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ABSTRACT 

The goal of this research was to develop enhanced signal detection mechanisms for 

immunosensing using carbon nanotubes (CNTs).  The utilization of CNT labels for direct 

electrical measurement was implemented on lateral flow system and microfluidic integrated 

interdigitated array microelectrodes.  These sensing mechanisms in simple and miniaturized 

system provided higher sensitivity and autonomous flow control for rapid detection aimed at 

point-of-care diagnostics.  

Specific functionalization protocols were carried out to chemically modify the surface of 

the CNTs for uniform dispersion and antibody conjugation in aqueous solution.  Surfactant 

assisted dispersion of the CNTs was studied using PVP and PEG.  Covalent conjugation of 

antibodies on the carboxyl groups of the CNTs was accomplished using EDC/Sulfo-NHS 

coupling chemistry.  The adsorption of surfactant and antibodies were manipulated in order to 

optimize immunoassay detection capability based on electrical measurements.   

Following surface functionalization methods, CNTs as a sensing label were employed on 

a lateral flow system.  Competitive and sandwich immunoassay formats were demonstrated 

based on antibody and antigen binding.  The lateral flow system was used for immobilization of 

capture molecules and passive sample transport by capillary action.  CNTs conjugated to 

antibodies formed conductive network at the capture zone providing a visual indication 

corresponding to the amount of binding.  Most importantly, significant change in electrical 

conductance was measured for varying low antigen concentrations, detecting anti-human 

Immunoglobulin G concentration below 1 ng/ml.   
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Research was also conducted to obtain on-chip immunoassay detection using CNT labels.  

An IDA microelectrode was used as a binding surface and integrated within a PDMS 

microfluidic system.  The sample and reagents were delivered to the sensing area through a 

microchannel.  The capture of target analyte was indicated by the conjugated CNTs that formed a 

conducting matrix across the IDA.  The detection was based on the selective binding between 

HSA and anti-HSA, where the conductimetric signal of the binding reaction was monitored 

through the IDA.  The developed miniaturized system provided simple and sensitive 

immunosensing with detection capability below 1 ng/ml concentration using only 5 µl of sample 

volume.  Simulation was performed in order to understand the influence of the parameters in the 

microfluidic detection system. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Humankind has been performing bioanalysis since the dawn of time relying on the 

sensing capability of the nervous system such as the tongue to taste food for poisoning, the nose 

for detecting scents, or the canaries in the coal mine for gas monitoring.  These functions of 

living organisms are the most efficient and complex sensors to ever exist and they have yet to be 

fully understood.  Meanwhile, scientists have continuously sought to mimic the sensing 

capabilities of living organisms to develop sensitive and efficient biosensors.    

1.1.1 Biosensors  

Biosensors are analytical devices that consist of biological recognition elements and 

signal transducers to detect a particular protein, cell, DNA sequence, or gas molecules.  The 

function of a biosensor can be divided into three parts.  The first part is affinity based molecular 

interaction between the target analyte and its biological receptors.  This could involve the use of 

biological elements such as enzymes, cells, nucleic acids, and proteins, where the biological 

receptors are often immobilized at a particular surface to capture the analyte being detected.  The 

second part provides an indication of the biomolecular interaction based on signals measured by 

the transducers.  Transducers are often based on fluorescence, piezoelectricity, resonant 

cantilever, surface plasmon resonance, magnetic particles, and electrochemical protocols.  The 

third part deals with the analysis and quantification of the measured signal into understandable 

output.  These signal processes are carried out using advanced hardware and software for data 

recording and display in a user friendly manner.    
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Since the first biosensors were reported in the early 1960s [1], biosensors have 

experienced a tremendous growth in areas such as health and environmental monitoring.  The 

advancements in microfabrication especially have transformed biosensing apparatus into 

miniaturized devices.  These devices with integrated functions provide major advantages, such as 

reduced sample reagents and rapid analysis.  These advancements have facilitated otherwise time 

consuming and expensive procedures.  However, molecular interactions and recognition has to 

be well established in order to obtain sensitive measurements for samples in ng/ml level or 

below.  Probe molecules also must be able to selectively detect the target analyte that are mixed 

with other molecules as in the case with most biological samples.  Therefore, direct measurement 

of these specific molecular interactions has been limited.  In order to avoid this limitation, a 

combination of detection techniques is often implemented that involve additional signal 

amplification steps.  In addition to sensitivity, there has also been a continuous demand for 

simple, low cost, and rapid biosensors for screening various health and environmental threats.  

These devices hold a great potential for near-patient use, bio-warfare detection, infectious 

disease diagnosis, as well as in low-resource areas where a cutting-edge laboratory or skilled 

person would not be available to operate them.  The global need for such tools has been 

emphasized by recent efforts in microfluidic systems and point-of-care diagnostics such as the 

one sponsored by the Bill & Melinda Gates Foundation for Global Health Initiatives.   

Biosensors addressing some of these needs have been developed using nanomaterials as 

enhanced signal transducers.  Currently, the use of nanomaterials in biosensing is mostly based 

on optical and electrochemical detection principles.  These techniques provide highly sensitive 

signal generation and amplification using materials such as enzymes and fluorescent 
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nanoparticles [2].  However, these methods suffer from instability, high cost, and requirement of 

multiple activation steps and complex signal reader device [3].  On the other hand, electrical 

biosensors relying on current and/or voltage measurements provide a great alternative to these 

limitations with ease of detection mechanism and miniaturization.  In this work, electrical 

biosensors are investigated utilizing carbon nanotubes as effective nanomaterials for enhanced 

signal detection.  The use of carbon nanotube labels for direct electrical measurements for 

improved immunosensing was applied on lateral flow system and interdigitated microelectrodes 

aimed at point-of-care diagnostics for the first time.  

1.1.2 Carbon Nanotubes 

 Since their discovery in 1991 [4] carbon nanotubes (CNTs) have emerged as one of the 

most promising materials for the development of nanoscale biosensors.  Carbon nanotubes are 

allotropes of carbon with diameters in the order of a few nanometers, while their length extends 

up to several millimeters.  In addition to their large surface area, carbon nanotubes exhibit 

superior electrical conductivity, mechanical strength, and chemical inertness [5].  Carbon 

nanotubes have superior electron transport capability in ballistic manner without dissipating 

energy due to scattering [6].  They are also one of the strongest and stiffest materials, with tensile 

strength on the order of 63 GPa, and their elastic modulus in the 1 TPa range [7].  Most of these 

unique properties are due to the bonding structures of the carbon atoms and the perfect alignment 

of the lattice along the length of the nanotubes.  The carbon-carbon sp
2 

bond is one of the 

strongest chemical bonds containing both σ-bonds and π-bonds that contributes to the enhanced 

mechanical properties of the CNTs [8].  The electronic properties are predicted to depend on the 

diameter and helicity of the nanotubes.  Helicity, which has to do with the way the planar sheets 
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of graphite are “rolled up” into hollow core tubes determines the different structures of the 

carbon nanotubes.  These structures are classified as armchair, zigzag and chiral [9].  The 

armchair nanotubes are conducting, while zigzag and chiral nanotubes can be either conducting 

or semiconducting [10].  In addition, depending on the number of rolled up graphite sheets, 

carbon nanotubes are divided into single-walled carbon nanotubes (SWCNTs) and multi-walled 

carbon nanotubes (MWCNTs).  SWCNT are made of a single graphite sheet, while MWCNTs 

consist of multiple layers rolled up to form tubes.  MWCNTs consist of tubes of many different 

diameters and helicity.  They exhibit metallic, semiconductor, and semimetallic conductivity, 

with the majority of the nanotubes being conductive [5, 11].   

Carbon nanotubes with their superior electrical properties have provided alternative and 

effective electronic sensing of molecular interactions among other applications [12-15].  It has 

been experimentally proven that bioactive species can be adsorbed either in the hollow cavities 

or on the outer surface of the nanotubes [16], resulting in conductance change corresponding to 

the adsorptions [17]. Furthermore, CNTs are known to have high surface specificity and allow 

multiple modifications with functional groups for sensitive protein recognition based on electron 

transfer reactions [18].  This has led to the development of CNT-based sensor system for 

biorecognition, diagnostics, and therapeutic purposes.  Some of the most common CNT-based 

sensor systems are DNA sensors [19], chemical sensors [20], and immunosensors [21].   

1.1.3 Rapid and Quantitative Immunosensing using Carbon Nanotubes 

Immunoassay is a technique that relies on the binding affinity of antibody to quantify the 

amount of antigen present in a biological sample.  The work described in this dissertation deals 

with improved signal detection using CNTs as a label for rapid and quantitative immunosensing.  
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The use of CNTs as a sensing label for direct electrical readout has not been used for the type of 

immunosensing application demonstrated in this work.  Lateral flow and microfluidic 

immunosensing are developed, both providing passive flow control through capillary action.  

The two different microfluidic formats are also aimed at simple, low-concentration, and 

disposable detection mechanism suitable for point-of-care diagnostics.  For this purpose, 

MWCNTs are suspended in aqueous solution and modified with functional groups for efficient 

dispersion and conjugation with antibodies.  The solubility and conjugation methods enable the 

development of highly specific electronic sensors without the need for additional labeling or 

signal amplification.  

1.2 Objectives 

1.2.1 Chemical Functionalization and Antibody Conjugation of Carbon Nanotubes  

A major concern in practical use of carbon nanotubes (CNTs) in various solution-based 

applications is their poor solubility due to the hydrophobic nature of carbon nanotubes and strong 

van deer Waals attractions between the nanotubes.  Uniform dispersion of CNTs is essential in 

exposing the interfacial areas for optimum antibody conjugation.  This will enhance the overall 

detection capability based on conductimetric signals.  A main objective of this work is to modify 

the surface of the CNTs by non-covalent adsorption of surfactant using mild sonication.  The 

surfactants adsorption penetrates between the CNT bundles to exfoliate the individual tubes.  The 

degree of surfactant adsorption, the uniformity and stability of the CNT suspensions were 

investigated over different time periods.  Covalent conjugation of antibodies with the CNTs was 

carried out using coupling chemistry to establish stable amide reaction.  The anybodies occupied 

sites on the surface of the CNTs not covered by the surfactant.  The surfactant molecules provide 
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partial coverage that is used for insulating the nanotubes from unwanted interactions with other 

biological materials while enhancing solubility.   

1.2.2 Lateral Flow Immunosensing Based on Electrical Signal Detection 

The success of the developed CNT surface functionalization methods for solubility and 

antibody conjugation provides the capability of immunosensing in this work.  The immunosensor 

utilizes the remarkable electrical conduction properties of CNTs coupled with highly specific 

biorecognition capabilities of antibodies for enhanced detection mechanism based on direct 

electrical signal measurements.  This detection mechanism is demonstrated on a lateral flow 

immunoassay system in competitive and sandwich formats.  Lateral flow immunoassay is the 

simplest and most commercially available point-of-care (POC) tests with rapidly growing market 

worldwide [22].  Implementing sensitive and direct signal detection mechanism in lateral flow 

test could potentially meet the demand for high throughput diagnostic devices.  The CNTs are 

used as a sensing label, where they form a conducting network at the capture line as a result of 

binding reactions between target and capture molecule.  This CNT network provides a visible 

indication of the binding reaction, and more importantly exhibits conductance changes 

corresponding to the amount of captured analyte.  In addition to signal detection, this lateral 

immunosensing technique provides a simple, sensitive, low-concentration, and rapid detection 

mechanism suitable for point-of-care diagnostics.   

1.2.3 Microfluidic Immunosensing Based on Electrical Signal Detection  

On-chip immunosensing based on conductimetric detection using CNT matrix is 

demonstrated.  PDMS microfluidic system was developed for sample transport to the to the 

detection surface.  The detection surface is composed of an interdigitated array (IDA) 
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microelectrode that was fabricated on a glass substrate using UV lithography and wet chemical 

etching process.  The IDA was then covered by immobilized antibody and integrated within the 

microchannel.  This was then used as a sensor area for antibody-antigen binding reaction in 

sandwich format.  The antigen and conjugate sample solution was driven by capillary action in 

the immunoassay system.  The binding reaction was continuously monitored using the IDA.   

CNTs conjugated with antibody formed a conducting matrix across the IDA providing detection 

signal corresponding to the amount of captured antigen.  Simulation is used in order to 

understand the influence of the different parameters involved in the microfluidic system.  

1.3 Outline of Dissertation 

This dissertation contains six chapters.  Chapter 1 presents the motivation and objectives 

of this research, and introduces carbon nanotubes.  Application of carbon nanotube-based 

immunosensing for direct and quantitative electrical measurement is proposed.  Chapter 2 

reviews previous and current research related to the use carbon nanotubes in biotechnology.  It 

describes the electrical conducting properties of CNTs in regards to surface functionalization.  

The last part of the chapter provides an insight into one of the main goals of this research, 

developing immunosensing system suitable for high throughput point-of-care applications.  

Chapter 3 describes the relevant surface functionalization of carbon nanotubes with surfactants to 

obtain enhanced solubility in aqueous solutions.  Covalent antibody conjugation with the CNTs 

is then investigated using coupling agents for strong amide bonding.   Various characterization 

techniques are implemented to study stability of the suspensions and surface modifications.  

Chapter 4 demonstrates the application of carbon nanotube-based detection for lateral flow 

immunosensing.  Competitive and sandwich lateral flow formats are demonstrated, where the 
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lateral flow immunostrips provide passive sample delivery and detection substrate.  Chapter 5 

discusses another application of carbon nanotube-based immunoassay that uses interdigitated 

array (IDA) microelectrodes integrated within a polymer microfluidic chip.  Details of mask and 

device fabrication with corresponding characterizations are also presented.  Simulation of the 

microfluidic system with related binding reactions was conducted in order to understand the 

effect of the microfluidic parameters.  Chapter 6 summarizes results and proposes future work.  
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CHAPTER 2  

BACKGROUND 

2.1  Introduction  

CNTs have stimulated wide range of scientific interest because of their remarkable 

combination of properties for the development of novel materials and sensing systems.  At the 

same time, advances have also been made in producing high quality CNTs using techniques such 

as arc discharge, chemical vapor deposition (CVD), laser ablation, flame synthesis, and high-

pressure carbon monoxide (HiPCO).  These advancements have led to the use of CNTs in 

various sensor configurations, as individual molecular wire or as a sensing matrix for biosensing.  

