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Glossary

ACPI The Advanced Configuration and Power Interface (ACPI) specification is an open standard
for unified operating system-centric device configuration and power management. It defines
platform-independent interfaces for hardware discovery, configuration, power management
and monitoring.

API Application programming interface (API) is an interface in computer science that defines the
ways by which an application program may request services from libraries and/or operating
systems. An API determines the vocabulary and calling conventions the programmer should
employ to use the services. It may include specifications for routines, data structures, object
classes and protocols used to communicate between the requesting software and the library

ARM The ARM is a 32-bit reduced instruction set computer (RISC) instruction set architecture
(ISA) developed by ARM Limited.

ARP In computer networking, the Address Resolution Protocol (ARP) is the method for finding a
host’s link layer (hardware) address when only its Internet Layer (IP) or some other Network
Layer address is known.

CAN bus Controller–area network (CAN or CAN-bus) is a vehicle bus standard designed to allow
microcontrollers and devices to communicate with each other within a vehicle without a host
computer.

Coreboard Motherboard

COTS Commercial, off-the-shelf (COTS) is a term for software or hardware, generally technology
or computer products, that are ready-made and available for sale, lease, or license to the
general public.

Daughterboard A daughterboard or daughtercard is a circuit board meant to be an extension of a
motherboard (or ‘mainboard’), or occasionally of another card.

DHCP Dynamic Host Configuration Protocol (DHCP) is a network application protocol used
by devices (DHCP clients) to obtain configuration information for operation in an Internet
Protocol network. This protocol reduces system administration workload, allowing networks
to add devices with little or no manual intervention.

DSN Digital Serial Number (DSN) is a unique software-readable serial number hard-coded within
Dallas Semiconductor 1-wire devices.

GUI Graphical User Interface

HCI Human–computer interaction
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I2C Inter-Integrated Circuit (I2C) is a multi-master serial computer bus invented by Philips that is
used to attach low-speed peripherals to a motherboard, embedded system, or cellphone. The
name is pronounced eye-squared-see or eye-two-see.

I/O In computing, input/output, and I/O refer to the communication between an information
processing system (such as a computer), and the outside world – possibly a human, or another
information processing system.

LSB In computing, the least significant bit (lsb) is the bit position in a binary number having the
lowest value.

Modality Modality refers to the path of communication between the human and the computer,
such as vision or touch

Motherboard A motherboard is the central printed circuit board (PCB) in some complex
electronic systems, such as modern personal computers, typically host to the central
coordinating processor.

MSB In computing, the most significant bit (msb) is the bit position in a binary number having
the greatest value.

PCB A printed circuit board (PCB) is used to mechanically support and electrically connect
electronic components using conductive pathways, or traces, etched from copper sheets
laminated onto a non-conductive substrate.

PIC PIC is a family of Harvard architecture microcontrollers made by Microchip Technology,
derived from the PIC1640 originally developed by General Instrument’s Microelectronics
Division. The name PIC initially referred to Peripheral Interface Controller.

PRN A Pseudorandom number (PRN) is one of a sequence of numbers generated by a
deterministic algorithm, where the sequence satisfies one or more of the standard tests for
statistical randomness.

PRNG A Pseudorandom number generator (PRNG) is a deterministic algorithm that can generate
a PRN.

RFID Radio-frequency identification (RFID) refers to the use of an object (typically referred to
as an RFID tag) applied to or incorporated into a product, animal, or person for the purpose
of identification and tracking using radio waves. Some tags can be read from several meters
away and beyond the line of sight of the reader.

RS232 RS–232 (Recommended Standard 232) is a standard for serial binary data signals
connecting between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating
Equipment). It is commonly used in computer serial ports

RTL Round Trip Latency
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TCP/IP The Internet Protocol Suite (commonly known as TCP/IP) is the set of communications
protocols used for the Internet and other similar networks. Its name derives from two of its
most important protocols: the Transmission Control Protocol (TCP) and the Internet Protocol
(IP), which were the first two networking protocols defined in this standard.

TDMA Time division multiple access (TDMA) is a channel access method for shared medium
networks. It allows several users to share the same frequency channel by dividing the signal
into different time slots.

Through-hole A mounting scheme used for electronic components that involves the use of pins on
the components that are inserted into holes (PTH - Plated Through-Hole) drilled in printed
circuit boards (PCB) and soldered to pads on the opposite side

TUI Tangible User Interface

UI User Interface

USB Universal Serial Bus
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Abstract

The integration of electronic and mechanical hardware, software and interaction design presents

a challenging design space for researchers developing physical user interfaces and interactive

artifacts. Currently in the academic research community, physical user interfaces and interactive

artifacts are predominantly designed and prototyped either as one-off instances from the ground

up, or using functionally rich hardware toolkits and prototyping systems. During this prototyping

phase, undertaking an integral design of the interface or interactive artifact’s electronic hardware

is frequently constraining due to the tight couplings between the different design realms and the

typical need for iterations as the design matures. Several current toolkit designs have consequently

embraced component-sharing and component-swapping modular designs with a view to extending

flexibility and improving researcher freedom by disentangling and softening the cause-effect

couplings.

Encouraged by early successes of these toolkits, this research work strives to further enhance

these freedoms by pursuing an alternative style and dimension of hardware modularity. Another

motivation is our goal to facilitate the design and development of certain classes of interfaces and

interactive artifacts for which current electronic design approaches are argued to be restrictively

constraining (e.g., relating to scale and complexity). Unfortunately, this goal of a new platform

architecture is met with conceptual and technical challenges on the embedded system networking

front.

In response, this research investigates and extends a growing field of multi-module distributed

embedded systems. We identify and characterize a sub-class of these systems, calling them

embedded aggregates. We then outline and develop a framework for realizing the embedded

aggregate class of systems. Toward this end, this thesis examines several architectures, topologies

xv



and communication protocols, making the case for and substantial steps toward the development of

a suite of networking protocols and control algorithms to support embedded aggregates. We define

a set of protocols, mechanisms and communication packets that collectively form the underlying

framework for the aggregates. Following the aggregates design, we develop blades and tiles to

support user interface researchers.
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Chapter 1

Introduction and Motivation

No river can return to its source, yet all rivers must have a
beginning.

Native American proverb

Evolving incarnations of computers and computational systems have occupied increasingly

broader and impactful roles in society. This trajectory began with mechanical elements and

counting machines like the abacus and has evolved into sophisticated electronic symbol processing

entities. As a ubiquitous and indispensable part of the 21st century, these machines range from

the embedded computers within hearing aids and pacemakers to large clusters of supercomputers

that perform 1015 floating point instructions per second. Users interact with computers through

user interfaces and interactive artifacts, which are expressed or embodied through ensembles

of physical, graphical and potentially other mediations, and technically mediated by underlying

electronics and software entities. This dissertation work makes contributions toward advancing

the design and realization of new forms of interaction devices, some of them expressing discrete

and continuous input to traditional variations on graphical displays and others realizing interactive

systems of quite different nature.

In the academic research community, user interfaces (UIs) and artifacts are realized either as

one-off implementations or by using hardware toolkits and prototyping platforms. Several of the

current hardware toolkits and prototyping systems incorporate principles of modular design. In

this thesis, we suggest an alternative modular electronic hardware approach toward supporting

certain kinds of user interfaces, whose realization, we argue in § 1.2, is infeasible using current

toolkit implementations. We propose blades and tiles (Figure 1.1)—a modular electronic system

structured around bus modularity—for prototyping user interfaces and interactive artifacts. Our
1



(a) Close-up of individual Blades (b) Underside of a param-casket, a tangible
user interface built using blades.

FIGURE 1.1: Blades - embedded aggregates for HCI. Blades are functional modules designed
specifically toward enabling human computer interaction researchers, enthusiasts and
practitioners in the design, prototyping and realization of physical user interfaces and
interactive artifacts. A networked collection of blades, as illustrated in subfigure (b), is an
instance of an embedded aggregate. Subfigure (a) shows, from left, switch-LED, haptic rotor,
USB-gateway, RFID, and intracomm blades, and a printed blade label affixed to the bottom
of a blade. The bar-coded and color-coded blade-labels provide blade-specific details.

belief is that there is a gap in the embedded communication protocol spectrum that makes

developing blades and tiles class of systems a formidable challenge. As part of this thesis work,

we study this class of embedded systems1 and develop a framework for realizing them for use

in a variety of contexts. We identify and characterize this class of systems and develop the

underlying communication fabric and infrastructure from the ground up by defining new protocols

and developing communication mechanisms.

1.1 User Interfaces, Hardware Toolkits and Prototyping
Platforms

The field of human-computer interaction (HCI) concerns itself with studying the interaction

of users with computers and computationally-mediated systems. Hewett et.al. [HBC+05]

define human-computer interaction as “a discipline concerned with the design, evaluation and

implementation of interactive computing systems for human use and with the study of major

phenomena surrounding them.” Recent years have been a fertile time for new paradigms

1An embedded system is a microprocessor-based system that is built to control a function or a range of functions [Hea03].
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in user interfaces and interaction. Examples include Attentive UI [MMC+00, Ver02, Ver03],

Conversational UI [McT02, Blo04, McT05], Gesture UI [KK96, OCW+00, OC00], Tangible UI

(TUI) [IU97, UI97, Ish09, Sha10] and Object oriented UI [Col94], to name a few. Several of

these user interfaces (UIs) incorporate innovations involving hardware electronics that convert

analog human inputs to digital computer-understandable electrical signals. In parallel, post-desktop

models of HCI called Ubiquitous Computing and Pervasive Computing, and the larger umbrella

of Physical Computing which encompasses ecologies of physical interactive objects surrounding

humans in daily life [OI04, ID+04, Sta05], involve several such hardware and software entities

embedded in ordinary and widespread objects. The design and evaluation of user interfaces and

interactive artifacts has followed a set of three design steps [TT90, SRP07, Bor08]: (1) study of

users and tasks, (2) empirical analysis of the designed interface, and (3) iterative refinement of

the interface based on tests, results and empirical analysis [NB93, Bai93, BBLZ96]. This thesis

concerns itself with a subset of these hardware interfaces and strives to advance the mid-to-

later phase of the prototyping process involved. These phases of prototyping typically involve

the refinement of the final shape, look and size of the interface and realization of a fully functional

electronic hardware implementation, leading to the successful creation of a UI through an iterative

series of prototypes [LM95, HM06a].

User interfaces and interactive artifacts research bring together researchers from the

expertise domains of electronic hardware, software, mechanical and product design. From an

implementation viewpoint, user interfaces and interactive artifacts are composed of several

interaction modalities. The term modality2 in this thesis refers to interaction elements or

components including, for example switches, sliders, rotors, LCDs and LEDs. The functional

implementations of these modalities include electronic hardware, firmware and software; and

access to these modalities is extended by the physical form/tangible components (mechware) of

2We discuss our use of this term in detail in § 2.2.3 on page 38.
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FIGURE 1.2: Coupling between the different design realms. UI design often involves iterations in its
electronic hardware (hw), firmware (fw), system software (sw), audio and visual interaction
channels (AV) and mechanical structure (form). Typical coupling between the different
design realms in a UI prototyping process are shown by the arrows. For example, the change
in the hardware implementation of the device often requires modification of the associated
firmware.

the device. Currently, the electronic hardware realization during the prototyping process is done

both as one-off designs and by using an emerging wave of UI hardware toolkits and prototyping

platforms [GF01, VSG02, BRSB03, BG03, LAH+04, KA05, KLLL04, KEHO06, Jol06, HM06a,

KTON06].

During the development of an interaction device, the various design domains impact the decisions

and implementations in the other domains as shown in Figure 1.2. For example, the change in

the size, shape and construction of an interaction device and orientation or spatial location of

the modalities by a product designer often requires the redesign of the hardware. Simultaneously,

hardware redesign can require software and firmware modifications, thus introducing a tight cause-

effect coupling between the different design realms. Several of the current hardware toolkits and

prototyping systems have accomplished a level of flexibility by adhering to principles of modular

design. The hardware abstraction extended by the modular designs have also disentangled the

strong linkages between the different design realms to a limited extent.

Modular designs have been adopted by HCI researchers for over 30 years. Perhaps the earliest

use of modularity in HCI can be traced back to the 1980’s when several building block

type systems were developed for 3D geometric modeling [Ais79, AN84]. In product design,

six variations are considered the widely employed typology of modularity [Mar07]. Ulrich

and Tung [Ulr] introduce three types of modularity, namely, component-swapping modularity,
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component-sharing modularity3 and bus modularity. Pine and Davis [PD93] expand upon Ulrich

and Tung’s classifications with the addition of three more types, namely cut-to-fit modularity, mix

modularity and sectional modularity.

Out of these six types, several of the generic user interfaces and interactive artifacts prototyping

platforms and DIY systems including Phidgets, Bug Modules, Arduino and Microsoft .NET

Gadgeteer4 fall into the component-sharing5 (see Figure 1.3-a) and component-swapping

modularity (see Figure 1.3-b). Each of the systems consist of a variety of basic coreboards

which can be paired with a variety of plug-in modules. The individual coreboards have the

ability to support more than one kind of plug-in, and the plug-ins each can be paired with

a variety of coreboards. This design can also be related to Dahmus et al.’s approach toward

modularity [JDO01]. Phidgets, Arduino and Microsoft .NET Gadgeteer predominantly fall in their

“fixed platform with various add-on modules” as illustrated in Figure 1.4-b. The coreboard + plugin

modules approach has provided considerable flexibility to the designers of user interfaces and

interactive artifacts, enabling them with the freedom to choose the modalities they wish to use and

interface them with the coreboard.

By providing easier access to a wide variety of interaction modalities in a flexible fashion, the UI

hardware toolkits and prototyping systems have made significant progress toward bootstrapping

the initial development of user interfaces and interactive artifacts, especially from the perspective

of software developers. The future of user interface and interactive artifact design begs for

means to develop hardware that might be highly specialized in form and function, perhaps

involving hundreds of sensors or displays in physically or logically descriptive designs. We believe

3Several researchers argue that the distinction between these two types is a matter of degree and they are complementary to each other. The
difference between them lies in how the basic product and the components are defined [HK98, Mar07].

4The careful reader will have recognized that here we only consider platforms that are not context and interface specific unlike several of the
cubical and other modular systems introduced and discussed in § 2.1. For convenience, in the following pages by prototyping platforms we refer to
these generic platforms.

5In associating the toolkits to the component-sharing modularity and component-swapping modularity, we relax Ulrich and Tung’s strict notion
where only one component is connected to a coreboard at a given time, and interpret it as one or more.
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a. b.

c.

FIGURE 1.3: Modularity typology. a. Component-sharing modularity b. Component-swapping modular-
ity and c. Bus modularity. [Ulr]

a. b. c. 

FIGURE 1.4: Electronic implementation with varying levels of modularity. a. Monolithic implementa-
tion commonly seen in final production version of UIs. b. Fixed platform with various add-on
modules. c. A system realized using a collection of self-sufficient modules.

interaction devices of this kind should be possible to build, ideally by a small team with limited

resources. However, for several reasons, we anticipate and will argue in the following section that

systems of this scale may be difficult to realize with the available hardware toolkits.

1.2 Motivations

The coupling (see Figure 1.2) along with the fact that the various developers involved in the process

speak unique design languages and use diverse sets of tools, introduces additional challenges in the

prototyping process. To tackle the interface as first class citizens, the researchers need substantial
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FIGURE 1.5: Decoupled iterative design process. The figure shows the prototyping experience as
expected by designers, with the freedom to iterate independently in their design domains.
Note the cycles on each design axis. These cycles represent the expectations of the designers
to be able to iterate their designs, without forcing changes in other design axes.

freedom as illustrated in Figure 1.5 to iterate their designs, while collaborating on the overall form,

function and usability of the interaction device.

To illustrate further, we imagine that the different collaborators participating in the design process

have the following expectations:

I. hardware designers: ability to add interaction capabilities (i.e., sensing, display and

actuation), without dependency on kind or number of modalities

in use.

II. software designers: ability to access and support hardware capabilities through

clearly modularized and abstracted libraries that represent and

interact with hardware, while maintaining tolerance for varying

network bandwidth, latency and reliability.

III. interaction designers: ability to add, remove, and migrate physical interaction

elements (both at the level of physical interactors and

supporting electronics) with confidence that the software,

firmware and electronics will continue to function.

Supported by the hardware abstraction extended by the modular approaches, the current toolkits
7



and prototyping platforms have disentangled the strong linkages between the different design

realms to a limited extent and satisfied the above expectations partially. However, the systems

we envision quickly push the toolkits and the prototyping platforms to their functional limits as we

describe next.

Toolkits are aimed at providing designers with the freedom to easily mix and match the modalities,

both in terms of the kinds of modalities and quantities of each modality. The underlying modular

hardware implementation of the current toolkits and prototyping platforms has typically involved

a powerful embedded CPU as its main processor in the coreboard, with the various interaction

modalities implemented as add-on peripherals (plug-in modules). The processing capabilities of

the peripherals vary from dumb switches that are connected to digital or analog I/O pins of the

core-processor, to sophisticated rotors providing haptic force-feedback that are interfaced through

a high-level communication bus like USB.

The freedom and comfort enjoyed by the HCI researchers vanishes when component-sharing

and component-substitution modular designs reach scalability limits due to a variety of reasons.

From a hardware realization perspective, while this single coreboard based design offers a

compact and simple solution, this design suffers from traditional scalability bottleneck due to

limited input/output (I/O) pins (both number and kind) on the primary embedded processor

of the coreboard6. The scalability bottleneck unfortunately introduces restrictions on the above

mentioned freedom goal, by both constraining the number and types of modalities that can be used

simultaneously.

Another challenge encountered is related to the processing power of the embedded CPU. Generally,

the demand for data processing7 on an individual modality basis can often be comfortably handled

6It can argued that these limits can be stretched by using expansion boards and multiplexers, however only to a limited extent.
7Other than manipulating digital data, there is often a need to convert data between physical and digital domains. The Nyquist-Shannon

sampling limit [Jer77] constraints of analog (physical) to digital conversion introduce time (frequency) constraints on the capturing or generation
and processing of stimulus and response.
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by processors with modest capabilities like micro-controllers8. However, interaction sequences that

include simultaneous human engagement with a combination of these time-sensitive modalities

often quickly push the processing power requirements up. Often in such cases, while the coreboard

can support the plugin modalities without interconnect constraints, the CPU of the board may

be unable to support the computational requirements of the modalities. Since the toolkits and

prototyping platforms provide researchers with a variety of modalities, it is only realistic to expect

that researchers will often use them in groups and design interaction sequences that engage more

than one of them simultaneously. A certain immunity from scale in this context can be provided

by using powerful processors, including multi-core chips. However, the sophisticated program

development environments, strong electronics skills and expensive instrumentation to develop

interfaces with them are often largely unavailable in software and design oriented interaction

research groups. Furthermore, increase in the complexity of using the toolkit or platform only

hinders its uptake amongst the researchers.

Another issue is cost. As the researchers designing and developing the toolkits cannot predict

(with any reasonable accuracy) how other researchers will utilize their system, engineering the

system with the right kind of processors is impossible. Powerful processors are more expensive

than their humble counterparts, and employing a powerful processor in all coreboards can be

expensive and wasteful on the one hand. On the other hand, researchers tend to push systems to

their limits toward achieving scientific breakthroughs, and embedded CPU restrictions only hinder

the scientific process. Toolkit developers often overcome this problem to an extent by developing

multiple coreboards with different core-processors (component-sharing modularity).

Beyond the above hardware concerns, the design also introduces firmware challenges. First, the

modality agnosticism that toolkits aim to embrace requires the underlying firmware to support

several modalities useful to designers, often with minimum firmware modifications for greater

8More powerful DSPs or ASIC processors may be required for handling even a single instance of more CPU demanding modalities.
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usability. Secondly, with sequentially executed byte-code in single-core embedded-CPUs, the

multiplicity and coincidence of modality-specific events requires concurrent servicing of each

modality by time-slicing. Both the above requirements increase firmware complexity with larger

number and types of modalities.

In order to support prototyping of UIs using several hundred interaction elements in a scalable

and easily approachable fashion while providing modality support and features extendable by

user developers and the community, the above challenges have to be overcome by the next

generation of toolkits. Also, we believe that there is scope for further immunity from couplings

between design realms. The challenges described here beg for better alternative approaches toward

toolkit realization, perhaps by a design that can satisfy the processing needs by employing several

simple processors and by exploiting the inherent parallelisms in the engagement with the different

modalities. Consequently, this research aims to pursue the challenges in current modality scaling

and coupling by introducing an alternative modular approach that is discussed in the following

section.

1.3 Approach and Methodology

Modularization is often a goal of good design due to the functional independence it affords [PB96,

GPA99]. The predominant approach amongst current toolkits is to divide the interface into

easily replaceable modality-modules and perform the associated processing on a single embedded

processor. We extend this modularity further and designate independent embedded processors to

each modality. In our divide and conquer [HZ83] approach, a user interface or an interaction

artifact is realized by interconnecting several modality modules each of which implement both

the modality-specific components (transducers and other circuits) and an embedded processor for

modality-related computation. We call our system blades and tiles (Figure 1.1). Our approach

(Figure 1.4-c) aligns with Dahmus et al.’s preferred approach of “system is a collection of modules,

10



each of which can be one of several types” for architecting product families with heterogeneous

users with heterogeneous demands [JDO01].

Of the four other types of modularity, our approach and the “pin and play” system [VVS+03] fit

the bus modularity. According to Ulrich and Tung, bus modularity involves a standard structure

with two or more interfaces that can attach any selection of components from a set of component

types as shown in Figure 1.3-c. Extending Ulrich and Tung’s [Ulr] arguments on component-

swapping and component-sharing modularity, Pine and Davis [PD93] argue and suggest that

while component-swapping, component-sharing and cut-to-fit modularity only allow variation

in the type of component used, bus modularity extends flexibility in the choice, number and

location9 of components [Ulr, PD93]. This stand is immensely relevant to prototyping of user

interfaces and interactive artifacts, and supports our design decision. During the prototyping phase,

improved flexibility in changing the number of instances and location of an interaction modality

are immensely beneficial to interaction and product designers as argued in Chapter 5.

Embedded systems that are collections of several electronic modules are relatively widespread

including, for example,in automobile processor networks, hierarchical control systems, and

networked control systems. In this vast ecosystem of multi-module systems, the class of embedded

systems that model our blades and tiles distinguish themselves by the scale and distribution of

their processing power. Our background research suggests that this class of systems is largely

underexplored with potential applications including, for example, environmental sensing and

robotics (see Chapter 3). We call them embedded aggregates.

A framework for embedded aggregates developed as part of this research, similar to a software

framework [Pas02], is envisioned to provide a hardware library consisting of interoperable modules

9In the toolkit context, this strict difference is absent. Due to the malleable and flexible nature of interconnects that often connect the plug-in
modules to the coreboard and the fact that each coreboard often supports more than one module simultaneously, some of these differences are
overcome on a limited basis. For example, the placement of the modules can often be negotiated in a space around the coreboard as long as the
interfacing protocol between the two supports the distance of separation.
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FIGURE 1.6: Artistic illustration of blades and tiles . An early illustration of the blades and tiles
showing the communication and hardware mechanisms. Different blades are identified in
the illustration. The large rectangular boards on which blades are affixed are called tiles.
Interaction tiles used in our UI research are typically 10x10x1 cm in dimension. [Illustration
by Laan, 2006]

and associated mechanisms to facilitate their operation. Towards this end, the framework outlines

hardware, firmware, software and communication specifications. Using the embedded aggregate

framework, we have designed and implemented blades and tiles (illustrated in Figure 1.6),

a hardware prototyping platform for UI researchers. Blades and tiles inherit the embedded

aggregate principles of scalability, re-usability, reliability and flexibility. Blades provide diverse

modality capabilities in modular, interchangeable form. These capabilities include sensing, display,

actuation, communication, computation, and power. Tiles serve as a compositional mechanism

which typically couple ensembles of blades to ensembles of interactors (RFID coils, LEDs, etc.).

Tiles typically contain few active components, mostly relating to power and user interaction, while

delegating supporting electronics and computation to blades.

1.4 Research Contributions

User interface design can be informed and supported by both human factors and engineering

perspectives, while simultaneously leveraging ideas from other research domains. By the

interdisciplinary nature of this dissertation research cutting across HCI, computer networks and

12



embedded systems, several challenges have had to be addressed, with resulting contributions

in both conceptual and implementation directions. This research revisits modular hardware

approaches toward achieving further immunity from couplings between the various realms of

UI design and prototyping (Figure 1.5). The primary objective of this dissertation research is

to facilitate and enhance the decoupled design, development and realization of a class of user

interfaces and interaction artifacts. The class of systems includes functional prototypes and

evolving research deployments with several hundred interaction elements arranged over 3D spaces

larger than ones attainable by current toolkits. The contributions of this dissertation research are as

follows.

• We identify the challenges in the design and development of electronic user interfaces and

interaction artifacts, and motivate an alternative modular hardware approach as means to

further decrease the couplings between design realms, increase the design independence of

the various experts and realize highly specialized user interfaces and interaction artifacts

incorporating hundreds of interaction elements.

• We identify a class of multi-module embedded systems that share characteristics with

our envisioned underlying modular electronics. We introduce the concept of embedded

aggregates, and study their features and requirements.

• We present a holistic design of the embedded aggregate framework and develop a set of

communication protocols, specifications and mechanisms that provide the foundations for

realizing the aggregate class of systems.

• We develop an instance of the embedded aggregates called blade and tiles for HCI

practitioners.

13



In short, this research has the following components.

• A specification for modular electronic hardware design and a library of such modules

aimed toward UI design. The hardware specification includes physical, logical and electrical

descriptions.

• Communication protocols for realizing such multi-module systems. This involves the design

of the communication protocol suite with a holistic view including optimizations across the

physical layer, MAC, and a compound datalink-transport layer.

• Algorithms and mechanisms toward realizing such embedded systems as open-ended designs

with the core principles of scalability, flexibility and hardware-firmware reusability.

• A system software architecture for tethering electronic systems built using the multi-module

framework to personal computers.

1.5 Dissertation Overview

The rest of thesis is organized as follows. Chapter 2 first presents a discussion on different research

efforts that are related to the pursuits in this dissertation. Next, the remainder of Chapter 2 presents

a discussion on a few scientific terms, clarifying our use of these terms for the purposes of this

dissertation.

We develop and explore our concept of an embedded aggregate in Chapter 3. After a brief

introduction, we motivate the need for aggregates using a variety of application contexts and

highlight their core features. We then study the embedded aggregates juxtaposing them with

systems and situations that share conceptual similarities to the aggregates. Following this study,

we situate the aggregates in the vast ecology of embedded systems as a groundwork toward
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understanding the underlying infrastructure needed for realizing them. The chapter closes with

a discussion the embedded aggregate communication fabric and the envisioned framework.

With the insights gained from Chapter 3, a holistic design of the embedded aggregates is presented

in Chapter 4. Beginning with the physical and logical topologies, this chapter explores and develops

the communication fabric including packets, addressing methodologies, routing schemes, flow

control and high level communication and control mechanisms. The chapter finally concludes with

evaluation of some of the mechanisms toward their satisfiability in achieving the aggregates’ design

goals.

Next, Chapter 5 presents blades and tiles, the dissertation’s core implementation realizing an

embodiment of the embedded aggregates concepts and framework. We discuss the evolution of the

firmware, software and hardware components and present an overview of the currently developed

blades. A software architecture for using embedded aggregates in bladed form with a personal

computer or other form of computational node is also discussed in this chapter.

Conclusions, suggestions for future work and discussions are presented in Chapter 6. The chapter

gathers the results of the research work and elaborates envisioned future directions. Discussions

on embedded aggregates in general and the blades and tiles in particular are also presented.
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Chapter 2

Related Work and Terminology

Various paths are tried; some are abandoned, others are
pushed further. Before a solution is found, a great many
paths of the maze may be explored.

Herbert A. Simon

In the previous chapter we introduced the motivations behind this dissertation research and

summarized the research contributions. Moving forward, this chapter initially explores existing

scientific literature and presents a discussion of various research efforts that are related to the

pursuits in this dissertation. Next, the remainder of the chapter presents a discussion on a few

scientific terms, clarifying our use of these terms for the purposes of this dissertation.

2.1 Related Work

Over the last few decades, several modular hardware platforms/toolkits have been developed

toward realizing a multitude of UIs and for supporting 3D and physical modeling. Additionally,

hardware platforms designed for use in sensor networks research and systems supporting the

electronic DIY1 enthusiast markets are also increasingly being used by UI researchers. In the

following pages, we will describe some of these efforts that hold relevance to this dissertation

work. While existing platforms serve as the basis and motivation for the efforts in this thesis,

many research pursuits in the field of robotics, tradition computer networking, spacecraft systems

etc. have shaped our design and development process. Hence, following the descriptions of

1Do it yourself (or DIY) is a term used to describe building, modifying, or repairing of something without the aid of experts or professionals.
The phrase “do it yourself” came into common usage in the 1950s in reference to home improvement projects that people might choose to complete
independently.
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FIGURE 2.1: BBS, Peano and Stackables. (Left to Right) 1. The building blocks system by Aish and
Noaks [Ais79, AN84], 2. Peano by Heaton [Hea00] and 3. Stackables by Kramer and
Minar [KM97].

FIGURE 2.2: Frazer’s modular systems [Fra95]. (Left to Right) 1. Universal Constructor, 2. Flexible
Intelligent Modeling System and 3. Three - Dimensional Intelligent Modeling System.

the hardware platforms and toolkits, we introduce and discuss some of these relevant research

directions.

Several of the earlier tangible interface designs were motivated by the building block nature of

the LEGOT M bricks, often leading to modular and electronically enhanced mechanisms to build

physical world systems. The thought of a tangible 3D geometric modeling system incorporating

building blocks with embedded computation has been researched by several groups over the past

30 years. In early 1980s, Aish and Noaks [Ais79, AN84] implemented a “building blocks system”

(see Figure 2.1) aimed at modeling physical-world structures. This system was used to study both

the geometric structure and thermal performance of a building being analyzed using it.

The mid 1980’s also saw the development of various “intelligent modeling systems” and

“machine readable models” by Frazer [FFF80, FFF81, FFF82]. Frazer developed “universal

constructor” [Fra95], which was a collection of modular cubes that plugged into each other and
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FIGURE 2.3: Navigational Blocks, Kramer’s Tiles and AlgoBlocks. (Left to Right) 1. Camarata’s
Navigational Blocks [KCJ02a], 2. Tiles by Kramer [Kra98] and 3. AlgoBlocks by Suzuki
and Kato [SK95].

helped build 3D reconfigurable models of cellular automata (see Figure 2.2). Extending this

work, Kramer and Minar developed the Stackables [KM97] with distributed display capabilities

(see Figure 2.1). Kramer also developed the Tiles [Kra98] which introduced mobile code (see

Figure 2.3). Following the cubic structure of the Universal Constructor and Stackables, Heaton’s

Peano [Hea00] added touch sensing (see Figure 2.1). Expanding on prior work by Aish in late

70s, and subsequent research by Frazer in early 80s, and Anagnostou, Dewey and Patera’s work on

processors for manipulating the geometry of 3D models (Geometry Defining Processors) [DP88,

ADP89] in late 80s, Anderson et al.’s Computational Building Blocks [AFM+00] facilitate

computer modeling with LEGOT M-like blocks (see Figure 2.4).

Several modular systems were also developed toward research in tangible programming. Suzuki

and Kato designed the AlgoBlocks [SK95], a collection of aluminum blocks that plugged into

each other (see Figure 2.3). Each of these blocks represented a command, control (buttons to start

and stop programs, knobs and levers to change parameters) or provided an output mechanism

to help users physically program a LOGO-like language. Pursuing “user programming using

physical objects” theme, McNerney developed the Programming Bricks [McN99], comprised of

an ensemble of LEGOT M bricks for functional programming.

