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Abstract
Over the years, scientific applications have become more complex and more data intensive. Although

through the use of distributed resources the institutions and organizations gain access to the resources

needed for their large-scale applications, complex middleware is required to orchestrate the use of

these storage and network resources between collaborating parties, and to manage the end-to-end

processing of data. We present a new data scheduling paradigm with advance reservation and pro-

visioning. Our methodology provides a basis for provisioning end-to-end high performance data

transfers which require integration between system, storage and network resources, and coordina-

tion between reservation managers and data transfer nodes. This allows researchers/users and higher

level meta-schedulers to use data placement as a service where they can plan ahead and reserve time

and resources for their data movement operations. We present a novel approach for evaluating time-

dependent structures with bandwidth guaranteed paths. We present a practical online scheduling

model using advance reservation in dynamic network with time constraints. In addition, we report a

new polynomial algorithm presenting possible reservation options and alternatives for earliest com-

pletion and shortest transfer duration. We enhance the advance network reservation system by ex-

tending the underlying mechanism to provide a new service in which users submit their constraints

and the system suggests possible reservation requests satisfying users’ requirements. We have stud-

ied scheduling data transfer operation with resource and time conflicts. We have developed a new

scheduling methodology considering resource allocation in client sites and bandwidth allocation on

network link connecting resources. Some other major contributions of our study include enhanced

reliability, adaptability, and performance optimization of distributed data placement tasks. While de-

signing this new data scheduling architecture, we also developed other important methodologies such

as early error detection, failure awareness, job aggregation, and dynamic adaptation of distributed

data placement tasks. The adaptive tuning includes dynamically setting data transfer parameters and

controlling utilization of available network capacity. Our research aims to provide a middleware to

improve the data bottleneck in high performance computing systems.
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Chapter 1

Introduction

We are witnessing a new era that offers new opportunities to conduct scientific research with the help

of recent advancements in computational, storage, and network technologies. Scientific experimental

facilities generate massive data sets that need to be transferred to remote collaborating sites. In or-

der to provide high-speed on-demand data access between collaborating institutions, next generation

research networks have been deployed for predictable performance and efficient resource utilization.

Although through the use of distributed resources the institutions and organizations gain access to the

resources needed for their large-scale applications, complex middleware is required to orchestrate the

use of these storage and network resources between collaborating parties, and to manage end-to-end

processing of the data. In this study, we propose a new data scheduling paradigm in which data move-

ment operations are scheduled in advance with a preferred time constraint given by the user, stating

the earliest start time and desired latest completion time. Dealing with particular time windows during

scheduling of data transfer operations enables the scheduler to make more accurate decisions satis-

fying user requirements (such as deadlines, priorities, end-to-end performance, efficiency, and other

requirements).

1.1 Motivation

Data management has perpetually remained one of the crucial problems in every stage of computing,

from micro (CPU chip design) level to macro (Internet and Grid infrastructure) level. Accessing data

in a transparent and efficient manner is a major issue, in operating system design, in microprocessors,

and in supercomputers [76]. However, other issues come into play in a data transfer paradigm of large

scientific data sets between geographically separated resources. Data movement tasks are managed

by a separate component in which transfer requests are ordered for better utilization and scheduled
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for performance and reliable completion of the given tasks [24]. The dynamic nature of interconnects

between collaborating sites, heterogeneity of resources, and client/server side capacity bottlenecks

(such as memory, CPU, storage capacity) necessitate provisioning (preparing network, server and

client before initiating a data transfer operation for desired transfer throughput) for efficient resource

utilization and performance.

A very simple use case can be explained as follows. Consider a scientific application which

generates immense amount of simulation data using supercomputing resources. The generated data

is stored in a temporary space and need to be moved to a data repository for further processing or

archiving. Often, the data repository is located in a remote site where the generated data will be

analyzed/visualized by collaborating researchers. In the remote site, another temporary space with

limited lifetime may be allocated to store the data. Another application may be waiting this generated

data as its input to start execution. We can allocate compute resources in advance, and we even can

predict the completion time of a compute job submitted in a supercomputer queue. Therefore, users

have the opportunity to have an accurate estimation about the time their computation and analysis will

finish, and the generated data will be available to be moved to the remote repository.

In current systems [66, 9, 24, 46], a data transfer request is managed by the scheduler without

any constraints. The data transfer request is put in a queue to be scheduled after completing currently

running operations. This request may be delayed because of prior long-running jobs, or it can be

postponed by the scheduler to operate other short jobs. Depending on the scheduler’s policy, the

scheduler can initiate other jobs using some of resources shared by this job. In such a case, the

number of jobs completed will increase, but the total completion time of our data transfer job will

also increase. Delaying the data transfer operation, completing the transfer far after than the expected

finish time, may create several problems. One common case is that other resources are allocated for

further processing but they are waiting idle for the transfer operation to complete.

Delivering data placement (moving data between collaborating parties) as-a-service where users

can schedule their request in advance is highly desirable. In a data placement request, users can pro-
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vide a simple time constraint in which they state the earliest start time and latest completion time.

Earliest start time specifies when the source data set will be ready to schedule the given task. Latest

completion time specifies a desired deadline to complete the transfer operation. The scheduler con-

firms the request after checking availability of resources and other tasks in the given time frame. If the

request cannot be confirmed in the given time frame, the scheduler suggests a longer time period such

that latest completion time extended to satisfy the request. It is the scheduler’s responsibility to satisfy

given requests with the given time constraints. Future time windows are considered while accepting a

request and initial decision are made in advance. On the other hand, the scheduler can accept a request

that need to be initiated instantly if there is capacity available and none of the reserved operations will

be delayed. A transfer operation may come with an on-demand schedule request where it is optimized

for earliest completion time.

1.2 Methodology

A major challenge is to predict the completion time and also estimate the capacity of a resource in-

volved in data transfer operations. We assume that data scheduler gathers information about the server

capacities to control load on data servers in source and destination sites and the number of concurrent

tasks operating over those data servers. On the other hand, predicting performance and completion

time over a dynamic and shared network is quite difficult [22, 113]. We use a dynamic approach in

which transfers operate in best effort to utilize as much bandwidth as possible by adaptively setting

the tuning parameters on the fly. The scheduler can keep historic data (min, max and average trans-

fer throughput values between two end-points) to calculate the estimated duration of a transfer while

making the scheduling decision. Despite that, the scheduler cannot guarantee the total duration of the

transfer; therefore, it tries to schedule the request and initiate the transfer as early as possible to deal

with a worst case scenario if happens. In such a case, the scheduler either accepts a given request

without confirming the completion time but trying to finish in the desired duration, or confirms the

request if a large time window is given that can handle the worst case scenario.

3



Next generation research networks such as Internet 2 [5] and ESnet (Energy Sciences Network)[3]

provide bandwidth guaranteed on-demand data access between collaboration institutions. Advance

network reservation systems such as ESNet’s OSCARS [8] enable data schedulers to retrieve possible

future reservations and allocate bandwidth between two sites for a given duration with predictable

throughput. Using a network interconnect in which we can reserve and guarantee bandwidth en-

ables data scheduler to make more accurate decisions and satisfy user requirements with given time

constraints.

We propose a data scheduling methodology with advance reservation and provisioning. In order

to clarify the concepts explained in this study, we can evaluate the scheduling problem in two separate

phases. The first phase is to accept data transfer requests and allocate resources in advance. The

scheduler checks the availability of resources in a given time period and justifies whether requested

operation can be satisfied with the given time constraints. The server and the network capacity are

allocated for the future time period in advance. If there is no available slot to execute the transfer

operation, the completion time given by the user is extended and the user is notified about the possible

finish time. In this phase, the scheduler instantly searches for availability of resources and tries to fit

a request to an empty slot without affecting previously confirmed requests.

The scheduler considers other requests reserved for future time windows and re-orders operations

in the current time period. It uses early error detection modules to check resources and data transfer

services before confirming a request. In the second phase, we use traditional scheduling techniques in

which we organize data transfer request for the current time period. A transfer request may complete

much earlier than estimated finish time. There may be a failure and we may or may not retry the

operation in the current time window based on the nature of the error and also the deadlines of other

waiting jobs. We may also need to release previously allocated resources to make new reservations if

possible, if there is available slot to move the job start time backwards. Conversely, data transfer jobs

can be moved forward if there are delays while executing previous operations due to some failures or

performance degradations. In the second phase, the scheduler operates in an opportunistic manner to

maximize resource utilization. However, in the first phase, the scheduler takes into consideration of
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worst case scenarios to satisfy deadlines. It allocates resources instantly and for a certain time based

on the resource capacity and best-known (historic data) transfer rates.

1.3 Contributions

In this dissertation, we present a new data scheduling paradigm with advance reservation and pro-

visioning. Our methodology provides a basis for provisioning end-to-end high performance data

transfers which requires integration between storage and network resources, and coordination be-

tween reservation managers and data transfer nodes. This allows researchers/users and higher level

meta-schedulers to use data placement as a service where they can plan ahead and reserve scheduler

time for their data movement operations. Our scheduling framework gives user opportunity to specify

their resource and time requirements. We benefit from network provisioning and advanced bandwidth

reservation for on-demand high performance data transfers. The new paradigm provided in this study

is intended to eliminate possible long delays in completion of a transfer operation by taking advan-

tage of bandwidth guaranteed paths and user defined time constraints, and increase utilization both in

client and server sites by giving an opportunity to provision resources in advance. In our approach,

we benefit from user-provided parameters of total volume, earliest start and latest completion times.

This also enables data schedulers to make better and more precise scheduling decisions by focusing

on a particular time period with a number of requests to be organized for given user criteria.

In advance reservation, we deal with dynamic time-dependent networks with guaranteed capaci-

ties. Known time-dependent flow algorithms [81, 41, 34] in the literature do not fit into our problem

domain. Since we are dealing with bandwidth allocation, we need different types of algorithms to

analyze time-dependent network graphs. We present a novel approach for evaluating time-dependent

structures with bandwidth guaranteed paths. We discretize dynamic graphs into time steps and time

windows and apply known graph algorithms efficiently on static snapshot graphs. We evaluate the

complexity of scheduling problem with resource and time conflicts. We present a practical online

scheduling model using advance reservation in dynamic network with time constraints.

5



A major component needed to support the needs of scientific applications is the communication

infrastructure which enables high performance visualization, large volume data analysis. Network

reservation systems establish guaranteed bandwidth of secure virtual circuits at a certain time, for

a certain bandwidth and length of time. If the requested reservation cannot be granted, no further

suggestion is returned back to the user. Further, there is no possibility from the user’s view-point to

make an optimal choice, which also leads to ineffective use of the overall system. We report a new

polynomial algorithm presenting possible reservation options and alternatives for earliest completion

and shortest transfer duration. We enhance the advance network reservation system by extending the

underlying mechanism to provide a new service in which users submit their constraints and the system

suggests possible reservation requests satisfying users’ requirements.

Some other major contributions of our study include enhanced reliability, adaptability, and per-

formance optimization of scheduling distributed data placement tasks. While designing this new data

scheduling architecture, we also developed some important methodologies such as early error detec-

tion, failure awareness, job aggregation, and dynamic adaptation of distributed data placement tasks.

Early error detection is a major component to check the current conditions of the resources before

confirming a given request for scheduling in advance. The scheduler can aggregate tasks and initiate

large data movement tasks to increase efficiency and utilization of resources for better performance.

The adaptive tuning includes dynamically setting data transfer parameters and controlling utilization

of available network capacity.

Our research aims to provide a middleware to improve the data bottleneck in high performance

computing systems. We focus on planning and sharing of data for efficient use of large-scale systems

in collaborative science. We have explored data-intensive distributed computing and studied chal-

lenges in data placement in distributed environments by analyzing key attributes. The algorithm for

network reservation presented in this study is developed as a new service extending the underlying

mechanism of ESnet’s advance network reservation system, OSCARS [8]. Several other contributions

such as failure-awareness, and failure recovery, aggregation of data transfer tasks have been applied

in the first full release of Stork [9] data transfer scheduler. The dynamic adaptation has also been
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implemented and demonstrated to the community as a significant tool for data transfer performance

optimization. Results presented in this dissertation also contributes to the research community by

analyzing resource allocation and management, fault tolerance in data movement, and coordination

of bulk data transfers in data intensive computing.

Many of the extended features we mention throughput the following chapters have already been

implemented and tested independently as a part of this study. Those include early error detection

modules, error classification and failure aware scheduling, job aggregation, data transfer module with

adaptive tuning for best possible bandwidth utilization, and a network reservation engine to suggest

possible bandwidth allocations in advance with given constraints. We give detailed analysis of the

proposed approaches and we explain directions for future research in the area.
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Chapter 2

Related Work

Scientific applications especially in areas such as physics, biology, and astronomy have become more

complex and compute intensive over the years. Often, such applications require geographically dis-

tributed resources to satisfy their immense computational requirements. Consequently, these appli-

cations have increasing distributed data intensive requirements, dealing with petabytes of data. The

distributed nature of the resources made remote data access and movement the major bottleneck for

the end-to-end application performance. Complex middleware is required to orchestrate the use of the

storage and network resources between collaborating parties and to manage the end-to-end distribu-

tion of data.

2.1 Data-Aware Distributed Computing

Recent progress in high performance computing and distributed systems middleware have provided

collaborative studies and essential compute-power for science, and made data management a crit-

ical challenge in the area. Scientific applications have become more data intensive [55, 79]. The

SuperNova project in astronomy is producing terabytes of data per day, and a tremendous increase

is expected in the volume of data in the next few years [12]. The LSST (Large Synoptic Survey

Telescope) is scanning the sky for transient objects and producing more than ten terabytes of data

per simulation [107]. Similarly, simulations in bimolecular engineering generate huge data-sets to be

shared between geographically distributed sites. In climate research, data from every measurement

and simulation is more than one terabyte. In high-energy physics [32], processing of petabytes of

experimental data remains the main problem affecting quality of the real-time decision making.