In this chapter, reviews of previous and current research related to the use of CNTs in 

biotechnology are presented.  Surface functionalization of CNTs, their electrical properties 

pertaining to functionalization, and practical applications based on electrical measurements are 

discussed.  This chapter will establish the motivation behind the proposed research.   

2.2  Surface Modifications of Carbon Nanotubes 

CNTs could be either metallic or semiconducting in electrical properties depending on 

their diameter and helicity [23].  The three categories based on the structure of the CNTs are 

shown in Figure 2.1.  Most of the previous work involving CNTs had focused on SWCNTs due 

to their simpler structure and smaller diameter making it easier to predict their physical 

properties [12, 24].  Even though most researchers have focused on SWCNTs, MWCNTs have 

similar merit of properties as SWCNTs.  In addition, the stability of MWCNTs for surface 

functionalization while maintaining high electrical conductivity has been attracting a lot of 

attention [25-28].  CNTs are chemically inert and insoluble in most solvents mostly because of 
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van der Waals attractions between their smooth surfaces [29].  This limitation often requires 

chemical modification of the CNTs surface in order to improve their solubility [30].  Chemical 

modification roughens their surface and, also creates reactive groups useful for covalent 

anchoring of biomolecules [31].  Oxidative treatments utilizing mixture of sulfuric and nitric 

acids are surface modification protocols commonly used to create functional groups such as 

carboxylic and hydroxyl functionalization [32-33].  

 

 

 

 

 

 

 

 

Figure 2.1 Different structures of nanotubes (a) armchair (b) zigzag (c) chiral (Saito et al.,1992  

[9]).  
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2.2.1 Aqueous Solubility of Carbon Nanotubes 

Uniform dispersion and stability of CNTs suspension is important in order to fully utilize 

their properties in solution-based processes including biosensing.  CNTs in general tend to form 

clusters.  Surface functionalization has been an effective method to enhance their dispersion in 

aqueous solution.  One means of controlling the aggregation of CNTs involves the use of organic 

solvents and strong acids often involving evaporation steps [34-36].  However, solvents are not 

desired for biology-related applications due to compatibility issues.  Modification of the surface 

of CNTs in covalent method and the application of high shear force for dispersion would also 

create defects and introduce shortening of the length of CNTs [37].  Defects destroy the structure 

of CNTs resulting in alteration of their properties.  A preferred method of improving CNTs 

solubility is the adsorption of surfactants.  The interaction of surfactant molecules in non-

covalent method minimizes defects to the structure of CNTs while improving their solubility 

with application low-power sonication [38].  Hydrophobic, electrostatic, and π-π sacking are the 

main mechanisms suggested for interactions of surfactants with CNTs [39].  In addition, 

surfactants are non-toxic and low-cost, and require relatively simple experimental procedures for 

use [40].  Islam et al. investigated the solubility of SWCNTs dispersed with various surfactants 

[41].  The dispersion scheme was carried out by optimizing the ratio of nanotube to surfactants 

by 1:5 and 1:10 by weight with the application of low-power sonication over extended period of 

time.  Results of the different suspensions showed that commonly used surfactants sodium 

dodecyl sulfate (SDS) and Triton X-100 had dispersing capability less that 0.1 mg/ml and 0.5 

mg/ml, respectively.  However, the suspensions were stable only for five days compared to the 
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SWCNT suspension with sodium dodecylbenzene sulfonate (NaDDBS).  NaDDBS suspension 

was stable over two month time for SWCNT concentration up to 20 mg/ml.   

Wrapping of surfactants around the CNTs is another modification mechanism suggested 

to enhance their solubility in aqueous solutions [42].  O’Connell et al. [43] proposed the 

wrapping of SWCNTs with water soluble polymers such as polyvinylpyrrolidone (PVP) and 

polystyrene sulfonate (PSS).  The uniform wrapping of the polymers were successful in 

disrupting the hydrophobic interactions between the CNTs and the aqueous medium.  The 

nonionic PVP had a better performance than the ionic PSS in the wrapping process leading to 

enhanced solubility.  It was also reported that the enhanced dispersion of CNTs using charged 

surfactants such as SDS was due to electrostatic repulsion between the micelles [44].   

Moore et al. [45] studied the suspension of CNTs with several anionic, cationic, and non-

ionic surfactants in water.  Results showed that non-ionic surfactants such as PVP wrap around 

the CNTs, where hydrophobic part of the surfactants interacted with the CNTs and the 

hydrophilic part extend into the solutions to enhance solubility.  The ability to disperse the CNTs 

also increases with increasing molecular weight due to enhanced steric stabilization.  This type 

of stabilization is not observed for ionic surfactants and charge repulsion is the main mechanism 

for separating the CNTs.  Comparison of the solubility and UV/fluorescence spectra of the CNT 

suspensions revealed that sodium dodecylbenzene sulfonate was found to be the most effective 

among the ionic surfactants used.  Polyethylene glycol (PEG) and its derivative is another widely 

used surfactant for minimizing bundling of CNTs in non-covalent method [46].  Lee et al. [47] 

synthesized oligothiophene-terminated PEG (TN-PEG) and examined its ability to stabilize CNT 

suspensions.  The results revealed that TN-PEGs were strongly adsorbed on the CNTs through π-
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π interactions.  In addition, the application of mild sonication was able to disperse the CNTs into 

well separated individual tubes.   

2.2.2 Protein Adsorption on Carbon Nanotubes  

The structure, size, and large surface area of CNTs make them suitable for adsorption of 

biomolecules.  CNTs have inherent affinity for the adsorption of various biomolecules including 

proteins [48], enzymes [49], and DNA [19].  These biomolecules have been attached to CNTs for 

the development of sensitive biosensors.  Balavoine et al. [50] proposed the immobilization of 

densely packed functional proteins in orderly manner on CNTs as shown in Figure 2.2.  This 

helical crystallization of the proteins was dictated by the structure and properties of the CNTs.  

The feasibility of this helical arrangement of proteins on CNTs was demonstrated, even though 

the interactions of the proteins with the CNTs were not fully understood and reproducibility was 

a challenge.  This progress towards the development of new biosensors using CNTs relied on 

previous work that introduced the encapsulation of proteins in the hollow cavities or on the outer 

surface of the CNTs without any drastic conformational change [16, 51]. 

 

 

 

  

 

Figure 2.2 Illustration of protein occupying the surface of a carbon nanotube in helical manner 

(Balavoine et al.,1999 [50]). 
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The natural affinity of CNTs to biomolecules leads to non-specific binding that could be 

explored for particular applications.  However, this phenomenon is often not desired in the 

development of sensitive biosensors.  One strategy of minimizing non-specific binding is the 

utilization of surfactants such as PEG and PVP [48, 52-53].  PEG has been reported as an 

effective barrier against unwanted protein adsorption by forming a highly hydrophilic and charge 

blocking layer at the surface [54].  Chen et al. [55] explored nonspecific binding of various 

proteins on as-grown SWCNTs in solution.  Prevention of this nonspecific binding was carried 

out through non-covalent immobilization of polyethylene oxide chains onto SWCNTs.  Specific 

detection was then carried out by enabling the functionalized SWCNTs to bind with only target 

analytes.  Lin et al. [48] also examined the natural affinity of SWCNTs to protein using ferritin 

in water.  Experimental evidence was provided in order to minimize this protein affinity by 

treating the surface of the SWCNT with PEG.   

Conjugation of proteins on the surface of CNTs in more efficient and predictable manner 

is often conducted through covalent linkage [56].  In this process, covalent bonds are established 

between the carboxyl groups on the CNTs and the amine groups on the proteins [48].  This 

amidation reaction is often facilitated by coupling agents such as carbodiimide and succinimidyl 

ester [57-58].  1-(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride (EDC) is a 

zero-length cross-linker widely used for covalent conjugation between CNTs and proteins as 

shown in Figure 2.3 [59].  Low coupling efficiency of EDC due to hydrolysis is often 

compensated using N-hydroxysulfosuccinimide (Sulfo-NHS) as a stabilizer increasing the 

coupling efficiency by 10 to 20 fold [58].  Covalent immobilization of proteins with EDC/NHS 

chemistry has been shown to be more robust compared to non-specific adsorption [60].  Lin et al. 
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Figure 2.3 Demonstration of the conjugation process of proteins to carboxylated CNTs using 

EDC and Sulfo-NHS (Gao and Kyratzis, 2008 [59]). 

 

[61] presented comparative work on functionalization of SWCNTs and MWCNTs for potential 

immunosensing.  The CNTs were first functionalized with BSA protein using carbodiimide for 

amidation reaction between the carboxylate groups on the CNTs and the BSA proteins.  The 

CNTs were further conjugated with E. Coli specific antibodies, where the BSA protein also 

facilitated specific detection of the target analyte.  

2.2.3 Electrical Properties of Carbon Nanotubes as a Result of Functionalization  

CNTs are highly sensitive to adsorption of molecules and exhibit significant change in 

their electrical properties.  Zhao et al. [62] investigated electronic properties of CNTs as a result 

of covalent sidewall functionalization with functional groups such as COOH and NH2.  

Theoretical studies have revealed that sidewall functionalization of CNTs with any type of 

functional groups disturbs the electronic states near the Fermi level [62].  For metallic CNTs, the 



16 

 

sp
3 

hybridization between the CNT and the molecules creates impurity state that affects the 

ballistic transport properties.  The impurity state extends over a large area, even though the 

defects remain locally around the functionalization.  It has also been observed that covalent 

functionalization changes the conducting properties of the CNT dramatically, hence providing a 

means to control properties of CNTs for sensing applications.  Functional groups have also been 

shown to behave as electron acceptor or donor facilitating charge transfer between the CNT [63].  

Experimental studies showed a drastic reduction in electrical resistance of SWCNTs as a result 

of functionalization compared to the pristine samples [64-65].   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Illustration of wave function with induced impurity state as a result of modification of 

(10,0) SWCNT with functional groups (a) COOH-functionalization (b) F-functionalization and 

(c) a C vacancy on the side wall, where the yellow and blue colors indicate the polarity of the 

wave function (Zhao et al., 2004 [62]).  
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Figure 2.5 Conductance microscope image showing minimal conductance drop of the nanotube 

network with higher interconnectivity measured at varying locations from the electrode.  The 

conductance at point A, B, and C are 700, 200, and 700 nS (Stadermann et al., 2004 [66]). 

 

Stadermann et al. [66] investigated conductance measurement of CNT network.  It was 

observed that conductance did not decrease linearly with the distance from the electrode.  

Instead, for CNT network with poor interconnection, the conductance dropped due to the 

formation of Schottky barrier junction by metallic and semiconducting nanotubes.  In the case of 

nanotube network with high interconnection, there could be a chain of metallic nanotubes 

stretching to the electrode maintaining high conductance as shown in Figure 2.5. 

The electronic characteristics of CNTs as molecular wires or interconnect have been 

studied extensively in various sensing configurations for the detection of biomolecules [6, 18, 

66-68].  One of the difficulties in this type of sensing configurations was establishing electrical 
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contacts between the CNTs and the electrodes.  This difficulty was partly overcome by using 

combination of techniques involving conventional lithography to contact the ends of the CNTs 

and determine their electrical properties [69].  Subsequently, sensing capabilities based on CNTs 

was realized by the fabrication of devices such as field-effect transistors that consisted of 

individual semiconducting or metallic CNTs [67-68, 70].  These devices enabled the electrical 

transport properties of the CNTs to be manipulated from conducting to insulating state by 

varying the applied gate voltages.  High contact resistance was also observed between the CNT 

and the electrode interface that required consideration when developing such devices [71].  The 

detection capability of CNTs between metal contacts was demonstrated for chemical and 

biological sensing with electron transfer process between the molecules and the CNTs [20, 55, 

72-73].  Aligned CNTs were investigated for electron-transfer reactions of proteins with the 

CNTs acting as molecular wires [74-75].  The CNTs allowed electrical communications between 

the electrode and redox proteins that were covalently attached to the ends of the SWCNT.   

Star et al. [76] examined the device characteristics of carbon nanotube field-effect 

transistors (CNTFETs) for specific and non-specific protein binding.  The nonspecific binding 

caused the device characteristics to shift to negative gate voltage.  Nonspecific binding of 

proteins after blocking the surface with polymer coating caused no change in the device 

characteristics.  Finally, specific binding using biotin-streptavidin resulted in reduced source to 

drain current.  Current model equations have been developed that were useful in analyzing 

CNTFETs in biosensing applications [77].   

Kenzo et al. [78] fabricated CNTFET with aptamer modified CNT channel for direct 

measurement of protein binding.  The IgE aptamers were covalently immobilized on the CNT 
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using 1-pyrenebutanoic acid succinimidyl ester.  The capture of target IgE in different 

concentrations caused a sharp decrease in the source to drain current with gradual saturation at 

lower concentrations.  The performance of the aptamers in capture efficiency was observed to be 

better than IgE specific antibodies partly due to the smaller size of the aptamers that could pack 

more densely on the conducting channel.  

2.3 Carbon Nanotubes for Biosensing  

Electrical measurements provide an alternative to complex and multiple processes 

involved in optical detection that have been dominating biosensing technique.  Electrical 

biosensors are especially attractive for fast, low cost, and miniaturized devices, since detection of 

binding reaction could be based on simple current and/or voltage measurements [79].  

Especially, electrical biosensors utilizing nanoscale materials and devices offer provide size 

compatibility and ease of integration [80].  CNTs have been utilized in various electrical based 

biosensors such as electrochemical impedance spectroscopy (EIS), nanowires [81], and field 

effect transistors (CNTFETs).  

Carbon nanotubes have been used for the detection of DNA.  Koehne et al. [82] showed 

low-density nanoelectrodes using aligned MWCNTs embedded within SiO2 matrix for detecting 

DNA targets.  Enhanced detection of DNA hybridization was previously carried out with glassy 

carbon electrode using MWCNTs [83].  DNA sensor based on the conductance change of 

SWCNTs, where DNA hybridization was conducted on gold electrodes, was also demonstrated 

[84]. 

