.

Figure 4.1: Screenshot of the GUI for ONE simulator
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In the figure 4.1, the nodes are represented using names like p13, p17, c66, w88 (seen in

the figure). The circle around them represents their transmission range. The square block

above the name of each node name shows the queue for the node.

The GUI is suitable to get an overall picture of what is happening during the simulation.

However, more rigorous information can be seen in the reports collected. It includes a

message statistics report that gathers statistics of the overall performance like message

delivery ratio, buffer time etc.

The simulator is configured using text based configuration files that contains the simulation,

event generation and reporting parameters. This file also has the defining parameters for

the nodes like the storage capability, transmit range, bit rates as well as the routing model

to use.

4.2 Our Simulation Scenario

The protocols were first tested on a small group of static nodes. Once the correct func-

tioning of the protocols was established, the protocols were simulated on a more realistic

scenario with mobile nodes with different moving speeds.

4.2.1 Parameters Explained

For a comparison of the protocols that we have proposed, we compare the protocols on

various network parameters. This section gives a brief description about the various pa-

rameters that we study and explain.
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• Delivery Probability: The delivery probability is a measure of the fraction of the

created packets that are delivered to the destination. This is the ratio of the total

number of packets that are delivered to their destinations to the total number of

packets that are created.

• Overhead Ratio: The overhead ratio is calculated using the following equation:

Overheadratio =
(Numberofrelayedmessages−Numberofdeliveredmessages)

Numberofdeliveredmessages

Here, the term relayed messages refers to the messages that have been forwarded by

the source to an intermediate node to be forwarded towards the destination. This

number is a measure for the number of packets or copies of packets that have been

inducted into the network. The number of delivered messages refers to the total

number of created packets that are successfully delivered to the destination.

• Latency: The latency measured here is the time that elapses between the creation of

a message and its delivery at its destination. We consider the average of the latency

of the packets over the entire simulation time. This is the time as calculated for the

delivered packets only.

• Buffer time: This is the average amount of time that packets spend in the buffer of

the nodes. This is not a measure of the time spent in the buffer by the delivered

packets, but it is an average of the time spent by all the packets, delivered and

dropped, in the intermediate nodes’ buffers.
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4.2.2 The Static Nodes Scenario

In this simulation, we used a group of 20 nodes that are placed within a map of 100 units *

100 units. Each node has a Bluetooth transmitter. The transmitters are omni-directional

with a range of 45 units. This makes the network fully connected, that is, there is a definite

path between any two nodes in the network.

Figure 4.2: ONE Simulator for the Static Nodes Scenario

The figure 4.2 shows the 20 nodes in a 100 * 100 map space. The nodes are labeled p0

through p19.

The table 4.1 shows the value of the delivery ratio, overhead, latency, hopcount and the

buffer time for the static nodes scenario.

As seen from the numbers in table 4.1 the delivery probability for the protocols listed is

very high and is very close to the 100% mark. This is because the nodes are static and
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Parameter Lookahead Random
Lookahead

Double
Lookahead

Backpressure
Lookahead

Messages Created 822 822 822 822
Delivered 810 821 815 817
Delivery Ratio 98.54 99.88 99.15 99.39
Overhead 76.0474 12.3337 48.4687 32.5564
Latency (avg) 179.1318 20.0171 74.5521 33.8
Hopcount (avg) 65.0210 13.2887 40.98 41.69
Buffer time (avg) 2.6923 1.5062 1.7643 1.8529

Table 4.1: Comparison of the protocols when the nodes are static

given a source and destination, there surely exists a path between the two nodes. Hence,

the packet will be delivered to the destination. The numbers do not read 100% because at

the end of the simulation, there will be some packets that are in the buffers of the nodes.

If the simulation is extended for some more time, these packets are bound to be delivered

to the destination.

We see that the overhead ratio for the Lookahead protocol is rather higher than the other

protocols. This behavior can be attributed to the fact that sometimes, given the design of

the lookahead protocol, a packet can be stuck going back and forth between two nodes for a

very long time. This increases the number of relayed messages in the network considerably.

But the number of delivered messages remains the same despite the high number of relayed

messages. This increases the overhead in the network. In other words, it increases the

amount of network resources that are used to deliver one packet to its destination. In the

random lookahead protocol, a change is made to ensure that a packet is not forwarded to

the node that it came from. This change ensures that a packet is not stuck going back

and forth between two nodes for a long time. The double lookahead protocol does not

have this check in place, but adds a further check to see if the destination of a packet is

two hops away from the current node. If it is, then, the packet is forwarded towards the
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destination hence slightly reducing the number of hops. The backpressure lookahead takes

into account many other parameters, hence the overhead is lower.