There are several studies concentrating on data management in scientific applications [13, 14,

109]; however, resource allocation and job scheduling considering the data requirements still remains

8



as an open problem. Data intensive characteristics of current applications brought a new concept of

data-aware scheduling in distributed scientific computation [66, 9].

The concept of data transfer scheduling has been introduced in the literature [24, 76, 13, 14,

109]; however, this is still an emerging field and there are many open problems. Data intensive

characteristics of current applications has led us to investigate data-aware resource allocation and

scheduling models [109, 85, 86].

Data transfer scheduling is also an important component in workflow management. We can simply

classify the steps in a large scale application as follows; (1) obtain data from experiments or simulate

to generate data; (2) transfer data and organize for pre-processing; (3) data analysis; (4) move data

for post-processing. There have been recent studies for workflow management [72, 103, 104], but

providing input/output order for each component, sub-workflows, and performance issues and data-

driven flow control are still open for research and development.

There is a few work towards coordinating resource allocation and advance reservation together for

data movements [95]. Existing systems fail to address issues such as scheduling according to given

user requirements and priorities, taking advantage of advance resource reservation, and adapting to

dynamic environment in distributed systems. Current data schedulers manage data transfer jobs by

trying to optimize for performance and resource utilization [66, 9, 24, 46], but they do not provide

advance resource reservation and coordination where users can plan ahead and allocate/reserve the

data placement service for a future time.

2.2 High-Performance Data Transfers

There have been studies for high throughput data transfer in which best possible paths between re-

mote sites are chosen and servers are optimized to gain high data transfer rates [24]. There are also

various specialized TCP protocols [45, 98, 100] which change TCP features for large data transfers.

There have been studies for fast file downloading [83]; and tools have been developed to measure

9



the network metrics [33, 77] to tune TCP by setting the window and buffer size for optimum per-

formance. Characteristics of the communication structure determine which action should be taken

when tuning the data transfer operation. Local area networks and wide area networks have different

characteristics, so they demonstrate diverse features in terms of congestion, failure rate, and latency.

Dedicated channels such as fiber-optic networks require special management techniques [100]. There

are high-speed network structures with channel reservation strategies for fast and reliable commu-

nication. Congestion is not a concern in such reserved network channels. Application and storage

layers should feed the network with enough data in order to obtain high throughput with maximum

utilization. We deal with a shared environment and network conditions may change over time. The

achievable end-to-end throughput and the system load in communicating parties might alter during

the period of a data transfer especially in which large volume of data needs to be transmitted. There-

fore, dynamic tuning approaches that adapt underlying network layer and to optimize data movement

accordingly has been developed [22]. Furthermore, server capacity has also crucial role to identify

how much data can be sent or received in a given interval. Therefore, storage systems have been de-

veloped for efficient movement of data [60, 67] by providing caching mechanism and multi-threaded

processing. Data servers are distributed on different locations and available network is usually shared

(i.e. the Internet); therefore, minimizing the network cost by selecting the path which gives maxi-

mum bandwidth and minimum network delay to obtain high speed transfer will increase the overall

throughput [15, 78]. We can measure the values of attributes like CPU load, memory usage, and

available disk space on server side. On the other hand, we usually utilize predicted values for network

features which are calculated according to previous states. Since each data movement job is compet-

ing with each other, a decision making is required to have them ordered and run concurrently. We

may need to decline an upload operation till data files are downloaded so that there is available space

in the storage. Moreover, we might delay a data transfer job if network is under heavy utilization due

to some other data transfer operations.

Transfers especially over wide-area networks encounter different problems and should deal with

obtaining sufficient bandwidth, dealing with network errors and allocating space both in destination
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and source. There are similar approaches to make resources usable to science community [47, 106,

30]. Replica catalogs, storage management and data movement tools are addressing some of those

issues in the middleware technology [52, 73, 39].

2.3 Data Transfer Scheduling

Due to the nature of distributed environments, the underlying infrastructure needs to be managing the

dynamic behavior of heterogeneous systems, communication overhead, resource utilization, location

transparency and data migration. One important challenge is to manage storage space in data servers.

Input data should be staged-in and generated output should be staged-out after the completion of the

job. Insufficient storage space will delay the execution, or the running task may crash due to im-

properly managing storage space in the server. Some storage servers enable users to allocate space

before submitting the job and they publish status information such as available storage space. Differ-

ent techniques such as smallest fit, best fit, and largest fit have been studied [65, 66]. Performances

of the file systems, network protocol, concurrent and parallel transfers are some examples influencing

the performance of data movement. Another important feature is fault tolerant transfer of data ob-

jects. Storage servers may create problems due to too many concurrent write requests; data may be

corrupted because of a faulty hardware; transfer can hang without any acknowledgment. Access and

failure transparencies are other major issues such that user tasks should access resources in a standard

way and complete execution without being affected by dynamic changes in the overall distributed

system [23, 18].

Simulating the Data Grid to investigate the behavior of various allocation approaches have been

studied [87, 80, 68]. Beside the simple greedy scheduling techniques such as Least Frequently Used

(LFU) and Least Recently Used (LRU), there are also some economical models handling data man-

agement and task allocation as a whole while making the scheduling decision [109]. Another recent

work concludes that allocating resources closest to the data required gives the best scheduling strategy

[85, 86]. There are many studies on replica management, high performance data transfer, and data
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storage organization; however, there is still a gap in data-aware scheduling satisfying requirements

of current e-Science applications. One common scenario is to transfer large amount of data to a cen-

tral data center from several geographically distributed resources. In [16], authors study provisioning

of data aggregation sessions and propose a heuristic to schedule data aggregation requests in which

multiple files from multiple data resources are transferred to a single destination. The problem intro-

duced in [16] focuses on data aggregation from multiple data centers in lamda grids, such as National

LamdaRail [7]. Since we deal with a dynamic environment, provisioning of data aggregation requests

are accomplished on demand. The proposed solution aims to provision multiple file transfer requests

while maximizing the bandwidth in which the file transfer rates between two end-points are calculated

considering the heterogeneity of server resources. One interesting objective explained in this study is

to try to combine requests and take as a whole to minimize number of used resources; such that the

number of resources not allocated and ready for the future transfer request will be maximized.

In [48], a reservation and allocation architecture, GARA(Globus Architecture for Reservation

and Allocation), is defined to address several problems in providing end-to-end quality of service

for next generation research networks. Heterogeneity of resources requires independent control and

local administration policies of individual resources. Computational elements also affect end-to-end

performance and they should be managed and monitored separately while dealing with reservation el-

ements. The GARA project aims to provide application level co-allocation by providing a reservation

API in order to coordinate resources, and to allocate them in advance.

There are also several relevant studies in the literature using reinforcement learning for resource

management and planning [49], and user constraints for file transfer scheduling [31]. Priority-based

scheduling has been studied for real-time system [90], especially for databases to satisfy time con-

straints with transactions [40]. Deadline scheduling algorithms consider the time constraint of every

request to ensure the deadline (completion time). We can classify real-time database transaction into

two categories; hard and soft transactions. In a hard real-time transaction system, the scheduler needs

to guarantee the completion time. There is no benefit to finish the request after the deadline. In a soft

real-time transaction system, the scheduler considers the time constraint and prioritizes the requests
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with earliest deadline in the scheduling queue [90]. In our data scheduling paradigm, we consider

soft-deadline scheduling. We can allocate the server and the network capacity (bandwidth); how-

ever, it is difficult to guarantee the completion time of a data transfer request. Therefore, there are

two objectives in our scheduling mechanism. The data scheduler takes into account completion time

constraints while making the decision to maximize resource utilization.

2.4 Resource Reservation for Guaranteed-Bandwidth

The need for transferring data chunks of ever-increasing sizes through the network shows no sign of

abating. A major component needed to support the current data-intensive applications is the commu-

nication infrastructure that enables high performance visualization, large volume data analysis, and

also provides access to computational resources. There is an increase in developing projects for re-

search networks to provide dedicated bandwidth channels. The dedicated bandwidth networks brings

the ability to provision the communication channels when the data, especially large-scale massive

data, is ready to be transferred [69, 88].

Delivering network-as-a-service that provides predictable performance, efficient resource utiliza-

tion and better coordination between compute and storage resources is highly desirable. In order to

provide high-speed on-demand data access between collaborating institutions, research institutions

established production level network supporting on-demand bandwidth reservation in which band-

width is reserved for a specific time period [8, 5, 4]. On-demand bandwidth reservation is usually

supported by Multiple Protocol Label Switching (MPLS) in layer 3 [27, 42]. In layer 2, a virtual

secure circuit is setup between source and destination with a specific bandwidth over the connection.

There are few studies in on-demand bandwidth allocation [1, 8, 2] and advance bandwidth reservation

[53, 89, 29, 91, 58]. A very typical case is to represent the network topology as a graph. In addi-

tion to that, we need a proper representation for time in advance reservation. There are two common

approaches; slotted time model and continuous time model. In slotted time model, time is divided

into equal slots and each link keeps information about the available bandwidth in each slot. Several
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studies addressing slotted time model are [53, 29, 102, 92, 48]. In continuous time model, the link

capacity is modeled as a time-bandwidth function. This provides better granularity and finer con-

trol in scheduling with a cost of increased complexity in implementation. Several studies addressing

contiguous time model include [91, 114, 89].

Internet 2 [5] and ESnet (Energy Sciences Network) [3] are some of the well known efforts to

support next generation research networks. The Energy Sciences Network (ESnet) provides high

bandwidth connections between research laboratories and academic institutions for data sharing and

video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation Sys-

tem (OSCARS) establishes guaranteed bandwidth of secure virtual circuits at a certain time, for a

certain bandwidth and length of time. Though OSCARS operates within the ESnet, it also supplies

end-to-end provisioning between multiple autonomous network domains. OSCARS gets reservation

requests through a standard web service interface, and conducts a Quality-of-service (QoS) path for

bandwidth guarantees. Multi-protocol Label Switching (MPLS) and the Resource Reservation Pro-

tocol (RSVP) enable to create a virtual circuit using Label Switched Paths (LSP’s). It contains three

main components: a reservation manager, a bandwidth scheduler, and a path setup subsystem [54, 8].

The bandwidth scheduler needs to have information about the current and future states of the network

topology in order to accomplish end-to-end bandwidth guaranteed paths.

In [91, 58], path computation for advance bandwidth reservation problem has been analyzed and

some approaches in the literature are evaluated. Some of the solutions for advance bandwidth reser-

vation are categorized into the following problem domains [91, 58]. First case is to reserve a fixed

slot in which we find a path from source to destination with a specific bandwidth value (a specified

bandwidth in a specific time slot). Second is to find the path with largest bandwidth from source to

destination in a given time period (highest available bandwidth in a specific time slot). Third is to

find a path that gives maximum duration of allocation with a specific bandwidth value starting at a

specific time. And other cases are to find first or all slots in which there is a path with the specific

bandwidth from source to destination (time slots with specified bandwidth and duration). All those

problem cases can be solved by extending very well known graph algorithms such as breadth-first
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search, Dijkstra, and Floyd algorithms [91]. Even more, the proposed solution methods in [91, 58]

are based on slotted time window model. The network topology is represented as a graph with time

information on it such that each link has the available bandwidth in every time slot.

The given problem cases in [91, 58] do not address the scheduling dilemma for resource allocation

and reservation in high performance data transfers. Instead, given solutions (path with the highest

available bandwidth in a given time period, all available time slots with a specific bandwidth value,

etc.) are modified versions of know algorithms in a time-dependent graph structure. They do not

compute an optimal reservation for a massive data transfer request, and do not suggest any allocation

pattern. Therefore, we necessitate a new paradigm and solution style for advance reservation to define

the methodology and to provide the solution incorporated with other resource management issues to

address high performance data transfer for massive data sets. Furthermore, the given algorithms in

[91, 58] have high complexity and large space requirements. The proposed approach should be easily

applicable and very efficient for real-life advance reservation systems.

2.5 Advance Reservation and Time Constraints

In advance network reservation, we first need to ensure the availability of requested bandwidth be-

fore committing a bandwidth allocation request. The foremost question is how to find the maxi-

mum bandwidth available for allocation from a source node nsource to a destination node ndestination.

The max-bandwidth path algorithm is well known in quality-of-service (QoS) routing problems in

which a path is constructed from source to destination given that each link is associated with an

available bandwidth value. The bandwidth of a path is the minimum of all links over the path. In

max-bandwidth algorithm, we find a path from source nsource to destination ndestination whose band-

width is maximized. The bandwidth of a path from nA to nC which is constructed by adding link

el : B → C is min{bbandwidth(el), Bmax−bandwidth(A → C)}. The QoS condition is a bottleneck constraint

in max-bandwidth path calculation. Alternatively, in shortest path calculation, we find a path whose

sum of weights is minimized, and QoS constraint is additive (minimum delay path, or minimum hop
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count path).The max-bandwidth path algorithm is a slightly modified version of Kruskal and Dijk-

stra’s algorithms with the same asymmetrical time complexity [82]. Alternatively, QoS constraint is

additive in shortest path calculation (minimum delay path, or minimum hop count path).In shortest

path algorithm, we find a path whose sum of weights is minimized. The main objective in shortest

path can be to minimize the hop count, or ”engineering metric” which is associated with latency in our

graph representation. In the shortest path algorithm, the weight of a path is the sum of values added

by each link in the path. On the other hand, the weight of a path in max-bandwidth is the minimum

link bandwidth, the bottleneck link over the path.

