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        	                               set of complex numbers 

 

        ∈                                belong to 

 

        ≔                              defined as  

      

                                        identity matrix 

        ,                           a matrix with ,  as the element on the th row and th column 

        ,….,	 )       an   diagonal matrix with  as the th element on the diagonal 

								                                transpose of matrix  
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                                    inverse of matrix  
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								                            transfer function (continuous time) 

       	                          transfer function (discrete time)  

      B                        shorthand for state space realization  

                                               	 	 	 	 	 	  (continuous time)                                                                    

                                              	 	 	 	 	 	 	  (discrete time)              
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ABSTRACT	

The study of multi-agent systems (MAS) focuses on systems in which many intelligent 

agents interact within an environment. The agents are considered to be autonomous entities. 

MAS can be used to solve problems that are difficult or impossible for an individual agent to 

solve. The main feature which is achieved when developing MAS, if they work, is flexibility, 

since MAS can be added to, modified and reconstructed, without the need for detailed rewriting 

of the application. MAS can manifest self-organization as well as self-steering  related complex 

behaviors even when the individual strategies of all their agents are simple. The goal of MAS 

research is to find methods that allow us to build complex systems composed of autonomous 

agents who, while operating on local knowledge and possessing only limited abilities, are 

nonetheless capable of enacting the desired global behaviors. We want to know how to take a 

description of what a system of agents should do and break it down into individual agent 

behaviors.  

 This thesis investigates the problem when discrete-time MAS are consensusable under 

undirected graph. A discussion is provided to show how the problem differs from continuous 

time system.  Then a consensusability condition is derived in terms of the Mahler measure of the 

agent system for single input single out systems (SISO) and result shows that there is an 

improved consensusability by a power of two.  An algorithm is proposed for distributed 

consensus feedback control law when the consensusability holds.  Also the case of output 

feedback is considered in which the consensusability problem becomes more complicated. To 

solve this we decompose the problem into two parts i.e. state feedback and state estimation. 

Simulation results demonstrate the effectiveness of the established results. 
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CHAPTER 1  
INTRODUCTION 

 This chapter introduces the consensus problem and the motivation for studying it. The 

contribution of this thesis is discussed briefly. Some basic concepts and important terminologies 

are provided as background material.  

1.1 Motivation  

 Consider  homogenous dynamic agents described by the following state space model:  

1 	 	 	 	 	 	 	

                                                                 	 	 	                               (1.1)	

where, 	 ∈ 	, 	 ∈ ,	and 	 ∈  represent the state vector, control input and 

measured output of agent , respectively, for 	 ∈ 	 	 1,2,3, … . Only single-input single-

output (SISO) agents will be considered in this thesis, and thus 1. We call 	 ∈  

and 	 ∈  the state and input matrices respectively. The transfer matrix of the th agent is 

	 	 	 	 	 	  , i.e., all agents have the same plant model. The  discrete-time 

dynamic agents are networked together under the communication topology represented by either 

directed or undirected graph. An individual agent updates its state by local communications with 

its neighbors so that all agents asymptotically reach an agreement. The consensus control aims at 

designing distributed feedback control protocols such that  

lim
→ 	 0				 ∀	 , 	 ∈  
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 The consensus problem is a fundamental research topic in the field of distributed computing. 

It has attracted great attention from many research communities, ever since the theoretical 

framework of the consensus problem for multiagent systems (MAS) was proposed and analyzed 

by Olfati-Saber and Murray in [1] and [2] built upon on the earlier work of Fax and Murray [3]. 

It leads to the research field of consensus control.  

 The main objective of the consensus control is to develop algorithms for MAS such that the 

group of dynamic agents reaches an agreement regarding a certain quantity of interest by 

communicating information with neighboring agents and itself. The MAS differs from traditional 

control systems because it requires the convergence of control theory, communications and 

computer science.  

 The challenges to MAS lie in the design of control systems that achieve robust cooperation, 

despite disconnections of some agents, inherent to most distributed environments. Had no notion 

of distributed computing evolved, each agent would be running separately, utilizing more 

resources and increasing the cost.  It would not be able to utilize the availability of several agents 

in a distributed environment. It is the need for the cooperation which reveals many problems 

which otherwise would have been undiscovered. The field has interested researchers because of 

its broad applications to formation control [1, 3-6], sensor networks [7, 8],  cooperative control 

[3, 9], flocks [10-12] and synchronization of coupled chaotic oscillators [13-16]. 

Distributed Computing and Consensusability in Computer Science 

 Distributed computing includes a wide range of algorithms that can be classified by a variety 

of attributes like shared memory, message passing, dataflow, timing models, resource allocation, 
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communication, database concurrency control, agreement, deadlock detection etc. Some of the 

major intended applications platforms are:  

 Communication systems 

 Shared-memory multiprocessor computation  

 Distributed operating systems 

 Distributed database systems  

 Digital circuits and  

 Real-time process-control systems 

 These algorithms have a high degree of uncertainty and are more dependent on the activities. 

Some of the uncertainties can be unknown shape of networks, independent input at different 

locations, processor failures, unknown number of processors, etc. Because of all these 

uncertainties, no component of distributed systems knows the complete state.  

 Consensus is one of the problems in distributed computing that has a long history in 

computer science [10].  It encapsulates the task of group agreement in the presence of faults. An 

important subject in the social sciences involves models of how opinions change over time, until 

hopefully some consensus is reached. These models have begun to be used in computer science 

applications in distributed computing. In such applications, the values of processors in a network 

are updated until all the processors have the same value. Valid consensus protocols must ensure 

that all processors reach the same value and do not fail at any point during its execution. A 

consensus protocol is an interaction rule that specifies the information exchange between an 

agent and all its neighbors on the network. The consensus problem is challenging primarily 

because one or more of the processes involved might fail at any time.  It may fail because of one 
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of the following reasons: a failed process might stop participating in the protocol or it might 

collaborate with other failed processes in order to deliberately subvert the operations.  

1.2 Scope of the Thesis 

 This thesis studies the consensus problem for MAS in both continuous time and discrete time 

systems. We begin with continuous time MAS systems in [13], which  relate the consensusability 

of MAS to synchronization of complex networks. It shows the important role of eigen-ratio that 

is the ratio of the largest eigenvalue to the smallest non-zero eigenvalue of the communication 

graph. Consensusability condition derived in [13] requires that the complementary sensitivity of 

each individual agent be positive real for which LQR control can be employed.   

 The positive real condition can be met with static feedback control laws as studied in [17]. 

Consider a group of 	identical agents with general linear dynamics, which may be regarded as 

the linearized model of some nonlinear systems. The dynamics of the th agent are described by 

	; 																										  

where , , ……… , , ∈ 	 	is the state, ∈  is the control input, and  ∈ 	  is the 

measured output. It is assumed that , ,  is stabilizable and detectable.  

 The state feedback control law	  can be designed to stabilize the closed loop system 

and minimize the quadratic cost function  

	 	,				 0, 0 
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Such an optimal control law can be obtained by solving the unique stabilizing solution of the 

continuous time algebraic Riccati equation (ARE) 

0 

and setting	 .  Then   minimizes J over all stabilizing control laws.  