The latency experienced by the packets is the time that elapses between the time the packet

is created and the time the packet is delivered to the destination. This parameter is high

for the lookahead protocol for the reason that the packet can sometimes go back and forth

between two nodes. This increases the amount of time that a packet spends between its

creation and the time it is delivered at its destination. The numbers for this are lesser for the

random lookahead protocol because it ensures that the packet is not forwarded to its source

again. This reduces the latency of the packets. The double lookahead protocol shows an

increased reading for this parameter because the packet tends to stay in the buffer longer.

When it is at a two hop distance from its destination, the packet is forwarded towards the

destination regardless of the queue information. Sometimes, this can increase the amount

of time that the packet spends in the buffer of the penultimate node, hence an increase in

the latency.

The hop count for the lookahead protocol is high again due to the packets going back and

forth between two nodes. This increases the average hop count as the packet can be stuck

between two nodes for a considerable amount of time. The hop count for random lookahead

is reduced drastically owing to the check that it performs that ensures the packet does not

go back to the source. The double lookahead protocol has a higher hop count due to the

packet going back and forth between two nodes. It has a lower hop count compared to the

lookahead protocol because it checks if the destination is a two hop neighbor of the current

node. This reduces the hop count to a certain extent.

The buffer time of the lookahead protocol is the highest among all the protocols again

owing to the packets sometimes going back and forth between two nodes. The random
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lookahead protocol has the lowest buffer time among all the protocols as it eliminates the

scenario where the packet goes back and forth between two nodes. Since this check is not

performed by the double lookahead protocol, the buffer time is higher. It is lower than the

buffer time for the lookahead protocol because it has the check to see if the destination

of the packet is a two hop neighbor of the current node and forwards the packet in the

direction of the destination. This reduces the buffer time to an extent, but can sometimes

end up in the packet being in the buffer of the penultimate node for longer hence increasing

the buffer time.

4.2.3 The Moving Nodes Scenario

In the moving nodes scenario, we have tried to simulate the protocols in a scenario as close

as possible to a real world scenario. We have 6 groups of nodes each with 20 nodes. All

the nodes have a Bluetooth interface. Each node has a buffer size of 5 MB. The movement

is based on the Shortest Path Map Based Movement. The Time To Live (TTL) for each

packet is 300 time units. The queuing model used is priority queuing, where the packets

are sorted in descending order of their priority. The map used is 4500 units * 3400 units.

The first and third groups have pedestrians walking with speeds between 0.5 to 1.5 km/h.

The second group has cars moving at 10 - 50 km/h. The fourth, fifth and sixth groups

move on a tram with a speed of 7 - 10 km/h. They have only 2 hosts and they have a high

speed interface along with the Bluetooth interface. They have a message buffer of 50 MB.

They use a Route Based Movement. All three groups use maps defined in different map

files for different routes.

The results obtained for the protocols is discussed in subsequent sections.
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Time Epidemic
Router

Lookahead Double
Lookahead

Random
Lookahead

Backpressure
Lookahead

20000 45.19 46.81 44.59 46.67 47.26
40000 32.45 55.06 54.99 54.4 54.99
60000 32.15 58.2 57.16 57.9 56.72
80000 31.93 60.61 60.09 61.27 60.09
100000 31.27 62.66 62.01 63.73 62.01
500000 32.48 66.59 66.41 66.66 66.43
1000000 32.63 66.87 66.87 67.15 66.87
2000000 32.44 67.15 66.99 67.16 66.88

Table 4.2: Delivery probability of various protocols recorded with increasing time

4.3 Some Simulation Results

Using the scenario described in the previous section for moving nodes, we simulated the

protocols that we propose and compared the numbers to those obtained for the Epidemic

Routing protocol. We compare values of the delivery probability, overhead ratio, hop count,

latency and buffer time.

4.3.1 Delivery Probability

This is the ratio of the total number of packets created to the total number of packets

that are delivered to the destination. This is a direct measure of how reliably packets are

routed in the network by the routing protocol.

Table 4.2 gives the values of the delivery probability for the various protocols with increas-

ing time. Figure 4.3 is a plot of the values of delivery probability against time. We can

see that the delivery probability of the Epidemic Routing protocol remains constant at

about 32 - 33 % irrespective of the length of time for which the protocol is run. However,

the delivery probability of the lookahead, random lookahead, double lookahead and the
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Figure 4.3: Plot of Delivery Probability against Time for the various protocols

backpressure lookahead protocol show similar behavior with increasing time. When the

protocol runs for a significant amount of time, the delivery probability is at its maximum

value of about 66 - 67 % which is double the value of the Epidemic Router protocol.