Those algorithms are very fast and efficient, and they have been adapted to deal with many prob-

lems in routing and gateway protocols. Shortest path, min-cost path, max-bandwidth path, and min-

imum spanning tree algorithms can be implemented using a very similar methodology with simple

adjustments. In a graph with n nodes, there is a total n! paths from source to destination. The main

advantage of those types of graph algorithms is that maximum n2 paths are visited even in worst case.

In addition to typical graph representation of network topology, we also need a proper structure for

”time” in advance reservation.

We deal with a dynamic network such that the bandwidth value for every link is time dependent.

While constructing a path and calculating the available bandwidth over a path, we need to consider

another variable, time; therefore, the dimension of the problem is extended by adding the time variable

such that the state of the topology depends on the time period. Graph algorithms for time-dependent

dynamic networks has been studied in the literature especially for max-flow and shortest path algo-

rithms [81, 41, 34]. The most common approach is the discrete-time algorithms in which the time is

modeled as a set of discrete values and a static graph is constructed for every time interval. As an

example, [36] uses time-expanded max flow for data transfer scheduling, and [81] presents various

shortest path algorithms for dynamic networks with time-dependent edge weights.

Analogous Example: We need different types of algorithms to analyze time-dependent max-

bandwidth path calculation. The following is given to clarify the advance bandwidth reservation in
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dynamic networks. Assume a vehicle wants to travel from city A to city B where there are multiple

cities between A and B connected with separate highways. Each highway has a specific speed limit

but we need to reduce our speed if there is high traffic load on the road, and we know the load on each

highway for every time period.

The first question is which path the vehicle should follow in order to reach city B as early as

possible. Alternatively, we can delay our journey and start later if the total travel time would be

reduced. Thus, the second question is to find the route along with the starting time for shortest travel

duration.

Time-dependent graph algorithms mainly focus on those two questions. However, we are dealing

with bandwidth reservation where allocation should be set in advance when a request is received. If we

apply this condition to the example problem described above, we have to set the speed limit before

starting and cannot change that during the journey.Therefore, known algorithms do not fit into our

problem domain. This distinguishes our path calculation from other time-dependent graph algorithms

in the literature.

Bandwidth scheduling for multiple data transfer has been studies in [70]. Two different schedul-

ing scenarios are considered. The first one is to schedule multiple data transfer request over some

predetermined paths while minimizing total completion time. The second scenario in [70], a more

interesting problem, is to schedule multiple bandwidth reservation requests each with a specified time

slot. The first problem can be solved with an optimum algorithm. The idea is to schedule requests

with less data by evenly distributing them over multiple paths. Considering jobs shorter in duration

first minimizes the total waiting time, so reduces the total completion time. The second problem is

to assign a network path for each reservation request with fixed bandwidth and predetermined (fixed)

time period. The question is to come up with an order and preference to allocate link bandwidths

while maximizing the total number of reservation request satisfied. However, this second problem

is complex (NP-complete); therefore, a greedy heuristic is given [70]. A similar approach is used in

which requests consuming less resource are given preference in scheduling. Resource usage is repre-
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sented by a bandwidth distance product (distance is computed by hop count in a possible path from

source to destination) which is calculated for each reservation request; and, the requests with small

bandwidth distance product are considered first.

In [70], the proposed scheduling algorithms are classified as periodic scheduling and differentiated

from instant scheduling. In instant scheduling, the scheduler makes a decision for every incoming re-

quest. In periodic scheduling, the scheduler makes decision in certain intervals where several requests

in that period are considered. There are multiple requests in the system and scheduler finds an assign-

ment for each request according to some criteria. However, most of the proposed approaches in the

literature are for instant scheduling algorithms. In [38], the scheduler algorithm considers flexibility

in bandwidth and the time period in order to increase utilization. [108, 50] introduces a new concept

by using varying bandwidth over multiple time slots to minimize the completion time. In [71], authors

address possible scheduling problems for combinations of four cases; variable bandwidth and fixed

bandwidth, and variable path and fixed path.
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Chapter 3

Data Scheduling in Distributed Environments

Data management has perpetually remained one of the crucial problems in every stage of comput-

ing, from micro (CPU chip design) level to macro (Internet and Grid infrastructure) level [76]. We

have studied traditional data transfer paradigms in operating systems and microprocessor architec-

tures, while aiming to derive from data transfer techniques used in these micro-systems. After an-

alyzing different application scenarios, we have developed new data scheduling methodologies and

the key attributes for reliability, adaptability and performance optimization of scheduling distributed

data placement tasks. Three major contributions of this work include (i) adaptive scheduling of data

placement tasks for improved end-to-end performance, (ii) aggregation of data placement jobs for

increased data transfer throughput, and (iii) a failure-aware data placement paradigm.

Accessing data in a transparent and efficient manner is a major issue, in operating system design,

in microprocessors, and in supercomputers 1. In operating systems, efficiently moving pages from disk

to memory is crucial; in microprocessor architecture, instruction fetch time plays an important role.

On large-scale distributed systems, transferring data files between geographically-separated storage

sites, and optimizing data access in supercomputers, have major effects on overall performance. In

our recent study [76], we have presented a generic data management model by looking for similar

analogies in different layers of computing systems ranging microprocessor to distributed systems. We

study how challenges encountered in the early phases of computers can be addressed in distributed

systems to provide a broader perspective in which we can extend known methodologies.

All computing systems consist of three core components: (i) storage from where to read/write

data, (ii) an arithmetic logic unit for computing (or modifying data), and (iii) a bus to transmit data

between the computation unit and storage. Likewise, distributed systems are made up of data storage

1Ken Batcher’s half-serious, half-humorous Supercomputer definition interestingly addresses the importance of data
placement middleware: ”A supercomputer is a device for turning compute-bound problems into I/O-bound problems”
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elements, computational nodes, and network interconnects to transmit data between computational

nodes and storage elements. In microprocessors, most instructions can be classified into either arith-

metic instructions or memory access (e.g. load/store) instructions. Similarly, operations in a dis-

tributed data-aware systems are classified into computational tasks and data access/movement tasks

[66, 24]. In microprocessors data retrieval from memory to the execution unit is slow due to the speed

of memory and also the latency in the bus between memory and CPU. Multi-level caches, dynamic

scheduling of I/O operations, and complex branch prediction algorithms are some techniques used

to hide memory latency. At the operating system level, many strategies are used to access data effi-

ciently, including DMA, I/O scheduling, and low-level parallelism such as disk striping. Similarly,

in distributed systems, we organize and schedule data placement tasks out-of-order to improve the

utilization of underlying storage resources. Also, we enhance data transfer throughput by aggregating

and optimizing data transfer operations to hide the network latency. Figure 3 gives the overall picture

representing data handling in these different layers.

In spite of the above similarities, data placement scenario in distributed environment is different

from microprocessors and operating systems in terms of the dynamic nature of interconnects between

resources. While, data transfer within microprocessors and in operating systems is done through high

speed bus and is deterministic in most cases, data movement in a distributed system operates in a

dynamic environment. It is prone to frequent failures resulting from back-end system level problems.

Hence, we use a dynamic network where data placement middleware needs to adapt to the changing

conditions in the environment. Therefore, we have studied adaptive scheduling of data placement

tasks for high performance data transfer. The adaptive scheduling approach includes dynamically

tuning data transfer parameters over wide area networks for efficient utilization of available network

capacity and optimized end-to-end data transfer performance. Inspired by prefetching and caching

techniques in microprocessors, we have implemented aggregation of data transfer requests in order

to increase the throughput especially for transfers of small data files by minimizing the effect of

connection and protocol setup time. We have presented a failure-aware data placement paradigm

for increased fault-tolerance. The failure-aware data placement includes early error detection, error
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Figure 3.1: Different layers of computing systems illustrating similarities in data and computation
management subsystems

classification, and use of this information in scheduling decisions for the prevention of and recovery

from possible future errors.
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3.1 Adaptive Tuning

Similar to memory wall in microprocessors, we see latency wall in data access over high bandwidth

connections. We use multiple data streams for fetching data in order to fully utilize the network band-

width. Using multiple parallel streams in data transfer is simply aggregation of network connections.

Instead of a single connection at a time, multiple streams are opened to a single data transfer service

in the destination host. We gain larger bandwidth in a network with less packet loss rate; parallel

connections better utilize the network buffer available to the data transfer. Excessive use of system re-

sources (CPU, memory, network) may lead to some problems like resource starvation. So, we need to

adjust the level of parallelism according to the capacity of the environment. We focus on the level of

parallelism in two stages: (1) the number of parallel data streams connected to a data transfer service

for increasing the utilization of network bandwidth, and (2) the number of concurrent data transfer

operations that are initiated at the same time for better utilization of system resources.

The Stork data scheduler [66, 9, 64] has a modular architecture where data placement jobs are

executed by specific data transfer modules according to the protocol specifications of each request.

The scheduler accepts multiple jobs in a nondeterministic order, say: < J1, J2, J3, ... >. The goal of

the scheduler is to minimize the execution time for each data transfer while preserving the user fairness

based on submission order. Completion time T of a job depends on environment conditions such as

network and system load. Therefore, we try to find the best possible settings, T =< J, c, p >, for c

(concurrent jobs) and p (parallel streams) in an adaptive manner. Instead of probing the system to get

profiling information, we just use performance metrics from actual data transfers for parameter tuning.

The scheduler’s decision adapts itself to the environment conditions. Gradually improving parallelism

level brings a near optimal value without the burden of dealing with complex optimization steps to find

the major bottleneck in a data transfer. Impacts of parallel streams as well as concurrent data transfer

jobs running simultaneously have been explained in [22]. Our adaptive tuning algorithm dynamically

sets the parallelism level [18]. Figure 3.2 shows an illustration of dynamic parameter tuning in which

system detects a change in the environment and adjust the number of parallel streams.
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Instead of making measurements with external profiler to set the level of concurrency and paral-

lelism in data transfer scheduling, we propose to calculate parameters using information from current

running data transfer operations. Thus, we do not pollute the network with extra packets and do not

put extra load to the system due to extraneous calculations for exact parameter settings. We simply

set the level of parallelism dynamically by observing the achieved application throughput for each

transfer operations and gradually tune parameters according current performance merit. Our dynamic

tuning algorithm enables to transfer data by chunks and also set control parameters on the fly. It mea-

sures the transfer time of each chunk transferred and calculates the current throughput. We keep the

record of best throughput for the current parallelism level. The actual throughput value of the data

chunk transferred is calculated and the number of parallel streams is increased if this throughput value

is larger than the best throughput seen so far. We gradually increase the number of parallel streams

till it comes to an equilibrium point.

3.2 Aggregation of Data Placement Jobs

Completion time of a job also depends on environment conditions such as network and system load.

Each transfer operation spends time for protocol initialization and connection setup over the data

transfer service. A single transfer t consists of tsetup in which we initialize the transfer module and

prepare a connection to transfer the data, and ttrans f er in which we transfer data using the data transfer

protocol. Although this connection time is really small and sometimes negligible according to the

total duration spent for transferring the data, it plays important roles where there are hundreds of jobs

waiting to be scheduled. We target on minimizing the load put by tsetup; as an example, instead of

having two separate operations t1 = tsetup + t1trans f er and t2 = tsetup + t2trans f er, we aggregate request to

improve the total transfer time t = tsetup + t1trans f er + t2trans f er.

Beyond that, each data transfer operation need to be operated separately by executing a specific

data transfer module. Aggregating data placement jobs and combining data transfer request into a

single operation also has its benefits in terms of improving the overall scheduler performance. Such
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(a) number of parallel streams over time

  

(b) total bytes transferred over time

Figure 3.2: Adaptive Tuning Algorithm: setting number of parallel streams dynamically for transfers
from poseidon and louie to queenbee machines on LONI network [6].

that, this will reduce the total number of requests that data scheduler needs to execute.

There are two major key attributes affecting the completion time T : (1) the number of parallel

streams to fetch data from destination host, and (2) the number of concurrent jobs scheduled to access
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resources of the source and destination hosts. The goal of the scheduler is to minimize the execution

time for each data transfer while preserving the user fairness based on submission order. Therefore,

we try to find the best possible settings, T =< J, c, p >, for c (concurrent jobs) and p (parallel streams).

Here, we add another parameter which is the aggregation count, a. Therefore, T =< J, c, p, a >.

We have applied job aggregation in Stork data placement scheduler such that total throughput is in-

creased by reducing the number of transfer operations. According to the file size and source/destination

pairs, data placement jobs are combined and processed as a single transfer job. Information about the

aggregated job is stored in the job queue and it is tied to a main job which is actually performing the

transfer operation such that it can be queried and reported separately. We have seen vast performance

improvement, especially with small data files, simply by combining data placement jobs based on

their source or destination addresses [18]. We have tried several ways for job aggregation and we saw

increase in total throughput of data transferred even by simply combining data placement jobs based

on their source or destination host. Figure 3.3 shows performance of aggregation in data transfer

scheduling. The main performance gain comes from decreasing the amount of protocol usage and

reducing the number of independent network connections. Aggregation count is the maximum num-

ber of requests combined into a single transfer operation. Multiple streams is the number of parallel

streams used for a single transfer operation. And, parallel jobs represents the number of simulta-

neous/concurrent jobs running at the same time. We analyze effects of those parameters over total

transfer time of the test-set.