 Consider 	 with . Then  is positive real in 

the sense that  

∗ 0		∀ ∈  

As shown in [13], the consensusability is equivalent to stability of  	 for 2 that is 

equivalent to   

1 1 0								∀		 0 

Therefore as long as the system is stabilizable, and is void of poles on the imaginary axis, a 

positive real condition can be met under state feedback. Since output can be decomposed into 

state feedback and its dual using distributed observers proposed in [13]. The problem of 

consensusability becomes trivial in the case of the continuous time systems.  

 However the same positive real condition cannot be applied to the discrete-time system and 

has been pointed out in [18]. In this paper, the authors studied the consensusability for linear 

discrete-time MAS. The joint effects of agent dynamic and network topology are considered. 

The authors propose an observer based distributed control protocol. A necessary and sufficient 
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condition under this type of protocol is given which shows that the eigen-ratio of undirected 

communication graph affects consensusability. The eigen-ratio is referred to the ratio of the 

largest eigenvalue to the second smallest eigenvalue of the undirected graph Laplacian matrix.  It 

is shown in [18] that eigen-ratio needs to satisfy the following condition. 

λ
λ

	
μ 1
μ 1

	, 

where μ  is termed as Mahler defined by 

μ max	 |λ |, 1 					 

If  is stable, then  

μ 1 ⇒ 	
λ
λ

∞ 

for which the consensusability condition always holds. An improvement over the above 

condition has been provided in [19] where a stable filter  is employed to improve the 

consensus condition by a power of 2, leading to  

λ
λ

μ 1
μ 1

	 

 In this thesis, we consider the problem of consensusability for discrete time multi agent 

systems under undirected communication graph. The consensusability condition is derived which 

depends only on μ , the Mahler measure, of the MAS. An algorithm is proposed for consensus 



7 
 

control to design the distributed feedback control protocol based on local information, when the 

consensusability holds.  Simulation examples are worked out to illustrate the results.  

1.3 Background  

  This section reviews some of the basic concepts in linear algebra, graph theory and block 

diagram reduction method that are going to be used throughout this thesis.  

1.3.1 Linear Algebra 

 Basic linear algebra concepts are discussed below taking references from [20] and [21].  

Eigenvalues and Eigenvectors  

 Let  ∈ . The eigenvalues of  are the  roots of its characteristic polynomial  = 

det ( 	 0.	 The maximum modulus of the eigenvalues is called the spectral radius, 

denoted by  

 : 	  max | | 

The real spectral radius of a matrix	Α, denoted by	 Α , is the maximum modulus of the real 

eigenvalues of	Α; that is	 Α ∶ 	max 	∈	 | |. A nonzero vector  ∈  that satisfies  

	 	 	

is referred to as a right eigenvector of . Dually, a nonzero vector y is called a left eigenvector of 

, if  

∗	 	 	 	 ∗	
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 In general, eigenvalues need not be real, neither do their corresponding eigenvectors. 

However, if  is real and  is a real eigenvalue of	 , then there is a real eigenvector 

corresponding to	λ. In the case that all eigenvectors of matrix	  are real, we denote λ ( ) for 

the largest eigenvalue of 	and  λ ( ) for the smallest eigenvalue.  

 Eigenvalues play an important role in situations where the matrix is a transformation from 

one vector space onto itself. Systems of linear ordinary differential equations are the primary 

examples. The values of  can correspond to frequencies of vibration, or critical values of 

stability parameters, or energy levels of atoms.  

Matrix Diagonalization  

 Matrix diagonalization is a process of taking a square matrix and converting it into a diagonal 

matrix which shares the properties of the underlying matrix. Matrix diagonalization is equivalent 

to transforming the underlying system of equations into a special set of coordinate axes in which 

the matrix takes this canonical form. Diagonalizing a matrix is equivalent to finding the 

matrix's eigenvalues, which forms the entries of the diagonalized matrix. Similarly, 

the eigenvectors make up the new set of axes corresponding to the diagonal matrix.  

 This relationship between diagonalized matrix, eigenvalues and eigenvectors is called eigen 

decomposition. Let  be a matrix of eigenvectors of a given square matrix  and Λ be a diagonal 

matrix with the corresponding eigenvalues on the diagonal, i.e. 

Λ

0
0

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
0
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Then as long as  is a square matrix and eigenvectors are linearly independent, then  exists, 

and   can be written as eigen decomposition 

	 Λ 	

If the above holds, then it allows us to investigate the properties of  by analyzing the diagonal 

matrix Λ. For example, repeated matrix powers can be expressed in terms of powers of scalars:  

	 	

If eigenvectors of 	are not linearly independent, then such a diagonal decomposition does not 

exist and the powers of  exhibit more complicated behavior. 

 In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. It is a 

fact that if   is a symmetric matrix, then 	 . Then above equation can be written as  

	 Λ ′	

 In Matlab, the command , 	 	 	  produces matrices of eigenvalues  and 

eigenvectors 	of matrix . If   is any nonsingular matrix, then 

 

is known as a similarity transformation and  and  are said to be similar. If 	 	  and 

	 	 , then	 	 	 . In other words, a similarity transformation preserves eigenvalues. The 

eigenvalue decomposition is an attempt to find a similarity transformation to the diagonal form. 
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 If  is not a square matrix, then it cannot have an inverse and  does not have eigen 

decomposition. However if	  is , then  can be written into Singular Value 

Decomposition (SVD) form: 

	 ′	

where,  is an  real or complex unitary matrix,  is a  diagonal matrix with non-

negative real numbers on the diagonal, and	 , a  real or complex unitary matrix. The 

following illustrates the case when  with : 

σ 0
0 σ

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
⋯ σ

0 ⋯
0 ⋯

		 ⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
⋯ 0

 

 In Matlab, , , 	 	 	  produces a diagonal matrix  of the same dimension as , 

with nonnegative diagonal elements in decreasing order, and unitary matrices  and	  so that  

	 	 ′ 

 Singular values play an important role where the matrix is a transformation from one vector 

space to a different vector space, possibly with a different dimension. Systems of over- or 

underdetermined algebraic equations are the primary examples. 
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Kronecker Product 

 Given two matrices ∈ 	  and 	 ∈ 	 , the Kronecker product of  and  is defined 

as 

	⨂	 	

⋯
⋯

⋮ ⋮ ⋱
				

⋮
				⋯

    ∈ 	  

Some Properties of Kronecker product are listed next: 

	⨂	 	 	⨂	 	 	⨂	 	

	⨂	 	⨂	 	⨂	 	⨂	  

	⨂	 	 	 	⨂	 	 

	⨂	 	 	 	⨂		  

	⨂	 	 	⨂	 	⨂		 	 

	⨂	 	 	⨂		 	

1.3.2 Communication Graph  

 Many real-world situations can conveniently be described by means of a diagram consisting 

of a set of points together with lines joining certain pairs of these points [22]. The ideas from 

graph theory and control theory help us to study the relation between the communication 

network and agent dynamics. Therefore a review of some terms and definitions used in graph 

theory are discussed here using reference [23]. 
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Graph Theory 