In all of the protocols that we propose, the packets are not replicated and forwarded in the

network. There is only one copy of the packet in the network at any given point of time

before it is delivered to the destination node or dropped from the buffer in an intermediate

node. In the simulation scenario, the nodes have a good amount of buffer space. But in

the Epidemic Routing protocol, since the packets are duplicated and forwarded to every

node that does not have a copy of the packet in its buffer, the buffer queues of the nodes

fill up fast. It is a possibility that more messages are dropped due to buffer overflow apart

from the messages that are dropped because the TTL expired. This is one of the reasons

that the Epidemic Router protocol has lower values of delivery probability.

In the lookahead protocol and its variants, we see that the delivery probability is rather low

when the protocol is run for a lower amount of time. The values increase with increasing
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Time Epidemic
Router

Lookahead Double
Lookahead

Random
Lookahead

Backpressure
Lookahead

20000 4670.392 4030.7 3900 3970.8243
40000 2708.3841 5725.0337 5802.7445 5864.4164 5802.7445
60000 2839.0663 6081.5981 6084.7097 5993.8021 6010.7445
80000 2584.587 6192.9743 6210.9221 6306.7574 6210.9921
100000 2885.6737 6308.243 6263.1094 6396.0269 6263.1094
500000 2954.8594 6423.4821 6444.6433 6410.9667 6442.0914
1000000 2944.0333 6426.7551 6443.3828 6434.9043 6443.3828
2000000 2973.4035 6480.3959 6484.6708 6477.0087 6477.5674

Table 4.3: Latency for various protocols recorded with increasing time

time to about 65% and then remain constant when the time is increased. This is because,

when the protocol is run for a lesser amount of time, there are some packets in the buffers

of the nodes whose TTL has not expired and can be delivered to the destination if the

simulation is kept running for more time. When the time is increased significantly, the

percentage of the number of packets that are in the buffers which can be delivered if the

simulation runs longer is lesser than the number of packets that have been delivered. The

number of these packets does not affect the delivery ratio significantly.

4.3.2 Latency

Latency experienced by a packet in the network is the amount of time that elapses between

its creation and its delivery to its destination. In most protocols, it is desired that the value

of latency is low. However, since we are dealing with DTNs where latency is acceptable,

we do not strive to have very low values of latency. Since DTNs have a high latency, it is

not very suitable for applications like video and audio streaming.
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Figure 4.4: Plot of Latency against Time for the protocols

Table 4.3 lists the values of latency as recorded for the protocols in the simulation with

increasing values of time. Figure 4.4 is a graphical representation of the trends of the

latency values with increasing time.

The average latency experienced by a packet is almost constant in the Epidemic Roouting

protocol with increasing values of time. However, the trend is different with the Lookahead

protocols and its variants. For lower values of time, the values of latency show a steep

increase with increase in time. But when the time is increased beyond 100,000 time units,

the values remain fairly constant when the time is increased to very high values.

The reason for the increasing values of latency when the protocol is simulated for lesser

time is that, when the simulation stops, then there are a significant number of packets in

the buffers of the nodes that can be delivered if the protocol runs for a longer time. The

number of such packets is comparable to the number of packets that have been delivered,

hence the average value of latency is affected. However, when the protocol runs for a

significantly large amount of time, then, the number of packets that are in the buffers of

46



the nodes is very small compared to the number of packets that have been delivered. The

values that we obtain for latency here is affected mostly by the packets that have been

delivered to their destinations.

In comparison, the trend we see in the latency values in 4.4 is similar to the trend we see

for the delivery probability in 4.3.

The average value of latency for the Epidemic Router protocol is in the range of 2800 -

3000. But the values of latency for the Lookahead protocol and its variants is much higher

than the latency seen in the Epidemic Router protocol. In the lookahead protocol and its

variants, the packets are not necessarily forwarded in the direction of the destination. In

other words, the path that a packet takes to reach its destination may not be the one with

the least number of hops, although the packet would have reached the destination in a

lesser number of hops. This is not the case in Epidemic Router protocol where the packets

are replicated if a neighbor does not have a copy of any of the messages in the sender’s

queue. Due to the longer path that the packets might take, the latency also increases.

4.3.3 Buffer Time

Buffer time refers to the time that packets spend in the buffers of intermediate nodes. A

high buffer time always means that the latency experienced by the packets is high. In

other words, if packets are in the buffers of intermediate nodes for a longer time, then they

would require more time to reach their desitination.