Yu et al. [85] demonstrated mutli-label strategy using horseradish peroxide (HRP) labels 

and secondary antibodies attached to MWCNTs for sensitive detection of prostate specific 



20 

 

antigens (PSA) as shown in Figure 2.6.  Primary antibodies specific to PSA antigens were 

attached to SWCNT forests assembled on conductive substrate.  Capture of PSA antigens by the 

primary and secondary antibodies (sandwich immunoassay) were measured by adding a mediator 

and hydrogen peroxide to activate the peroxidase cycle that resulted in increasing current under a 

constant voltage.  Sensitive detection of PSA was achieved through signal amplification at high 

HRP/secondary antibody ratio compared to immunosensing based on single-labeled secondary 

antibodies.  This signal amplification was also dependent on controlling nonspecific binding by 

blocking the immunosensors with BSA and Tween-20.  EDC and NHSS were also utilized to 

attach the primary and secondary antibodies on the CNTs through amide bonding.    

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Immunoassay detection principle using CNTs to immobilize multiple labels and 

secondary antibodies for signal amplification.  HRP catalyzes H2O2 and generates electrons for 

amperometric based measurement.  (A) conventional single HRP labeled secondary antibody (B) 

multiple HRP and secondary antibody on carbon nanotube for signal amplification (Yu et al., 

2006 [85]). 
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Okuno et al. [21] also fabricated SWCNT modified platinum (Pt) wires for the detection 

of PSA through direct electrical measurements.  The performance of the device was tested using 

nonspecific antigen, BSA and with the Pt electrodes only without the SWCNTs.  The application 

of BSA protein on the SWCNT-Pt microelectrodes treated with PSA specific antibodies resulted 

in no significant change in the current signal.  Application of PSA to the bare Pt microelectrodes 

also resulted in no signal.  This was because the PSA specific antibodies were immobilized 

covalently using coupling molecule (1-pyrenebutanoic acid succinimidyl ester) on the SWCNTs, 

and the coupling molecule had no affinity to the Pt electrodes causing non-specific binding.     

  

 

Figure 2.7 CNT-based treatment of MCF7 cancer cell using NIR dosing (a) survival of the cells 

treated with nanotube attached to non-specific antibody complexe (b) destruction of the cells 

treated with nanotube attached with specific antibody (anti-IGF1-HER2) complex (Shao et al., 

2007 [86]).   
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Shao et al. [86] carried out phototherapy using SWCNT functionalized with antibodies 

specific to breast cancer cells as shown in Figure 2.7.  The application of infrared photons at ~ 

808 nm wavelength led to the destruction of the cancer cells due to the concentration of 

theSWCNTs through selective binding of antibodies specific to the cancer cells.  In the case of 

non-specific antibodies treated with SWCNTs, 80% of the cells remained alive.  The SWCNT 

and antibody conjugation was achieved through amide bonding using 1-pyrenebutanoyl 

succinimide.  Polyethylene glycol was then used to insulate the surface of the SWCNTs from 

nonspecific interactions.  

Liu et al. [87] introduced functionalization of SWCNT by chemically partitioning the 

surface of nanotubes to attach various species non-covalently for potential drug delivery 

applications.  SWCNTs were first functionalized with PEG derivatives to obtain aqueous 

solubility.  The unoccupied sites on the prefunctionalized SWCNTs were used to bind with 

cancer chemotherapy drug, doxoyrubicin (DOX).  Release of DOX drug was also studied by 

varying the pH for controlled delivery of molecules bound on CNTs.  

Chen et al. [88] investigated the adsorption of various proteins using SWCNT micromat 

devices.  PEG derivatives and PEG containing surfactants were utilized to block certain parts of 

the device, and the conductance change due to protein adsorption was observed before and after 

blocking treatments.  It was concluded that protein adsorption on the metal-nanotube contact has 

a significant contribution to the electronic signal obtained, in addition to the adsorption on the 

sensing part of the CNTs. 

Li et al. [89] investigated complementary detection of PSA using In2O3 nanowires and 

SWCNTs as a conducting channel between source and drain electrodes.  Both the nanowires and 
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the nanotubes were modified with PSA specific antibodies.  The application of PSA on the 

indium oxide nanowires resulted in increased conductance, opposite to the decrease in 

conductance for the SWCNTs.  This change in conductance was explained by the nanowires 

being n-type and the SWCNTs being p-type semiconductors.  For both the indium oxide 

nanowires and SWCNTs, antibody conjugation was achieved using succinimidyl ester.      

Panchapakesan et al. [90] used SWCNTs interconnects between patterned metal 

electrodes for the detection of live breast cancer cells.  When the capture cells were captured by 

the specific antibodies on the SWCNTs, a conductance increase was observed corresponding to 

the amount of captured cancer cells.  Prior to constructing the device, the SWCNT bundles were 

dispersed using NaDBBS, where the surfactant was non-covalently adsorbed on the surface of 

the CNTs enhancing the aqueous solubility.   

 

2.4 Immunoassay  

 Immunoassay is an analytical test that uses the selectivity and affinity of an antibody 

binding to target analyte in a sample.  The performance of immunoassay relies on the efficiency 

of the antibody and analyte (antigen) complex formation and the ability to quantify the binding 

reaction.  The work conducted in this dissertation deals with quantification of the binding 

reaction based on simple and reliable electrical signals providing quantitative measurements 

through simple detection mechanisms.  In addition to sensitivity, detection time and cost are 

important factors considered for immunosensing system targeted at high throughput point-of-

care tests.    
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2.4.1 Antibody 

 Immunoassays take advantage of the extreme specificity of antibodies to recognize 

structurally distinct epitopes on analytes for binding, making them the most critical reagents 

[91].  Antibodies also known as immunoglobulin G (IgG) are glycoproteins generated by the 

immune system to fight against disease and foreign substances present in the body.  

Immunoglobulin G (IgG) is the most abundant class of antibodies found in the blood and tissue 

liquids, and also used extensively in immunoassays for ease of production.  The “Y” shaped 

structure of IgG is composed of four polypeptide chains: two heavy chains and two light chains 

linked by disulfide bond as shown in Figure 2.8.  The arms of the “Y” shaped structure are called 

the Fab region for antigen binding fragment.  This region contains the two antigen binding sites 

and it is composed of one constant and one variable domain from each (heavy and light) chain of 

the antibody.  The base of the “Y” is called the Fc region for crystallizable fragment and contains 

two heavy chains.       

 

 

 

 

 

 

Figure 2.8 Schematic diagram of Immunoglobulin G (IgG) molecule. 
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Antibodies are mostly monoclonal and polyclonal types, each with their own advantages 

and disadvantages [92].  Monoclonal antibodies are produced from one type of B-cells and bind 

to the same epitope of their specific antigen, making them highly specific.  The sensitivity of 

monoclonal antibodies can be affected if there is a slight variation in the epitope structure of their 

specific antigens.  Unlike monoclonal antibodies, polyclonal antibodies are produced from 

multiple cells.  Polyclonal antibodies are sensitive, but less specific since, they can recognize 

different epitope on their target antigens, subjecting them to cross-reactivity.    

2.4.2 Immunoassay Formats 

Two of the most common immunoassay formats are competitive and sandwich 

immunoassays.  In competitive assay format, even though there could be different configurations 

of the test, the target analyte competes for limited binding site with a known labeled sample.  In 

this format, the amount of captured analyte is indirectly proportional to the detected signal by the 

labels.  In non-competitive or sandwich immunoassay, primary and secondary antibodies are 

utilized.  Primary antibodies are often immobilized on a solid substrate to capture the target 

analyte.  The primary function of secondary antibodies is to attach labels that provide indication 

of a binding reaction between target analyte and primary antibodies.  In this case, the amount of 

captured analyte is directly proportional to the signal detected through the labels  

Competitive immunoassay is often used when utilizing smaller molecules with fewer 

binding sites.  They are also simpler with less number of steps and often used for purification of 

assays.   Sandwich immunoassay is considered more sensitive, and therefore is commonly used.  

A possible configuration of sandwich and competitive immunoassay is shown in Figure 2.9. 
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Figure 2.9 Illustration of sandwich and competitive immunoassay formats.  

 

2.4.3 Label-Based Immunoassay  

 Label is another other important reagent of an immunoassay that is used for the detection 

of antibody binding reaction.  The amount of label detected corresponds to the number of 

captured targets. One of the earlier immunoassay methods was based on radioisotope labels.  

Radioimmunoassay (RIA) is highly sensitive, specific, and relatively cheap to perform [93].  

However, the use of radioactive materials is hazardous and the cost of their disposal has put 

constrain on the technique.  Since then, various types of labels have been developed including 

fluorophor, enzymes, magnetic beads, colloidal gold, and chemiluminescent materials [94].  The 

flexibility and availability of labels have increased the applicability of immunoassays with high 

degree of stability depending on the sought detection result.  However, the labeling step has been 

considered a shortcoming, since some labels modify the properties of the biomolecules being 

Sandwich  Competitive 
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detected.  In addition, the use of labels and secondary antibodies is considered as additional 

process and cost.  Therefore, label-free methods have emerged as an alternative, eliminating 

labels by direct monitoring of binding reaction.  While direct detection sounds attractive and 

could possibly save time and cost related to the labeling procedure, label-free methods have their 

own shortcomings mainly due to the lack of selectivity [95].  Label-free detections are also 

subjected to background interference and cross-reactivity influencing the sensitivity.  In addition, 

most label-free techniques such as surface plasmon resonance, cantilever, quartz crystal 

microbalance, and piezoelectric crystals are expensive and complex to fabricate [96].  Therefore, 

label-free methods have had minimal commercial success as high-throughput techniques [97].   

While the search continues for the best label with detection capability down to a single 

molecule, label-based immunoassay detection remains to be the most reliable and the most 

widely used.  Especially, nanomaterials such as CNTs could provide solutions, while minimizing 

the existing limitations of labeling techniques.  Immunoassay detection based on carbon 

nanotubes labels for direct electrical measurements is investigated in this work.  This technique 

will eliminate the shortcomings that plague conventional labeling methods.        

2.5 Point-of-Care Immunoassays 

 The ability to produce quality antibodies and various types of labels has advanced the 

capability and applicability of immunoassays.  However, currently technologies related to 

immunoassay are not only evaluated in terms of low detection limit, but also speed, ease of 

operation, and continuous monitoring.  These requirements are being driven by the demand for 

point-of-care (POC) diagnostics to be performed near the patient rather than the time consuming 
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processes involving centralized laboratories.  In addition, POC devices should be low-cost and 

should not require complex procedures or skilled person to operate.  These POC devices have 

applications for use at the doctor’s office, home care, the military, and developing countries.  

POC devices could strongly benefit from advanced materials and fabrication methods to improve 

their efficiency and sensitivity.  Biosensors based on electrical signal detection have been 

attracting a lot of attention for the development of rapid, miniaturized, and low cost devises.  

However, high detection sensitivity have not been a critical factor [97].  In this work, CNT-based 

electrical detection is investigated for sensitive immunosensing, while maintaining the simplicity 

of the test that is ideal for POC tests.  

 One of the important factors for POC immunoassay is the label.  Labels should be stable, 

low-cost, sensitive, and easy to conjugate and integrate [94].   For example, in electrochemical-

based detection, enzyme labels are often instable and the concentration of the substrate used by 

the label for signal detection is difficult to optimize [98].  Fluorescence labels suffer from 

photobleaching [3] and magnetic particles are difficult to detect [99].  In addition, methods for 

detecting and displaying the signal generated by the labels in a POC devices should be simple to 

operate and should not be bulky in size.  

Multiple reagent handling with external or integrated active components for flow control 

could complicate POC immunoassay system.  In addition, fabrication of such components could 

be cumbersome with short lifespan of the devices.  Rather, passive flow control is desired for 

POC immunoassays.  Lateral flow system, where fiber matrix with microscale pores provide 

sample transport by capillary action, has been very successful for POC application [22].  Another 
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platform that provides passive flow control involves the use of microchannels and 

microchambers in order to manipulate small sample volume and integrate multiple functions for 

rapid and portable devices [100].  Both miniaturized platforms, lateral flow and microchannel 

based immunoassay for high detection sensitivity and passive flow control capability have been 

investigated in Chapter 4 and Chapter 5 of this dissertation, respectively.  
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CHAPTER 3  

SOLUBILITY AND ANTIBODY CONJUGATION OF CARBON NANOTUBES 

3.1 Introduction 

The remarkable one-dimensional electric conduction properties of CNTs coupled with the 

ability to adsorb biomolecules on their surface have paved the way for the development of 

advanced biosensing materials and techniques.  The large surface area of CNTs allow chemical 

modifications for proper anchoring and detection of biomolecules based on electron transfer 

reactions [17, 38].  These techniques have been explored for protein detection and clinical 

diagnostics purposes [85, 101-102].  CNT-based detection mechanism holds a potential for 

simple and quantitative immunosensing without additional labeling or amplification step.  

For the pursuit of immunoassay applications, it is important to select functionalization 

protocols in order to obtain highly soluble and antibody conjugated CNTs [61, 73].  The 

functionalization protocols should be compatible with biomolecules and should be carried out in 

a less destructive manner to preserve the electrical properties of the CNTs.  The functionalized 

CNTs will be implemented as label in a matrix format for highly sensitive antibody detection in 

this research.  This chapter describes the development of chemically functionalized MWCNTs 

for uniform dispersion in aqueous solution and antibody conjugation through covalent bond.  The 

functionalized MWCNTs will be studied as a label for immunosensing based on electrical signal 

detection.   
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3.2 Solubility of Carbon Nanotubes in Aqueous Solutions 

A major concern in practical use of CNTs is their poor solubility in most common 

solvents and especially in water due to their hydrophobic nature and the strong van deer 

attraction between the tubes [46, 103-104].
 