We believe that a pre-processing layer in the data placement scheduler will help us to reorga-

nize jobs and make better scheduling decisions. We do analyze the set of requests in the queue to

aggregate data placement tasks. As an example, instead of initiating each request one by one, it is

more beneficial to execute them as a single operation if they are requesting data from same storage

site or using same protocol to access data. However, contrary to the job aggregation, we might also

decompose jobs in the pre-processing layer. This type of pre-processing is similar to the logic behind

micro-instructions in processor design. A machine code from a complex instruction set architecture

is decomposed into micro-code operations [99]. Especially for non-RISC based microprocessors, we
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fully benefit from pipelined architecture by the help of micro-instructions. As an example, a set of

files to be transferred to or from a remote site can be fetched from multiple replicas located in differ-

ent storage servers. Thus, we can decompose the data placement request into several small set of file

requests and process each simultaneously by using different set of resources. Even for large files, we

can initiate partial transfers from multiple servers in which we are fetching data chunks in parallel.

3.3 Reliability and Failure-awareness

Although latency and throughput are the main performance factors of data transfers (both in highly

distributed and closely coupled environments), usability and efficiency of distributed data transfers

also depend on some other aspects such as error detection and error reporting. Failure during data

transfer in distributed environment is quite common. The major drawback in distributed data transfer

is that the user sometimes is not aware of technical facts like the backend network connectivity fail-

ures. In most cases the users do not have enough information to infer what went wrong during data

transfer because they do not have access to the remote resources, or messages got lost due to system

malfunction. Tracking the problem and reporting it back correctly to the user is important to give user

a sense of a consistent system.

The problem that we should mitigate first is the lack of sufficient information to clarify the rea-

sons for a failed data transfer. Our study has two main aspects: error detection and error classifica-

tion. In error detection, we focus on making data placement scheduler aware of whether destination

host/service is available, and also making the scheduler able to select suitable data placement transfer

services. In error classification, we propose an elaborate error reporting framework to clarify and

distinguish failures with possible reasons. Moreover, we discuss the progress cycle of a data transfer

operation in which several steps are examined before actually starting the data transmission operation.

Before initiating a data transfer operation in which source host will connect a file transfer service

running on a remote server and transmit data over a network channel, it is important to get prior

knowledge in order to decrease error detection time. In addition, it is also useful at the time of
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(a) aggregation count vs. number of concurrent jobs for transfers over a single
stream

  

(b) number of concurrent jobs vs. number of parallel streams (at most 16 jobs
are aggregated)

Figure 3.3: Performance measurement for job aggregation: 1024 transfer jobs from ducky to queenbee
machines (rrt avg 5.129ms) on LONI [6] network with 5MB data file per job

scheduling to know whether destination host and service is available or not; such that, a data transfer

job which would fail because destination host or service is not reachable, will not be processed until

that error condition is recovered. In addition to the advantage of prior error detection, information
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about active services in the target machine would help data placement scheduler discover and use

alternative transfer protocol.

The main purpose of classifying data transfer operation in several categories is to better understand

at which stage an error has occurred. File transfer protocol such as GridFtp [10], will generate error

codes and error messages. However, proposed error reporting framework will help both users and

higher level planners to recognize the error condition such that in respect of the stage where error

occurred different actions can be taken. As an example, a directory transfer operation can fail since

used file transfer protocol is not supporting directory listing. In such a case, error will fail in the

status phase before proceeding to the transmit phase. Therefore, we can provide a better logging

facility which can be parsed and used by a higher level planner to get information in which stage

operation failed. Besides, we can also understand in which point an error has occurred in each stage.

In order to capture errors caused by network failures or mal-functionality in the protocol, we keep

state information in every phase. If we get an error after a file transfer operation has already been

initiated and data transmission is started for processing, we treat the problem according to the fact

that a problem may occurred in the network or remote site. Therefore, we define the operation object

with three state types to keep track of status information between each phase. Figure 3.4.a shows

codes in error classification for data transfer scheduling.

Prior knowledge about the environment, and awareness of the actual reason behind a failure,

would enable data placement scheduler to make better and accurate decisions. Network exploration

techniques have been studied in order to classify and detect network error as early as possible [23].

We have also successfully developed error detection and classification strategies for failure-aware

data scheduling. The data scheduler checks the network connection and availability of data transfer

protocol beforehand, with the help of a new network exploration module. These features also enable

us to select amongst the available data transfer services provided by a storage site.

We have experimented impact of error detection and classification in data transfer scheduling. We

used 250 data transfer jobs submitted to the Stork scheduler and injected different types of errors
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into the system while scheduler is performing given requests. Simply, we change the permission of

target directories, forced certification to be expired; such that, the problem in the data transfer occurs

because of misconfiguration or improper settings of input output parameters. Besides, there are other

types of errors due to server or network outages which can or can not be recovered later. We measure

the makespan for all jobs in the system with error classification and without error classification. As

expected, scheduler does better decision and do not retry failed jobs if erroneous case cannot be

recovered. Results presented in Figure 3.4.b show a heavily loaded queue with all data transfer jobs

are submitted in the beginning. It takes longer to complete all jobs when there is no classification,

since scheduler retries the failed jobs assuming they can be recovered in the next run. With error

classification, failed jobs are classified according to the error states where problems occur, so we do

not retry every failed operation. Early error detection feature provides fully classification and data

transfer jobs that will fail are detected in advance, so those jobs are not scheduled at all. However,

the condition leading to failure may disappear later. Failures are detected beforehand and those jobs

are scheduled when the problematic condition has been resolved. Therefore, we see almost the same

performance with early detection and recovery if compared to the case without any failure.

Stork, data placement scheduler, checks network connection and availability of the data transfer

protocol. Early error detection has been implemented as a new feature inside Stork. Moreover, we

propose a generic framework such that error classification is not limited by GridFtp operations. We

have also been testing our model with other data transfer protocols like iRods [93]. The GridFtp

transfer module in Stork is also able to verify the successful completion of the operation by controlling

checksum of each file. Moreover, it can recover from a failed operation by restarting failed data

transfer operations. The rescue file keeps track of failed and succeeded file transfer operations. In

case of a retry from a failure, the scheduler informs the transfer module to recover and restart the

transfer using the information from a rescue file created by the checkpoint-enabled transfer module.
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(a) data transfer progress cycle and error classification

  

(b) performance effect of error detection and classification

Figure 3.4: Experiments with error detection and classification: 250 data transfer jobs were submitted
to Stork scheduler and erroneous conditions were injected into the system
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Chapter 4

Network Reservation Engine

We study network provisioning and advanced bandwidth reservation in ESnet [3] for on-demand high

performance data transfers. A reservation request from a user includes desired bandwidth allocation

between end-points with duration and starting time information. A bandwidth reservation system,

called On-demand Secure Circuits and Advance Reservation System (OSCARS) [8, 54], checks net-

work availability and capacity for the specified duration of time, and allocates it for the user if it is

available. Otherwise, it reports to the user that it is unable to provide the required allocation. Accord-

ingly, the user needs to search for a time-frame of a required bandwidth by trial-and-error, not having

knowledge of the network’s available capacity at a certain instant of time. We improve the current

ESnet advance network reservation system, OSCARS, by presenting the clients possible reservation

options and alternatives for earliest completion time and shortest transfer duration.

We design an algorithm, where the user specifies the total volume that needs to be transferred, a

maximum bandwidth that can be used and provisioned in the client sites, and a desired time window

within which the transfer should be done. The proposed algorithm can find alternate allocation pos-

sibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to

the user. It is quite practical when applied to large networks with hundreds, even thousands of routers

and links. We have implemented our algorithm for testing and incorporation into a future version of

OSCARS.

In our approach, we discretize the time-dependent dynamic network topology by dividing the

search interval into time steps. Each time step represents a stable status of the topology. We pro-

vide a methodology to calculate static snapshot graphs in each time step and apply max-bandwidth

algorithm while traversing over the search interval. We show that the number of subsequent combi-

nations of time steps, or the number of time windows, is bounded by the number of reservations in
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the system. Searching the given time interval is accomplished in polynomial time. Hence, we provide

an efficient algorithm to find possible advance network reservation options for the given data transfer

requirements.

4.1 Advance Network Reservation

The OSCARS bandwidth reservation system keeps track of changes in the network status and main-

tains a topology graph G which can simply be described as follows. The network topology graph in

OSCARS includes routers, ports, and unidirectional links between two ports, G =< nrouter, vport, elink >.

Each router has a list of attached ports, nrouter =< v1
port, v

2
port, .. >, and each port has a maximum avail-

able bandwidth ready for advance allocation. A link connects two ports in one direction, e1
link =<

v1
port, v

2
port > , e2

link =< v2
port, v

1
port >; such that, and a separate reservation request is established for each

direction. Every port in a router has a maximum bandwidth value available for reservation. Further-

more, engineering metric is assigned to each port by network system administrators [8, 54]. A link

provides communication from one router towards another one over two in/out ports in each.

The OSCARS bandwidth reservation system keeps track of changes in the network status and

maintains a topology graph which can simply be described as follows. The web service interface

enables users to allocate a fixed amount of bandwidth for a time period between two end-points in

the network. A reservation request R contains source node vs and destination node vd, requested

bandwidth M, start time ts and end time te: R = (vs, vd, M, ts, te). Since there might be bandwidth

guaranteed paths in the system that are already fully or partially committed, the reservation engine

needs to ensure availability of the requested bandwidth from source to destination for the requested

time interval. In order to eliminate over commitment, committed reservations between start and end

times are examined to extract available bandwidth information for each link in the time period. The

shortest path is calculated based on the engineering metric on each link, and a bandwidth guaranteed

path is set up from source to destination, to commit the reservation request for the given time period.

Source and destination end-points are usually the host/IP names of the client machines; they are
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converted to the corresponding router addresses in the network topology.

Problem Definition: Advance network reservation systems like OSCARS enable users to obtain

guaranteed requested bandwidth for a certain duration of time. On the other hand, if the requested

reservation cannot be granted, no further suggestion is returned back to the user, except a failure

message. In such a situation, users have to go through a trial-and-error sequence, and may need to

try several advance reservation requests until they get an available reservation. These try-and-error

attempts may also overload the system. Even if a user successfully reserves the network, the choice

of requested allocation might not be one of the optimal ones available in the system. Further, there

is no possibility from the user’s point of view to be aware of the other possibilities that might fit

better into his/her requirements. In other words, users cannot make an optimal choice. Moreover, the

current method of selecting a path may lead to ineffective use of the overall system such that network

resources may not be used as optimally as possible.

We enhance the OSCARS reservation system by extending the underlying mechanism to provide

a new service in which users submit their constraints and the system suggests possible reservation

options satisfying users’ requirements.

Network Reservation Engine: We developed a new methodology in which users submit con-

straints and the system suggests possible reservations options. In this approach, instead of giving all

reservation details such as the amount of bandwidth to allocate between start/end times, users provide

maximum bandwidth they can use, total size of the data requested to be transferred, the earliest start

time, and the latest completion time. Moreover, users can set criteria such that they would like to

reserve a path for earliest completion time or reserve a path for shortest transfer duration.

Such a request can be represented as: S = (vs, vd, Mmax,D, tE, tL), where vs nd vd are source and

destination nodes, where D is total size of data to be sent from vs to vd, and tE the earliest start time,

tL is the latest end time. The maximum bandwidth Mmax is related to the capability of the client and

server hosts between source and destination end-points. Even if the network can provide a higher

bandwidth than the maximum requested, the user is not be able to use all the available bandwidth
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due to limitations and bottlenecks in the client and server sites. The reservation engine finds out a

reservation R = (vs, vd, M, ts, te) for the earliest completion or for the shortest duration where M ≤ Mmax

and tE ≤ ts < te ≤ tL.

4.2 Methodology and Algorithm

We define the network topology as a time-dependent directed graph GT (V, E,T ), with a vertex set V

of n nodes, and an edge set E ⊆ V × V of m links between nodes. For every edge k, ek : (vi, v j),

there is a function of available bandwidth xek(t) where t is a variable in time domain T . The available

bandwidth xek(t) in GT is time-dependent, nonnegative, and bounded by an upper limit uek , where uek

is the maximum bandwidth available for allocation in ek; such that, 0 ≤ xek(t) ≤ uek for any instance

of time in T .

When an advance reservation Ri = (vs
i , v

d
i , Mi, ts

i , t
e
i ) is confirmed between start time ts

i and end time

te
i , we setup a path δi from source node vs

i to destination node vd
i that can satisfy the allocation of

the requested bandwidth Mi. For every edge along the path δi : (eki , ek j , . . . ), we allocate Mi amount

of bandwidth for the future use of reservation Ri. The available bandwidth xek of each edge in δi

is updated in the topology graph GT for the time period of [ts
i , t

e
i ]. It is important to note that xek is

always ≥ 0 such that every edge along the path needs to have enough capacity to assure the bandwidth

allocation over the path δi setup for reservation Ri. Therefore, a reservation request is only confirmed

if there exits at least a path from source to destination satisfying the allocation of Mi bandwidth in the

given time period between ts
i and te

i .

The example in Figure 4.1 clarifies the underlying mechanism in advance network reservation. At

a point of time, assume that there are four reservations confirmed and active in the system; R1 = {A→

B→ D, 900Mbps, t1, t6}, R2 = {A → C → D, 400Mbps, t4, t7}, R3 = {A → B→ D, 700Mbps, t9, t12},

R4 = {A→ C → D, 500Mbps, t9, t12}. Thus, the first reservation, R1, is for 900Mbps between t1 and t6

from source A to destination D. The system calculated a path based on engineering metric satisfying

requested allocation, and allocated bandwidth over A → B → D. R2, R3, and R4 are interpreted
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Figure 4.1: Example for Advance Network Reservation

similarly. Figure 4.2 shows the available bandwidth and allocated bandwidth in link A → B over

time.