The tangible programming concept has been extended toward hobby roboticists in a few systems

developed. One such system is roBlocks [SG06] developed by Schweikardt and Gross. roBlocks
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FIGURE 2.4: CBB, Programming Bricks and Geometry Defining Processors. (Left to Right) 1.
Computational Building Blocks by Anderson et al. [AFM+00], 2. Programming Bricks by
McNerny [McN99] and 3. Geometry Defining Processors by Dewey and Patera [ADP89].

is a construction kit that offers a tangible concurrent programming environment that encapsulates

sensory, kinetic and computational behavior. These blocks snap together magnetically to construct

robots. Schweikardt and Sitti extended their research into robotics and developed the StickyBricks

[SG08], a modular system that comprised 30mm cubes with adhesive belts around their perimeter.

This system was aimed toward fine grained modular self-reconfigurable robots and introduced

adhesion to connect modules in place of traditional magnetic or mechanical means.

Active Cubes [KIMK00] incorporated a variety of sensing and actuation mechanisms and were

snappable blocks that could be used to build responsive 3D structures (see Figure 2.5). The

cubes could be uniquely identified and 3D spatial arrangement sensed in real-time. Active

Cubes and Cognitive Cubes [SIW+02] were developed by Kitamura et al. In addition to the

above cuboid modular systems, several other systems have been explored including Navigational

Blocks [KCJ02a, KCJ02b], computational blocks for children [EEG+02], FlexM [ECDG06] and

Computation and Construction Kits [EBE04] by Eisenberg, Buechley and Elumeze.

Modular hardware shaped in non-cuboidal forms has been used in several tangible interfaces.

Oriented toward story telling and visual/tangible programming, systems have combined several

elements to provide audio, visual and kinetic input and feedback. The Triangles system [GO97,

GOI98] by Gorbet and Orth was intended to be used as a physical/interaction toolkit and consisted

of small modular triangles (see Figure 2.5). The Triangles system was used for story telling,
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FIGURE 2.5: Active Cubes, FlexM and Triangles. (Left to Right) 1. Active Cubes by Kitamura et
al. [KIMK00], 2. FlexM by Camarata et al. [ECDG06] and 3. Triangles by Gorbet and
Orth [GO97, GOI98].

FIGURE 2.6: StickyBricks, roBlocks and Tobopo 3-D. (Left to Right) 1. StickyBricks by Schweikardt
and Sitti [SG08], 2. roBlocks by Schweikardt and Gross [SG06] and 3. Topobo 3-D by Raffle
et al. [RPI04].

for example in the “Cinderella 2000”, which resembled a reactive audio comic book. Topobo 3-

D [RPI04], a constructive assembly system, was developed by Raffle et al., and uses many modules

with built-in servo-motors and potentiometers to realize a user configurable system with kinetic

memory (see Figure 2.6). The system uses a 4-channel 2-wire custom bit-banging protocol to

transmit data between the kinetic modules and nodes.

Our work has been inspired in part by hardware prototyping toolkits such as Phidgets [GF01],

Teleo [Mak09] and Arduino [Jol06]. Greenberg et al. developed the Phidgets “plug and play”

building components that provide easy access to hardware sensors, actuation, and control via PCs.

The Phidgets platform made device creation sufficiently simple that developers could concentrate

on other issues such as form, use and design (see Figure 2.7).

Although not specifically intended for UI researchers, the Arduino hardware and software
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FIGURE 2.7: Phidgets and Arduino. (Left to Right) 1. Phidgets by Greenberg et al. [GF01] and 2. Arduno
with an Ethernet shield [Jol06].

environment has been popular amongst artists and interaction designers alike. Arduinos are

designed to be stand-alone or to communicate with software on a computer (e.g. Flash, Processing,

MaxMSP). We see strong potential for integrating blades as supporting functional libraries in

Arduino-based systems. Van Laerhoven et al. designed and presented a system with several

interaction elements that can be rearranged in a fluid hardware space. Their “Pin and Play”

system [VSG02], which was later extended to Voodoo-IO [VGRG07] by Villar et al., uses a multi-

drop communication network based on the 1-wire protocol with the underlying surface acting both

as a physical shaping element and the medium for communication.

There have been a few systems developed primarily geared toward a ubiquitous computing context.

The Smart-Its [BG03] developed collaboratively by several universities is one of such successful

systems. It uses a I2C bus2 for connecting sensor/actuation boards. Similarly, Hartmann et al. use

an I2C bus for communication between their controller board and hot-pluggable input and output

components in their d.tools system [HKB+06].

Currently, Bdeir et al. are developing littleBits [BEA+09], a library of discrete electronic

components pre-assembled in tiny circuit boards. LittleBits are simple, intuitive, space-sensitive

blocks aimed at making prototyping with sophisticated electronics easily accessible. The bits snap

together with small magnets. Other such systems include the Bug Lab’s BUGbase [Lab09] and

2The I2C is a multi-master serial computer bus invented by Philips that is used to attach low-speed peripherals to a motherboard, embedded
system, or cell-phone.
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FIGURE 2.8: Voodoo IO, Gadgeteer, littleBits and Bugs. (Left to Right) 1. Voodoo IO by Villar et
al. [VGRG07], 2. Gadgeteer by Hodges et al. [VSH11], 3. littleBits by Bdeir et al. [BEA+09]
and 4. BUGbase and BUGmodules by Bug Lab [Lab09].

BUGmodules and I-BLOCK [NL03] by Nielsen and Lund. The I-BLOCKS are a collection of

modular electronic building blocks embedded with various sensing and actuation mechanisms. The

Microsoft .NET Gadgeteer [VSH11] is a rapid prototyping platform for small electronic gadgets

and embedded hardware devices. Using a kit of hardware modules, it combines the advantages

of object-oriented programming, solderless assembly of electronics and quick physical enclosure

fabrication using computer-aided design (see Figure 2.8).

Many prototyping platforms for sensor networks have been developed over the years that

enable researchers to realize systems with several sensing and actuation elements. Several of

these systems adhere to a modular design and use wireless communication protocols for inter-

module communication. Some of these platforms find substantial use in HCI, particularly in

the pervasive and ubiquitous computing directions [BKM04, BLY05, OMSJ06, LCC+09], and

are hence relevant to this dissertation work. For example, a system of ample relevance is the

eBlocks [SCV04, SCH05] developed in early 2000’s. eBlocks were developed by Vahid et al.

toward use as electronic building blocks of basic sensor based systems. The eBlocks were aimed

at enabling users with little or no programming or electronics experience to build basic but useful

small-scale, low-power, sensor-based systems, including simple user interfaces.

The embedded aggregates architecture shares significant commonalities with various robotic
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systems designed to embrace self-healing and self-configuring properties. The modular robotics

platforms developed thus far have also allowed us to identify and tackle problems and application

areas that exhibit massive parallelism and benefit from a distributed computing and control

paradigm. These architectures are also currently gaining significance in many low cost satellite

missions and space robotics. The following portions of the related work provide a brief description

of several modular electronic systems that are being built for application in the fields of spacecraft

design and robotics.

Several modular hardware approaches have been explored and implemented to realize large,

complex systems. Yim et al. provide a detailed discussion of the current state of modular self-

reconfiguring robotics in [YWMS+07]. They note that “efficient and scalable (asynchronous)

communication among multiple units” is a prime planning and control challenge in the field.

Hence, there are several concurrent efforts toward realizing mechanisms for modular hardware

in robotics.

While several self-reconfiguring modular robotic systems have been and continue to be developed,

we primarily consider Molecubes and PolyBot system because of their high conceptual and

technical overlap with our design requirements. Molecubes developed by Zykov, Chan and Lipsonl,

is a system of rugged manually reconfigurable cubes aimed toward study of self-reproducing

machines and volunteer roboticists [ZCL07]. Molecubes use half-duplex RS-232 buses for internal

and external communication, and the robots exhibit both self generated and manually created

morphologies.

The PolyBots are a series of modular reconfigurable robots that can self-reconfigure and are being

developed by PARC3 for NASA’s planetary explorations, with a design targeting manipulation

in space and surface mobility [YDR00]. The three versions of robots G1, G2 and G3 employ

3PARC (Palo Alto Research Center Incorporated), formerly Xerox PARC, is a research and co-development company in Palo Alto, California,
with a distinguished reputation for its contributions to information technology and hardware systems.
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FIGURE 2.9: Simple I2C based packet structure developed by Palmintier et.al.. The figure shows a
simple I2C based packet structure developed by Santa Clara University and Washington
University for small satellite and multi-spacecraft missions [PKSS02].

a Massively Distributed Control Network (MDCN), implemented with a CAN bus [Bot00].

Restrictions of the CAN bus protocol, especially in terms of address space and data size, have been

overcome with MDCN and a higher-level communication layer called the Attributes and Services

Model (ASM). Decentralized control and computation, features common to these systems, are also

being revisited toward assuring graceful degradation of services [Raw08].

Emerald, a small satellite, developed at Stanford and Santa Clara Universities, is built around a

“Distributed Computational Architecture” [KPTT99]. The system involves an array of simple PIC

microprocessors connected to a centralized processor via an I2C serial bus. The researchers state

that this architecture has proved useful in simplifying subsystem interfaces and parallel subsystem

development, partly on account of the migration of subsystem-related software and hardware

control functionality from the primary flight computer to the various subsystems [KPTT99].

Santa Clara University and Washington University developed a “Distributed Computing

Architecture” for small satellite and multi-spacecraft missions [PKSS02]. Their design comprises

a network of PIC micro-controllers linked together by an I2C communication bus. The system

also supports sensor and component integration via Dallas 1-wire and RS232 communication

standards. A configuration control processor serves as the external gateway for communication

to the ground control and other satellites in the network. The researchers share our opinion that the
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I2C standardizes many layers of the communication protocol, but does not provide sophisticated

data transfer control mechanisms. In response, they have developed a simple packet structure and

protocol for message transfer between subsystems as shown in Figure 2.9, and has been used in

the QUEST [CHP03] small satellite mission.

Another effort geared toward space applications is the TU-Sat-1 [SKSL94] system developed

at Taylor University. This spacecraft uses the I2C bus for its interconnect framework similar to

other systems discussed above. The spacecraft claims several innovations made possible through

employment of a modular approach. These include distributed low power micro controllers and

software; modular and integrated mechanical, thermal, and electrical design.

While modular designs are currently being developed and tested with small satellites in the

class of micro and nano satellites, NASA has been considering proposals to build modular space

systems [USA09], These are often composed of several lightweight modular satellites placed into

orbit by light lift, then mated to a permanent support infrastructure in orbit called the motherboard.

The NASA SPACECAST team argues that this evolutionary modular concept is both logical and

cost-effective.

The common cross-cutting characteristic of all the systems discussed above and our concept of

embedded aggregates is the design around a set of electrically + mechanically interconnecting

modules that are swappable and reusable. These systems employ easy to use COTS 4

microcontrollers like PIC, Atmel controllers and ARM processors and interlinked using RS-232,

I2C, CAN bus or proprietary bit-banging protocols. We shall now briefly look at the current

available COTS communication protocol stacks that can be used in the context of embedded

aggregates.

4Commercially available Off-The-Shelf (COTS) is a Federal Acquisition Regulation (FAR) term defining a non-developmental item (NDI)
of supply that is both commercial and sold in substantial quantities in the commercial marketplace, and that can be procured or utilized under
government contract in the same precise form as available to the general public.
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The Field-bus is a family of industrial computer network protocols [DS00, Tho05]. This umbrella

specification incorporates the CAN and AS interfaces among many other standards. The CAN

bus protocol [Bot00] and its extensions (such as CANopen) provide data control mechanisms and

packet specifications for a multi-drop two wire full-duplex bus. The CAN bus also provides a four

layer control.

A relevant extension to the CAN bus is the Massively Distributed Control Network

(MDCN) [Bot00] developed by PARC for their robotics research. Compared to the existing widely

used high-level CAN protocols, MDCN can address more communication nodes, has simpler APIs,

is easier and more efficient to implement. Unfortunately the CAN protocol is heavily regulated by

the automotive sector for which it was originally developed. The size of messages specified by the

CAN interface is also a restriction.

The AS-Interface is an ‘open’ technology for connecting simple field I/O devices and is not

sufficiently versatile for use in the embedded aggregates context. As we have discussed, we

see the I2C as a favorable system developed by Philips. However, the bus specification and

implementation provides very rudimentary primitives for data transport between modules. In

response, research teams have developed an elementary protocol over I2C. Developed for the

micro-satellites QUEST [CHP03] and Emerald [KPTT99], the extension provides the basic

communication primitives and provides some high level communication mechanisms. The

embedded communication protocols and their extensions are immensely relevant to this thesis work

and a much detailed analysis and discussion on their applicability to the embedded aggregates is

presented in detail in § 4.2.3.

Finally, while CAN and Field-BUS bus offer some transport layer services, and the I2C is

sufficiently open ended and flexible to allow extension by higher level protocols, there is currently

no standardized mechanism like TCP/IP over Ethernet for use by these embedded devices. Such
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a protocol and mechanism could potentially enable interoperability and reuse between all of

these modular systems, thus facilitating the growth of scalable and flexible networks using these

microprocessors.

Several communication protocols that form the ubiquitous Internet Protocol suite including

TCP/IP, UDP, ARP etc. are relevant to this research work and we discuss them in detail in § 3.2.2 on

page 51. Additionally, we also sought inspirations from the high level protocols and specifications

developed for parallel super computers like the Beowulf clusters [SBS+95]. These mechanisms

provide a similar support to distributed computing applications like our protocols for embedded

aggregates. Parallel Virtual Machine (PVM) [GBD+94] was developed to facilitate networking and

distributed computing over heterogeneous clusters consisting of Unix and MS Windows machines.

PVM supports broadcast and multi-cast paradigms and provides C, C++ and Fortran libraries. PVM

motivated the creation of Message Passing Interface (MPI) [SOW+95], a communication API and

specification used to program parallel computers and super computers. Designed to exhibit high

performance, scalability, and portability, MPI supports point to point communication between two

nodes and collective communication calls for delegating and gathering data. MPI has evolved over

the decade to its second revision MPI-2 that introduces four more basic functionalities, resulting

in a total of eight supported concepts.

Open Multi-Processing (OpenMP) [DM98] is an API developed to support shared memory

multiprocessing programming in multiple programming languages across several software and

hardware platforms. OpenMP is a portable, scalable mode, developed through collaboration

between major computer hardware and software vendors, and implements a multi-threading

paradigm supporting both coarse-grained and fine-grained parallelism. POSIX Threads

(Pthreads) [NB96] is a POSIX compliant threading standard, limited to the C programming

language. Pthreads and OpenMP themselves do not support programming compute clusters with

separate compute nodes that do not share memory, and are used along with the PMV and MPI
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constructs. The protocols developed for embedded aggregates share commonalities with these

protocols through the similarities in the distributed processing nature of the underlying hardware

systems they support, and the dispersion and collection of messages they perform.

2.2 Terminology

In spanning several quite distinct academic disciplines – especially human-computer interaction

and electrical engineering – this dissertation engages several common terms which are used with

widely varying meanings. To clarify our uses of these terms for the purposes of this dissertation,

we briefly consider our meanings for three key terms: prototyping, modularity and modalities.

2.2.1 Prototyping

Similar to words such as “design”, the term “prototyping” is used across much of the spectrum

of engineering disciplines. The New IEEE Standard Dictionary of Electrical and Electronics

Terms [Rad97] defines prototyping as “a type of development in which emphasis is placed on

developing prototypes early in the development process to permit early feedback and analysis in

support of the development process.”

Building on this definition in a software engineering context, and relevant to this dissertation,

Kordon and Luqi propose two axes for understanding prototypes with relation to the final system:

“throw-away” and “evolutionary.” [K+02]. They consider the first as artifacts developed to be

thrown away after producing some insight; and the latter as artifacts intended to progressively

evolve into the ultimate product version.

From a product design perspective, Wall, Flowers and Ulrich argue that prototyping is multi-

faceted [WUF92]. They write,

28



“Technically, a prototype is the first thing of its kind. But “prototype” has come to

mean many different things in the context of product development. For the developer of

commercial satellites, the prototype may be the final product. At the other extreme, the

development of a new ballpoint pen may involve more than 10 prototypes...Each is an

example of a prototype; each emphasizes a different aspect of what a prototype does.

In our definition of a prototype we include both electronic and physical representations

of the part or product.”

The authors suggest that different types of prototypes are used in a variety of ways to address

several types of questions including functional testing, consumer perception testing, life testing

and assembly planning. They also argue for prototypes serving as crystal balls to anticipate future

problems and for comparing the evolving product with customer needs, requiring the prototypes to

be matured fully functional entities.

Rapid prototyping has evolved as a growing field, progressing from earlier technologies like stereo-

lithography and selective laser sintering. Wall, Flowers and Ulrich describe “rapid prototyping

technologies” as a phrase used to describe “processes that have shortened the design-to-first-part

cycle”. In [D+94] the term “rapid prototyping” is discussed in the context of physical fabrication –

e.g., sometimes by computer-controlled milling or hand carving, but especially through processes

like 3D printing, laser fabrication amongst others.

In the context of human-computer interaction, and specifically the space of “physical computing,”

“tangible interfaces,” and other “reality-based interfaces” (RBIs), these perspectives offer several

useful insights and distinctions. We argue that the most common approach of the last decade can be

seen as following the “throw-away” approach. In this vein, emphasis is frequently upon realizing

some artifact in the shortest possible period of time (e.g., one to a few hours) in which certain

computationally-mediated behaviors are expressed. Such systems often employ physical materials
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FIGURE 2.10: GUI prototyping by Landay. Three phases of prototyping - brainstorming, prototyping
and programming/testing [LM95].

like cardboard, clay, or foamcore combined with pre-existing electronic modules that allow a small

number (e.g., 5-10) of switches, LEDs, and other electronic elements to be realized in the earliest

stages/phases of product conception [HM06b].

For physical prototyping of RBIs, an “evolutionary” approach could be conceived as (following

[K+02]) artifacts intended to progressively evolve – e.g., over the timescales of months

and years – into the “ultimate product version.” In his doctoral thesis, Landay breaks the

development stage of a graphical user interface into three phases - brainstorming, prototyping

and programming/testing [LM95]. This view of UI development (Figure 2.10) is relevant to this

dissertation, and Landay’s view of prototyping considerably overlaps with our interpretation of

the word. From the various uses of the word prototyping, the question “what is a prototype?”

seems to be approached by researchers in a variety of ways. In the context of this research

work, by prototyping we refer to producing functional designs of the UIs with active electronics

and approaching final fully functional instances. We extend this notion of prototyping, and by

a prototype we refer to systems in the later stages of design, implementation and realization,

possibly past the initial foam-core and cardboard modeling stages, and also complete initial pilot-

deployments.
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2.2.2 Modularity

Theories of modularity have been developed and have flourished through both theoretical and

empirical studies. The concept of modularity has been approached and treated by researchers in

several fields including mathematics, languages, biology, psychology, technology, management

studies, systems and engineering. In the various fields of study, the use of modularity manifests

itself in a variety of consistent themes like domain specificity, innately specified, hierarchically

nesting, encapsulation, levels of decomposability, recombinability and extensibility.

Towards achieving the decoupling goal, this thesis argues for the use of modular design in the

realization of the hardware and software. The terms “modular” and “modularity” are used broadly

in science and engineering, with often different notions, implications and approaches toward

measuring them in a system. Hence, initially we will disambiguate the terms in the context of

this thesis, and present to the reader our understanding and treatment of the word in this document.

A number of different academic disciplines have bearing upon the definition of modularity. Several

of these disciplines have relevance to this thesis including industrial design, product design,

biology, and software systems architecture. Perhaps the earliest written record of modularity

as a method to solve problems may be traced back to the work of Descartes in the 1630s. In

his “Discourse on Method and Meditations on First Philosophy” [DS68], Descartes, a dominant

influence among French philosophers, thinkers and scientist, proposes to divide a problem into

smaller modules for tractability. He writes,

“...to divide each of the difficulties under examination into as many parts as possible,

and as might be necessary for its adequate solution. To conduct my thought in such

order that ... as it were, step by step, to the knowledge of the more complex...”

A systematic study of complexity was most notably pursued by Alexander and Simon in the
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1960s. In his seminal paper titled “The Architecture of Complexity” [Sim62], Simon argues

that hierarchy is one of the central structural schemes that the architect of complexity uses.

In his arguments, Simon assumes a much broader notion of the word hierarchy, larger than its

etymological suggestion of subordination by an authority. Simon uses hierarchy to refer to,

“...all complex systems analyzable into successive sets of subsystems...”

This notion of hierarchy has important implications for this thesis work and will become evident in

the following chapters. Moving further, Simon develops the notions of decomposable and nearly

decomposable systems, concluding that hierarchic systems are often nearly decomposable and

are usually composed of only a few different kinds of subsystems in various combinations and

arrangements. Although Simon does not make any explicit connections to modularity, the theme

can be sensed through the arguments. From a management perspective based on Simon’s above

mentioned decomposable systems concept [CC10], Campagnolo and Camuffo extend their notion

of modularity and say,

“So conceived, modularity elaborates on Simon’s intuition that complex systems

perform better if they have hierarchical and ‘near decomposable’ structures.”

Developing their notion of modularity, Campagnolo and Camuffo suggest that modularity is a

continuum, noting:

“Every system is modular to some extent: very few systems are composed of parts that

interact and affect each other so tightly that there is no opportunity to mix-and-match

the subsystems they are made of. A system’s degree of modularity will be higher if the

gains achievable through a modular structure are larger than those achievable through

an integral one.”
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They also offer an important tempering remark to their assessment of modular design:

“The flexibility of a modular architecture stems from its ability to substitute different

modules without having to redesign other components. ”

Researchers in the field of biology have studied modularity in connection with anatomy,

metabolism, organs and developmental units. Biologists Dassow and Munro in their work on

EvoDevo [VM99] state,

“...a module has a characteristic intrinsic behavior in the absence of any specific,

persistent, exogenous influences on its components, and it may be triggered to

express this behavior through a small number of (one or a few) generic inputs...

a developmental module is a collection of elements whose intrinsic behaviors

and functional interactions yield a mechanistic explanation of an identifiable

developmental process or transformation.”

From a cognition and pragmatic point of view, Sandra, Östman and Verschueren use modularity to

describe the compartmentalization of knowledge in mind [SÖV09]. Furthermore, they describe

a module as a “specialized, differentiated and encapsulated mental organ”. Similarly, Elman

describes a module as [Elm97] “a specialized, encapsulated mental organ that has evolved to

handle specific information types of particular relevance to the species.” From a cognitive science

perspective, Fodor in his book titled “The Modularity of Mind” [Fod83], defines modules as

cognitive systems that meet nice specific criteria including encapsulation, unconsciousness, speed,

shallow outputs and obligatory firing. In his discussions on Fodor’s work, Elman argues for domain

specificity as the most important criterion.
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Several researchers view modularity as a systems concept and a design decision. Developing a

general theory of modular systems drawing from Simon’s works, Schilling presents an arching

interpretation of modularity [Sch00] and writes,

“Modularity is a general systems concept: it is a continuum describing the degree to

which a system’s components can be separated and recombined, and it refers both to

the tightness of coupling between components and the degree to which the “rules” of

the system architecture enable (or prohibit) the mixing and matching of components.”

Diving deeper into modular system theory, Schilling in the context of coupling and recombination

of modular systems further describes modularity as a the degree to which a system’s components

can be separated and recombined. Schilling introduces the concept of ‘synergistic specificity’ as,

“The degree to which a system achieves greater functionality by its components being

specific to one another can be termed its synergistic specificity... Systems with a high

degree of synergistic specificity might be able to accomplish things that more modular

systems cannot; they do so, however, by forfeiting a degree of recombinability.”

Summing up her discussions on modularity, Schilling makes an interesting observation on the

positioning of a system on the modularity spectrum noting,

“...the trajectory of systems (with regard to modularity) is bidirectional: as

the environment changes (causing demands or inputs to become more or less

heterogeneous) or the separability of the system changes, the system might migrate

up or down a trajectory, toward or away from increasing modularity.”

In his seminal paper titled “On the Criteria to be used in Decomposing Systems into

Modules” [Par72], Parnas argues for modularization as a mechanism for improving the flexibility
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and comprehensibility of a system (software), while reducing its development time. Parnas

identifies and presents several ways of decomposing a software system, suggesting that the

effectiveness of modularization lies in the criteria used in breaking the system. He adds,

“To achieve an efficient implementation we must abandon the assumption that a

module is one or more subroutines, and instead allow subroutines and programs to

be assembled collections of code from various modules. ”

Parnas suggests that modules are components of a system that hide decisions that change, and

concludes that hierarchical structure and “clean” decomposition are two desirable but independent

properties of a system structure. These views are perhaps some of the earliest views of modularity

from a software system perspective. In another treatment of modularity in the software domain,

VanHilst and Notkin perceive modularity as a means for separation of concerns [VN96]. Through

their arguments, VanHilst and Notkin delineate the effects of modularization boundaries on the

basis of number of decisions they encode. Holding modularization as an art, they argue for systems

to be decomposed around smaller design decisions, ideally encoding one decision per module.

These comments support the design decisions in this thesis and are aligned to our understanding

of modularity, decomposition and modules.

The doctoral dissertation of Wang [Wan06] deals with modularity from an information-theoretic

perspective and Wang defines modularity and modules as follows,

“Modularity of a Decomposed System is an attribute describing the degree of overall

relative coupling among the parts of the decomposition at different levels in different

dimensions. A module is a unit of a system which is nearly independent of the context

and interacts with other units by interfaces.”
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Exploring the use of the term modularity, Wang summarizes modularity as having the

characteristics of hierarchy, globality, multi-dimensionality, relativity and universality. Wang also

argues that functionality may not be a good criterion for decomposing a system into modules on

the basis that there is no function category which is complete, standard and formal. This view sits

orthogonal to product design researchers who argue for functional decomposition. For example,

discussing modularity from a functional perspective, Ulrich states [Ulr95] that a modular product

or subassembly has

“...a one-to-one mapping from functional elements in the function structure to the

physical components of the product.”

and suggests that all interfaces between the components of different modules are decoupled. A

broad variety of relevant literature exists in the areas of product design. From a product life

cycle perspective, Gershenson, Prasad and Allamneni explore incorporation of modularization into

mechanical design [GPA99] and suggest that modularization, owing to the functional independence

created by its use, is a goal of good design. They observe,

“Modularity allows for the reduction of service costs by grouping components so those

less reliable components are easily accessed. In addition, grouping components into

modules by how they are recycled can greatly reduce product retirement costs.”

This property of modular design resonates with our envisioned use of modular hardware for

developing research prototypes as discussed in Chapter 3. Perhaps the most differentiating theme

of our approach is how we use modularity from ground up. In the product design literature,

which has great relevance to HCI, several approaches to architecting systems have been explored.

Several researchers have investigated and argued for the advantages of incorporating modular

product designs, including product configuration options available for both the producers and the
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consumers. Considering three perspectives of modularity in product design, namely functional,

life-cycle and mixed, the authors suggest the presence of an ‘optimal’ level of product modularity.

A similar view of modularity has also been used by Langlois [Lan92] and Sanchez [San95]

toward explaining the degree of modularity of a system. We find maximum resonance with views

of Dahmus, Gonzalez-Zugasti and Otto on modular product design. Exploring modular product

design with an example use case in electric power tools [JDO01], they suggest an approach where

the basic platform is made of several modules. They write,

“Rather than a fixed product platform upon which derivative products are created

through substitution of various add-on modules, the approach here permits the

platform itself to be one of several possible sizes or types. Thus, the system is a

collection of modules, each of which can be one of several types...An ideal architecture

is one that partitions the product into practical and useful modules. Some successfully

designed modules can be easily updated on regular time cycles, some can be made in

multiple levels to offer wide market variety, some can be easily removed as they wear,

and some can be easily swapped to gain added functionality.”

From another product and systems standpoint, Huang and Kusiak use modularity to refer to the

“decomposition of the architecture of a product family into distinct building blocks (modules)

used to meet various functions of products” [HK98]. Huang and Kusiak also present several

ideas relating to functional decomposition of a system which are greatly aligned and is discussed

later in this dissertation. Considering technological complexity in modular design, Tsai and Wang

distill modules as components and individual parts of a system that are mutually orthogonal in

functionality (aiding in decreasing complexity as they are designed) [TW99].

To sum up, modularity is defined, used and developed by practitioners of the various fields of

study in a variety of ways. Development, evolution and morphology form the basis in biological
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sciences, and in engineering, physical-form, spatial arrangement, function, life-cycle and other

hybrid aspects push modularity into multi-dimensions. Several of these dimensions are relevant to

this dissertation and have strongly influenced our interpretation of the term modularity.

2.2.3 Modalities

Modality, as a term, has several prevailing interpretations. The term modality is defined and

interpreted differently by practitioners of various sciences and humanities including education,

humanities, linguistics, medicine, logic, transportation and human-computer interaction. Of the

several dozen broad definitions, the treatment of the word in semiotics, medicine and HCI hold

maximum relevance to this thesis work. The definition of the term in semiotics is aligned with

the works of Linguists Peirce (particularly “The Logic of Relatives” [Pei97]), and a modality

is interpreted as a way in which information is encoded to be presented to humans, including a

channel by which signs are transmitted like image and music. In medicine, the term modality is

used in both the study of human sensory system and in medical imaging. While in the former

a modality is used to refer physical phenomenon such as temperature, pressure, taste, light

etc. [Fre74], in the latter modality is used to refer to equipment, probes and transducers used to

obtain measurements and parameters from human subjects [Beu00, Dha03].

From an HCI perspective, Nigay and Coutaz in their discussions on multimodal systems [NC93]

state their interpretation of modality as,

“Modality refers to the type of communication channel used to convey or acquire

information. It also covers the way an idea is expressed or perceived, or the manner an

action is performed.”

This interpretation of modality may be used to describe the collection of both senses through which

humans can perceive information and also the underlying transducers (sensors and actuators). Our
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interpretation of modality is based on the notions in [NC93] and medical imaging. By modality, in

this thesis we hence refer to interaction elements or components including, for example switches,

sliders, rotors, LCDs and LEDs, that may be used to present information to humans or sense their

inputs.

2.3 Chapter Summary

The direction of research and implementation performed in this thesis work is strongly

guided and influenced by prior pursuits spanning directions including prior UIs, UI toolkits,

robotics, spacecrafts, tradition computer networks and DIY hobbyist electronics. Several of these

motivating, guiding and complementary systems and research explorations were presented, with

many others discussed through the following chapters. With an understanding of the research

space of this dissertation and guided by the notions of a few key terms shaping this thesis

work, we proceed toward developing the embedded aggregates foundation. The following chapter

presents the notion of an embedded aggregate, distinguishes aggregates from existing embedded

systems, argues for their utility and identifies advancements in key aspects of embedded system

communication that are required toward realizing the aggregate class.
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Chapter 3

Embedded Aggregates

Most people are in favor of progress, it’s the changes they
don’t like.

Author Unknown

Embedded systems taking the form of collections of several electronic modules are relatively

widespread, including, for example, automobile processor networks (vehicle bus), hierarchical

control systems, and networked control systems. In this diverse ecology of multi-module systems,

a class of embedded systems distinguishes itself by the relative scale and distribution of processing

power and control architecture. We call these systems embedded aggregates. Modules in an

embedded aggregate typically have mutually comparable processing power, communicate with

one another and hold a peer status in the system. In the simplest case, each embedded aggregate

module is built around a microprocessor, often without dedicated communication co-processors.