Table 4.4 lists the average values of buffer time for the various protocols and figure 4.5

shows a plot of how the latency of the different protocols varies with increasing time.
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Time Epidemic
Router

Lookahead Double
Lookahead

Random
Lookahead

Backpressure
Lookahead

20000 105.7134 106.2283 182.85 212.6437
40000 516.627 429.1003 412.9409 659.1105 412.9409
60000 515.1632 749.1855 702.4818 1054.9858 702.4818
80000 516.3134 1021.234 965.3483 1520.0961 965.3483
100000 519.522 1279.0701 1195.7015 1763.6069 1195.7015
500000 513.1976 4022.6026 3723.9386 4540.73 3482.2338
1000000 510.4896 5295.0263 4698.6026 5323.9904 4268.6026
2000000 509.8511 6058.1824 5349.4784 6101.1297 5376.1082

Table 4.4: Buffer tme for various protocols recorded with increasing time

We see that the amount of time spent by the packets in buffers in the Epidemic Routing

protocol does not show too much variation with time. However, with the Lookahead

protocol and its variants, there is a marked increase in the latency values when the time

increases. One of the reasons for the high latency in the lookahead protocols and its

variants is that the path traversed by the packets from the source to the destination in the

Lookahead protocols and its variants can definitely be longer than the path traversed by

the packets when the Epidemic Router protocol is used. The Lookahead protocol does not

forward the packet towards the destination, it forwards the packet to the neighbor which

will forward the packet quickest. Since the packets traverse a longer path, the amount of

time they are buffered in intermediate nodes increases.

Another noteworthy point from the graph in figure 4.5 is that, when the time for which the

simulation runs is lower, then, the increase in the buffer time is very steep. But when the

time is increased to higher values (multiples of 500,000), then the increase in the buffer time

is not very steep. This is again because of the significant number of packets that remain

in the buffers of the nodes that can be delivered if the simulation had run for longer. This

gives a rather steep increase in the buffer times for lower values of time. But when the

simulation is run for a longer time, the number of packets that remain in the nodes of the
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Figure 4.5: Plot of Buffer time against Time for the protocols

buffers of the nodes is not comparable to the number of packets that have been delivered.

Hence, the increase in the buffer time is not very steep for higher values of time.

4.3.4 Overhead Ratio

Overhead ratio is defined as

Overheadratio =
(Numberofrelayedmessages−Numberofdeliveredmessages)

Numberofdeliveredmessages

This is a measure of the number of packets that have been introduced into the network

to deliver a packet from the source to its destination. The overhead ratio also shows the

amount of the network resources needed to deliver a packet to its destination.

Table 4.5 gives the values of the overhead experienced by the network when the routing

protocols used are different. Figure 4.6 is a graphical visualization of the variation of the

overhead ratio with time.
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Time Epidemic
Router

Lookahead Double
Lookahead

Random
Lookahead

Backpressure
Lookahead

20000 195.035 61.231 69.01 36.92 32.3762
40000 196.7654 26.1423 28.1667 17.163 28.1667
60000 203.5911 16.5567 18.1841 11.2679 19.65
80000 207.7106 12.0354 13.0547 7.5501 13.0547
100000 212.2791 9.382 10.282 6.2818 10.282
500000 213.3763 2.1219 2.417 1.7049 2.6873
1000000 213.9234 1.2704 1.6575 1.2408 1.6575
2000000 215.7183 0.9338 1.2592 0.915 1.249

Table 4.5: Overhead Ratio for various protocols recorded with increasing time

Figure 4.6: Plot of Overhead Ratio against Time for the protocols

By the definition of the overhead ratio, the value of overhead ratio should decrease when

the delivery probability increases. This is also the case when we compare the graphs in

figures 4.6 and 4.3.

The overhead that is caused by the Epidemic Router is in the 200 - 250 range where as

the overhead caused by the Lookahead protocol and its variants is rather low, with the

maximum being around 60. This follows from the way the protocols have been designed.

Epidemic Router relays a lot more number of packets into the network when compared
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to the Lookahead protocols and its variants. A node replicates a packet every time it

encounters another node which does not have a copy of the message. This drastically

increases the number of times a packet is relayed to intermediate nodes. With the lookahead

protocol and its variants, the packet is forwarded only to a specific selected neighbor. The

number of times a packet is relayed is the number of hops it takes to reach the destination.

Hence, the Lookahead protocol and its variants have lower overhead.

