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Abstract

Multicluster grids provide one promising solution to satisfying the growing computational de-

mands of compute-intensive applications. However, it is challenging to seamlessly integrate all

participating clusters in different domains into a single virtual computational platform. In order to

fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of

joining together participating autonomic systems practically and efficiently to execute grid-enabled

applications.

Driven by several compute-intensive applications, this theses develops a multicluster grid man-

agement toolkit called Pelecanus to bridge the gap between user’s needs and the system’s hetero-

geneity. Application scientists will be able to conduct very large-scale execution across multiclus-

ters with transparent QoS assurance. A novel model called DA-TC (Dynamic Assignment with

Task Containers) is developed and is integrated into Pelecanus. This model uses the concept of a

task container that allows one to decouple resource allocation from resource binding. It employs

static load balancing for task container distribution and dynamic load balancing for task assign-

ment. The slowest resources become useful rather than be bottlenecks in this manner. A cluster

abstraction is implemented, which not only provides various cluster information for the DA-TC

execution model, but also can be used as a standalone toolkit to monitor and evaluate the clusters’

functionality and performance.

The performance of the proposed DA-TC model is evaluated both theoretically and experi-

mentally. Results demonstrate the importance of reducing queuing time in decreasing the total

turnaround time for an application. Experiments were conducted to understand the performance of

various aspects of the DA-TC model. Experiments showed that our model could significantly re-

duce turnaround time and increase resource utilization for our targeted application scenarios. Four

applications are implemented as case studies to determine the applicability of the DA-TC model.

ix



In each case the turnaround time is greatly reduced, which demonstrates that the DA-TC model is

efficient for assisting application scientists in conducting their research.

In addition, virtual resources were integrated into the DA-TC model for application execution.

Experiments show that the execution model proposed in this thesis can work seamlessly with mul-

tiple hybrid grid/cloud resources to achieve reduced turnaround time.
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Chapter 1
Introduction

Cluster-based computing has been dominantly adopted by compute-intensive applications, and

myriad investments in cluster systems have been made by institutions and governments around the

world. However, individual clusters still have rather limited capacity and cannot meet the growing

demands of many large-scale scientific and engineering applications. Although teraflop or even

petaflop systems are available nowadays, these large parallel systems are very expensive, and in

general not dedicated, but shared by a large number of applications designed by many different

users. Also, it has been shown that parallel applications that have been written for homogeneous

single cluster systems do not run efficiently on multicluster systems [vNMB+00]. Thus, scientists

have been pursuing approaches to sharing the workload of individual applications across multiple

existing networked clusters so as to achieve a substantial increase in computational capability and

furthermore to improve resource utilization without any additional investment.

There is now considerable literature on supporting research into multicluster systems [Aum02,

BBE03, BAN00, CFM03, HJS+04, HJSN04]. Based on differences in their network connection,

multicluster environments can be classified into two categories: super-cluster systems and mul-

ticluster grids [AD03]. The former refers to a system in which the participating clusters are ho-

mogeneous, centrally administered and connected by a dedicated high-speed network. Such an

architecture provides better predictability and reliability, but it has a dedicated and fixed setting,

which seriously limits its scalability. In addition, a super-cluster system can be prohibitively expen-

sive. The latter (i.e., multicluster grid) is a grid environment in which the computational resources

are multiple clusters linked by the Internet. These clusters are typically self-administered, and may

be heterogeneous and globally distributed. Since each participating resource is shared by multiple

users, multiclusters can reuse the existing cluster infrastructure to achieve a substantial capacity

1
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FIGURE 1.1: The multicluster structure.

increase. In addition, multicluster grids have an open architecture and can be easily extended to

meet new demands as they arise. However, as a particular case of grid computing, multicluster

grids face the same challenges as any other grid environment, including security, performance

prediction, reliability and metascheduling.

The structure of a multicluster environment is shown in Figure 1.1. There is a super-scheduler

over multiple clusters that assigns application tasks onto participating clusters for execution. The

assigned tasks are viewed as normal jobs by the local scheduling systems on the participating clus-

ters. The local scheduling system arranges actual job executions under its own scheduling poli-

cies. However, it is challenging to efficiently manage application execution across a grid, due to

the nature of participating clusters and network connection [FKT01]. In general, the participating

clusters are geographically distributed, heterogeneous and independently administered. The net-

work connection provided by the Internet has security vulnerabilities and generally unpredictable

performance. Because the completion of a submitted application depends on the completion of all

the application tasks assigned to different clusters, the cluster that completes its tasks latest is the

2



bottleneck in the application’s execution. Application execution also has to take into account the

risk of any system failure in the participating clusters.

Several compute-intensive applications motivate us to conduct research on efficient system man-

agement for multiclusters. We have worked closely with research groups in various disciplines,

such as renewable natural resources, petroleum engineering, mechanical engineering, and compu-

tational chemistry. All the applications from these groups are compute-intensive, and these research

groups have already invested in clusters as computational platforms. While super-cluster systems

are not always available and/or affordable, these groups eagerly expect to construct multiclusters to

provide sufficient computational capabilities to advance their research and leverage their existing

cluster investments. However, under current circumstances, in order to leverage multiple clusters’

computational capability for a large-scale compute-intensive application, a scientist has to perform

several tasks: (i) organize the execution scenario for each application, (ii) check the cluster systems’

information through diverse information services provided by each cluster, (iii) pass through dif-

ferent security mechanisms, and (iv) then submit tasks on different cluster systems. All these steps

are executed manually without QoS (quality-of-service) assurance. In addition, it is challenging to

efficiently manage the application components and change the number of executables once they

are submitted to grid resources. This situation suffers from a lack of dynamic load balancing, re-

sulting in poor execution performance scalability. It is also very difficult to handle applications that

have malleable or recursive characteristics, where problem scale cannot be known until application

execution runtime. Inverse modeling is a typical example that requires dynamic handling; it has

been extensively adopted by various application domains such as coastal modeling, weather pre-

diction and subsurface modeling. The process of inverse modeling consists of multiple iterations.

The number of iterations and each iteration’s simulations can only be determined by dynamically

assimilated data during the inverse modeling.

In order to improve application execution with QoS, and furthermore enhance resource utiliza-

tion across a multicluster environment, in dissertation, we have developed a dynamic load assign-

3



ment execution model (DA-TC) and a corresponding service called the Grid Execution Manage-

ment Service (GEMS) to support such application scenarios. Using this novel application execu-

tion model, we are able to improve resource interoperability and enhance application execution

and monitoring in multicluster environments. Experiments show that this can significantly reduce

turnaround time and increase resource utilization for certain applications such as collaborative me-

chanical design [YXZ+08], reservoir uncertainty analysis [LAC+08], subsurface inverse model-

ing [LLW+07], sawing optimization [YCL+08], the Daymet application acceleration [Yun10], and

water nucleation simulation [YKX+07]. Based on this model, we have developed a toolkit named

Pelecanus to efficiently manage the resources and to provide high-level services to application

scientists.

Recently, the use of cloud computing technology for application execution has become increas-

ingly popular. By using the virtualization and on-demand virtual machines in the cloud environ-

ment, users can start executing their jobs immediately without any waiting time. Besides this, it

also provides users the ability to configure the virtual machines beforehand with the necessary

software and hardware support for the application execution, so that the virtual machines can be

used for job execution without any further software installation and configuration after booting. In

this dissertation, we present approaches to integrate cloud resources into our DA-TC model to take

advantages of this new technology for application execution.

We aim to provide high-level services and tools that will enable application scientists to concen-

trate on their primary research and significantly improve the utilization of existing cluster systems

in terms of reliability, predictability, confidentiality, and usability. Users will benefit from our re-

search on application execution, resource applicability and utilization, and system management.

An application scientist will be able to conduct very large-scale execution across multiclusters

with transparent QoS assurance. Small resources that are part of the multicluster environments

will be able to make contribution to the whole large application execution, which may otherwise
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be abandoned due to the long turnaround time. Our research will facilitate system management

through providing high-level system configuration, monitoring and steering services.

DA-TC execution model

Cluster abstraction

Cluster 
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Instance 2

Cluster 
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Hardware & 
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services

Cluster 2: 
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existing 
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Mechanical 
Design

                Graphic User Interface; Web Interface

Pelecanus Toolkit

FIGURE 1.2: Schema of research project.

Figure 1.2 gives the schema of our research. Our toolkit serves as the middleware between the

user and physical clusters. The DA-TC model is the core component of this toolkit. It integrates

multiple cluster for application execution and provides monitoring information and control of the

jobs. Several application execution scenarios are supported, including task farming, inverse mod-

eling, co-scheduling and time-critical support. High-level interfaces, such as GUI and web portal,

are provided in this toolkit, which gives the user the ability to directly control the workflow and

each individual job executing in the DA-TC model. At a lower level, cluster abstraction is used

to unify the description of and access to resources in this multi-cluster environment. It hides the

heterogeneity of the physical clusters and provides a uniform interface for our DA-TC model.
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The rest of this dissertation is organized as follows. We present background and related work in

Chapter 2. In Chapter 3, we give the details of our Pelecanus toolkit, including the components

of the DA-TC execution model, the cluster abstraction that can be used to monitor the cluster

functionality and report cluster information for various workload allocation policies in DA-TC

model, and the targeted execution scenarios. Chapter 4 shows how the proposed model can improve

multicluster grid performance via theoretical analysis and experiments. In Chapter 5, we describe

the large-scale applications we have dealt with and the approaches we deployed our execution

model to these applications to achieve reduced turnaround time. Chapter 6 shows how the cloud

computing technology can be benefit to our application execution by integrating hybrid grid/cloud

resources through our model. The conclusions and future directions are discussed in Chapter 7.
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Chapter 2
Background and Related Work

In this chapter, we discuss several existing grid computing technologies for improving application

execution across a grid.

The Network Weather Service (NWS) [Wol03] provides methods for predicting the performance

of computational grid resources using computationally inexpensive statistical techniques. The pre-

dictions generated in this manner are intended to support adaptive application scheduling at the

super-scheduler level (shown in Figure 1.1). However, once application tasks are dispatched to lo-

cal scheduler systems on participating resources, the local scheduler systems take control of task

execution. As mentioned in Chapter 1, the bottleneck for application execution is the completion of

the tasks assigned to the slowest computing resource. One might consider technologies to migrate

queued tasks among the participating clusters in multicluster grids, but the migrated tasks have

to be located at the end of local scheduling queues on the targeted clusters, waiting for resource

allocation.

Pegasus [DSS+05] is a framework for mapping complex scientific workflows onto distributed

systems. Condor [TTL02] software has to be installed on a user’s local machine and Globus [FK99]

software has to be installed on the head nodes of the various computing sites. Condor-G is used

to schedule the submitted jobs in the workflow to the remote resources. The Globus installation

at the remote sites takes care of receiving the job specification and submitting the jobs to the

local resource management system, such as PBS [PBS10], Condor, and LoadLeveler [Loa]. There

are three major issues that come up in Pegasus. The first is the overloading of the head node on a

participating resource with too many Globus jobs, although Pegasus adopts clustering technologies

and limits the number of jobs on a single site to decrease head node load average. The third is that
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each job submitted to a remote site can spend a lot of time on waiting in the local scheduling queue

for resource allocation. The third is that Condor and Globus installation are required.

A solution to the second issue identified above in order to make full use of available resources,

is Condor Glidein technology [FTL+01], which provides a mechanism to temporarily add remote

resources to the local Condor pool. However, it has limitations and imposes the overheads of the

start of a complete set of Condor daemons (i.e., Condor must be running) on the set of resources,

and the Condor configuration has to be changed to provide access permission to the remote re-

source. The Glidein technology heavily depends on Condor and Globus installation, and it may

still suffer from the head node overloading problem. In addition, it does not solve the execution

bottleneck caused by the slowest participating resource.

LSF MultiClusterTM [Xu01] is a software that enables load sharing among disparate LSF clus-

ters. It supports transparent access to remote cluster configuration and load information, distribu-

tion of jobs among clusters, importing and exporting of batch queues between clusters, config-

urable user account mapping at the individual user level, and automatic file transfer. However, all

the operations performed are limited to clusters with an LSF installation.

SAGA [SAG10] is a standardization effort for grid application programming. It attempts to

bridge the gap between the existing grid middleware and application needs. SAGA provides a

mechanism for efficient execution of applications with many loosely-coupled sub-tasks based on

the big-job abstraction. This abstraction supports the clustering of sub-tasks into a larger big-job

and effective dispatching of the sub-tasks. Large chunks of resources will be allocated to a single

job to reduce the communication and synchronization cost. However, this suffers from the problem

of deciding the size of a big-job (how big is big enough) and how many sub-tasks there should be

per big-job; in addition, the problem caused by the slowest cluster is not addressed by SAGA.

While most researchers have put much effort into high level solutions for grid computing envi-

ronments, our research focuses on load-balancing and enhancing efficiency after application tasks

have been dispatched to the local resource management system. Since for each task, significant
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amount of time is wasted in waiting for resource scheduling in the queue of local batch systems,

reducing the queuing time is an important approach to reducing the application turnaround time.

Many resources have a long queue waiting time due to the high utilization level, leading to perfor-

mance degradation for large scale applications, since each task will experience long delays in the

queue. Sometimes the queue waiting time overhead is even longer than the application’s runtime

[ShSV+08].

Normally, a batch queue system is a combination of a parallelism-aware resource management

system and a policy based job scheduling engine. First-come-first-serve (FCFS) is a simple ini-

tial scheduling policy used by many site administrators to configure their batch systems. Other

parameters, such as specific job and/or user priority, can be taken into account to tune the schedul-

ing policy. Many sites also use FairShare [Fai10] and some sort of backfilling [JSC01, WF01] to

prevent starvation.

Predicting the time individual jobs will spend waiting in the queue is a difficult problem [BNW06,

Dow97b, Dow97a, STF99], not only because the resource demand is unpredictably driven by users,

but also because the scheduling policies are usually not completely disclosed publicly (since users

may not be entirely satisfied with their respective priorities). Moreover, in order to ensure that the

utilization of such expensive resources is maximized, the total user allocations typically exceed the

feasible occupancy. The effects of this constantly changing interaction between users and the in-

place batch-scheduling policies often result in queuing delays that fluctuate through several orders

of magnitude [NWB08a].

While advance reservations [Mac07b, YKA05] can be used to reduce or eliminate waiting time,

they are not available at all sites. Besides, they usually involve system administrator assistance and

require notice beforehand. Furthermore, Snell et al. [SCJG00] showed that advance reservations

can decrease system utilization and have the potential to introduce deadlocks. Another method is to

use virtual reservation technology [KKNW08, NWB08b]. However, this relies on the predictions

(e.g., those made by QBETS [NBW07]) to implement a reservation. Although this approach does
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not require modification to local scheduling policies or scheduler submission protocols, it can not

provide accurate prediction. QBETS only predicts bounds by estimating percentiles of the empir-

ically observed delay distribution, and does not take into account possible bursty job submissions

at run time. While Zhang [ZKC09] proposed a way to overlay the execution time of previously

submitted jobs and the currently queued jobs in order to reduce overhead, it requires complicated

algorithms to make decisions on the submission time, since if the wait time for the newly submitted

job is less than its predecessor’s run time, this new job must pad its requested time to honor the

dependencies. Balancing these effects requires heuristic scheduling.

As many sites do not give users the ability to make advance reservations, resource leases pro-

vided by “pilot job” approaches [FTL+01, WGLT06] are likely to be a good alternative [FK08].

The objective of pilot-based submission is to obtain a time-constrained lease of a number of physi-

cal cluster nodes. The lease is defined in terms of the expected duration of the slot and the requested

resources. With pilot-based infrastructures, users submit their jobs to a centralized queue or job

repository. A pilot job will download a real job from a repository once it starts executing, hence

these jobs are executed asynchronously by running pilot jobs. Examples of pilot-based workload

management systems include DIRAC [TGSR04], glideinWMS [Sfi07], and PanDA [KAN+09]. In

general this approach allows fast execution. However, it still faces the problems of deciding the

number of pilot jobs and the duration of resource leases beforehand. Usually the number of sub-

mitted pilot jobs is very large, where only some of them will run the actual jobs, and the others

will abort [Pil10], which will cause resource waste.

We have worked closely with application scientists in various disciplines. Their applications are

compute-intensive, and usually require thousands of dependent or independent jobs to complete in

a limited timeframe. Submitting large numbers of such jobs to a local resource management system

will lead to low job throughput because of the high queuing and dispatching overheads. Besides,

each cluster usually has a maximum limit of the number of submitted jobs for each user. Clustering

multiple jobs into a single larger job can reduce the number of total jobs submitted by each user;
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however, it is not suitable for some applications where the problem scale cannot be determined

before submission. It is also hard to maintain good load balancing due to the heterogeneous job

execution time of the underlying resources. The users will lose the ability to monitor and control

individual jobs in this way, which is an important requirement, especially in the case of job failure.

These groups want to construct an easy-to-use user-space submission environment that does not

rely on any software installation to execute the jobs. Dynamic scheduling is important in this case;

otherwise users have to wait for the slowest cluster in order to collect all the results. Fault tolerance

is another issue that needs to be addressed by users, since they have to bear responsibility for the

overall system failures of any participating resources.

The biggest concern for the users is the long queuing time, since jobs have to wait in queues

for resources to be available. For multi-iteration applications, each job has to wait multiple times.

Advanced reservations are a way to reduce the queuing time, but this is not always available. Virtual

reservation can only predict the successful rate about the jobs to be executed before a deadline, but

can not guarantee the application is finished if there is timeframe requirement. The pilot job based

approach can be used to reduce the queuing time, but there are several disadvantages with this

approach. First, the pilot job will pull the real job from a central authority when it is ready to

execute, which provides no way for the central authority to provide monitoring information since

it does not track which task is in which pilot job. Second, each failure of a pilot job when it is

performing a downloaded task will cause a missed result. Third, it is difficult to match the job

execution time to the lease time of each pilot job, which will cause resource wasting if the rest

time of the pilot job is not long enough to execute the next job.

To address all of these problems, we have developed a new user-space execution model called

DA-TC (Dynamic Assignment with Task Containers) for application execution in multicluster

grids, motivated by application scientists’ requirements. The DA-TC model is designed to be ex-

ecuted in user space, which means that there is no specific system configuration and software

installation required on any participating cluster. It significantly decreases execution turnaround
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time, since dynamically assigned tasks can immediately be executed once a task container cap-

tures resource allocation. It also increases the reliability for application execution in multicluster

grids, since any system failure from a single participating cluster can not affect runtime based

dynamic load balancing strategy.
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Chapter 3
Pelecanus: A Multicluster Management Toolkit

We have developed the Pelecanus toolkit whose goals are to (a) improve resource utilization, (b)

speed up application execution, and (c) facilitate resource and application monitoring in a mul-

ticluster grid environment. Pelecanus can be used as a standalone tool with a Graphical User

Interface (GUI), or can be accessed via a web interface, i.e., a grid portal. Pelecanus adopts virtu-

alization technologies for efficient resource and application management. The dynamic assignment

with task container (DA-TC) execution model is used to schedule tasks across participating clus-

ters. Pelecanus is designed to execute in user space, and thus does not require any special system

configuration and/or software installation on participating clusters.