  A graph is an ordered pair  	Υ,  of sets such that, 	 ⊂ 	Υ Υ ; thus, the elements of  

are 2-element subsets of Υ. The elements of Υ are vertices of graph ; the elements of  are its 

edges. A graph with vertex set	Υ is said to be on graph Υ. The vertex set of graph  is referred to 

as	Υ , its edge set as . The number of vertices of a graph  is its order, written as | |, its 

number of edges is denoted by || ||. Graphs are finite, infinite, and countable and so on 

according to their order.  The ends of an edge are said to be incident with the edge and vice versa 

[22]. Two vertices which are incident with a common edge are adjacent, as are two edges which 

are incident with a common vertex, and two distinct adjacent vertices are neighbors. An edge 

with identical ends is called a loop, and an edge with distinct ends a link. Two or more pairs with 

the same pair of ends are said to be parallel edges. A path is a simple graph whose vertices can 

be arranged in a linear sequence in such a way that two vertices are adjacent if they are 

consecutive in the sequence and are non-adjacent otherwise. The length of the path is the number 

of its edges. A graph is connected if, for every partition of its vertex set into two nonempty sets 

 and , there is an edge with one end in  and one end in ; otherwise the graph is 

disconnected.  

 Although drawings are a convenient means of specifying graphs, they are clearly not suitable 

for storing graphs in computers, or applying mathematical methods to study their properties. For 

these reasons, we consider two matrices associated with a graph, its incidence matrix and 

adjacency matrix.  

 Let  be a graph, with vertex set Υ and edge set . The incidence matrix of  is the  

matrix	 ≔ 	 , where  is the number of times (0, 1, or 2) that vertex  and edge  is 
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incident.  The adjacency matrix of  is the  matrix 	 ≔ 		 , where  is the number 

of edges joining vertices  and , each loop counting as two edges. Because most graphs have 

many more edges than vertices, the adjacency matrix of a graph is generally much smaller than 

its incidence matrix and thus requires less storage space.  

 Although many problems lend themselves to graph-theoretic formulation, the concept of 

graph is sometimes not adequate. When dealing with communication graph, it is necessary to 

know in which direction the communication is taking place between the agents. Therefore in 

such a situation just knowing the graph is not of much use. What we need is a graph in which 

link has an assigned orientation, namely a directed graph.  

 A directed graph  consists of a set of vertices, Υ and a set of edges	 ⊂ 	Υ , where 

	 , 	 ∈ 	  and , 	 ∈ 	Υ. The first element of  is denoted by tail , and the second is 

denoted by head . When tail  = head , it forms a self-loop. In a communication graph we 

assume that tail 	 	head , i.e. the graph has no self-loops. A graph with a property that for 

any , 	 ∈ 	 , the arc , ∈ 	  as well is said to be undirected. A graph in which a path 

exists from every vertex to every vertex that cannot be joined by any path is termed 

disconnected. 

 In a communication graph, an edge from agent  to agent	  means that agent  can directly 

receive information from agent	 . Agent  can then refine its own information by learning 

information that	  has, including information acquired by  from another agent. 
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1.3.3 Block Diagram Reduction Method  

Rule 1: Consider  to be an input signal and  to be the output signal. 

Error signal, 	 	 	 	 	 	 	 	  

Output Signal, 	 	 	   or 	 	 	 	  

 

 

 

The transfer functions of both the block diagrams are equal i.e.     and hence are 

equivalent.  

Rule 2:  

  
u(t) y(t)

u(t)

y(t)     A1       A2 

y(t)      A2 

   A2A1

Figure 1.2 Block Diagram Rule 2 

Figure 1.1 Block Diagram Rule 1

r(t)
     G2 

G2 

e(t)

y(t)G1

r(t)

y(t)G1G2

e(t)
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CHAPTER 2  
LITERATURE REVIEW 

 In this chapter previous work from the literature is reviewed and known results are outlined 

here.  

2.1 Consensusability in Control Systems 

 In Control Systems, a network of homogenous dynamic systems is said to be consensusable 

if all agents converge to a certain quantity of interest that depends on the state of all agents. The 

issue arising in the development of multi-agent systems is the design of consensus algorithm (or 

a protocol) which will have distributed control policies based on local information that enables 

all agents to asymptotically converge to the average of their initial values. Consensus algorithm 

relies on neighbor-to-neighbor information exchange [24]. The dynamic agents update their 

states through local interaction between its neighbors under proper communication graph and 

converge to a common value. Communication graph determines what information is available 

and how each agent is interacting with another. 

 The survey paper by Olfati-Saber and Murray [9] summarizes the development of consensus 

and cooperation in networked multi agent systems. The authors provide a theoretical framework 

for analysis of consensus algorithms with directed information flow.  The paper discusses the 

concepts of information consensus in networks and methods of convergence and performance 

analysis for the algorithms provided.  A brief introduction to the networked systems with 

nonlocal information flow is also provided. As stated earlier, the important results and 

conclusions established in this paper have attracted researchers into the field of consensus 
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control. Some of the work which has been done in the field of consensus of multiagent systems is 

discussed below. 

2.1.1 Formation Control  

 Distributed formation control is an area of application which has become prominent in 

research due to its application in multivehicle systems. Technological advances have motivated 

researchers to study autonomous and adaptable vehicle formations. Due to development of 

strong control methods for single vehicles, improvement in communication capabilities and the 

availability of miniaturization technologies have led to interest in vehicles that can interact 

autonomously with the other vehicles and environment, in presence of uncertainty and perform 

activities beyond the capability of individual vehicles.  

 The design goal is to enable decision making and control capability of the vehicles to work 

cooperatively. Although this area poses its own unique challenges including limited sensing 

capabilities of the vehicles, network bandwidth limitations, interruptions in communications due 

to packet loss and physical disruptions to the communication devices of the vehicle. In [9],  two 

approaches are proposed to distributed formation control:  

i) Representation of formations as rigid structures and the use of gradient-based controls 

obtained from their structural potentials, and 

 ii) Representation of formations using the vectors of relative positions of neighboring 

vehicles and the use of consensus based controllers with input bias.  
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 The cooperative behavior discussed in [3] by Fax and Murray is formation control of type ii). 

The authors categorize the vehicle formation control into two different methods – leader follower 

method and virtual leader method [25] [26]. The leader follower method is simple as a reference 

trajectory is defined by the leader. But it suffers from poor disturbance rejection properties. The 

method depends on the leader, and too much of reliance on one agent in the formation is 

undesirable. For the virtual leader method, the agents create a fictitious leader vehicle whose 

trajectory acts as a leader for the group. This method does not have problems in disturbance 

rejection but at the high cost of communication and computation in finding the agent which acts 

as a leader and communicates its position in time to support real time control of the other agents. 

The above two methods use an underlying communication topology that enables the use of a 

particular formation control methodology.  