The aggregate modules invoke each other’s functionality and collaborate using module-specific

messages and commands through the communications fabric that holds them together.

An embedded aggregate is a collection of several interconnected and synergistic electronic modules

deployed and organized within a few feet of one another. The modules making an aggregate have

heterogeneous configurations. First, the CPU speeds of the processors of the modules may range

from a few MHz to several hundred MHz. Second, the module level RAM may extend from a

few hundred bytes to several MB and finally, the modules may run a real OS like Linux, may

be based on RTOS [DMT00] or may implement no formal OS. Each aggregate module performs

an ensemble of functions and is envisioned to be a cost-effective 1 drop-in building block of the

1We approach this from the overall life-cycle cost of the system [GHSR97].
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system. Embedded aggregates resemble large and elaborate embedded systems (like air traffic

control and manufacturing assembly lines) in architecture, but are comparable to single-board

devices in size. There are a variety of motivations for building systems in this multi-module

fashion, including improved fault tolerance, graceful degradation of performance, open-endedness,

extensibility, scalability, reusability, decoupled development of the embedded system functionality

and continued augmentation through specific function oriented modules.

In this chapter, after a brief introduction to current embedded system design trends and their

implications, we describe certain application contexts that have motivated and shaped the idea of

embedded aggregates. Next, we present a discussion that situates the aggregates class of systems

in embedded design space and highlight open research avenues in communications and protocols

for their realization.

Varying levels of hardware and code (software and firmware) integration have been pursued

by engineers and designers to meet the functional and design requirements of an embedded

system. For example, common design objectives for embedded systems include energy efficiency,

low cost and high performance. To realize these combined objectives (sometimes described as

non-functional requirements), often a tightly-coupled consolidated design approach is followed.

Enabled by parallel advances in VLSI technology, in this approach, devices are today frequently

built around a few system-on-chip (SOC) processors and only a handful of additional components,

enormously reducing overall costs. In practice, these technological innovations have scaled well

in unison and devices have tended to become progressively smaller, integrated and complex

entities across a broad diversity of end applications [TP06]. Deviations from this design trend

are sometimes found in situations that demand the placement of several hardware and software

entities over a large spans of physical space, for example in air traffic controls and manufacturing

assembly lines. Even in such cases, the individual subsystems are generally compact and dense

modules.
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With improvements in density of packaging, current embedded design approaches collocate

the large majority of system resources on a few components, often realizing a very dense

implementation. For a growing number of application areas, however, while this approach is

feasible, it is functionally and objectively constraining. In § 3.1, we argue that application areas

other than our HCI pursuits introduced in Chapter 1 are bound to emerge in the future as embedded

aggregates are more widely realized and employed. Beyond this dissertation, we believe the

embedded aggregates class of systems has largely been unexplored, and represent a departure from

the current predominant trends in hardware miniaturization and integration.

Implementing the protocols and the encompassing communication fabric toward the realization of

embedded aggregates remains a formidable challenge. The influence of embedded system design

trends upon communication technologies has left a collection of protocols that are intractable

for the aggregate class of systems. Protocol development efforts have tended to concentrate on

mechanisms for communication at the scale of a single circuit board or for linking components

across a large physical space (several meters) through electrically noisy environments.

For realizing the emerging embedded aggregate class of systems, however, we will argue existing

protocols are either inadequate or infeasible and limiting due to complexity and overheads

(discussed in § 3.3, § 3.4 & § 3.5). In the few efforts to realize multi-module embedded systems

that are currently underway, the protocol challenges, to a large part, have lead to one-off designs

of communication and networking frameworks [KPTT99, Bot00, CHP03]. These communication

frameworks have tended to be both system and situation specific, and hence there is a gap in the

embedded communication spectrum and this gap poses challenges in realizing aggregates.

In the following sections we argue in support of the embedded aggregates class of systems,

motivate the need for new protocols and mechanisms, and study the aggregate space toward

developing a broader communication framework. We begin with a discussion on a few applications
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that shaped our concept of embedded aggregates and their design goals in the following section.

3.1 Motivations for Embedded Aggregates

From a pragmatic perspective, one can argue that the top level design and performance goal of

an embedded system is to accomplish the desired tasks within the given time constraints. This

goal primarily positions an embedded system as a function-specific implementation, rather than a

generic computing device. Yet, in a broad class of emerging applications, embedded architectures

that are open-ended, scalable and flexible are in demand. These features are orthogonal to an

embedded design approach that gravitates toward unifying and co-locating system resources. We

feel that these application areas demand and benefit from system architectures that:

• are open-ended to support system building, extension, maintenance and replacement in a

progressive fashion as resources and finances allow;

• can alleviate integration and realization obstacles due to the physical rigidity of the

underlying PCBs (mechanical flexibility);

• can grow to distribute several electronic modules over a physical space and allow rapid

rearrangement of modules (mix & match and move about in physical space);

• can tolerate a degree of uncertainty in the integrity of the system arising due to the nature of

its operating environment (harsh environments); and

• can extend service in the case of component failure unlike monolithic design that often leads

to complete loss of all functionality with limited scope for recovery.

We describe a few motivating application areas below that make some of our above comments

more concrete.
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3.1.1 Physical Environment Sensing

Environmental sensing provides several embedded systems opportunities and challenges. With

the rapid growth in the number of MEMS and other miniature sensors, the number of physical

parameters and events sensed in such systems is on the increase. These sensing systems are

assuming a cyber-physical dimension of the larger computing infrastructure.

The use of embedded computing and sensing entities differs substantially from one use case

to another, depending on the environment sensed and manipulated. In some cases, sensors are

deployed in close proximity, often in a 3D space of a few cubic feet, to study the space for humidity,

temperature, air velocity and particle density [Rus01, ZSS05, SBL+07]. At times, sensors may be

deployed in corrosive environments and are exposed to the elements, so an exhaustive shielding

of the sensing system from the environment may be impractical. In such cases, it might often

be beneficial to deploy sensing systems that can perform despite sensor faults and partial system

failures. Finally, there is often a requirement to add, remove or rapidly interchange sensors in an ad

hoc fashion toward sensing a different set of parameters or replacing broken sensors [MXD+07].

The above requirements and challenges demand a sensing system that can flexibly incorporate

several sensing nodes and is capable of performing its sensing responsibilities, with graceful

degradation, when individual nodes become unresponsive.

Wireless networks have been a predominant means to interconnect sensors [Pot00, Rag06],

and several efforts in wireless sensor networks have produced very efficient networking and

organization protocols [Zig, ALM05, YHE02, WH02]. Yet, some sensor networks may need to

be deployed in settings that are incapable of sustaining wireless communication or will benefit

from simpler and more cost-effective communications due to expected faults and failures. These

settings benefit from a low-cost wired network.
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3.1.2 Human-Computer Interaction Devices

Human-computer interaction devices range from the ubiquitous keyboard and mouse to

application-specific custom interfaces. Interaction devices have been our primary application area

for embedded aggregates. In addition to the applicability of blades and tiles at the prototyping

stage, we are motivated toward a modular approach for several other reasons.

First, we had to develop and deploy several dozen sets of 3-5 different interaction devices at

several distant locations. These devices were experimental interfaces, with a number of hardware,

mechware, firmware, and software design iterations spanning a period of several years from the

time of the initial deployment planned. During this gradual process, we aimed to avoid lock-in and

obsolescence, maximize the level of hardware and firmware reuse, and minimize costs and waste

as the system evolved.

Next, we desired a toolset that could enable the construction of much larger interaction devices

that are highly specialized in form and function, perhaps involving hundreds of sensors or

displays in physically or logically descriptive designs (e.g., with geographical or diagrammatic

2D or 3D layout) [UKK+01]. We wanted to leverage the same toolsets developed for our work

on the smaller interaction devices, applying and extending these same hardware, software and

firmware investments toward our furure plans for large-scale highly-customized devices. We

therefore aimed for forward compatibility in our hardware and firmware development efforts

through embedded architectures that could scale, allowing reuse of our current implementations

of interaction modalities.

Finally, we felt that such elaborate interaction systems should be realizable, ideally by small teams

with limited resources (time, expertise and finances) and also through collaborations between

several groups of HCI practitioners. Following the kinds of user interface toolkit approaches

common in the realm of traditional graphical interfaces and inspired by hardware toolkits and
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prototyping platforms, we envisioned a toolkit that is composed of a series of functional modules.

These functional modules would ideally be developed as libraries of interaction modalities from

which the appropriate modalities may be chosen toward realizing a new interface.

3.1.3 Fractionated Systems

Tightly integrated, monolithic electronic systems can lead to large amounts of electronic wastage

due to failure or obsolescence of a few components in the system. In contrast, a fractionated

approach spreads functions from a central monolithic unit to distributed heterogeneous modules.

Compared to the all-in-one approach, it increases the number of components and the initial cost

of production, while prospectively extending the life of a system and its uptime, as a fractionated

construction is conducive to progressive upgrades, partial repairs and replacements [TFCG06, HN,

O’N09]. It has been argued that developing systems in a fractionated format has cost benefits over

the total life of the system [MW05, Bro06b]. Fractionated design finds use in a variety of contexts,

on Earth and beyond in outer space. We will now discuss two of these application areas.

3.1.3.1 Robotics

At present, several research groups are pursuing development of robotic systems with self-healing

and self-configuring properties [NF00, RBKV02, KM07, GSRRU07]. These robotic systems

require the underlying hardware to be both flexible and robust, and a modular system that can

exhibit such traits is subsequently often considered [YDR00, SMS06]. These modular robotic

systems are particularly aimed for use in the hostile environments of outer space and rugged

terrain. A decoupled modular approach can support self-reconfiguration by shuffling (mechanical

detachment, relocation and reattachment) modules, self-healing by replacement of non-functional

modules, and energy savings by detaching faulty modules. Finally, the modular approach enables

distributed sensing and decision making capabilities, along with multi-point locomotion and

flexibility, which are important features required for maneuvering through difficult terrain.
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3.1.3.2 Spacecraft

Satellites operate in very harsh, radiation-prone and increasingly debris-ridden outer space. Above

the material and production cost of a satellite, the expenditure to put one in space and maintain

it in orbit contribute enormously to the overall cost of a mission. Often these two costs are

comparable. With rocket launches that carry very heavy satellites tending to be both expensive

and risk prone, many huge spacecraft are being realized as constellations and formations of

several smaller satellites [SBM01, Lai01, KSBY02]. However, the individual satellites have

remained complex monolithic systems, often experiencing little upgrades or repairs, reducing their

lifetime. To this end, several researchers have proposed a fractionated approach toward satellite

building [BEH02, MGGR02, TKYM04, Bro06a, col09, BEC09].

These proposals cite advantages in terms of increased flexibility and robustness, during design,

procurement and mission operations. Under this fractionated approach, individual spacecraft are

built using mass-produced electronic blocks, with standardized functionality and interconnects.

The individual satellite blocks can be enhanced, upgraded or extended as finances allow and

requirements arise.

Current proposals push predominantly toward wireless connectivity amongst the modules forming

a satellite [SB08, Bro06a]. A two-tier communication system, involving wireless and wired

networks, would find use in such fractionated spacecraft, particularly in low-cost fractionated

nano, pico and mid-sized satellites. These hybrid wired-wireless systems would be analogous

to the WDM optical networks with copper control-plane [PG05]. The satellite could use a low-

speed wired network for house-keeping activities and choose to set up high-speed wireless

communication links on-demand. This approach reduces energy costs (wireless radios consume

more power) and wireless networking component costs.

All the applications discussed above demand or benefit from the features that can be extended
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to them by building their embedded-hardware core in a multi-module fashion. This outlook is

strongly shared by the various research fields and several multi-module architectures have since

been created by researchers [YDR00, SMS06, ZCL07, SG08]. In the field of robotics, “efficient

and scalable (asynchronous) communication among multiple units” is stated as a prime planning

and control challenge [YWMS+07], a goal that cements the position of the modular approach.

Our embedded aggregate notion builds from these core ideas, requirements and challenges. The

above motivating contexts suggest a current need to implement the embedded aggregate class

of systems and develop the underlying design principles and mechanisms. While modularity in

hardware design is a well-known and tried concept, architectural decisions regarding where and

how modularity is expressed can have major implications for reconfigurability, reuse, extensibility,

and scalability. These design decisions together with ideas on federation of processing power

and delegation of functionalities distinguish embedded aggregates from other modular embedded

systems.

Having described some embedded aggregate use cases, we next venture toward developing the

design principles of embedded aggregates.

3.2 Networking and Communication Conceptual Parallels

In the previous section, we introduced our motivating contexts for the embedded aggregate class

of systems. To realize the overall functional objectives of the embedded device, the modules

require communication mechanisms and protocols to connect, organize and exchange data. Several

embedded communication protocols have been developed over the years. In this section, we

identify the suitable protocols for use in the embedded aggregates. We begin with an exercise

of juxtaposing and comparing current embedded communications, with the mechanisms and

protocols in a familiar non-embedded communication settings in §2.3.1. We next identify the
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kinds of facilities required of the aggregates’ communication infrastructure in §2.3.2 and 2.3.3,

and finally conclude with a discussion of the suitability of the currently available protocols in

realizing the aggregate communication infrastructure.

3.2.1 Similarities with Operating Systems and Inter-Process
Communication

An embedded framework consists of hardware interface specifications, protocols, mechanisms and

communication channels that together enable and guide the development of a class of embedded

systems. To gain an appreciation of the current embedded communication protocols, we take up

an exercise of juxtaposing and comparing an embedded framework with a computer operating

system (OS). An OS is physiologically similar to an embedded framework in several ways and this

study provides very useful insights. We begin this exercise by illustrating similarities and parallels

between a OS and an embedded framework, and then situate the currently available protocols in

the embedded communication spectrum.

An OS facilitates the execution of various application software. The OS manages access to the

hardware, applications and data through a set of inter-process communication (IPC) mechanisms.

Additionally, IPCs also enable communication among the several processes and threads (sub-

programs) that make an application and the various components of the OS itself. The choice of

IPC may vary based on the type of data, the required level of communication abstraction and

bandwidth and latency of communication between threads.

The entities (i.e., protocols and specifications) of an embedded framework are analogous to

the facilities provided by an OS to the software applications it sustains. The various electronic

components making an embedded device are logical counterparts of the software applications. The

IPCs provided by the OS enable applications to share data and communicate with one another.

Similarly, in the embedded front, the data-bus, communication channels and protocols allow

49



Sheet9

Page 1

Communication Parallels
Operating System Embedded Framework

OS Inter Process Communication  Favorable Use Context  
Embedded Communication Protocols

Domain Specific

Remote Procedure Call (RPC)
Ethernet

Message passing

ARCNET

CAN bus, LIN bus

Unix domain socket

Message queue, pipe Board level

Process level
Custom buses, JTAG

Processor level

   
   

   
   

   
   

   
   

   
   

   
   

   
      

Re-purposed 
Protocols

Applications on 
geographically 

separated 
computers on a 

network

Boards separated by 
tens of meters

 P
ro

to
co

l'
s 

co
mp

le
xi

ty
 o

r 
ov

er
he

ad
s 

an
d 

le
ve

l 
of

 
ab

st
ra

ct
io

n 
in

cr
ea

se
 f

ro
m 

bo
tt

om
 t

o 
to

p.
  

INET Sockets, netcat, socat EIA RS-485, EIA RS-
422, SDI-12

Freedesktop.org-D-Bus, Windows COM Applications on an 
OS

Boards separated by 
a few ft.. Embedded 
aggregates fall in 

this spaceProcesses and 
applications on a 

OS

USB, firewire, MIDIRS-232, I2C, SPI, 1-
wire, SMB, Profibus, 

UNI/O bus

PCI, Hypertransport, 
ISA, SCSI h

Memory-mapped file, shared memory, 
signals, semaphore, global variable

Processor memory 
registers

FIGURE 3.1: Parallels between IPC mechanisms and embedded communication protocols. The table
juxtaposes the communication mechanisms in an OS and in an embedded system. Protocol
boxes that overlap two use contexts signify their applicability in both cases. A few protocols
are suited for the physical scale of the embedded aggregates. However, these protocols are
not sufficiently feature rich to support the aggregates class of systems.

components to exchange data and work with each other in a system. Hence, the communication

mechanisms provided in both OSes and embedded device platforms perform the same function -

they enable and dictate the architecture of the overall system.

To illustrate and clarify the analogies, Figure 3.1 outlines the parallels. Both an embedded

framework and a mainstream OS can support their constituent entities through a variety of

communication mechanisms. In the embedded context, low-level communication mechanisms

have received considerable research focus and sufficed the resulting board-level communications

needs. For the cases where communication across geographically separated embedded boards is

to be achieved, wired mechanisms, with signaling and protocols resistant to errors, have also been

developed. Sometimes, mainstream networking protocols like TCP/IP and UDP over Ethernet and

ARCNET are used to link boards to achieve modularity, scalability and ad hoc operation.

On the outset, systems of the physical scale of the embedded aggregates are substantially supported
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by several communication protocols. However, in addition to the protocol’s ability to support

board-to-board communication over short distances, the aggregates require protocols that provide a

rich set of features that can support their dynamism and open-endedness. While CAN Bus and LIN

Bus provide many features toward realizing readily-composable multi-module systems, they still

lack several required features, as explained in §2.3.2 and 2.3.3. Hence, in their current state, none of

the currently available protocols can support aggregates as a drop-in communication mechanism.

This exercise has helped us place the different embedded protocols in relation to the physical

dimensions to which they cater and obtain a simplified picture of the protocol space. Furthermore,

it has also helped us to situate embedded aggregates in the same physical spectrum. Next, we will

gather a basic set of features that are required in a communication protocol toward realizing the

embedded aggregate class of systems. Computer networks and supercomputing communication

mechanisms have ideas and insights to offer in this regard, due to their appreciable congruences

with aggregates.

3.2.2 Similarities with Other Computer Networks

A computer network [PD07] is made of several independent machines that often exchange

commands and data with other computers. The network enables the computers to interdependently

accomplish their overall objective by facilitating the collaboration among them. As such, this

organization and functioning is similar to that of embedded aggregates. Mechanisms to discover

newly added modules, uniquely identify them, and provide the means to communicate with

other existing modules are essential. A suitable communication method should also allow

modules to send and receive data independently with negligible communication overhead to other

modules. This objective requires either dedicated one-to-one connections or efficient use of shared

communication buses.

If a communication resource sharing approach is followed, then unique ways to address modules
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in a communication and built-in low-overhead techniques to recover self-addressed traffic on

the bus are essential. These require protocols and mechanisms to dynamically or statically

assign addresses for communication. Towards this end, network protocols like Internet Protocol

(IP) [P+81, Hui98], Dynamic Host Control Protocol (DHCP) [DBV+03] and Address Resolution

Protocol (ARP) [Plu82] provide valuable knowledge and insights. No communication can be 100

percent reliable, particularly in the case of embedded aggregates, as one of the required features is

survivability in environmentally hostile conditions. Hence, methods for recovering from faults and

sustaining gracefully degraded communication are required. Several of these ideas can be found in

communication protocols like Transmission Control Protocol (TCP) [CK74, SW95] and Internet

Control Message Protocol (ICMP) [P+81, Ark01].

3.2.3 Similarities with Message Passing Interface (MPI)

A general computer network and the underlying protocols are designed and implemented

assuming a generic communication pattern between the computing nodes. Consequently, several

basic communication primitives are provided by the protocols, but often these primitives are

modified or enhanced for providing additional services or toward achieving very specific network

implementations. Networking architectures for supercomputing clusters with special protocols

like the Message Passing Interface (MPI) [Sni98] are such special instances. Several similarities

between a supercomputing cluster and a multi-module embedded system stem out of the very

goal-oriented optimizations of both systems.

Regular computer networks that span large physical spaces suffer from system dynamics and

are more susceptible to faults that are a consequence of the geographical separation between

nodes [BP95, PFTK98, JD02]. In contrast, many of these network effects are minimized in

clustered computers due to close physical spacing between nodes [PD03, Com08]. The smaller

physical space also reduces demands on the communication mechanisms in terms of physical
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signalling and error correction. Since embedded aggregates have physical dimensions on the

order of a few feet, they lack these distance effects of general networks, so we can simplify the

communication protocol, an advantage in the CPU-constrained aggregates.

Finally, communication mechanisms, such as collective communication calls, methods for virtual

topology and synchronization as seen in MPI are beneficial in the aggregates context. For example,

embedded systems would benefit from having point-to-point and collective communication

methods offered as basic primitives by the underlying protocol. Together with a simplified and

holistic communication design, these can empower embedded devices with the required high-

performance, scalable, and portable network.

Our study of computer networks and MPI has revealed mechanisms and optimizations that are

essential for a suitable protocol. The current set of available embedded communication protocols

do not support these capabilities, and we require a new suite of communication protocols and

mechanisms for embedded aggregates.

3.3 System Setting

The previous sections motivated embedded aggregates and made the case for developing fitting

communication protocols. This communication infrastructure presents optimization challenges,

as aggregates have tight resource constraints and limited processing power, requiring analysis

from the ground up, with specifically tailored simplifications and functionalities. Hence, before we

embark on the design of a new communication infrastructure, we discuss the architecture, physical

scale, logical scale, hardware capabilities and temporal scale of the envisioned aggregate systems

toward understanding the design space.

Architecture, Physical and Logical Scale: The success of the IBM-PC architecture cemented

the position of the “CPU with co-processors” design as the staple architecture for computing and
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embedded systems alike. Embedded aggregates deviate from this asymmetry in decision making

to a more homogeneous setup. Aggregates are anatomically and architecturally similar to present-

day computer networks, where each computer is dedicated to a particular task and communicates

with other computers toward achieving an end objective. In physical scale, the aggregates are

comparable to routing switches, i.e., in the order of a few feet, and in logical scale, the embedded

aggregates approach several hundred modules. In a few cases, systems with several thousand

processors are conceivable, but we have focused on situations where systems typically will be

composed of several tens of modules.

Module Hardware Capabilities: From the perspective of hardware capabilities, embedded

aggregate modules find themselves straddling between computing nodes that formed the Internet of

the 1980s and present day networking switches like [Fen81, DS87, DT01, DYN03]. On the lower

end, the hardware capabilities, including the CPU clock-speed in the range of few tens of MHz,

internal bus speed, a few hundred bytes of RAM and ROM, are comparable to the earlier Internet

compute nodes. The Internet nodes had co-processors aiding the primary CPU in accomplishing the

networking, memory management and other tasks. On the other hand, embedded aggregates often

have modules built around a single CPU responsible for the activities of the node and satisfying its

networking requirements. This constrains the CPU cycles that nodes have for communication.

Temporal Scale: Embedded aggregates fall predominantly in the soft-real time embedded system

classification. Simultaneously, they are also suited for hard-real time applications. As Figure 3.2

highlights, an embedded aggregate features time scales across several orders of magnitude.

Individual modules with CPU speeds in several tens of MHz can individually accomplish tasks

in a hard real-time fashion. However, when communication with other modules is involved, often

only soft real-time performance is achievable. Inter-module communication is expected to take

several tens of milliseconds due to interlink latency and prioritization. Finally, communication with

external entities and systems may take several hundred milliseconds to a few seconds depending
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FIGURE 3.2: Embedded aggregates time constants. The compartmentalization and modularization of
processing power in embedded aggregates leads to a variety of temporal responsivenesses.
As shown in the figure, tasks may be completed in as low as a few micro-seconds individually
by the modules or can take as high as a few seconds when involving communication with
external systems.

on types of external communication protocols used and their timing implications. Therefore, the

distribution of associated functionality and the implementation of modules plays an important

role in the underlying time constants achievable by an aggregate. By appropriately designing and

equipping the individual modules, systems developers can make the aggregates applicable in both

the hard and soft real-time contexts.

In summary, the embedded aggregates present us with a set of constraints and communication

infrastructure design requirements. A reasonable aggregate communication fabric must provide

and support several functionalities while being sensitive to the hardware constraints and end-

application requirements. Other than our conceptual considerations for embedded aggregates, we

also faced additional constraints in the implementation of blades for use in user interfaces and

interaction artifacts design research. To sum up, our overall design considerations for embedded

aggregate protocols + mechanisms and blade hardware included:
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• Blade form-factor considerations 2.

• Lower cost per module.

• Heterogeneous embedded processors with:

– CPU speed : few MHz to several hundred MHz.

– RAM : few hundred bytes to several MB.

– OS : some without a formal OS, RTOS based and real OS like Linux.

• Wired communication towards lowering cost.

• Additional implementation constraints including availability of processors with only one I2C

port in the required pin-count and packaging type, and several processors with only I2C slave

mode functionality.

• Through-hole component based hardware design.

3.4 Chapter Summary

This chapter identified a class of embedded systems with distinct characteristics and motivated

the notion of an embedded aggregate. Motivated by their applications and strengths, we studied

and developed the aggregate concepts, design criteria and requirements by juxtaposing the

aggregates with comparable familiar system settings. The study following the comparative

analysis, undertaken to place the embedded aggregates amidst current systems, enabled us

to identify and pursue related literature discussed earlier in Chapter 2. Supported by these

assignments and an understanding of the embedded aggregates’ physical, logical and temporal

scales and the design considerations highlightened above, we proceed to the next chapter where we

develop a favorable architecture for the aggregates and a supporting communication infrastructure.

2Discussed further in § 5.4.1.1.
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Chapter 4

Architecture, Protocols and Mechanisms for
Aggregates

The idea is to try to give all the information to help others
to judge the value of your contribution; not just the
information that leads to judgment in one particular
direction or another.

Richard P. Feynman

Given the strong similarities between mainstream protocols and the requirements of the aggregates,

we begin this chapter with the question: what prevents us from using a tailored version of them in

the embedded aggregates context?

Supported by growth in CPU speeds and raising to the demands of systems and applications

built using such CPUs, the protocols that link everyday computing nodes have grown from their

modest beginnings in the early 70s to immensely capable and subsequently complex networking

stacks. While the growth of the networking stack has been commensurate with the development

of the computing systems they support, the current protocols would be found cumbersome and

impractical if an exercise to implement them in the computers of 1970-80s is carried out.

As noted earlier, the embedded aggregate modules are even less powerful the than computing

machines of the 70s. Therefore, how flexible, elaborate, powerful and complex should the protocol

for the aggregates be?

Let us look at a routing switch. A switch is made of several switching elements that are

interconnected to accomplish data transfer between the different ports of the switch. The network

traffic exchanged in a switch is several orders of magnitude greater than that to which individual

computing systems on the network are exposed, and amongst the highest in the Internet as a whole.
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The simplicity of the communication protocols in the bowels of a switch and protocol-specific

design of the switching elements enables high-speed exchange of data bytes and high reliability

under extreme traffic loads.

Given their resemblances to the Internet as whole and its underlying switching elements, embedded

aggregates would benefit from protocols that embrace the simplicity of the switch routing

protocols, while also providing some of the powerful features that enable realizing a heterogeneous

network like the Internet. With this direction, in the next section we begin to devise a holistic design

approach in developing the communication infrastructure.

4.1 Holistic Design Rationale

The relationship between networking architecture and performance is an extremely challenging

one. In an effort to tackle this challenge, the Open Systems Interconnection (OSI) model was

developed to guide and standardize communication system design [Zim80]. This model aims for

“separation of concerns” and divides communication systems into seven layers for tractability,

where each layer is a collection of conceptually similar functions provided by a set of protocols.

Unfortunately, this layering approach often hides the information that lower layers require for

optimizing their performance, leading to the replication of functions and loss of efficiency, making

the OSI model less favorable in certain cases. For example, the time-tested Internet Protocol Suite,

also commonly known as the TCP/IP Suite, though constructed as a set of four layers, is ironically

not intended to be OSI-compliant [BM02, AT]. OSI ordering constraints conflict with efficient

implementation of its data manipulation functions. The OSI model’s loss of efficiency for gains

in structuring and abstraction is also unfavorable in the embedded aggregates context. The lack

of dedicated communication hardware in the aggregates further magnifies the computational side-

effects of layering. Therefore, we take a holistic approach toward the design of communication

infrastructure for embedded aggregates.

58



The communication infrastructure comprises a collection of protocols and specifications extending

from the electrical logic and topology of the physical wires to protocols for exchanging data

between the modules. In our holistic design, we chose communication topologies, protocols

and their functionalities such that they complement each other, providing the required overall

functionality in a synergistic fashion.

In this section, we present the various required components of the communication system, discuss

available techniques and present the evolution of our specification and implementation. Following

a bottom-up approach, we begin with the networking topology and progressively refine our choices

of topologies and associated mechanisms as we progress through the discussion. We will discuss

the applicability of the various available embedded communication protocols and locate protocols

that best suit our design goals and topology choices. Features in the currently available protocols

do not meet our requirements. However, in lieu of designing another physical layer protocol, we

lean toward an existing physical layer implementation and associated data-link layer specifications

that, through extensions, can support embedded aggregates. Through this holistic approach, we

maximize the properties and features offered by the communication infrastructure as a whole by

leveraging and creating complementary functionality in the different parts.

4.2 Network Topology

Modules in an embedded aggregate are primarily interconnected using wired communication.

This reduces individual module cost and RF front-end overheads and increases the selection of

micro-controllers available for realizing individual modules. The first step in implementing a wired

network is the network topology. The network topology presents itself in two realms, the physical

and the logical spaces.
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4.2.1 Physical and Signal Topology

The choice of the inter-connection among embedded aggregate modules requires consideration of

several attributes. The ability to add modules and easily reshape, expand or reduce the system is

an important design criterion. Hot-plugging of modules and providing the ability to reconfigure

the system at run-time is also a valuable feature. Furthermore, modules require means to mutually

communicate with every other module in a duplex fashion. We will now consider the applicability

of several network topologies in the context of embedded aggregates.

Point-to-Point: Point-to-point is the simplest of all topologies, with a dedicated physical channel

between any two modules in an embedded aggregate. The physical channel can be established

permanently, or dynamically, using circuit switching. Unfortunately, the point-to-point topology

requires setting up (or removing) several newer (existing) data paths, with the addition (removal) of

every module. This greatly increases network wiring costs and imposes non-scalable requirements,

as either dedicated pins are needed for each channel or an increasing number of channels must

multiplex on the same pins. Furthermore, firmware complexity increases owing to the number of

communication interrupts. The ensuing cost and time penalties therefore make it unsuitable for

embedded aggregates.

Mesh: A mesh topology, due to large number of interconnects and challenges in setting up

and tearing down connections during system modifications, is also infeasible in the embedded

aggregates context.

Star: The star has a point-to-point link between each module and a central hub module. The star

topology admits simple addition and removal of modules. On reaching pin limitations on the

hub module, a larger network may be built using several interconnected hubs, each with a star

arrangement of attached modules. While this is feasible and practical, as seen from its extensive

use in hubbed Ethernet, the number of data paths is far too numerous for embedded aggregates. Star
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topology can quickly lead to a substantial amount of wiring that is physically comparable to the size

of the modules themselves and is often tangibly constraining to the placement and reorganization

of modules. Subsequently, we find the star topology impractical for embedded aggregates.

Ring and Line: A ring connects modules in a circle where the modules themselves are part

of the data path. Nodes are opaque to the transmission medium, and when presented with data,

individual modules are responsible for receiving, parsing and retransmitting the data appropriately,

immaterial of the intended recipient. This additional communication overhead can drastically

reduce the performance of individual modules. Furthermore, when an embedded aggregate module

is detached, the ring is broken and the communication between other modules is disrupted until

the ring is re-established. Hardware level reconfiguration of data paths (bridging the path across a

removed module) and the associated transients add to the complexity and instability of the process.

An open ring, called a Line topology, also presents similar concerns. The ring and line are therefore

unusable for embedded aggregates.