Figure 4.2: Available bandwidth and allocated bandwidth in link A→ B over time

The first graph in Figure 4.3 represents the status in [t1, t4] and the second represents the status in

[t4, t6]. We can confirm a new reservation request from source A to destination D with start time t1

and end time t4, with 500Mbps guaranteed bandwidth, and we can allocate path A → C → D for the

[t1, t4] time period. However, we can allocate 100Mbps between t4 and t6. Furthermore, we can only

allocate 100Mbps between t1 and t6 because the maximum amount of bandwidth we can get during

the entire period of [t1, t6] is 100Mbps. For example, there is an opportunity to send 500Mbps from

A to C. The maximum flow from A to C is 500Mbps in [t4, t6], 100Mbps over A → B → C and

400Mbps over A→ C. However, we make a reservation for a specific path. Therefore, the maximum

amount of bandwidth we can allocate for a single reservation from A to C is 400Mbps in time period

[t4, t6].

A service request is defined as S i = (vs
i , v

d
i , M

max
i ,Di, tE

i , t
L
i ); with total size of data Di to be sent

from vs
i to vd

i , and and a period of time between earliest start time tE
i and latest end time tL such
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Figure 4.3: Network Flow in specific time periods( [t1, t4], [t4, t6] )

that, this data transfer need to be accomplished in this given time interval. We search GT to find

possible reservations that can provide enough capacity to transfer the given data volume in the given

time period. If there exists bandwidth between vs
i and vd

i within the time constraints in GT , a new

reservation Rearliest for earliest completion time or Rshortest for shortest transfer duration is generated.

Consequently, we create a reservation R j = (vs
i , v

d
i , M j, ts

j, t
e
j) where M j ≤ M

max
i and tE

i ≤ ts
j < te

j ≤ tL
i . We

also compute a path δ j satisfying reservation R j.

In order to satisfy the given criteria, the amount of bandwidth allocation M j and the time interval

[ts
j, t

e
j] need to be sufficient to transmit data volume of Di using the path δ j allocated for reservation R j.

We can simple say Di = M j × d where d is the duration between start time ts
j and end time te

j. Rshortest

has the minimum duration d = |ts, te| among all other possible reservation satisfying S i. The objective

for earliest completion time is to select a reservation R j satisfying the criteria given in S i which has

the earliest end time te. On the other hand, we would favor a reservation with a shorter duration if

there are more than one possible reservations completing at the same earliest time. For reservation

Rearliest, ∀R j satisfying S i: te
earliest ≤ te

j, and ∀R j with te
j = te

earliest : ts
earliest ≥ ts

j.
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4.3 Search Interval between Earliest-Start and Latest-End Times

The outline of our approach is as follows. We divide the given search interval into time steps. The

search interval [tE
i , t

L
i ] is the time period between earliest start time tE

i and latest end time tL
i in which

the data need to be transmitted. A time step represents the longest duration of time in which we

have a stable discrete status in terms of available bandwidth over the links. A time period [ti, t j] is

considered as a time step if ∀ek ∈ GT : xek(t) = ck where ti ≤ t ≤ t j, and ck is a constant. We obtain a

static directed graph that keeps information about the available bandwidth status for every link. This

information is updated on-the-fly every time a reservation request is committed and stored for further

processing during the path calculation phase. A snapshot graph of GT in time step ts(ti, t j) is defined

as G(tsi), with the same vertex set and same edge set. For every edge ek : (vi, v j) in ts(ti, t j), the

available bandwidth xek = ck stands for the value of xek(t) in GT between ti and t j in time step ts(ti, t j).

This helps us discretize the dynamic graph and apply known graph algorithms efficiently.

Figure 4.4: Time Steps

Figure 4.5 shows time steps between t1 and t13, for the example given in Figure 4.1 with four

committed reservations. We have six time steps: ts1(t1, t4), ts2(t4, t6), ts3(t6, t7), ts4(t7, t9), ts5(t9, t12),

ts6(t12, t13). Every time step corresponds to a static snapshot of the network topology. Figure 4.6

shows G(ts1), G(ts2), G(ts3), G(ts4), G(ts5), and G(ts6).

We analyze the search interval [tE, tL] with a set of consecutive time steps covering the entire

period; {tS k(ti, ti+1), tS k+1(ti+1, ti+2), . . . , tS k+n(ti+n−1, ti+n)}, where ti < ti+1 < ti+2 · · · < ti+n, and tE ≥ ti

and tL ≤ti+n The set of confirmed reservations in the system characterize time steps since they change
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Figure 4.5: Time steps between t1 and t13

Figure 4.6: Static Graphs for time steps ts1, ts2, ts3, ts4, ts5, ts6

the available bandwidth values in the network topology. If two reservations partially overlap in terms

of time period, they split the total period of time into either two or three time steps. If they do not

overlap, they split into three time steps. In other words, the number of time steps in the search interval

is bounded by the number of committed reservations within the given period [tE, tL]. If there are r

committed reservations falling into the period, there can be maximum 2r + 1 different time steps in

the worst-case. Figure 4.5 shows the general idea behind time steps and reservations.

The next step is to traverse these time steps to check whether we can find a reservation satisfying

the given criteria. For the example given in Figure 4.5 and Figure 4.6, first ts1, and then ts2 will be

examined; later, if both cannot satisfy the request, time window tw(t1, t6), a combination of ts1 and

ts2, will be examined. A time window consists of subsequent time steps. twk is a time window which

corresponds to the time period in tsk. twk1−k2 is a time window including all time steps between tsk1

and tsk2 . If there are s time steps in a given search interval, there are (s × (s + 1))/2 time windows

since time windows are subsequent combinations of time steps.
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We search through these time windows in a sequential order to check whether we can satisfy

the requested allocation in that time window. For a bandwidth allocation with the shortest dura-

tion, we can sort time windows according to their length, and start checking with the smallest one.

For a bandwidth allocation with the earliest completion time, we can benefit from a specific search

pattern. The search pattern for earliest completion time in the given example will be as follows:

tw1, tw2, tw1−2, tw3, tw2−3, tw1−3, tw4, tw3−4, tw2−4, tw3−4, . . . . The algorithm will stop searching when

it finds a time window satisfying the given criteria. In most cases, we do not need to check all pos-

sible time windows. In the worst-case, we may require to search all time windows, which makes

(s × (s + 1))/2 searches, where s is the number of time steps.

4.4 Examining Time Windows to Find Possible Reservations

While checking a time window to verify whether it can satisfy the request, we first look at the total

duration of the time window. We know the max bandwidth Mmax user can support, and the total

size of data D. Therefore, we first determine the duration of a time window and simply ensure

whether this time window is large enough to satisfy the user request. The length of a time window

d = |twk1−k2| should be larger than the minimum amount of time, D/Mmax, required to transmit data if

Mmax bandwidth can be allocated.

Then, we calculate the maximum bandwidth available from source vs to destination vd in time

window tw. We use max-bandwidth path algorithm over static snapshot graph G(tw). G(tw) can

easily be computed using snapshots of time steps that form this time window. G(twk) = G(tsk), and

G(twk1−k2) = G(tsk1) ◦ G(tsk1+1) ◦ G(tsk1+2) · · · ◦ G(tsk2). We define a new operator, ◦, to intersect

static snapshot graphs. G1 ◦ G2 forms a new graph with the same vertex and edge set as in G1 and

G2. For each edge ek, the available bandwidth is the minimum of xek both in G1 and G2. Such that,

∀ek ∈ G1 ◦ G2 : xek = min{xek
1 , x

ek
2 }, where xek

1 is the available bandwidth of ek in G1 and xek
2 is the

available bandwidth of ek in G2. This property makes the process easy, since we only need to store

one graph snapshot for each starting time window; for example, to obtain G(tw1−3), we only need
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G(tw1−2) and G(tw3), G(tw1−3) = G(tw1−2) ◦G(tw3).

Figure 4.7: Static Graphs for time windows tw1−2, tw3−4, tw5−6, and tw1−6

Figure 4.7 shows static snapshot graphs for time windows tw1−2, tw3−4, tw5−6, and tw1−6. G(tw1−2) =

G(ts1) ◦ G(ts2), G(tw3−4) = G(ts3) ◦ G(ts4), G(tw5−6) = G(ts5) ◦ G(ts6), and G(tw1−6) = G(tw1−2) ◦

G(tw3−4) ◦G(tw5−6). R1 and R2 are active in time interval [t1, t6], so links associated with both R1 and

R2 are updated in G(tw1−2). Only R2 is active in time interval [t6, t9], so links associated with R2 are

updated in G(tw3−4).

While exploring a time window, a max-bandwidth path δ is calculated in G(tw) in which µtw(vs, vd)

is the maximum amount of bandwidth we can allocate in time window tw. dtw × µtw simply gives the

amount of data that can be transmitted if a reservation is made in time window tw, where dtw is the

length of the time window. A time window tw(ti, t j) is selected and marked if it can provide enough

resources to satisfy the user criteria. For such a time window, dtw = |max{ti, tE},min{t j, tL}| is the

maximum duration we can use to make a reservation, and µtw = µtw(vs, vd) is the maximum amount

of bandwidth we can allocate from source to destination. Note that we need to the consider amount

of bandwidth we can use which is also limited by the maximum set by the user, µ′tw = min{µtw, M
max}.

Therefore, the product µ′tw × dtw should be greater than the requested volume size D.

When a satisfactory window is found, we generate a reservation R = (vs, vd, M, ts, te) and a path

from source to destination to be used for this reservation in the network. The start/end times and

M are calculated based on the given user criteria and available resources in the time window. A
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straightforward strategy to generate a reservation when a time window tw is selected and marked to

satisfy the user criteria is as follow: ts = max{ti, tE}, M = min{µtw, M
max}, and te = ts + |D/M|.

Input: A set of time steps in the search interval {ts1, ts2, . . . , tsn}

Output: A network reservation for earliest completion or shortest duration
for i = 1 to n do

for j = i to 1 do
Get time window tw = tw j−i which contains all time steps between ts j and tsi;
if the given criteria can fit into the time window tw = ts j . . . tsi then

Obtain static snapshot graph G(tw) for time window tw;
Calculate max-bandwidth µtw from source to destination;
if we can satisfy request in time window tw (Examine µtw) then

select tw ;
if goal is to find a reservation with Earliest completion then

if there is any selected time window tw then
Get tw with shortest duration to satisfy the given request;
Generate a Reservation and a Path, Return for earliest completion;

if goal is to find a reservation with Shortest duration then
if there is any selected time window tw then

Get tw with shortest duration to satisfy the given request;
Generate a Reservation and a Path, Return for shortest duration;

Return: No reservation found;
Algorithm: A sample search pattern to find a reservation with earliest completion time or
shortest transfer duration

Figure 4.8 shows the search pattern to find a reservation for the earliest completion time, for the

example given in Figure 4.1. Assume that we have a service request S = (A,D, 200Mbps, 200 ×

4t, t1, t13), and we want to find a reservation satisfying the given criteria. Time window tw(t1, t4)

with length 3t, and time window tw(t4, t6) with length 2t, are short in duration to conform to the

requirements of this request. The maximum bandwidth allowed is 200Mbps, so we need at least a

time window with length 4t. tw(t1, t6) satisfies the time requirement, so we proceed and calculate the

maximum bandwidth available in G(tw(t1, t6)). The maximum bandwidth we can reserve from A to

D between t1 and t6 is 100Mbps. Total size of data we can transfer is 100 × 5t. Therefore, tw(t1, t6)

can not satisfy the bandwidth requirement. We keep searching through time windows until we find

tw(t1, t9) which satisfies both time and bandwidth requirements. Time window tw(t1, t9) is selected

for the earliest completion time. We generate Rearliest = (A,D, 100Mbps, t1, t9) with start time t1 and

end time t9. If we want to find a reservation for the shortest transfer duration, we need to continue
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Figure 4.8: Example for earliest completion

searching until we cover the entire interval between t1 and t13. As shown in Figure 4.9, tw(t9, t12) and

tw(t7, t12), tw(t6, t12), tw(t4, t12), tw(t1, t12), tw(t12, t13), tw(t9, t13) . . . are searched next. Time window

tw(t9, t13) satisfies the given bandwidth and time requirements. All other time windows coming after

this in the search pattern, are longer in terms of duration. Therefore, tw(t9, t13) gives the reservation

Rshortest = (A,D, 200Mbps, t9, t13) with shortest duration. If the total volume of data is 175 × 4t, then

the search will be same with Rshortest = (A,D, 200Mbps, t9, t12.5) and Rearliest = (A,D, 100Mbps, t1, t8).

Figure 4.9: Example for shortest transfer duration
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4.5 Evaluation of the Proposed Algorithm

Max bandwidth path algorithm is bounded by O(n2), where n is the number of nodes in the topology

graph. In the worst-case, we may require to search all time windows, (s × (s + 1))/2, where s is

the number of time steps. If there are r committed reservations in that period, there can be a of

maximum 2r + 1 different time windows in the worst-case. Overall, the worst-case complexity is

bounded by O(r2n2). However, r is relatively very small compared to the number of nodes n, in the

topology. Bandwidth reservation is used for large-scale data transfers and it is very unlikely to have

thousands of committed reservations in a given time period. Also, the path calculation from two

end-points does not span to all nodes in a real network; therefore, we can trim the topology graph and

perform calculation on a reduced data set while calculating path from source to destination. Moreover,

time windows that are too short in duration to transmit the requested amount of data are eliminated

beforehand. Max bandwidth and shortest path algorithms are quite efficient and the search process

over time windows is scalable and practical, considering that the number of reservations in practice

is limited. Furthermore, there are usually less than a hundred node in a typical network topology like

ESnet. We have tested the performance of the algorithm by simulating very large graphs (with 10K

nodes) and we have observed that the computation time is in the order of seconds.
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Chapter 5

Scheduling with Time and Resource Conflicts

In this chapter, we analyze scheduling of data transfer operations with time and resource constraints.