 In cooperative control, the stability and performance of a system depends on the topology of 

information flow. The authors in [3] derive necessary and sufficient conditions for stability of 

interconnected systems of identical agents in terms of eigenvalues of the graph Laplacian matrix, 

and have studied how the information flow affects the performance using Nyquist criterion. A 

separation principle has been proposed to decompose formation stability into two components – 

Stability of the achieved information flow for the given graph and stability of the individual 

vehicle for the given controller. This enables the information flow to be robust to changes in 

graph and enabling tight formation control despite limitations in intervehicle communication 

capability. 

 Consider a group of  vehicles, whose identical linear dynamics are denoted by  
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where 	 ∈ 	 ,	 	 ∈ 	 	are the vehicles states and controls and 	 ∈ 1, … ,  is the 

index of the vehicles in the group. Each vehicle receives the following measurements:  

	  

	 ,					 	 ∈ 	  

where  is the set of vehicles which vehicle	  can sense. 

 Thus, 	 ∈ 	 	represents internal state measurements, and  ∈ 	  represents external state 

measurements relative to other vehicles. Assume that 	 	∅, meaning that each vehicle can 

sense at least one other vehicle. A single vehicle cannot drive all the 	 terms to zero 

simultaneously; the errors must be fused into a single signal error measurement  

	
1
| |

	
	∈	

 

where  | | is the cardinality of the set | |. We also define a distributed controller  which 

maps , 	to  and has internal states 	 ∈ 	 , represented in state space form by  

	  

	  

 Now consider the collective system of all  vehicles. For dimensional capability, we use the 

Kronecker product to assemble the matrices governing the formation behavior. The collective 

dynamics of  vehicles can be represented as follows:  
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where the  are block matrices defined as a function of the normalized graph Laplacian  

and other matrices as follows:  

	 	⨂	 	 	⨂		 	 	⨂	  

	 	⨂	  

	 	⨂	 	 	⨂		 	 	⨂	  

	 	⨂	  

 The main stability result on relative position based formation of networked vehicles is due to 

Fax and Murray [3] and can be stated as follows:  

Theorem 2.1: (Fax and Murray, 2004) A local controller  stabilizes the formation dynamics in 

[27] if and only if it stabilizes the set of  systems.  

 

	  

	  

where 	is the set of eigenvalues of the normalized graph Laplacian .  

 The above theorem reveals that the stability of a formation of  identical vehicles can be 

verified by stability analysis of a single vehicle with the same dynamics and an output that is 
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scaled by the eigenvalues of the Laplacian of the network. Since  may be complex for MAS 

over directed graph, it leads to a complex-valued LTI system in the above formulation.  

Theorem 2.2:  (Fax and Murray, 2004) Suppose  is SISO system. Then  stabilizes the relative 

dynamics of a formation if and only if the net encirclement of 1/  by the Nyquist plot of 

 is zero for all non-zero . 

2.1.2 Flocking Theory 

 Flocking is a form of collective behavior of large number of interacting agents with a 

common group objective [11]. This paper by Olfati- Saber introduces the algorithms and theory 

for flocking in multi agent systems. The deployment of large groups of autonomous vehicles is 

rapidly becoming possible because of technological advances in networking and in 

miniaturization of electromechanical systems [10]. Robots are replacing men to perform 

challenging tasks in adverse environments, exploration, and surveillance etc.   

 To build a simulated flock, Reynolds introduced three heuristics rules in [12]. Stated briefly 

in order of decreasing precedence, the behaviors that lead to simulated flocking are: 

 Collision Avoidance: avoid collisions with nearby flock mates 

 Velocity Matching: attempt to match velocity with nearby flock mates 

 Flock Centering: attempt to stay close to nearby flock mates 

 Building upon these rules, Olfati-Saber has discussed two cases of flocking; in free-space and 

in presence of multiple obstacles. He has also presented three flocking algorithms: two for free-

flocking and one in presence of obstacles. The first algorithm is a gradient based algorithm 
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equipped with velocity consensus protocol and embodies all three rules of Reynolds. It is shown 

that this algorithm leads to regular fragmentation rather than flocking. The second and third 

algorithm discussed in this paper leads to flocking. A method for construction of cost functions is 

provided. A “universal” definition of flocking for particle systems with similarities to Lyapunov 

stability is given. Several simulation results are provided that demonstrate performing 2-D and 3-

D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the 

proposed algorithms. 

2.1.3 Synchronization of Complex Networks 

 Another topic that is closely related to the consensus of multiagent systems is the 

synchronization of coupled nonlinear oscillators [13]. As cited in [13], the pioneering work in the 

synchronization phenomenon of the two master-slave chaotic systems was observed and applied 

to secure communications in [15]. References [14] and [16] discuss the synchronization stability 

of a network of oscillators by using the master stability function method. The authors in [13] 

state that, due to nonlinear node dynamics only sufficient conditions can be given for verifying 

the synchronization. This paper discusses consensus problem of multiagent systems under fixed 

communication topology. It is shown that there exists a distributed observer-type consensus 

protocol based on relative output measurements. A framework is proposed which converts the 

consensus problem of MAS with communication topology having a spanning tree into the 

stability of set of matrices with the same low dimension. A 3-step approach has been proposed 

by the authors that allow the designed protocol to achieve consensus over one communication 

topology that can be directly used to solve the consensus problem for any topology containing a 

spanning tree where the only task is to select suitable coupling strength. This algorithm 
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decouples the effects of the agent and protocol dynamics on the consensus stability from that of 

communication topology. The consensus region serves as a measure for the robustness of 

protocol to parametric uncertainty. It is convenient to design a protocol such that the consensus 

region is unbounded.  

 An observer type control protocol is proposed as  

 

 

where ∈ 	 	is the protocol state, 1,… . , ,	and ∈ 	  and ∈ 	 	are the 

feedback gain matrices to be determined. The term ∑  denotes the information 

exchange between the protocol of agent  and those of its neighbors. This protocol is distributed 

since it is based only on the relative information of the neighboring agents. The relative 

measurements of other agents with respect to  are synthesized into single signal using  

	 

where 0 denotes coupling strength, 0	and 1 if agent  can obtain information 

from agent 	but 0 otherwise. 

Theorem 2.3: For a directed network of agents with communication topology 		that has a 

directed spanning tree, the proposed protocol solves the consensus problem if and only if all 
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matrices , , 2, …… . . , ,	are Hurwitz, where , 2,…… . . , , are 

nonzero eigenvalues of the Laplacian matrix	 . 

 The above theorem presents the necessary and sufficient condition for the consensus 

problem. 

2.1.4 Fast Consensus  

 The development of network design problems for achieving fast consensus algorithms is 

another research area. Some of the work and methods found in literature are discussed next.  

 Multi-hop relay in consensus problem is considered in [28], where the control input of each 

agent depends not only on its neighbors’ states, but also on its neighbors’ neighbors’ state. By 

introducing more information with second hop, [28] demonstrates that consensus speed is 

improved. However the tradeoff for introducing the second-hop information is extra 

communication and large control effort.  