Bus: A bus is centered around a single data path to which modules connect. Unlike the ring and

line, the modules themselves are not a part of the data path, but share the data path to communicate

in a half-duplex fashion. The bus topology greatly reduces the number of data paths required,

however, the cost of managing the network is higher than the star and mesh topologies. This

greatly increases the communication functionalities required of independent embedded aggregate

modules. Nevertheless, the implicit flexibility and the wiring simplicity of a multi-drop bus of

sufficient bandwidth can outweigh the addressing and management overheads. Owing to this

advantage, the bus topology is a feasible candidate.

Tree: A tree topology mitigates some of the module addition and removal concerns with ring

and line topologies, though, it requires more data paths than a bus. Furthermore, as a hierarchical

topology, a tree admits several simultaneous data transfers, increasing throughput. Unlike the bus,
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the modules in a tree are part of the data path. However, unlike the ring and line, the data transfer on

a tree demands varying levels of participation from the modules, depending on their position in the

tree, and offers more graceful degradation of performance from module faults. Similarly, the extent

of disturbances to data traffic due to the addition and removal of modules depends on the location

of the module and is significantly less than ring and line topologies. Finally, while the bus topology

has a single point of failure, the tree topology provides some level of immunity from faults and

instabilities, due to the hierarchical segregation of communication. Hence, the tree topology is a

feasible candidate, extending significant data throughput and fault-tolerance advantages.

In the above discussion, both the bus and tree topologies emerge as favorable candidates for use in

embedded aggregates. The physical simplicity of the bus is unrivaled, and the performance benefits

extended by the tree, due to implicit hierarchy and isolation, are immensely useful in the embedded

aggregates context. Subsequently, we lean toward a hybrid bus topology, namely the hierarchical-

bus arrangement. Unlike the linear bus, the hierarchical bus has multiple endpoints. A heirarchical

bus has a tree structure, with a bus at each tree node. Multiple modules connect to each bus. A

module connecting to two buses realizes a connection between the two corresponding tree buses.

4.2.2 Logical Topology

The choice of physical topology was guided by the flexibility it offered at the hardware level,

its ability to support embedded aggregates design criteria, and scalability, cost and complexity

of the physical implementation. The logical arrangement of the modules guides the data transfer

amongst them and is strongly linked to the Media Access Control (MAC) protocol adopted. In our

discussions of the logical topology, we will present and discuss the MAC protocols and choose

a logical topology that is compatible and complementary to the chosen hierarchical-bus physical

topology.

Media Access Control (MAC): In examining the physical topology, we leaned toward limiting
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the number of data paths required for communication. This optimization results in topologies

that require several modules to communicate over the same data-path. The sharing of the data

path benefits from moderation and is accomplished through a MAC mechanism. Several MAC

protocols have been developed and studied in wired and wireless communication settings. We will

now present and discuss the suitability of a few of these mechanisms in the embedded aggregates

context.

Polling: In polling, one module acts as the physical data-path arbitrator and periodically polls

other modules connected to the data-path. The fetch-push polling mechanism prevents modules

from transmitting on the data-path at their discretion and can be constraining for hard real-time

embedded applications. By carefully planning the frequency of polling and controlling the data-

path occupancy based on the number of sharing modules, however, soft real-time targets can often

be comfortably met. Furthermore, polling can be implemented utilizing modest CPU resources.

Hence, the inherent simplicity and determinism in polling make it suitable for use in the embedded

aggregates context.

Time Division Multiple Access (TDMA): TDMA is a data-path sharing mechanism where

communication on a channel is performed in distinct time slots. TDMA is deterministic, can

guarantee a contention-free transmission slot for each module and is extensible to dynamic

contexts. In TDMA, modules transmit data on the data-path in their alloted slot, which is calculated

using a local clock maintained in-sync with a global clock. This synchronization is achieved

through special synchronization messages transmitted by a module that acts as the communication

monitor. Yet, modules transmitting within the bounds of their alloted slots is an ideal situation.

Often clock skew and synchronization discrepancies require guard bands between successive

transmissions, reducing throughput.

TDMA, unlike polling, enables modules to exchange data without the need for a store and forward
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mediator. This feature introduces irregularity in the arrival of data, however, and the associated

processing time is detrimental to module operation. Context switching penalties owing to switching

from their primary operation to communication-related activities quickly negate this advantage of

TDMA. In comparison to polling, TDMA offers little advantage with the extra overheads and is

unfavorable in the embedded aggregates context.

Token Ring & Token Bus: The token ring and bus protocols involve passing a contention-free

time slot for data transmission on the bus from one module to another using a data packet called a

token. A module possessing the token may transmit data and is required to be aware of and pass the

token to the next module on completion of its transmission activities. Hence, the reformation of the

ring on the entry or exit of modules is required. Token protocols have found extensive use in many

computer networks, however, they demand intensive software and hardware mechanisms for robust

functioning. While their determinism and starvation prevention capabilities make them suitable for

embedded aggregates use, the software and hardware overheads make them less favorable than

polling and unsuitable for embedded aggregates.

Carrier Sense Multiple Access (CSMA): The CSMA scheme and derivative CSMA-Collision

Detect (CD) entrust modules with the responsibility to scan the data-path for any ongoing

communication before transmitting their own data. The CSMA-CD protocol enhances CSMA,

with modules performing a predefined operation on detecting collision resulting from two or more

modules beginning transmission simultaneously on an idle channel.

On collision, modules stop transmitting, and the communication channel is returned to idle

by a jamming signal transmitted by the communication arbitrator. A truncated exponential

backoff is used to space out transmission retransmissions. However, often the bit dominance

properties of the transmission channel are utilized to support bitwise-arbitration and achieve

throughput improvements. Nevertheless, the flexibility offered by CSMA aligns well with module
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independence, communication requirements and hot-plugging features envisioned in embedded

aggregates. CSMA is therefore a favorable protocol for use in embedded aggregates.

In conclusion, both polling and CSMA present various trade-offs and are favorable for use in the

embedded aggregates context. However, owing to their inherent differences and incompatibilities,

choosing one mechanism precludes the other. We shall hence defer the MAC selection and

reevaluate the choices in the light of suitable embedded communication protocols. Consequently,

we will also defer the selection of the logical topology. Going forward, we will consider and discuss

the various available embedded protocols next, following which we will progressively refine our

choice of MAC mechanism and logical topology.

4.2.3 Embedded Communication Protocols

As presented in Figure 3.1, several embedded communication protocols have been developed

and are built into present day micro-controllers. In the selection of communication protocols,

we exclude custom buses as they often lack hardware level support enjoyed by other established

protocols. Previously, in the conceptual parallels section, we discussed and situated the protocols

and mechanisms for embedded aggregates in the context of other ubiquitous standards. Following

our earlier assertions, it is clear that protocols and standards developed for long distance

embedded communication, like RS-485, and other industrial serial buses like Fieldbus, are too

elaborate for use in embedded aggregates with needless hardware, signaling and wiring overheads.

Consequently, we focus on protocols we classify as for on-board and closely-spaced board-to-

board buses.

RS-232 and SPI: In our discussion of physical topologies, the star topology was found to be

restrictive to our use case. Following this assessment, we drop both RS-232 and SPI buses, insofar

that RS-232 requires a star topology for interconnecting several modules due to lack of native

multi-drop capabilities. SPI, though a multi-drop bus, requires an enable line that demands a star
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topology centered around the bus arbitrator.

UNI/O and 1-Wire bus: The UNI/O bus and 1-Wire bus are both multi-drop capable, and

therefore, are favorable toward realizing the bus topology. However, both these buses support and

are designed for lower datarates than other available choices and so are less favorable.

CAN and LIN: The CAN and LIN buses from the automotive world bring in very interesting

features. They are multi-drop buses, implemented in a large set of commercially available micro-

controllers, well specified, and designed for electrically and thermally noisy environments. The

LIN bus is a small and slow network system protocol that is complementary to, and often used as a

sub-network of, the larger CAN network. The LIN network limits the network to 16 modules and

hence is restrictive in the embedded aggregates application.

The CAN bus, on the other hand, can address 128 unique devices, supports data rates up to 1Mbit/s,

provides a simple bus arbitration scheme based on CSMA with bitwise arbitration (CSMA/BA)

and so shows more promise. The CAN protocol restricts the size of message data to 8 bytes,

however; this can be insufficient in the embedded aggregates context. Furthermore, the CAN bus

specification, due to its proprietary nature, licenses and the strong control enforced by the patent

holders, is considerably stifling and inflexible for application in embedded aggregates.

I2C, SMBus and PMBus: The I2C bus protocol and its derivatives SMBus and PMBus are a

collection of multi-drop, multi-master, single-ended, two-wire serial buses. I2C protocol neither

specifies message packets nor does it provide built-in mechanisms to form and support a network

of modules. The specification includes only electrical and physical wiring guidelines and identifies

messaging primitives.

The SMBus and PMBus extend the I2C specifications, with a particular eye toward use on a

computer motherboard. They add support for dynamically addressing modules, error checking
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mechanisms, and introduce rigid voltage and data-rate specifications. As such, the SMBus and

PMBus specify and offer mechanisms and several features envisioned in the communication

infrastructure for embedded aggregates. However, SMBus is implemented in a limited number

of digital devices, and PMBus, still in its infancy, is yet to gain wide scale adoption.

The basic I2C emerges as a better alternative due to its widespread presence in micro-controllers

and largely unspecified nature, which provides room for customization and optimization oriented

toward embedded aggregates. In conclusion, of all available embedded communication protocols,

we find the I2C specification as the best suitable physical layer protocol for embedded aggregates.

Refining Topologies, MAC and Protocol

In our discussions in this section, we have chosen a hybrid hierarchical-bus as our physical

topology with I2C as the physical layer protocol, and we have two candidates for MAC: polling and

CSMA. To choose one of the MAC mechanisms, let us situate and discuss interactions between

the MAC mechanisms and I2C. The devices on an I2C network are of two types, master and slave.

In the master-slave configuration, an I2C master uses polling to send and receive data from a

slave. Natively, the I2C specification allows multiple masters on the network with each capable

of communicating with the slaves individually. In such a multi-master situation, I2C resolves any

bus contention through CSMA/BA. Hence, the choice of I2C protocol, on the outset, does not

determine the choice of MAC mechanism. This calls for further comparison between polling and

CSMA in terms of flexibility and overhead.

First, the best effort performance of CSMA, ensuing nondeterminism, and increased module-

side operations toward channel monitoring and back-off weigh against its flexibility and channel

utilization advantages in comparison to polling. Second, CSMA performance drops significantly

as channel congestion increases due to repeated collisions, and CSMA is susceptible to starvation

under bit-arbitration [Abr, TB80]. Increasing the bit-rate of the communication medium to alleviate
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some of these issues, while plausible, begs for faster CPUs. Bit-rate improvement finds challenges

in the I2C protocol. I2C implementations in most chips are limited to 400 Kb/s, though the protocol

specification does allow 3.4 Mb/s.

In an I2C network, two modules in the master mode are unable to exchange data. A master losing

contention is, consequently, unable to receive data from the winning master. This creates obstacles

in a multi-master mode supported by CSMA-BA. Similarly, two modules in the slave mode are also

unable to communicate directly between each other. The implicit store and forward capabilities

of the polling master help to overcome the slave mode issue, albeit with bandwidth overhead.

Finally, in a bandwidth-restricted scenario, polling offers advantages over CSMA including better

performance in terms of number of modules sharing the bus and determinism [Lam80]. The above

tradeoffs motivate polling as a better fitting MAC mechanism.

In the beginning of the section, we set out with a goal of putting together parts of the

communication infrastructure from already available protocols. We aimed to develop a system

architecture and define the basic mode of communication among the modules. In conclusion, as

discussed earlier, a communication architecture that enables the mutual communication between

any two or more modules at their own discretion is undoubtedly best suited for embedded

aggregates. Other optimizations, such as infrastructure setup costs, processing costs and ubiquity

of physical interconnect protocols, amongst others, however, are found to be orthogonal to the

realization of such an infrastructure. We conclude that a logical star topology, using polling on each

bus of a hierarchical I2C network, is best suited in the embedded aggregates context, providing

reasonable flexibility through limited compromise on communication independence. Next, we

discuss the algorithms and mechanisms that complete the communication infrastructure.
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FIGURE 4.1: A simple embedded aggregate. The illustration here shows an embedded aggregate
composed of 15 modules and 5 levels of logical hierarchy. Module A in blue is called the root
communicator and is the root of the tree structure. The various colors identify the modules in
each level of hierarchy. The 7-bit I2C addresses of the modules are denoted by their side. In
the hexadecimal representation of the address, if a module has the I2C address 111 0000, we
write its address as 0x70.

4.3 Embedded Aggregates I2C Network

Our embedded aggregates communication architecture follows a hierarchical tree structure built

upon many single-master I2C buses. Some of these masters also connect to another I2C bus in

slave mode and act as bridges between the buses. This bus straddling by the modules leads to the

tree structure and hierarchies. The bus where the module serves as a master is logically one level of

hierarchy below the bus where it acts as a slave, and every I2C bus connects several slave modules

of one level and a master module from the level above it. For simplicity, the bus is considered to

be at the same level of hierarchy as the slave modules attached to it. Figure 4.1 shows an example

embedded aggregate. In this example, modules A, B and C are connected to an I2C bus, where

module A acts as the bus master. Modules B and C and the bus connecting them are at level two

of the hierarchy. Module B, while a slave on this bus, acts as a master on the bus at level three that

connects it to D, E and F. From our interpretation of buses and hierarchies, no bus is at level one,

which contains only one module, designated the root communicator.
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Modules that straddle two buses either operate on both the buses simultaneously in the appropriate

I2C mode or switch between the master and slave modes and buses. The choice of implementation

(switching or simultaneous presence) is left to the hardware designers, however, modules are

required to switch rapidly enough to allow the embedded aggregate to meet its temporal goals.

In the following section, we shall describe our design of communication packets for transfer of

data through these buses.

4.4 Communication Packets

In a connectionless packet switching system, the design of a communication packet plays a pivotal

role in system performance. In general, protocol designers gravitate toward lowering overheads

and improving transmission efficiency. The effects of packet overheads and sizes on efficiency are

further compounded in the embedded aggregates context, due to hard constraints on the physical

layer data-rate. For example, while large packets provide a good balance between useful-data size

and control-information size, they also lead to longer occupancy of channel and subsequently affect

the polling periodicity and conflict with the soft real-time constraints of embedded aggregates.

Consequently, balancing functionality and simplicity toward minimizing computation overhead is

an important goal in our communication design.

In our packet design efforts, we derive motivation and ideas from the Internet protocols V4 [P+81]

and V6 [SD+98], CAN-bus [Bos91], SMBus [For03], and also protocols used to route flits of data

in the interconnection networks [DS87, DYN03, DT04] inside a router. Nonetheless, in defining

the packet structure, we follow some of the end-to-end principles [SRC84, Moo02, BC01, Pax06,

CDC98] introduced by Saltzer et al., and improvised by several others over the decades, and have

defined a structure that deviates from traditional Internet packets.

Our design embeds a packet, specifically designed for embedded aggregates, into a basic I2C
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FIGURE 4.2: Embedded aggregates packet structure. When viewed on the bus sans the start and stop
bits, a message appears in the above format. The field location is counted from the start of
the enclosed packet.

communication frame. A packet in our implementation, as shown in Figure 4.2, is restricted to a

size of 64 bytes. This restriction stems from the expected uses of embedded aggregates and traffic

patterns. Embedded aggregates are suitable in situations where a task can be accomplished by

segmenting it into several sub-tasks that can be processed and accomplished in parallel. Sub-tasks

are expected to be executed autonomously, using short communications among processors. Hence,

by restricting packet length, we prevent modules from blocking channels with long messages,

while permitting frequent exchanges of short messages.

An embedded aggregate packet has a fixed two-byte header, data segment and a one-byte trailer. As

shown in the figure, the data segment, extended header and destination address fields are optional,

leading to packets of variable lengths between 3 and 64 bytes. We shall now briefly discuss the

anatomy of a packet. We begin with details on encapsulating the packet in an I2C frame and follow

with detailed discussions on the design objectives and composition of the three segments.
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Octet 1 Octet  2 – 65 
Data bytes

I2C Frame

7-bit slave 
address

R/W 
bit

FIGURE 4.3: Embedded aggregates I2C frame. The data bytes in the frame contain our custom
designed packet. As shown in the illustration, only 7-bit slave addresses are used in our
implementation.

4.4.1 Packet Encapsulation

The I2C bus forms the communication backbone in embedded aggregates. Unlike other physical

layer protocols, like the Ethernet [MB76] and CAN bus, the I2C protocol does not specify any

packet structure. However, it supports single-message and combined-message transmissions, and

we use the single message transmissions that permit the exchange of several bytes of data in a

transmission.

Every data transmission on the I2C bus commences with a 7-bit or 10-bit slave address followed by

a bit to signify a read or write operation. This is followed by a stream of bytes that are clocked in

or out of a slave device by an I2C bus master. This bare-bones approach of the I2C protocol, while

minimalistic in its offerings, is flexible and advantageous. We embed our custom designed packet

into the stream of data bytes following the slave address. Figure 4.3 shows the complete embedded

aggregate I2C frame with the encapsulated packet of data.

4.4.2 Header

Headers and trailers contain the information for packet processing and routing. Generally, message

packet headers include fields to describe the packet length, next hop, protocol data, source and

destination address, routing information and sequence number. In our design we deviate from

this traditional approach and change the composition of these segments toward achieving better

performance in the unique situations witnessed in the embedded aggregates context.
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Header Fields
No. Field significance

1 W- Message destination bit.

0

1 Destination address follows the extended header field.

2 C- Continuous read/write.

0 No more messages to be sent in the current polling cycle.

1

3 LL LLLL – Packet Length.

4 N – extended header presence indicator.

0  Extended header field is empty.

1 Extended header field non-empty, header bytes follow.

5 A – Request branch level acknowledgment

Acknowledge CRC validity and that correct packet was received.

0 No Acknowledgment requested.

1 Acknowledgment requested.

6 VV – Protocol version number.

7 TTTT – Packet type.

The header does not contain any address information. The 
packet is destined for the modules that receive it.

Slave Module: Requesting one more read by the Master module.

Master Module: One message to be delivered in the current 
polling cycle. Next message will follow after predefined guard 
band.

Six bits dedicated for representing the length of the packet. The length 
of the packet includes the header, data and the trailer segments.

Two bit version number for the protocol. The current version in 00.

4-bits to represent 16 different types of packets. 14 different packets 
have been defined and two are reserved for future use. 

FIGURE 4.4: Embedded aggregate packet header parameters. The header is composed of several
mandatory and optional fields. These fields assist in message routing and flow control
amongst others.
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Packet Header
Fixed Fields Variable Fields

1 byte 1 byte 0-61 bytes 0-61 bytes
WCLL LLLL NAVV TTTT Extended Header Segment Destination Address

FIGURE 4.5: Header of an embedded aggregate packet. The packet header is of variable length with a
two byte fixed sub-segment and two optional sub-segments. The header of the packet follows
the read/write bit of the I2C frame.

Our packet design uses a variable length header, as shown in Figure 4.5. The length of the header

depends on the optional extended header and destination address segments. Figure 4.4 describes

the various header fields. Our design excludes header fields for holding the length of the header

and the offsets for destination address and data segments. We overcome this requirement through

extended header and destination address segments that are conducive to recovery (by the modules),

without any offset information.

Two common fields of a packet header are the source and destination addresses. In our design, we

include the destination address, unless the recipient of the message is the destination as indicated

by the W bit set to 0. On the other hand, we find no compelling reason to include the sender

address as part of the header and have chosen to exclude it. The reasons for this complete lack

of source information are two-fold. The obvious first reason, and advantage, is the decrease in

packet size. The second reason stems from the kinds of responsibilities we do not place on

the communication infrastructure. In our design, we do not hold the communication framework

responsible for providing packet delivery acknowledgments or extending any protection against

attack by adversaries. In order to appreciate our stand and rationale behind these decisions, let us

look at the implications of a design that lacks the source address in a packet.

To begin with, the sender cannot be provided packet delivery acknowledgments or notified if the

receiver is unreachable. This is challenging in a situation where tasks are primarily accomplished

through collaborations between the modules. Hence, we defer the message delivery confirmation

responsibility to the receiving module following an end-to-end acknowledgment model. Instead
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of acknowledging the receipt of the message, the recipient module may selectively confirm the

completion of the actions relating to the task as required.

At this size and scale, the chances of modules in a embedded aggregate becoming intermittently

unreachable are low. Therefore, we do not strongly require unreachable destination notifications.

Nonetheless, we define special messages that can be used to probe the presence of a module. It is

expected that a module will use the appropriate message to locate unreachable modules after two

attempts of data transmission and lack of end-to-end acknowledgment.

On the destination end, the lack of source address creates two challenges. To begin with, the

destination receives the data from an anonymous source, introducing security and trust issues.

Generally, we assume implied trust between the modules, and do not consider the lack of source

address an issue in this context. However, if trust is lacking, the modularization, unencrypted

communication and open-ended design make them more susceptible to attacks by the introduction

of adversaries. One can moderate the introduction of modules and enforce security through

encrypted communication, though this is expensive, both financially and computationally. We have

implemented certain hardware-level features and components, in our blades & tiles system, for

fault tolerance and communication that can also be used to enforce limited security functions.

The second challenge to the destination module is responding to a received packet. Packets in

embedded aggregates predominantly contain data that is to be consumed by the destination, with no

expected response to the sender. A software parallel to this is a function-thread that can terminate

when finished as it has no return data. In cases where a response is expected, the sender’s address

may be included in the data segment. We do not specify where the address is accommodated in

the data segment and leave it to the modules to specify it through their API. This approach is

comparable to passing the return location as part of a software function invocation.

In addition to the end-to-end confirmation, a limited acknowledgement is incorporated through
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Extended Header 1 – byte
Next type 2-bits Current type 2-bits Header Specific 4-bits

N N T T X X X X

FIGURE 4.6: Extended header. The one byte long extended header is an optional inclusion into the main
header. Envisioned uses include communication congestion and status updates.

the use of an acknowledgement field in the header. This field is used to guarantee the successful

exchange of a packet across a hop of the tree through retransmissions. When the acknowledgement

bit is set to 1, the receiving module confirms to the sender the integrity of the packet and the packet

is retransmitted by the sender until correctly received. The wider goals of faithful transmission

and task completion are accomplished through branch-level acknowledgements and end-to-end

module task-level acknowledgements. While all our required functionalities are realized through

the fields provided by the fixed part of the header, we expect several more requirements to arise

in the future. Along with the two fixed header bytes, several more fields are envisioned to be

implemented through the use of the extended header segment. We shall next discuss the design of

our extended header segment.

4.4.2.1 Extended Header Segment

The extended header segment, if present, immediately follows the two fixed header bytes. These

headers are currently unspecified; however, we have an initial design for the extended headers that

is conducive to modules recovering the header segment, without the requirement of offsets. In our

suggested approach, the inclusion of the extended header segment is signified by the extended

header presence bit. As shown in Figure 4.6, each extended header is one byte long and has four

bits of valid header-specific data and four bits dedicated to signifying the current and next header

types. The two-bit header descriptor allows four unique extended header types.

To accommodate an extended header segment of arbitrary size, we use the next header field to

signify the end of the header sequence. The next header field must be different than the current
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Message Types
Packet Type  Type of message contained in the packet

0000 Acknowledgment message.

0001

0010 Proxy address configuration message.

0011 System configuration message.

0100 Communication parameters message.

0101 Broadcast message.

0110

0111 Module and resource advertisement message.

1000 Network configuration and management message.

1001 Reserved for future use.

1010 Reserved for future use.

1011 Network and transmission error message.

1100 Request for fetching packet from module.

1101 Generic message.

1110 Ping, status and heartbeat message.

1111 Compound message.

Module inquiry,  identification, authorization and current 
functional status message.

Leafcast message.

FIGURE 4.7: Message types. The data segment of a packet carries sequences of bytes of data whose order
and significance are defined by the message type field in the header.

header field, except for the last header of the extended header sequence in which the two fields are

the same, indicating the end of the sequence.

4.4.3 Data Segment

The data segment follows the header and carries the data intended for the destination. The type

of data contained is qualified by the message packet type, as mentioned in the header description.

With four bits to specify the type, our implementation defines sixteen kinds of messages, as shown

in Figure 4.7. Each message type specifies the associated order and significance of message bytes.

However, in a few types, we make no effort to specify these details and leave it to the hardware

implementer to define them, as they are specific to the module. The data segment is restricted to a

maximum size of 61 bytes per packet.

77



4.4.4 Trailer

Although we expect high levels of successful transmissions in a typical setting, the reliability

goal necessitates checking for errors. The 1-byte trailer of a packet holds a CRC-8 checksum

and follows the optional data segment (Figure 4.2). A CRC-8 for the whole packet carries a large

overhead in time. At several way-points, our routing techniques modify the packet header, requiring

recalculation of the checksum at each way-point if the checksum covers the entire packet. Instead,

our current design computes the CRC-8 only for the data segment of the packet, avoiding the

intermediate recalculations. This limited checksum can lead to propagation of incorrect header

fields unchecked and, therefore, is a compromise between performance and faithful transmission.

Our use of CRC, given limited resources, emphasizes avoiding the interpretation of an inconsistent

packet by the destination over the goal of faithful routing and delivery of the packet. An

inconsistent packet, for example, may be generated either due to transmission medium errors

or improper parsing and interpretation of the packet by the modules en-route to the destination.

Specifically, in our design, an erroneously set W bit and the lack of offsets can lead to a part of

the data segment to be interpreted as address information. In such cases, the data may be routed

to an unintended recipient. With the partial CRC-8 in place, the packet on reaching the wrong

destination will contain an invalid data-segment checksum, leading to the data being discarded by

the receiving module.

4.5 Module Address

In our design, the destination address of the packet is an optional part of the header and follows

the extended header segment. In this section, we will describe our module addressing scheme and

discuss how it lends itself to our visions of sculpting embedded aggregates composed of several

hundred modules. All our source and destination addresses are uniformly specified in our packets
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using this addressing scheme.

Connectionless packet switching requires nodes to be uniquely addressed for data routing.

Addressing is an inherent feature of the I2C protocol, with each slave identified using a 10-bit

or 7-bit address. The 10-bit mode provides a larger pool of addresses over the 7-bit, but requires

two bytes of data to communicate the address. Consequently, in a system design where the modules

are assigned predefined noninterchangeable addresses, the 10-bit mode supports a larger library of

modules, some or all of which may be used to form an embedded aggregate. While this advantage,

when considered in isolation, casts 10-bit addressing as a better choice, the advantages quickly

diminish when considered in the light of other challenges and requirements.

The 7-bit addressing can support fewer modules than 10-bit addressing, but available address

space is not the only factor that bounds the number of modules on the bus and, consequently,

in a system. The electrical capacitance of a bus also plays a restrictive role and varies based

on the length of the bus and characteristics of the attached modules. Often, the bus capacitance

leads to communication issues when the module population nears a few dozen. This module limit

can be more economically achieved using the 7-bit addressing, which supports as many as 128

unique addresses, and also reduces the size of the messages by one byte. Hence, we implement

a hierarchical bus using statically or dynamically assigned 7-bit addresses and support address

reuse. A hierarchical bus overcomes the module population limitations due to bus capacitance and

can implement systems with several hundred modules. Additionally, it also provides ways for easy

isolation of faulty branches and nodes and extends capabilities for achieving the reliability design

goal.

4.5.1 Addressing Policy

The 7-bit I2C addressing mode provides 128 unique addresses; however, not all of them are

available for use. The I2C specification classifies 16 of these addresses as reserved for specific
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Address Space Segmentation
Description

0x77 Root communicator

0x76 and 0x74 Default addresses of new modules

0x75 Gateway port to external systems

0x08 to 0x0f

0x10 to 0x73

I2C Address
0x00 to 0x07 and 
0x78 to 0x7f

Reserved by I2C specification

Reserved for future use in 
embedded aggregates.

Address available for use in 
embedded aggregates.

FIGURE 4.8: I2C address space segmentation in embedded aggregates. Of the 128 addresses available
in the 7-bit addressing scheme, 28 are reserved addresses for specific purposes and 100
addresses are available for use by the modules.

purposes. One such address is the Global Call address, 0x00. In addition to the above reserved

addresses, we restrict the use of another 12 addresses. The remaining 100 addresses are available

for use in addressing modules, both statically and dynamically. With two levels of hierarchy, these

100 addresses can support as many as 10000 modules. In our addressing method, as shown in

Figure 4.8, we have reserved addresses for special situations and for future use. These include new

modules awaiting address assignment, external communication channels and special modules, like

the root of the tree structure, as discussed below.

4.5.1.1 Root Communicator

One address reserved is for the root communicator. The root communicator performs the leading

role in system structuring, control and maintenance, and communication. In our hierarchical I2C

communication infrastructure, the root of the tree structure is the I2C bus arbitrator and the master

of the topmost hierarchy. In our example network in Figure 4.1, module A colored blue is the root

of the tree, that is, the root communicator. On powering up, this module always assumes the static

address 0x77 and performs its communication and organizational responsibilities.
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4.5.1.2 Default Address of New Modules

Modules in our system may have a static I2C address or may have an address dynamically assigned

to them. Nevertheless, when a module first joins the bus, it assumes an uninitialized slave mode

with I2C address 0x76. Following this, the module participates in address assignment rounds

toward acquiring an address and initializing.

4.5.1.3 Gateway Modules

Our networking infrastructure provides communication capabilities inside an embedded aggregate.

Simultaneously, there is a requirement for communication with external entities, such as

computers, generic electronic systems and other embedded aggregates, and communication with

them is infeasible using this internal communication infrastructure. Therefore, we have designed

several modules called gateways aimed at facilitating external communication.

Gateways are essentially protocol translators that can communicate with an external entity using a

different protocol and form a bridge between the two systems. For example, we have implemented

a gateway that can interface with an external computer using USB or Bluetooth protocols. We have

reserved address 0x75 to denote the external communication channel of a gateway module. This

address supplements and is different from the protocol address assigned to the gateway module.

An aggregate may contain several gateways, and § 4.6.2 supplies details on sending and receiving

packets through the gateways.

4.5.2 Embedded Aggregates Protocol Address Representation

In our design, the 7-bit I2C addresses are reused, and the same address is often assigned to two or

more modules on different I2C buses. Consequently, a packet cannot be uniquely routed using only

a 7-bit module address. A similar situation is often encountered in traditional Internet due to the
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7-bit address in 8-bit notation
0 7-bits of the address

FIGURE 4.9: Representation of the 7-bit I2C address in 8-bit format. This representation forms the
basis for the multi-byte protocol address and adds a single bit field to qualify the next hop as
a way-point or the destination.

use of a private network IP address, where it is resolved using Network Address Translation (NAT).

A NAT-like mechanism is cumbersome in the embedded aggregates context, however. Instead, we

introduce a new address notation called the protocol address that uniquely identifies each module

and also provides routing information for switching a packet through the hierarchy of modules. A

protocol address is one or more bytes long and depends on the module’s location in the hierarchy.

The protocol address derives from the I2C addresses of the module and its ancestors in the tree.

The multi-byte protocol address of a module is created by prefixing its address with addresses of

its ancestors in the decreasing order of ancestry. As the root communicator is the ancestor of every

module, we uniformly omit it from all module protocol addresses. For example, all modules in level

two of the hierarchy have a one byte protocol address. The modules at level three that are children

of the above modules have a two-byte protocol address, and the size of the protocol address extends

by a byte for each successive level of hierarchy. A gateway port on the root communicator is an

exception to the rule of omitting the root communicator address, and the protocol address of the

port is two bytes long and includes the address of the root communicator (Figure 4.11).