We explain several common approaches used in the literature to analyze file scheduling and resource

assignment, and we emphasize the complexity of the scheduling problem with resource and time

conflicts. We give several cases to clarify the problem domain by highlighting methodologies and

special techniques used to obtain a solution. Our main concentration is arrangement of data transfer

operations in time dependent networks. The bandwidth assignment, which has been described in

previous chapters as well, plays an important role designing a solution. In our scheduling paradigm

given in this study, the transfer rate is fixed and does not vary over time. This is one of the crucial

features that affect the methodologies used to approach the problem. In order to elucidate the problem

domain and introduce the concepts, we present the crucial decision points in the process of designing

a scheduling algorithm with resource and time constraints. We present several recent studies in the

literate solving similar but simpler use cases. We also compare offline greedy algorithms with online

algorithms in which no prior knowledge about the future states is available. We conclude this chapter

with a simple example to make readers more familiar with the theory behind scheduling with time

and resource constraints with fixed bandwidth assignment.

5.1 File Transfer Scheduling in a Network

There are several studies in the literature [37] categorizing several research problems in data trans-

fer scheduling [43, 97], and summarizing theoretical complexity and difficulty of those problems in

several domains [57]. A simple scheduling problem can be defined as follows.

We have a network consisting of n nodes connected to each other, and m files to be transferred

over this network. Each node can transfer up ci concurrent files at a time, and a file need to be sent
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from node i to node j. Each file may have different data size; therefore, the total amount of time to

complete the transfer may vary for each file since it directly depends on the size of data sent over the

connection between two nodes. One common objective is to find a schedule in which we minimize

the total amount of transfer time. We organize each file transfer in such a way that the makespan is

minimized. This is a general type of assignment problem and it is NP-complete [57].

On the other hand, the structure of the network has direct relation with the complexity of the

problem. [57] analyzes some common cases and shows that there are polynomial time solutions for

some very special types of the problem. Other than that, the general problem is proven to be NP-hard.

The study given in [57] examines several network structures such as trees, bipartite graphs, networks

with odd and even cycles, and provides a detailed complexity analyze through relaxing the problem

by eliminating parameters such as file size and concurrency.

A very straightforward file transfer scheduling problem can be defined if we eliminate the con-

currency and file size parameters. We let nodes transfer only one file at a time, c = 1; and files have

same data sizes, so the duration of file transfers are same. Such a simplified version can be a cardi-

nality matching problem. It is a well known that analyzing bipartite graphs has many benefits. If the

network is bipartite graph, sender and receiver nodes are separated from each other; we can simplify

it as a bipartite cardinality matching problem. Bipartite cardinality matching can easily be solved by

converting it to a max-flow problem. We would like to emphasize that we evaluate a specific network

type; beyond that, important parameters in the problem, file size and concurrency, have no effect and

not included in this simple case.

We call attention to the definition of the simple problem given above. We have no time depen-

dency and there is no capacity in nodes, also between nodes. All transfer jobs, files, are given at the

beginning and we try to find an offline scheduling to minimize the total transfer time. Some special

cases can be solved by generalizing to graph coloring and bipartite matching problems. Further, the

broader problem is quite hard and needs much attention. We would like readers note that we are

dealing with assignment problem which are typically NP-complete. The scheduling with advance
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reservation brings time dependency for each job and a dynamic network infrastructure as well. Fur-

thermore, we study a practical online algorithm which makes decisions on the fly when new requests

arrive.

5.2 Resource Assignment

We can apply a more common technique using bipartite graph structures, where source and destination

end-points are separated, to model a special case of the problem. The Hungarian algorithm [51] is one

of the well known combinatorial algorithms that gives a polynomial time solution to the assignment

problem. There are m tasks and n nodes, and each task has a specific cost/profit when assigned to

a particular node. Given that we know the cost/profit matrix, the objective is to maximize the profit

or minimize the cost by finding an optimum mapping of tasks. For this case, tasks represent the file

transfer operations; and, we would need to find an optimum mapping of file transfer operation into

nodes pairs. Let assume that we still transfer single file at a time, we have concurrency limitations,

which is one. On the other hand, transfer rates between nodes, bandwidth, is not unique in this case.

We extend the simple problem by adding another parameter; such that, we also consider the transfer

rate between node pairs. We can model the profit function by file sizes. We want to maximize the total

amount of data transferred at a certain amount of time. We can benefit from the Hungarian method in

order to model such a system in which we select a set of files in order to maximize the total throughput

given that each edge has a particular capacity.

If we allow concurrent transfers, the problem cannot be represented using the same model. The

assignment problem becomes more complex, and the solution becomes harder, NP-hard. Concurrent

transfers enable total bandwidth to be shared between multiple operations. However, in real life we

usually do not apply a concurrency limit; instead, we have maximum capacity in resources which

confines the maximum number of transfer operations at a time. In other words, we may start sending

many files at a time which have small transmit rates. If we allow bandwidth sharing and try to find an

optimum for how resources are split among operations, we end-up in a more difficult dilemma.
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Designing an online scheduling algorithm has difficulties compared to offline scheduling in which

we have all job information in advance [56]. A common methodology is to examine arriving jobs at

a period of time. The periodic scheduling brings some advantages by delaying the decision time and

making a schedule by granting a set of recent jobs together.

5.3 Time Constraint in Fixed Bandwidth Assignment

File transfer scheduling with a specific start time and a particular deadline has been studied in litera-

ture [74, 94, 84]. The scheduling problem has been formulated as a multi-commodity flow problem,

and uniform time slices have been used to model the time dependency in [84]. The objective is to

maximize the total transfer throughput and data transfers can use varying bandwidth in every time

slice. This problem can be generalized as a concurrent file transfer problem [94]; such that, we share

the bandwidth between multiple jobs and try to utilize the network as much as possible. Using net-

work flows to model and place a solution space to combinatorial optimization problems is a common

practice [74]. On the other hand, sharing bandwidth between concurrent transfers can improve the

total throughput but does not help satisfying completion time of each job. Our objective is to provide

allocation of scheduling time not to improve the system utilization.

We would like to emphasize that multi-commodity flow does not apply our case. Recall the anal-

ogous example, time steps and time windows, given in previous chapters. There are several practical

ways to set the transfer rate. One of them is to adjust the number of parallel streams which will be

discussed in dynamic adaptation in the following chapters. Furthermore, there are several approaches

such as modifying the TCP stack in kernel to limit and control the transfer rate. Moreover, we have

already studied network reservation and guaranteed bandwidth allocation in which the network itself

limits the total usage of bandwidth. Although it is has many practical issues in real life applications,

solving fixed bandwidth problem is much harder. Therefore, we explain the unsplittable flow problem

to help model the fixed bandwidth assignment problem.

The unsplittable flow problem [62] is an interesting dilemma in algorithm research. We can simply
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describe it by t tasks with start and end time and a particular demand d > 0 and a profit p. If we assign

a task, it requires bi amount of bandwidth. We are given a network with available bandwidth bt for

every time t. The purpose is to find a subset of tasks to maximize the profit. Similarly if every task

acquires a cost value, objective is to minimize the cost. The unsplittable flow problem is NP-hard,

and only polynomial approximation algorithms are given in [17, 26, 61, 59, 35]. Interestingly, even

for very special cases (i.e. planar graphs) the problem is still NP-hard.

In order to clarify the concept behind fixed bandwidth time dependent scheduling in a distributed

network, consider a single network with a single line. We let only one edge connecting two nodes.

In this special case of the general problem where network is a line, the unsplittable flow problem

converts to a very well known optimization problem, Knapsack problem [75]. In Knapsack problem,

we have a set of items each with a weight and a cost value, and we select a collection of items to

maximize the total profit considering that we have a limit in total capacity. Similarly, we have start

and end times for each task, and we have the bandwidth limit over the link. Beyond that, even if

we have unique profit p = 1, and unique demand d = 1 for all tasks, and we set the edge capacities

to a unique value, we still end up with a NP-hard problem. This special case can be generalized to

maximum edge-disjoint paths problem in graph theory [26].

In the following section, we elaborate on the methodology used to explore time and resource

constraints and evaluate conflicts. We study unsplittable flow problem and give a model to clarify the

problem domain. We state an example to show the complexity of scheduling in dynamic network with

time constraints. The problem we attempt to solve is quite hard. To the best of our knowledge, only

polynomial approximation algorithms have been proposed in literate as discussed above, and there is

no constant factor approximation algorithm known to solve the unsplittable flow problem.

One way to cope with hard problems is to design approximation algorithms in which we set pri-

orities and rate each selection to reduce the search space. As we describe in the following section,

the number of possible options to examine in order to make the best selection exponentially increases

in worst case. Instead of that, we rate each selection and displacement based on the priority or the

48



cost/desire we assign to each task. Thus, we can design polynomial greedy heuristics which can solve

the problem with a near optimum scheduling choice. Note that very simple but effective greedy ap-

proaches like best-fit, first-come, and earliest-deadline, use some preference/criteria to make a choice

among multiple options. The design of the algorithm and deciding on a good selection criteria play

important role in terms of the quality of the resulting scheduling approximation. There are many

studies in the literature investigation approximation algorithms for scheduling; [56] and [44] are one

of them which show benefits in designing greedy algorithms with priorities .

5.4 Analyzing the Assignment Problem in a Distributed Network

We define a sample network with three data transfer nodes connected to each other over a network.

Each node has a particular capacity that it can provide maximum upload and download transfer rate.

This defines the limit in server site such that total throughput is also constrained by the capacity of

data transfer nodes. Figure 5.1 gives a sample example with three jobs. Each job has an amount of

data need to be transferred, and a specific period of time this job need to be completed - earliest start

time tE, and latest completion time tL.

Figure 5.1: Sample Problem Definition

As we have described in the previous sections, we are bounded by edge capacity as well as node

capacities. Figure 5.2 shows the resource conflicts in this simple example. If we have a transfer

request from node n1 to n2 running at the same with another request from node n3 to n2, the total

bandwidth allocation given to both should not exceed the capacity of the shared node n2.
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Figure 5.2: Node and Link - Resource Contraints

Earliest start time and latest completion time of each job defines its search interval. We focus on

the search interval to find a proper allocation for the given request. Figure 5.3 shows time steps which

are calculated according to constraints of each job. A time step shows the longest duration of time

in which we have a stable network structure in terms of available bandwidth ready for reservation.

Figure 5.4 shows time windows. We traverse time windows in a specific order. A time window is a

sequence of time steps. First we try to find an allocation which has shortest duration of time; or simply

say which includes less time steps. Besides, we want to find an allocation with earliest completion; so,

we traverse first time windows which end earlier. Time steps and time windows have been described

in details in previous chapters. We further demonstrate mapping time windows to search intervals of

each job in Figure 5.4.

Figure 5.3: Time Steps and Search Interval
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Figure 5.4: Time Windows

The total amount of data for each job that need to be transferred characterizes the duration of the

time period needed. Figure 5.5 shows how several time windows are eliminated in the search interval.

Further, it also illustrates the resource constraints specific to each time windows. For example, if we

want to assign job J1 into time window tw6, we need at least a capacity of 120 allocated over the link

from n1 to n2 which provides maximum of 200 capacity. However, we would first consider tw3 and

tw5 if there is more capacity available since those time windows consist of less time steps (shorter

duration). Figure 5.6 provides a more detailed view of the assignment options.

We have analyzed the unsplittable flow problem. If we could solve that in a polynomial time,

we would also solve this problem. Figure 5.7 represents the sample problem using network flows.

The crucial point is that each time window may affect more than a single time step. And, those time

steps need to have the same capacity allocation during the entire period of time in this time step. As

an example, tw9 and tw5 both include ts2. Any flow passing over these two should also consume

capacity in ts2. Even though we could represent the network structure with discrete graphs in each

time step, we still need to consider time constraints. In other words, our problem complexity increases

exponentially when we have time constraints and resource constraints together. In this case, we have

resource conflicts in each time step, see Figure 5.2, and time conflicts for time windows as shown in

Figure 5.7.
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Figure 5.5: Mapping Jobs to Time Windows

Figure 5.8 provides a table of possible assignment options that need to be considered with resource

constraints given in Figure 5.9. In Figure 5.10, we present how solution space is analyzed in this

sample problem. We show sample conflicts, and explain that search space is exponential. We have

three possible assignment option for J1, two for J2, and four for J3. Overall, we may need to consider

3 × 2 × 4 choices in order to make a selection. Each assignment might affect other options, but there

is no direct correlation between them.
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Figure 5.6: Minimum Capacity required for each Time Window

For example, if we select tw8 for J2, we could assign J3 into time window tw13. tw8 includes ts3

and ts4, a period of time between t4 and t9. The minimum capacity we can use in this time window

for job J2 is 240, but we can finish by t8 if use 300. In such a case, we would not be able to assign

J3 into tw13 since there we be no capacity left at node n3. However, if total volume of job J3 was 200

instead of 300, we could assign it between t8 and t10. Assume that total volume of data for job J3 is

200. The flow from J3 to tw8 and tw12 would be 50 instead of 75. In such a case, we would be able

to select tw8 for J2, and tw12 for J2 (total makes 240 + 50 = 290 < 300). We could use 240 amount

of bandwidth for J3, and 50 amount of bandwidth for J3, between t4 and t9. Alternatively, we could

use 300 amount of bandwidth for J3 between t4 and t8, and 100 amount of bandwidth for J3 between

t8 and t10. In other words, we would introduce a new point at t8 and divide the time step ts4 into two.