3.1 Overview
There are four major objectives for the design of Pelecanus:

1. It should significantly decrease application turnaround time. An application is not complete

until the completion of all its tasks, which may be assigned to different clusters. Thus, the

turnaround time of an application execution is determined by the last completed task, no

matter how quickly the other tasks are executed. Pelecanus employs a dynamic load balanc-

ing technique so that all tasks can be completed at, or almost at, the same time. This can

significantly reduce execution turnaround time.

2. It should increase the reliability of application execution in multicluster grids. In particular,

Pelecanus should tolerate failures of individual clusters.

3. It should provide flexible and user-friendly interfaces for application scientists to perform

their tasks. These application scientists are typically not computer-savvy, and making Pele-

canus easy-to-use is the key to its adoption in practice.
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4. This toolkit should be executed in user space so that no special system configuration and/or

software installation is required on participating clusters.

GEMS Engine

- Cluster Interoperability
- Workflow Management
- Execution Solution

HA Server
Web Server

Web 
Interface

Web User Web User Web User

Graphic User 
Interface

GUI User GUI User

Local Cluster 
Schedulers

Processing 
Nodes

FIGURE 3.1: Pelecanus architecture.

The architecture of Pelecanus is depicted in Figure 3.1. Pelecanus sits on top of local cluster

schedulers, and is responsible for resource management, workflow control, execution management

and user interaction, at the inter-cluster level. The Grid Execution Management Service (GEMS)

engine that we have developed provides the core services, including cluster interoperability, work-

flow management and pattern-based execution implementation. There are two interfaces: a stan-

dalone Graphical User Interface (GUI) and a Web Interface (i.e., grid portal). A high-availability

server [LSLS05] can also be used for reliability improvement.

The following are the major features provided by Pelecanus:
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1. Resource abstraction and monitoring. Automated tests are integrated into Pelecanus to

evaluate clusters’ functionality and useful information is abstracted for the user to review.

Users can select suitable clusters to execute their applications based on this information.

2. Application specification. Pelecanus allows the user to specify the executable, resource

requirements, dataset location(s) and the execution pattern of an application. An application

workflow template is provided for each execution pattern.

3. Application monitoring and steering. Once an application is submitted, Pelecanus allows

the user to monitor the execution progress of the whole application and/or any particular

component on a cluster. In addition, Pelecanus allows the user to adapt the workflow based

on the runtime status of resources and execution progress.

4. Data management. Support for data manipulation is provided in Pelecanus to allow appli-

cation deployment on remote clusters and massive input dataset operations.

5. Security service. A single entry point is provided for a user to access clusters and grid ser-

vices, based on existing technologies for credential and access management such as MyProxy

and Secure Shell (ssh).

3.2 Execution Management
Pelecanus enhances application execution management by adopting the DA-TC model, which is

the key component to provide these functions. This DA-TC execution model is based on Dynamic

Assignment with Task Container. It is designed to improve application execution in a multicluster

grid environment.

3.2.1 Architecture

In the DA-TC model, an application is assumed to consist of a large number of tasks, among

which the parallelizable tasks are executed on the participating clusters of a grid. In the rest of

this document, “task” refers to parallelizable tasks of an application. Each task can consist of
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one or more sequential or MPI jobs. We assume that task dependency is dealt with by workflow

management; the DA-TC model handles the execution of parallelizable tasks generated by that

workflow manager. It is also assumed that there is no inter-task communication1.

The DA-TC model introduces the task container (TC) concept. This idea draws inspiration from

the previous “placeholder job” implementation [PLG02, Pin03], but is intended to provide a host

environment for each application during the whole execution cycle. It can be viewed as an exten-

sion of the pilot-based infrastructure. A task container waits for resources in a participating cluster,

and after being allocated resources, it provides a lightweight hosting environment for task execu-

tion. A TC is viewed as a normal job by a local resource scheduling system. It is submitted into a

queue and waits for resource allocation. The local scheduler allocates resources to a TC under its

own scheduling policies. The resources assigned to a TC are released after the TC’s execution ends.

From a task execution perspective, a TC is a host environment. It provides a standardized method

of managing the lifecycle of task execution on any participating cluster. Each task has associated

task metadata. A TC retrieves task execution requirements from the task metadata and takes ac-

tions to perform a task, including stage-in, invocation, task termination, task execution monitoring,

stage-out, etc. A TC is a lightweight environment. It can be easily deployed, and can launch any

existing “legacy” task executable on participating clusters.

The DA-TC execution model adopts a dynamic task assignment strategy and employs an appli-

cation execution agent (AEA). The AEA maintains the tasks waiting for execution and is in charge

of the assignment of tasks to an individual TC. A task container reports any status changes of it-

self and the running task(s) to the AEA. Based on the runtime status of task containers, the AEA

takes actions to assign tasks to different task containers. Different task scheduling algorithms are

adopted by the AEA. Each task assigned on a TC (or say, a participating cluster) does not need to

wait for resource allocation in the local scheduling system since the TC already holds the required

resources. Therefore, the tasks on a TC can be executed immediately.

1Task clustering technologies can partially remove the inter-task communication.
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Our DA-TC model is different from a pilot-based infrastructure. In pilot job mechanisms, users

submit their jobs to a centralized queue. The pilot jobs are broadcast to all the available computing

elements [Nil08]. A pilot job is not committed to any particular task, and may not be even bound

to a particular user; this allows many users to exploit a single pilot infrastructure within one virtual

organization [Pil]. Once the pilot jobs get started, they “pull” jobs from the queue to perform the

actual work. If there are no jobs waiting for the pilot, the job exits immediately [Pil10]. But in

our DA-TC model, the TC submission is based on the scheduling results. Each use of this model

is initiated by one user, and all the service units used by each TC are counted on this user. The

centralized AEA can control the jobs performed by each TC by active assigning the jobs. The TCs

will not exit until received the termination signal from the AEA, so that this model can be used to

execute multi-stage applications.

During the whole application execution, the AEA is responsible for several functions including

(a) deploying and submitting task containers to participating clusters, (b) monitoring container

status, (c) dynamically orchestrating workflow and assigning application tasks, and (d) steering

application, task and container executions. An application execution typically employs multiple

TCs. The number of TCs for an application execution depends on user configuration. A submitted

TC waits for resource allocation in the queue. Once a TC obtains resources, it is used to execute the

tasks dynamically assigned by the AEA. TCs take responsibility for managing the task execution

lifecycle and holding resources until application execution is accomplished2.

Figure 3.2 shows the interaction between the AEA and the TCs. To carry out an application

execution, the first thing for the AEA to do is to submit TCs to participating clusters. The sub-

mitted TCs are placed as normal jobs in the scheduling queues of participating clusters, waiting

for resource allocation by local resource management systems. One participating cluster may host

multiple task containers, according to different load balancing strategies adopted by the AEA. Af-

2The termination of application execution can be decided at run time by the AEA, which provides a way for users to interact with application
execution at run time in batch systems.
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FIGURE 3.2: The interaction diagram between AEA and TC. “R” denotes running and “Q” queuing.
“Other” delegates the jobs submitted by other users.

ter a TC obtains the required computing resources from a local scheduling system, it communicates

with the AEA for task assignment. First, the TC sends a message to the AEA to say that it is ready

to run a task. Second, the AEA updates the TC status table and then one or more tasks are selected,

based on application workflow management strategies. Third, task stage-in, execution and stage-

out are performed, and the status tables associated with tasks and TCs on the AEA are updated.

After a task is completed successfully, the AEA and the TC are ready for the execution of the next

task.

The DA-TC model adopts a dynamic load balancing strategy. TCs with allocated computing

resources can be assigned application tasks, while other TCs still in the local queues continue

waiting for resources. Fast clusters will be assigned more tasks for execution. Each task assigned

to a participating cluster can be executed immediately. Figure 3.3 shows a runtime scenario of

the DA-TC model. Ten TCs have been scattered on three clusters, according to the scheduling

algorithms of the AEA. The three TCs on Cluster 1 are running, accepting tasks from the AEA;

the three TCs on Cluster 2 are still waiting; and two of the four TCs on Cluster 3 are performing

tasks while the other two are waiting in the queue. Application execution is making progress, no
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FIGURE 3.3: The DA-TC runtime scenario. “R” denotes running and “Q” queuing. “Other” dele-
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matter how slow Cluster 2 is. It also does not matter if system failure happens on any participating

cluster during application execution, since the ongoing tasks will be resubmitted by AEA after a

certain amount time if it does not receive the results from the TCs. Subsequent tasks will not be

submitted to this unavailable system because the AEA can not get the status of the TCs in such

system. Therefore, this mechanism can increase execution reliability for each application.

3.2.2 Grid Execution Management Service

Based on the DA-TC model, we have designed and implemented an execution service called Grid

Execution Management Service (GEMS). This service communicates with the local resource man-

agement systems and the grid middleware on the participating clusters, if it exists, to carry out

the application execution process. No specific software installation on participating clusters is

needed to run this service. The only requirement for local resource management administration
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is to provide an access mechanism for a user, e.g., Globus or ssh, and GEMS will transparently run

grid-enabled applications on available clusters.

Next, we explain the GEMS implementation issues related to heterogeneity, application execu-

tion agent, task container and interaction.

3.2.2.1 Heterogeneity

There are three kinds of heterogeneity involved in the development of GEMS: access mechanisms,

local resource management systems (LRMS), and cluster settings. The access mechanism for a

cluster specifies how to inter-operate with the resources and the services a cluster provides. For

example, some clusters can be reached by ssh, while some use Globus access. GEMS interacts with

clusters for TC deployment, data transfer, local work directory identification, etc. In the current

setting of GEMS, we are using ssh and scp, which are available for most clusters for user login and

file transfer.

Different clusters have different LRMS installations, including PBS, Condor, LSF, SGE, and

so on. GEMS has to communicate with different LRMSs for monitoring queue status, generating

job scripts of TCs, and submitting/withdrawing TCs assigned to participating clusters. An en-

semble of LRMS-related operations have been abstracted. In the current implementation, GEMS

supports PBS management systems. It would be easy to be extended to support other LRMSs,

e.g., Loadleveler and LSF. Moreover, DRMAA [DRM10] provides a high-level Open Grid Forum

[OGF06] API specification for the submission and control of jobs submitted to the distributed re-

source management systems within a grid architecture. It will make the extension easier if we use

DRMAA to interface with different resource management systems.

Cluster settings refer to the different operating systems, network connections, memory size, etc.,

in the participating clusters that can be be used to meet the resource requirements of a task. There

are two issues when dealing with different cluster settings. The first is related to resource require-

ments of tasks. The current version of GEMS uses the information from the cluster abstraction

for TC assignment. The second issue is related to binary executables. It is required to provide dif-
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ferent binary executable versions of containers and tasks for each operating system appearing in

participating clusters. GEMS selects the executables to match different clusters automatically.

3.2.2.2 Application Execution Agent (AEA)

The AEA plays the metascheduler role in GEMS. There are three phases for the AEA to perform

for an application: execution preparation, dynamic task assignment, and execution termination.

The actions in execution preparation include:

1. obtaining static and dynamic information for all participating clusters;

2. deciding how many TCs will be assigned to each participating cluster;

3. deploying TC executables on each cluster;

4. initializing TC (as well as tasks) status tables;

5. submitting all the TCs to the participating clusters;

6. waiting for TC status to be ready.

The second phase is dynamic task assignment by communicating with TCs, i.e., dynamic load

balancing. This phase conducts the essential execution of an application. Once the AEA under-

stands that a TC is ready, it selects one or more appropriate tasks according to the workflow man-

agement and task metadata, updates the status of the TC and task(s) to “stage-in”, and then sends

the task metadata to the TC. The TC takes care of actual execution of the task(s), such as stage-in,

invocation, and stage-out. Task metadata includes task dependency, executable location, data loca-

tion, resource requirements, etc. During this phase, the AEA maintains the status of all TCs and

tasks.

After all the tasks have been completed, the AEA takes actions to terminate the running TCs,

and, if applicable, withdraw queued TCs. It is possible that even if all the tasks of an application

are finished, there could be some TCs still waiting for resource allocation in the queues of the slow
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clusters3. This requires the AEA to interact with local scheduler systems on participating clusters

to delete the queued TCs.

GEMS implements static load balancing for task container distribution and dynamic load bal-

ancing for task assignment. The latter means that the AEA assigns tasks according to the runtime

status of application execution, which has been discussed in [LYA+08]. Here, we provide further

explanation of the the task container distribution strategy. The first step is to obtain the static re-

source description and runtime status of the participating clusters. The static resource description

of a single cluster includes operating system, local resource management system, work directory,

node number, CPU number, CPU speed, memory size, and so forth. As for the runtime status, the

current implementation of GEMS just considers the number of running and queued jobs. Further

runtime status information, such as performance prediction and history records, can be included

in the future. After this, GEMS uses the available information to decide how many task contain-

ers will be distributed on a particular cluster, based on computation capability of each cluster and

load balancing strategies. Currently, four different allocation strategies are compared and used to

determine the task container dispatch, which will be described in Section 3.4. We say that TC

distribution is static because once submitted, a TC cannot be migrated.

3.2.2.3 Task Containers (TCs)

From the viewpoint of the local resource management system, a task container is a job submitted

into a job queue. Thus, a job script is needed to describe the information about a task container,

e.g., resource requirements and username. When running an application, GEMS automatically gen-

erates TC job scripts against various LRMSs with TC executable location, username, application

name, resource requirements, etc.

In order to provide a host environment for task execution, the implementation of a TC adopts

the logic shown in Algorithm 1. This pseudocode is straightforward. A TC takes care of task

execution and status update. It exits and releases resources only when the application termination

3Some clusters may be overloaded by other users and may take a long time to allocate resources for its assigned TCs.
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Algorithm 1 The pseudocode of TC logic.
while TRUE do

if application termination signal then
exit 0;

else
update the status;
get next task metadata from AEA;
retrieve data information from metadata;
access data;
execute task;
update the status;

end if
end while

signal from the AEA is detected. The task lifecycle management provided by the current GEMS

version includes execution environment setup, stage-in, invocation, stage-out, and termination.

While a TC manages the lifecycle of a task, the LRMS and the AEA jointly handle lifecycle

management of a TC. A local resource management system is in charge of queuing, resource

allocation, and execution of a task container. The AEA takes responsibility for submitting a TC,

sending a termination signal to destroy a TC, and launching commands to withdraw a queued task

container. To implement TC withdrawal, GEMS retrieves the job id of a queued TC from an LRMS

using the application name and user id, and then issues a job deletion operation, e.g., qdel for PBS.

3.2.2.4 Interaction Between AEA and TCs

Efficient and robust interactions between the AEA and TCs provide GEMS with a better ability

to perform application execution, in comparison with pilot-based infrastructure. For example, the

AEA can conduct dynamic task assignment after it captures the runtime status of the TCs. In

contrast, in a pilot-based mechanism, the pilot jobs contact a passive central authority when they

are ready to execute, and the central authority has no ability to actively assign tasks to each pilot

job. Furthermore, our model provides easy tracking of application execution progress for status

monitoring, since the AEA has the status of each task on each TC. But in a pilot-based mechanism,

there is no way for the central authority to provide monitoring information since it does not track

which tasks are in which machine. In addition, our model provides better fault tolerance because
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the AEA can resubmit a task when it does not get its status from the TC after a certain amount of

time. But for the pilot-based case, each failure of a pilot job when it is performing a downloaded

task will cause a missed result.

GEMS develops a communication protocol and transfer mechanism for interaction between the

AEA and TCs. Simplicity and effectiveness are the fundamental principles used to design the

communication protocol and the transfer mechanism, due to the unreliable network connections

in a grid environment. Before describing the GEMS solutions to these interactions, we introduce

two tables maintained by the AEA that play important roles during application execution progress.

First is the TC table. Each container has an entry in this table. Recorded information includes

which cluster the container is assigned to, what status it has, which task is running in the container,

etc. The second is the task table. Each entry in this table refers to a task. Task metadata, e.g.,

dataset location, and task status are listed in an entry. By checking this table, GEMS can find out

how many tasks have been completed, how many tasks are running, and how many tasks are still

waiting.

Interaction between the AEA and TCs occurs in two directions: TCs send status updates to the

AEA, and the AEA dispatches tasks to TCs. All TCs are required to update their status to the

AEA. Each TC has one of three status values: Queued (Q), Ready (R), or Busy (B). The AEA

takes different actions based on checking the status of a TC. For example, the AEA will assign a

task to a TC if its status is “Ready.” In order to dispatch a task to a TC, the AEA retrieves task

description from the task table and then sends task metadata to a TC. The TC uses the metadata to

take actions for task execution. All these interaction activities are based on file transfer.

GEMS uses two methods to improve transfer performance and reduce overhead time. The first

method is that only the “Ready” status needs to be transferred from a TC to the AEA; other status

updates are performed by the AEA itself. This is used to minimize information exchange. For

example, when starting to deploy a task to a TC, the AEA changes the status from Ready to Busy

without communicating with the TC. The second method is that a TC combines task stage-out
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(or task completion status) and status update (e.g., ready for next task) into a single data transfer

process, which reduces the network connection overhead.

3.2.3 QoS Analysis

The dynamic task assignment strategy and the task container methodology in DA-TC essentially

improve the application execution across multicluster environment in terms of turnaround time,

reliability, and execution monitoring.

Application turnaround time can be significantly reduced by this execution model. Turnaround

time is the time interval between the submission time and the completion time, i.e., task waiting

time in remote queues plus execution time (wall time) in multiclusters. Execution time depends on

different solver equations and optimization algorithms. While application researchers work on high

performance algorithms to reduce execution time, we emphasize effective utilization of computing

resources to shorten waiting time. A TC is used to request and hold resources for task execution,

which provides immediate execution for tasks that are dynamically assigned by the AEA. Using

this dynamic load balancing method, the fast clusters will be assigned more tasks. The execution

bottleneck caused by the slow clusters is eliminated. Any participating cluster can make a contri-

bution to speed up application execution. The overall waiting time of tasks is greatly shortened and

resource utilization is enhanced.

The reliability of application execution can be improved since we can recover from a system

failure during execution and the overall results for the user are not affected. A task will not be

assigned to a participating cluster if a valid TC status can not be provided to the AEA due to

network disconnection, system maintenance, or system failure. Task completion status is monitored

by the AEA at runtime. If a task execution error happens, the AEA can intelligently make decisions,

e.g., resubmission on the same or different TC, to try to fix the problem. Take the diagram in

Figure 3.3 as an example. If Cluster 1 and Cluster 2 are not available for some reason, the AEA

will not receive “Ready” status of TCs from these two clusters and no task will be assigned to

them. Meanwhile, if the AEA can not detect the status of running tasks, certain actions will be
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taken, such as resubmitting these tasks on Cluster 3. Application execution fails only if all the

participating clusters are not available.