Similar to the extended headers, a protocol address and, consequently, the destination address

segment is designed to be recovered without length and offset information. A protocol address

uses an 8-bit representation of the 7-bit I2C address and modifies the extra bit to signify way-

points and hops. The byte order of the I2C addresses of the module and its ancestors together with

the hop bit enable us to create a sequence that can be extracted deterministically from the message

packet as follows. Firstly, as shown in Figure 4.9, we represent the 7-bit address of any module in

a 8-bit form, with the leading bit set to 0.
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Full address of a module
8-bit address of module at Level 2  Levels 3 to N-1 8-bit address of module at level N 8-bit address of the module

1 . . . 1 . . . 0

Levels N+1 to parent of 
module.

7-bit I2C address  7-bit I2C address 7-bit I2C address

FIGURE 4.10: Multi-byte embedded aggregates protocol address. This address uniquely identifies each
module in the system and its length depends on the location of the module in the hierarchical
communication framework.
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Module Protocol Address
Module Address in Hexadecimal notation

A 0x77

C 0x11

L 0x9154

M 0x91D413

N 0x91D49324

H 0x929212

A's gateway port 0xf775

Default gateway 0x75

FIGURE 4.11: Protocol addresses. Protocol addresses of modules in Figure 4.1.

Next, we construct its multi-byte protocol address by combining the 8-bit representations of the

I2C addresses of its ancestors in the decreasing order of ancestry and setting the hop bits of the

ancestors to 1. Finally, as illustrated in Figure 4.10, the 8-bit representation of the I2C address of

the module with the hop-bit set to 0 is added as the last byte in the sequence.

The end of the destination address segment is signified by the first byte following the extended

headers that has its hop-bit set to 0. For the purpose of illustration, let us consider the configuration

of modules in the hierarchy letter shown in Figure 4.1. In the figure, the I2C addresses of the

modules in 8-bit notation are denoted along with a letter identifying the module. Figure 4.11

shows the protocol addresses of a few modules. In I2C communication, only slave modes have

addresses associated with them. A module is addressless in the master mode. In Figure 4.1, for

example, modules B and E have the same 7-bit I2C address in their slave modes, however, on the

bus connecting them E has the address 0x12; whereas, B is the master and addressless. Hence, a

parent and a child can have the same 7-bit I2C address.
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Slaves on the same bus are assigned distinct I2C addresses and, consequently, different protocol

addresses. The I2C address of a module can, however, be reused in a different bus at the same

level of hierarchy. The uniqueness of their protocol addresses in this case is a consequence of their

different ancestors. In the next section, we shall discuss how this distinctive protocol address aids

in the routing of packets.

4.6 Routing

In a typical packet switching network, each module faces the task of either consuming a packet or

forwarding it to the next hop. A module will either receive the address of the next hop as part of

the packet or is held responsible for deciding on a suitable next hop. Our design uses the former by

virtue of the protocol address, which is conducive to source routing. The source module may have

the destination’s protocol address or procure it dynamically through address request messages and

resource advertisement messages supported by our protocol.

The transfer of a packet between any two modules takes place through a series of pulls and pushes.

A packet is pulled upwards through the hierarchies to the lowest common ancestor of the source

and destination, and then pushed down the tree to the destination module. A pull is accomplished

by a master module clocking data out of a slave module on the I2C bus, and the push by clocking

the data into a slave. To illustrate, in Figure 4.1, to perform a packet transfer from H to D, first E

pulls a packet from H, then B pulls the packet from E, and finally B pushes the packet to D.

Processors must possess some buffer space to receive and process messages. We do not make any

assumptions on the size of the available buffer, and our specification provides special messages

to communicate buffer issues and negotiate packet lengths. Creators of an embedded aggregate

should choose a minimum transmission unit (MTU), i.e., packet size, based on their holistic view

of the system. In systems of modules with no previous knowledge on the MTU, however, a trial
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and error method of sending packets, beginning with a conservative size and resizing packets based

on error messages, is prescribed.

Our routing mechanism has been intentionally kept simple and disallows splitting of packets

by routing nodes, and a module drops messages exceeding its buffer size. On the other hand, a

routing module can bundle several messages into a single message packet, when plausible. In any

transmission, it is the responsibility of the source to package the message in appropriately sized

packets, taking into account the buffer sizes of the intermediate nodes and the destination. In the

following discussions, we shall describe the routing algorithms and the role of the protocol address.

We begin with a discussion on the communication inside a single aggregate then examine external

communication through the gateway modules.

4.6.1 Intra-Aggregate Communication

Routing in embedded aggregates is strongly tied to the intricacies of the underlying I2C layer

and, as discussed earlier, involves several upward pulls and downward pushes. The pulling and

pushing mechanisms involve a coordinated effort between the master and slave modules. We

employ different strategies in pushing and pulling packets in an effort to reduce packet sizes,

channel occupancy, and load on routing nodes and increase the throughput. We accomplish this

by modifying the address and destination indicator field, ‘W’, in the header and the destination

address.

4.6.1.1 Pulling from I2C Slave to Master

The creators of the I2C protocol envisioned its use predominantly in the context of interfacing

memory modules and less intelligent components to microprocessors. Consequently, the protocol

does not provide mechanisms that allow the master and slave to negotiate the size of the exchanged

data. For example, when reading from a slave, the master clocks out data of size decided by it
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with no input from the slave. This is particularly constraining in the aggregates context, as the

modules operate mutually independently of one another, unaware of the data each module may

have available for sending. Fixing the size of the packet to solve the issue is an unfeasible solution,

and to overcome this challenge, our packets include the size of the packet in the first byte. The

introduction of the packet size field leads to an inversion of control, wherein the slave can specify

the size of packet it has available for sending. A master module polling a slave pulls (reads) the

appropriate number of bytes, as mentioned in the packet size field. As the master module polls the

slave at periodic intervals, a slave with no data for transfer sets the packet size field to zero.

In a packet transfer from a slave to a master, the slave module holds the responsibility of creating

valid data packets in a timely fashion and the master module is required to read the packet from

the slave. On I2C address match with read flag, the slave module places the packet on the bus in

accordance with the I2C signaling and timing specifications, starting from the header byte to the

trailer byte. If the master module reads a zero for the packet length, it ends the transmission by

reading one more byte, followed by a stop bit, else, it continues to read the full packet of specified

size. On the completion of the packet transfer, the master module either consumes the packet or

passes it to the next hop.

As described in Algorithm 1, the packet is consumed by the master if either the destination field

‘W’ is set to zero or the destination address matches its protocol address. In the events requiring

further routing of the packet, the next hop of the packet depends on the location of the destination

in the tree, with respect to the master module. If the master is an ancestor of the destination, the

master strips the part of the address prefix that corresponds to its address and pushes the message to

its appropriate child that is an ancestor of the destination. Otherwise, the packet is left unmodified

and is similarly pulled by a module one level of hierarchy above the current master.

To illustrate our routing process, let us consider an example packet transfer from E to M, in
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Algorithm 1: Algorithm for packet handling on pull from child.
foreach Packet do1

if Wbit = 0 then // packet does not need to be passed on, the receiver is2

the destination
Consume Packet;3

else4

Extract Destination Address;5

if MSByte(Destination Address) is a Reserved Address then6

. . .// routines for other reserved addresses7

else8

if Destination Address is equal to Sel f Address then // packet addressed9

to self
Consume Packet;10

else if Sel f Address is equal to 0x77 then // self is the root11

communicator
Set Next Hop Address = MSByte(Destination Address);12

Strip Next Hop Address from Destination Address;13

Decrement Packet Size by 1;14

Set Wbit = MSBit(Next Hop Address);15

Write Packet to Next Hop Address << 1;16

else if Sel f Address is an ancestor of Destination Address then // packet17

addressed to descendant
Strip Sel f Address from Destination Address;18

Set Next Hop Address = MSByte(Destination Address);19

Strip Next Hop Address from Destination Address;20

Decrement Packet Size by length(Sel f Address)+1;21

Set Wbit = MSBit(Next Hop Address);22

Write Packet to Next Hop Address << 1;23

else24

// packet addressed neither to self nor descendant
Send Packet to the module one level above;
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Figure 4.1. Initially, a packet intended for M is created by E, as shown in Figure 4.12, with the W

bit set to 1 and destination protocol address 0x91D413. Module E presents this packet when polled

by module B, its parent, and on receiving, module B extracts the destination address as the W bit is

set to 1. Next, module B looks for matches between its address, 0x12, and the destination address,

0x91D413, and the lack of a partial match between the addresses implies that module B is not an

ancestor of the destination M. Consequently, module B passes the packet without modification to

module A.

If module B is an ancestor of M, then the protocol address of M will begin with the protocol

address of B, with leading bit of the last byte of B’s address set to 1. This follows from our protocol

address notation discussed earlier and the fact that an ancestor is a way-point to the destination.

For example, let us consider module L with the protocol address 0x9154. Here, the address of L is

contained in M’s address with the leading bit of the last byte, 0x54, set to 1. L is an ancestor of M,

more precisely its parent.

Due to our addressing notation, the root communicator is an exception and its protocol address is

not a part of any other module’s address though it is a parent or ancestor of every one of them.

As the address of A is included in the protocol address of the gateway port implemented in A,

this gateway port will then take the address 0xF775. When communicating with one’s parent, the

address field may be avoided. For example, module E can create a packet intended for module B

with the W bit set to ‘0’ and drop the address field. The setting of the W bit indicates to module B

that the packet is intended for it and lacks a destination address.

4.6.1.2 Pushing from I2C Master to Slave

In packet pulling, a module forwards a packet, with no modification, to its parent when it is not

an ancestor of the destination. However, in the push routing, we modify the address field toward

reducing packet sizes. The algorithm for pushing packets is described in Algorithm 2. Let us follow
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Packet Flow from E to M
Module Packet Size W Bit Description

E S 1 0x91D413

B S 1 0x91D413 Packet pulled from E.

S 1 0x91D413

A S 1 0x91D413 Packet pulled from B.

S-1 1 0xD413

C S-1 1 0xD413 Packet pushed from A.

S-2 1 0x13

L S-2 1 0x13 Packed pushed from C.

S-3 0 None

M S-3 0 None Packet received and consumed. 

Dest. Address
Packet destined for M created and 
available for transfer to B.

Destination not a descendant and 
packet available for transfer to A.

Packet sent to C with I2C address 
0x11.

Packet pushed to L with I2C address 
0x54.

Packet pushed to M with I2C address 
0x13.

FIGURE 4.12: Packet flow between two modules in the same aggregate. The table shows the flow and
route of the packet from module E to M. The green line identifies the hop where the pull
mechanism gives way to the push mechanism as the packet has reached the lowest common
ancestor. The decreasing packet size and change in address information past the lowest
common ancestor is a consequence of the push mechanism.

our earlier example and trace the path of the packet further, as illustrated in Figure 4.12. As C and B

cannot communicate directly as siblings, the packet is from B by A. As the packet is not addressed

to the gateway port, A sends the packet to the module with the I2C address implied by the first

address byte.

However, a few modifications are made to the packet before the push. First, the address of the

next hop, C, is removed from the destination protocol address and the value of the MSBit of the

extracted byte is placed in the ‘W’ field. Hence, the packet when sent to C has the ‘W’ bit set to 1

and destination address 0xD413. At C, the packet is similarly pushed to L, after modifications to

the ‘W’ bit, destination address and size fields. Finally, the packet is sent from L to M; however,

now the destination address field is removed, and the W bit is set to 0. M, on receiving the packet,

consumes it as it is the intended destination.

A packet from E to M travels through the root-communicator and requires five hops. Generally,

packets can be diverted at lowest common ancestor without passing through all the hierarchies. In
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Algorithm 2: Algorithm for packet handling on push by parent.
foreach Packet do1

if Wbit = 0 then // packet does not need to be passed on, the receiver is2

the destination
Consume Packet;3

else4

Extract Destination Address;5

if MSByte(Destination Address) is a Reserved Address then6

. . .// routines for other reserved addresses7

else8

if Destination Address is equal to Sel f Address then // packet addressed9

to self
Consume Packet;10

else11

Set Next Hop Address = MSByte(Destination Address);12

Strip Next Hop Address from Destination Address;13

Decrement Packet Size by 1;14

Set Wbit = MSBit(Next Hop Address);15

Write Packet to Next Hop Address << 1;16
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the case of E and M, however, A is the lowest common ancestor. For illustration, let us consider a

packet transfer from D to G. This process commences with D creating a packet addressed to G at

0x929213. As dictated by our routing scheme, on receiving the packet, B recognizes that it is an

ancestor of G. Subsequently, B removes the most significant bytes from the address of G, leaving

only information that sufficiently describes the route to G from B. The modified packet now has

destination address 0x9213 and W bit set to 1, and is similar to a packet pushed from A to B. B

now further modifies the packet destination address field to 0x13 and sends the packet to node E,

with the W bit set to 1. The next push is the last transmission of the packet and it reaches G in three

hops.

4.6.2 External Communication

The push and pull mechanisms form the basis of routing internal data in embedded aggregates.

Uniformity in addressing and communicating with internal and external entities alike is an

important goal. We next describe the addressing of external entities and illustrate how push and

pull schemes are used in communication through gateways.

4.6.2.1 External Communication through Unified Addressing and Routing

A gateway module has one or more communication ports in addition to the I2C communication

used for internal networking. These communication ports offer links to external systems through

protocols, including Bluetooth, 802.11 networks, USB, RS-232 and Ethernet. The packet structure

for internal communication was based on the internal dynamics of embedded aggregates. Similarly,

we have defined specific packet structures for external communication with generic digital systems

that exploit the capabilities of the communication channel and the external entity. The details

of these different packets are outside the scope of this paper. However, in situations where two

embedded aggregates are connected using an external link, the repackaging of data is avoided, and
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FIGURE 4.13: An embedded aggregate pair. The two aggregates EA1 and EA2 are interconnected
through an external link between P and A. An important distinction between the two
aggregates is the consolidation of internal and external communication abilities. In EA1,
the two functionalities are split between O and P, while in EA2, module A acts as both the
root communicator and the gateway module.

the internal packets are delivered unmodified and encapsulated in the external protocol’s packets

or frames.

Our design allows extending the internal protocol addressing and routing for enabling

communication between modules across different connected embedded aggregates. Let us consider

the two networks in Figure 4.13 for the purpose of illustration. EA1 and EA2 are connected through

an external communication link between module P in EA1 and module A in EA2.

Consider a simple packet transfer from module R in EA1 to module J in EA2. Similar to in-system

packet transfer, R creates a packet with the address of J. The address of J in EA2 address space is

0x9112, but this address is insufficient for routing a packet from R to J. However, if the packet is

introduced into EA2 with the address 0x9112, it will be delivered to J. This can be accomplished

by passing the packet through module P in R’s network. Module P can be reached by address 0x12.

The external port of P is associated with the reserved address 0x75. This addresses port is treated

like a virtual module under P so its protocol address is 0x9275. Module P holds the responsibility

of sending the packet through the external link, as described in Algorithm 3, and the other modules
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are oblivious to the communication intricacies.

Algorithm 3: Algorithm for routing packets at the gateway.
foreach Packet do1

if (MSByte(Destination Address)) & 0x7F is equal to 0x75 then2

Set Next Hop Address = MSByte(Destination Address);3

Strip Next Hop Address from Destination Address;4

Decrement Packet Size by 1;5

Set Wbit = MSBit(Next Hop Address);6

Send Packet to over the appropriate communication7

channel to external entities.;

A packet addressed to 0x9275 in EA1 will be delivered to A by P with no address field and the W

bit set to 0. Hence, 0x9275 is essentially a proxy for A in EA1. Now, building the full address of J

is much simplified. Since the packet is not destined for A, we set the leading bit of the second byte

of the address field to 1, making it 0x92F5. The address of J, 0x9112, is now concatenated with it

to create the complete address 0x92F59112. Thus a packet introduced with address 0x92F59112

in EA1 will be delivered to J in EA2, as shown in Figure 4.14.

4.6.2.2 Default Gateway

Towards further simplifying external communication, we introduce the abstract notion of a default

external communication channel or gateway. Our implementation allows the default gateway

channel to be reached with the address 0x75. In systems with a single gateway, the message

will be delivered to the gateway by the communication modules by appropriately modifying the

packet destination address. Not every communication module needs be capable of modifying the

address. The root-communicator is ultimately responsible as the packet is bound to reach the root

communicator. For example, in our packet from R to J in Figure 4.14, the packet may be addressed

to 0xF59112 by module R. This approach is also valuable in situations where the modules are

unaware of the address of the gateway and have resource constraints that prevent them from

acquiring the address.
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Packet Flow from R to J
Module Packet Size W Bit Description

R S 1 0x92F59112

Q S 1 0x92F59112 Packet pulled from R.

S 1 0x92F59112

O S 1 0x92F59112 Packet pulled from Q.

S-1 1 0xF59112

P S-1 1 0xF59112 Packet pushed from O.

S-2 1 0x9112

A S-2 1 0x9112

S-3 1 0x12

C S-3 1 0x12 Packet pushed from A. 

S-4 0 None

J S-4 0 None Packet received and consumed.

Dest. Address
Packet destined for J created and 
available for transfer to Q.

Destination not a descendant and 
packet available for transfer to 
O.

Packet sent to P with I2C address 
0x12.

Packet intended for external 
device. Packet sent through 
communication port.

Packet received from external 
device.

Packet pushed to C with I2C 
address 0x11.

Packet pushed to J with I2C 
address 0x12.

FIGURE 4.14: Packet flow between two modules on different embedded aggregates. The table shows
the packet flow from module R to J. The blue line in the table shows the aggregate boundary.
The packet flows through an external communication link on this hop. Another point to note
is presence of only one green line signifying the change from pull to push. This may however
not be the case always. Depending on the location of the two gateway modules, the packet
may be pulled and pushed in both the systems. In this situation the packet is only pushed in
EA2 as it is introduced by the root communicator.
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In the current world of multiple wired and wireless communication technologies, it is only logical

to expect several communication links to external entities. The links may uniquely connect to

different external systems or a collection of them may connect an aggregate with a single external

device. In situations where multiples links exist, the system may benefit from choosing the links

on a case by case basis. The default gateway approach is beneficial here, as the root communicator,

and other communication oriented modules, can modify the address of the packet based on factors

including current traffic patterns and load on a particular channel. Furthermore, in the multiple

unique links scenario, one channel may be designated as the default gateway and can use the

shortened address notation. For example, the channel with the maximum traffic may be associated

with the shorter address for overall reduction in data transfer and channel occupancy.

4.6.2.3 Virtual Gateway

In implementing gateways, several external communication links can be unified and consolidated

in a single module, creating compound-gateways. For example, a single module may provide

wireless communication capabilities, like Bluetooth and 802.11b/g modems. Additionally, using

higher communication protocols like TCP/IP, gateways may use a single communication resource,

like Ethernet or 802.11b/g, to communicate with several external entities. Both the above cases

introduce challenges due to the plurality of links and only one reserved address to specify them.

Furthermore, as we expect to support an open-ended system where modules may be replaced on

the fly, we also want to support situations where several gateway modules may be replaced with a

single compound-gateway, with reduced interruption of communication and readdressing. Towards

overcoming the above challenges, our design outlines virtual gateways.

Under the virtual gateway addressing method, a compound-gateway module may be associated

with several I2C addresses and consequently, protocol addresses. While the compound-gateway

module accepts and responds to only one I2C address, the translation between the virtual address
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and the real address is performed by the root communicator using lookup tables. The compound-

gateway similarly uses lookup tables toward choosing the appropriate communication channels,

as notified by the packet address. This approach abstracts the gateway implementation, allowing

modules to address resources and exchange packets, without addressing changes between the

unified and distinct gateway instances. However, this advantage comes at the cost of increase in

root communicator and compound-gateway routing complexity and should not be expected to be

supported by all systems.

4.7 Flow Control

Our vision for embedded aggregates includes a heterogeneous system consisting of modules with

different processing speeds and I2C communication capabilities. The I2C specification outlines

several data rates ranging from 10kbits/s to 3.4 Mbits/s, however, these data rates are not

supported in all implementations of I2C. Consequently, flow control plays an important role in both

controlling data transfer and negotiating the bus clock-rate. Flow-control in embedded aggregates

is achieved by using a combination of I2C clock-stretching, transmission buffers in the sender and

receiver, and the continuous read/write field ‘C’ in the header.

Clock-stretching, an inbuilt feature in I2C, extends a closed-loop flow control. Aggregates

generally use data rates between the 100 kbit/s standard mode and 400 kbit/s fast mode, with

real-time speed-up and slow-down. In our implementation, the majority of the transmissions are

at around 350 kbits/s. However, in cases where clock-stretching is infeasible, the communication

defaults to 100 kbits/s. On the buffer front, modules generally implement a 64 byte circular buffer,

into which an incoming packet is placed. Packets are predominantly manipulated and assimilated

in-situ, however, in certain cases, alternative secondary buffers are used based on available storage

space.
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Finally, the ‘C’ field in the header provides a means for the master or the slave to negotiate another

packet transfer in the same polling cycle. Polling leads to a discretization and windowing of time,

during which the communication between any two modules is carried out. The frequency of polling

is expected to be in the order of a few tens of milliseconds, consistent with the performance and

timing requirements of the embedded aggregate. While in the basic case each module is polled

by its master once every polling cycle for an out-bound packet, modules may have more than

one packet to send in a given polling cycle. In such cases setting the ‘C’ field to 1 requests another

transfer. When set by a master, it notifies the slave of another available packet that will be delivered

after the guard-band. On the other hand, the slave may set the same bit on an outgoing packet to

request another pull from the master immediately after a guard-band.

Together, these three flow control mechanisms provide substantial flexibility in implementing

embedded aggregates involving a heterogeneous set of modules. In the following sections, we

will develop the mechanisms toward realizing a embedded aggregate from the functional modules.

4.8 Heuristics and Algorithms for Module Discovery and
Initialization

An embedded aggregate is envisioned to be open-ended like an ad hoc wireless network. While a

wireless network between a set of modules can be created in an ad hoc fashion, wired networks,

and embedded aggregates as consequence of using them, require a data-path skeleton to grow and

evolve. An embedded aggregate is grown with the root communicator as the seed and shaped using

the modules that bridge two or more I2C communication buses. The communication hierarchies

thus created provide the basic framework into which other modules can be introduced toward

realizing an aggregate. We have developed algorithms toward organizing the modules and creating

the final aggregate using the framework, and they are discussed below.

The module initialization process involves identifying a new module, obtaining information
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about it and assigning it a protocol address. In the aggregates, the initializations may begin

with the root-communicator discovering the modules in level 2 of the hierarchy. The underlying

I2C protocol does not provide means to perform such an initialization, so we have developed

initialization techniques. Each module in the embedded aggregates is distinguished using a unique

identification number (ID), which plays an important role in the module initialization process.

In our implementations, the modules use a Dallas Semiconductor 1-wire Digital Serial Number

(DSN) IC (DS2401) [Sem] that provides a 7-byte unique ID. We will now discuss our module

discovery and address assignment process.

4.8.1 New Module Discovery

The primary goal of the module discovery process is to obtain the unique IDs of the non-initialized

modules. A module communicates on the I2C bus either in the master or the slave mode. The I2C

specification does not require the I2C implementation in a processor to be both master and slave

capable. In fact, a majority of the processors function only in the slave mode, while others can

operate both in the master and slave mode. In order to support aggregates with a wide variety of

processors, our design allows both kinds of implementations. We have hence developed different

mechanisms for discovering the master-capable and slave-only modules, and they are described

below. All the techniques require a module to be slave capable. The new module discovery

step requires a co-ordinated effort between the uninitialized modules and module enlisted with

the responsibility of discovering them - the discoverer. Both the discoverer and the uninitialized

modules have to be connected to the same physical I2C bus.

Towards discovering new modules, and subsequently assigning addresses to them dynamically, we

researched existing algorithms and implementations. As noted earlier, the I2C specification does

not outline any methods, whereas the SMBus outlines an address resolution protocol (SMBus-

ARP) [For03]. The SMBus specification is derived from I2C and defines master and slave modes,
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voltage levels and timings more strictly. The SMBus-ARP hinges upon the modules being able to

perform collision sensing and back-off while transmitting in slave mode. For the ARP to work,

the modules are required to abort transmission when they lose the bus arbitration. However, this

requirement is not enforced by the I2C protocol, and therefore, is not implemented in most chips,

making the SMBus-ARP not viable in the aggregates context.

Due to the lack of mandatory collision sensing and back-off, a feasible approach, in order

to facilitate the communication of the uninitialized module details to the discoverer, has to

restrict the use of the I2C bus to one module at a time. An alternative way would require

means for the discoverer to obtain module ID and initialization parameters through alternative

communication channels. We have studied and implemented four different mechanisms, namely,

slotted approach with participation in master mode, slotted approach with participation in slave

mode, bus access mediation through power control and module ID retrieval through additional

1-wire infrastructure [AS97].

The two slotted approaches are less efficient than the algorithm followed by SMBus, but support a

broader set of processors. The first slotted approach is applicable only for master-capable modules,

whereas the next slotted approach supports all modules. The power control method accomplishes

bus exclusivity by restricting the number of uninitialized modules on the bus to one, by selectively

turning the modules on, one at a time. The discoverer can power on the modules successively

and obtain the IDs by reading from address 0x76. The final ID retrieval method involves the

discoverer reading the IDs provided by the DS2401 chips on the modules through a separate 1-

wire communication network. Both the power control and ID retrieval methods demand additional

wiring and power control infrastructure, but remove timing challenges brought about by the slotted

approaches.

99



Sheet3

Seite 1

Discoverer Bus Communication Uninitialized module

Start in master mode Start in slave mode with address 0x76

Create packet (b0011) with module ID, 
address configuration parameters and special 
address request, and load in sTX buffer

Read 1-byte from I2C slave  address 0x76

Send master-mode slot round 
commencement message (b0000) if any 

uninitialized modules present

Initialize slave mode with address 0x76
Time to start delay as specified in 

packet of sub-type b0000
Initialize master mode and load packet of 
sub-type b0011 into mTX buffer

Receive and accumulate unique ID and 
address parameters from the modules for 

256 slots of 1300μs each

Pick a slot and send the packet to I2C slave 
address 0x76

FIGURE 4.15: Slotted approach with participation in master mode. The illustration shows the process
of module discovery using a slotted round process where the uninitialized modules
participate in I2C master mode. The green arrows show the direction of packet transfer
as invoked by the discoverer in the master mode and the blue arrows show the direction
of packet transfer as invoked by the uninitialized modules in the master mode. The broken
arrows illustrate several such transfers that the discoverer receives from other uninitialized
modules.

A. Slotted Approach with Participation in Master Mode

This slotted technique works in the absence of collision sensing but requires modules to switch

between the master and slave modes during the process. Figure 4.15 illustrates the discovery

process. As an initial step, the newly connected uninitialized modules (Algorithm 4) join the bus

in I2C slave mode with I2C address 0x76 (Figure 4.8) and load their slave transmit buffers (sTX)

with a message of type 0x01 (Figure 4.7). The sTX is the buffer from which data is placed on

the I2C bus when requested by a master. We will use the slave receive buffer (sRX) notation to

denote the complementary buffer, into which data received from the master is placed. In the master

mode, the buffers will be called mTX and mRX, respectively. As illustrated in Figure 4.16, the

uninitialized module creates a packet with a maximum length of 12 bytes. At this stage, several

modules may be connected to the bus with the same address, 0x76, and an I2C packet sent to this

address will be received by all the modules simultaneously. The initialization packet created

by a module has three fields in its data segment. The first field is 1-byte long and carries the
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10LL LLLL 0000 0001 SRQQ | 0011 ID1 ID2 ID3 ID4 ID5 ID6 ID7 CRCreq. add

FIGURE 4.16: Packet of sub-type b0011. This packet is created by a module interested in getting
initialized. The packet contains the 7 byte ID of the module, which is further broken into a 6
- byte ID segment and a 1-byte family type. The module can request for a preferred address
to be allocated using the optional (marked green) “req. add” field. The parameter S denotes
address type: 0 - if only static address is possible & 1 - if both static and dynamic address
are possible; parameter R denotes address memory: 1 - if it can remember address after
brownout reset & 0 - otherwise; parameter QQ denotes additional addresses being requested
for other modules limited to a maximum of four. The length of the packet is dependent on
the presence of the optional “req. add” field.

Algorithm 4: Uninitialized module participation algorithm for slotted discovery in I2C master
mode
Initialize slave mode with address 0x76;1

Read self-DSN;2

sT X ← Packet(type=b0001, sub-type=b0011); // Load packet into slave transmit3

buffer
while uninitialized do // Until initialized with an address, stay active on the
bus.

if Packet (type=b0001, sub-type=b0000) is received then // Discoverer calling the4

start of the slots
Initialize master mode ;5

mT X ← Packet(type=b0001, sub-type=b0011) ;6

Set mySlot = slot selector(); // Select a slot using the slot selection7

algorithm
Sleep until start of slots; // Wait till start of the slot rounds
Sleep until mySlot × 1300 µs; // Sleep till chosen slot

Transmit Packet(type=b0001, sub-type=b0011) to I2C address 0x76;
Sleep until end of slots;8

Initialize slave mode with address 0x76;9

. . .// other conditions follow10
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1000 0100 0000 0001 time | 0000 CRC

FIGURE 4.17: Packet of sub-type b0000. This packet is sent by the discoverer toward calling uninitialized
modules for participation in slotted discovery in master mode. The packet contains a 4-bit
time field that is used to specify an initial setup period following which the first slot starts.
The setup period is provided to allow the modules to make the I2C mode transitions and
populate their buffers.

address configuration data. The lower nibble of this field (Figure 4.16), b0011, specifies the subtype

of the current message type 0x01. The upper nibble specifies three parameters; namely, address

mode, address memory and address space request. The address space request parameter allows a

module to request allocation of up to four additional addresses at the same protocol address level

as itself. The four additional addresses have the same protocol address length and ancestors as the

module. A module having obtained a collection of addresses may disconnect a part of the bus and

perform initialization of other modules in isolation, which eventually become its siblings. Several

simultaneous and parallel initializations speed up the aggregate formation process. Seven bytes of

unique ID follow the address configuration data and are obtained from the DS2401 chip.

Algorithm 5: Discoverer algorithm for slotted rounds with uninitialized modules in I2C master
mode
Initialize Master mode;1

Set uninitModPres = Success of 1-byte Read from address 0x76;2

if uninitModPres is True then // Uninitialized modules available for discovery3

mT X ← Packet(type=b0001, sub-type=b0000); // master mode slotted discovery4

call

Transmit Packet(type=b0001, sub-type=b0000) to I2C address 0x76;
Initialize slave mode with address 0x76;5

Sleep until start of slots; // Wait till start of the slot rounds6

for 256 slots of 1300 µs each do // Listen on I2C bus for transmissions from
uninitialized modules in master mode

Accumulate packets with ID and address configuration information;7

Initialize Master mode;8

The 1-byte requested address following the module ID is optional and is incorporated for

permitting modules to request a specific 7-bit bus-level I2C address. We envision this 7-bit address

request to be used for a couple of reasons. First, we have allocated eight addresses (Figure 4.8) for
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the future, including for the purpose of accommodating modules with unmodifiable slave address.

We call them static addresses. These modules can participate in the module initialization process

and may be allowed to operate in the system in the absence of any address collisions. It is important

to note that the scope of the address and address collision, if any, is limited to the particular level of

hierarchy and specific I2C bus. The modules with static addresses are required to have the ability

of responding to I2C global calls. Second, this provides a means for quick startup and initialization

of a previously created and functional aggregate, by reducing the time for reallocation of new

addresses, and updates to individual module addresses and local address tables.