Even though unsplittable flow model given in this sample example is capable to find an assignment

options, we would need further processing to purify results in order to obtain the best selection.
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Figure 5.7: Time Conflicts

Figure 5.8: Time and Resource Conflicts

Figure 5.9: Resource Conflicts
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Figure 5.10: Assigning Jobs to Time Windows
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Chapter 6

Scheduling with Advance Reservation

In this chapter, we propose an online scheduling algorithm such that the scheduler makes decision

whenever a new data transfer job is submitted. We analyze data transfer scheduling between dis-

tributed resources with given time and resource constraints. Each job contains information about the

total volume of data need to be transferred, source and destination end-points, and also the time pe-

riod in which this data transfer operation need to be completed. Users submit data transfer jobs with

a simple time constraint; an earliest time when this data will be ready to initiate the transfer, and a

deadline when the user wants data transfer to be completed.

We first give a formal definition of the problem and we underline several technical characteristics

of the target environment. We give a priority based greedy heuristic to manage the described schedul-

ing problem with advance reservation and provisioning. We present the crucial decision points and

give details about the proposed algorithm. We evaluate the given approach and show its implications

in real life. We give design and implementation details of a practical data transfer scheduler with

advance reservation.

6.1 A Scheduling Model with Reservation

The data transfer scheduler checks other jobs in the system and considers both time and resource

conflicts. In order to admit a submitted job, it has to confirm the availability of resources to complete

the transfer of the data before the given deadline. If a job has been admitted, a period of time is

reserved in advance with required capacity in resources along the route between these two end-points.

We consider that the scheduler has knowledge about the current and future capacity of resources that

affect the end-to-end transfer performance. The users have the opportunity to give a desired period of

time in which they want the transfer to be accomplished. If the scheduler cannot find a suitable time
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slot, it tries to shift other jobs that had already have a reservation in the given time period without

breaking any deadline requirements of previously admitted jobs.

One important constraint is to reserve contiguous time slots for each job such that a data transfer

operation starts with fixed transfer rate and maintains this until the data volume has completely trans-

ferred. If the scheduler cannot reserve a proper time period for a submitted job, it either rejects the

jobs or offers user another time frame which is found by extending the deadline. In such a case, we do

not consider moving previously made reservations. This second phase in which the scheduler makes

an offer by extending the deadline, encourages users to submit reasonable and appropriate deadlines

when they are initially submitting the job.

The scheduler has two main objectives. First, it ensures that no other admitted job will be post-

poned due to making a new reservation. In addition to the fairness objective, it also tries to maximize

the number of admitted jobs by moving reserved slots. The scheduler tries to be open a suitable period

of time to admit a recently submitted job by resolving time and resource conflicts. On the other hand,

it also selects time slots which gives earliest completion time and with minimum interference with

other admitted jobs in the system.

6.2 Problem Definition

We define the topology as a time-dependent directed graph G(V, E,T ), with a node set V of n data

transfer nodes, and an edge set E ⊆ V with m edges, where ek : (vi, v j) represents a connection from

vi to v j. For every connection between two nodes, there is a function of link capacity uei j(t) and

ue ji(t) where t is a variable in time domain T . In addition to that, every node has separate upload and

download capacities, uvi
out and uvi

in respectively.

We have a dynamic network environment in which edge capacities may vary over time. On the

other hand, we know the maximum upload and download capacities in each data transfer node. We

consider data transfer nodes as specialized machine(s), with back-end storage servers and data transfer
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protocols, connected to the outside network with high-speed high-bandwidth interconnects.

A data transfer job is defined as Ji = (vs
i , v

d
i ,Mi, tE

i , t
L
i ), where Mi is the amount of data to be

transferred from source vi to destination node v j within the time period of (tE
i , t

L
i ). tE

i represents the

earliest possible time when this data will be ready to start the transfer operation. tL
i represents the

latest completion time the transfer operation needs to be finished.

tL
i defines a soft-deadline for the transfer operation such that the transfer operation is not inter-

rupted if it cannot finish within the given deadline. However, the scheduler makes decisions according

to the time constraints. It does not admit a job if it foresees that it is not possible to finish the transfer

of the requested data before the given deadline.

6.3 Methodology

The scheduler tries to accomplish the task within the given time period but cannot promise a strict

time guarantee due to the dynamic nature of the distributed environment. The transfer performance

can be interrupted by external factors and also the operation can fail due to user and system errors.

More information on failure awareness and managing errors will be explained further in the following

sections.

If a submitted job is admitted, we set up a reservation for this job and allocate resources for a

specific time period. A reservation is defined as Ri = (vs
i , v

d
i , µi, ts

i , t
e
i ), where µi amount of bandwidth

is reserved from source vs
i to vd

i between start time ts
i and end time te

i . A reservation request is only

confirmed if there exits enough capacity satisfying the allocation of µi bandwidth in the given time

period between ts
i and te

i . The total allocated bandwidth over the link ei j should be less than the

capacity uei j(t) of the link for every instance of t in [ts
i , t

e
i ] . Similarly, the total in-coming bandwidth

allocation should be less than uvi
in, and total out-going bandwidth allocation should be less than uvi

out, in

the time period of (ts
i , t

e
i ).

We consider non-preemptive operations where data transfer start at ts
i and continues till te

i using
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µi bandwidth from resources along the end-to-end route; consuming upload capacity of data transfer

node vi, link ei j, and download capacity of v j . The duration of the time period, and the reserved

bandwidth should be enough to satisfy transferring the requested amount of data. We simply say

Mi = µi × di, where di is the total time between ts
i and te

i . Therefore, it should satisfy the requested

bandwidth during the entire period of time from start to end of this transfer. The problem is to find a

contiguous set of time slots such that a fixed amount of bandwidth can be allocated to satisfy the data

transfer job request.

We also would like to note that problem complexity is not bounded by given topology definition.

Instead of defining the network as a directed graph, we can also consider an undirected network

in which in-coming and on-going traffic share the total link capacity. Furthermore, we might have

combined capacity in data transfer nodes where upload and download operations consume from same

resource capacity in the nodes. Those specifications will affect the resource constraints. The given

topology definition to describe environment has practical and implementation benefits. Further details

will be explained in the following sections. On the other hand, our main concern is to solve time

conflicts while arranging reservation for each admitted job.

6.4 Online Scheduling

We propose an online scheduler, so the first objective is to make a quick decision when a job is

submitted. Therefore, we focus on polynomial scheduling algorithms which can easily be applied to

instruct the underlying mechanism. One main objective of the scheduler is to maximize the number of

admitted jobs. When a new job request arrives, the scheduler tries to open a reservation slot by moving

previously made reservations in order to confirm an allocation and admit the new request. With such

an objective in hand, one would expect the scheduler to accept jobs with small data volume and reject

or delay jobs which have large data volume. Moreover, a job interfering with many other jobs and

creating time conflicts will not be preferred. Those criteria will help maximize number of admitted

jobs but will result in unfairness in practice. Therefore, a crucial objective is of our scheduler is ensure
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that no other admitted job will be postponed due to making a new reservation for a new request.

The scheduler checks available time slots and considers resource constraints to find a proper al-

location for the new request. If there is no availability, it tries to open a suitable period of time to

admit a recently submitted job by moving previously made allocations to resolve time and resource

conflicts.

If the scheduler cannot accept a job request within the given time period, it makes an offer to the

user with a new latest completion time, tL
i . In this case, when it fails to find a time slot at first, the

scheduler does not try to move previous reservations. It searches for an available time slot without

making an effort to optimize the placement of allocations. The scheduler notifies the user when this

job can be completed earliest. If the user accepts, the job is admitted and the related time slots are

reserved with required resource constraints. This policy encourages users to submit reasonable and

appropriate deadlines with the initial submission. The scheduler will make an effort to find a time

slot by trying to re-arrange the allocations. However, it fails to find a place, it will just offer the first

available time period which might be sooner than the optimum.

The scheduler’s other objectives are to complete the given request as early as possible, and to

make a reservation which has minimum interference with other tasks. It selects time slots which

gives earliest completion time and with minimum interference with other admitted jobs in the system.

Even though there is available resource capacity both in nodes and the link, it is always beneficial

not to have many concurrent transfers running at the same time. Furthermore, we would prefer to

complete a job as soon as possible. We prefer allocating higher bandwidth for a shorter duration

instead of allocating lower bandwidth for a longer duration. Data transfers which takes longer and

which run on resources shared concurrently with other jobs, have higher failure probability. With

multiple concurrent jobs sharing common resources, it is also becomes harder to estimate the transfer

capacity. Therefore, we try to minimize the concurrency and we have preference to have minimum

resource sharing. Additionally, we prefer to minimize the completion time of each job.

We would like emphasize the importance of giving a desired period of time in which we set the
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earliest start and latest completion times to complete the transfer of a particular job request. The

problem we define is quite different than other scheduling approaches with fixed start and end times

given in the literature. Considering the time period between earliest start and latest completion times

enables the scheduler to take into account several possible reservation options. This information given

by the user allows us to make decisions considering other jobs, and find an allocation according to

previously made reservations in the system. Overall, users have the flexibility to give a desired period

of time instead of setting fixed start/end times for each job. It might seem that we are extending

the problem and making the solution harder by setting a broader time space for each job, but this

strategy has many benefits. By earliest start and latest completion times, we are not only providing a

proper and practical approach in terms of real life requirements, we are also enabling the scheduler

to move some previous allocations and open space for new requests, resulting in possible optimum

reservations placement in an online scheduler.

6.5 Selection Criteria

We propose a new algorithm for online scheduling of data transfer jobs with advance reservation. Our

approach, inspired from Gale-Shapley [105] and N-queen [96] algorithms, is to design an effective

methodology which can easily be implemented and deployed in practice. One of the important criteria

is to make quick and near optimum decisions despite the fact that the problem space is quite large.

We present a novel methodology in which, for each job request, we assign a value of preference to

the time reservations they could allocate. When a new job request cannot find a suitable time slot to

make a reservation, it competes with previously admitted jobs to move their reservations and open a

proper reservation time for itself. The outline of our scheduling methodology is as follows.

When a new request arrives, we first evaluate its time and resource constraints, and we try to

find a reservation satisfying given criteria. We search through possible time allocations and make

a reservation with the preference of selecting the one which gives earliest completion and shortest

transfer duration. If there is no contiguous period of time with enough resource capacity in the given
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search interval between tE and tL, we start exploring possible options to move previously made time

reservations to open a contiguous time slot that could satisfy the resource requirements of the new job

request.

In this phase, we traverse each possible time allocations for the new request and look for jobs

with less preference value for this time allocation. If there are jobs which have less preference for

this time period, we select the job with minimum preference. We move out this job and take over its

time allocation to make a temporary reservation for the new request. The job which recently moved

out from its allocated time space starts competing with other jobs to find a new slot. This recursive

operation continues until no reservation left to shift out.

Preference: Assigning a preference value is an important part in the design of the algorithm.

Even though we assign random ranks to each transfer request, the algorithm in general will conclude

with a scheduling decision. Since no previously admitted job will be displaced in order to allocate

resources for a new request, we guarantee that scheduler will eventually satisfy users by making

reservations based on their criteria. However, we have stated other objectives like minimizing the

concurrency count and decreasing time to completion for a request. Therefore, we set the preference

pJi as twid
Ji
/twnum

Ji
, where twid is the current assigned time window, and twnum is the total number of time

windows associated for this job. For a recently arrived job twid represents the current time window we

are evaluating to allocate. We compare its preference with other jobs already using this time window.

A job with higher ratio is more close to its deadline; so, it has higher preference.

Alternatively, we can use tsnum
Ji
/tstotal

Ji
, where tsnum is the total number of time steps in the current

time window we are examining, and tstotal is the total number of time steps this job can span over to

make its reservation. This parameter encapsulates the concurrency count. A job assigned to a time

window with higher preference has better chance to have its transfer overlapping with other transfer

operations. Recall that time steps represent a static network structure. Therefore, we prefer to assign

a job to a time window which includes less time steps. Therefore, we favor a job which has already

been using more time steps compared to the total number of time steps it can cover.
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On the other hand, the first preference metric also considers the concurrency count. Since we

search time windows in a particular order, this preference metric of twid
Ji
/twnum

Ji
convince our objec-

tives. While searching time windows, we consider to traverse earliest one, but we also look at shorter

ones first (which are including less time steps). Therefore, the preference metric better fits by both

minimizing concurrency count and time to completion.

6.6 Evaluation

A new data transfer request is only admitted only if we could allocate time and resource capacity in

advance without breaking the constraints of previously admitted jobs. At the end, if we can still find

a space for all previously admitted jobs and the new request, we admit the new request and make

the temporarily made reservation permanent. Otherwise, we roll back all temporary reservations and

return back to the previous state. We try and execute the same search procedure for other possible

time allocations that this new request can reserve.

If we succeed in none of them, we could not end up finding a schedule satisfying all admitted job

and this new request, we either reject the new request or suggest a new latest completion time. We

simply inform the user that we could not find a time period in the given search interval to accomplish

the data transfer operation. In this case, the scheduler looks forward and selects a time period which

gives earliest completion for the request without trying to shift previously made reservations.

The following Algorithm gives a glimpse of the algorithm used to search and find a new resource

to job mapping, in order to admit a new job, and displace a previously admitted jobs if necessary to

open space for the new request.