The monitoring and steering of application progress is very easy in this model since AEA keeps

updating the status of both TCs and tasks. Compared to the normal case where user needs to login

to the remote cluster, type in the correct commands, and only get the information for the fraction

of tasks on that cluster, user can easily retrieve the status of each task and each TC by sending

requests to the AEA in this model. The user also can change the workflow manually if needed,

such as add new task(s), modify datasets, suspend execution, etc.

3.3 Cluster Abstraction
Although the DA-TC execution model provides a mechanism to seamlessly integrate multiple clus-

ters for application execution, there are some challenges that make the implementation difficult.

These challenges include how to discover resource information, how to allocate appropriate re-

sources, and how to integrate them since they are heterogeneous in architecture and software, etc.

Therefore, it is useful to provide a cluster abstraction in a multicluster environment, which greatly

improves resource utilization with easy-to-use access. The cluster abstraction allows a user to view

any underlying cluster as a generic computing unit for use, no matter how diverse underlying clus-

ters in a multicluster environment are. On top of the cluster abstraction, integrated services can be

easily generated.

This section presents a cluster abstraction to unify describing and accessing resources in a multi-

cluster grid. After investigating various cluster resource management systems, a reference descrip-

tion of our cluster abstraction is presented to cover cluster computing characteristics, hiding the

individual cluster details. Following this concept, a deployment service is discussed. This deploy-

ment service is one of the essential components in our DA-TC model. Our DA-TC execution model

is built on top of the cluster abstraction, and uses the information provided by the cluster abstrac-

tion to make scheduling decisions for the task containers. Furthermore, this service can be used
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as a separate automated system to monitor and evaluate the clusters’ functionality and network

performance.

3.3.1 Introduction of the Cluster Abstraction

Abstraction and virtualization have been important tools in computer system design for a long

time. Due to the incredible complexity of computer systems, these technologies have been widely

adopted by users to better use these systems by virtualizing separate levels of the hierarchies with

well-defined interfaces. The simplifying abstractions hide lower-level implementation details from

higher-level applications, therefore reducing the complexity of the development process. One good

example is disk storage, where operating systems abstract hard disk physical addressing details,

i.e., sectors and tracks, so that to application software, the hard disk appears as a set of files of

variable sizes. Higher-level applications can operate on those files without any knowledge about

the actual physical organization of the hard disk.

The cluster abstraction in our case describes clusters in a uniform virtual cluster format and

provides uniform interfaces for accessing those resources. Figure 3.4 illustrates the concept of

cluster abstraction. Through uniform high level interfaces, users and upper-level applications can

operate on the virtual clusters in the virtual cluster pool (VCP). The complexity and heterogeneity

of the underlying physical clusters are hidden from the upper-level applications and/or users.

High Level Application Programming Interfaces

Virtual Cluster Pool

PBS
Cluster

Condor
Cluster

SGE
Cluster

LSF
Cluster

FIGURE 3.4: The basic concept of the cluster abstraction. The virtual cluster pool here hides the
details for the heterogeneous multicluster environment from high level services and users.
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3.3.2 Cluster Description

To efficiently abstract information, we need to understand the system and users’ need. Despite the

similarity at the architecture level, most configurations of clusters are different in some way, such as

in their local resource management systems. Moreover, their runtime status can be different, e.g.,

workload, network bandwidth, and availability of compute nodes. Therefore, we need to know

what information is of interest, what technologies should be used to abstract the information, and

what interfaces should be provided.

3.3.2.1 Local Resource Management Systems

Each cluster employs a resource management system, called a Local Resource Management Sys-

tem (LRMS). LRMSs place jobs in one or more queues with certain resource requirements, and

make decisions on the places and times for job execution. Some of them offer a checkpointing

service, which helps the user to resume job execution from a certain point after a job or machine

failure occurs during the execution process. Widely adopted resource management systems include

PBS, SGE, Condor, etc.

PBS, the Portable Batch System [PBS10], is a batch job and computer system resource man-

agement software package. It accepts batch jobs, shell scripts and control attributes as input. Jobs

are preserved, protected, and then executed, after which the output, the exit status, and possible

error messages are delivered to the submitter. PBS includes four components: commands, the job

server, the job executor, and the job scheduler. PBS commands provide a platform for users and

administrators to submit, monitor, modify, and delete jobs. The PBS job server is essential to PBS,

because it provides basic batch services such as receiving, creating and modifying a batch job,

protecting the job against potential system crashes, and executing the job. The PBS job executor is

a daemon that receives jobs from the job server and actually places these jobs into execution. This

executor is also responsible for returning the job’s output in response to the output return request

from the job server. The PBS job scheduler is a daemon that can be created by each individual local

resource. PBS job schedulers communicate between each other and also with the job server and
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the job executors for job availability and system resource status. The scheduler basically contains

information about the usage policy for each site and controls which job to be run, and when and

where to run the job. All of these four components working together as a whole system ensure the

stability and reliability of PBS.

The Univa Grid Engine (previously Sun Grid Engine or Oracle Grid Engine) [UGE] allows users

to submit computational tasks to an Grid Engine controlled system with transparent workload dis-

tribution. Univa Grid Engine accepts batch jobs, interactive jobs, and parallel jobs. A checkpointing

mechanism is used to ensure correct recovery from a job or system failure. Firstly, jobs are sub-

mitted from the submit host to the queue hosted by each execution host, where job attributes are

reviewed and such decisions as whether the job may be migrated are made. The queues and jobs

are controlled by the master host, which runs the Master daemon and the Scheduler daemon. The

execution hosts with the Execution daemon are responsible for the execution of jobs and the update

of job status and workload to Master daemon. The Communication daemon is used for all com-

munication among the components. Throughout the lifetime of the jobs, users can delete jobs and

check job status, and the administrators can manage the queues and jobs.

Condor [TTL02] is a specialized job and resource management system (RMS) for compute-

intensive jobs. The system also utilizes a checkpointing mechanism to guarantee execution of

jobs. Since Condor is a batch system, it also provides a queuing mechanism, scheduling policy,

priority scheme, and resource classifications. Jobs are submitted to a job queue, which is referred

to as a “Condor pool,” and they are executed on distributed computational resources. Results and

logs of the job execution are returned to the local submit machine. However, unlike traditional

batch systems that can only operate on dedicated machines, Condor can also schedule jobs on

non-dedicated machines.

The cluster abstraction uses the information provided by these heterogeneous local batch sys-

tems and other resource management services to generate virtual cluster images.
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3.3.2.2 Static and Dynamic Information

As defined previously, a multicluster environment consists of a group of clusters that have their

own local resource management tools. The configuration of the clusters varies in several ways,

such as number of computational nodes, number of CPUs on each node, the cluster operating sys-

tem and file system, available memory and network connections. Because of unpredictable events,

the status of clusters may change in several aspects, e.g., the number of available nodes. Since

all clusters need local resource management systems to manage their computational tasks, jobs

must be scheduled according to their LRMS’s scheduling policy. In addition to static configuration

information, two important dynamic information parameters are introduced to measure the perfor-

mance of a cluster: the number of running jobs and number of queued jobs. Some popular LRMSs

already provide interface to gather these information.

PBS provides interfaces to access the static configuration as well as the dynamic status. Using

these interfaces, information such as the number of nodes, operating system, number of CPUs per

node, size of memory, and scheduling policy, which are referred as static configurations, can be

easily gathered. Moreover, other information such as the status of each node, the assigned memory,

the assigned CPUs, the number of jobs in the queue, and the number of running jobs, is available.

This is the dynamic status information of the cluster.

The information that can be queried from Condor includes operating system, hardware archi-

tecture, memory, state of the node (Claimed or Unclaimed), node activity (Idle, Owner, or Busy),

average load, activity time of the node, number of jobs running, number of jobs queued, com-

mand for the jobs. These information can be grouped into two categories, the first three as static

information, and the rest of them as dynamic information.

Univa Grid Engine defines values for each node that include system architecture, number of

processors, total memory, total swap space, total virtual memory, used memory, used swap, number

of executing jobs, number of queued and waiting jobs, etc.
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For the convenience of higher-level applications, the type of LRMS used in each cluster and the

home directory of the user are considered as static information. When adding a new cluster into

the pool, since the system has no knowledge of this resource, it has to query the LRMS unless the

user specifies it. After the initial query, access and operation to the cluster will be much easier.

Moreover, due to unexpected node crashes, the number of available nodes, thus available CPUs,

can change, and therefore should be classified as dynamic information. Since all computations

will take some memory for processing, the size of available memory can be surely identified as

dynamic information.

From the discussion above, it is easy to conclude that these LRMS share the same static informa-

tion and provide similar dynamic information. The static information for the cluster should contain

number of CPUs, operating system, total size of memory, number of nodes, the user’s home direc-

tory, and the DNS name for the cluster. The dynamic information should include available nodes,

available CPUs, available memory, number of running jobs, and number of queued jobs.

Abstracting this dynamic resource information and heterogeneity is challenging in a multiclus-

ter environment, and is hindered by the lack of a consistent overview of available computational

resources. We use an XML schema for a uniform resource description for each cluster. The infor-

mation for all available clusters are stored in one XML document, whose form is defined by the

schema. All information entries are defined as simple elements in the schema file. The “static info”

is a complex element which has all the elements representing static information. Another complex

element called “dynamic info” contains all the elements representing dynamic information. These

two complex elements are belonging to the “cluster” element which is the root element.

The XML schema for the cluster abstraction is provided in Figure 3.5. One sample XML descrip-

tion of a cluster available in Center for Computation & Technology at Louisiana State University

is shown in Figure 3.6.
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<!-- definition of simple elements -->
<xs:element name="DNS_name" type="xs:string"/>
<xs:element name="total_nodes" type="xs:positiveInteger"/>
<xs:element name="total_cpus" type="xs:positiveInteger"/>
<xs:element name="total_mem" type="xs:positiveInteger"/>
<xs:element name="available_nodes" type="xs:positiveInteger"/>
<xs:element name="available_cpus" type="xs:positiveInteger"/>
<xs:element name="available_mem" type="xs:positiveInteger"/>
<xs:element name="LRMS" type="xs:string"/>
<xs:element name="architecture" type="xs:string"/>
<xs:element name="running_jobs" type="xs:positiveInteger"/>
<xs:element name="queuing_jobs" type="xs:positiveInteger"/>
<xs:element name="home_dir" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="static_info">
   <xs:complexType>
      <xs:sequence>
         <xs:element ref="DNS_name"/>
         <xs:element ref="total_nodes"/>
         <xs:element ref="total_cpus"/>
         <xs:element ref="total_mem"/>
         <xs:element ref="architecture"/>
         <xs:element ref="home_dir"/>
         <xs:element ref="LRMS"/>
      </xs:sequence>
   </xs:complexType>
</xs:element>

<xs:element name="dynamic_info">
   <xs:complexType>
      <xs:sequence>
         <xs:element ref="available_nodes"/>
         <xs:element ref="available_cpus"/>
         <xs:element ref="available_mem"/>
         <xs:element ref="running_jobs"/>
         <xs:element ref="queuing_jobs"/>
      </xs:sequence>
   </xs:complexType>
</xs:element>

<xs:element name="cluster">
   <xs:complexType>
      <xs:sequence>
         <xs:element ref="static_info"/>
         <xs:element ref="dynamic_info"/>
      </xs:sequence>
   </xs:complexType>
</xs:element>

FIGURE 3.5: The pre-defined XML schema file.
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<cluster>
   <static_info>
      <DNS_name>eric.loni.org</DNS_name>
      <total_nodes>128</total_nodes>
      <total_cpus>512</total_cpus>
      <total_mem>2127389696kb</total_mem>
      <architecture>linux</architecture>
      <LRMS>PBS</LRMS>
      <home_dir>/home/zyun</home_dir>
   </static_info>
   <dynamic_info>
      <available_nodes>127</available_nodes>
      <available_cpus>508</available_cpus>
      <available_mem>2009359872kb</available_mem>
      <running_jobs>11</running_jobs>
      <queuing_jobs>39</queuing_jobs>
   </dynamic_info>
</cluster>

FIGURE 3.6: A sample resource entry in a resource list.

3.3.2.3 User Environment

Most of the time, users need specific software to compile and execute their programs. Therefore,

it is necessary to provide information about the software environment of each cluster so that users

can choose the one that best meets their requirements. This information can be gathered from tests

run from a standard user account, in order to reflect regular user experiences. It is important not

to gather this information based on tests run from a system administrator’s account, which may

have special privileges and use custom shell initialization files. We provide several basic tests to

aggregate and display data from each cluster. These user-level tests are performed periodically to

monitor the grid behavior over time. Dedicated monitoring software, such as INCA [INC10], is

deployed and integrated into our platform to guide the user in choosing the right clusters.

3.3.2.4 Network Information

Since the DA-TC model involves multiple clusters connected by the Internet, network performance

is another important aspect of execution. A fast connection between two sites can save the user a

lot of time in data movement, which is especially important for data-intensive applications. We

deployed Speedpage [Gri] to perform automatic tests in order to monitor and evaluate the clusters’

file transfer performance.
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FIGURE 3.7: Speedpage Components.

Figure 3.7 shows the components of Speedpage. It needs the Globus toolkit, a MySQL database,

and a web server with PHP support in order to perform its test. Before testing, a valid certificate

is needed. This is required for MDS host resolution, automated scratch list generation, initial file

staging, and for globus-url-copy. Speedpage is able to perform the Globus third party transfer

between two GridFTP servers. The file size and the transfer time are recorded and the network

speed is calculated. Speedpage is executed from each resource to every other resource (all-to-all)

to measure site-to-site performance. Table 3.1 shows the source and destination URLs, initiated

from one cluster (Louie) in LONI to all the other LONI clusters. The source site, destination site,

each test’s time stamp, and speed information are stored in the database. The web server retrieves

the information from the database and displays it on the Speedpage website. It also allows users

to specify the time duration or particular site in order to narrow down the information they are

interested in.

In order to differentiate the reason for unsuccessful test cases, different error messages are used

to determine whether a detected test failure stems from a faulty test, a unmatched file size, or a

failed resource. Therefore, users can choose the best suitable clusters for job execution and reduce

the chance of system and network failure during their application’s execution by examining the data
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TABLE 3.1: Source and destination URL list

SOURCE DESTINATION

gsiftp://louie1.loni.org:2811/dev/zero gsiftp://louie1.loni.org:2811/dev/null

gsiftp://louie1.loni.org:2811/dev/zero gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE.Louie.dev.zero

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://louie1.loni.org:2811/dev/null

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://eric1.loni.org:2811/scratch/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://ducky.loni.org:2811/scratch/local/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://zeke.loni.org:2811/scratch/local/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://neptune.loni.org:2811/scratch/local/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://qb1.loni.org:2811/scratch/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://oliver1.loni.org:2811/scratch/zyun/SPEEDPAGE.Louie

gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE gsiftp://louie1.loni.org:2811/scratch/zyun/SPEEDPAGE.Louie

on the Speedpage website. Moreover, this information can be used by the system administrators

to identify, analyze, and troubleshoot user-level grid failures, thereby leading to a more stable and

dependable grid infrastructure.

3.3.3 Uniform Resource Access

Since the cluster abstraction hides complex details about the actual cluster hardware and software

configurations and status from a user, the multicluster environment looks like a virtual cluster pool

to the user. Despite the heterogeneity of different clusters, users can query information from the

environment or configure their own execution environment (Section 3.3.3.2) via simple uniform in-

terfaces. Because different interfaces are provided by different LRMSs, the conventional approach

for utilizing the multicluster environment requires expertise with all those LRMSs, which increases

the difficulty. The high level interfaces of the cluster abstraction concept should cover these diversi-

ties, and be versatile for all kinds of clusters, such that these interfaces should enable users (clients)

to uniformly access an individual resource or a specific execution environment. These interfaces

can be categorized into two groups according to their specific functions, information related and

operation related.
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3.3.3.1 Information Interfaces

Since upper-level applications or users may need information on certain resources or certain jobs,

the information related interfaces are divided into two categories, at the resource level and at the

task level.

• Resource Level Information Interface

The resource level information interfaces should be flexible enough to satisfy any query, from

detailed information for one specific cluster to list of resources with demanding configurations. For

instance, an execution management system wants to make a decision on task allocation within a

set of resources for which a specific user has authorization. In this case, the execution management

system needs information about these clusters. The information interface should be able to return a

set of detailed information for each resource on the list. During this process, all that the execution

management system knows is simply a list of clusters with DNS names only.

• Task Level Information Interface

The task level information interface is responsible for any information requests about tasks on

the virtual cluster pool. Requests include status of some specific jobs, or a set of jobs with same

configuration, jobs belonging to a specific user, or jobs on a specific location or in some execution

environment with certain configurations, etc. One good example is that a user wants to know the

status of all his jobs that have been submitted to the multicluster environment. In this case, without

knowledge about the command for the LRMSs on each cluster and without operating on each one

individually, the status information should be returned to the user from the interface by simply

specifying the execution environment and the username.

3.3.3.2 Operation Interfaces

Here, Operation Interfaces refers to a set of APIs responsible for specific operations on the virtual

cluster pool, ranging from submitting tasks to managing customized execution environments. Be-

fore we discuss the details, the term “execution environment” needs to be clarified. The execution

environment for a multicluster grid is a subset of clusters that satisfy certain hardware and soft-
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ware requirements from the user. It is defined in an environment file, which can be used for future

operation on this environment. This environment file simplifies the process of specifying execution

environment with multiple complex constrains.

Due to different levels of access permission, the operation interface contains two levels of inter-

faces: the administrative operation interface and the user operation interface.

• Administrative Operation Interface

The administrative operation interfaces can provide cluster level or queue level administration.

Operations include adding a new cluster to the virtual cluster pool, deleting a virtual cluster from

the pool, changing the scheduling policy on a specific cluster, managing user priorities, and other

regular queue operations. Administrative regular queue operations include deleting a user’s jobs or

jobs idling for an excessive long time, holding and releasing any job, reserving resources, etc. The

administrative operation interface is effective only to those clusters that offer authorization as ad-

ministrator to the user using this interface. This means that, by default, all end users are considered

as normal users and can use the user operation interface. Only when the user has administrative

permission to a cluster can he perform administrative operations on that specific cluster.

• User Operation Interface

Since this interface is only for a normal user, all regular job operations such as submitting,

deleting, holding, and releasing jobs can be only done to those jobs that are owned by that user.

According to the concept of cluster abstraction, the virtual cluster pool should be in user space,

which means all users can manage their own virtual cluster pool by adding or deleting clusters.