 In [24] the authors propose a distributed consensus control algorithm that uses both current 

states and the outdated states stored in memory. In contrast, the standard consensus relies on the 

current state. This algorithm converges faster than the standard algorithms and improves the 

performance. It does not require second hop communication. There are consensus algorithms 

with delays. In such a case delays are considered as a negative factor and the focus is usually on 

how the delay affects the stability of the consensus algorithms. Whereas the difference between 

the paper in [24] and the other work in time delay systems is that the outdated state information 

is considered as a  positive factor and is, therefore, applied to multi-agent consensus problems 

while other papers consider the effect of time delay on stability of single system. This paper 
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shows with both current states and outdated states available, consensus will converge faster than 

the standard consensus algorithm while requiring identical maximum control effort when the 

outdated states are chosen properly. 

 Watts and Strogatz proposed a small world network in [29] which was capable of 

interpolating between a regular network and a random network using a single parameter. Also 

known as the  random wiring idea as mentioned in [9].  Based on this, Olfati-Saber proposed a 

randomized algorithm in [30]. His algorithm based on random rewiring of existing links of a 

network gave rise to a considerably faster consensus algorithm. The author demonstrates that it is 

possible to dramatically increase the algebraic connectivity of a complex regular network by 

1000 times or more without adding new links or nodes to the network. Algebraic connectivity of 

the graph is defined as the second smallest eigenvalue of its Laplacian matrix and is a measure of 

speed for solving consensus problems in networks. The paper also shows that the mean of the 

bulk Laplacian spectrum remains invariant under random wiring.  

 Another approach was proposed by Xiao and Boyd in [31]. They consider the design of 

weights for a network and solve the problem of finding the fastest converging linear iteration by 

using a semi-definite convex programming. There is a slight increase in the speed of 

convergence of consensus algorithm. To achieve relatively high convergence speed, an alternate 

way is proposed, i.e., to design the topology of the network while keeping the weights fixed.  

 Consensus control has received great attention from the research community of control. It is 

not possible for this thesis to provide an exhaustive survey. However the presentation in this 

chapter contains some of the important results in this area which are related to our work in this 

thesis.  
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CHAPTER 3  
CONSENSUS CONTROL 

  The consensus problem is formally introduced in this chapter. The basic problem of 

consensusability is first introduced for discrete time MAS under undirected graph. The state 

feedback and output feedback cases are discussed. We show that the output feedback case can be 

solved with observer based controllers which decomposes the problem into two parts state 

feedback and state estimation. Then the consensusability condition for single input MAS is 

introduced and controller design algorithm is derived.  

3.1 Problem Formulation 

 Consider a multi-agent dynamic system composed of  identical agents described in (1.1). 

The transfer matrix of the th agent is 	 	 	 	 	 	 , i.e., all agents have the same 

plant model.  

 The problem of undirected communication graph for multi agent systems is considered. It is 

known that such a graph is balanced and its associated adjacent matrix  is symmetric. Let i = 

|	 , 	 ∈ 	  and a ,  be the degree of th agent. Denote 

	 , , . … . ,  and represents the number of neighbors each agent is 

having. Then ∶  	  is symmetric positive and semi-definite, termed as Laplacian matrix 

of graph . All Eigen values of  are non-negative and can be arranged in ascending order:  

0 	 	 	 	 	 			… . . 	 	 	
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 For simplicity  ( ) will be used. It is assumed that   0, which holds if the 

undirected graph is connected. 

 Consensus control aims at designing distributed feedback control protocol based on local 

information such that                       

			lim
→ 	 0				 ∀	 , 	 ∈                     (3.1)                                                 

State feedback control is given by (for ) 

 	 a , ,  	 ∈            (3.2) 

where, 	 ∈  

 The multi agent system is said to be consensusable if there exists a control protocol in the 

form of (3.2) that achieves (3.1).  

 The case of output feedback  can be solved by observer based controllers to divide 

output feedback into dual problems of state feedback and state estimation.  

3.2 State Feedback   

Lemma 3.2.1 Consider state feedback control, i.e. . The discrete time multi-agent systems 

in (1.1) are consensusable under the control protocol (3.3), if and only if there exists a common 

stable filter  of size 	and control gain 	 ∈  such that 	 	is a stability 

matrix for 2,3,… , . 
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 The control protocol in the form of (3.3) is inadequate in the case of state feedback. Denote  

as the unit advance operator, i.e. 	 1 .  

 The following distributed feedback control protocol is proposed in [19]:  

 	 	 a , , 	 ∈           (3.3) 

where,  is a transfer matrix of some stable filter, and  is the constant state feedback gain. 

Let 	 ∈ 	  be the state vector associated with  for the 	th agent and  

                            	 	 	 	 	                     (3.4) 

Define the augmented state vector ∶ 	 	⨂	 	∈ 	 .  

	 	 

	  

1  

1  

The above equations result in: 

1
1 0 	 

0 0 	 	 
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Denote  

0 , 	 , 

                                      	 0 ,                             (3.5) 

where 	is the identity matrix of the size . It can then be verified that  

                                                           	 	 	                     (3.6) 

Recall that 	 	 	 	 	 	  and  in (3.5). With 	 ,	 the dynamic 

equations in (1.1) and (3.3) for the th agent can be equivalently converted into  

                          1 	 	 	 	 	                       (3.7)	

                     	 	 a , 	                   (3.8) 

for each 	 ∈ . The consensusability  and consensus control in [19]  aim at designing both 

stable filter  and constant state feedback gain  such that  

                         lim
→ 	 0				 ∀	 , 	 ∈               (3.9) 

If the above holds, the multi agent systems described in (1.1) are said to be consensusable under 

the control protocol (3.3), which is equivalent to the consensusability of the augmented multi 

agent systems in (3.7) under the control protocol in (3.8).   
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3.3 Output Feedback   

 In the case of output feedback i.e.  ∈ 	   the stable filter  needs to be 

employed at the output rather than input, of the th agent for each . The plant model  can be 

described by the following state space model:  

1 	 	 	 	 	 	 	

                                                                 	 	 	                                    (3.10) 

Let 	 ∈ 	 	be the state vector associated with  for the th agent and is given by  

                                                    	 	 	                        (3.11) 

It can be easily verified that: 

                                                     	                           (3.12) 

where  

	
0
	,  

0
	,                                  (3.13) 

The output feedback controller is distributed observer given by: 

	 1 	 	 	 	 	 , 	 , , 

																																																				 	 	 	, 	
0

                         (3.14) 
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for ∈  where ∈ 	  and  

, 	 	 	 	 	  

                                                 	 	 	 	 	        (3.15) 

Define the augmented state vector 	⨂ 	 	 ∈ 	  with  the state for 

 and  for . Then using (3.13) we can write:  

1 	  

 

Rearranging (3.14) we can obtain the following equation:  

																											 	 1 , , 													 3.16  

Substituting (3.15) into (3.16) results in 

	 1 ,
	

	 ,
	

 