For each new job, we divide the search interval into time steps. The search interval [tE, tL] of

a job is the time period between earliest start time tE and latest completion time tL in which the

data need to be transmitted. A time step represents the longest duration of time in which we have

a stable discrete status in terms of available bandwidth over the link and data transfer nodes. The
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Input: A set of admitted jobs(already in the system) and their active advance Allocations
Input: A new a job request Ji with earliest start tE, latest completion tL, volume M, source vs

and destination vd

Output: A new set of allocation If this job is admitted
Get all time windows which contains all time steps between tE and tL ;
Obtain static bandwidth availability snapshot for vs , vd and the link vs vd ;
Search time windows to find a reservation satisfying given criteria ;
Time window search sequence : ;
(According to earliest completion time but time window with shortest duration preferred first);

if A suitable time window satisfying resource constraints found then
Make allocation and admit the job;

else
for all time windows that could satisfy new job request do

For time window tw, search if there is a job with less preference;
Omit jobs which are flagged not to be displaced ;
Request already started or already displaced in the current search sequence are

omitted;
if such a job Jk is found then

Displace Jk and make a reservation for Ji;
Jk and Ji are flagged ;
Run Scheduling Algorithm for Jk to find a new reservation for Jk ;

if all jobs in the system (including Ji) ) are scheduled then
Admit the new job Ji;
Accept the new allocation (resource-to-job) mapping by committing the final Reservation
Set;

else
Rollover to the initial state (resource-to-job mapping);

Scheduling Algorithm: search pattern to find resource and schedule a new request

set of confirmed reservations in the system characterize time steps since they change the available

bandwidth values in the topology. If there are r committed reservations falling into the period, there

can be maximum 2r + 1 different time steps in the worst-case. If s is the total number of time steps,

there are (s × (s + 1))/2 time windows since time windows are subsequent combinations of time

steps. We search through these time windows in a sequential order to check whether we can satisfy

the requested allocation in that time window. Assume that there are already n jobs in the system

which have already been admitted. When we receive the (n + 1)th job, and we could not confirm a

reservation just by looking time windows it can span over, we try to displace other jobs to open space

for this operation. We sequentially traverse time windows that can satisfy given criteria, and try to

find a job with less preference that already has allocation in the time window we are considering.
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As it has been described above, this recursive process will end when we cannot place a previously

admitted job. Therefore, there can be maximum n tries. Thus, total complexity is bounded by number

of jobs and number of time steps, O(n × s2). Time steps are associated with reservations and the total

number linearly scales with the number of reservations in system. In a very extreme case where all

jobs fall into same search interval, complexity is O(n3) such that every admitted job has a reservation

committed.

6.7 Implementation Details

Another challenge in designing an advance reservation system is to find an appropriate data structure

to keep bandwidth availability in a time-dependent network. The common approach presented in the

literature is to divide the entire time period into time slots and store available bandwidth over a link

for each time slot. When a new reservation is committed and added to the system, we proceed and

update bandwidth availability and time slot information for every link on the allocated path. Using

such a technique, in which we accumulate resource availability for time slots for every link in a

network, enables straightforward evaluation since all resource availability has been pre-computed.

On the other hand, the total data size increases dramatically especially for large network with many

reservations committed. There have been several studies analyzing data structures for network routing

with advance reservation [28, 112, 110]. Further, we need an effective methodology which we can also

benefit in calculating static snapshot graphs G(tw), during maximum bandwidth calculation and time

window evaluation. Since we already have reservation information, which includes path information

and allocated bandwidth value, we can automatically generate the bandwidth availability for all links

for a specific time period if we know reservations that are active in the time window we are evaluating.

Simply, we deduct allocated bandwidth of a reservation from the available bandwidth of a link if the

path for this reservation uses the link we consider.

We present a specialized linked-list data structure that holds time steps and a set of active reser-

vation identifiers associated for each time step. This information is updated on the fly. When a new
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reservation is committed, the data structure is updated and new time steps are added automatically

if necessary. If a reservation is canceled, its identifier is removed from the set of reservations that

belongs to time steps the canceled reservation spans over. The main purpose of this data structure is

to query time windows quickly and retrieve list of active reservations in time windows. We only need

time steps that fall into the given search interval. Time steps are indexed for faster operations and a

set of reservations is returned for each time window.

Figure 6.1: Connection between two data nodes

The connection between two end-point may span over multiple routers. As can be seen in Figure

6.1, data nodes are connected to the edge-routers in a network. Performance of searching bandwidth

allocation between two edge-routers and finding possible network reservation options are crucial in

designing a scheduler with advance reservation and provisioning. We have tested the network reser-

vation algorithm presented in previous chapters by generating large random graphs. Random requests

with user parameters such as data volume, earliest start and end times are generated for reservations

within a 200hrs time interval. Figure 6.2 and 6.3 show overall performance with various number of

reservations applied in each case. Each point in the graph is average of 100 measurements. Those

tests are performed in mid-range workstation, and we were able to process and search all related time

windows to find a reservation in a timely manner. Note that it is very unlikely in real life to have

thousands of committed reservations in a short period. Furthermore, we would have a maximum hop

count parameter in real-life. We ignored the maximum hop count parameter and set it to infinite in

order to evaluate performance in large and complex system.
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Figure 6.2: Search performance to find a reservation in a network (Set 1: sparse graph with less
cycles)
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Figure 6.3: Search performance to find a reservation in a network (Set 2: dense graph with more
cycles)
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Chapter 7

Conclusion

In this dissertation, we developed a new data transfer scheduling paradigm in which data movement

operations are scheduled in advance. This improves current systems by allowing researchers/users

and higher level meta-schedulers to use data placement as a service where they can plan ahead and

reserve the scheduler time in advance for their data movement operations. In general, the number

of reservation options is exponential with the number of nodes n, and current reservation commit-

ments. We present a novel approach for path finding in time-dependent networks taking advantage

of user-provided parameters of total volume and time constraints. The network reservation algorithm

has already been implemented for integration into future versions of OSCARS. On the other hand,

network provisioning is not sufficient by itself for end-to-end high performance data transfer. In order

to take advantage of the available network bandwidth, client sites should provision other resources

such as storage capacity and bandwidth. Therefore, we have studied scheduling data transfer opera-

tion with resource and time conflicts. We have developed a new scheduling methodology considering

resource allocation in client sites and bandwidth allocation on network link connecting resources. Our

methodology provides a basis for provisioning end-to-end high performance data transfers in which

users submit their jobs with time and resource constraints to make an advance schedule. Our future

work includes implementation and integration of the online scheduling algorithm with advance reser-

vation. We also benefit from some important features such as early error detection, job aggregation,

failure awareness, network bandwidth allocation and dynamic adaptation. Some other contributions of

those techniques include enhanced reliability, adaptability, and performance optimization of schedul-

ing distributed data placement tasks. Results presented in this dissertations will also contribute to

the research community by analyzing resource allocation and management, fault tolerance in data

movement, and coordination of bulk data transfers in data intensive computing.

69



Bibliography
[1] Advance Network Testbed for Research and Development. http://www.jgn.nict.go.jp/english/.

[2] Dynamic Resource Allocation via GMPLS Optical Networks. http://dragon.maxgigapop.net/.

[3] Energy Sciences Network. http://www.es.net.

[4] High speed TransAtlantic network for the LHC Community. http://lhcnet.caltech.edu/.

[5] Internet2. www.internet2.edu.

[6] Louisiana Optical Network Initiative. http://www.loni.org/.

[7] National LamdaRail. http://www.nlr.net/.

[8] OSCARS: On-demand secure circuits and advance reservation system. www.es.net/oscars.

[9] Stork 1.0. http://www.cct.lsu.edu/b̃alman/stork/downloads.

[10] GridFTP : Developer’s Guide. http://www.globus.org, 2007.

[11] Ismail Akturk and Mehmet Balman et al. Distributed Data Sharing with PetaShare for Collab-
orative Research in CyberTools. In Proceedings of NSF EPSCoR RII Symposium, 2009.

[12] G. Aldering and SNAP Collaboration. Overview of the supernova/acceleration probe (snap).
http://www.citebase.org/abstract?id=oai:arXiv.org:astro-ph/0209550, 2002.

[13] Bill Allcock, Ian Foster, Veronika Nefedova, Ann Chervenak, Ewa Deelman, Carl Kessel-
man, Jason Lee, Alex Sim, Arie Shoshani, Bob Drach, and Dean Williams. High-performance
remote access to climate simulation data: A challenge problem for data grid technologies.
In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 46–46, New York, NY, USA, 2001. ACM Press.

[14] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefe-
dova, D. Quesnel, and S. Tuecke. Data management and transfer in highperformance compu-
tational grid environments. Parallel Computing. 2001., 2001.

[15] M. Allen and R. Wolski. The livny and plank-beck problems: Studies in data movement on the
computational grid. In Supercomputing 2003, November 2003.

[16] Dragos Andrei, Massimo Tornatore, Dipak Ghosal, Charles Martel, and Biswanath Mukherjee.
Provisioning data-aggregation sessions in lambda grids. Technical report, US Davis, CSE,
2008.

[17] Yossi Azar and Oded Regev. Strongly Polynomial Algorithms for the Unsplittable Flow Prob-
lem. In Proceedings of the 8th Conference on Integer Programming and Combinatorial Opti-
mization (IPCO, pages 15–29, 2001.

[18] Mehmet Balman. Failure-Awareness and Dynamic Adaptation in Data Scheduling. M.S. The-
sis, Louisiana State University, 2008.

70



[19] Mehmet Balman, Ismail Akturk, and Tevfik Kosar. Intermediate Gateway Service to Aggregate
and Cache I/O operations into Data Repositories”, howpublished=.

[20] Mehmet Balman, Ismail Akturk, S. Roy, T. Kosar, G. Allen, and S. Acharya. Data Migration
in Distributed Repositories for Collaborative Research. In Proceedings of NSF EPSCoR RII
Symposium, 2009.

[21] Mehmet Balman, Evangelos Chaniotakis, Arie Shoshani, and Alex Sim. Advance Network
Reservation and Provisioning for Science. (Abstract), UK e-science All-hands Meeting, 2009.

[22] Mehmet Balman and Tevfik Kosar. Dynamic Adaptation of Parallelism Level in Data Trans-
fer Scheduling. International Workshop on Adaptive Systems in Heterogeneous Environments
(ASHEs 2009), Fukuoka, Japan, 2009.

[23] Mehmet Balman and Tevfik Kosar. Early Error Detection and Classification in Data Trans-
fer Scheduling. Proceedings of International Workshop on P2P, Parallel, Grid and Internet
Computing (3PGIC-2009), Fukuoka, Japan, 2009.

[24] Mehmet Balman and Tevfik Kosar. Data Scheduling for Large Scale Distributed Applications.
In the 5th ICEIS Doctoral Consortium, In conjunction with the International Conference on
Enterprise Information Systems (ICEIS’07). Funchal, Madeira-Portugal, June, 2007.

[25] Mehmet Balman, Ibrahim Suslu, and Tevfik Kosar. Distributed Data Management with
PetaShare. Poster presentation, The 15th ACM SIGAPP Mardi Gras Conference, 2008.

[26] Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R. Salavatipour. A loga-
rithmic approximation for unsplittable flow on line graphs. In SODA ’09: Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 702–709, Philadel-
phia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[27] Uyless N. Black. MPLS and Label Switching Networks (2nd Edition). Printece-Hall series on
advance communicaiton technologies.

[28] Lars-Olof Burchard. Analysis of data structures for admission control of advance reservation
requests. IEEE Trans. on Knowl. and Data Eng., 17(3):413–424, 2005.

[29] Lars-Olof Burchard. Networks with advance reservations: Applications, architecture, and per-
formance. J. Netw. Syst. Manage., 13(4):429–449, 2005.

[30] R. Buyya and S. Venugopal. The gridbus toolkit for service oriented grid and utility computing:
An overview and status report. In 1st IEEE Int. Workshop Grid Economics and Business Models
(GECON 2004., 2004.

[31] Alexandra Carpen-Amarie, Mugurel Andreica, and Valentin Cristea. An algorithm for file
transfer scheduling in grid environments. http://arxiv.org/pdf/0901.0291, 2009.

[32] Cern. The world’s largest particle physics laboratory. http://public.web.cern.ch, 2006.

[33] cFlowd. Traffic Flow Analysis Tool. http://www.caida.org/tools/measurement/cflowd/, 2006.

71



[34] Ismail Chabini. Discrete dynamic shortest path problems in transportation applications: Com-
plexity and algorithms with optimal run time. Transportation Research Records, 1645:170–
175, 1998.

[35] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation algo-
rithms for the unsplittable flow problem. In APPROX ’02: Proceedings of the 5th International
Workshop on Approximation Algorithms for Combinatorial Optimization, pages 51–66, Lon-
don, UK, 2002. Springer-Verlag.

[36] William C. Cheng, Cheng fu Chou, Leana Golubchik, Samir Khuller, and Yung-Chun (Justin)
Wan. Large-scale data collection: a coordinated approach. In in Proceedings of IEEE INFO-
COM, pages 218–228, 2003.

[37] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S. LaPaugh. Scheduling file transfers
in a distributed network. In PODC ’83: Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 254–266, New York, NY, USA, 1983. ACM.

[38] R. Cohen, N. Fazlollahi, and D. Starobinski. Graded channel reservation with path switching
in ultra high capacity networks. In Broadband Communications, Networks and Systems, 2006.
BROADNETS 2006. 3rd International Conference on, pages 1–10, Oct. 2006.

[39] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Infromation Services for
Distributed Resource Sharing. In Proc. of the 10th IEEE High Performance Distributed Com-
puting, pages 181–184, 2001.

[40] Sang Son Department and Sang H. Son. A priority-based scheduling algorithm for real-time
databases.

[41] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. Finding time-dependent shortest paths over large
graphs. In EDBT ’08: Proceedings of the 11th international conference on Extending database
technology, pages 205–216, New York, NY, USA, 2008. ACM.

[42] Eduard Escalona, Salvatore Spadaro, Jaume Comellas, and Gabriel Junyent. Advance reser-
vations for service-aware gmpls-based optical networks. Comput. Netw., 52(10):1938–1950,
2008.
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