Users can customize their own execution environment by specifying requirements. After the spec-

ification, the service will select virtual clusters that satisfy the requirements and form them into

a unique execution environment with a user-specified name. This name can be used to retrieve

configurations for the defined environment in other interfaces.
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To sum up, the administrative operation interface and the user operation interface share a subset

of interfaces, with the only difference being the level of access. These interfaces are the regular job

operations.

3.3.3.3 Execution Environment

As mentioned above, all the information about the execution environment is stored in an environ-

ment file. The environment is represented as an arbitrary collection of entries that provide access

information as well as other content. The characteristic information for the environment defines the

common features for these resource entries, ranging from list of DNS names to arbitrary conditions

on number of nodes. These definitions equip the deployment service with the ability to intelligently

filter an existing virtual cluster pool for qualified resources.

The deployment service should be able to make appropriate adjustments to the execution envi-

ronment. That is, after initialization of the environment, any event corresponding to a change of any

configuration or status triggers reevaluation of the current environments. This process filters the up-

dated virtual cluster pool for qualified resources, and updates the information for the environment,

which results in potential changes for the list of resource entries. Certain possible changes include

removing such resource entries that fail in the process of reevaluation, or replacing such entries

with qualified new entries. Reevaluation uses the characteristic information for standards, there-

fore it makes no change to the property of the environment. Modifications to the characteristics of

the environment can be done by using high level operation interfaces and triggers the reevaluation

process. In conclusion, all execution environment modifications comprise three phases: obtaining

updated characteristic information required for reevaluation; filtering the virtual cluster pool with

this updated information; and updating the resource list with qualified data entries.

3.3.4 Service Deployment

The deployment service has a set of components that implement the concept of the cluster abstrac-

tion, ensures that the service is in user-space and is cluster independent. The architecture is shown

in Figure 3.8.
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FIGURE 3.8: The service components responsible for the implementation of the cluster abstraction.

3.3.4.1 Service Components

From Figure 3.8, we can identify all the components responsible for implementation and their

relationships.

• Information Collector

Since the primary objective for the cluster abstraction is describing diverse participating clusters

and providing uniform access to them, the information collector is able to communicate with all

resources in the pool via their LRMSs.

The information collector broadcasts requests for required information to all available clusters

in the pool, in other words, to all authorized resources. These resources are identified by the client,

using a list of DNS names. Since the static configurations are considered as constant for a small

time period, after the initial request, the information daemon only updates this information after a

large time interval, which is specified by administrator. Since the dynamic status is changing every

minute or even second, the information collector updates the dynamic information after fairly

small time interval period. After the information collection, the collector passes all information to

the virtualization service, which creates virtual clusters in the virtual cluster pool.
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• High Level Interfaces

The high level interfaces provide user the uniform access and operation on heterogeneous multi-

cluster environment. By using the information provided from a virtual cluster pool, these interfaces

ensure efficient and easy operations on the virtual clusters, i.e., task operations and resource oper-

ations. They also equip users with the capability for developing customized program logic, which

makes execution management, workflow management and so on much easier and more convenient.

3.3.4.2 Security

At deployment, information exchanges between clusters and client machines can be expected,

which are subject to authorization and authentication before data transfer. Since the deployment

service uses ssh or Globus for communication, we use the security mechanism of these two toolkits

for authentication. Once a client logs in, the service should allow this authorized client to operate

without further authorization requests.

3.4 Task Container Scheduling
An application execution typically employs multiple task containers, depending on user configu-

ration. By tracking the status of clusters, we keep an updated list of available clusters in the pool.

Through the cluster abstraction, we are able to capture resource information and use load balancing

scheduling strategies to dispatch the task containers.

Table 3.2 shows typical static and dynamic information for the resources gathered by the infor-

mation collector. It describes a computing resource by the architecture, CPU number, CPU speed,

memory size and local resource management system. The architecture factor can be employed to

decide which type of algorithms and simulators should be staged. From the table, we can see that

the Eric is a Linux cluster with PBS as its LRMS. It has 500 CPUs available and the CPU speed

is 2.33GHz. 72 jobs are running on Eric and 129 jobs are queued at this moment. Zeke is a AIX

machine with 104 CPUs available. Its resource management system is LoadLeveler. It has 4 jobs

running and no jobs queued. Additionally, there is a work directory (Remote home dir) for each
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facility. This is the home directory of the local account of a grid user. The Stage In/Out module

uses the work directory to update the executable, carry out the execution, and download the results.

Several different task container allocation strategies have been implemented, including randomly

assigned, weighted workload allocation, shortest expected delay, and mean response time.

Before job execution, the users will define the total number of task containers, J, and choose

the number of n suitable resources to execute the application. Then, these task containers are dis-

tributed by applying the scheduling scheme and, as a result, a fraction Pi of the TCs are allocated

to cluster Ci.

When we submit the task containers randomly, they will be spread out evenly onto all available

clusters. So in this case, Pi is computed as

Pi =
1
n
. (3.1)

The weighted workload allocation strategy (WWA) [HJSN04] takes into account the heterogeneity

of the clusters’ performance, and dispatches a number of task containers to a resource according

to its computational capability. The computational capability of a resource Ci can be measured as

ci =CPUNumber×CPUSpeed, (3.2)

and Pi in this case is computed as

Pi =
ci

∑
n
k=1 ck

, (3.3)

where ck = the computational capability of a participating resource Ck.

In some cases, one or more of the selected clusters may be extremely slow, which results in a

very small value for the fraction: ci
∑

n
k=1 ck

(i ∈ [1 · · ·n]). In this case, we will not assign any TCs to

these clusters, since once tasks get put on these extremely slow clusters, the whole job will not

finish for a long time.

In the shortest expected delay strategy (SED) [TC00], the TCs are dispatched according to the

queue length and the job processing speed of each participating cluster. Assuming the queue length
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of a resource Ci is Qi, then the normalized load will be Qi+1
ci

. Since the TCs will be submitted based

on the least normalized load, Pi is measured by

Pi ∼
(

Qi +1
ci

)−1

. (3.4)

Notice that in this case the TCs are not proportionately divided among the clusters according

to their speeds. In fact, Pi is proportional to the square of CPUSpeed . Clusters with slow speeds

will receive much less work than the fast machines. A previous study [LM99] showed that it is

beneficial to allocate a disproportionately higher fraction of the workload to the more powerful

computers at low and moderate loads, while at high load, it is better to keep the machines more

balanced.

In the mean response time strategy (MRT), TCs will be submitted based on a fraction that aims

to minimize the mean response time of the application submitted to all participating clusters. The

response time of a job is its waiting time in the queue plus its execution time. Therefore, the average

response time of the jobs in cluster Ci can be computed as

Ti =Wi +
1
µi
, (3.5)

where Wi is the mean waiting time of the jobs in cluster Ci and µi is the average job service rate of

a node in Ci. The mean response time of the application over these n participating clusters can be

computed as

T =
n

∑
k=1

PiTi. (3.6)

We need to find a workload allocation Pi (i ∈ {1 · · ·n}) that minimizes T in order to achieve the

best mean response time. By applying the Lagrange multiplier theorem [Ber96] to this equation,

this problem can be reduced to solving ∑
n
i=1 Pi = 1

∂(∑n
i=1 PiTi)
∂Pk

−υ
∂(∑n

i=1 Pi−1)
∂Pk

= 0.
(3.7)

Due to the complexity of Ti (Eq. 4.7), it is impossible to find a general symbolic solution for Pi

(i ∈ [1 · · ·n]). However, He et al. [HJS+06] have presented an approaching algorithm to calculate
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Pi. The basic idea is to use the binary search technique to search for υ and Pi in their respective

search spaces to see if the calculated values fit the constrains. For each arbitrary υ in its search

space, a set of specific values of Pi can be obtained. Then, the algorithm adds Pi (i ∈ {1 · · ·n}) to

obtain Psum. If the sum if greater than 1, it means the current υ is too high and a lower value should

be used to calculate the set of Pi. On the other hand, if the sum is less than 1, a higher value should

be used for the next iteration of the computation of Pi. This process is repeated until the set of

values satisfy Eq. 3.7.

Others scheduling algorithms, such as Load-Dependent Static policy (LDS) [BZ92] and Maxi-

mum Throughput policy (TP) [CK79], have also been analyzed in terms of their ability to satisfy

performance requirements in heterogeneous multiprocessor systems. These algorithms can also

be extended to our multi-cluster system. However, due to the complex expression of the load and

throughput in multi-cluster system, we will not be able to obtain a numerical solution but we can

use the binary search algorithm instead. This forms part of our future work.

3.5 Usage Scenario
One important design goal of Pelecanus is to provide application scientists with an easy-to-use

interface to hide the complexity of back-end services, such as security checking and execution

management. The interface also needs to be flexible, to allow application scientists to fully exploit

the resources that are available in a multicluster grid environment.

A typical usage scenario of Pelecanus consists of the following steps:

1. By accessing the standalone GUI or the web interface, an application researcher logs into

Pelecanus and obtains the necessary authorization for using the available resources.

2. The researchers chooses the AEA machine and the participating execution clusters by se-

lecting from the matched results from the cluster abstraction. The AEA machine can also be

one of the execution clusters.
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3. The researchers specify the number of total task containers to be used for the execution. By

choosing the individual scheduling policy, the number of task containers for each participat-

ing cluster will be calculated.

4. The researcher chooses which built-in execution pattern the application will adopt. Based on

the execution pattern chosen, Pelecanus provides an application specification interface that

allows the researcher to enter information such as the executable location, the data source,

and the workflow description.

5. The GEMS engine, the core of Pelecanus, reads the application specification and the set

of tasks for execution and then submits these tasks to participating clusters based on the

run-time status of the task containers.

6. The researcher monitors the execution progress, and may steer the application workflow

as needed, which is enabled by the dynamic load balance strategies adopted by the GEMS

engine.

7. The researcher receives the output and an execution report after the application execution is

completed.

3.6 Targeted Execution Scenarios
The Pelecanus toolkit can be used to manage application executions across many domains, in-

cluding task farming, inverse modeling, resource co-allocation, and time-critical support. The first

two types of execution scenarios have been extensively used by various scientific and engineering

applications, such as optimization, Monte Carlo simulations, model validations, etc.

3.6.1 Task Farming

An important category of grid applications is task farming, in which large numbers of somewhat

independent tasks are dispatched on remote computing resources. Task farming is simple, yet pow-

erful enough to formulate distributed execution of many application areas such as: radiation equip-
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ment calibration analysis, searching for extra-terrestrial intelligence, protein folding, molecular

modeling for drug design, etc. However, how to provide efficient scheduling strategies for load

sharing the tasks across a grid is still an open research issue.

A parameter sweep is a classic example of task farming. A parameter-sweep application model

is a combination of task and data parallel models, and applications formulated to use this model

contain a large number of independent jobs operating on different data sets. A range of scenarios

and parameters to be explored are applied to program input values to generate different data sets.

The programming and execution model of such applications resembles the Single Program Mul-

tiple Data model. The execution model essentially involves processing N independent jobs (each

with the same task specification, but a different dataset) on M distributed computers, where N is

typically much larger than M.

3.6.2 Inverse Modeling

Inverse modeling is a kind of multi-step application execution scenario, where at the end of each

step, all the data is collected, and a check is made to see if the data satisfies with a pre-defined

criterion. Each step depends on the result of the previous steps. This has been extensively adopted

in science and engineering applications. In petroleum engineering, for example, model inversion is

important to determine values of model parameters and to make accurate predictions. It is used to

calibrate subsurface properties (e.g., porosity, permeability, and hydraulic conductivity) in a sub-

surface simulation model. In this way, the computed values of observables, such as rates, pressures

(or head), and saturations, at different observation locations, are in reasonable agreement with ac-

tual measurements of those quantities. Nowadays, the increase in sensor deployment in oil and gas

wells for monitoring pressure, temperature, resistivity, and/or flow rate (i.e., smart/intelligent wells)

has added impetus to continuous model updating. Instead of simultaneously using all recorded

data to generate an appropriate reservoir flow model, it has become important to capture reservoir

flow information by incorporating real time data. Automatic and real time adjustment procedure is

needed for efficient model inversion.
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Since in grid-enabled inverse modeling, users need all the components of previous iteration

of inverse modeling in order to initiate the next iteration, computing synchronization is neces-

sary among steps. Without effective computing synchronization, application execution reliabil-

ity and time-critical updating would be seriously compromised by the slowest computing re-

source(s), due to the nature of grid resources, i.e., geographical distribution, heterogeneity, and

self-administration. Pelecanus can be used to leverage the effect of slower clusters and achieve

synchronization among computing steps.

3.6.3 Co-allocation

Co-allocation is a term that refers to the coordinated allocation of multiple resources that belong

to different administrative domains in order to solve a complex problem. Co-allocation is a hot

research topic in the distributed computing community. The main challenge of co-allocation is to

precisely forecast when a particular task will be executed on a participating resource due to the

scheduling policies of the resource. To achieve co-allocation, users need to seek local administra-

tion support, for example, resource reservation [Mac07a].

Pelecanus provides a co-allocation strategy suitable for any resource without special local ad-

ministration involvement. To conduct co-allocation, it needs to submit task containers in advance

to remote sites and track the status of these containers. Once all the containers are ready, Pelecanus

launches collaboration tasks to these containers for execution.

3.6.4 Time-critical support

Many compute-intensive applications require real-time response, e.g., hurricane simulation [BAS+05].

In order to guide the decision making process, meteorologists predict the possible directions of a

hurricane according to real-time information. High performance computing is required to conduct

such time-critical simulations. However, although traditional grid computing provides massive and

cost-efficient computation power, it has weak support for event-driven applications. Usually, dedi-

cated facilities have to be used for this kind of applications.
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It becomes possible under Pelecanus to run some time-critical applications in a multicluster grid

environment. What we can do is just submit TCs in advance, making sure these TCs running before

hurricane simulation is launched. Although some resources will be wasted before simulation, this

can still reduce the costs of terminating all running and queued jobs. In this way, we build a virtual

cluster with computation power partially from each participating cluster, whereas those clusters

can still make progress for the jobs submitted by each user.

3.7 Chapter Summary
In this chapter we described a toolkit that we have developed called Pelecanus in order to ef-

ficiently manage application execution in a multicluster grid environment. The novelty of Pele-

canus lies in the fact that it adopts the task container and dynamic task assignment techniques to

improve resource interoperability, execution management, and application monitoring. The cluster

abstraction is implemented to hide the heterogeneity of the underlying systems and provide uni-

form interfaces for the toolkit to operate with these resources. Pelecanus is particularly suited for

applications such as simple task farming, inverse modeling, co-allocation and time-critical support.
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Chapter 4
Performance Evaluation

Different components of our toolkit, including the DA-TC execution model, cluster abstraction,

and task container scheduling are presented in Chapter 3. In this chapter, we will study the per-

formance of our toolkit by comparing with the traditional method that does static load balancing.

Theoretical analysis and experiments are carried out and show that our model can provide bet-

ter scalability and reduced application turnaround time because of dynamic load balancing and

reduced queuing time in each application iteration.

4.1 Mathematical Model
The multicluster architecture consists of n local clusters, denoted as Ci, where i ∈ [1 . . .n]. Each

cluster Ci has mi computing nodes1 with relative speed si. Given two nodes with relative speed s1

and s2, if a job takes t units of time on first node, that same job will take t · s1
s2

on the second node.

We assume an average job size of l, which is the completion time of the job when it is executed on

an idle machine with relative speed 1. We assume that each cluster is locally homogeneous, which

means that the CPUs in each local cluster have the same speed. We further assume that our system

is greedy2.

The multicluster grid we consider has a super-scheduler to which each local cluster is con-

nected. Each local scheduler uses a single waiting queue to accommodate the jobs received from

super-scheduler and sends these jobs based on a First-Come-First-Served (FCFS) basis to free pro-

cessing nodes to execute. The execution is non-preemptive. Each cluster Ci can be modeled using

an M/M/mi queuing model [Kle75] by Kendall’s notation, which means arrivals are a Poisson pro-

cess; service time is exponentially distributed; there are mi servers; the length of queue in which

1We only consider the single CPU per node. It can be easily extended to multicore system if job is scheduled at the core level.
2A system is greedy if it never leaves any resource idle unless there is no job waiting for that resource.
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arriving jobs wait before being served is infinite; and the population of jobs available to join the

system is infinite. Suppose in our case, the average job arrival rate to cluster Ci is λi (that is, the

delay between two successive arrivals follows an exponential distribution with mean λ
−1
i ); and the

average job service rate of a node in cluster Ci is µi (the average execution time has an exponential

distribution with mean µ−1
i ).

4.2 Queue Size and Waiting Time
Let Ni be the number of jobs in Ci (including running and queued jobs). We know from [Nel95]

that the probability that Ni equals k is

P[Ni = k] =

p0
(ρimi)

k

k! k ≤ mi

p0
ρk

i mmi
i

mi!
k ≥ mi,

(4.1)

where p0 is the limiting probability that the system contains 0 members and is given by

p0 =

[
mi−1

∑
k=0

(ρimi)
k

k!
+(

(ρimi)
mi

mi!
)(

1
1−ρi

)

]−1

, (4.2)

and ρi is the utilization of the systems:

ρi =
λi

miµi
=

λi

misiµ
, (4.3)

where µ is the baseline job service rate.

The probability that the newly arriving jobs have to join the queue is equal to the probability that

all of the mi nodes are busy. Therefore, if there are k jobs in the queue, then there should be k (in

the queue) + mi (in processing) jobs in Ci. And the probability that there are no jobs in the queue

is P[Ni ≤ mi]. Hence, the probability of Qi jobs in the queue is

P [Qi = k] =

∑
mi
n=0 P[Ni = n] k = 0

P[Ni = k+mi] k > 0

=

∑
mi
n=0 p0

(ρimi)
n

n! k = 0

p0
ρ

k+mi
i ·mmi

i
mi!

k > 0.

(4.4)
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Using Eq. 4.4, we can find the average queue size of Ci to be

E[Qi] =
∞

∑
k=1

k · p0
ρ

k+mi
i ·mmi

i
mi!

= p0
(miρi)

mi

mi!

∞

∑
k=1

kρ
k
i

=

(miρi)
mi

mi!
ρi

(1−ρi)2[
∑

mi−1
k=0

(ρimi)k

k! +( (ρimi)
mi

mi!
)( 1

1−ρi
)
] .