 Surface functionalization of CNTs is therefore 

necessary in order to enhance their solubility and create reactive groups for efficient anchoring of 

antibodies.  The adsorption of surfactants on the surface of CNTs has been an effective approach 

to disperse CNTs in aqueous solution [105-107].  The adsorption mechanism of the surfactant 

molecules on the surface of CNTs is mainly based on electrostatic, hydrophobic, and π-π 

stacking [37, 108].  These non-covalent functionalization methods are mostly preferred because 

of their minimal effects on the π networks of the CNTs that determine the inherent structures 

influencing the electrical conductivity among other properties [109-110].  The surfactant coating 

with the application of sonication penetrates in between the sidewalls of the CNTs and separates 

them into individual tubes [111-112].  In addition, surfactants are water soluble and non-toxic, 

and they do not require evaporation steps as in the case with organic solvents or strong acids.    

3.3 Surfactant Assisted Dispersion of Carbon Nanotubes 

The adsorption of surfactants is an effective strategy for improving the solubility of 

CNTs in aqueous solution.  The hydrophobic part of the surfactant molecules adsorb on the 

surface of the CNTs while the hydrophilic parts interact with the aqueous medium to untangle 

the nanotube bundles [46, 107].  Surfactants such as polyvinylpyrrolidone (PVP) [113], 

polyethylene glycol (PEG) [111], sodium dodecyl sulfate (SDS) [41], and sodium 

dodecylbenzene sulfonate (NaDDBS) [45] have been widely investigated for this purpose.  In the 

case of PEG, aromatic molecules are attached on the surface of the CNTs (PEGylation) through 
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π–π stacking to eliminate the hydrophobic interaction between the CNTs in aqueous medium 

[38].  In the case of PVP, it is known to provide nearly monolayer coating by wrapping around 

portion of the CNT surface [43, 107].  The partial coverage of the CNTs surface leaves 

unoccupied sites to attach multiple molecules on the surface of the CNTs [87].  It has also been 

reported that thin layer of surfactant coating on CNTs do not reduce the electrical conducting 

properties [111].  

3.4 Conjugation of Antibody on Carbon Nanotube 

For a potential immunosensing application, the surface of the CNTs needs to be 

functionalized with functional groups for the immobilization of antibodies through stable 

covalent bonding [55].  Functional groups like carboxyl group provide reactive sites for the 

covalent attachment of proteins through amidation process [31, 114].  Amidation process 

between the amino group on the antibodies and the carboxyl groups on the CNTs is often 

facilitated by coupling agents such as carbodiimide chemistry [38, 86].  1-(3-(dimethylamino)-

propyl)-3-ethylcarbodiimide hydrochloride EDC is a widely used cross-linker that reacts with 

carboxyl groups to form amine reactive intermediate.  EDC then reacts with an amine group to 

produce a stable amide bond [59].  However, EDC is not stable and suffers from low coupling 

efficiency due to hydrolysis of the intermediate in aqueous environment [115].  Therefore, this 

process is supplemented with N-hydroxysulfosuccinimide (Sulfo-NHS) to suppress hydrolysis, 

and increase the efficiency of the cross-linking [58].   

CNTs also have inherent affinity to antibodies and other proteins requiring a surface 

modification protocol to limit non-specific binding [48, 88].  Non-specific attachment of proteins 

is not desired in immunosensing and could compromise detection capability.  A typical method 
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of addressing these unwanted nanotube-antibody interactions is by insulating the surface of the 

CNTs with protein repellent molecules.  Molecules such as PEG and PVP are commonly used to 

cover the surface of CNTs in order to prevent non-specific adsorption of proteins [53-54]. 

3.5 Experimental Study 

3.5.1 Functionalization of MWCNTs  

The modification of carboxylic acid treated MWCNT with surfactant and antibodies was 

carried out as illustrated in Figure 3.1.  Two different MWCNT samples were prepared.  In one 

sample, the MWCNTs were treated with PVP in aqueous solutions.  In the other sample the 

MWCNTs were treated with PEG in aqueous solutions.  These surfactants, when adsorbed on the 

surface of the MWCNTs, provided partial coverage.  The MWCNTs in both samples were then 

reacted with EDC and Sulfo-NHS to activate covalent bonding between the carboxyl (–COOH) 

groups of the MWCNTs and primary amines (–NH2) of the antibodies.  Finally, human IgG was  

 

 

Figure 3.1  Schematic illustration for functionalized MWCNTs with PVP or PEG by surface 

adsorption and human IgG through covalent amide bonding (not to scale).  
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added to the MWCNT solutions that resulted in the immobilization of the antibodies on the 

binding sites not covered by the surfactant.  The partial coating of the surfactants was essential in 

both dispersion as well as blockage of the surface of the MWCNTs from unwanted interactions 

with proteins. 

3.5.2 Materials and Reagents  

MWCNTs treated with carboxylic acid groups (MWCNT-COOH) suitable for 

functionalization chemistry (outer diameter = 8-15 nm, length =10-15 µm, purity > 95 wt %) 

were obtained from Cheaptubes, Inc., (Brattleboro, VT).  Polyvinylpyrrolidone (PVP, MW 

10,000) was obtained from Sigma-Aldrich (St. Louis, MO).  Polyethylene glycol (PEG, M.W. 

8,000) was obtained from Acros Organics (Morris Plains, NJ).  EDC and Sulfo-NHS were 

obtained from Thermo Fisher Scientific, Inc. (Rockford, IL).  All immunoreagents were diluted 

in pH 7.4 phosphate saline buffer (PBS) unless otherwise stated.    

3.5.3 Surfactant-Assisted Dispersion 

Non-covalent functionalization and dispersion of MWCNTs with surfactants was 

prepared as follows.  COOH-MWCNTs were first dispersed in two separate solutions.  In one 

solution, 0.5 mg of MWCNTs was mixed with 0.6 mg of PVP in 5 ml deionized (DI) water.  In 

another solution, 0.5 mg of MWCNTs was mixed with 5 mg of PEG in 5 ml DI water.  Each 

mixture was then sonicated using a mild bath for 6 hours at room temperature yielding a dark 

uniformly dispersed MWCNT suspension.  Characterization of the dispersion was carried out by 

optical analysis using UV-Vis spectroscopy.  The stability of dispersions was also investigated 

by allowing the MWCNT solutions remain at room temperature and measure the UV absorbance 

one week and four months after initial dispersion.  



35 

 

3.5.4 EDC/Sulfo-NHS Chemistry 

In order to accomplish stable amidation between the nanotubes and the antibodies, 2 ml 

of the PVP dispersed MWCNT solutions were centrifuged for 3 minutes to separate the dark 

supernatant and then the bottom 1/3 of the solution with nanotube aggregates was discarded.  

Coupling agents, EDC (0.4 M) and Sulfo-NHS (0.1 M) in 1 ml of MES (buffer pH ~ 6.0), were 

mixed with the remaining modified MWCNT solution.  The EDC/Sulfo-NHS chemistry was 

used to facilitate the covalent bonding between the carboxyl groups (–COOH) on the surface of 

the carbon nanotubes and the primary amine groups (–NH2) of antibodies through stable 

amidation process.  The mixture was left to incubate for 30 minutes at room temperature.  

Furthermore, excess surfactants and coupling reagents in the solutions were removed by washing 

and suspending the MWCNTs in PBS buffer using centrifugation at 13,000 rpm for 3 minutes.   

3.5.5 MWCNT-Antibody Conjugation  

 Purified human IgG (6.2 mg/ml) suspended in 0.01 M sodium phosphate (0.15 M NaCl, 

pH 7.4) containing 15 mM sodium azide as a preservative was obtained from Sigma-Aldrich (St. 

Louis, MO).  For the MWCNT-antibody conjugation, the human IgG solution was diluted to 200 

µg/ml
 
in PBS buffer.  Then, 200 µl of the human IgG solution was mixed with the MWCNT 

solution and the mixture was incubated overnight at room temperature.  The washing and 

suspending process was repeated by centrifugation in PBS buffer to remove unbound antibodies 

that resulted with antibodies immobilized on MWCNTs.  The suspended solutions were kept at 4 

ºC until use.  
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3.6 Results and Discussion 

The demonstrated functionalization scheme allowed the partitioning of the surface of the 

MWCNTs with surfactants and antibodies.  The adsorption of surfactants has improved 

MWCNTs solubility in aqueous solution.  The surface of the nanotubes not covered by the 

surfactants provided potential binding sites for antibodies with MWCNTs through covalent 

bonding.  The surfactant adsorption also served a dual purpose of insulating the nanotubes from 

unwanted interactions with other biological materials while enhancing solubility.   

3.6.1 MWCNT Solubility 

  The dispersion of MWCNTs with PVP, PEG, and DI water, individually, was 

investigated.  Prior to sonication, the solubility of MWCNTs in all three solutions was poor with 

almost all the nanotube clusters settling at the bottom of the solutions as shown in Figure 3.2(a).  

After sonication, the dispersion improved dramatically for all three solutions resulting in dark 

supernatant with dye-like homogeneity as shown in Figure 3.2(b).  A slight intensity variation in 

 

 

 

 

 

Figure 3.2  Dispersion of MWCNTs in water (a) before and (b) after sonication with PVP, PEG, 

and without surfactant (going from left to right).  All samples have same concentration of 

nanotubes (0.1 mg/ml). 

(a) (b) 
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the color of the solutions was observed indicating the degree of dispersion.  The MWCNT-PVP 

solution had the darkest color with almost all the MWCNTs suspended in the solution.  The 

MWCNT-PEG solution was the second darkest in intensity and good in dispersion.  The 

MWCNT solution with DI water only and no surfactants had the lightest intensity and the least 

dispersion, and clusters were easily observed in the suspension.  For quantitative investigation of 

the state of dispersions after sonication, the MWCNT solutions were subjected to optical analysis 

using UV-Vis-NIR scanning spectrophotometer (Shimadzu UV-3101PC).  The UV spectroscopy 

was used to demonstrate a linear relationship between the absorbance and the dissolved 

nanotubes in the different suspensions.  Figure 3.3(a) shows the absorption spectra of the 

MWCNTs suspended in the three different solutions.  As predicted by the visual intensity of the 

solutions, MWCNT-PVP had the highest absorbance values followed by MWCNT-PEG and 

MWCNT-DI water.  The absorbance of PVP and PEG solutions without MWCNTs were 

optically transparent throughout the UV-Vis-NIR spectrum.  The stability of the dispersions was 

also examined by placing the solutions in ambient conditions for longer durations.  After one 

week from their equivalent initial suspensions, the absorbance values of the surfactant dispersed 

MWCNT solutions remained higher compared to the MWCNT solutions without surfactant as 

shown in Figure 3.3(b).  After a period of four months, the absorbance values of the surfactant 

dispersed solutions experienced relatively small reduction compared to the MWCNT solutions 

without surfactant as shown in Figure 3.3(c).  The results indicate that the use of surfactants was 

important in obtaining initial dispersion of the MWCNTs as well as maintaining the stability of 

suspension.  Specifically, it was observed that the performance of PVP in improving MWCNT 

solubility was better than PEG.    The surfactant-assisted dispersion also suggests an equilibrium  
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Figure 3.3  The UV-Vis absorbance spectra of the MWCNT dispersion (a) immediately after 

sonication (b) one week after sonication and (c) four months after sonication.  The different lines 

indicate MWCNT disperisons with PVP, PEG, DI water (without surfactant), and PEG as control 

in the absence of MWCNTs (Figure 3.3 con’d).   

(a) 

(b) 
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process between the nanotubes and the surfactants.  The slight reduction in solubility observed 

for the surfactant dispersed MWCNT solutions could be due to the ratio of nanotubes to 

surfactants, where the surfactant concentration could be below the critical micelle concentration 

(CMC) [112].  Furthermore, the application of low power sonication facilitated the adsorption of 

the surfactants on the surface of the CNTs without shortening the length of the nanotubes.  In 

order to establish a benchmark of the relationship between absorbance and concentration, 

absorbance MWCNT solutions (0.01, 0.02, 0.06, 0.07, 0.08, and 0.1 mg/ml) dispersed with PVP  

(c) 
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Figure 3.4  Plot of absorbance versus concentration for the PVP dispersed MWCNT solution for 

peaks at 500 nm.   

 

was obtained after sonication (Figure 3.4).  A linear relationship of absorbance values with 

increasing concentration was observed.  This result was in agreement with the Beer-Lambert’s 

law that has been known to establish the linear relationship between absorbance of light and 

concentration of an absorber [111]. 

In order to closely examine the dispersion of the MWCNTs, different parts of the 

solutions were dispensed and dried on a silicon substrate for SEM analysis as shown in Figure 

3.5.  The MWCNT-PVP solution had the best dispersion with well separated individual 

nanotubes (Figure 3.5(a)).  The MWCNT-PEG solution had dispersed nanotubes but showed a 

number of small bundles spaced throughout over the substrate (Figure 3.5(b)).  The MWCNT 
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dispersed in DI water without surfactants had the least uniform dispersion showing the nanotubes 

clustered together at isolated areas of the substrate (Figure 3.5(c)).  The influence of the 

surfactant coverage in separating the bundles was evident in the level of solubility of the 

MWCNTs.  In addition, the adsorption of PVP has resulted in morphological changes observed 

on the MWCNTs.  A rough organic layer with around 1-2 nm in thickness (estimated from  TEM  

 

 

 

 

 

 

Figure 3.5  SEM image of MWCNTs dispersed with (a) PEG, (b) PVP, (c) only DI water on 

silicon substrate (Figure 3.5 con’d). 

 

(a) 

(b) 
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Figure 3.6 TEM images of MWCNTs (a) with surfactant coating and (b) without surfactant 

coating (Figure 3.6 con’d). 

 

 

(c) 

(a) 
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image) was observed on the MWCNTs treated with PVP compared to the smooth surface of 

unmodified MWCNTs as shown in Figure 3.6(a) and 3.6(b).  This result was also in agreement 

with striation patterns observed on the surface of the nanotubes treated with surfactant molecules 

in dry form [116].  Dispersion of the MWCNTs as discussed in section 3.6.1 could be related to 

the surfactant coverage.   