Simultaneously, the discoverer begins the process with a scan for new modules as described in

Algorithm 5. The module performs the scan in the master mode and it involves reading one byte of

I2C data from slave address 0x76. The discoverer module, at this time, does not read a full packet

of data, but only a single byte. The presence of uninitialized modules is signified to it by an I2C

bus level acknowledgement signal immediately following the transmission of the slave address of

0x76 and a 1-byte data value other than 0x f f . If uninitialized modules are present, the discoverer

calls for the slotted discovery step by sending the round call message specified in Figure 4.17. This

message is four bytes long with a 1-byte data segment.

The initialization process is performed at an I2C bus speed of 100kbps and the use of optional

headers is disallowed. The 1-byte address configuration data specifies in the upper nibble the delay

in the start of the time slots in milliseconds from the end of transmission of the current message,

followed by the message sub type b0000 in the lower nibble as shown in Figure 4.17. The delay is

restricted to a maximum of 16 ms. On receipt of the message, the uninitialized modules populate

their mTX buffer with the ID information loaded earlier into their sTX buffer and switch from

slave mode to master mode. In parallel, the discoverer switches from master mode to slave mode

with the address 0x76.
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If collision sensing in multi-master mode is mandated, then a simple mechanism for module

discovery can be employed. After the specified start delay, the algorithm can require all the

uninitialized modules to begin the transfer of their ID packets. With the modules losing the ensuing

bus arbitration required to attempt re-transfer, the approach discovers all the uninitialized modules

in time linear in the number of modules. The determinism stems from the fact that one module wins

each arbitrated transfer attempt. However, the I2C specification does not strictly require master

capable modules to be multi-master capable, so this approach is not always feasible. Instead, we

employ a multiple time-slot approach in order to relax the requirement of collision sensing in

multi-master I2C bus transmission.

The slotted round incorporates 256 non-overlapping time-slots of 1300µs each, and at a 100kbps

data rate, the slot duration provides a minimum guard band of 200µs between two successive slots.

With their I2C modes reversed, the uninitialized modules participate in the discovery round by

transmitting the above ID packet (Figure 4.15) in the master mode in one of the 256 slots. To select

the slot, the modules use a slot selection algorithm as described in Algorithm 6. With the W bit set

to 0, the packet is addressed to slave address 0x76 (which is the first byte of the I2C frame) by the

uninitialized modules and is received by the discoverer.

At the end of the 256 slots, the modules again reverse their I2C modes and at this time, the

discoverer has collected as many as 256 uninitialized module IDs and address requests. In the

event of multiple modules transmitting in the same slot, the packet received by the discoverer is a

binary-and superposition of the individual packets due to the electrical characteristics of the I2C

bus. The packet thus received is bound to have an incorrect CRC, and is consequently discarded

by the discoverer.
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Slot Selection

The slotted mode is not collision free. Two or more modules picking the same slot, in the

absence of collision sensing, will lead to incorrect packets being transmitted to the discoverer.

However, the approach mitigates this challenge by providing modules with one of several slots to

choose from. In the event of a collision, the modules will remain non-initialized at the end of the

current initialization process and continue to participate in a future processes until initialized. The

slot-selection algorithm attempts to diversify the slot picked by a module so that it eventually

finds a collision-free slot. A pseudorandom number generator (PRNG) would suffice for slot

selection. Unfortunately, when implemented in aggregate class of modules, the PRNGs are neither

economical nor sufficiently diversified in their outputs. The similarity of the random numbers, and

consequently, the slot numbers is prevalent in modules powered on simultaneously, perhaps a side-

effect of using an internal counter whose value is a function of time since booting. This leads to

modules consistently choosing the same slot in successive initialization processes and colliding

with one another.

Algorithm 6: Slot selection algorithm
// slotAttempt and silentSlots initially set to 0 at module boot up

if silentSlots is equal to 0 then1

if slotAttempt < 0x06 then // participating discovery rounds2

Set chooseSlot = slotAttempt byte of ID; // select the particular byte of3

the 7-byte ID as the slot number
Set slotAttempt = slotAttempt + 1;

else4

Set silentSlots = random number between 1 and 4;// choose a random number of5

rounds for not participating
Set slotAttempt = 0;

else6

// nonparticipating discovery rounds
Set silentSlots = silentSlots - 1;

In order to overcome the above issue, we have devised a slot selection algorithm (Algorithm 6) that

utilizes the unique ID of a module, one byte at a time (steps 2 - 4), in the successive initialization
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processes. We also designate a random number, between one and four, of initialization processes

after every six unsuccessful attempts as non-participating processes (steps 5 - 9). This allows to

break from lack of slot selection diversity between two modules. The modules may be picking the

same slot in successive processes due to their IDs being self-similar or circularly-shifted.

B. Slotted Approach with Participation in Slave Mode

A direct extension of the SMBus-ARP with time division multiple access to the bus, the slotted

process in slave mode can in fact suffice for discovering all modules. This approach has all steps

similar to the algorithm described for the master-capable modules earlier except for modifications

to the slot rounds. Unfortunately, this method is more demanding than the master mode slot rounds

for a few reasons. To understand the challenges faced in the above approach, we outline the slave

mode time-slot process below.

Algorithm 7: Discoverer algorithm for slotted rounds with uninitialized modules in I2C slave
mode
Initialize Master mode;1

Set uninitModPres = Success of 1-byte Read from address 0x76;2

if uninitModPres is True then // Uninitialized modules available for discovery3

mT X ← Packet(type=b0001, sub-type=b1101); // slave mode slotted discovery4

call

Transmit Packet(type=b0001, sub-type=b1101) to I2C address 0x76;
Sleep until start of slots; // Wait till start of the slot rounds5

foreach of the 256 slots of 1300 µs do // Read and accumulate packets from
unassigned modules

Read a packet on I2C bus from slave address 0x76;6

To begin, instead of the modules picking a slot and transmitting in the master mode, the modules

respond on the I2C bus on receiving a packet of sub-type b1101 (Figure 4.19), during one selected

slot and remain disconnected from the bus otherwise as shown in Figure 4.18. The slave modules

can disconnect from the bus either by going to a sleep state or by selectively disabling their I2C

functionality. In this process, the discoverer attempts to read one packet from the I2C address 0x76

for every time slot, completing 256 reads at the end of the slotted process. Collisions on the bus
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FIGURE 4.18: Slotted approach with participation in slave mode. The illustration shows the process of
module discovery using a slotted round process where the uninitialized modules participate
in I2C slave mode.
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1000 0100 0000 0001 time | 1101 CRC

FIGURE 4.19: Packet of sub-type b1101.This packet is sent by the discoverer toward calling uninitialized
modules for participation in slotted discovery in slave mode. The packet contains a 4-bit
time field that is used to specify an initial setup period following which the first slot starts.
The setup period is provided to allow the modules to populate their buffers, reinitialize slave
mode with address 0x74 and initialize their bus agnostic mode corresponding to the chosen
slot.

can occur when two modules select the same slot, and similar to the master mode case described

earlier, the damaged packets received by the discoverer are discarded.

The success of the above approach hinges on modules remaining disconnected from the bus during

all slots other than their chosen time slot. One of the issues arises from modules that power on

during this process and connect to the bus in their slave mode with I2C address 0x76. Consequently,

all the modules transmit on the bus when the discoverer reads from address 0x76, leading to

collisions during all subsequent slots. This issue may be overcome with a slight modification to

the protocol that requires the modules to switch to a different predefined restricted slave address,

0x74, when they participate in the slot rounds.
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Algorithm 8: Uninitialized module participation algorithm for slotted discovery in I2C slave
mode
Initialize slave mode with address 0x76;1

Read self-DSN;2

sT X ← Packet(type=b0001, sub-type=b0011); // Load packet into slave transmit3

buffer
while uninitialized do // Until initialized with an address, stay active on the
bus.

if Packet (type=b0001, sub-type=b1101) is received then // Discoverer calling the4

start of the slots
Initialize slave mode with address 0x74; // Reinitialize slave mode with5

alternate slave address
Set mySlot = slot selector(); // Select a slot using the slot selection
algorithm

Deactivate I2C communication;
Sleep until start of slots; // Wait till start of the slot rounds6

Sleep until mySlot × 1300 µs; // Sleep till chosen slot

Activate I2C communication;
while Packet(type=b0001, sub-type=b0011) transfer not completed do // wait7

until one packet transfered to discoverer
// nothing to do, discoverer is reading a packet

Initialize slave mode with address 0x76;8

. . .// other conditions follow9
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Our practical implementations of this approach have been challenging primarily due to the

complexities of precise timing of the 256 reads by the discoverer. The difficulties arise due to

challenges in allocating precise timer modules for this purpose. Simultaneously, several off-the-

shelf processors that implement the basic I2C slave mode often have one or two precision timer

modules. Allocating one of these timers for the purpose of communication is tangential to the

main goals and requirements of the resource constrained modules. We are currently investigating

the feasibility of this approach by modifying the duration and number of the slots.

C. Bus Access Mediation through Power Control

The power control based approach is one of the simplest module discovery procedures. This

Algorithm 9: Discoverer algorithm in power control approach
Initialize Master mode;1

Power on a uninitialized module;2

Wait for 1 second for the module to stabilize; // do other jobs3

Read a packet on I2C bus from slave address 0x76;

Algorithm 10: Uninitialized module participation algorithm for discovery using selective
power on approach
Initialize slave mode with address 0x76;1

Read self-DSN;2

sT X ← Packet(type=b0001, sub-type=b0011); // Load packet into slave transmit3

buffer
while uninitialized do // Until initialized with an address, stay active on the
bus.

// nothing to do, discoverer will read a packet
. . .// address assignment and verification conditions follow4

technique begins with all the modules turned off by the discoverer as showing in Figure 4.20. The

discoverer now turns one module on and, after a guard band of 1s, reads a packet of data from

the slave address 0x76. Simultaneously, the uninitialized module on powering up creates and loads

its sTX buffer with the ID packet shown in Figure 4.16. Hence, when the discoverer attempts a
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Discoverer Bus Communication Uninitialized module

Start in master mode Powered off state

Turn one module on

1s guard gap

Power on, initialize slave mode with address 
0x76, and create packet (b0011) with module 
ID, address configuration parameters and 
special address request, and load in sTX 
buffer

Read one packet from I2C slave  address 
0x76

FIGURE 4.20: Uninitialized module discovery through selective power on. The illustration describes
the process of gathering ID and address configuration information from an uninitialized
modules by creating I2C bus exclusivity by selective power on.
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1000 1011 0000 0001 time | 1100 ID1 ID2 ID3 ID4 ID5 ID6 ID7 CRC

FIGURE 4.21: Packet of sub-type b1100. This packet is sent by the discoverer toward singling out a
particular uninitialized module and requesting participation in a discovery process. The
discoverer uses the ID of the module that it has acquired through other means toward this
call. The 4-bit time parameter denotes the setup time guaranteed before the 2ms packet
reading window.

read, the uninitialized module transmits the above packet without any collisions on the bus and is

successfully received by the discoverer.

D. Module ID Retrieval through Additional 1-wire Infrastructure

In the 1-wire infrastructure based technique as shown in Figure 4.22, the discoverer uses an

additional 1-wire infrastructure to read the 1-wire DS2401 DSNs. This technique begins with the

discoverer collecting the IDs of all the uninitialized modules. The modules may be powered on

or off at this time as the ID retrieval happens without any mediation by the on-board processor of

the module [AS97], however, it is important to prevent both the module and the discoverer from

reading the ID simultaneously. Hence, we stipulate a one second guard gap from the time of module

power up when reading by the discoverer is prohibited. Following the guard gap, the discoverer can

obtain the unique ID of the module, however, the additional configuration data like static address

requirements, request for a particular address etc. of the module are unknown. Towards gathering

these details, the discoverer now sends a selective-occlusion packet of sub-type b1100 as illustrated
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Discoverer Bus Communication Uninitialized module

Start in master mode
1s guard band

Read self ID

2 ms window 

Start in slave mode with address 0x76

Read IDs of the modules using the 1-wire 
infrastructure

Send selective occlusion message (b1100) to 
address 0x76

Time to start delay as specified in 
packet of sub-type b1100

If self ID matches the ID in packet sub-type 
b1100, then create packet (b0011) with 
module ID, address configuration parameters 
and special address request, and load in sTX 
buffer

Read unique ID and address parameters 
from slave address 0x76

Stay active on the I2C bus only if self ID 
matched the ID specified in packet sub-type 
b1100

Return to active state on I2C bus

FIGURE 4.22: Uninitialized module discovery with additional 1-wire infrastructure. The illustration
describes the process of gathering ID and address configuration information from an
uninitialized module with support from the 1-wire infrastructure. The reading of the DSN
on the 1-wire bus is shown distinctly using the violet arrow.

in Figure 4.21.

The selective-occlusion packet carries the unique ID of the module, in whose additional

configuration information the discoverer is interested. Additionally, it carries a byte of

configuration parameters. The lower nibble of this configuration byte carries the sub-type b1100,

and the upper nibble, time in milliseconds. The time parameter specifies the guard gap between

completion of the transmission and a read attempt by the discoverer from slave address 0x76. This

packet is received by all the uninitialized modules and interpreted differently based on ID match.

If the ID of the module matches the address in the packet, the module loads the ID and address

request packet in its sTX buffer immediately. All other modules disconnect from the bus for a

period of 2 ms at the end of the guard gap. This ensures that when the discoverer reads during the

2 ms window, only the module with the matching ID responds on the I2C bus. It has to be noted

that collisions, if any, are detected due to packet CRC error and the discovery may be attempted

111



Algorithm 11: Discoverer algorithm in the approach with support from 1-wire infrastructure
Initialize Master mode;1

Read IDs of the modules using 1-wire infrastructure;2

foreach Uninitialized module ID do
mT X ← Packet(type=b0001, sub-type=b1100) with module ID;3

Transmit Packet(type=b0001, sub-type=b1100) to I2C address 0x76; // Notify
modules of forthcoming read and targeted ID
Wait for duration specified in the packet; // do other jobs while the
uninitialized modules setup their buffers

Read a packet on I2C bus from slave address 0x76;

Algorithm 12: Uninitialized module participation algorithm for discovery with support from
additional 1-wire infrastructure
Initialize slave mode with address 0x76;1

Read self-DSN;2

sT X ← Packet(type=b0001, sub-type=b0011); // Load packet into slave transmit3

buffer
while uninitialized do // Until initialized with an address, stay active on the
bus.

if Packet (type=b0001, sub-type=b1100) is received then // Discoverer calling the4

start of the slots
if ID in Packet (type=b0001, sub-type=b1100) not equal to self-DSN then // Check5

for ID match
Deactivate I2C communication;6

Sleep until start of window + 2ms; // Wait till completion of the window7

Activate I2C communication;

. . .// other conditions follow8
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10LL LLLL 0000 0001 STQQ | 0010 ID1 ID2 ID3 ID4 ID5 ID6 ID7 Address 1 Address 2 CRC

FIGURE 4.23: Packet of sub-type b0010. This packet is sent by the discoverer toward assigning protocol
addresses to an uninitialized module. The parameter S denotes address type: 0 - if the
static only constraint cannot be accepted & 1 - if static address is accepted; parameter T
denotes address memory: 1 - if address can be remembered and the module can reuse the
address on reset & 0 - otherwise; parameter QQ denotes number of additional addresses as
requested by the module that are accepted and allocated. The addresses following the ID7
byte of the module are in the multi-byte (represented in blue) protocol address format. The
address allocated for the module is the first address in this sequence of addresses. Five such
addresses may be carried in a packet and three additional addresses are illustrated by the
contracted boxes.

again. The guard gap in the process is anywhere between 1 to 16 ms. The length of the guard gap

is to be set by the discoverer appropriately based on its CPU load and the speed of the uninitialized

module.

At the end of module discovery step of the initialization process, the discoverer has collected the

unique IDs of several uninitialized modules. We see a variety of uses for these IDs including, for

example, authenticating module for use in an aggregate as a handle for the module meta-data, and

perhaps, most importantly, as a handle for the look up table (LUT) containing module protocol

addresses. The IDs are also used by other modules interested in seeking a particular module’s

protocol address. The discoverer now assigns the modules addresses based on availability from the

pool of assignable addresses as follows.

4.8.2 New Module Address Assignment

The address assignment step of the module initialization process starts with the discoverer in the

master mode and the uninitialized modules in the slave mode with the I2C address 0x76. The

discoverer after allocating the addresses as requested by the module in the earlier step, assigns the

address using the packet in Figure 4.23. This packet is sent to the address 0x76 after a minimum

guard band of 10ms following the 256 timed slots.
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Discoverer Bus Communication Uninitialized module

10ms guard gap

Process IDs and allocate addresses for 
modules. 

Switch to slave mode with address 0x76

Send address allocation packet (b0010) with 
module ID, assigned protocol address and 

configuration parameters to I2C slave 
address 0x76

On ID match, reinitialize slave mode with 
new I2C address (last byte of assigned 
protocol address) and load packet of sub-type 
b1011 into sTX buffer

Verify address assignment by reading a 
packet from the newly assigned address

FIGURE 4.24: New module address-assignment. The address assignment process starts with the
uninitialized module in slave mode and the discoverer in master mode. The process involves
two communications on the I2C bus, one to communicate the address information to the
module and the second to verify the proper completion of the process.

As shown in the illustration, the 7-byte ID of the module is followed by a few addresses in the

protocol address format. The first address in this sequence is the address of the module with the ID.

The additional addresses that may be allocated based on the previous request follow this address.

The number of additional addresses is less than or equal to the request made by the uninitialized

module earlier.

The 1-byte address configuration field preceding the ID carries the packet sub-type b0010 and

three parameters signifying the number of additional addresses being provided, acceptance of static

address request and validity of the address into next power-up of the module. However, in the event

that an address is unavailable, the module is sent the reserved address 0x76 requesting participation

in another round, or sent the address 0x00 indicating the lack of any addresses and denying the

module any address allocation in the future. In the case of modules requesting static addresses, the

static address is not repeated in this message and the additional addresses follow the ID fields.

The address-assignment packet is received by all uninitialized modules and the modules set their

slave addresses as specified in the packet if their ID matches the one in the packet. Following the
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10LL LLLL 0000 0001 STQQ | 1011 ID1 ID2 ID3 ID4 ID5 ID6 ID7 Address 1 Address 2 CRC

FIGURE 4.25: Packet of sub-type b1011. The packet created by a module on accepting the assigned slave
address. The packet is similar to one in Figure 4.23, except for the sub-type field and the
CRC.

address setting, the module places an address assignment confirmation message of sub-type b1011

as shown in Figure 4.25 in its sTX buffer. The assignment confirmation packet is the same as the

received assignment packet, with the sub-type field and, consequently, packet CRC modified. In

order to verify the correct assignment of the slave address, after a minimum guard gap of 10 ms,

the discoverer reads a packet of message from the newly assigned protocol address. In the case of

errors in assignment, the assigned address may be revoked by sending another address assignment

message of sub-type b0010 with the protocol address 0x76.

Algorithm 13: Discoverer address assignment step
for Every discovered unique ID do1

if Address allocation for ID successful then // Assigning address2

mT X ← Packet(type=b0001, sub-type=b0010) with allocated protocol addresses;3

Transmit Packet(type=b0001, sub-type=b0010) to I2C address 0x76;4

Sleep for 10ms;5

Read into a packet from the newly assigned I2C address Veri f yPacket;6

if ID, Address configuration and Protocol Addresses of sent and verify packets are7

unequal then // Verify assignment process
mT X ← Packet(type=b0001, sub-type=b0010) with address 0x76;8

Transmit Packet(type=b0001, sub-type=b0010) to newly assigned I2C address;9

// Revoking address assignment

else if No address assignment possible then10

mT X ← Packet(type=b0001, sub-type=b0010) with address 0x00;11

Transmit Packet(type=b0001, sub-type=b0010) to I2C address 0x76; // Notify12

module of no possibility of present or future address assignment

else13

// Do not sent module any message, module will participate in next
discovery process

Following the successful assignment of an address, a module is considered to be initialized and
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Algorithm 14: Uninitialized module address assignment step
while uninitialized do // Until initialized with an address, stay active on the1

bus.
. . .// other conditions2

if Packet (type=b0001, sub-type=b0010) is received then // Discoverer assigning3

address
if ID in Packet (type=b0001, sub-type=b0010) equal to self-DSN then // Check for4

ID match
Set sel f Address = LSB(First protocolAddress); // Assigned I2C address is5

the least significant byte of the first multi-byte protocol
address in the packet
if sel f Address is equal to 0x00 then

Halt;// Call shutdown procedure as module cannot be6

initialized

else7

Initialize slave mode with address sel f Address;8

sT X ← Packet(type=b0001, sub-type=b1011); // Load packet into9

slave transmit buffer
while Packet(type=b0001, sub-type=b1011) transfer not completed do
// wait until one packet transfered to discoverer

// nothing to do, discoverer is reading a packet
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is free to communicate with other modules. A module that requested multiple addresses earlier

may, at this time, isolate a section of the bus and proceed with the discovery process if any of

the addresses were allocated. Similarly, modules that form bridges between hierarchies proceed

toward module initialization in the lower hierarchy. We have implemented two kinds of packets

(not described here) in this regard, one toward probing and obtaining ID related information of

a module from authenticating modules, and the second toward conveying the protocol address

allocation to other modules.

This section concludes the descriptions and discussions on the important components of the

aggregate framework that were designed and developed in this thesis work. All our earlier

discussions leave unexamined the effects of the choices made in the aggregate framework on

the derived systems. Systems built using the framework will inherit several of the aggregate

characteristics and may have inherent features due to additional choices made by the designer.

While it is beyond the scope of this research to develop an understanding of the descending

systems, we develop equations in the following evaluation section that show the interplay between

the various parameterized intrinsic properties of the aggregate’s components.

4.9 Evaluation

In this section we present an analytical treatment of the embedded aggregates framework.

The arbitrary message packet sizes and the lack of job scheduling specifications provide

substantial freedom to aggregate implementers, fostering the growth of an open ended and flexible

system. However, the numerous conceivable resultant architectures and implementations make the

evaluation of the aggregate framework tedious.

In order to present to the reader an understanding of the dynamics of the aggregate’s

communication and functioning, in this assignment we undertake a study of the various factors
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FIGURE 4.26: Function module single data send timeline. The data to be sent is loaded into the buffer
in time slot Sm and retrieved by bus master during the polling slot for the module. The
transmission time for the data is Tf long and during this period the module is unable to
perform other operations. A function module is able to perform functions related to its core
responsibilities during δ period.

that influence system performance and the interplay between them. We initially derive the ideal

case communication costs for a generic aggregate function module and a generic communication

module. Next, we use these costs toward understanding the packet transfer times for a couple of

source-destination pairs. Finally, we derive a relationship that establishes the maximum number of

modules that can be accommodated on a bus for a simple envisioned communication pattern.

4.9.1 Module Communication Cost

In the packet communication cost analyses below, we assume that every communication attempt is

successful and do not account for retransmissions.

4.9.1.1 Generic Function Module

A function module distributes its time between performing tasks related to its core functionality

and communication-specific tasks. Let us consider a simple situation where the module sends one

message in a polling period as shown in Figure 4.26.
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Let

Sm = time for loading data into buffer

Cm1 = time for context switching from core funtions to communications

Cm2 = time for context switching from communications to core funtions

Tf = I2C frame transfer time

Tmw = time available for core activity

Tmp = time between two polling slots for the module

Tmc = time spent on communication

δ = time from loading the data into buffer to frame transfer

m = size of the useful data in the message

l = length of destination address in protocol address format

e = length of the extended header segment

d = total length of the I2C frame

D = data rate of the bus in bits/sec

Following the availability of the data intended for sending, the data is setup in the buffer in the

interval shown in green. Due to the polling nature of data transfer to its master, a module can

experience a delay between the time the data is ready in its buffer and the time it is retrieved by

the master. This delay is denoted by δ and the module is able to perform its core functionality in

this waiting period. The delay δ is bounded by Tmp and can be minimized by synchronizing the

module’s activities to its polling slot. The period Tmp can be unique to modules as they may require

different durations depending on their core activity and use case. The packet is fetched by its parent

in the Tf time period flanked by the context switching windows on either side. When pulls and

pushes are gathered and collocated, the time period Tf has to account for data sent and received.

Otherwise, multiple data exchange intervals flanked by context switching times will occur.
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Here, the time periods Sm, Cm1 and Cm2 are dependent on the clock frequency of the module.

Let

F = clock f requency o f the module,

then

Cm1 & Cm2 ∝
1
F

Sm ∝
d
F

.

In a given communication attempt, the I2C frame transfer time is dependent on the size of the data

frame and the speed of the bus. The size of a data packet depends on the size of the header, message

size, destination address length, extended header segment length and trailer size. In an embedded

aggregate packet, the total size of header and trailer is 3 bytes. Additionally, for each packet sent

on the bus, the I2C frame carries an additional 1-byte I2C destination address. Therefore the length

of the frame is given by

d = m+ l + e+3+1,

and time for frame transfer is

Tf =
d×8

D

=
(m+ l + e+4)×8

D
.

We define the communication time as the sum of time spent on transferring the I2C frame, context

switching costs and data setup costs as follows.

Tmc = Sm +Cm1 +Tf +Cm2

= Sm +Cm1 +
(m+ l + e+4)×8

D
+Cm2

In this simplified example, only one packet of data is sent in this polling period. However, if

several packets are exchanged during the polling instance, then additional time for exchange of
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the subsequent frames and guard gaps are involved. In a function module, the module is free to

perform activities related to its core objectives during times of no communication. Hence in a

polling period, we have

Tmw = Tmp−Tmc = Tmp−
(

Sm +Cm1 +
(m+ l + e+4)×8

D
+Cm2

)
. (4.1)

Let us define r as the ratio of time spent on core activity to that of polling time period.

r =
Tmw

Tmp
=

Tmp−
(

Sm +Cm1 +
(m+l+e+4)×8

D +Cm2

)
Tmp

(4.2)

The above ratio gives the factor of time available in a polling time period for the module to pursue

its core functionality.

4.9.1.2 Generic Communication Module

A communication module primarily mediates the communication between the function modules by

pulling and pushing data. Additionally, the module performs other functions including discovering

new modules and internal module housekeeping activities amongst others. The breakdown of the

time spent on pushing a packet of data to a slave by a communication module is illustrated in

Figure 4.27. The figure shows an ideal situation from a communication module’s perspective. The

slave module being sent data is ready for communication, and hence no additional time costs,

due to context switching overheads in the slave module, are incurred in the transmission process.

In the cases where such overheads exist, the gray packet transfer time undergoes elongation (see

Figure 4.29) as the slave module utilizes flow-control mechanisms while context switching before

the exchange of data. In this discussion, we assume a simple case where the slave module has

switched its focus to communication at the time of being sent the data.
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FIGURE 4.27: Communication module data pushing timeline. A push of data involves the time for

buffer setup, data transfer on the bus and additional context switching times. A pull of data
does not require the initial buffer setup time (marked green) in the master module.

Let

Sc = time for loading data into buffer

Cc1 = time for context switching from other activites to communications

Cc2 = time for context switching from communications to other activities

Tf = I2C frame transfer time

Tcc = time spent on communication.

As in the previous case of function-specific modules, Sc, Cc1 and Cc2 of a communication module

are dependent on the clock frequency of the module. We make a distinction in the case of these

overheads (and use different notation) between the function and communication modules due to

the different nature of the modules’ core activities. With d as the size of the data frame, we have

the following.

Cc1 & Cc2 ∝
1
F

Sc ∝
d
F

Therefore, the time spent on pushing a frame of size d to a slave is

Tcc = Sc +Cc1 +Tf +Cc2 = Sc +Cc1 +
(m+ l + e+4)×8

D
+Cc2 . (4.3)

In the case where the data is pulled from the slave, the buffer setup cost is not incurred in the

communication module and hence the time for communication is reduced by Sc.
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FIGURE 4.28: Packet transfer between two function modules on the same physical I2C bus.The data
flow for a packet transfer from module M1 to module M2 is illustrated by the black
unidirectional arrows. The time taken for each leg of the path is also shown.

4.9.2 Data Transfer Time

Previously, we studied the communication time periods of the modules in isolation. Here, we

estimate the time required for transferring a packet of data from one function module to another.

4.9.2.1 Communication Between Two Function Modules on the Same Physical Bus

Let us consider a packet transfer between two function modules on the same physical I2C bus

as shown in Figure 4.28. The function modules operate in I2C slave mode on a bus and hence

the communication between them is mediated by the communication module in the master mode.

The time for packet transfer from one module to another is calculated from the time the packet

is available in the buffer and ready for transmission at the sender to the time it is delivered to the

recipient. In this example, the slave modules are not already ready for data exchange and hence a

context switching penalty is incurred.

Figure 4.29 shows the causality of the events with respect to the data flow between the modules. In

the figure, the times δ1 and δ2 denote the time gap between data availability in the buffer and the
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FIGURE 4.29: Timeline: Two function modules on the same physical I2C bus. The figure shows a
non-ideal situation where the modules are not synchronized and the function modules
switch to communication mode on I2C interrupt. In the time durations δ1 and δ2, the
communication master may be communicating with other modules or performing different
tasks. The modules are able to perform other tasks, including communications unrelated to
the particular transfer, during the time interval denoted by the dotted lines.

occurrence of the exchange.

δi = time from loading the data into buffer to frame transfer.

For the sake of simplicity, let us assume that all modules have the same clock frequency F and

the function modules have the same context switching penalties Cm1 and Cm2. In the data transfer,

we assume a case where the modules are performing their core tasks at the time of interruption by

communication calls. The time for transfer of packet from M1 to C is then given by the following.

T1→c = δ1 +Cm1 +Tf

Here, the data available for transfer at M1 has remained in the buffer for time δ1 before the master

C starts clocking the data out. The time cost Cm1 is paid for context switching from regular core

operations to communications due to single threaded nature of the module’s CPU. For the second

leg of transfer, based on the embedded aggregate protocol addressing and routing, the size of the

packet is reduced by one byte due to modifications to the packet’s address segment. However,

for the sake of simplicity, we treat the packet sizes as constant, making the time estimates more
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conservative. Now, for transfer from C to M2, we have

Tc→2 =Cc2 +SC +δ2 +Cc1 +Cm1 +Tf .

In the second leg of the data transfer, we initially incur time penalties for context switching after

the first leg, loading data into buffer and context switching for push at the communication module.

Next, similar to the first leg, we also pay an additional penalty of Cm1 at M2. Our notion of data

transfer concludes with the data being received by the recipient in its buffer and hence do not

consider Cm2 at M2. Now, the total packet transfer time is give by the following.

T1→2 = T1c +Tc2 = Sc +Cc1 +Cc2 +2× (Cm1 +Tf )+δ1 +δ2 (4.4)

In the above expression, the values for δ1 and δ2 are upper bounded by the polling time periods for

modules M1 and M2.

4.9.2.2 Communication Between Two Function Modules with a Common Ancestor Two
Levels of Hierarchy above Them

We now consider the case of communication between two modules on two different I2C

communication buses as show in Figure 4.30. With the assumptions and rationale in the previous

single bus example, the times for packet transfer along the various legs are as follows.

T1→c1 =Cm1 +δ1 +Tf

Tc1→c = Sc +δc1 +Cc1 +Tf

Tc→c2 =Cc2 +Sc +Cc1 +δc2 +Cc1 +Tf

Tc2→2 =Cc2 +Sc +Cc1 +δ2 +Cm2 +Tf

The total time for packet transfer is merely a summation of the above time periods as given below.