(4.5)

Then by Little’s Law, we can get the expected waiting time in the queue as

E[Wi] =
E[Qi]

λi

=

(miρi)
mi

mi!
ρi

λi(1−ρi)2[
∑

mi−1
k=0

(ρimi)k

k! +( (ρimi)
mi

mi!
)( 1

1−ρi
)
] . (4.6)

The job turnaround time is its waiting time in the queue plus its execution time. Hence, the average

job turnaround time is

E[Ti] = E[Wi]+
1
µi
. (4.7)

From Eq. 4.6 and Eq. 4.7, we can find the ratio of waiting time to the total turnaround time as

Ri =
E[Wi]

E[Ti]
=

(miρi)
mi

mi!
ρiµi

λi(1−ρi)2

(miρi)
mi

mi!
ρiµi

λi(1−ρi)2 +
[
∑

mi−1
k=0

(ρimi)k

k! +( (ρimi)
mi

mi!
)( 1

1−ρi
)
]

=

(miρi)
mi

mi!
1

mi(1−ρi)2

(miρi)
mi

mi!
1

mi(1−ρi)2 +
[
∑

mi−1
k=0

(ρimi)k

k! +( (ρimi)
mi

mi!
)( 1

1−ρi
)
] .

(4.8)

The above analysis only considers the system in the non-saturated case (ρi < 1). However, most

HPC resources are typically over-committed [NWB08a]. Because it is difficult to predict resource

demand in an environment where demand is driven by research, and to also ensure that the uti-

lization of expensive resources is maximized, total user allocations typically exceed feasible occu-

pancy. Therefore, it is worthwhile to consider the system when ρi > 1.

Let Ai(t) be the random variable of the number of jobs submitted to Ci between 0 and t, and let

Di(t) be the random variable of the number of jobs completing on Ci between 0 and t. Since the
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system is saturated, we can always get Qi(t) = Ni(t)−mi. From [BGJ06], we find

E[Qi(t)] = E[Ni(t)]− ε(mi)

= E[Ai(t)]−E[Di(t)]− ε(mi)

∼t λit−miµit

= λit(1−
1
ρi
),

(4.9)

where f1(t)∼t f2(t) means that limt→∞
f1(t)
f2(t)

= 1.

Therefore, the expected queue waiting time is

E[Wi(t)] =
E[Qi(t)]

λi
= t(1− 1

ρi
). (4.10)

Given the execution time as 1
µi

, we can calculate the ratio of waiting time to the total execution

time as

Ri =
E[Wi]

E[Ti]
=

(ρi−1)µit
(ρi−1)µit +ρi

. (4.11)

4.3 System Performance
We will compare the performance of two execution methods. The first one is the traditional method

where tasks are directly assigned to the participating clusters, and the number of tasks on each

cluster is based on the scheduling policy in Section 3.4. This strategy has been adopted by Res-

Grid [LHK+06]. The other execution method is based on the DA-TC execution model.

In order to fairly compare the performance of these methods, we use simple task clustering

technology [DSS+05] to make sure that the number of jobs3 assigned to a cluster in the traditional

submission method is equal to the number of task containers in the DA-TC model.

4.3.1 Traditional Method

• For Task Farming

Suppose the total number of tasks is N, each with an average task size l, and the total number

of task containers (jobs) is J. According to Section 3.4, we know that the number of TCs (jobs)

3Multiple tasks are merged into one single job.
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submitted to cluster i is Ji = J ·Pi, where Pi is the fraction of total TCs allocated to cluster Ci based

on scheduling.

Therefore, the workload submitted to cluster i is Li =
N
J · l · J ·Pi = N · l ·Pi.

In the following, we assume the tasks we submit are sequential jobs; each TC (job) will take one

CPU to execute. For MPI jobs, each TC will occupy multiple CPUs. However, the basic idea is the

same. Hence, in the sequential case, if the number of TCs (jobs) submitted to cluster i is less than

the number of CPUs (mi), the expected execution time will be

Xi =
Li

J ·Pi · siµ
=

N · l
J · siµ

. (4.12)

However, if the number of TCs (jobs) submitted to cluster i is larger than the number of CPUs (mi),

then the expected execution time will be

Xi =

⌈
J ·Pi

mi

⌉
· N · l

J · siµ
. (4.13)

Since the total execution time in multicluster environments is the maximum execution time of any

participating cluster, we can find the turnaround time in this case as

T =
n

max
i=1

(E[Wi]+Xi), (4.14)

where

Xi =


N·l

J·siµ
J ·Pi ≤ mi⌈

J·Pi
mi

⌉
· N·l

J·siµ
J ·Pi > mi.

(4.15)

• For Inverse Modeling

In inverse modeling, all the data will be collected at the end of each step, and a check is done to

see if the data satisfies the stopping condition. If not, further iterations will be used to generate new

data. Therefore, the data and settings of the next step depend on the results of its previous step(s).

Algorithm 2 provides a simple workflow of inverse modeling. The first step is that large-scale

task farming is performed. Once all the tasks are completed, the results are analyzed to see if the

stopping condition is satisfied. If not, task farming settings and datasets are modified and the next

task farming iteration is undertaken. These steps repeat until the results satisfy the requirements.
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Algorithm 2 Logic of inverse modeling
while stopping condition unsatisfied do

task farming;
if all tasks are completed then

collect results;
if results satisfy stopping condition then

exit 0;
else

reset new task sets;
generate new datasets;

end if
end if

end while

Suppose there are K (k ∈ [1 · · ·K]) iterations. Since at each step, we need to collect all the results

from the previous step, we need to wait for all the results to complete in each iteration, and do

the analysis, and then submit the new execution tasks to different local clusters. In this traditional

method, each new task submitted has to wait in the queue again to wait for execution. Therefore,

we know from the above derivations that in this traditional method, each iteration will take Tk time

to execute:

Tk =
n

max
i=1

(E[Wi]+Xi). (4.16)

Thus, the total turnaround time in this inverse modeling scenario is

Ttotal =
K

∑
k=1

Tk =
K

∑
k=1

(
n

max
i=1

(E[Wi]+Xi)), (4.17)

where K is the number of iterations, and n is the number of clusters.

4.3.2 DA-TC Method

In the DA-TC execution model, the TCs will hold the resource until all the tasks have finished

execution. The AEA will dynamically assign tasks to TCs when the TC status is “Ready”. The

number of TCs submitted to different clusters is based on Section 3.4.

• For Task Farming

Suppose we order the local clusters based on their estimated queuing time. As showed in Fig-

ure 4.1, we have E[W1]≤ E[W2]≤ ·· · ≤ E[Wn]. Since the TCs in clusters Ci i < n will experience
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FIGURE 4.1: Waiting and execution time for each local cluster in the DA-TC model.

less waiting time than the TCs in cluster Cn, when the TCs in cluster Cn are allocated resources,

the TCs in cluster Ci (i < n) have already executed Ñi tasks,

Ñ1 =
E[Wn]−E[W1]

l
s1µ

·F1

Ñ2 =
E[Wn]−E[W2]

l
s2µ

·F2

...

Ñn−1 =
E[Wn]−E[Wn−1]

l
sn−1µ

·Fn−1,

(4.18)

where Fi = J ·Pi if J ·Pi ≤ mi, or mi if J ·Pi > mi.

Therefore, when the TCs in cluster Cn are ready to execute tasks, there are Ñ = N−∑
n−1
i=1 Ñi

tasks left.

In some specific cases, the TCs in the cluster with the longest waiting time may not be assigned

any task since all tasks have already been executed before those TCs are allocated resources. This

again reflects the advantages of DA-TC model, where slower or long waiting time clusters may

receive less or even zero tasks to execute, while faster or short waiting time clusters receive more

jobs to execute.

55



In the DA-TC model, each TC in participating clusters will finish the execution at almost the

same time due to the dynamic assignment nature of AEA. Clusters with more computational capa-

bility will execute more tasks, while clusters with less computational capability will execute fewer

tasks. Thus, we can take the turnaround time of cluster Cn to approximate the turnaround time of

whole execution. Since the remaining tasks will be assigned based on the run-time status of TCs

in different clusters, the number of tasks assigned to cluster Cn is based on the fraction of its ca-

pability to the total system computational capability. Therefore, there will be ˜̃Nn tasks assigned to

cluster Cn, ˜̃Nn =
Fnsnµ

∑
n
i=1 Fisiµ

· Ñ = Pn · Ñ. (4.19)

Thus, we can calculate the execution time of these tasks as

Xn =
˜̃Nn · l
Fnsnµ

, (4.20)

and the total execution time is

T = Tn = E[Wn]+Xn. (4.21)

• For Inverse Modeling

Since in the DA-TC model, the new tasks in next iteration do not need to want in the queue for

resources to execute, the waiting time can be reduced in all remaining iterations. All tasks only

need to be in the queue once.

For the first iteration, the execution time should be the same as Eq. 4.21. For next each iteration,

the execution time from the workload allocated to cluster Cn should be

Tn
′ =

Pn ·N · l
Fnsnµ

. (4.22)

Thus, the total turnaround time in DA-TC model for this inverse modeling scenario is

Ttotal = Tn +
K

∑
k=2

Tn
′ = E[Wn]+Xn +

K

∑
k=2

Tn
′. (4.23)
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4.3.3 Performance Comparison

For task farming, by comparing the Eq. 4.14 and Eq. 4.21, we can find that the main speedup

comes from the load balancing. Instead of waiting for the slowest cluster to finish the job, the DA-

TC’s dynamic assignment will be able to ensure the balancing so that all the clusters will be able to

finish their assigned tasks at almost the same time. The scheduling policy works as a coarse-grained

method to clustering several small tasks to a job to execute on each cluster in traditional method;

the DA-TC model serves as a fine-grained method, and the number of small tasks executed in each

task container is based on the run-time availability of TC and tasks. It is especially useful when the

number of tasks is uncertain at the beginning of the execution.

For inverse modeling, we can gain even more from the DA-TC model. By comparing the

Eq. 4.17 and Eq. 4.23, it is easy to find that the DA-TC model can not only provide fine syn-

chronization at each iteration, but also eliminate the waiting time for the following stages. User

will benefit from this model for the flexibility of changing the parameters and number of tasks dur-

ing the execution, and the reduction of the total turnaround time. During this long time execution,

the fluctuation of each participating resource will only cause the AEA to automatically rebalance

the number of jobs submitted to the cluster at each stage, but will not exert a great influence to the

total performance.

4.4 System Evaluation
Without loss of generality, our multicluster grid testbed consists of four Linux clusters with lo-

cal scheduling system PBS, connected by the Internet4. Each cluster can be accessed by Globus

GRAM or ssh.

Application scenarios involved in the experiments are task farming and inverse modeling. In

task farming, all the tasks are assigned to a multicluster grid and the results are sent back without

further processing. In inverse modeling, multiple task farming steps are required and each step

needs the results of the previous step(s). These two scenarios are the fundamental methodologies

4The experiment can easily be extended to heterogeneous participating clusters with different local scheduling systems and access methods.
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in the implementation of many large-scale applications. The experimental load characteristics are

described in Section 4.4.4 and Section 4.4.5, respectively.

A multicluster grid is a highly dynamic environment, in which each participating cluster has its

own user community with diverse job arrival patterns and workload characteristics. To minimize

the effects of uncertainty, we executed the same application multiple times during different time

of each day and calculated the mean value of the turnaround time for each configuration. The

experiments here focus on compute-intensive applications. The steps for one submission are as

follows:

1) Generate application tasks;

2.1) Submit application to the multicluster grid to execute by the traditional and DA-TC meth-

ods;

2.2) Repeat Step 2.1 with different configurations;

3) Repeat Step 2 multiple times at different time of each day;

4) Calculate the mean value of the turnaround time with traditional method;

5) Calculate the mean value of the turnaround time with DA-TC.

4.4.1 Batch Queue

In order to illustrate the importance of reducing queue time in the total turnaround time, we plot the

queue size and ratio of queue time to the application turnaround time in Figure 4.2 and 4.3. The four

local clusters have 32, 16, 16, 8 CPUs, and the relative speed is 1.2, 1.5, 1.8, and 1.0, respectively.

From Eq. 4.5 we know when ρ < 1, the queue size is only related to mi and ρ, therefore cluster

C2 and C3 have the same queue sizes with respect to ρ, though they have different relative speed.

E[Qi] < E[Q j] if mi > m j. However, when ρ > 1, the queue size is related to λi and ρ, and this

is reasonable since in this case, all the CPUs are busy and all the jobs arrival need to wait in the

queue. Therefore, queue size will increase faster when the jobs arrival more frequently.

From Eq. 4.8 we can see that when ρ < 1, the ratio of queue time to the application turnaround

time is a function of mi and ρ. Figure 4.3(a) shows that Ri < R j when mi > m j. But when ρ > 1,
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(a) ρ < 1

(b) ρ > 1

FIGURE 4.2: Queue waiting job size.
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(a) ρ < 1

(b) ρ > 1

FIGURE 4.3: Ratio of waiting time to total turnaround time.

60



the ratio is a function of si and ρ. From Figure 4.3(b) we can see Ri < R j when si < s j. This

is because the same task needs less execution time on cluster C j when si < s j, and the ratio,

WaitingTime
WaitingTime+ExecutionTime , becomes larger.

From Figure 4.3 we can see that under high utilization, each job will experience very long wait-

ing time, and the ratio of waiting time to the turnaround time is very high. Raicu et al. [RZD+07]

also conclude that queue time takes the largest portion of the task turnaround time by conducting

experiment on the Falkon task execution framework. Normally the execution time is less than 30%

of the total turnaround time. Therefore, reducing the waiting time can be a huge acceleration for

the whole job execution.

4.4.2 Effect of Number of Participating Clusters

FIGURE 4.4: Effect of different number of participating clusters.

Figure 4.4 illustrates the effect of different number of participating clusters in both the traditional

method and the DA-TC model. Table 4.1 lists the parameters of the participating clusters. The total

number of tasks is 500 and the number of TCs (jobs) is 60. Cluster 1 is used to get the result for

only one participating cluster case, and Cluster 1 and 2 are used to generate the result for two
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TABLE 4.1: Parameters of participating clusters

CLUSTER NO. NO. OF CPUS RELATIVE SPEED JOB ARRIVAL RATE

1 8 1 0.2

2 16 1.5 0.8

3 16 1.8 0.5

4 32 1.2 0.5

participating clusters case. For the three participating clusters case, Cluster 1, 2, and 3 are used,

and for the four participating clusters case, Cluster 1, 2, 3, and 4 are used.

From this figure we can see that using the traditional method, we cannot always achieve better

performance when more clusters are added in. This is because one or more of the participating

clusters become the bottleneck during the execution. The total turnaround time can not be further

reduced. But in the DA-TC model, the slower clusters become a benefit instead of the bottleneck.

Each cluster can make contribution to the total execution. Slower clusters get few tasks to execute,

while faster clusters get more tasks to execute. By this model, we can avoid the situation where

that faster clusters have already finished all tasks, but users have to wait for slower clusters’ results,

which happens in traditional method. Therefore, in the DA-TC model, the turnaround time can be

reduced when more clusters are used.

4.4.3 Effect of Scheduling

Figure 4.5 shows the performance of submitting the TCs (jobs) based on different scheduling poli-

cies introduced in Section 3.4 in both traditional and DA-TC methods. In this figure, the top solid

lines show the performance of the traditional method, and the lower dashed lines show the results

of the DA-TC method. These four scheduling algorithms are Randomly Assigned, Weighted Work-

load Allocation (WWA), Shortest Expected Delay (SED), and the Mean Response Time (MRT).
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FIGURE 4.5: Comparison of different scheduling policies in traditional and DA-TC methods.

Based on these algorithms and the parameters of the participating clusters listed in Table 4.1, we

can get the fraction Pi of total TCs (jobs) submitted to each cluster, as shown in Table 4.2.

From the figure we can conclude the following.

1. In all four cases, the turnaround time of the DA-TC model is much less than the time in

the traditional method. This is because the DA-TC model is able to achieve load balanc-

ing, making all participating clusters finish the execution at almost the same time. But in

the traditional method, no matter how carefully one chooses the scheduling algorithm, the

completion time of the jobs in each cluster will be different.

2. The turnaround time will decrease when increasing the number of TCs in DA-TC model.

However, in the traditional method, increasing the number of big jobs will make the turnaround

time even longer. This is because the large number of big jobs may saturate the machine, even

though the executing time of each big job is reduced.

3. The difference of the results among these four policies in DA-TC model is much less than

them in traditional method. This is mainly because the DA-TC model implements the static
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TABLE 4.2: The fraction Pi of total TCs (jobs) submitted to each cluster

CLUSTER NO. NO. OF CPUS RELATIVE SPEED JOB ARRIVAL RATE RANDOM WWA SED MRT

1 8 1 0.2 0.25 0.08 0.12 0.05

2 16 1.5 0.8 0.25 0.24 0.29 0.33

3 16 1.8 0.5 0.25 0.29 0.40 0.20

4 32 1.2 0.5 0.25 0.39 0.19 0.42

submission of the TCs but dynamic submission of each task. Because of the dynamic as-

signment of each task, the random submission, which is a horizontal line in the traditional

method, can still have similar performance as other policies in the DA-TC method.

4.4.4 Effect on Task Farming

We investigate the effect on task farming from two aspects: 1) an identical application submitted

with different number of task containers; 2) the number of task containers fixed with different size

of applications. Due to the almost identical performance achieved in the DA-TC model, we use the

weighted workload allocation algorithm as the scheduling policy for the following experiments.

• An Identical Application Submitted with Different Number of Task Containers

The application consists of 500 tasks. The execution time range of each task is from 1 minute

to 30 minutes. The execution time of a single task is generated randomly. If this application was

submitted on a single CPU, the total CPU time would be (15×500)÷60 = 125hours.

We submit the application with different numbers of task containers (jobs) (30, 60, 90, 120) and

obtain the results shown in Figure 4.6. We also plot the results predicted by theoretical analysis

from Eq. 4.14 and Eq. 4.21 to compare. The following three conclusions can be drawn:

1. Application turnaround time for the DA-TC model is significantly improved over turnaround

time in the traditional method.
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FIGURE 4.6: Task farming comparison between DA-TC and traditional method: an identical appli-
cation submitted with different number of task containers.

2. DA-TC shows the nature of scalability, which means that turnaround time can be decreased

by increasing the number of task containers. A multicluster grid with more participating

clusters can provide better performance for application execution.

3. The turnaround time in the traditional method is even longer with 120 task containers (jobs)

than with 90 task containers (jobs). The possible reason is that the performance of one partic-

ipating cluster becomes the bottleneck. The traditional method can not always achieve better

performance when more number of clusters are participated.

• Fixed Number of Task Containers (Jobs) for Different Sizes of Applications

Four applications with fixed number of task containers (jobs) are submitted. The fixed number of

task containers (jobs) is 60. The four applications have 200, 400, 600 and 800 tasks, respectively.

The execution time range of each task is from 1 minute to 30 minutes. The execution time of a task

is generated randomly. If these applications were submitted on a single CPU, the total CPU times

would be 50, 100, 150 and 200 hours, respectively.
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FIGURE 4.7: Task farming comparison between DA-TC and traditional method: the number of task
containers (jobs) fixed with different size of applications.