3.6.2 Amidation Process 

The coupling agents, EDC/Sulfo-NHS, with primary function of establishing strong 

amide bonding between the MWCNTs and antibodies had also influenced the solubility of the 

suspensions.  Varying solubility states were observed for the MWCNTs in the three solutions 

(with PVP, PEG, DI water dispersants) after incubation with the coupling agents as shown in 

(b) 
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Figure 3.7.  It was observed that the amidation process affects the solubility of the MWCNT, 

especially in the absence of surfactant.    The MWCNT-PVP solution had the highest absorbance 

value with the least reduction in dispersion.  The MWCNT-PEG solution had the second highest 

absorbance value.  In both cases, limited agglomeration of the tubes into bundles was observed 

due to the addition of the coupling agents.  For the MWCNT solution dispersed with only DI 

water, there was a significant phase separation between the nanotubes and the solution.  The 

solubility reversed dramatically resulting in relatively low absorbance value.  The reduction in 

homogeneity of the dispersion could be due to the short-life span of EDC before hydrolyzing in 

aqueous solution if not interacted with amine group even with the use of Sulfo-NHS to suppress 

the hydrolysis [115].  In order to minimize this effect, the reaction time between the MWCNTs 

and the coupling agents was limited to 30 minutes to maximize the coupling efficiency without a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 The UV-Vis absorbance spectra of the MWCNT solutions after reacting with 

EDC/Sulfo-NHS for stable amidation process.  The inset shows the dispersion state of MWCNTs 

in water with PVP, PEG, and without surfactant after reacting with the coupling agents. 
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significant decrease in dispersion. The MWCNT suspension dispersed with surfactant remained 

stable when interacting with functional groups.  However, the poor dispersion of the MWCNTs 

without the presence of surfactants could escalate during the conjugation process and limit 

detection performance.     

3.6.3 MWCNT-Antibody Conjugation 

PVP modified MWCNT solution provided the best dispersion, and therefore, it was used 

for the conjugation study.  The covalent attachment of antibodies on the -COOH groups of the 

MWCNTs was facilitated by EDC/Sulfo-NHS chemistry in a two-step process.  First, the 

MWCNT-COOH was mixed with EDC/Sulfo-NHS to produce a semistable amine-reactive NHS 

ester.  After washing excess EDC, the activated MWCNTs were then incubated with human IgG.  

This process was important to reduce aggregation of antibodies and bundles of MWCNT-human 

IgG conjugate.  The reaction time between the MWCNTs and the coupling agents was limited to 

30 minutes in order to minimize hydrolysis while optimizing conjugation efficiency.  The 

antibodies occupied binding sites that were not covered by the surfactant.  This process produced 

complete functionalization of the MWCNTs.  Analysis of the functional groups on the surface of 

the MWCNTs was conducted using FTIR.  FTIR spectra were recorded for the functionalized 

MWCNTs using Bruker FTIR spectrometer (Tensor 27) as shown in Figure 3.8.  For the 

MWCNT-COOH sample, the FTIR spectrum showed characteristic peak at ~1714 cm
-1

 that 

corresponds to the C=O stretch of the carboxylic group (Figure 3.8(a)).  The band at ~ 3479 cm
-1

 

is related to O-H groups due to the presence of moisture on the surface of the MWCNTs.  

However, the peaks were weak for the MWCNT-COOH sample that could be attributed to the 

limited number of COOH groups on the surface of the MWCNTs.  Another reason could be that 
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the black MWCNTs absorbing the entire infrared ray from the FTIR detection [28].  For the neat 

PVP sample, characteristics peak at 1650 cm
-1

 is assigned to the C=O stretching in the PVP 

amide unit (Figure 3.8(c)).  Characteristics peaks at 1415 and 1286 cm
-1

 are associated with 

absorption bands of the PVP. The covalent conjugation of antibodies on the MWCNT was 

observed with distinct characteristic peaks at 1645 and 1538 cm
-1

 corresponding to primary and 

secondary amides (Figure 3.8(e)).  Similar characteristic peaks were shown for neat antibody 

sample at 1635 and 1538 cm
-1

 that were associated with primary and secondary amines (Figure 

3.8(d)).  In addition the characteristic peak at 1714 cm
-1

 that belongs to the COOH group on the 

MWCNTs disappeared during antibody conjugation.  The displacement of the peak could be due 

to the covalent attachment of antibodies on the COOH group of the MWCNT that results in the 

new amide peaks.  The FTIR results confirm the successful conjugation of antibodies on the 

MWCNTs.   

 

 

 

 

 

 

Figure 3.8 FTIR spectra of samples (a) carboxylated MWCNTs (b) neat PVP (c) PVP-modified 

MWCNTs (d) neat antibodies and (e) antibody-functionalized MWCNTs (Figure 3.8 con’d). 

(a) 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(c) 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(d) 

(e) 



49 

 

Dispersion, antibody immobilization, and surfactant coverage were further characterized 

using TEM by dispensing 1 µl of solution on gold coated carbon TEM grid.  It was observed that 

the MWCNT-PVP sample maintained good dispersion after conjugation process as shown in 

Figure 3.9(a).  The MWCNT-antibody conjugation efficiency was also examined.  A close-up 

image of the MWCNT-antibody conjugate in Figure 3.9(a) shows that antibodies protruded on 

the surface of the MWCNTs.  Unbound antibodies were not observed indicating that unbound 

antibodies were successfully removed by the multiple rinses without affecting the covalently 

attached antibodies to the surface of the MWCNTs.  Immobilization of antibodies occurred at 

various sections of the MWCNTs, since the carboxylic groups were located randomly at different  

  

Figure 3.9 TEM images showing (a) surfactant dispersed MWCNTs conjugated with human IgG 

and a close up image of the MWCNT-antibody conjugation (b) aggregates of conjugated 

antibodies on MWCNTs (Figure 3.9 con’d). 

(a) 
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parts of the CNT in addition to the PVP coverage influence.  Aggregates of conjugated 

antibodies were however observed in spite of the two-step process for coupling chemistry 

limiting interaction between the antibodies.  This was especially evident in the case that the 

MWCNTs bent or folded during conjugation as shown in Figure 3.9(b). 

3.6.4 CNT-Antibody Conjugation with Reduced PVP  

Increasing the number of conjugated antibodies per each MWCNT could result in better 

detection capability.  One factor influencing the amount of antibodies conjugated on the 

MWCNTs could be the degree of the PVP coating limiting binding sites for antibody attachment 

on the surface of the nanotubes as shown in Figure 3.10.  In order to investigate the influence of 

surfactant coverage in the amount of attached antibodies, the same conjugation procedure was 

(b) 
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carried out with the MWCNTs dispersed in DI water only (without PVP).  Characterization of 

the conjugate solution revealed that the MWCNTs had relatively poor dispersion compared to 

the conjugate solution in the presence of PVP as shown in Figure 3.11(a).  In addition, an 

increase in the number of conjugated antibodies was not observed.  This could be due to the poor 

dispersion of the nanotubes in solution that might have placed a restriction on the interaction of 

the antibodies with individual MWCNTs.  For the limited conjugation observed, the antibodies 

were mostly buried within the bundles compared to the more distributed antibodies in the 

presence of PVP as shown in Figure 3.11.  Therefore, conjugation process with only DI water 

was not very useful in studying the influence of PVP coverage in conjugation efficiency since 

poor dispersion was a dominating factor.  However, the process confirmed the importance of 

surfactants in enhancing the solubility of MWCNTs for efficient conjugation with antibodies and 

overall detection performance. 

 

 

 

 

 

 

Figure 3.10 TEM images showing surfactant coating on the surface of the MWCNTs with 

antibody conjugation.  
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Figure 3.11 TEM images showing (a) human IgG conjugation of MWCNTs dispersed without 

surfactant (b) a close up image of the MWCNT-antibody conjugation. 

 

The second step taken in understanding the role of surfactant in antibody conjugation was using 

lower amounts of PVP to expose more binding sites.  For this reason, the amount of PVP was 

reduced to 25% and 10% from the original amount (0.5 mg of MWCNTs was mixed with0.6 mg 

of PVP in 5 ml DI water).  Characterization of the conjugation solutions revealed that number of 

conjugated antibodies was increased significantly with 25% reduction of PVP as shown in Figure 

3.12. The larger view of the TEM image (Figure 3.12(a)) shows that MWCNT were very well 

dispersed throughout the solution.  A close up images shows multiple antibodies attached on the 

MWCNTs ((Figure 3.12(b)).  For the conjugate solution with 10 times lower PVP, limited 

antibody conjugation with the MWCNT was obtained compared to the solution with 4 times 

lower PVP.  A reduction in the dispersion of the conjugation solution was observed, since the 

amount of PVP was too low to carry out a proper conjugation.  Comparison of the conjugate 

(a) (b) 
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solutions confirms that there was not much difference in the solubility state of the MWCNT with 

0.6 mg (original amount) and 4 times lower PVP but there was a reduction in the uniformity of 

the dispersion for the 10 times solution as shown in Figure 3.13(a).  TEM characterization of the 

conjugate solution with 10 times lower PVP shows the agglomeration of the MWCNTs that 

limits the surface area for antibody conjugation (Figure 3.13(b)).    This result was similar to the 

conjugate solution obtained with only DI water (Figure 3.11) except more MWCNT-antibody 

conjugates were obtained in this case.  Therefore, varying the amount of PVP used to disperse 

the MWCNTs could lead to the change in coverage of the MWCNTs and amount of conjugated 

antibodies.  However, the amount of PVP has to be optimized in order to maintain sufficient 

dispersion of the MWCNTs.   

 

 

 

 

 

 

Figure 3.12 (a) TEM characterization showing well dispersed MWCNTs with enhanced antibody 

conjugation using 4 times lower PVP (b) a close up image showing multiple antibodies attached 

on the surface of the MWCNTs.  

 

(b) 
(a) 
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Figure 3.13 Dispersion state of MWCNT-antibody conjugate solution using original PVP, 

amount, 4 times lower PVP, and 10 times lower PVP (going left to right) (b) TEM image 

showing limited antibody conjugation with MWCNTs due to poor dispersion.  

 

3.6.5 Enhanced CNT-Antibody Conjugation with Increased Antibody Concentration 

Another parameter considered to enhance the number of antibodies attached on the 

MWCNTs was the amount of antibodies used for conjugation.  This was due to the possibility 

that concentration of antibodies for conjugation considered in this work (200 µg/ml) could be 

small compared to the amount of MWCNTs.  Lower antibody concentration for conjugation was 

carefully chosen through experimental optimization in order to provide suitable/sufficient 

detection capability while eliminating the possibility for unbound (free) antibodies.  Unbound 

(free) antibodies have to be controlled in order to optimize the conjugation efficiency and 

detection parameters.  In addition, unbound antibodies could compete with the conjugate for 

binding site on the immobilized antibodies (sandwich format) and compromise detection 

performance.  In order to investigate the influence of high antibody concentration on conjugation 

(b) 
(a) 
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efficiency, MWCNT-antibody conjugation was carried out with higher antibody concentrations 

250, 500, 1000 µg/ml, under the same experimental procedures.  For conjugate solution with 250 

µg/ml antibody concentration, a significant difference in the number of antibodies attached to the 

nanotubes was not observed compared to results obtained with lower concentration of antibodies 

(200 µg/ml).  For the conjugate solution with 500 µg/ml antibody concentration, a dramatic 

increase in the number of antibodies on the MWCNT was observed as shown in Figure 3.14.  

Unbound antibodies from the solution not attached to surface of the MWCNTs were also 

observed.  As the concentration of antibody was further increased (1000 µg/ml), the amount of 

conjugated of antibodies also increased.  However, with increased antibody concentration for 

conjugation, the presence of unbound antibodies also increased dramatically as shown in Figure 

3.15.   

The results show that enhancing MWCNT-antibody conjugation was successfully 

conducted by varying the antibody concentrations.  The conjugation process with higher amount 

of antibodies was conducted based on fully optimized protocol that has been developed for lower 

antibody concentration (200 µg/ml).  Results also suggest that the conjugation protocol could be 

different when varying the antibody concentration in order to get the optimum detection 

capability.  Parameters such as longer incubation time and increasing the number of washing step 

could lead to further attachment of the antibodies on the CNTs.  In addition, quantification of 

unbound antibodies in the conjugate solution could be useful in choosing proper antibody 

concentration for conjugation based on the desired detection performance.  
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Figure 3.14  TEM image showing enhanced antibody conjugation with MWCNTs using 500 

µg/ml antibody concentration.  

 

 

 

 

 

 

 

 

Figure 3.15 TEM image showing an increase in MWCNT-antibody conjugation and unbound 

antibodies using 1000 µg/ml antibody concentration.  
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3.7 Summary 

The functionalization of multi-walled carbon nanotubes (MWCNTs) with surfactants and 

antibodies for immunosensing based on electrical measurements was conducted.  A comparative 

study was conducted in uniform dispersion of MWCNTs using PVP, PEG, and DI water.  The 

stability of the suspension was also investigated throughout the conjugation process using UV-

Vis spectroscopy.  Results show that the partial adsorption of PVP and PEG on the MWCNTs in 

non-covalent method was effective in improving the dispersion and stabilizing the suspension 

((PVP was more effective than PEG) over different time periods.  Conjugation of antibodies was 

also successfully obtained on the carboxylic group of the MWCNTs that were not covered by the 

surfactant.  Human IgG was attached on the MWCNTs covalently through stable amide linkage.  

FTIR was implemented to successfully identify the modification of the MWCNT surface with 

PVP and human IgG.   