T1→2 = T1→c1 +Tc1→c +Tc→c2 +Tc2→2
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FIGURE 4.30: Common ancestor two levels of hierarchy above. The data flow for a packet transfer from
module M1 to module M2 is illustrated by the black unidirectional arrows. The time taken
for each leg of the path is also shown. The timeline for this case is an extension of the
timeline illustrated in Figure 4.29. Due to the depth of the tree, the protocol address length
of the modules M1 and M2 is 2 bytes or longer.
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T1→2 =Cm1 +δ1 +Tf

+Sc +δc1 +Cc1 +Tf

+Cc2 +Sc +Cc1 +δc2 +Cc1 +Tf

+Cc2 +Sc +Cc1 +δ2 +Cm2 +Tf

(4.5)

4.9.3 Bus Module Capacity for a Simple Case

The equations derived earlier in this section do not provide any insight on the number of modules

that can be connected to a bus while achieving the communication objectives. The restrictions on

the number of modules, from a communications point of view, depend on the sizes of the packets,

the frequency of communication, data rate of the bus and peak bus occupancy amongst others.

As such, these parameters change based on the needs of the modules and are hard to predict.

However, in order to gain some understanding of the system, let us consider a simple case where

all the modules connect to the same physical I2C bus. Let us also assume that the modules have

the same processor speeds, and the function modules have one packet of size d for sending once

every polling period Tmp to another module on the same hierarchy. Let us also assume that all the

communications to a function module are not clustered, and a packet is delivered to the destination

immediately (non-slotted delivery of messages) following the pull from the source. Let

η = number of modules on the bus.

In this case, Tmp is the time available for a function module to perform its core activity and

communicate with other modules. To satisfy this polling period of the function module, then,

this is the time available for the communication module to poll all the other function modules and

round robin to the module again. The time taken by the communication module to poll a function
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module is given by Equation (4.3) as follows.

Tcc = Sc +Cc1 +
(m+ l + e+4)×8

D
+Cc2

Now, for every pull, the communication module has to push a data packet. Hence, in an ideal case

where the modules’ activities are synchronized and no context switching overhead is incurred, the

maximum number of modules that can be accommodated on the bus is given by the following.

η =

⌊
Tmp

2×Tcc

⌋
=

⌊
Tmp

2×
(

Sc +Cc1 +
(m+l+e+4)×8

D +Cc2

)⌋ (4.6)

The above equation provides an estimate on the maximum number of modules that can be

accommodated on a bus with the modules communicating uniformly and consistently in each time

period. This estimate is, however, conservative as generally every module may not have data to send

or receive in all polling slots. Furthermore, aggregate systems may be composed of modules with

heterogeneous polling/update frequency requirements, alleviating the load on the communication

bus and tolerating increase in the number of modules.

Assuming that every function module receives one message from a sibling in the duration of a

polling period, the ratio r for a function module equals the following.

r =
Tmw

Tmp
=

Tmp−2×
(

Sm +Cm1 +
(m+l+e+4)×8

D +Cm2

)
Tmp

(4.7)

In this section, we articulated and explored the implications of the various embedded aggregate

design decisions on its performance. We derived seven equations (3.1 to 3.7) that are representative

of the temporal and communication aspects of the aggregates. More broadly viewed, these

equations can be used by an aggregate implementer to make various module and system

architecture level decisions toward realizing an embedded aggregate of chosen number of modules

and admissible packet exchange times.
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4.10 Chapter Summary

In this chapter we developed suitable physical and logical architectures for the embedded

aggregates. In the architecture design process, a holistic approach was followed toward choosing

the topologies and an existing underlying embedded communication protocol which can be

extended to support the aggregate class of systems. The holistic approach involved a multi-

pronged effort toward choosing and refining the choices on various fronts toward finally making a

selection of protocols and topologies that are mutually complementary and compatible, providing

several of the expected features of the communication infrastructure. We conclude that a logical

star topology, using polling on each bus of a hierarchical I2C network, is best suited in the

embedded aggregates context, providing reasonable flexibility through limited compromise on

communication independence.

Reconciling the requirements of the aggregates communication framework and the facilities

provided by the I2C bus, we extended and developed packet structures, types of packets, module

address formats, packet routing, group send and receive (broadcast and leafcast) methods from

communication primitives, flow control techniques and mechanisms to discover and initialize

aggregate modules. We also presented a basic analysis of the embedded aggregates framework,

deriving equations that model communications and functioning of the aggregates. Supported by

this ground work, we discuss the design and development of blades and tiles, embedded aggregates

for HCI researchers, in the following chapter.
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Chapter 5

Embedded Aggregates for Physical User Interface
Researchers

Nature uses only the longest threads to weave her
patterns, so that each small piece of her fabric reveals the
organization of the entire tapestry.

Richard P. Feynman

The multidisciplinary nature of interaction device prototyping presents a challenging design and

development environment. Towards making the process of UI design, development and prototyping

more accessible and flexible from the different UI researcher’s point of view, the designers of

several UI prototyping toolkits have incorporated modular designs in realizing their hardware

platforms. The abstraction and isolation of concerns provided by the modular toolkits have

decoupled some of the otherwise strong linkages between the various design realms, leading to

faster and easier realization of UI prototypes. Taking inspiration from these prototyping platforms,

this researchwork aims to further increase the freedoms enjoyed by the UI researchers by exploring

an alternative style and dimension of prototyping platform hardware modularity1 (discussed in

§ 5.2 in page 135).

Modularity is naturally occurring2 [WE03], and scholars argue that “modular” and

“integral/consolidated” are end-points on a continuum [Mil05, HSW05]. In man-made systems, the

level of modularity - a point on this continuum, is chosen by the designers based on the objectives

to be fulfilled. Our specific objectives include scalability, reusability, reliability and flexibility, and

we explain these objectives in the context of blades and tiles in § 5.3. We derive our modules

1Several analytical methods to evaluate the level of modularity of a system have been developed [NBR98, VG99, TW99, Mik06, HOW07],
however researchers assert that there is no widely adopted measure or methodology to evaluate modularity [GPZ03, CC10]. Consequently, in this
thesis we do not concern ourselves with the exact analytical measure of modularity of the various platforms.

2On a related front, talking about modularity and hierarchy in nature, Simon takes an interesting stand saying “I shall not try to settle which
is chicken and which is egg: whether we are able to understand the world because it is hierarchic, or whether it appears hierarchic because those
aspects of it which are not elude our understanding and observation.” [Sim62]
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informed by research in several fields including product design and medicine (human sensory

system). Towards developing our envisioned modular platform for interaction device prototyping,

we explored the broader field of embedded systems. Our studies indicated that modular systems of

the particular scale and features that we envisioned were predominantly created as one-off systems.

Convinced of the requirement for a unified architecture and framework toward realizing this class

of systems, we explored, characterized and developed the concept of embedded aggregates. Using

embedded aggregates as the foundation, we have created blades and tiles, a modular system

for interaction device prototyping, pilot deployments and realizing evolving research interaction

devices.

A blade is an embedded aggregate module which is designed in accordance to a set of specifications

including physical size, interfacing connectors, power characteristics and communications. The

implementation of a blade is guided by a variety of HCI motivations. As independent hardware

components with individual processing capabilities, blades are intended to be created with self-

sufficient specialized interaction-related functionalities and associated API calls. Tiles ground and

reinforce the communication fabric and extend a platform to house blades. The creation of a tile is

guided by both the electrical needs and HCI motivations. As user interfaces and interactive artifact-

prototyping elements, tiles (Figure 5.8) also form the meeting ground between the electronics

and tangible components underlying specific interaction modalities (e.g., switches, LEDs, rotary

encoders) and the blades (functional components) supporting their underlying implementations.

We begin this chapter with a discussion on our rationale behind our hardware partitioning

approach, following which we describe the implementation of blades and tiles electronics. Next,

we describe the firmware stack for blades that implements both our embedded aggregates protocol

and mechanisms and the blade-specific functionality. The software stack for interfacing bladed

devices to a generic computer plays an important role in the decoupling process, and a discussion

on the software stack which highlights the design decisions follows the firmware section. The
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chapter finally ends with an evaluation of blades and tiles platform.

5.1 Disentangling the Strong Linkages

Interaction devices have evolved into complex electronic entities. Broadly speaking, many

interaction devices are composed of a shell that provides the physical form and electronics housed

inside the shell that extend the functionalities3. This section treats an interaction device at the level

of an electronic hardware entity that is purposely constructed and installed for gathering input and

disseminating output in a human-perceivable form.

Let us take a typical physical UI composed of several interaction modalities like switches, slides,

rotating knob and displays. The realization of a modality in the device can be broadly broken

down into two parts, the human engaging part and the underlying electronic implementation.

For example, as shown in Figure 5.1, a modality that provides a rotating knob has the human

contacting dial portion (a physical object) and an underlying electronic implementation that senses

the position of the knob and converts it into digital information. The underlying electronic portion

typically involves a embedded processor like a micro-controller and supporting transducer4 related

electronic components.

Traditionally, in the production version of an interaction device, the back-end electronics of the

various modalities are collocated and the data processing requirements are met using a few micro-

processors on board the device. The human-engaging parts of the interaction modalities may be

exposed on the surface of the device (ex. dials, slides, switches) or may be contained within

them (ex. gyroscopes and accelerometers). The positioning, arrangement and aesthetics of exposed

3It has to be noted that several HCI researchers working on Tangible UI, Ubiquitous UI and related areas pursue interfaces that are not discrete
entities with turn-taking interaction sequences, but entities seamlessly woven into the continuum of physical space around the user with a coincidence
of input/output space. Here, for the sake of simplicity, we consider a discrete device in order to understand the anatomy of a physical UI and identify
the sources of entanglements in the prototyping process.

4A transducer is a device, usually electrical, electronic, electro-mechanical, electromagnetic, photonic, or photo-voltaic, that converts one type
of energy or physical attribute to another for various purposes including measurement or information transfer (for example: pressure sensors)
[from http://en.wikipedia.org/wiki/Transducer].
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FIGURE 5.1: Example implementation of a rotor modality. The portion of the implementation that is
not directly contacted by a user is shown enclosed in the dotted box.

human-engaging components plays an important role in the functioning and usability of the device,

and falls in the design domain of the interaction and product designers.

The success of an user interface depends on the coming together of the form and functionality of

the device, and hence requires several rounds of refinement during the prototyping process leading

up to a pilot implementation. During the prototyping phase, the product and interaction designers

iterate on the spatial placement, construction, physical attributes like shape, size, texture and feel of

the exposed components of the modalities and the interaction sequence. The hardware developers

iteratively enhance the functionality of the hardware (through component and firmware revisions)

and attributes like efficiency, size and transducer design amongst others. Concurrently, the software

developers build and extend the system software toward supporting a larger set of external systems

and applications. For a successful product to be designed and realized, innovations and progress

in all the above directions are vital and a prototyping process that allows an unencumbered

development is best suited. In an ideal setting, each of the involved practitioners should be able

to modify and refine their implementation independently and progressively toward creating a

successful device.
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During the development of an interaction device, the various design domains impact the

decisions and implementations in the other domains. For example, the modifications to the

interaction device’s electronics may be brought about by the hardware developers enhancing

their design or as a consequence of iterations by interaction and product design experts. More

specifically, the changes in the positioning and number of interaction modalities requires extensive

modifications to the hardware in cases where the built-in processing power, number of available

electronic-component interfacing circuits and rigidity of the physical PCB pose restrictions. The

modifications in the hardware domain in terms of processors used and power requirements require

modifications in the firmware. Also, depending on the changes in the electrical, logical and protocol

specifications of the interface between the interaction device and an external system, the external

system software requires modifications5. The level of independence in the design process hence

plays an important role in the smoothness and speed of the prototyping phase.

In a typical UI design, considerable immunity in the software domain from hardware modifications,

and vice-versa, are extended by the use of time-tested design techniques including APIs and

abstractions in the software stack and in the firmware at the interface between the hardware and

software. Consequently, the strongest ties are encountered between the form and functionality

(electronic hardware implementation). In such a situation, the consolidation of electronic

components and processing duties leads to additional technical challenges and time penalties

as each iteration of the form and aesthetics may require iterations of hardware and firmware.

Toolkit and prototyping platform developers have consequently adopted a modular design of their

platforms.

The modular design breaks the hardware both physically into smaller components and extends

a level of abstraction due to the logical segmentation and isolation of functions. This resultant

5An interaction experience, in addition to engagement with the physical UI, also involves the software-based graphical UI on the external system,
if any. Hence, changes in the interaction experience and sequence also summon appropriate GUI software development and modifications. In this
thesis, however, we do not concern with the coupling between software and graphical UI interface design requirements on the external system front.
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freedom relaxes the strong linkages between the design realms and increases the isolation and

prototyping freedom of the various practitioners. We believe that the current level of disengagement

can be further enhanced without loss of prototype performance by carefully architecting the

modules with a different level of modularity. In the following section, we qualitatively place

the various toolkits (commercially available and currently being developed) on the modularity

spectrum and develop module boundaries of our blades.

5.2 Modular Blades

Modularization may be approached from diverse directions, however a strong causality ties

together the aim of modularization, definition of modules, method of modularization and the

measure of modularity [CC10]. Blades are modules in our system. How does one break a UI into

bladed modules? What goes into modular blades and what, if any, remains integral? Researchers

have extensively studied and written about this modular-integral dichotomy. Relevant to these

questions and speaking about products, in his highly cited paper titled “The Role of Product

Architecture in the Manufacturing Firm,” Ulrich defines a product architecture as “the scheme

by which the function of a product is allocated to its physical components” [Ulr95]. Following this

definition, Ulrich suggests a one-to-one mapping from function elements in the functional structure

to the physical components of the product. So how does one map the functionalities of a UI to the

physical blades? Towards answering these questions we consider a variety of related research in

modular product design and we will break an interface into blades in this section.

Several analytical methods have been proposed toward breaking a electronic product into

modules [BC00]. In the case of electromechanical6 systems like physical user interfaces, a

“functional structure” that is a set of sub-functions interconnected by flows is widely used [PB96].

6Some researchers argue that complete representations of mechanical and electromechanical systems are hard, if not impossible to
achieve [FD89, HK98].
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FIGURE 5.2: Number of modules and complexity. Tsai and Wang’s complexity variety in different
module types in a system. [TW99]

In this approach, the functional dependence of the various components is drawn and the system

is broken where there is a smaller set of interconnecting flows between adjacent and connected

components. This approach proceeds to reduce the coupling between components and better

separation of concerns.

VanHilst and Notkin suggest breaking a system into modules where each module encodes only

one design choice [VN96]. Based on Garlan et al.’s stand [GAO95], they argue that larger modules

are hard to reuse in part because of the number of decisions they encode. On the other hand, in an

extreme case, this scheme of partitioning can lead to increased complexity. Tsai and Wang present

the effects of number of modules on the complexity of each module and overall assembly cost of

a system through a compelling graphic as reproduced in Figure 5.2 [TW99]. They argue that for a

given system, while the number of modules is low (segmentation into modules), the manufacturing

complexity of each module (H1(M)) is high, but the complexity of assembling the system (H1(A))

with modules is low. At the other end of the spectrum, the complexity of manufacturing each

module decreases as the number of modules is increased, however the assembly complexity of the

system spikes. As a compromise, they suggest the existence of an optimal level of modularity that

minimizes the sum of the two complexity costs (H1(S)).
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Shilling shares a similar perspective and presents insightful remarks stating that as the number

of modules increases, it becomes more difficult for a user to choose appropriate components or

assemble those components into the required configuration [Sch00]. Shelling also argues that for

a system with several modules to be successful, the customer must have a great understanding

of how the components work both individually and together, and be willing to distinguish and

understand the differences in their quality, performance and functionality. Hence, as the number of

available modules increases, a greater emphasis is placed on the user, and often a balance between

integration that provides additional functionality in the form of preassembly and modularization

may have to be achieved by platform developers.

Another criteria to be considered is the answer to the question “Modularity for what?”. From a

life-cycle point of view, Gershenson et al. explore modularity toward reducing product retirement

costs, increasing product maintainability and increasing recycling output [GPA99]. They write:

“Modularity allows for the reduction of service costs by grouping components so those less reliable

components are easily accessed. In addition, grouping components into modules by how they

are recycled can greatly reduce product retirement costs”. Dahmus et al. take a similar stand

and further suggest that systems may be divided into modules such that some modules may

be made in multiple levels to offer wide variety [JDO01]. From a similar perspective, Gupta

and Veerakamolmal suggest partitioning such that the optimum cost-benefit ratio for end-of-

life retrieval is achieved [VG99]. These positions and considerations are relevant to us as we

are interested in developing user interfaces and interactive artifacts in an evolutionary fashion,

gradually upgrading and replacing parts of the interface while reducing replacement costs and

electronic wastage.

In his seminal paper, Parnas motivates the notion of a module as a “responsibility” [Par72]. Huang

and Kusiak suggest modularization such that concurrent engineering of various components may

be carried out and the development time and cost may be reduced [HK98]. Furthermore, they also
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suggest the feasibility of collaborative design through the internet by using modules created by

others. Both Parnas’ and Huang and Kusiak’s approaches suggest breaking a system into modules

such that each one of them solidifies one direction of expertise. Another important consideration

is the threshold of interactivity. While breaking a UI into modules, it is important to consider a

fragmentation where a modality or closely related modalities are not separated into modules such

that the UI user perceives a lack of fluidity in the interaction ([SJ08], pp. 274-275).

The various suggestions toward defining module boundaries discussed here present a multi-

dimensional situation of conflicting compromises. A common philosophy amongst all the pursuits

is the segregation into functional blocks with maximum self-sufficiency (minimum dependence

on other modules), and well defined interfaces and boundaries. As an interaction device engages

with our sensing and actuation abilities, we decided to look for ideas to locate these well defined

boundaries by studying human sensory and motor skills. It has been argued by neurologists [Res94,

Car98, EK01, ZCE08, MLF+09] that the different parts of the central nervous system perform

the actions of sensing, processing and responding to stimuli in a modular, parallel, independent,

interactive and interdependent fashion. In her discussions on the human brain, Rita Carter notes in

the Mapping the Mind [Car98],

“The human brain is made of many parts. Each has a specific function: to turn sounds

into speech; to process colour; to register fear; to recognize a face or distinguish a fish

from a fruit. But this is no static collection of components: each brain is unique, ever-

changing and exquisitely sensitive to its environment. Its modules are interdependent

and interactive and their functions are not rigidly fixed: sometimes one bit will take

over the job of another... The whole is bound together in a dynamic system of systems

that does millions of different things in parallel.”

We suggest that anatomically an interaction device is composed of several interaction modalities
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and related components. These modalities functionally engage with humans by sensing their

actions and generating stimuli perceivable by them through electro-* transducers7. Looking at

the one-to-one mapping between a bodily organ and the part of the UI that engages with it,

it is compelling to consider breaking a UI into self-sufficient modality-specific modules, where

the different modules engage the sensory systems one-on-one and simultaneously, as a possible

solution.

The above solution is attractive for several reasons. First, it nicely yields itself to expert

development of individual modules. Researchers, who are experts in a particular kind of interaction

modality, may develop modules extending the modality functionality. These modules can be

utilized by HCI practitioners who may be geographically separated. Multiple modules providing

the same function, with some intended differences (cost, size etc.) may be created and developed

into a library of modules (similar to [JDO01]). With an orientation toward developing blades

that isolate and extend individual interaction modalities and simultaneously keeping an eye for the

threshold of interactivity, we have developed several blades as discussed later in this chapter. In

the next section, we describe some of our design goals for blades and tiles.

5.3 Design Goals

Several architectural and functional characteristics are required of the underlying hardware-core

toward achieving the decoupling goal. These characteristics are inherited by the blades and tiles by

virtue of the embedded aggregate design. In this section, we describe these goals in the blades and

tiles context. Our goals are scalability, flexibility, re-usability and reliability of bladed hardware.

• Scalability: In blades, by scalability, we refer to the capability of adding bladed interaction

7Electro-* transducers are devices that convert from/to electrical signals.
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modalities with minimal change in architecture and implementation of the rest of the blades

and tiles system.

• Reusability: Our interpretation of re-usability has two implications.

– Hardware Re-Usability: An interaction modality built into a bladed interaction device

is not specific to the device and is readily re-used in other bladed devices. In other

words, a hardware component or hardware design can be re-used to realize the

interaction modality in different devices with no modifications.

– Firmware Re-Usability: Two interaction devices implementing a modality use

the same firmware for realizing the modality. Put differently, the firmware for

implementing a modality is modality-specific and independent of the overall interaction

device.

• Reliability: The reliability goal addresses challenges both in the context of a distributed

system and also certain issues specific to blades and tiles. Blades use a pair of interconnects

to link to tiles. The type and placement of these interconnects are the same across all blades.

Also, tiles are built with generic connectors to accept any blade. In practice, each of the

four function-blade-slots on a tile can be configured to accommodate modality-specific I/O

circuits (e.g., RFID coils, joy stick, LEDs, switches). Hence certain constraints on blade

placements are introduced by the customizations of a tile. These constraints, together with

our expectations that in-field systems will develop failures in blades due to use and end-users

bear the responsibility for replacing faulty blades with newer ones, raise reliability concerns.

By reliability, we hence refer to the system’s ability to continue working with faulty

blades, possibly with graceful degradation, and also protect against hardware failures due

to insertion of a blade in an incompatible slot.
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• Flexibility: By flexibility, we refer to architectural features that facilitate hot-swapping,

interchangeable use of blades from a library with negligible software modifications, and the

arrangement of blades and tiles in numerous patterns. Bladed systems can function as stand-

alone, independent devices, as network-dependent devices, or as clients to host PCs and

gateway devices. For instance, connectivity to a PC or external system can be provided by a

gateway communications blade. Our gateway-comm library provides blades with Bluetooth-

Serial, RS-232, and USB-Serial communication capabilities. Devices can use any of these

implementations with negligible implications on the rest of the system.

The above additional characteristics and functionalities are contributed by the blades and tiles

hardware and the system-software architecture. We now proceed to discuss the realization of these

goals through the blades and tiles hardware, firmware and software design.

5.4 Hardware

The hardware implementation of blades and tiles is motivated and guided by several factors and

considerations. These include aspects of blade size, choice of electronic components and fault-

tolerant design amongst others. In the following pages, we discuss these factors and introduce the

physical and electrical aspects of the blades and tiles hardware.

5.4.1 Blades

A blade is an embedded aggregate module that is designed in accordance to a set of specifications

including physical size, interfacing connectors, power characteristics and communications. As

independent hardware components with individual processing capabilities, blades are intended to

be created with self-sufficient specialized interaction-related functionalities and associated API

calls. Aside from power, communications, and external interactors, for which they depend on the
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FIGURE 5.3: Concept sketch of a blade. The figure shows the logical parts, and pin-outs of a function
blade. Blades contain two sets of interconnects, one generic across all blades with power,
programming, and communication pins, and the other blade specific. The circuits on a blade
comprise an intelligent processor and interaction specific circuits.

tile, they are oblivious to the electronic realization of other modalities and other blades. Complex

interaction devices are envisioned to be built using networks of blades.

Blades are composed of two types of components, as shown in Figure 5.3: a micro-controller

for local processing, and electronic components and circuits required to realize the interaction

modality. Blades currently use Microchip’s PIC series of micro-controllers, but are fundamentally

envisioned to be processor independent. Following the embedded aggregate design specifications,

each blade is uniquely identified (electronically) by a six byte ID hard-coded in a DSN chip (Dallas

DS2401).

Blades fall into three main classes as show in Figure 5.4: core, function, and resource blades.

Core blades are instances of embedded aggregate modules that primarily focus on communication

in the blades and tiles system. These modules are capable of I2C master mode and function as

system gateways and segregate the system into tile-level hierarchies. Additionally, at the tile level,

core blades ensure safe operation of the system by interrogating blade IDs before soft power-up,

detecting faulty blades and supporting active power management.

Function/interaction blades implement specific interaction modalities. They are broadly classified

as sense, actuate, and display blades. Most blades fall in this category. Resource blades implement

supporting resources to augment function and core blades. Examples include battery power,

additional memory, supporting computational capabilities and data encryption.
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FIGURE 5.4: Blades classification. Blades are classified as core, function and resource blades. The table
shows the various sub-classifications and provides brief details on the various blades.

5.4.1.1 Physical Aspects - Size and Shape

The physical size and shape of blades play an important role in their utility to the HCI

community. As the blades form the underlying core electronics for interaction devices, their

physical characteristics dictate the conceivable forms of end UIs. In a discussion on affordances of

objects [Gib86], Gibson articulates the effects of the size of an object on its graspability, writing,

“ The affordances of what we loosely call objects are extremely various. . . Some are

graspable and other[s] not. To be graspable, an object must have opposite surfaces

separated by a distance less than the span of the hand. A five-inch cube can be grasped,

but a ten-inch cube cannot. ”

Also, in their study on forms of UIs, Ullmer et al. survey and discuss the evolution and convergence

of the sizes of several tangible interfaces [UIJ05] and write,

“ For example, a number of tangible interfaces have converged on “modes” of

cubical or rectangular objects of 10cm or 5cm per side. For instance, systems

by Frazer [FFF80], Anagnostou et al. [ADP89], Suzuki and Kato [SK95], and

Shieβl [Sch02] all independently converged upon cubes of roughly 10cm/side not

far from the “five-inch cube” referred to by Gibson [Gib86]. Similarly, a number
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of token+constraint systems [UIG98] (e.g., mediaBlocks) have converged on tokens

of roughly 5cm/side. These sizes seem to reflect the anatomy of the human hand.

In classifications of hand postures by Cutkosky and Howe [CH90], the 10cm cube

corresponds to a power grasp, while the 5cm sizes corresponds to a precision grasp. ”

We share opinions with Gibson and Ullmer et al., and have hence developed blades of length

10cm, width in the multiples of 2cm and 1cm depth. We do not, however, restrict the length and

width of blades to 10 x 2cm, and expect them to be realized in sizes that are factors of the two

measurements.

For implementing interaction devices of our choice, we have found the blade width a promising

trade off of physical real estate with ability to accommodate standard components. As a specific

example underlying blade width, 2cm width will exactly accommodate a 28-pin standard-

width through-hole integrated circuit. This is the maximum width common among through-hole

components, and the size of (e.g.) the popular IB Technology family of RFID reader hybrid

modules. In cases where 2cm width is insufficient, we suggest integer multiples of width (4cm,

6cm, etc.). E.g., our stepper motor blade is 4cm wide, on account of wider driver and power

components. Overall, the standardization of the blade sizes, through the physical modularity thus

extended, knits closely with the goal of quick integration into systems and replacement by other

modules.

5.4.1.2 Electrical Aspects

Blades are an embodiment of the embedded aggregates concept. In the development of the

embedded aggregates’ design criteria, the electrical aspects of the system were purposefully left

unspecified. The embedded aggregates framework was developed to be utilized toward building

systems with constraints and features as deemed appropriate by the implementer. In the blades
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instance of the aggregates, we have implemented the electrical aspects of the systems as detailed

below.

Power

Our current implementation of blades operate with a 5v DC power supply and interface with the

communication bus at 5v TTL logic. Two channels of power are fed to the blades through the tiles,

and the channels are electrically isolated when required. The first channel (low-current) is used

as the source for the on-board processor and the second (high-current) for powering the modality

related circuits (Figure 5.3). This separation of the power sources is done toward achieving two

end goals: fine-grained power-control and prevention of loss of power to modules’ CPUs due to

faulty modality payloads in any of the blades. The second goal has special resonance with efforts

in building fault-tolerance in blades and tiles. The fine grained power control is facilitated by the

additional power control and ID circuitry housed in the tiles. Together, the power and ID circuitry

allow us to implement PC ACPI [HP04] like power states in blades and improve fault tolerance

by identification and isolation of faulty blades. Additionally, some blades themselves are capable

of performing local power management by actively monitoring and moderating power distributed

(from the high-power source) to the additional on-board circuitry.

Components

We currently build all blades and tiles with through-hole electronic components. Through-hole

components [Wik09] can be easily attached to circuit boards (PCB) by developers with minimal

soldering experience. While through-hole components have limitations in terms of size and density,

we have found that they provide considerable flexibility for prototyping and small fabrication runs.

Simultaneously, we envision smaller blades to be built with surface-mount components, with the

added advantage that they are better suited for machine (mass) assembly.

145



Interconnect

Blades connect to tiles through two 14 pin through-hole interconnects. The layout of the

interconnects and the number and order of the pins has undergone several revisions. In our

current design, we have one 14-pin interconnect common across all blades (Figure 5.3); the

other is blade-specific. The common interconnect provides linkage to power, in-tile + in-circuit

blade programming, blade ID interrogation, and blade communication. The configuration of

this interconnect has been refined over many iterations to support in-tile-in-circuit programming

of different micro-controllers with off-the-shelf programmers. Drawing inspiration from the

increasing number of communication protocols being implemented in embedded processors, our

communication-related pins are purposefully laid out to facilitate incremental improvements and

interchange between complementary communication protocols when situations demand.

5.4.1.3 Blade Evolution

As research prototypes for realizing research and pilot interaction devices, blades have undergone

several revisions, both on hardware and firmware fronts. In retrospect, the revisions were

considered to support changes in the pin-outs and adding power control features which were

progressively developed. The size and shape of the blades have remained consistent over the

iterations, however, the backward compatibility has been lost over the revisions. While initially all

the blades were developed equally, with several major revisions to ensure compatibility with the

blade ecology, later following the proof of concept phase, efforts were predominantly invested in

exploring the underlying software and firmware architectures and developing the aggregate concept

and framework. Figure 5.5 provides a brief overview on various blades and design iterations.
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FIGURE 5.5: Blades implemented. The table provides details on the various blades implemented and used.

FIGURE 5.6: Gateway communication blade - USB-RS232 protocol. Communications with external
systems are mediated by gateway blades. This figure shows a blade that extends the ability to
connect to an external system using USB-RS232 protocol. The blade implements USB slave
profile using a FTDI chip.

5.4.1.4 Example Blades

Gateway Communication Blade

Gatewaycomm blades act as the protocol translators to enable blades and tiles systems to

communicate with other hardware systems. In certain incarnations the gatewaycomm blade

doubles its role also as a blade performing message routing internally in blades and tiles system.

From a responsibility point of view, the gatewaycomm blade then assumes the role of a conductor

and an orchestrator.
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FIGURE 5.7: Intra-Communication blade. Shown here is an intra-communication blade implemented
using a PIC 16F876A processor. The through-hole constraint led to the use of a
microcontroller with a single I2C port. Hence in order to serve on two I2C buses, this design
of an intra-communication blade utilizes two pairs of switches to multiplex the buses with
the port. The module time-multiplexes between the buses and can also bridge the two buses
while being transparent to the communication.

Intra Communication Blade

Intracomm blades, also called the dual-comm blades, perform communication routing functions

in a blade network. Attached to a tile, they are responsible for tile level control, communication,

power optimizations and fault tolerance. Intracomms, along with gatewaycomms, form the active

components of the communication and control network that enables the other blades to coordinate

their actions and cooperate in achieving concerted system level functionalities.