Figure 4.7 shows the the results of the application executions. It is obvious that the turnaround

time is greatly reduced if applications with different size are submitted via DA-TC, instead by the

traditional method.

4.4.5 Effect on Inverse Modeling

In order to simplify our experiments without loss of generality, we use a fixed number of iterations

of task farming to simulate automatic inverse modeling execution. We performed four inverse

modeling processes with 3, 6, 9 and 12 iterations, respectively. Each iteration has 100 tasks. The

execution time range of each task is from 1 minute to 30 minutes. The execution time of a task is

generated randomly. If the tasks of one iteration were submitted on a single CPU, the total CPU

times would be 25 hours. The number of task containers (jobs) is 20.

Figure 4.8 demonstrates the experimental results comparing the turnaround time under the two

different submission strategies: DA-TC and the traditional method. We observe that when the num-

ber of iterations increases, the turnaround time increases much faster under the traditional method

than under DA-TC. The major reason is that task containers in DA-TC never release the resources
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FIGURE 4.8: Experimental results to compare turnaround time of automatic inverse modeling under
two different submission strategies: DA-TC and traditional method.

until the whole automatic inverse modeling process is completed, but for the traditional method,

the tasks in each iteration are submitted to the end of local scheduling queues. In the DA-TC model,

all runs in a container have only one queue wait, and dynamic load balancing also speeds up the

execution.

4.5 Chapter Summary
In this chapter we presented the performance evaluation of our DA-TC method in multicluster

grids. We first show that reducing the queuing time can be a huge enhancement for the total appli-

cation turnaround time. Then, we compared the performance of two different execution methods:

with and without DA-TC, both theoretically and experimentally. Experiments show that our DA-

TC model can easily eliminate the bottleneck caused by the slow clusters during the execution

and make them contribute to the total application execution, therefore providing better scalability

than the method without DA-TC. Application turnaround time can be significantly reduced since

there is no need to queue each individual task, and also because of the dynamic load balancing
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technique. This model is very useful when the number of tasks is uncertain at the beginning of the

execution. It also provides the user the ability to change the workflow during the execution.
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Chapter 5
Application Case Studies

Our toolkit has been successfully deployed on multiple applications across various disciplines,

such as renewable natural resources, petroleum engineering, mechanical engineering, and compu-

tational chemistry, etc. In this chapter, we will introduce these compute-intensive applications and

describe the challenges and how our toolkit can benefit these applications by simply utilizing our

toolkit to execute the applications across the multicluster environment.

5.1 Collaborative Mechanical Design
Computer-aided mechanical design is widely employed in the modern world, and it is one of the

most active research areas in the academic and industrial sector. It deals with design of almost

everything, from home devices to spacecraft. The major concerns are designing the product to meet

functional requirements and ensuring that the product is sufficiently robust and that it will meet

various constraints, i.e., weight and volume, material availability and production functionality. In

general, mechanical design is an optimization process for achieving the desired product functions

under multiple constraints.

A typical computer-aided mechanical design has three major phases, as shown in Figure 5.1:

(1) Preliminary Design (e.g., Geometry Design): Engineers create a set of preliminary models that

have the required functions and meet the given constraints, based on the previous experience, pro-

fessional standards, and technical regulations. (2) Structure Verification: After creating the prelim-

inary models, FEA simulations [ANS] are conducted to check if the preliminary models are robust

enough to endure given working conditions. (3) Performance Evaluation: CFD simulations [Flu]

are executed if flow is involved when final product is in use. This phase can occur prior to the

Structure Verification phase in some circumstances.
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FIGURE 5.1: Mechanical design strategy.

Traditionally, only a very small portion of preliminary design models are presented to the second

and third design phases. The selection of a design to next stages is based on whose major features

are fairly close to the final requirement [Tho04]. The major advantage of this design strategy is ap-

parent: it cuts the computation time of the two design phases that follow. But it risks the possibility

of eliminating good or even the best models at the very beginning, without further evaluation. The

cost of such risks can sometimes be unaffordable.

5.1.1 Challenges

If sufficient computational resources are available, it is unnecessary to eliminate any preliminary

models in the first design phase, as this could lead to the loss of valuable results. All possible

promising preliminary models could be sent to the structure verification and performance evalu-

ation phases, and all possible combinations of working conditions could be evaluated. This new

design idea ensures that the best designs would not be discarded from the design process due to

lack of computation power. However, the FEA and/or CFD simulation of a typical single model
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with a one-foot length in each of the three dimensions takes several hours on an ordinary desktop.

Suppose 100 preliminary models are available, and 3 groups of parameters in the structure verifica-

tion phase and 3 working conditions in the performance evaluation phase need to be evaluated for

each model, then there are 100×3×3 cases to be studied. Even assuming that each procedure of

structure verification and performance evaluation only takes one hour, 900 hours would be needed

to finish the job. A grid-enabled simulation environment is one method than can be used to reduce

the execution time.

5.1.2 System Realization

We have implemented a DA-TC based problem solving environment to meet the challenges ex-

plained above. This tool benefits mechanical engineers by: 1) equipping mechanical engineering

simulations with supercomputing capabilities and reducing simulation time; 2) making it possible

to use a grid environment to evaluate all possibilities, making sure that the best designs will not be

discarded during the design procedure.

The DA-TC enabled system workflow is shown in Figure 5.2. Before initiating the simulations, a

set of input files that define major geometry parameters, physical properties, and other coefficients

needed in design procedures should be first specified. These data, in input files, are referred to as

configuration parameters for the program. Then, numerical parallel simulations are invoked across

grid computing resources, generating results for further analysis. The whole procedure includes:

1. Data Preparation. A local directory, containing a work directory, is created on the AEA

machine. The input geometry file and other input files required by the preliminary modeling,

FEA, and CFD phases are saved in this directory.

2. Scheduling. The user specifies which clusters will be used to run the simulations. The cluster

abstraction provides the information needed to make the scheduling decision. The scheduling

service uses this information to decide on the number of task containers submitted to each

participating cluster.
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FIGURE 5.2: Execution management.

3. Task container submission. The AEA submits the task containers based on the scheduling

results.

4. Application executables and data stage-in. Once a task container is active (has gone

through the queue) on the resource, it will communicate with the AEA to update its status.

The AEA will assign the next task to this container. The container can stage-in the executa-

bles and the assigned task from the position defined by the AEA. The AEA can dynamically

assign tasks to different containers based on the run-time status of these task containers.

72



5. Job Execution. All computations contain preliminary design, structure verification and per-

formance evaluation. The preliminary design phase takes its input from the remote data

storage. The output of the preliminary design is the input for structure verification. The per-

formance evaluation phase takes its input directly from the input geometry file.

6. Retrieving Results. The computational nodes write the results back to the data repositories.

7. Stage-Out. The results are transferred back to the AEA machine for further analysis and

visualization.

5.1.3 Case Study

One scenario in mechanical design is to design a wall to protect peoples’ lives and properties

downstream of a dam in case the dam is broken, as shown in Figure 5.3. Engineers first need to

select the cross-sectional shape of the wall, the dimensions of the wall, the distance from the dam

to the wall, and the material to be used. There are multiple options for each variable, which can be

combined together to form hundreds of possible models. For instance, the cross-section shape can

be a rectangle, triangle, trapezoid or other forms; the wall material can be concrete or metal; the

wall dimensions and distance from the wall to the dam can be set to many different values, as well

as multiple water levels in the dam.

Next, performance evaluation is performed on each preliminary model of the protective wall.

For each preliminary model, CFD results provide information about how soon water will impinge

on the wall once the dam is broken, what pressure the water flow will cause on the wall, what the

flow velocity will be when water reaches the wall, and what the water flow pattern will be at the

downstream section of the wall.

Based on preliminary models of the protective wall and CFD results (i.e., pressure distributions

on the wall surface), FEA is then conducted on each preliminary model to examine stress distri-

butions in the wall. Different wall materials are checked in this phase. Structural flaws may be

found, and the lifetime of the designed walls can be predicted. Qualified models will be selected,
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FIGURE 5.3: Design protective wall for preventing flood damage.

from which the best model can be found. Otherwise, engineers have to return to preliminary design

phase again to make improvements.

This case study has been implemented and was used to validate the architecture addressed above.

It was implemented by using three free software packages, e.g., Gmesh [GR06], Z88 [Rie06], and

OpenFOAM [Ope] for the Preliminary Design, Structure Verification, and Performance Evaluation

phases, respectively. All these software toolkits are open-source and were pre-installed on the

computational nodes.

Data Preparation. In the beginning, all the parameters have to be specified in the parameter files,

including input geometry file name, dimension of the object, case name, etc. In this case study,

parameters such as height and width of the wall, shape of wall cross-section, algorithms to be used

in OpenFOAM and Z88, dam water level, and materials to be used to create dam, are required in

these parameter files.

The selected geometries are shown in Table 5.1, where H and W represent height and width,

respectively. In this case study, there are 10× 5× 3× 2+10×5×3×2+ 20×5×3×2 = 1200

geometry models in total. So the user needs to define 1200 files in the AEA machine, where each
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file contains the parameters for one H and W combination, one distance value, one water level

value, and one material value.

TABLE 5.1: Pre-defined geometries

CROSS
SECTION

WALL DIMENSION DISTANCE WATER
LEVEL

MATERIALS

Rectangle Ten H and W combinations Five values Low,
Normal,
High

Steel, Concrete

Triangle Ten H and W combinations Five values Low,
Normal,
High

Steel, Concrete

Trapezoid Twenty H, upper and bottom W combi-
nations

Five values Low,
Normal,
High

Steel, Concrete

Task Container Submission. The user can also define the total number of task containers. The

AEA submits the TCs based on the scheduling decision. In this case, we submitted ten task con-

tainers to Eric, Louie, Oliver, and Queen Bee (systems in our LONI [LON09] Linux cluster envi-

ronment).

Execution. After some TCs acquire resources, the AEA will assign the task to these TCs. Normally

we name user-created files by number, so in this case, we name them from 1 to 1200. The AEA

assigns the tasks in ascending order. For example, if task container 4 is running parameter file 345,

and at this time task container 1 is ready to run, the AEA will assign file 346 to task container 1 to

execute.

As shown in Figure 5.4, there are several major steps in this simulation: mesh file generation;

mesh file conversion; geometry file conversion; structure verification, and performance evaluation.

Preliminary Design. The user-defined input file is sent to the Mesh module. The module generates

the .geo file using the parameters specified in parameter file. This .geo file defines the shapes of the
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FIGURE 5.4: Simulation workflow.

wall cross-section, the dimensions of the wall, the variable distance between the dam and the wall,

and the instructions for how to mesh the geometry. Then, Gmesh reads in the .geo file to generate

the mesh for the 2D and 3D models. With the .geo input file, Gmesh works as a CAD software tool

in this case.

Performance Evaluation. The mesh files from Gmesh are converted into OpenFOAM mesh format.

Then an OpenFOAM solver (InterFoam in this case) reads flow properties, and initial and boundary

conditions from the input files. The input file provides the initial conditions, with three values

of water level: low, normal, and high, specified. The results of CFD simulations include water-

air distributions in the space studied, flood velocity fields, and pressure distributions on the wall

surfaces. Figure 5.5 shows how the water flow impinges on one of the wall designs when the dam

is broken at a normal water level, and the flow patterns prior to and after the water reaches the wall.

Structure Verification. The model geometry from the .geo file is imported, and meshed into Z88

format. The input file containing material properties, boundary and/or initial conditions, is also

needed for Z88. The pressure field data from OpenFOAM is sent to the Z88 module and merged

with the Z88 input files to provide boundary conditions. Z88 solvers then read the mesh files

and input files, and calculate displacements, stresses, and nodal forces of the wall. Two types of

wall material are tested. One is steel and the other is concrete. By evaluating the FEA results, the

qualified walls are identified for different water levels, and the wall lifetime can also be predicted,
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(a) t=0.00s (b) t=0.15s

(c) t=0.30s (d) t=0.45s

(e) t=0.55s

FIGURE 5.5: CFD simulations of the flow impinging on a protective wall with rectangular cross-
section.

(a) t=0.015s (b) t=0.020s

FIGURE 5.6: The pressure distributions around the protective wall, where the red color indicates
higher local pressure.

based on structural stress distributions. Figure 5.6 shows the pressure distributions around the

protective wall.

This specific experiment introduced 1200 parameter combinations. By using our DA-TC execu-

tion model, we were able to finish the entire simulation within 100 hours. This is not just because

each node in our LONI clusters is more powerful than a desktop system, but also because of the

collaborative effort of multiple task containers across the participating clusters and the reduction

of queuing time of each job during the execution.
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5.2 Sawing Optimization
Trees are products of nature. No two trees are the same. Logs produced from trees are therefore

different from each other. Externally, they are different in size, shape and straightness. Internally,

defects such as knots, decays, worm holes, are distributed in various parts of the log. Sawyers

have the unenviable job of, in a few seconds, taking a quick look at the external shape of the log,

guessing what is inside, and proceeding to cut the log into lumber. Invariably, mistakes are made

in guessing what defects are inside the log, and the sawing sequence used to cut the log fails to

extract the maximum value from the log. What is needed is a sawing optimization system that can

see both the external shape and internal defects of a log, determine the best way to cut the log

into lumber, and then proceed to cut the log accordingly to capture the maximum value from each

log. Fortunately, in the 1980s, computed tomography (CT) scanning technology was developed,

which presents the opportunity to acquire cross-sectional images of logs without destroying the

log itself [FB87, TWJ+84]. By using advanced CT log scanning technology, developing software

packages devoted to simulated sawing of virtual logs reconstructed from CT images became pos-

sible [BFT02, SLA96]. TOPSAW, a Training and Optimization system for SAWing Logs, was

developed to find the optimal cutting pattern for each log based on CT images.

• Description of TOPSAW

The TOPSAW program uses CT scanned images to reconstruct a virtual log. As the schematic

for TOPSAW shows in Figure 5.7, the TOPSAW sawing optimization system will first scan a log

with an X-ray CT scanner to acquire its cross-sectional images. These log scanning images are

combined to reconstruct the 3-D virtual log on the computer. From there, TOPSAW generates full

length cut-faces at various rotational angles at various depths. The sawing optimization software

then identifies the internal defects in the log and boxes the defects on the cut-face, and then grades

the lumber to be cut according to the National Hardwood Lumber Association (NHLA) grading

rules. The software also winnows thousands of sawing options to quickly find the optimal sawing

sequence to maximize the value realized from each log. The best sawing sequence generating the
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FIGURE 5.7: The schematic of the TOPSAW sawing optimization system.

highest total lumber value will be stored in the memory and a barcode corresponding to the optimal

cutting pattern is attached to the scanned log and sent to the actual saw for cutting. The total value

of the boards estimated by the software matched 97% of the value produced at the sawmill. This

laid the foundation for TOPSAW to be used as a practical tool to analyze different sawing patterns

and to determine the value of lumber thus produced [GC98].

• Log Scanning and Defect Detection

Due to the weight limitation of medical scanners, in the past nearly all log scanning has been

carried out in short sections. At LSU, we recently had the opportunity to scan eight logs with 12
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feet long and 12 to 14 inches in diameter, at full length. The images from these logs now provide

valuable data for TOPSAW.

FIGURE 5.8: A matched set of an X-ray CT scan image and a photo picture of a cross section of a
red oak log.

Most of the internal defects inside a log can be identified correctly. For example, presented in

Figure 5.8 is a matched set of an X-ray CT scan and the actual photo picture of a cross section

of a log. As shown in Figure 5.8, X-ray CT scanning of logs provides highly accurate images of

not only the external shape of the log but also of internal defects and features. From the image

we can clearly see the delineation of the sapwood and heartwood, scar tissue around the 5 o’clock

position, a large knot at the 2 o’clock position, a trace of a knot at the 10 o’clock position and a

heart check in the center of the log.

The scanning for each log was performed at 0.5-inch intervals. Image acquisition was performed

at the rate of one image per second. The cross-section image resolution was 512 by 512 pixels.

After combining a series of the CT log scanning images, the 3-D virtual log picture can be re-

constructed and the cut-faces of the log can be generated for various rotational angles and at any

depth. The software then identifies the internal defects in the log, boxes the defects on the cut-face,

80



and grades boards following the sequence used in the sawmill. The saw blade positions used in the

software were the same as those recorded at the sawmill. Based on this information, TOPSAW can

determine the optimal sawing sequence and examine the effects of different sawing decisions. Fig-

ure 5.9 gives an example of cutting a 3D virtual log. The green boxes indicate the good condition

of this piece of lumber, while red boxes indicate defects.

FIGURE 5.9: The image of cutting 3D virtual log.

5.2.1 Challenges

We know, from previous work, that the optimal rotational orientation of the log and the depth of

opening cut can significantly affect the value of lumber produced [HWS+91, SWKA93]. There-

fore, in order to make the optimal cut, we need to rotate the log to the correct orientation, and then,

position the log at the correct depth with respect to the saw. Figure 5.10 shows three ways to do the
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FIGURE 5.10: Live, bi-directional, and grade sawing of a log.

sawing. Live sawing simulations were conducted by rotating the virtual logs in 15-degree incre-

ments for sawing in 24 different rotational orientations. For each rotational orientation, instead of

starting with an opening face of a specific width, we shifted the depth of the opening cut from the

edge of the log in 1/16-inch increments for 18 different opening cut depths to determine the best

opening cut face. The 18 depths included 16 pixels for the thickness of one 4/4-inch board plus 2

pixels for the 1/8-inch saw kerf. The 432 (24× 18) combinations of the rotational orientation ×

depth-of-cut for each log provided an exhaustive study of the effects of rotational orientation and

depth of the opening cuts on the value of hardwood lumber produced. Simulation results showed

that TOPSAW could increase the value of the lumber produced by 15% over actual sawmill pro-

duction under live sawing. Bi-directional sawing allows the log to be sawed in two directions and

produced an additional gain of 8% over just live sawing. Grade sawing permits sawing in four

directions; a further gain of 3 to 5% is possible. However, with each log rotating at 15 degrees in-

crement there are 6 different log orientations per log to consider. Within each log orientation, each

one of the four sides of the log has 17 different depths of opening cut to consider. All together,

there are 501,126 (6×174) possible initial sawing combinations. Solving all these combinations to

find the optimal solution sequentially on any computer is not realistic. That is the main reason we

propose to use grid computing for sawing optimization, as this can keep the cost of computational

resources small enough for it to be practical. However, due to the inhomogeneity and variability

of the grid, it is challenging to efficiently adapt to this environment. Furthermore, our simulation

is a multi-step process: at each step, we need to examine the results and adjust certain parameters
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before running the next step. This will result in an unbearably long waiting time during the execu-

tion. Therefore, we took advantages of the DA-TC execution model to overcome the challenges in

grid computing for our TOPSAW optimization.