Optimization of the MWCNT-antibody conjugation was carried out in order to maximize 

detection capability.  The amount of PVP was reduced while maintaining the solubility exposing 

more binding site for the antibodies.  The amount of antibodies used for conjugation was also 

increased ensuring that most binding sites on the CNT are occupied.  Both optimization 

parameters were successful in enhancing the amount of conjugated antibodies.  However, the 

conjugation protocol has to be modified or quantification of unbound antibodies has to be 

implemented in order to apply the parameters without limitations.  Looking ahead, the 
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chemically functionalized MWCNT network provides quantitative immunosensing capability 

based on simple and direct electrical measurements.   
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CHAPTER 4  

CARBON NANOTUBE-BASED LATERAL FLOW IMMUNOASSAY 

4.1 Introduction 

This chapter describes an immunoassay technique using CNTs as a sensing label for 

enhanced signal detection.  The immunoassay technique is applied on lateral flow (LF) system 

for the first time, where the CNT labels provide conductimetric and colorimetric detection for 

quantitative and qualitative analysis of binding reactions.  The remarkable electrical conducting 

properties of CNTs coupled with high affinity and selectivity of antibodies provides sensitive 

immunosensing capability.  The developed CNT functionalization protocols for aqueous 

solubility and antibody conjugation, as discussed in Chapter 3, provides the capability of 

immunosensing in this chapter.  

  The LF system is composed of porous membranes for immobilization of capture 

molecules and sample transport by capillary action.  As a result of specific binding reaction, the 

conjugated MWCNTs form a conducting network at the capture zone and allow conductance 

measurement corresponding to the captured analyte.  Competitive and sandwich immunoassay 

formats are demonstrated.  This detection mechanism combined with the LF system is simple, 

rapid, and inexpensive immunosensing suitable for point-of-care diagnostics.   

4.1.1 Lateral Flow Immunoassay Protocol 

Lateral flow (LF) immunoassay is one of the most successful point-of-care diagnostic 

tools commercially available for detecting various health and environmental agents [117-122].  

A LF immunosensor is composed of a porous membrane for both immobilizing biological 

receptors and transporting sample reagents.  The porous membrane drives the sample flow by 
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capillary action without external flow control.  Sample reagents are transported in the lateral 

direction through the membrane and are captured by the biological receptors immobilized at the 

capture zone.  LF immunosensors are simple to use, low-cost, rapid, and portable with relatively 

long shelf life.  Examples of LF diagnostics include home pregnancy tests, detection of drugs of 

abuse, and diagnosis of infectious diseases.   A LF immunoassay system has also been explored 

extensively for cardiac and cancer markers in the blood that require periodic monitoring and 

rapid diagnosis in timely treatment [123-124].   

4.1.2 CNT as Sensing Label 

Generally, LF immunosensors are based on optical detection where tagged particles or 

enzymes provide visible signal generation or amplification [125-127].  Several efforts have been 

made towards signal quantification using enhanced colorimetric labels or conducting materials 

such as phosphorescent nanoparticles [125], polyaniline [126], and polyaniline with colloidal 

gold [127].  Colorimetric techniques are often limited by low sensitivity while fluorescent 

techniques suffer from instability, photobleaching, activation step, and requirement for a 

complicated reader device.  This chapter addresses such limitations by utilizing carbon 

nanotubes (CNTs) as a labeling material for direct electrical signal measurement.  Compared to 

CNTs, other conducting materials such as colloidal gold and polymer nanowires do not possess 

the unique material properties suitable for surface functionalization or maintain high electrical 

conduction after binding reaction [72, 127]. 

 



61 

 

4.2  CNT-Based Lateral Flow Immunoassay 

4.2.1 Detection Principle 

The LF immunoassay detection protocol for quantitative determination of binding 

reaction using CNT labeled antibody in competitive format is illustrated in Figure 4.1.   

MWCNTs are conjugated with human immunoglobulins G (IgG) to bind with Protein A 

immobilized on the immunostrip at the capture zone.  The immunoassay system is composed of 

nitrocellulose membranes with sample application and absorption pads for transporting sample 

reagents in lateral direction by capillary force.  The binding reaction between human IgG and 

Protein A is traced by a visible colorimetric signal generated by the MWCNT labels trapped at 

the capture line.  The MWCNT network along the capture line also exhibits conductance 

difference corresponding to the amount of binding in aqueous environment.     

    

 

 

 

 

 

 

 

Figure 4.1  Detection principle of the CNT-labeled immunosensor for quantitative lateral flow 

diagnostics in competitive format.   
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Figure 4.2  Detection principle of the CNT-labeled immunosensor for quantitative lateral flow 

diagnostics in sandwich format.   

 

For sandwich immunoassay, human IgG is first immobilized at the capture zone to bind 

with the anti-human IgG that is applied to the LF immunostrips.  The binding reaction is 

indicated by MWCNT labels that are attached to secondary human IgG providing colorimetric 

and electrical signals.  The CNT-based detection principle for sandwich LF immunoassay is 

illustrated in Figure 4.2.  In both immunoassay formats, blocking schemes are implemented to 

insulate the surface of the CNTs and the LF immunostrips from unwanted binding. 

4.2.2 Materials and Reagents 

Carboxylated MWCNTs (Purity > 95 wt%) were obtained from Cheaptubes, Inc., 

(Brattleboro, VT).  Hi-flow Plus nitrocellulose membranes (HF13502), glass fiber pads, cellulose 

membranes, and a supporting card for lateral flow assay were obtained from Millipore (Bedford, 

MA).  Protein A suspended in solution was obtained from BioVision, Inc., (Mountain View, 

CA).  Purified human immunoglobulin G (IgG, 6.2 mg/ml) suspended in 0.01 M sodium 
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phosphate (0.15 M NaCl, pH 7.4) was obtained from Sigma-Aldrich (St. Louis, MO).  

Polyvinylpyrrolidone (PVP, MW 10,000), bovine serum albumin (BSA), Tween-20, 

glutaraldehyde, and 2-(N-morpholino)ethanesulfonic acid (MES) were from Sigma-Aldrich.  1-

(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-

hydroxysulfosuccinimide (Sulfo-NHS) were obtained from Thermo Fisher Scientific, Inc. 

(Rockford, IL).  All immunoreagents were diluted in pH 7.4 phosphate saline buffer (1X PBS) 

unless otherwise noted.   

4.2.3 Modification of MWCNTs 

Uniform dispersion of the MWCNTs was critical to achieve proper surface 

functionalization with antibodies as discussed in Chapter 3 and also to efficiently flow the 

samples through the porous membrane.  In order to prepare the carbon nanotubes and accelerate 

the dispersion 1.5 mg of carboxylated MWCNTs were sonicated in 2 ml of deionized (DI) water 

with 0.6 mg of PVP.  Following the dispersion procedure, the MWCNTs were reacted with 

coupling agents to attach antibodies through stable amide linkage.  The coupling agents adsorbed 

on the surface of the MWCNTs not occupied by the PVP.  This was carried out by mixing the 

MWCNT solution with 1 ml of EDC (0.4 M) and Sulfo-NHS (0.1 M) in pH ~ 6.0 MES buffer.  

The solution was left to react for 30 minutes at room temperature.  The mixture was centrifuged 

at 13,000 rpm for 3 minutes with PBS buffer and the supernatant was discarded.  The washing 

and re-suspending process was repeated several times to remove excess reagents.  Then, 100 µl 

of the human IgG solution at 200 µg/ml concentration in PBS buffer was added to the MWCNT 

suspension.  The mixture was washed and several times to remove unbound human IgG, and the 

resulting MWCNT-antibody conjugate solution was kept at 4ºC until use.   



64 

 

4.2.4 Preparation of the LF Strips 

A nitrocellulose membrane was utilized as a detection pad with designated capture site 

for immobilizing capture molecules.  Fiberglass for a sample application pad and cellulose 

membranes for absorbing excess reagents were placed over the nitrocellulose membrane at the 

two ends of the immunostrip.  The LF immunosensor was prepared using the following 

procedure.  First, a nitrocellulose membrane was saturated in 10% (v/v) methanol in deionized 

(DI) water for 30 minutes to remove any residues and dried in air at room temperature.  The 

membrane was then treated with 0.5% (v/v) glutaraldehyde solution to strengthen the binding of 

Protein A or human IgG on the nitrocellulose membrane and rinsed several times with DI water.  

After drying, the membrane was ready for antibody immobilization.  For competitive assay, 

Protein A was diluted in phosphate buffered saline (PBS) to 1 mg/ml and dispensed on the 

nitrocellulose membrane to form the capture line by dragging a dispenser across the capture line 

with manual control.  The membrane was dried at room temperature before being incubated with 

2% BSA and 0.05% (v/v) Tween-20 in PBS for 1 hour to block the membrane from making 

unwanted binding.  The membrane was rinsed several times with PBS containing 0.05% (v/v) 

Tween-20 to remove the excess blocking reagent and left to dry at room temperature.  For 

sandwich assay format, similar procedures were followed to immobilize human IgG in 1 mg/ml 

concentration at the capture zone. 

4.2.5 Preparation of LF System 

The LF immunosensor was constructed by assembling the sample application pad, the 

lateral flow membrane, and the absorbent pad on a support card that was cut into 7 mm width 

strips.  In the lateral flow immunosensor, sample solutions were delivered to the capture line and 
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excess solutions flowed to the absorption pad along the lateral direction at the end of the 

membrane.  For the competitive assay configuration, when the sample solution containing the 

MWCNT-IgG conjugate was applied to the sample application pad, the sample moved across the 

capture line where the immobilized Protein A made binding with the MWCNT conjugated 

human IgG.  For the sandwich immunoassay, the anti-human IgG was caught between 

immobilized primary human IgG and MWCNT labeled secondary human IgG.  As a result of 

binding, the human IgG bound MWCNTs formed a visible line with random agglomeration 

across the capture zone in both cases.     

The binding between the immobilized Protein A and MWCNT labeled human IgG was 

examined using scanning electron microscopy (SEM).  Figure 4.3 shows SEM pictures of the 

nitrocellulose membrane with lower and higher carbon nanotube coverage corresponding to the 

amount of binding at the capture line.  The visible capture line formed by the MWCNT network 

was subjected to electrical measurements for quantitative analysis.  Measurements were taken in 

the form of resistance, where conductance is the reciprocal of resistance.  Prior to conjugate 

sample application, the resistance across the capture line with immobilized Protein A was 

measured to be infinite.  After full signal development, the resistance across the conducting 

networks of the MWCNTs varied corresponding to the amount of antibody binding indicated by 

the MWCNT labels.   
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Figure 4.3 SEM images of the capture zone (a) before sample application (b) lower CNT 

coverage due to a smaller number of binding, and (c) higher CNT coverage due to a larger 

number of binding.   

 

4.3 Electrical Measurement System 

4.3.1 Integrated Electrodes  

 A soft electrode system was developed to measure the electrical signal on the 

immunosensors.  The electrode system is important in order to obtain stable and repeatable 

measurements with minimized contact resistance.  The electrode contact force was controlled by 

the displacement of compression springs applying uniform pressure to the strips.    This electrode 

(a) (b) 

(c) 
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system was especially useful to make electrical contact on soft materials such as the 

nitrocellulose membrane used for the LF strips.  The first design of electrical measurement setup 

that was used in this experiment is shown in Figure 4.4.  Top and bottom poly(methyl 

methacrylate) (PMMA) plates were drilled using a micromilling machine to create holes for 

stainless steel probes with 0.5 mm in diameter as shown in Figure 4.5(a).  Two pieces of metals 

were attached directly on top of the electrodes using silver conductive epoxy for electrical 

contact.  On the bottom plate, a groove was made to hold the immunostrips.  The electrodes were 

aligned on top of the capture zone, where the CNT network forms in order to obtain electrical 

measurements as shown in Figure 4.5(b).  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Design of integrated electrodes (a) 3D view of the top and bottom  plates and (b) the 

top plate with the two holes for inserting the electrodes and bottom plate with a groove to hold 

the immunostrips (Figure 4.4 con’d). 

 

(a) 
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Figure 4.5 (a) Polymer plates with integrated electrode showing a close up image of the 

electrodes (b) electrical measurement and data recording setup for the LF immunosensors using 

the integrated electrodes (Figure 4.5 con’d). 

(b) 

(a) 
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4.3.2  LF Cartridge System  

A second LF cartridge was developed in order to provide improved packaging of the 

immunostrips for portable and convenient testing setup.    The cartridge was fabricated using 3D 

printing/molding machine (Dimension 3-D/stratasys).  The 3D model of the cartridge is shown in 

Figure 4.6(a).  The top cover holds the sample inlet and space for the insertion of the electrodes 

while the bottom cover holds the immunostrip.  The alignment marks on both covers provide 

proper placement of the electrodes at the capture zone when the cartridge closes.  Dimensions of 

the LF cartridge system in millimeters are shown in Figure 4.6(b).  Electrical contacts were made 

on the cartridge using silver conductive epoxy as shown in Figure 4.6(c).  For signal 

measurements, a multimeter could simply be attached to the cartridge as shown in Figure 4.6(d).  

(b) 
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In addition, the cartridge is inexpensive and simple to fabricate making it suitable for mass 

production of point-of-care test and affordable to the developing world.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 The developed LF cartridge (a) the 3D model of the cartridge and the top and bottom 

covers when opened (b) the dimension of the cartridge (c) the fabricated cartridge, and (d) 

demonstration of simple electrical measurements on the LF cartridge (Figure 4.6 con’d). 

 

 

(a) 
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(b) 



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(d) 

(c) 

10 mm 
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4.4 Results and Discussion 

4.4.1 Non-specific Binding 

CNTs have natural affinity to biomolecules that is not desired in immunoassay since it 

could lead to false signaling [48].  Blocking schemes are required to prevent the non-specific 

interaction.  In this experiment, non-specific binding was investigated by running control tests 

with partially and fully functionalized MWCNTs in a competitive immunoassay format.  First, a 

sample solution containing MWCNTs treated with PVP only was applied to the Protein A 

immobilized lateral flow immunostrip.  In this situation, unwanted binding was evident between 

the carbon nanotubes and the immobilized Protein A as shown in Figure 4.7(i).  This unwanted 

binding could have been caused by the interaction between the exposed surface of the MWCNTs  

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Non-specific adsorption on the nitrocellulose membrane (i) carbon nanotubes partially 

coated with PVP bound to Protein A by non-specific adsorption which must be addressed to 

avoid false signal (ii) almost no carbon nanotubes at the capture line showing that the surface of 

carbon nanotubes were completely covered eliminating non-specific adsorption after the 

application of crosslinking agent, EDC, and Sulfo-NHS, and (iii) binding between the MWCNT-

IgG conjugate and immobilized Protein A. 