With the protocols, another behavior we have seen consistently for all the protocols is that,

the overhead ratio falls steeply when the time of simulation is increased. But for very high

simulation times, the overhead ratio remains fairly constant. The reason for the sharp drop

is the number of packets that are in the buffers of the nodes that can have been relayed

but can be delivered given time, is significant compared to the number of delivered. But

when the simulation runs for a very large amount of time, the number of packets that have

not been delivered but have been relayed to an intermediate node is not comparable to the

number that have been delivered or dropped. Thus, the overhead ratio is fairly constant

for larger time.

4.4 Summary

In this chapter, we have detailed the simulations that we have performed to compare the

Lookahead protocol and its variants to the Epidemic Routing Protocol. We have found

that the Lookahead protocols and its variants have a better delivery probability and a lower

overhead ratio in comparison to the Epidemic Routing protocol. However, the Epidemic

Rouing protocol gives better latency and lower buffer time for the packets in the network.
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Our protocols were proposed so that the amount of bandwidth or network resources used

be low. The values that were obtained for the overhead ratio gives good proof that the

Lookahead protocols and its variants do not consume a large amount of network bandwidth.
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Chapter 5

Conclusions and Future Work

In this thesis, we have proposed a new protocol, the Look-ahead protocol. In addition

to this, we have also proposed three variants of the look-ahead protocol: the Random

Look-ahead protocol, the Double Look-ahead protocol and the Backpressure Look-ahead

protocol. We have simulated these protocols on the ONE simulator.

5.1 Conclusions

From the results that we obtained from simulating the protocols using the ONE simulator,

the following are a few conclusions that arise from the numbers:
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• The Look-ahead protocol and its variants show a significantly higher delivery prob-

ability than the Epidemic protocol. Among the variants of the look-ahead protocol,

the random look-ahead protocol shows a higher delivery probability.

• The overhead that the look-ahead protocol and its variants introduce in the network

is also significantly lower than that of the Epidemic protocol. This can be attributed

to the difference in the number of copies of a message that are in the network. In

the case of the look-ahead protocol and its variants, there is only one copy of the

message in the network, there are no duplicates. However, the Epidemic protocol

replicates a message every time there is a node that does not have a copy of the

packet. This introduces high amount of overhead on the network. This is also taxing

on the network as the nodes have limites buffer space and messages can get dropped

due to non-availability of buffer space.

• The buffer time for the look-ahead protocol and its variants is significantly higher

than that of Epidemic routing protocol. The path traversed by the packets in the

look-ahead protocol and its variants is significantly longer than the hops taken by

the packets in Epidemic routing protocol. This is the reason that the amount of

time spent by the packets in the buffers of the intermediate nodes is higher for the

look-ahead protocol and its variants.

• The latency experienced by the packets is also high when the look-ahead protocol

or one of its variants is employed. Since the packets tend to take longer paths to

the destination, the time that elapses between the creation of the message and the

delivery of the message at the destination is high. Higher latency is acceptable in

DTNs.
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5.2 Future Work

There are many aspects of the protocol simulations and the results that remain unexplored.

We enlist a few of those here:

• The protocols have been simulated on the ONE simulator. They have not been

deployed on a real network. It is of foremost importance that the protocol be tested

out on a real network. The following assumptions that we make in the simulator may

deviate the results from the values we see here.

– We assume that there is no contention in the network for resources. This is

not always the case. When there are nodes in close proximity, there will be a

contention for the network bandwidth. There can also be interference in the

transmission that is not accounted for in the simulator’s environment.

– The assumption that there will be no interference from nodes in close proximity

may not hold good in a real network. The nodes that are physically close to

each other may see some transmission interference.

– The messages in the ONE simulator do not have any payload. The buffer sizes

in the nodes are now enough to accommodate a large number of messages.

However, when the packets are sufficiently large, then the buffer overflow may

cause a bottlenck in the network that can lead to a lower delivery ratio.

• With the current design of the protocol, the amount of time that the packets spend

buffered in intermediate nodes is rather high. The reason behind this is the lengthy

paths that are traversed by the packets. Modifications can be made to the design of

the protocol to ensure lesser buffer time for the packets.
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• The look-ahead protocol and its variants assume that the nodes have infinite energy.

They do not account for the energy loss per transaction to the neighboring nodes.

We have assumed that the nodes use a Bluetooth interface for communication, which

in reality is intensive on battery usage. Similarly, energy is expended every time

a calculation is performed to decide which neighbor a packet should be forwarded

to. The protocol design should take into consideration the energy spent for each

operation.

• It is also desirable to have a cost metric attached to the header of the packet which can

measure the cost of a packet from a source to a destination. This metric should take

into account the resource cost for the packet to go from the source to the destination,

where cost should include the energy spent, the network resources used and other

factors like these.
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