5.2.2 System Realization

Before running, TOPSAW needs a set of parameters: the CT scanned data file of the log of interest,

the wane percentage, number of blades to be used for sawing, the initial angle of orientation, and

the depth of the opening cut. The whole procedure of grid-enabled TOPSAW includes:

1. Data Preparation: in this first stage, a local directory is created on the AEA machine. The

input CT log data and other input files required by simulation are saved in binary or plain

text files in this directory.

2. Data Staging: in this second stage, the local directory built in the first stage is replicated on

the remote storage sites.

3. Task Farming: in this third stage, TCs are assigned to the available computation resources,

according to the workload allocation decision.

4. Job Execution: in this fourth stage, the required command files are generated and submitted

to the remote computational machines when TCs have acquired resources.

5. Retrieving Results: in this fifth stage, the computational nodes write their results back to

the remote data repository, and the user can find the best solution from all the output files

and put it in a file.

6. Staging Out: in this sixth stage, this file containing the best optimal solution will be trans-

ferred back to the user’s local machine for it to be sent to the actual sawmill cutting.

In the DA-TC execution model, once a task container has been allocated resources, it persists

as a job on the remote resource and therefore retains the resources until all members assigned
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to the container are completed. Thus, all runs assigned to a container have only one queue wait,

and dynamic task assignment makes the containers with fast speed execute more tasks (dynamic

load balancing); with many members and assimilations per container, this greatly reduces the total

queue time. Our experiment shows that the average percentage of turnaround time improvement

is up to almost 60%, which significantly reduces our simulation execution time, and makes it

applicable in an industry environment.

5.2.3 Results and Discussion

With the help of grid computing and the DA-TC execution model, we are able to analyze the effects

of optimal rotational orientation and optimal depth of the opening cut on the final lumber values.

• The Effects of Optimal Rotational Orientation and Depth of the Opening Cut

The maximum and average lumber values produced from all combinations of log orientation ×

depth-of-cut for each log are presented in Table 5.2. With 2007 lumber prices, the maximum value

significantly exceeded the mean lumber value produced by the average of 14.7% (ρ = 0.0003).

Furthermore, the potential gains in lumber value for grade 1 and 2 logs were quite similar; with

14% gain for the former and 15.4% gain for the latter. The results suggest that sawing 4/4-inch

lumber with the optimal log orientation and opening cut depth could potentially increase lumber

value by as much as 14.7% when compared to a totally random positioning of the log, regardless

of log grade.

Given the 14.7% gain in lumber value, it is important to determine whether optimizing rotational

orientation or optimizing the depth of the opening cut contributes more to this gain. The following

two analyses address this issue.

• The Effects of the Depth of the Opening Cut When the Log is Positioned at Its Optimal

Rotational Orientation

To determine the effects of the depth of the opening cut on lumber value when the log is rotated

to its optimal orientation, the results from the optimal log orientation were further analyzed. As

shown in Table 5.3, given the optimal rotational orientation for each log, the average lumber value
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TABLE 5.2: Description of the seven red oak logs

Log
No.

Grade Length
(ft)

Avg.lumber
($)

Max.lumber
($)

Difference
(%)

1 1 11.8 83.10 94.01 13.1
2 1 12.0 78.62 92.18 17.3
3 1 12.0 99.88 111.98 11.6
4 2 12.7 86.90 99.84 14.9
5 2 12.4 57.68 67.71 17.4
6 2 12.3 47.91 55.67 16.2
7 2 12.3 60.01 67.82 13.0

Avg. 14.7
SD 2.3
p 0.0003

produced from all 18 depths significantly exceeded (ρ = 0.0237) that from all 432 combinations of

rotational orientations and opening depth by 5.0%. Furthermore, given the optimal log orientation,

if the opening cut depth is positioned within ± 1/8 inch of the optimum, then even more gain can

be obtained.

• The Effects of Log Rotational Orientation Given the Optimal Depth of the Opening Cut

As shown in Table 5.4, given the optimal opening cut depth, the average lumber value produced

from all 24 log rotational orientations was only 0.5% larger than that from all 432 combinations of

rotational orientation and depth of the opening cut. This difference was not statistically significant

(ρ = 0.26). However, given the optimal opening cut depth, if the log can be rotated within ± 30

degrees of the optimal orientation, we can obtain more lumber value.

The above result suggested that optimal depth-of-cut has insignificant influence on the value of

lumber produced unless the log is at or near the rotational orientation producing the maximum

lumber value. Our results further showed that when the log is rotated exactly and an opening cut

positioned within 1/8 inch of the optimal opening depth, lumber value produced was about 2% to

almost 4% greater than the case with an exact opening cut but a suboptimal rotational orientation.
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TABLE 5.3: An analysis of the effect of the depth-of-cut on the value of lumber produced when the
log orientation is fixed at its optimal orientation.

Log
No.

Avg. of 18
depth-of-cut
positions ($)

Avg. of 432
combinations
($)

Difference
(%)

1 85.29 83.10 2.6
2 82.30 78.62 4.7
3 103.70 99.88 3.2
4 92.15 86.90 6.0
5 60.86 57.68 5.5
6 51.99 47.91 8.5
7 62.52 60.01 4.2

Avg. 5.0
SD 2.0
p 0.0237

5.3 Daymet Acceleration
Daymet is a component of a terrestrial ecosystem modeling system. It is a collection of algo-

rithms and computer software designed to interpolate and extrapolate from daily meteorological

observations to produce gridded estimates of daily weather parameters over large regions [Tho05].

A Daymet run requires input data such as digital elevation data and observations of maximum

temperature, minimum temperature and precipitation from ground-based meteorological stations.

There are approximately 6000 stations in the U.S. National Weather Service Co-op network and

the Natural Resources Conservation Service SNOTEL network (automated stations in mountain-

ous terrain) [Tho05]. The output of Daymet is further processed and the generated data can be

analyzed by text analysis or visualization tools. Figure 5.11 gives the visualization of the 18-year

mean precipitation of the United States from the output of Daymet.

5.3.1 Challenges

In Daymet, the gridded data are subdivided into sections, which are called tiles. The execution of

each tile is coordinated by a single-threaded Perl script. Figure 5.12 lists the Daymet execution

steps. From this figure, we can see the execution of each tile is a sequential job. However, the exe-
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TABLE 5.4: An analysis of the effect of the log’s rotational orientation on the value of lumber
produced when the optimal opening depth-of-cut is maintained.

Log
No.

Avg. of 24 ro-
tational orien-
tations ($)

Avg. of 432
combinations
($)

Difference
(%)

1 82.74 83.10 -0.4
2 79.48 78.62 1.1
3 100.26 99.88 0.4
4 87.14 86.90 0.3
5 58.62 57.68 1.6
6 48.27 47.91 0.7
7 59.89 60.01 -0.2

Avg. 0.5
SD 0.7
p 0.26

FIGURE 5.11: Mean value of precipitation of 18-year data.

cution of each tile will have variable length. Using Daymet to accommodate simulations of small

areas works well, but quickly becomes an overwhelming job for scientists who want to achieve

high resolution modeling over a large area, which may include thousands of tasks. Management of

these many tasks requires tedious attention to details, including periodically monitoring running

87



Modify Input Files

Tile 1

Tile N

Output

Grids Data

Run Filter

Generate Stats

Fill Missing Values

Interpolation

Prediction

Binary 
Executables

Interpolation
Parameters

Projection
Parameters

Surface
Weather

Observation

Interpolation
Parameters

Projection
Parameters

Surface
Weather

Observation

FIGURE 5.12: Daymet execution.

simulations, transferring data, correctly scripting configuration files for each model, and detecting

failed simulations and handling the failures as appropriate [CHM+05]. Besides these problems,

the total execution time will be extremely long if each task needs to be queued and executed indi-

vidually.

Due to the nature of these tiles, they can be individually scheduled on different computing re-

sources across multiple administrative boundaries in order to achieve “task level parallelism” to

shorten the execution time. However, supporting multiple resources requires excessive resource-

specific knowledge and software development experience for the developers. Different resources

are administered independently and may have varying performance and characteristics. Metaschedul-

ing becomes the burden of the application and gateway developer since static scheduling can not
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give good performance due to the heterogeneity of computational performance of each resource,

and also because of the variable length of each tile. Any system failure in participating resources

will affect execution. The slowest system is the bottleneck for application execution since we will

need all the outputs in order to proceed to the next step. We need a system that can not only re-

spond to users’ workload but can also achieve reduced turnaround time and enhanced execution

reliability.

5.3.2 System Implementation

Although all these challenges make the execution difficult, we can use the DA-TC model to fully

remove the difficulties and make the execution efficient. In order to implement the DA-TC model

for Daymet, there are several steps involved in system preparation.

1. Executable Preparation. Due to the incompatibility of the Daymet executables to differ-

ent Linux/Unix Operation System, the user needs to compile the source files and provide

different versions of the executables to different systems. The DA-TC model can use the

system characteristics of the participating clusters to stage-in the compatible executables to

the different clusters.

2. TC Scheduling. The DA-TC model will do the static scheduling for the task container sub-

mission. The users need to specify the resources they intend to use for Daymet execution in

the configuration file. The DA-TC information service can provide all the system informa-

tion for these resources, such as LRMS, Available CPUs, CPU speed, System Architecture,

Memory size, and the number of Running and Queued jobs, etc. The user can also use the

scheduling algorithms provided to generate a static schedule for the TCs. The scheduling

algorithms include Queue Length mode, Weighted Workload Allocation mode, and Shortest

Expected Delay mode, etc. The user can also specify the number of TCs submitted to each

resource directly by writing into the configuration file.
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3. Data Preparation. Since the tiles to execute are organized with a discontinuous name pat-

tern, and also to allow the users to specify the tiles they want to skip during execution, we use

a file to specify the name of the tiles which will not be included in the Daymet execution. The

users also need to give the beginning name of the tiles for the DA-TC executing sequence.

Each tile will have a Gzipped file of the Daymet input data and a Perl script coordinating the

execution of each tile.

After the system preparation, the DA-TC model can be used to execute these thousands of

Daymet tiles automatically. The complete procedure for Daymet execution is:

1. Binary executables and gridded data staging in. Since each tile’s execution will need the

executables and gridded data, these files are transferred to each participating cluster as the

first step. If these files are already there, the AEA will skip this step.

2. Task container submission. The AEA will submit TCs to each cluster based on the schedul-

ing results or users’ specification. The TCs will be treated as normal jobs, waiting in the

queue for resource allocation.

3. Input data and script staging in. Once a TC is allocated resources, the AEA will assign

next available tile to this TC. The corresponding input data file and the Perl script in that tile

directory will be staged in to this TC location.

4. Tile execution. The TC will take charge of the execution of the tile based on the Perl script.

5. Results staging out. After execution, all output data have been generated. The outputs are

gzipped and transferred back to the AEA machine into the corresponding tile directory.

6. Terminating. After staging out the data, the TC is available for the next tile. If at this time,

there are no further tiles that need to execute, the AEA will terminate this TC.
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5.3.3 Results

The DA-TC model has been successfully implemented in NCAR’s clusters to perform Daymet

execution. By using cluster Frost for the AEA and integrating two NCAR evaluation clusters and

one external cluster, we are able to finish all 800 tiles within three hours with only eleven TCs. If

all these 800 tiles were executed on one CPU, they would take almost 33 hours to finish. This is a

huge reduction of the execution time for the Daymet application. By using a larger number of TCs,

the total execution time can be further reduced. Through the DA-TC model, the scientists can be

insulated from tedious configuration details, thereby increasing their productivity.

5.4 Large-scale Ensemble Subsurface Modeling
The economic impact of inaccurate prediction can be substantial, especially in the petroleum indus-

try, which is notorious for its high-risk investments. Model inversion is important for determining

values of model parameters and making relatively accurate predictions [Tar97, Tar82]. It is used to

calibrate subsurface properties (e.g., porosity, permeability, and hydraulic conductivity) in a sub-

surface simulation model. This method leads to computed values of observables, such as rates,

pressures (or head), and saturations, at different observation locations that are in reasonable agree-

ment with actual measurements of those quantities. Commonly, engineers manually adjust model

parameters to minimize the square of the mismatch between all measurements and computed val-

ues. Nowadays, the increase in sensor deployment in oil and gas wells for monitoring pressure,

temperature, resistivity, and/or flow rate, has added impetus to continuous model updating. Instead

of simultaneously using all recorded data to generate an appropriate reservoir flow model, it has

become important to capture reservoir flow information by incorporating these real time data.

The Ensemble Kalman Filter (EnKF) based method [Eve03] is an inversion modeling technique

that is used by various scientific and engineering applications, such as uncertainty assessment,

subsurface modeling, and data assimilation. It reduces a nonlinear minimization problem in a huge

parameter space to a statistical minimization problem in the ensemble space through changing

objective function minimization with multiple local minima. It searches for the mean rather than
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the mode of the posterior probability density function (pd f ). Doing so avoids getting trapped

in local minima as happens with gradient methods, making EnKF a promising methodology for

various inverse modeling problems. Furthermore, EnKF provides an ideal setting for operational

reservoir monitoring and prediction because of its updating features.

However, the EnKF method is processing-intensive because it performs iterative simulations of

a large number of subsurface models. Multiple steps are involved in this computation process.

A large amount of computation is required in each sequential propagation step, with the next

step depending on the results of the previous step(s). Manual inverse modeling for a large-scale

application is extremely time consuming. Thus, it is often limited to small-scale applications. Grid

computing technologies are needed to provide an effective grid-enabled EnKF solution, to lower

the computation cost required by EnKF.

5.4.1 Grid-Enabled EnKF Solution

One of challenging issues for implementing grid-enabled EnKF is efficient simulation synchroniza-

tion. In each EnKF iteration, simulations are dispatched onto geographically distributed computing

resources. Typically, it is very hard to predict the completion time of each simulation due to the in-

homogeneity and different consumption of participating resources. It is even more difficult in this

EnKF simulation since the problem scale can not be decided until execution time. Filter execution

and task assignment for the next iteration have to wait until all simulation results for the current

iteration are returned. The DA-TC execution model provides excellent support for simulation syn-

chronization. AEA in the DA-TC model checks the status of each task and task container to decide

whether or not the current iteration of EnKF is completed. The dynamic assignment also ensures

that each participating cluster will finish execution at almost the same time, so that users do not

have to wait longer for the results from slower clusters.

Another issue in implementing grid-enabled EnKF is how to handle waiting time on remote

queues for each iteration. In the traditional grid execution model [KJB+05], submitted jobs have to

follow scheduling policies on remote sites, where they wait for resource allocation in queues. The
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overall execution time of an EnKF process with a large number of iterations would be unbearably

long due to waiting in the queues at each iteration. Through the DA-TC model, once the required

resources are allocated for the first iteration, the task containers hold the resources until the whole

EnKF process is done, so the following iterations can be executed without waiting.

Figure 5.13 illustrates the logic used to implement the grid-enabled EnKF. After each task as-

signment via the DA-TC model is carried out, the condition of whether or not all tasks are assigned

and all task containers are ready is examined by checking the task and container status tables in

the DA-TC. If the answer is no, the process of task assignment continues. If the answer is yes,

an application-specific Kalman filter provided by the application researchers is invoked. This filter

program analyzes the simulation results and decides whether further iterations are needed or not.

If the results are not acceptable, new task sets and corresponding data sets are generated, and the

whole process is repeated.

The model inversion scenario within the DA-TC is described as follows:

1. Initial ensembles are generated and ensemble state vectors are built for various reservoir

models, in the AEA machine.

2. The DA-TC model is used to submit the simulations to a grid.

3. Once a task container acquires resources, it will communicate with the AEA to update its

status. The AEA will assign the next task to this container. The container can stage-in the

executables and assigned task from the location defined by the AEA. The AEA can dynami-

cally assign tasks to different containers based on the run-time status of these task containers.

4. The TCs keep executing the tasks assigned by the AEA and transfer back the results to the

AEA after each execution.

5. The AEA keeps checking the status of all tasks and submitted task containers. If all tasks

have “Done” status, the Kalman filter is invoked to check if the results satisfy the pre-defined
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FIGURE 5.13: The logic of the grid-enabled EnKF solution.

requirements. At this time, all the task containers are in “READY” status and no task is

executing. If the results are not acceptable, new task sets are generated. The AEA assigns

new tasks to task containers to execute. This process repeats until the results are acceptable.

If the results are already acceptable, the AEA will terminate all TCs.

6. The user retrieves the results for further analysis.

5.4.2 Computation Cost

Our DA-TC based EnKF workflow has been successfully applied to a 2D water-flooding real-

time reservoir model [Eve03, GO05]. The reservoir simulator we used in this model is UTCHEM

(University of Texas Chemical Compositional Simulator) [UTC], which is a three-dimensional,
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multi-phase and multi-component finite-difference numerical simulator. In this study, the number

of iterations is set to 10. Ten iterations are expected to be adequate, based on EnKF for similar mod-

els [GO06]. The number of ensemble members is 100. The number of simulation runs is 100×11(1

forecast + 10 iterations)×10 (assimilation times) = 11,000 synchronized updates. UTCHEM’s av-

erage processor time per simulation is 10 minutes; the computation time is about 1,833 hours (77

days) using 1 processor. In our case, all the simulations are submitted to 3 clusters, which have

256, 15, and 14 processors respectively. We use 5 to 10 containers depending on cluster size; each

container uses 1 processor. Using 10 containers for the 256 processor cluster and 5 containers for

15 and 14 processor clusters, the execution time is about 92 hours. Assuming queue wait time is 5

hours for each forecast step, the total time for EnKF processing is 92+ 5 = 97 hours via DA-TC

because there is only one wait time. The total time would increase to 92+ 5× 10 = 142 hours if

DA-TC was not used and the queue was re-entered for each forecast step. The queue waiting time

depends on the cluster status, and may range from minutes to days. If the production history is

quite long, the accumulated queue wait time will increase and negate the computational gains of

grid computing.

5.5 Other Applications
Some other applications, such as Monte Carlo Nucleation Simulation, have also been implemented

with our DA-TC model to reduce the turnaround time. Nucleation is a basic step in phase transi-

tion, which plays a critical role in understanding processes of atmospheric, environmental, and

technological importance. Research on nucleation/condensation of water in effecting environmen-

tal and atmospheric processes, such as direct involvement in the generation of clathrate hydrates in

cloud formation, brings unique insights into the investigation on the effect of the solvation of ions

in water.

By combining the method of histogram-reweighing (HR) with the approach of aggregation-

volume-bias Monte Carlo with umbrella sampling (AVUS), a new AVUS-HR algorithm was pro-

posed. It allows the calculation of nucleation properties over a wide range of thermodynamic con-
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ditions, but the simulation is computationally expensive. For example, relatively short simulation

runs of O(107) Monte Carlo moves are used for the iterations of the nucleation free energy (NFE)

profile, followed by a long production run of 8×109 Monte Carlo moves, which takes about 3 days

using a Pentium 3.2 GHz machine.