(i) (ii) (iii) 

 5 mm 
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and the immobilized Protein A.  Next, the crosslinking agents, EDC and Sulfo-NHS, were added 

to the PVP treated CNTs.  When this solution was applied to the immunostrips, no binding 

reaction was observed between the MWCNTs and the immobilized Protein A as shown in Figure 

4.7(ii).  This could be due to the fact that the surfaces of the MWCNTs were completely covered 

by the PVP and the amide coupling agents leaving no unoccupied sites for non-specific binding.  

For comparison, the binding between IgG and Protein A was tested by applying the MWCNT-

IgG conjugate solution to the immobilized Protein A on the LF immunostrip.  The capture line as 

shown in Figure 4.7(iii) indicates likelihood of specific binding between human IgG and Protein 

A.  

4.4.2 Calibration of the LF Immunosensor 

Conjugate solutions were prepared ranging from 0 to 200 µg/ml, and 50 µl of each 

solution was applied to the lateral flow immunostrips on which Protein A was immobilized at the 

capture line.  The amount of binding between the applied conjugates and the Protein A was 

indicated by the corresponding intensity of the signal at the capture line as shown in Figure 4.8.  

The calibration curve was useful in determining the detection limit and linearity for the conjugate 

solution.  For quantitative analysis of the binding reaction, the resistance (or conductance) across 

the capture line was measured for the immunostrips after the complete development of the 

visible signal at the capture line.  As the concentration of the MWCNT-human IgG increased, the 

measured resistance decreased due to the electron transfer established by the carbon 

nanotubenetwork.  Multiple replications of the immunostrips of same concentrations were tested 

and the measured electrical signals were found to be within range.   
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Figure 4.8 Calibration results using conjugate solutions of different concentrations.  CNTs as 

label provided a quantitative electrical detection capability. 

 

4.4.3 Competitive Immunoassay 

Human IgG solutions of varying concentration ranging from 25 to 200 µg/ml as a target 

analyte were added to the MWCNT-IgG conjugate solution to demonstrate the performance of 

the immunosensor.  The concentration of the conjugate solution was 200 µg/ml and 50 µl of the 

mixed sample solution was applied to each device.  When the solution was applied to the 

immunostrip, the target human IgG competed with the conjugate for binding site at the capture 

line.  As the concentration of the target analyte increased, it occupied more binding sites limiting 

the binding reaction between the conjugated human IgG and the Protein A.  This produced a 

detection signal across the capture line varying in color intensity as depicted in Figure 4.9(a).   
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Figure 4.9 Competitive immunoassay results (a) lateral flow immunostrips tested with target 

concentrations in g/ml (i) 25, (ii) 50, (iii) 75, (iv) 100, (v) 150, and (vi) 200 (from left to right) 

and (b) the measured electrical resistance of the capture lines.   

 

(i) (ii) (iii) (iv) (v) (vi) 

(a) 

(b) 
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The capture lines became lighter in color intensity with increasing target human IgG 

captured by the Protein A.  This could be explained by the binding of the free target human IgG 

with Protein A limiting the amount of CNT network at the capture line.  This detection signal 

was also subjected to electrical measurement corresponding to the amount of binding between 

the target human IgG and Protein A as shown in Figure 4.9(b).  For quantitative analysis, the 

conductance was measured across the capture line where the resistance increased or the 

conductance decreased with increasing concentration of the target human IgG.  The graph in 

Figure 4.9(b) shows the measured results at specific concentrations.  Although the capture lines 

became visually indistinguishable with increasing concentration of target human IgG (100, 150, 

and 200 µg/ml), the measured electrical conductance clearly showed variation providing 

quantitative detection.  Since the capture zone was placed at a predetermined location, visibility 

of the signal was not an issue for positioning the electrodes.  The contacting force was kept 

uniform throughout the experiments to maintain constant contact resistance.  However, 

fluctuation of the signals upon contact was often observed and signals had to stabilize before 

conductance measurement was obtained.   

Overall sensitivity of the demonstrated detection techniques could be varied by changing 

the sample volume and detection time.  In this experiment, the detection signals at the capture 

zone were saturated in 15 minutes after applying 50 µl of sample solution for all concentrations.    

For the calibration and competitive results, the conductance measurements were obtained within 

a fixed time interval of 3 minutes corresponding to signal stabilization.  Consequently, the mean 

values with relative standard deviation were calculated and plotted for the measured resistance 
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signals.  The results and discussion above proves the viability of the detection mechanism as 

depicted in Figure 4.1.   

4.4.4 Sandwich Immunoassay 

For sandwich immunoassay, a MWCNT-human IgG conjugate solution of 200 µg/ml 

concentration was used.  Preparation of the conjugate solution was slightly modified from the 

competitive format.  The PVP amount used to disperse the MWCNTs was reduced to 25% to 

obtain less PVP coverage and more conjugated antibodies.  Anti-human IgG was used as a target 

analyte to be captured between the immobilized human IgG (primary antibody) and the 

conjugated human IgG (secondary antibody).  Prior to sample application, no signal through the 

immunosensor was measured due to infinite resistance between the electrodes.  The 

immunosensors were also calibrated with buffer solution used to dilute the samples.  Following 

calibration, varying concentration of the anti-human IgG solutions were prepared and applied to 

the immunosensors as illustrated on Figure 4.2. A total volume of 50 µl was applied to each 

immunosensor with 1:4 ratio of anti-human IgG solution to conjugate solution.  30 µl of washing 

buffer was also used to push the samples to the capture line, where unbound and excess reagents 

were transported to the absorbent pad.  Detection of 0, 0.1, 0.5, 1, 5, 10, 20, 50 ng/ml of anti-

human IgG was made successfully, where the 0 ng/ml was used as a blank solution.  As the 

concentration of the anti-human IgG varied, different amount of CNT network was formed at the 

capture line.  The conductance across the capture line was directly monitored in real-time 

producing signals corresponding to the amount of captured antigen.  Figure 4.10 shows the 

measured resistance as a function of time.  This figure includes the data points where the signal 

has stabilized indicating the saturation levels. One of the limitations experienced in the setup was 
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Figure 4.10 Plot of the resistance measurements as a function of time obtained for LF sandwich 

immunoassay with varying anti-IgG concentrations in ng/ml (a) 50, (b) 20, (c) 10, (d) 5, (e) 1, (f) 

0.5, (g) 0.1, and (h) 0. 

 

the saturation time that varied between different tests.  This difference was due to the flow 

velocity that was difficult to control through the immunostrips, even though all parameters were 

kept consistent.  In addition, fluctuation of the signal was observed, especially at the beginning 

of the measurements, even though the contacting force of the immunosensor device was kept 

constant.   
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The measured resistance values during one minute of signal saturation were taken to plot 

the calibration curve with the mean resistance values including error bars based on standard 

deviation as shown in Figure 4.11 and Table 4.1.  The one minute duration was chosen in order 

to establish a relevant relationship among all the tests when comparing the conductance results.  

The measured resistance values increased with decreased analyte concentration.  The tested 

immunostrips corresponding to the above target concentrations and signals are shown in Figure 

4.12.  The intensity of the lines at the capture zone corroborated the description aforementioned 

and demonstrates the practicality of CNT as sensing label for sandwich immunoassay on LF 

system.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Calibration curve for anti-human IgG detection using LF sandwich immunoassay.   
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Table 4.1 Summary of the measured resistance values for varying anti-IgG concentrations for LF 

sandwich immunoassay. 

Concentration 

(ng/ml) 

Resistance 

(MΩ) 

Standard 

Deviation 

50 1.40 0.435 

20 4.79 0.444 

10 5.91 1.588 

5 9.52 0.294 

1 10.75 1.312 

0.5 12.47 0.145 

0.1 13.30 3.020 

0 14.61 2.480 

 

 
 

Figure 4.12 Lateral flow immunostrips demonstrating colorimetric detection capability in 

sandwich format for target concentrations in ng/ml (i) 50, (ii) 20, (iii) 10, (iv) 5, (v) 1, (vi) 0.5, 

(vii) 0.1, and (viii) 0.  

 

 

For the low analyte concentration (ng/ml) tested in this work, the colorimetric signals 

obtained were difficult to quantify visually.  However, distinct electrical measurements were 

obtained detecting anti-human IgG concentration below 1 ng/ml. Results show that lower 
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detection limits are possible, even though signals may take longer to stabilize as analyte 

concentration decreases.   

4.5  Summary 

The utility of CNT labels for sensitive immunoassay based on electrical detection was 

successfully demonstrated on LF system.  Resistance of the MWCNT matrix formed at the 

capture zone was directly measured for conductimetric signal corresponding to low analyte 

concentration that otherwise would have been difficult to quantify based on colorimetric signals.  

Significant change in electrical resistance was observed for varying antigen concentrations and 

anti-human IgG concentration below 1 ng/ml was measured.  The detection signals were 

measured using a conventional multimeter that is portable and easy to operate.  The developed 

cartridge with the integrated electrodes also provided convenient packaging and testing apparatus 

for the immunostrips.  The demonstrated CNT-based detection is simple, reliable, and 

inexpensive, which is suitable for point-of-care immunoassay devices.     

One limitation of LF systems is precise flow control through the porous membranes.  In 

this work, it was important to maintain the flow rate within a narrow range in order to fix 

detection time between the immunosensors.  The flow rate was mainly determined by the 

capillary action of the porous (nitrocellulose) membrane.  The results also suggest that obtaining 

higher sensitivity and lower detection limit (less than 1 ng/ml) is possible with the developed 

detection technique.  However, further optimization of the immunosensor could be useful in 

increasing the efficiency of the devices.  Automation of part of the LF system could be helpful in 

achieving these goals.  For example, the manual formation of capture zone could be replaced by 

using methods such as inkjet printer, spraying, or liquid spotting.   



83 

 

CHAPTER 5  

MICROFLUIDIC IMMUNOASSAY USING CARBON NANOTUBES  

5.1  Introduction 

This chapter reports the development of a microfluidic immunoassay using interdigitated 

array (IDA) microelectrode as the binding surface.  Even though CNTs and IDA microelectrodes 

have independently been used for immunosensing applications, the concurrent utilization of CNT 

matrix and IDA microelectrodes have not been demonstrated prior to this work.  The CNTs are 

used as a label, similar to the detection principle demonstrated in Chapter 4.  However, 

microfluidic immunoassay using PDMS microchannel is developed in order to improve the flow 

control and influence the detection limit and time.  Once sample is dispensed through the inlet, it 

is delivered to the reaction surface by passive control of capillary action.  The capture antibodies 

are immobilized directly on top of the interdigitated array (IDA) microelectrode that is integrated 

within a PDMS microfluidic channel.  As a result of binding, the CNTs form a conducting matrix 

across the IDA microelectrode for sensitive and continuous signal measurement.  In addition, 

sample volume required to carry out the immunoassay detection is reduced due to the size of the 

microchannel.  The fabrication technique and the detection principle of the on-chip immunoassay 

system in this chapter (as in the case for LF immunoassay) is simple, low-concentration, and 

disposable detection mechanism with a potential for a wide spread use of point-of-care tests.  

Dispersion and conjugation of MWCNTs was conducted using the developed methods descried 

in Chapter 3.  
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5.2  Microfluidic Immunoassay  

 The microfluidic technology has presented a new frontier in bioassay realm by 

integrating multiple functions.  The miniaturization of fluidic channels and chambers into 

microscale allows the use of smaller sample volume, faster analysis time, and automation [128].  

As a result of the improved parameters, sensitive, low cost, and reliable immunoassay devices 

with minimal human interference and errors have been developed [129].  In addition, the 

integration of analytical procedures within microchannels and microchambers has enabled the 

development of miniaturized analysis systems such as lab-on-a-chip (LOC) or micro total 

analysis systems (μTAS) [130].  These miniaturized systems have been studied extensively for 

applications such as protein detection, drug discovery, and clinical diagnosis.  Immunoassays 

could benefit a great deal from advances in/of microfluidic systems for improved sensitivity and 

efficiency.   

 Advances in fabrication of microfluidic devices and components such as pumps, valves, 

and mixers have made immunoassay analysis faster with high detection capability [131].  Sample 

volume and flow rate can be precisely controlled in microfluidic system resulting in sensitive and 

accurate detection of antibody reactions [132].  Another important factor for immunoassay is 

cost.  Sample and reagents for immunoassay are found in scarce amount and often come with 

high price.  The reduction in size of devices cuts the overall cost, enabling high throughput 

immunoassay tests.  In addition, small sample volume and integration of multiple functions 

decreases analysis time.   
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One major challenge for microfluidic system is to make it simple to use with minimized 

active component for reagent handling [129].  External flow control and incorporation of active 

component such as valves and pumps make the microfluidic device difficult to fabricate, 

complex to operate, and fragile.  Especially, efficient immunoassay systems for point-of-care 

applications have to be simple to use, easy to fabricate from low-cost materials, and provide 

passive flow control [133].   