Under the distributed observer-based consensus control protocol in (3.14), the composite system 

of (3.12) and (3.14) can be written in the state space form as follows: 
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																																						 1 	 , 	 ,				 ∈ 	 																		 3.17  

where ⨂	 	 	is the augmented vector, i.e., 	
	 	

 . Hence we 

obtain 

1 	
0

	 	
0 0

	 , 	

	
0 0

	 , 	  

For convenience, denote 

0
	,

0 0
 

Alternatively we can write  

1 	 	 , , ⋯					⋯ , 	  

where 

	 ,  

Define the augmented state vector 
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1 	  

1
1

⋮
⋮

1

   or     	  ⋮
⋮

 

Then we have 

1 	 	

0 0
0 0
0 0 ⋱

				
0 0 0
0 0 0
0 0 0

	

0 0 0
0 0 0
0 0 0

				
⋱ 0 0
0 0
0 0

	 	

0 0
0 0
0 0 ⋱

				
0 0 0
0 0 0
0 0 0

	

0 0 0
0 0 0
0 0 0

							
0 ⋱ 0
0 0 0
0 0

	

				
⋯ ⋯
⋯ ⋯ ⋮
⋯ ⋯ ⋮

	

⋮ ⋮ 						⋮
⋮ ⋮ 						⋮

⋯ 						⋯
								

⋱ ⋮ ⋮
⋮ ⋱ ⋮
⋯ ⋯

	 																					 3.18  

By the definition of the Laplacian matrix,  we have a compact form below:  

																																																			 1 	⨂	 	 	 	⨂	 	                          (3.19) 

Let 	  with 	and  the state dimensions of 	 and 	, respectively. Then 

	 ∈ 	 . Denote  ∈ 	  as vector of elements 1 and  ∈ 	  as vector of elements 0.  

In consensusability each component should reach its average value. We define  

																														 ∶ 	
1
	 	 	

1
	 	 ⋯					⋯ 	 																					 3.20 		 
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 Multiplying 	 	 ⋯					⋯  to (3.19) on both sides yields 

1 	
1
	 	 ⋯					⋯ 	

	
1
	 	 ⋯					⋯

⋱ ⋯
⋮ ⋮ ⋱

						
⋯ ⋯
⋯ ⋯ ⋮
⋯ ⋯ ⋮

	

⋮ ⋮ 						⋮
⋮ ⋮ 						⋮

⋯ 						⋯
								

⋱ ⋮ ⋮
⋮ ⋱ ⋮
⋯ ⋯

	 	 

																	 	
1
		 	 	

1
		 	 	 	 		

1
		 	 		

1
		 	 	 	 

where 	is the , th element of . Hence 

																																																																												 	 0																																																				 3.21  

leads to  1 	 	                                                                                      (3.22) 

Also we can write (3.22) in the form below:  

1
⋮
⋮
⋮
1

	

0 0
0 0
0 0 ⋱

				
0 0 0
0 0 0
0 0 0

	

0 0 0
0 0 0
0 0 0

				
⋱ 0 0
0 0
0 0

	
⋮
⋮
⋮

	

⋱ ⋯
⋮ ⋮ ⋱

						
⋯ ⋯
⋯ ⋯ ⋮
⋯ ⋯ ⋮

	

⋮ ⋮ 						⋮
⋮ ⋮ 						⋮

⋯ 						⋯
								

⋱ ⋮ ⋮
⋮ ⋱ ⋮
⋯ ⋯

	
⋮
⋮
⋮

	 

The above holds in the light of (3.21). So we write (3.22) in the following form: 



34 
 

1
⋮
⋮
⋮
1

	 	⨂	 	 	 	⨂	 	
⋮
⋮
⋮

		 

Now setting 
⋮
⋮
⋮

	
⋮
⋮
⋮

		yeilds 

                                             1 	⨂	 	 	 	⨂	 	                     (3.23) 

Consensusability depends on the stability of 	⨂	 	 	 	⨂	 . Let  Λ   be  

eigenvalue decomposition. The symmetry of  implies that . It follows that 

, , …… . . , 		with 0. Set the similarity transform matrix by 

	⨂	   
⋯

⋮ ⋱ ⋮
⋯

. 

Then it can be shown that 

 	⨂	 	 	 	⨂	 	  

0 0
0 0
0 0 ⋱

				
0 0 0
0 0 0
0 0 0

	

0 0 0
0 0 0
0 0 0

				
⋱ 0 0
0 0
0 0

0 0
0 0
0 0 ⋱

				
0 0 0
0 0 0
0 0 0

	

0 0 0
0 0 0
0 0 0

					
⋱ 0 0
0 ⋱ 0
0 0

 

																																												 , , ……… . . ,  

Let 	be the eigenvector corresponding to 0. Then 
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1
1
⋮
1

1

√
 

After transformation 	 	 , the state space system decomposes into  subsystems. 

The first one is governed by 	 1 	 . There holds 	 0	by 

1

√
⋯ ⋯ 	 	 1 	

1

√
⋯ ⋯

⋮
⋮
⋮

	
⋮
⋮
⋮

0 

The th subsystem is  	 1 	 	 	 	 	 	 			 for 2 . 

For consensusability 	 	 	  is required to be a should be a stability matrix for 

2,3, …… . . , . We note that 

( 	 	 	  
	

 

A similarity transformation is applied to the above matrix as follows  

0 	 0
 

Note that,	
0

	
0

. Then the above is the same as 

	 0
	

0
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It follows that the consensusability under the control protocol (3.14) is equivalent to stability of 

 and of  for 2,… . . , . 

 In summary, we can state that the discrete-time MAS in (3.9) is consensusable under the 

control protocol (3.14), if and only if there exists a common filter  of size  and 

stabilizing state feedback  and state estimation gain  such that  is a stability 

matrix for 2,… . . , . 

 The design procedure is discussed in the following section.  

3.4 Controller Design Algorithm for Single Input Systems  

 Recall the Mahler measure defined in Chapter 1. The following result is known from [19].  

Lemma 3.4.1 Let  be the complementary sensitivity under the 

state feedback where , ∈ 	 . If ,  is stabilizable, then  

∈  ‖ ‖ 	μ A  

For each , a stabilizing state feedback gain achieving ‖ ‖  	  is given by 	

1  

	 	  

where 	 	0 is the stabilizing solution to the following discrete-time ARE: 

1  
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The following is the main result of this section. 

Theorem 3.4.1 Let  and  is a stable filter. The discrete time multi agents in (1.1) are 

consensusable under the protocol (3.3), if 	

																																																																								
λ
λ

μ A 1
μ A 1

																																									 3.24 	

	 Before giving the proof, we provide the algorithm for design of  and  that achieve 

consensusability under the above condition.  