We have shown that the DA-TC execution model optimizes the task management and carries out

parallel execution, making the AVUS-HR algorithm more efficient [YKX+07].

5.6 Chapter Summary
In this chapter we presented four different large-scale applications. All these applications require

large computational power to reduce the turnaround time. Although a multicluster system provides

the possibility to combine the computational power of each cluster for these applications, it is

challenging to overcome the autonomy and heterogeneity of these resources. Our toolkit is used

to seamlessly integrate these clusters together for application execution. By providing the easy-to-

use high level services, our toolkit allows users to focus on their own research without needing to

worry about the reliability and application steering during the execution. The turnaround time is

greatly reduced, which demonstrates that our toolkit is efficient for assisting application scientists

in conducting their research.
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Chapter 6
Cloud Computing

Recently, the use of cloud computing through virtualization and the use of on-demand virtual ma-

chines (VMs) [Gol74] has become increasingly popular. Originally developed for large centralized

computer systems, the concept of a virtual machine consists of three aspects: CPU virtualization,

memory virtualization and I/O virtualization. Virtual machines provide virtualizations of physi-

cal host machines, upon which a virtual machine monitor (hypervisor) runs. The virtual machine

monitor is responsible for capturing and emulating instructions issued by the guest machines, and

providing interfaces for operations on VMs. Typically, clients can utilize virtual machines to create

an execution environment with certain hardware or software configurations, and deploy it on any

resource running hypervisors. Based on virtual machines, the virtual workspace [KFF+05] uses

those VM images reflecting a workspace’s software requirements to represent an execution envi-

ronment. But the virtual workspace concept covers a wider territory than the workspace consisting

of virtual machines. The virtual workspace includes site-configured workspace, which is installed

to support specific needs of specific communities such as TeraGrid [Cat02]. The proposed approach

for providing site-configured workspace is to obtain a priori agreement on specific configurations

and propagate them, and provide access. Another component is virtual cluster workspaces, which

can be constructed using the Cluster-on-Demand (COD) infrastructure [CIG+03]. The virtual clus-

ter is an on-demand integration of multiple VM images that may represent specialized nodes, i.e.

compute or head nodes. The nodes of this virtual cluster have the same or similar configuration,

but they do not physically belong to the cluster.

Cloud computing is Internet-based computing, whereby shared resources, software, and infor-

mation are provided to computers and other devices on demand, like the electricity grid [Clo10].

It basically gives users access to compute/data resources that they do not own. Cloud services can
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provide the dynamic provision of services and resource pools in a coordinated fashion. Figure 6.1

shows the basic cloud services. By using different virtualization toolkits, the cloud service is able

to provision the storage, CPU and network for each individual virtual machine with a service level

agreement (SLA). Users can use the cloud client to connect with the cloud services in order to boot

the virtual machines and virtual clusters on demand. Once these virtual systems are booted, they

can be used immediately for computing without any waiting period. The location of resource usu-

ally is irrelevant. However, it may be relevant from the performance perspective if the computing

needs a large chunk of data, which will introduces network latency when staging in and out these

data. Web interfaces are always provided so that users can get to work anywhere as long as there

is Internet connection.

Resources

Storage CPU Network

Network

Cloud Services

Storage
Provision

CPU
Provision

Network
Provision

SLA, 
Billing, etc

Cloud 
Client

Cloud 
Client Cloud 

Client

FIGURE 6.1: The cloud services.

There are lots of commercial clouds provided by different companies, such as Amazon, Mi-

crosoft, and Google, etc. Some science cloud software are also available, such as Nimbus from

Argonne National Laboratory & University of Chicago and Eucalyptus from University of Califor-
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nia at Santa Barbara. Both of them can bring up cloud computing services on clusters so that the

clients can lease the remote resources by deploying VMs onto these clusters. They are also com-

patible to Amazon Web Services [Ama10] and support both KVM [KVM10] and Xen [Xen10]

virtualization.

These infrastructure-as-a-service clouds have different advantages than traditional grid systems:

users are provided with greater flexibility and have the ability to customize their virtual machine

environment. Comparing with the grid systems, where the resources are always shared by large

number of users, each virtual machine or virtual cluster booted in the cloud is dedicated to one

user. Jobs submitted to grid systems are typically handled by a batch scheduler, whereas in the

cloud environment, the jobs can be assigned directly to a virtual machine or virtual cluster by the

user. Therefore, jobs can get executed immediately instead of waiting in the queue.

However, how this cloud computing technology can be beneficial to different application scenar-

ios is uncertain. This also leads to the needs to integrate traditional grids and clouds. Developing

and running applications in such a hybrid and dynamic computational infrastructure presents new

and significant challenges [KeKJP09]. It will need the execution system to be able to support

the hybrid execution models, and coordinate and manage the execution in an efficient and scalable

manner. How to determine and provision the appropriate mix of grid/cloud resources, as well as dy-

namically schedule them across the hybrid execution environment to fulfill different performance

objectives will be the key issues in this case [LLJ10].

6.1 Cloud Service Toolkit – Nimbus
In order to take advantage of cloud technology for application execution, we deployed the Nimbus

science cloud toolkit onto our clusters. The Nimbus toolkit consists of the following components:

• Infrastructure-as-a-Service (IaaS). The Nimbus toolkit turns the physical clusters into

“Infrastructure-as-a-Service” (IaaS) cloud computing platforms. It gives the administrators

the choice to initiate and terminate the IaaS as needed.
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• Cumulus storage service. Cumulus is a storage cloud implementation compatible with

the Amazon Web Services S3 REST API. It provides secure management of cloud disk

space, giving each user a “repository” view of VM images they own and images they can

launch. Cumulus replaces the Globus GridFTP-based [ABB+01] upload and download of

VM images. It is integrated with the Nimbus installation, but can also be installed on its own

to manage a storage cloud.

•Cloud client. A easy to use end-user tool which provides users the ability to transfer images,

check current stored images, launch, query and terminate VMs belongs to that user. Other

functions are also available for end users, such as check the information and initiate the grid

proxy, query security setups, etc.

• Workspace service. The workspace service is composed of a WS front-end and a VM-

based resource manager deployed on a site. It supports two front-ends: one based on the

Web Service Resource Framework (WSRF) [CFF+04], and one based on Amazon’s EC2

Web Services Description Language (WSDL). This service is in charge of the hardware im-

plementation and virtualization for the VMs. It allows a remote client to deploy and manage

flexibly defined groups of VMs, and it will dynamically provision resources and environ-

ment for each VM. It will also publish the information of each workspace so that user can

use the cloud client to easily get all the information of the VMs belong to him, such as IP

address, cloud name, time duration, etc. The users can also use this information to directly

login to these VMs to perform tasks as if they were physical resources.

• The workspace control tools, which are used to start, stop, and pause VMs; implement

VM image reconstruction and management; connect the VMs to the network; and deliver

contextualization information.
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•Workspace pilot, which extends existing local resource managers (LRMs) such as Torque [Tor]

or SGE [SGE] to deploy virtual machines to allows resource properties to use virtualization

without significantly altering the site configuration.

• Context broker, which allows a client to deploy a “one-click” functioning virtual cluster as

opposed to a set of “unconnected” virtual machines as well as “personalize” VMs.

6.2 Cloud Resources Integration
Our DA-TC execution model has been proved to be efficient for large-scale loosely-coupled appli-

cations. It can achieve dynamic load balancing and reduced turnaround time for these applications.

However, how to integrate the cloud resources as well as traditional grid resources to collabora-

tively perform job execution is a challenge. In order to support these hybrid execution resources,

we have two different approaches.

The first approach is to treat each virtual machine as a task container. It is quite straightforward.

The basic idea behind our DA-TC model is to decouple the resource allocation from resource

binding. In the DA-TC model, the resources are bound to each individual task containers instead of

each task, so that the queuing time of each task can be reduced. In cloud computing, the resources

are bound to each virtual machine instead of each task, which is coherent with our DA-TC model.

Once the virtual machine is booted, the AEA can directly assign job to execute on this virtual

machine.

Figure 6.2 shows how to launch the virtual machines. Different users can login to the cloud

client simultaneously. Users can use the client to query the status of the VMs, check the images

already stored at the server side, and transfer in the images they want to boot using Cumulus storage

service. Once the users issue the command to launch the VM, the client will contact the Nimbus

cloud services on the server side. Users can define the name and duration of this workspace. They

can also use a customized XML configuration file to define the memory size and CPU number

for each VM. Multiple VMs can be launched at the same time using the same image. The virtual
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FIGURE 6.2: Launch virtual machines through Nimbus.

machine monitor (VMM, also called the hypervisor) on the server node will provision the resources

for the VMs based on the request. Once booted, the information of each VM, such as the beginning

time and ending time of the VM, the IP address and name of the workspace, are returned for users’

further usage.

Although the VMs are easy to boot, and the VMs can be treated identically as TCs in our DA-

TC model, there are still some difference between them. Due to the isolation of each VM on the

server node, each VM will need a copy of the binary executables, which will cause more overhead

if using multiple VMs. The user also needs to configure the image to make sure the AEA will

automatically notice that the VMs begin running once they are booted. The scheduling of VMs is

also different from the scheduling of TCs.

Another approach to integrate the cloud resources to the DA-TC model is to use virtual clusters.

Users can use a virtual cluster as one of the multiple resources to execute the tasks. This approach

will fit our DA-TC paradigm, and the virtual cluster is easy to boot, though it will also need some

configurations in order to be used. The big advantage of using a virtual cluster is that once booted,

it is a dedicated resource to use, thus there is no queuing time for the TCs anymore.

Figure 6.3 shows how to launch the virtual cluster through Nimbus. The first step is to prepare

the image. Some configurations are needed for the image so that once booted, users can submit

jobs through the batch scheduler, such as PBS. Users also need to install and configure the context
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FIGURE 6.3: Launch virtual cluster through Nimbus.

agent on the image before it is booted. Other configurations, such as SSH and name service, are

also needed for using the virtual cluster. Once the image is ready, the users can customize the XML

configuration file for launching the virtual cluster. Users can define the number of compute nodes,

the image for booting each node, and scheduler information in this file. Once configured, the user

can use the cloud client to launch the virtual cluster. After booting, the context agent in each VM

will contact the context broker on the server node to define all the head node and compute node

information. The IP address, hostname and status of each head node and compute node will be

returned to the user so that the user can login directly to the head node to submit jobs based on

these information. Notice that the head node and compute node can exist on different sites.

We deployed and integrated the virtual machines and virtual clusters into our DA-TC model

based on this second approach. Figure 6.4 shows the way in the DA-TC model to integrate virtual

cluster and physical clusters for job execution. Once the virtual cluster is ready, the AEA will

submit the TCs to it. These TCs will be allocated resources immediately. Then the AEA will

assign the centrally queued workload to the TCs dynamically based on the availability.
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In our experiments, we are able to boot a 4-node PBS cluster with 6 GB for each node in 479

seconds. Compared with TeraGrid [Ter] resources which are share by large number of users with an

average queue wait time of 3901 seconds [SY10], the virtual cluster provides a fast and dedicated

way for application execution. This virtual cluster can also be integrated into our DA-TC model and

works identically as a physical cluster for job execution. Users can configure the images to suit the

application execution requirements beforehand, such as the software environment and hardware

allocation, so that once booted, the virtual cluster can be used immediately for job execution.

Launching the virtual cluster is easy and automatic, and our model is able to dynamically schedule

the tasks across this hybrid execution environment to fulfill different performance objectives.

6.3 Chapter Summary
We deployed the Nimbus cloud computing toolkit and demonstrated it with our model. Users can

easily turn the clusters into cloud service platforms by initiating the Nimbus service. Users can

also launch the virtual machines and virtual clusters by using the cloud client. By configuring the

images beforehand, users will be able to boot the virtual cluster easily. Experiments show that by
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integrating the virtual clusters into our DA-TC model, we can achieve reduced turnaround time for

large-scale applications in this multiple hybrid grid/cloud resources environment.
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Chapter 7
Conclusions and Future Work

Multicluster grids offer a promising solution to satisfying the growing computational demands

of compute-intensive applications. However, seamlessly integrating all participating clusters in

different domains into a single virtual computational platform remains a challenge. In order to

fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of

joining together participating autonomic systems practically and efficiently to execute grid-enabled

applications.

In this dissertation, we present the design and evaluation of a multicluster grid management

system and an associated toolkit. The toolkit called Pelecanus provides user-friendly interfaces,

application and data management, and enhanced execution performance. This work is driven the

requirements of a number of compute-intensive applications in whose development we have par-

ticipated. The application developers need to carry out experimental work on a variety of architec-

tures which are autonomic, heterogeneous, and connected by the Internet. Our goal is to address

these issues by implementing an easy-to-use toolkit that can provide seamless access to massive

computing power and meets various application-specific requirements for these applications.

The performance benefit of this toolkit comes from the novel DA-TC application execution

model we implemented in multicluster environments. In this model, there are no specific system

configuration or software installation requirements on any participating clusters in order to run

this model. This model deploys the task containers to take fully usage of the allocated resources

and dynamically assigns individual tasks to the participating clusters according to the runtime

status of the task containers, therefore it is able to achieve dynamic load balancing and reduced

application turnaround time. Users can easily monitor the application progress by querying the

application execution agent because of the centralized table of all the information of each job and
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task container. We also discussed the application execution reliability, interaction capability, and

system fault tolerance of this model in this dissertation.

Cluster abstraction is another important part of this toolkit. The toolkit can be used as a stan-

dalone automated system to monitor and evaluate the clusters’ functionality and network perfor-

mance. Users of this toolkit can use cluster abstraction to view and select appropriate clusters to

execute their applications.

We studied the performance of our model by carrying out both a theoretical analysis and ex-

perimental evaluation. We investigated the scalability of our model. We also deployed different

scheduling policies that have been incorporated into our model. We found that in contrast to the

traditional method where scheduling is very important for performance, in our model, the perfor-

mance of different policies is quite similar. This is because we dynamically assign the tasks to

each task container, though the submission of each task container is static. We also compared the

performance of our model to the traditional method in different application scenarios. We found

that in all cases, our model is able to achieve 30% more reduced turnaround time.

We also investigated how cloud computing technology can benefit our loosely-coupled applica-

tions by coupling different grid/cloud resources together. We showed that our model can be easily

extended to support dynamic execution across a wide range of heterogeneous infrastructures, from

clusters to cloud, whilst preserving the performance.

This Pelecanus toolkit has been successfully deployed in a number of applications, and we

expect to continue to refine the toolkit and explore a wider range of application domains to take

advantages of this toolkit to achieve enhanced performance.

7.1 Major Contributions
We have developed an easy-to-use toolkit to effectively use multiple clusters for application ex-

ecution. The toolkit provides user-friendly interfaces for application scientists to perform their

tasks while hiding the underlying heterogeneity of resources from them. It can not only reduce

the application turnaround time but also enhances job monitoring and QoS assurance. This toolkit
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is spectacularly efficient for applications with multiple or repeated small tasks, independent of

whether each task is a sequential or parallel job. In addition, it allows the user to adapt the work-

flow according to the runtime status of resources and execution progress.

We have successfully deployed multiple applications from different disciplines in this toolkit.

With a little bit of extra time to prepare the application to fit into our model, we can achieve a huge

reduction in the turnaround time for each application. It is especially useful when researchers only

have access to a variety of different resources that do not share a computational grid, but want to

take the advantage of their combined computational power. All the jobs executed belong to each

user’s account identity, therefore, all per-user resource accounting mechanisms remain the same.

This toolkit works as a plug-in service, without any special privilege to support and without any

changes to existing infrastructures.

7.2 Future Work
Each system component presented in this work allows a future development path, and a lot of effort

could be put into the toolkit optimization and application support. We list below key aspects that

we plan to work on.

Resource Monitoring and Discovery. Existing grid monitoring and discovery technologies such

as Globus MDS [FK99], Ganglia [MCC04] cluster toolkit and MonALISA [NLG+03] could be

integrated into the information service of the cluster abstraction. These services would be very

useful when the resources share the same grid middleware.

Resource Matching. Users may have constraints on the placement of jobs due to specific resource

requirements. For example, some jobs require a minimum amount of physical memory or disk

space, or specific software installation. Currently, our implementation will extract this system in-

formation for the users and allow users to choose the resource. We hope in the future that we can

supply more detailed software environment information for user to choose.

Fault Tolerance. Although our model is robust against system failure, we want to enable the

service to detect and handle different faults. More importantly, if the AEA machine encounters a
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problem during execution (e.g., a machine shutdown or network break), we need to clean up the

current execution on participating clusters, or migrate to another AEA machine to carry out the

execution.

Interface Development. In the current deployment, we provide a single point login service for

each user to use the toolkit, assuming the username is the same across different clusters. We want to

make this service more user-friendly by using complete information for each user on each resource.

We also want to make this toolkit more secure to protect users’ data.

Application Studies. Although we have demonstrated that our toolkit is useful in four different

application scenarios, we want to explore more scenarios and extend our work to support more

diverse applications, in order to test and improve this service.
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Appendix: Nomenclature
Symbol Description

Ai(t) random variable of the number of jobs submitted between 0 and t to

Ci

Ci local cluster i

ci computational capability of the cluster Ci

Di(t) random variable of the number of jobs left Ci during 0 and t

Fi fraction of total TCs to cluster Ci

i local cluster index

J total number of task containers

Ji number of task containers submitted to cluster i

K number of iterations in inverse modeling

k inverse modeling iteration index

Li workload submitted to cluster i

l job size

mi number of CPUs of Ci

Ni number of jobs in Ci

Ñi number of jobs already finished when TCs in cluster Cn get the re-

source˜̃Ni rest number of jobs to cluster Cn when TCs in cluster Cn get the

resource

N total number of tasks

Ñ rest number of jobs when TCs in cluster Cn get the resource

n number of all local clusters

p0 limiting probability that the system contains 0 members
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Symbol Description

Qi average queue size of Ci

Ri percentage of waiting time to the total response time

si relative speed of Ci

Ti average job response time of cluster i

Tk turnaround time in each inverse modeling iteration

Ttotal turnaround time in inverse modeling

Tn
′ turnaround time in rest iteration in DA-TC for inverse modeling

T turnaround time of whole application

T application turnaround time

t simulation duration

Xi expected job execution time

Wi expected waiting time in the queue

Greek

λi mean job arrival rate of cluster i

µ base-line job service rate

µi mean job service rate of a node in cluster i

ρi utilization of the systems

Abbreviations

AEA Application Execution Agent

DA-TC Dynamic Assignment with Task Container
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Symbol Description

EnKF Ensemble Kalman Filter

FCFS First Come, First Served

GEMS Grid Execution Management Service

GUI Graphic User Interface

LRMS Local Resource Management Systems

NHLA National Hardwood Lumber Association

TC Task Container

VCP Virtual Cluster Pool
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