As discussed earlier, several other blades have been realized, tested and used in our UI research

prototypes. Toward encouraging and fostering development of blades by a larger community of

developers, basic blade PCB schematics incorporating a variety of processors is expected to be

realized in the future. These schematics will have the connections between the embedded processor

and the communication + programming interconnect routed. Blade developers can begin their

development from this seed PCB, implementing circuitry specific to the envisioned modalities

on them.
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5.4.2 Tiles

In our envisioned use cases of blades, we often found them being pursued as clusters of blades

rather than individual modules. In a discussion on the abacus in his doctoral thesis [Ull02], Ullmer

observes,

“ . . . the pragmatics of mobility and managing numerous physical elements eventually

pushed the abacus to a system of captive beads, abacus tokens remained discrete and

spatially reconfigurable for much of the device’s history. ”

This evolution of the abacus has interesting implications for the blades and is partly inspirational

to the tile based approach of grounding and packing blades together. One might recall that in

our discussion on the embedded aggregates, the details on the physical implementation of the

communication fabric was left unspecified. We can implement this fabric and connect the modules

using a set of cables, however, in the blades version of the embedded aggregates, we realize the

communication fabric using physical PCBs called Tiles. A tile is a piece of electronic hardware to

which blades are affixed. Tiles typically contain no processing components and act as substrates

providing power, communication and control circuits for the operation of the blades. As UI

prototyping elements, tiles (Figure 5.8) also form the meeting ground between the electronics

and tangible components underlying specific interaction modalities (e.g., switches, LEDs, rotary

encoders) and the blades (functional components) supporting their underlying implementations.

Tiles incorporate three kinds of electronic elements: circuits for blade management and control

(e.g., blade connection headers, power control and distribution), circuits that implement tile

specific electronics (e.g., tile ID, tile interconnects, power converter, debug circuits) and underlying

blade supported modality specific components (typically interactors like RFID coils and LEDs).

Table 5.9 provides further details on various tiles and design iterations. Drawing inspiration
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FIGURE 5.8: Bottom of a Tile. The underside of a tile houses the tile specific circuits consisting of blade
management, communication and power circuits. This tile has been designed with some
perforated PCB space for rapid prototyping.

Sheet1

Page 1

Tile Comments

1

2 Power control version 1.

3

4

1 None.

1 None.

Major Hardware 
Revision

Major Feature 
Changes

Access tile type 1 – 
PCB designed

This is the primary tile design. Other 
tiles are created by modifying the 
modality specific circuits and 
components.

Basic tile with four function 
blades.

Intra-comm blade added, 
communication hierarchy 
introduced.

Power control version 2. Tile 
interconnects, tile status LEDs, 
blade ID and control circuits 
revised.

Access tile type 2 – 
PCB designed

Implemented by reproducing the 
LED and switch specific circuits of the 
switch-LED blade in a different blade 
slot from type 1 access tile. This 
change required limited firmware 
changes.

Rotor tile – ad hoc 
realization

Realized by drilling a hole in the 
center of access tile 1 and attaching 
a haptic rotor. The haptic rotor blade 
was quickly introduced into one of 
the empty blade slots.

FIGURE 5.9: Tiles implemented. The table presents details on the 3 types of tiles we have realized. A
brief detail on the iterative feature changes is also provided.
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FIGURE 5.10: Tiles and Spines. Three generations of access tiles and two generations of spines are shown
here. The exposed side of the boards where the blades are attached are shown here.A. The
first version of the access tile lacked power control circuits. B. The third version of the
access tile incorporates individual blade slot power switch. The switches are controlled by
the intracomm on the tile and together with DSN interrogation circuits, limited hardware
level fault tolerance is realized. C. The changes in the fourth version of the access tile
includes physical and electrical redesign to accommodate mounting screws and right-
angled connection headers for tile-tile interconnects. D. A full-spine to which two chains
of hardware rev. 4 tiles can be connected. E. A half-spine that accommodates one chain of
hardware rev. 3 tiles.

from DataTiles [RUO01], tiles are prototypically 10x10 cm, accommodating blades that are

prototypically 10 cm long; 2 cm wide; and 1 cm deep. This size affords composition of multiple

tiles in sizes that are ubiquitous. For example, the foot print of a 2x2 tile arrangement with a full-

spine (Figure 5.10-D) holding them together, fits a letter size paper. These size relationships open

up several avenues in the HCI context as discussed by us in [UDS+10].

The blades and tiles hardware is designed to facilitate addition and removal of interaction

components, both at the blade & tile levels of granularity. We employ a pair of 70 pin female

headers to both electrically connect and mechanically attach blades to tiles. Five blades connect to

these connectors with their two sets of 2x7 male headers. Tiles are designed to be chained together,

a feature that may be used for creating interaction devices. Each tile connects to one tile on its left

and one tile on its right through two sets of interconnects for each tile-to-tile linkage. Our initial

tile design employed USB connectors (Figure 5.10-[A-B]) for interlinking them through which
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USB, I2C, 1-wire bus and DC power were run from one tile to another. In the newest revision of

the tiles (Figure 5.10-C), however, we use right-angled 4 x 2 male-female breakaway headers. Our

earlier choice for the USB connectors was motivated by their ubiquitous nature and our expectation

of plugging tiles individually to PCs. However, since then, our usage contexts have converged

toward matrices of tiles, and we developed spines that allow us to arrange one (Figure 5.10-E)

or two (Figure 5.10-D) rows of tile chains. Additionally, the USB connectors exhibited data and

power glitches induced by mechanical stress when the tiles were held by physical constraints in an

interaction devices. The above convergence toward a tiles+spine based UI development led to the

displacement of the USB connectors by the 4x2 headers, a choice that has also doubled the number

of inter-tile conductors.

5.5 Firmware

In the blades and tiles setup, all processing power is located on the blades, with the tiles only

containing some supporting active and passive electronic components. The firmware of a blade

can be divided into two parts. First, there is the blade-specific portion implementing the blade’s

functionality and API. The remaining portion, called the base firmware, assembles communication

capabilities like I2C, RS-232, 1-wire etc., implements the embedded aggregates protocol and

mechanisms, provides structure to the firmware and dictates the flow of control in the firmware.

Over the years, we expect several base firmwares to be created for different processors and

architectures in various programming languages.

Blades are envisioned to be developed in large numbers, individually by hardware and

sensor/actuator experts. At the hardware level, in addition to creating the blade, the experts will be

required to create the blade-specific portion of the firmware and utilize the base firmware of the

specific micro-processor platform toward assembling the machine code for the blade.
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FIGURE 5.11: Function Blade firmware architecture. The firmware of the blade utilizes hardware
and timer interrupts to time-slice and switch between tasks. We have written firmware
communication modules in C that extend I2C , RS-232 and 1-wire capabilities,
protocol modules that implement embedded aggregate protocol stack, modules that
implement communication buffers, and PIC micro-controller specific headers with pin-out
customization for blades. A developer of a new blade can utilize these modules, and compile
the firmware for a blade after implementing the blade specific function calls.

5.5.1 Architecture and Implementation

The organization and flow of control in the firmware allows a function blade to spend the majority

of its time performing its core functionality. The communications over the I2C network and the

separation of communication packets received into blade-specific and aggregate-protocol related

categories are performed using hardware and timer interrupts. Figure 5.11 shows the important

portions of the firmware stack. A function blade, on power-up undergoes a blade recognition and

initialization phase, at the end of which it is provided a protocol address. During the initialization

phase, blades generally perform no core functionalities and the messages sent and received on

the I2C bus are embedded aggregate protocol related packets. Post-initialization, blades are able

to perform their core functions, intermittently interrupted by communication or timer interrupts

toward receiving data packets and processing them. We utilize linear or circular arrays toward

implementing the internal send and receive communication buffers.
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Blade firmware has been written in C language using CCS’s proprietary compiler [CCS09] for

PIC Micro-Controllers. With modifications (primarily I2C and RS-232 communication calls), the

code could be made compatible with other C compilers, both for PICs and other architectures.

We have divided the firmware into modules that implement the various communication protocols,

embedded aggregate mechanisms and manage micro-controller specific initializations and setups.

The firmware architecture for the communication blades (gateway and intra-comm) differ from

that of function blades in a limited fashion and implement additional control related mechanisms.

5.5.2 Embedded Aggregate Communication API Calls

The communication API is defined in the core communication library. This library provides

both basic usb-serial, bluetooth-serial, I2C and RS-232 primitives and API calls to support

the embedded aggregates protocols and mechanisms. In the internal distributed communication

context, primitives like send, receive, broadcast, and fetch are provided. To illustrate, a message

is sent to a function blade by a core-communication blade by using the sendToBlade API call as

follows.

...
sendToBlade(whichblade,message)
...

The receiving function blade is interrupted by the delivery of the message and processes the data

through its local message dependent API calls.

5.5.3 Blade Function API

In addition to the aggregates communication API, blades firmware is written to support function

API. The function API is composed of standard calls and calls specific to a blade (not instance of

a blade). The standard calls include blade hardware and firmware version, blade hardware id, and
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blade power control amongst several others. The blade specific calls expose the modality specific

calls supported by the blade. For example, these include calls for various LED patterns supported

by the Switch-LED blade, a call for reading a particular RFID or to a call to generate a haptic

feedback pattern by the haptic rotor blade. To illustrate with an example, the following are two of

the API calls specific to the switch-led blade.

...
setLedOff(whichled)
pwmLed(whichled)
...

To summarize, over 26 different standard API calls have been implemented, which provide the

mechanisms to realize the distributed design paradigm and provide the skeleton to support many

blade specific API calls. The API calls have been revised twice since the earliest calls were

designed in 2006. The standard and common API calls are implemented in over 1000 lines of

C code in firmware, and about a similar LOC of python in software. Including the blade specific

libraries, over 4000 lines of C code has been revised over three revisions of firmware development.

5.6 Software

Software is an important part of every UI, and in the case of physical UIs, system software plays

an important role in integrating the physical UI device to programs, applications and data on the

PC to which it is attached. The architecture of the system software plays a very important role in

the blade+tile based interaction devices toward realizing the decoupling goals and has undergone

several iterations. These have supported interaction device research; four semesters of class use;

and applications to several end-user contexts, including co-located and distributed collaborative

visualization and microscopy imaging. For portability, system software has been written in Python,

Cython, Tcl, and Java.
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We have observed our software converging toward two distinct modes of usage. The first

implementation mode couples bladed hardware as mixed hardware/software library elements of

medium- to high-end computational systems. The second combines blades as library elements for

small computational systems – e.g., as function-specific co-processors for Arduino, Rabbit core

modules, or other micro-controller-based systems. Thus far, our efforts have concentrated on the

first mode of use. This typically takes the form of integration with a supporting PC or gateway

computer.

The software stack for blades has several functionalities and responsibilities, some of which

concern themselves with communicating with the bladed system, and others that allow integration

and connection of bladed interaction devices with other applications in the system. This thesis

work limits itself to the portions of software to the extent of being able to support communication

with interaction devices made of several blades. In this section, we will describe the current

architecture of the software stack, whose specific design is vital to the decoupling vision, with

particular emphasis on the mechanisms closer to the hardware device.

Broadly speaking, we wish to support a blades and tiles ecology where hardware developers can

create new blades that are rapidly integrated into other bladed systems. Particularly, we envision

a situation where blades are developed by hardware experts, supported appropriately by software

architects and quickly integrated into an interaction device by the product and interaction designers.

Towards accomplishing this vision, a software stack for blades has to extend the flexibility to

recognize the blades, initialize the modalities as part of an interaction device and communicate with

the blade toward accomplishing modality related tasks. Currently, we are progressively converging

toward a layered software architecture with blade specific software modules.

Computer software for blades is split into 4 layers as shown in Figure 5.12. At the lower levels

consisting of Layers 1 and 2, we have implemented a device driver and blade interpreter tasked
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FIGURE 5.12: Computer software stack for interfacing blades and tiles. The software is developed
in four layers. As part of this thesis work, layers 1 and 2 were designed and are being
developed.
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with exchanging raw data with a blades+tiles interaction device. In the next level at Layer 3,

the service layer involves a tangibles interaction server which collects and redistributes events

to the appropriate target applications. We are also implementing additional services including

session handling, and management + coordination models for interaction devices and the target

applications to which they are bound at the application layer at the top of the stack at Layer 4. The

software contributions as part of this thesis are in Layers 1 and 2.

5.6.1 Layer 1: Raw Device Driver Layer

Layer 1 is closest to the hardware and implements low level communications for interacting

with bladed systems. In a bladed system, following the embedded aggregates design, the

communications with a PC or external device is mediated by a gateway-communication blade.

These blades implement a growing number of communication protocols including USB, RS-

232, Bluetooth and 802.11 family of protocols. Layer 1 establishes communications with bladed

systems through the appropriate protocol and provides access to them using unified system level

INET and Unix domain sockets.

The means for connecting to blade gateways using the various protocols are implemented in

protocol specific software modules that are dynamically linked (.so unix files). The modular

approach toward implementing protocol support allows hardware developers to rapidly develop

new communication blades and promote them in software by implementing an appropriate

communication software module. For example, we implemented USB-Serial and Bluetooth-

Serial software communication modules which are used in the layer for accessing data from the

appropriate blade gateways. The modules use low level system kernel interrupts and messages

(inotify [Lov05, Dow], knotify etc.) to detect newly connected devices and establish connections

with gateway communication blades.

The various software communication modules exchange data with the gateway blades by
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packaging the blade message packets appropriately as dictated by the underlying communication

protocol. The message packets follow the embedded aggregate message packet format. On

acquiring the data from the hardware device, the modules present them as packets to an

asynchronous socket module that implements INET and domain sockets. The socket module

advertises new devices and presents a socket through which Layer 2 can connect to the device.

Similarly, messages received by the socket module are passed to the communication modules and

finally to the device. The software is split at this level as we envision Layer 1 to be run as a system

level process that exposes aggregate based hardware in a unified fashion to other processes in the

system.

5.6.2 Layer 2: Blade Interpreter

The design of the Layer 1 of the software stack supports the disentangled development of gateway

blades. Placed between the interaction server at Layer 3 and the device driver at Layer 1, Layer

2 performs the task of converting message packets into interaction events and vice versa. The

Layer 2 design plays a significant role in achieving considerable hardware developer flexibility

and its design is closely related to the blades and tiles hardware architecture. Following the

modularity principles, Layer 2 implements blade specific dynamically linked modules toward

communicating with individual blades. Each blade specific module implements the blade specific

API and interprets the data from the blade and packages data in blade specific packets.

In short, Layer 2 consists of a protocol interpreter that parses the embedded aggregates data packets

sent by the device. The packets arriving from the device are broken down into individual blade

specific sub-packets. The individual sub-packets carry the address of the blade software module

in the embedded aggregate protocol address format. The address of the blade software module is

equivalent to the protocol address of the blade prefixed with the reserved external gateway port

address. This extension of the aggregate protocol addressing into the software realm abstracts
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communications with both hardware blades and software modules. The blades are hence oblivious

to the physical or virtual nature of external entities with which they communicate. The protocol

interpreter on decomposing the data packet, passes the appropriate sub-packets to individual blade

specific modules determined by the address. The interpreter additionally also delegates the function

of fetching and loading blade specific modules when presented with the information of a new blade

following the discovery process. The module associated with a blade and other blade details are

specified in an XML file identified by the unique ID of the blade.

API

The software API for Blades consists of a set of both standard calls common across all bladed

systems, and calls specific to the function blades that make the particular bladed instance.

The standard calls include system discovery, initialization, blade authorizations, communication

bandwidth setting, system reset, and data send and receive among others. These calls are

implemented in Layer 2 of the software stack. On the hardware side, these calls are implemented as

part of the API of the gateway-comm and additionally in any other communication oriented blade.

The blade specific software calls closely follow the appropriate blade functional API and provide

a means for triggering blade functionality and digesting the data produced by a blade. These

data/commands/requests may include replies to commands previously sent, status messages, input

events sensed by the blades and commands to output using the blades. To illustrate how blade

specific software API is generated from the firmware API, let us take the example of a Switch-

LED blade. In our current implementation, a Switch-Led blade supports the following unique C

firmware function:

...
setLedOn(whichled)
...
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This function in firmware sets the appropriate LED on. To trigger this function in a Switch-LED

blade, we send a packet of message with the identifier for the particular LED. It has to be noted

that this message does not exactly contain setLedOn(whichled) in ACII in the data segment, but a

simplified binary equivalent comprising of 2 bytes. The first byte represents the operation ‘set led

on’ and the second byte represents the appropriate LED.

On receiving the message with the 2 bytes of data, the functions implemented in the switch-LED

blade’s base-firmware pass the data to the portions of the firmware that interpret and perform the

blade/modality specific functions. The blade specific function handler has to trigger the appropriate

LED on receiving this message. It is expected that the blade hardware and firmware developers

provide details for the above blade specific call, like the parameters, order of parameters and binary

data format of the particular function. The software developers subsequently implement software

calls based on those details.

Given the one-to-one communication between the software and a blade, the blade address and

the firmware API call are packaged together into a software API call in our implementation. For

example the setLedOn call is translated to the following software API call:

...
setLedOn(whichSwitchLEDBlade, whichled)
...

Software and application developers who interface bladed interaction devices to applications on a

computer may use this call to switch on the appropriate LED connected to a particular blade. This

function is exposed by the blade-specific module in Layer 2. On calling this function, the blade

specific module generates the above 2 bytes of data that will trigger the action in the appropriate

blade and packages it in a complete embedded aggregates message packet. This packet is passed

town to the Layer 1 of the software stack using the following call.
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...
sendToBlades(message packet of setLedOn(whichBlade, whichled))
...

On receiving the data pushed down by the above call through the connections between the layers

1 and 2, Layer 1 either sends the packet to the bladed device. The packet may be sent as such

or by combining several packets together and creating a compound packet. The packet is sent by

the Layer 1 of the software stack to the gateway of the bladed system through the appropriate

communication means (USB, Bluetooth etc.) with the help of the associated protocol module.

On receiving the data packet, the gateway blade sends the packet (after extraction and repackaging

in the case of a compound packet) on the I2C bus with the appropriate Switch-LED blade marked

as the destination. The command below accomplishes the transfer by calling appropriate lower

level I2C commands.

...
sendToBlade(message packet of setLedOn(whichBlade, whichled))
...

On receiving the setLedOn command packet, the blade powers the appropriate LED ON,

completing the chain of transmissions. During the process of transmissions like the above, the data

packets may pass through several levels of bladed hierarchies and may require the invocation of

additional functionalities of the intermediary bladed modules. The software stack is currently being

extended to implement several calls toward supporting communication across multiple versions of

underlying protocol and bandwidth heterogeneities.
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5.7 Summary

User interaction with computing systems is today largely carried out through virtual graphical

interaction venues, physical interaction modalities or a combination of them. The emergence

of electronic hardware prototyping tools and user interface toolkits has reduced the prototyping

and design times of electronic user interfaces and interaction artifacts. They have done so while

leveraging on pre-built components, instead of building the underlying electronics from the

basic circuitry. Over the years through the advancements in these toolkits, interface hardware

development has been made much more accessible to non-electrical engineers such that they can

build electronic hardware without knowing the very microscopic details of the system. Following

the path of these developmental aids that provide methodologies for easy and more intuitive

hardware development, we have designed and developed blades and tiles.

This Chapter introduced and presented the rationale behind the blades and tiles approach. The

design of blades and tiles has involved careful considerations of several physical, electrical and

hardware realization aspects. As a system, this toolset comprises of electronic implementations

of various blades and tiles, firmware executed on blades, system software for interfacing bladed

devices to computers and the embedded aggregates protocols and mechanisms.

We believe that the concept of a blade and a tile, firmware with user-sandbox, the concept of

blade level APIs and a modular software-stack are among the core conceptual contributions in this

Chapter. Consequently, this Chapter described in detail these core ideas and principles through

examples and illustrations, while restricting discussions on the implementation aspects of these

concepts. Furthermore, the blades and tiles system is an ongoing work and certain parts of the

software stack and firmware are at varying levels of completion. While all implementations to

support this thesis and its claims have been performed, several of these implementation pieces are

at varying levels of cohesion with other parts. Consequently, the completed software stack and
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firmware are not claimed as primary contributions of this dissertation work. It is expected that the

ongoing work on blades and tiles will soon lead to a finished tool-set for use by the HCI – and

hopefully, broader communities.

164



Chapter 6

Conclusion

This is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.

Sir Winston Leonard Spencer-Churchill

With computers and computationally mediated systems becoming ubiquitous and indispensable

in modern society, electronic user interfaces and interaction artifacts have come to increasingly

occupy the physical space around us. These interfaces may be generic or specialized for a particular

use-case, or designed especially for use in specific environments. Independent of the reason for

their deployment and use, they all undergo similar steps of design and development. This process

typically demands several iterations of the UI’s form and functionality toward maturing the design.

The realization of a successful electronic user interface or interactive artifact needs the intervention

and synergistic participation of practitioners of a diverse set of sciences and engineering.

Currently in the academic research community, physical user interfaces and interactive artifacts

are predominantly designed and prototyped either as one-off instances from the ground up, or

using functionally rich hardware toolkits and prototyping systems. Like several other fields of

research pursued by academicians, this prototyping aspect of interface realization has continued

to foster research and advancement on account of both domain specific breakthroughs and due

to innovations in the related areas of science and engineering. Motivated by challenges in the

realization of specialized user interfaces incorporating several hundreds of interaction elements and

in the pursuit of further enhancing the freedoms of various researchers in the prototyping process,

this thesis work has made advancements and claims contributions as discussed in the following

section. These contributions are spread across the specializations of HCI, computer networks and

embedded systems.
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6.1 Research Contributions

The contributions of this dissertation research are as follows.

• We identify the need for and motivate the use of an alternative modular hardware approach

towards realizing highly specialized user interfaces and interaction artifacts.

• We introduce the concept of embedded aggregates, and we identify and characterize this

class of systems.

• We present a holistic design of the embedded aggregate framework and develop a set of

communication protocols, specifications and mechanisms that provide the foundations for

realizing the aggregate class of systems.

• We develop an instance of the embedded aggregates called blades and tiles for use in

the design and development of user interfaces and interaction artifacts, with aspirational

generalization toward wider domains of application.

In short, this research has the following components.

• Physical, logical and electrical descriptions for developing a modular electronic hardware

toolset and a library of such modules aimed toward UI design and prototyping.

• Communication protocols for realizing such a toolset with heterogeneous modules. This

involves the design of the communication protocol suite with a holistic view including

optimizations across the physical layer, MAC, and a compound datalink-transport layer.

• Algorithms and mechanisms toward realizing such embedded systems as open-ended designs

with the core principles of scalability, flexibility and hardware-firmware reusability.
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• A system software architecture for tethering electronic systems built using the multi-module

framework to personal computers.

6.2 Future Work

This research work led to the design of a new I2C based communication protocol suite for use in

the embedded aggregates class of systems and the development of the blades and tiles modular

hardware platform. In the process of design and development of these entities, we have learned

several lessons, gained insights and have identified some future work directions. While some of

these directions are more concrete and can be accomplished in the near term, a couple of them

look far beyond into the future. In the following paragraphs we describe some of these future

directions.

To begin with, on the blades and tiles hardware front, a few future design and development avenues

look promising. Our current blade implementations primarily use Microchip’s PIC16F87 and

PIC16F876A. We have focused our hardware development efforts predominantly toward refining

the design of the total system and implementing needed functional submodules on demand. Having

produced a scalable and stable design, we have begun developing a new set of blades including a

battery blade, Gumstix blade, slider blade, analog/digital blade among others.

Additionally, building on observations of other toolkits, we are considering blades based on AVR

micro-controllers, ARM processors, and embedded Linux systems such as the Gumstix family of

modules. Bladed systems in the future may include heterogeneous modules in terms of processing

power, RAM, ROM and OS. These efforts will also require the development of firmware libraries

and software libraries implementing the embedded aggregate protocols and mechanisms for the

various processor architectures.

Another hardware level future work can be in the direction of increasing the scaling in blades. In
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the current form of the blades and tiles hardware, we have successfully tested networks of ∼40

blades and a dozen tiles. For broader scaling, we believe the use of multiple power sources and I2C

bus isolation+extension using repeaters could provide possible paths forward. The pursuit of these

two directions can lead to larger bladed networks that incorporate a wider variety of embedded

processors.

The embedded aggregates framework is built upon the I2C communication protocol. We chose

I2C on account of it being widely implemented in a multitude of microcontrollers. However,

the I2C protocol implemented in several microcontrollers does not support both the 1 Mbit/s

Fast mode plus and 3.4 Mbit/s High Speed mode. Furthermore, in our experience with the

microcontrollers, we encountered a lack of completeness in the implementation of the I2C

specification. Consequently, we designed the protocol stack to overcome some of the issues relating

to the varying levels of protocol implementation and accommodate a wider variety of processors.

However, this capability comes at the cost of performance. During the course of this thesis research,

in parallel, protocols like SMBus [For03] and PMBus [Sys07] have been developed by others

based on the I2C specification. These new protocols demand stricter hardware implementations

and introduce functionalities that are very useful in the aggregate context. As these protocols find

their way into many new chips, perhaps a transition from I2C can be made in the future with the

added advantage of improved performance and more functional support at the hardware level.

Necessity is a powerful driver of innovation. In this thesis work, we have demonstrated the

advantages and effort required toward developing the embedded aggregate class of systems. Given

the applicability of the aggregate class of systems, it may be an useful exercise to design and

develop an entirely new physical layer protocol in place of I2C and its variants.

Another direction worth exploring is the use of RF based wireless communication between

aggregate modules. In the chapter on the design of embedded aggregates, we argued for the
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use of wired communication protocols in order to reduce the cost, power supply requirements

and complexity of the individual modules. Over the last five years, during the course of this

research, the cost of implementing wireless communication has steadily decreased. With the

advent of software radios and ZigBee communication modules, the prospect of integrating wireless

communication capabilities to aggregate modules is becoming more viable and inexpensive.

In the future, embedded aggregates could be an amalgamation of processors of heterogeneous

capabilities and communication capabilities. In the current form, several of the packet structure

and routing decisions in the embedded aggregate protocols have been made based on nature of the

underlying I2C communication infrastructure. These design decisions and mechanisms may have

to be modified when used with wireless communication protocols as the protocols may intrinsically

implement several of these features.

How might future blades look and function? How many blades would a futuristic blade cluster

contain? Blades could take a variety of forms, including transitioning into the chip die or assuming

nano-scale sizes or becoming an order of magnitude larger. In their current form, blades and

tiles design has exploited the advantages of modular hardware design only outside a chip (using

aggregates of chips). The emergence of IP cores and associated interconnection standards like

Wishbone [H+02], Avalon [Alt11], AMBA [ARM99] and IBM CoreConnect [IBM06] show

promise of extending the blades and tiles designs to inside a chip.

With the development of more efficient cross-compilers, place-and-route algorithms and cheaper

and easily programmable FPGAs and Hybrid-FPGAs, one may be able to switch between bladed

modules with independent processors to bladed modules within a chip. A tool-chain may be able

to synthesize our embedded aggregates firmware into a IP cores or byte-code or a combination of

the two, and usable within diverse DSPs, heterogeneous multi-cored processors, FPGAs, Hybrid-

FPGAs, stacked die ensembles or other emerging architectures expressing diverse computational
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functionalities. This direction can open many avenues of possibilities and make the blades

applicable in a wider variety of contexts.

This research exercise on communication protocols aimed to develop a lightweight protocol and

communication infrastructure that was tractable by the wide range of processors envisioned for

use in embedded aggregates. Moving into the realm of nano-scale blades may perhaps require

much more modest and efficient protocols and ways to accomplish addressing and communication

amongst amongst millions, billions, or perhaps far larger number of nano-blades. This seems a

challenging and interesting direction, and research is already underway in the pursuit of such

networks [Aky08].

Beyond the above described directions, universal communication [Jub08b, Jub08a] and open-

source hardware are two interesting future pursuits. The openness of the embedded aggregate

communication infrastructure and the notion that each module acts independently and in a peer

fashion in the system, provides a good starting point for both these directions. In terms of

universal communication, we envision a scenario wherein blades with minimum knowledge about

one another and armed with only primitive communication mechanisms, form a network and

develop mutual communication amongst each other, to accomplish larger tasks and form systems

synergistically. In this regard, pursuing the routes similar to the Open Mind Common Sense

project [Sin10] too can be interesting.

On the open-source hardware front, we envision the creation and sustenance of an ecosystem

of hardware modules that can be connected together to create open systems. This begs for

further extension of the aggregate protocols and mechanisms, and also extension of module

implementation standards. To understand this scenario, let us compare it with open source Linux

distributions (ex. Gentoo, Ubuntu, Slackware). On can find the following parallels. First, the

hardware modules are akin to software and applications that take advantage of the OS and provide
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useful functionality. Second, the hardware framework is similar to the OS itself and extends

the basic infrastructure for communication between modules, and supplies power and other vital

resources. Finally, the collection of modules together assume the notion of a Linux distribution.

Can we foster a Linux like open source platform for hardware? A platform that is open to new

modules developed by developers all around the world, a platform that comprises of open firmware,

software, hardware and interconnect (protocol and physical interconnect).

6.3 Closing Remarks

Blades and tiles have invoked and reduced to practice the conceptual and theoretical work on

embedded aggregates and embedded communication protocols in this dissertation. In response

to a National Science Foundation (NSF) Major Research Instrumentation (MRI) proposal

in 2005 aimed at creating a new architecture for building interaction devices and scientific

instruments [Ull05], research in blades and tiles was undertaken during the early part of the

graduate research leading up to this thesis. Our pursuits toward creating an electronic base capable

of supporting the creation, and progressive refinement and retirement of generic and application

specific user interfaces for computationally mediated scientific applications necessitated the use

of a modular approach that differed from the concurrent approaches in user interface design and

prototyping electronics.

Using a hardware architecture that embraces bus modularity has seemed to best support our

interaction devices and interfacing artifacts. Achieving the bus modularity with electronic modules

specifically designed to provide a certain interaction-related functionality has been a formidable

challenge undertaken and accomplished in this dissertation research. The creation of blades and

tiles with specific properties has required us to design and implement embedded communication

protocols to a far greater extent than initially envisioned at the time of the NSF MRI research
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proposal 1. In the middle stages of this thesis, there was motivation toward open source release of

bladed electronics, source code for communication libraries and system software in the interest of

creating a community of developers. However, due to time and technical constraints such a release

and efforts on organizing an initial developer group have strategically been deferred thus far, with

recent steps taken to probe new activity in this direction.

Across the duration of these dissertation/thesis efforts, primarily due to the efforts of the

dissertation author and with ample support from several graduate and undergraduate researchers,

several blades and bladed interaction devices have been created and deployed. Other than use

in user interface and tangible interaction research, blades and tiles have been employed in four

installments of an undergraduate level HCI and embedded systems course focused on developing

novel interaction devices. In their various hardware, protocol, firmware and software revisions,

blades and tiles have been used by about roughly hundred students to create and demonstrate user

interfaces towards various end applications. Students have worked at various levels of the blades

and tiles system including developing new hardware blades, blade-specific firmware and software

stack for interfacing bladed devices with other applications. The blades and tiles system is currently

under active development in the areas of hardware, system software and protocol implementation

in firmware for Microchip PIC processors.

Rapid technology change and low initial cost coupled with product life-cycles as low as 18

months and planned obsolescence have resulted in a fast-growing surplus of electronic waste

around the globe [MPS03, KS05, WOKSK+05]. Economies of mass production have dictated

producing PCBs with minimum physical components, often involving chips that package almost

all functionality of the device inside them. This high density circuitry, often with components, easy

to produce, but hard and toxic to recover and recycle, is leading many countries to pass e-scrap

laws. Furthermore, the changing global economic scene, environmental awareness and concerns

1In the initial proposal submitted to NSF in 2005, the word firmware appeared two times and the word protocol was never mentioned.
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may soon lead to the creation of mandates that dictate the production, lifetimes and the right to

own electronics.

Our modular design allows replacement and augmentations in parts, bringing with it a greener

solution to building emerging interfaces. The amortized cost over the life cycle of the product,

reduced waste footprint and its environmental impact can substantially outweigh the relatively

high initial production costs. Recycling and reuse are very important for our own survival. Given

enough time, Earth finds a way to chew and digest everything ever produced, however, the millions

of years taken for their assimilation may prove fatal to us.
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