1) Select	 	 μ A  according to   

1
1

λ
λ

⇒ 	
1

1
μ A  

2) Solve the stabilizing solution 1 		; 	 	 	0  

Set the state feedback gain according to 

1  

That achieves  	  . Note that 

																																																														
λ
λ

	
1
1

	
μ A 1
μ A 1

																						 3.25 							 

3) Find the complementary sensitivity under state feedback, 

 

4) After  and  are available, calculate the stable filter  according to 
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1

1
 

The above stable filter can further be written as 

                              	 1 1  

                                       1 1 	 1 ] 

For this reason, state realization of  can be obtained as  

	 1                      

            	 1 	 ;                         		 1  

Proof:	As per Lemma 3.2.1 the consensusability problem is solvable, if and only if 	  is 

a stability matrix for 2,3, … , . Construct  and  to solve the consensusability problem 

under the condition in Theorem 3.4.1. We assume that  has at least one eigenvalue outside the 

unit circle. Otherwise the consensusability becomes trivial.   

The facts that  	  for μ A 1 imply that  is a stable transfer 

function, by small gain theorem. Next we show that  	  is a stability matrix for 2 

under the condition in (3.24) that ensures (3.25). 

Stability condition is given by: 

det 	 	 0	∀	| | 1	 	 2 
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																																					⇔ det 	 0	∀	| | 1	 	 2 

By root locus argument it can be shown that, 

																																				⇔ det 0	∀	| | 1	 	 2 

																																				⇔ 1 0	∀	| | 1	 	 2 

From (3.5),  

																																					⇔ 1 0	∀	| | 1	 	 2 

From (3.6),  

																																			 	 	 	  

																																				⇔ 1 	 0	∀	| | 1	 	 2 

Denote, 

																 B  and  	 1 Δ 					; Δ 0 

Then the above is equivalent to 

																 1 1 Δ K B 0	∀	| | 1 

																										 1 K B ΔK B 0 ∀	| | 1 

																										 1 	
ΔK B
1 K B

	 0		∀	| | 1		 



40 
 

																										 1
ΔG z F z

1
	 0	∀	| | 1 

																										 1
ΔG z 	

1 	
 

																										 1
ΔG z 1 γ

1 γ T z 1 γ
 

We know that, 

T z 	 B B  

																																					 B B 	 	
1

 

Then,  

																					 1 ΔT z  

Consider  

																						T z
G z 1 γ

1 γ 1 γ
 

1 1 γ
1 γ 1 γ 1 γ

 

For convenience, denote the denominator of T z 	by . Then 
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1 γ 1 γ 1 γ  

						 1 1 γ 1 γ 1 γ  

																																							 1 1 γ 2 1 γ  

																																							 1 1 γ 	 1 γ  

																																							 1 1
γ
1

 

Substituting the above into the expression of T z  gives 

																													T z
1 γ

1 1

T z 1 γ

1 γ T z
				 ∈  

																													 1 Δ
T z 1 γ

1 γ T z
 

Next we claim that: ≔ 1 ΔT z 0		∀	| | 1 

To prove the above claim we have at ; 		 1 0				∀	| | 1.		At  ,  

																																			Δ
λ λ
λ

	
λ
λ

1 

Using (3.24),   

																																			Δ
1
1

1
4

1
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Hence we can obtain  

				 1
4 T z

1 γ T z

1 γ T z 4 T z

1 γ T z

1 γ T z
1 γ T z

 

The fact that 	γ   implies that  

γ 1										∀	| | 1			 

By a known property of bilinear transform, the above equation implies that  

1 γ T z
1 γ T z

0		∀	| | 1	 

 Thus, Theorem 3.4.1 provides a procedure for designing the stable filter  and the state 

feedback gain  for consensus control when the following consensusability condition holds: 

λ
λ

μ A 1
μ A 1

 

 In conclusion to this chapter, we summarize as follows:  

1) A distributed feedback control protocol is proposed.  

2) State feedback and output feedback control for discrete-time MAS is studied. We show 

that the MAS are consensusable under output feedback control.  

3) A step by step procedure for designing a stable filter  and the state feedback gain  

is given such that (3.9) holds true.   
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CHAPTER 4  
SIMULATION RESULTS 

 This chapter employs a simulation example to illustrate consensus control, and the results 

presented in the previous chapter. It assumes that the agent plant is modeled by the transfer 

function described by  

2
2

	 	 	 	 	 		 

with 2, 2	 	 1. The undirected feedback graph is assumed to have the following 

adjacent matrix:  

 = 

0 1 0
1 0 1
0 1 0

0 0 1
0 0 0
1 0 0

0 0 1
0 0 0
1 0 0

0 1 0
1 0 1
0 1 0

 

Number of agents each neighbor is having is given by 

 = 

2 0 0
0 2 0
0 0 2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2 0 0
0 2 0
0 0 2

 

Then the Laplacian Matrix, ′ is obtained as	

 = 

	
			2 1 			0
1 		2 1
		0 1 		2

		0 			0 1
		0 			0 			0
1 			0 			0

	
		0 		0 	 1
		0 		0 			0
1 		0 				0

		2 1 		0
1 			2 1

			0 1 		2
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It can be verified that  λ  =	1  and  λ 4. 

 For the agent model , it is easy to see that μ A 2. We set  according to (3.25) 

yielding 3 μ A 	and satisfying (3.24). Solving the stabilizing solution to ARE  

1 		; 	 	 	0  

yields 	 . The state feedback gain  such that  	 		is given by  

1 0.8438 

The complementary sensitivity under state feedback is given by  

 

Direct calculation yields 

1.688
0.3125

 

It can be verified that 2.4545 	  =3. Recall the stable filter  

		
1

1
 

Substituting the expression of  yields 

	
0.4444 0.1389

0.5
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that is indeed stable.  

We now construct a multi-agent system with 6	 agents. Define: 

	 ⨂	 	 	  

Performing Singular Value Decomposition of	  yields 

	  

0.4082 0.5774 		0
0.4082 0.2887 0.5
0.4082 		0.2887 0.5

			
0.5774 		0 0.4082
		0.2887 			0.5 			0.4082
		0.2887 0.5 0.4082

0.4082 		0.5774 		0
0.4082 		0.2887 		0.5
0.4082 0.2887 		0.5

				
0.5774 			0 			0.4082
		0.2887 			0.5 0.4082
		0.2887 0.5 			0.4082

; 

	  

0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

3 0 0
0 3 0
0 0 4

 

 It is important to note that the consensusability does not ensure stability of the underlying 

MAS, if the agent model is unstable.  That is, the average of the state can diverge to infinity. For 

this reason, a reference signal	   is introduced with   as the output signal. The error of the 

system may be defined as  	  where the reference signal is the signal that the 

output  needs to track. The reference signal applied is a step input in our simulation.  

 We propose the following block diagram for implementing the MAS.  
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where  1 0 ⋯					0 0 	 

 

 

 

 

 

Figure 4.1 Proposed block diagram for implementing the MAS 

	

	 	

  

   

Figure 4.2 Equivalent block diagram 

 

Figure 4.3 Equivalent block diagram 
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 Note that we now have effectively changed the Laplacian matrix to  with the         

  , 1,1,3,3,4 . By taking 1 4, stability of the MAS is ensured, and →  

asymptotically.	

		

 

Figure 4.4 Final equivalent block diagram for implementing the MAS
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The simulink model for 6 MAS is shown below. A step input is applied as refernce. 

 

Figure 4.5 Simulink Model for 	6 Multi Agent Systems 
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The time response characteristics after introducing  and  at one the agents is shown below: 

 

Figure 4.6 Time Response characteristics at the output of one of  
the agents after introducing  and  

 The Simulink model for 6	multi-agent systems is shown below in Figure 4.5. The block 

diagram rules are used for the implementation. Each agent can communicate only with its only 

two of its neighbors. The step response characteristic at one of the agent is shown in Figure 4.6 

which tends to be stable.   Hence, a consensus is achieved between the 6 agents.  
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CHAPTER 5  
CONCLUSIONS  

5.1 Summary  

 The thesis investigates the problem under what condition, the discrete-time MAS over 

undirected graph are consensusable. A reason is discussed and shows how the problem differs 

from continuous-time MAS and why the LQR method cannot be used for discrete-time MAS.  

  The common motivation behind the study of consensus problem is the rich history of 

consensus protocols in computer science. Many seemingly different problems that involve 

interconnection of dynamic agents happen to be closely related to consensus problems of MAS. 

In this thesis a discussion about the various application areas and results available in literature 

concerning these areas namely flocking theory, synchronization of complex networks, formation 

control and fast consensus are provided briefly.   

 The problem of consensusability has been studied for discrete-time multi-agent systems 

(SISO) under the undirected graph. The  agent dynamic systems are assumed to be 

homogenous and admit the same plant model. The consensusability condition is derived in terms 

of the Mahler measure of the agent system and the result shows that there is an improved 

consensusability by a power of two.  A detailed algorithm is proposed to design distributed 

consensus feedback control protocols based on local information, when the consensusability 

holds.  Also the case of output feedback is considered in which the consensusability problem 

becomes more complicated. To solve this problem, we decompose the problem into two parts i.e. 

state feedback and state estimation.  
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 Simulation results are worked out to demonstrate the effectiveness of the established results 

as the states of all agents asymptotically converge to the average of their initial values. In fact a 

reference signal is introduced and the output of each agent is feedback to compare with the 

reference input. If the feedback gains are designed appropriately, then the stability of MAS is 

ensured in addition to the consensusability.  

5.2 Future Research  

For future research, the consensusability problem needs to be studied for MIMO agent 

systems. This problem is much harder. The existing results do not make use of the MIMO 

feature, and thus only conservative results are available. It is worth to considering resource 

allocation for consensus control of MIMO MAS by allocating the resources judiciously among 

different sub-channels of each agent. This will involve graph and controller co-design. This 

problem is currently under study. 

Most of the existing consensus study is for homogenous agents. But in real world, most 

systems are heterogonous. In fact for practical systems, the agents coupled with each other have 

different dynamics because of various restrictions or depending on the common goal which they 

are trying to achieve together. In [32], the consensus problem of heterogeneous multi-agent 

system is considered. The authors have proposed a heterogeneous multi-agent systems composed 

of first-order and second-order integrators. Then the consensus problem of heterogeneous MAS 

is discussed with linear consensus protocol and saturated consensus protocol. By applying the 

graph theory and Lyapunov direct method, some sufficient conditions for consensus are 

established when the communication topologies are undirected connected graphs and leader-

following networks. The future work will focus on the more complex consensus problem of 
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heterogeneous multi-agent systems for example; heterogeneous multi-agent systems with delays, 

heterogeneous multi-agent systems under directed graphs/switching topologies/random 

networks, discrete-time heterogeneous multi-agent systems etc. It should be pointed out that even 

if all the agent systems are made by the same manufacturer, the system dynamics may change 

due to aging and working environments. 

For truly heterogonous MAS, the state consensus may not be meaningful due to possible 

difference in their dynamics and state dimensions. Hence it makes more sense to consider output 

consensus. Output consensus is discussed in [33] for heterogeneous uncertain linear multi-agent 

systems limited to linear SISO systems and fixed network topology. Based on the output 

regulation theory, it is shown that the output consensus is reached if the (state) consensus is 

achieved within the internal models among the agent’s controllers (even though the plant’s 

outputs, rather than the internal model’s outputs, are communicated). The internal models can be 

designed and embedded into the controller, which provides considerable flexibility to designers 

in terms of the type of signals that are agreed on among the agents. Although the authors have 

tried to solve the output consensus problem there is scope for future work. The proposed method 

has limitations which may arise when the relative degree of the plant goes high increasing the 

implementation complexity of the proposed controller. Also as the order of the high-gain 

observer increases, the proposed controller becomes sensitive to measurement noise. Finally, 

consideration of the problem under the time varying network topology as well as multi-output 

requires attention from researchers. Hence the study of output consensus will be more important 

than the state consensus.  
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 Another important area for future research is application of consensus control. Although 

many applications are available, the one attracts our attention is control of the power and 

temperature of chip multi-processor (CMP). Power and temperature are important design 

constraints for high performance processors [34]. Existing work on thermal management focuses 

on open loop search and optimization strategies based on static models or heuristic-based closed 

loop solutions that rely on oversimplified control algorithms without any theoretical guarantees. 

The proposed algorithm in this thesis might be useful for controlling power and temperature in 

chip multi processors. In a network of agents each core is expected to have limited knowledge of 

both the environment and the state of other cores.  These cores can influence their own state and 

interact with their environment according to their dynamics which determines their behavior. 

The availability of DVFS (dynamic voltage and frequency scaling) makes it possible to develop 

advanced management strategies for power and temperature control. In [34], the authors have 

proposed a design of a chip level power control algorithm which is based on  Model Predictive 

Control (MPC) theory, which is advanced optimal MIMO control theory. In future work, MPC 

can be replaced by the consensus control which may achieve better results and may help to save 

energy. 
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APPENDIX: MATLAB PROGRAM 

Matlab function for computing the controller: 

function final_system_KF = program (gamma,C,A,B,lambda_2) 
 
%% Input Plant Details 
%gamma=3;C=1;A=2;B=2; 
%lambda_2=1; 
 
%% Solve the Ricatti Equation 
B_lambda_2=lambda_2*B; 
R=(1-(gamma)^-2)^-1; 
[X,L,G] = dare(A,B,0,R); 
 
%% Perfrom Check (< gamma^2) 
check=B_lambda_2'*X*B_lambda_2; 
 
%% Calculate K 
K=(1+(1-gamma^(-2))*B_lambda_2'*X*B_lambda_2)^(-1)*B_lambda_2'*X*A; 
A1=A-B_lambda_2*K; 
B1=B_lambda_2; 
C1=K; 
D1=0; 
sys=ss(A1,B1,C1,D1); 
m=tf(sys); 
 
%% Calculate F 
F_num=(1-inv(gamma))^2; 
F_den=1-(gamma)^-2*m; 
F=F_num/F_den; 
final_system_KF=K*F 
 
%% Plot the output at each agent 
hold on 
figure(1) 
plot(simout.signals.values); 
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