5.3  Fabrication of Microfluidic Immunosensor  

 The mask fabrication for the microelectrodes was assisted by Edward Song, a 

collaborator and a PhD candidate.  After the mask fabrication, conventional lithography and wet 

etching technique was used to pattern the IDA microelectrodes.  The fabrication process is 

schematically illustrated in Figure 5.1.  For patterning the electrodes a 2’’ x 3’’ glass substrates 

were used.  Prior to metal deposition, cleaning of the glass substrates was carried out by soaking 

the glasses in trichloroethene (TCA) solution for 2 hours followed by a rinse using acetone, IPA, 

and DI water.  After the cleaning and drying process, the substrates were placed in the oven 

overnight at ~ 200 ºC.  Then, Cr/Au (50 nm/ 100 nm) layers were electron-beam deposited on the 

glass substrate at the Center for Advanced Microstructure and Devices, (CAMD) (Baton Rouge, 

LA).  For the fabrication of the IDA microelectrodes, positive photoresist, S1805 (Shipley Co., 

Marlborough, MA) was first poured on the glass substrate.  The PR was first spin coated at 3200 

rpm for 30 seconds, and then the speed was ramped up to 4000 rpm for 30 more seconds 

resulting in a thin layer of PR with ~ 1 µm thickness.  The substrate was transferred to a hot plate 

that was preheated to 105 ºC and stayed on the hot plate for 1 minute.  After the pre-bake, the 

substrates were cooled down to room temperature before loading into the Quintel UL7000-OBS 
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Aligner and DUV Exposure Station (Quintel Corp., Morgan Hill, CA) located at CAMD clean 

room.  The substrate was then exposed to UV light at an intensity of 32.8 mJ/cm
2
 for 3.3 

seconds.  The PR was then developed by immersing the substrates in developer, MF 351 

(Shipley Co., Marlborough, MA) that was diluted to 1:5 with water for ~ 3 minutes.  The 

progress of the PR development was continuously monitored while in the solution with the 

application of gentle agitation and use of optical microscope.  The substrate was then rinsed with 

acetone, IPA and DI water, and dried using nitrogen gas before proceeding to metal etching.  The 

Au etching process was carried out for ~ 5 minutes in a gold etching solution, GE-8148 

(Transene Comp., INC., Danvers, MA) that was diluted 10:1 with water.  Following gold 

etching, Cr was etched using Cr etching solution.  The inspection, rinsing, and drying process 

were repeated after each etching process.  The final step of the fabrication was to strip the PR 

using acetone, IPA and DI water. Nitrogen gas was used at the last stage to dry the IDA 

electrodes.   

Figure 5.2 shows low-magnification optical image of the fabricated electrode layout for 

20 µm electrode spacing.  The electrode array had a fixed area of 1.2 mm
2
 at the center of the 

layout and the number of electrode fingers varied for each device depending on the electrode 

spacing.  The length of the electrodes was 1 mm, leaving 200 µm spacing between the tip of the 

fingers and the electrode contact.  For electrical contacts to the electrodes, wires were attached to 

the contact pads using conductive silver epoxy.  Insulation of the contacts was carried out using 

uncured PDMS after fully curing the conductive epoxy.  The IDA design with 20 µm electrode 

spacing was chosen for further development.  Optimization of the fabrication process resulted in 

consistent electrode dimensions and avoided over etching problem. 
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Figure 5.1 Fabrication steps of the IDA microelectrodes on glass substrate (a) UV exposure of 

positive photoresist on Cr/Au deposited glass substrate (b) development of positive PR in UV 

expose area (c) Au etching (d) Cr etching, and (e) PR etching. 
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Figure 5.2 Optical microscope images of the modified IDA microelectrodes (a) with 20 µm 

electrode width and spacing (b) closer view of the electrode fingers. 

 

5.4  PDMS Microfluidic Device Fabrication 

5.4.1 Fabricating PDMS SU-8 Mold Master  

 The mold master for the PDMS microfluidic structure was fabricated based on a negative 

photoresist process using SU-8 50 (MicroChem Corp., Boston, MA).  The PDMS structures with 

1 mm and 2 mm channel width were designed.  The patterns for the mask were generated using 

AutoCAD for UV exposure.  Figure 5.3(a) shows the detail design parameters for the PDMS 

microfluidic channel with 2 mm width.  The UV lithography and fabrication process was 

conducted in clean room facility at CAMD.  After fabricating the mask, the mold master was 

fabricated according to the procedures listed below and the fabricated mold is shown in Figure 

5.3(b).   

 

(a) (b) 

(a) 

200 m 
  2 mm 

(b) 
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The steps in the procedures are: 

1. Spin coat photoresist on 4” silicon wafer for 100 µm thickness: 

a. Spread at 500 rpm (20 s) 

b. Spin at 1250 rpm (30 s) 

 

2. Pre-bake: 

a. Pre-heat hot plate to 25ºC and hold at 25ºC (30 min) 

b. Ramp from 25ºC to 65ºC, (30 min), hold at 65ºC (10 min) 

c. Ramp from 65ºC to 95ºC (30 min), hold at 95ºC (30 min) 

d. Cool down from 95ºC to 25ºC (2 hrs) 

 

3. Measure the thickness of the SU-8 resist using digital caliber 

 

4. Expose using 32.8 mJ/cm
2
 exposure energy for 45 seconds 

 

5. Post bake: 

a. Pre-heat hot plate to 25ºC and hold at 25ºC (30 min) 

b. Ramp from 25ºC to 65ºC, (30 min), hold at 65ºC (1 min) 

c. Ramp from 65ºC to 95ºC (30 min), hold at 95ºC (10 min) 

d. Cool down from 95ºC to 25ºC (2 hrs) 

 

6. Patterns were developed using SU-8 Developer with continuous agitation inspection for ~ 

10 minutes. 

 

7. The mold master was cleaned using IPA, DI water, and blow dried with N2 gas.  

 

 

5.4.2 PDMS Casting 

  The PDMS was then prepared by mixing the base and curing agent 10:1 ratio.  The 

PDMS was stirred well for ~ 2 minutes to ensure proper mixing.  The mixture was left to degas 

at room temperature to remove the bubbles for ~ 20 minutes.  Proper mixing and degassing are 

important steps in order obtain well cured PDMS structures.  The PDMS mixture was then 

poured onto the SU-8 master that was placed on top of an aluminum foil cover.  The PDMS was 

left to cure at room temperature for 12 hours.  After curing, each PDMS structure was removed 

from the master by cutting the mold using a razor.   
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Figure 5.3 Fabricated PDMS microfluidic structure (a) dimensions of the microchannel with 1 

mm (b) SU-8 mold master with 1 mm (top and bottom row) and 2 mm channel width (middle 

row).   

 

(b) (a) 
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5.4.3 PDMS Surface Treatment and Bonding 

 Surface treatment of the PDMS was investigated in regards to proper sealing of the 

channel structure with glass substrate and capillary action.  The hydrophobic surface property of 

a cured PDMS slab was investigated before and after treatment with corona discharge.  The 

corona discharge modifies the PDMS surface making it less hydrophobic similar to treatment 

with O2 plasma.  This effect could lead to improved sealing of the PDMS surface with a glass 

substrate and wetting properties when used in aqueous environment.  In order to test the effect of 

the surface treatment, small droplet of DI water was dispensed at different spots on the PDMS 

slab and the contact angle was measured. 

5.4.4 On-Chip Immunoassay Detection Mechanism 

 Diagram of the microfluidic immunoassay chip is shown in Figure 5.4.  The glass 

substrate with IDA microlectrode is placed at the bottom of the device.  The PDMS is placed on 

top of the glass substrate enclosing the IDA within the channel structure.  Sample and reagents 

are applied through the inlet of the PDMS microfluidic structure using a pipette.  The sample 

fills the channel, flows over the IDA microelectrode, and reaches the absorbent pad.  The 

absorbent pad (a nitrocellulose membrane) with dimensions of 4 mm width x 20 mm length 

draws excess reagents flowing through the microfluidic channel.  The flow rate of the sample 

and the total volume was mainly determined by the capillary action of the absorbent pad.  

Portion of the pad was inserted towards the end of the channel, squeezed between the PDMS and 

glass substrates.  The remaining portion of the membrane was outside of the PDMS cover and it 

was exposed to air.  Prior to actual immunoassay, preliminary tests were conducted with fluid 

samples to study the flow property through microfluidic chip.  Sufficient sealing between the 
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PDMS and glass substrate is important in order to have proper flow through the channel.  After 

sample application, the filling behavior and the flow speed within the channel based on the 

capillary force was investigated.  The feasibility of immunoassay using CNT labels was also 

tested based on specific and non-specific binding on the IDA microelectrodes.   

 

 

 

 

 

Figure 5.4 Design of the capillary-driven microfluidic chip.  
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5.5  Binding Test on IDA Microelectrodes 

5.5.1 Specific and Non-specific Binding  

 Specific and nonspecific binding test was conducted based on sandwich immunoassay by 

applying sample and reagents directly onto the IDA microelectrode.  The detection principle 

using CNT matrix as a label on the IDA microelectrodes can be seen in Figure 5.5.  First, a small 

droplet containing capture molecules was dispensed on the IDA to cover most of the electrode 

area (Figure 5.5(a)).  After immobilization of the capture molecules, a droplet of antigen was 

applied.   Conjugate solution containing the antibody labeled CNTs was then dispensed onto the 

IDA (Figure 5.5(b)).  Incubation time was allowed for interaction between capture molecules and 

conjugate solution. Finally, washing step was implemented to remove the unbound CNTs, where  

 

 

 

 

 

 

 

Figure 5.5 Illustrations of the detection principle using CNT labels on IDA microelectrodes (a) 

immobilization of capture molecule on gold IDA microelectrode (b) a cross-section of the IDA 

microelectrode during the application of conjugate solution, and (c) a cross-section of the IDA 

microelectrode showing the MWCNT network as a result of specific binding (Figure 5.5 con’d). 

 

(a) 
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the bound CNTs formed a network bridging the electrodes (Figure 5.5(c)).  The electrical signal 

was monitored during the binding reaction using the CNT labels through electrodes.   

5.5.2 Materials and Reagents 

Human IgG and anti-human IgG was used for the specific binding test on the IDA 

microelectrodes.  MWCNT-human IgG conjugate solution was prepared using protocols 

discussed in Chapter 3.  The concentration of the human IgG for conjugation was maintained at 

200 µg/ml.  Human IgG solution in 1 mg/ml concentration was used as a capture molecule and   

it was immobilized on the IDA electrode.  For binding reaction, anti-human IgG in 200 µg/ml 

concentration was applied onto the capture molecule, followed by the MWCNT-human IgG 

conjugate.  IDA microelectrode with 10, 20, and 40 µm spacing was tested.  BSA in buffer 

solution was used as a control analyte for non-specific binding test with the human IgG on 

separate electrodes under similar experimental conditions.    

 

(b) (c) 
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5.5.3 Results of Binding Test  

 Results of the specific and non-specific test on the IDA microelectrode with 20 µm 

spacing is shown in Figure 5.6.  The electrode with 20 µm spacing was chosen for the binding 

test because fabrication of the electrode with 10 µm spacing was not consistent and the 40 µm 

spacing was considered large for the application.  The real-time dynamic current response 

flowing through the IDA electrodes were monitored, where the amount of antibody binding was 

indicated by the MWCNT labels.  There was a significant increase in the electrical current 

response with the specific anti-human IgG binding compared to the non-specific binding of BSA.  

The variation in measured current signal was due to the difference in the amount of MWCNTs 

labels on the IDA microelectrodes as shown in Figure 5.7.  The SEM images for the IDA 

microelectrode show that the resulting MWCNT network for specific binding test was denser 

compared to the non-specific binding.   

 

  

 

 

 

 

Figure 5.6 Dynamic electrical measurements as a result of specific binding with anti-human IgG 

and non-specific binding with BSA using MWCNT labels on IDA microelectrode. 
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Figure 5.7 SEM images showing the conducting network formed across the IDA microelectrode 

by the MWCNT labels (a) specific binding of anti-human IgG and (b) non-specific binding of 

BSA.    

 

The specific and non-specific binding results demonstrated the feasibility of 

immunoassay using MWCNT labels on the IDA microelectrode for electrical measurements.  

The IDA microelectrode with 20 µm spacing was found to be the most suitable based on the 

results and other optimization protocols.  Characterization of the sample delivery and rinsing step 

was difficult in this test, since they were conducted directly on top the IDA electrode.  However, 

these problems are expected to be alleviated when implementing the microfluidic device for 

sample delivery.  

 

(a) 

(b) (a) 
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5.5.4 Sealing and Alignment of PDMS Microfluidic Channel 

The contact angle measurement for a PDMS slab with surface modification using corona 

discharge is shown in Figure 5.8(a).  Results show that the PDMS surface is inherently 

hydrophobic with average contact angle of 96.98º prior to treatment.  Drastic decrease in the 

hydrophilicity of the surface was observed immediately after treatment.  However, the aging 

effective of the surface modification was observed 2 hours after treatment and continued to 

increase linearly over 96 hours.  At day four, the contact angle was 93.35º, which is a close value 

to the contact angel before treatment.  Droplets with low and high contact angles indicating 

different times of the surface treatments (after .5 hours and after 96 hours) are shown in Figure 

5.8(b).  The results show that PDMS surface treatment provides sufficient but temporary 

modifications.    

 

 

 

 

 

 

Figure 5.8 Results for PDMS surface modification with corona discharge (a) plot of the contact 

angle measurements as a function of aging time (b) images of water droplets with low and high 

contact angles (Figure 5.8 con’d).   

 

(a) 
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For the proposed microfluidic chip, permanent bonding between the PDMS and glass 

substrates was not necessary.  Rather, good sealing of the microchannel is more critical in order 

to provide proper flow and detection capability.  However, there are several parameters that have 

to be considered in order to achieve good sealing based on the proposed chip design.  The IDA 

metal patterns on the glass substrate could introduce a gap that may not be easy to seal.  

Treatment of the microchannel with BSA for blocking purpose could also prevent successful 

sealing.  In addition, the immobilization of capture molecules on the IDA limits further surface 

treatments to influence surface properties.  For these reasons, the PDMS microchannel with and 

without corona discharge treatment was tested for sealing.  It was observed that both PDMS 

surfaces provide good sealing and no leakage of the flow was observe.  Alignment of the PDMS 

microfluidic structure could be performed using a stereo microscope or with the bare eye using 

alignment marks.  Figure 5.9 shows the aligned PDMS channel on top of the glass substrate 

enclosing the IDA microelectrode. 

 

(b) 
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Figure 5.9 Microscopic image of the PDMS microfluidic structure placed on top of the IDA 

microelectrode on glass substrate.  

 

5.6  CNT-Based Immunoassay Using PDMS Microfluidic Chip 

5.6.1 Detection Protocol 

 The on-chip immunoassay using CNT labels for quantitative detection in sandwich 

format was conducted.  IDA microelectrodes were used as a sensing surface and the detection 

protocol was similar to the detection protocols discussed in Section 5.5.  However in this case, a 

PDMS microfluidic chip is used to transport sample and conjugate solution to the detection zone.  

The immunoassay was based on selective binding between human serum albumin (HSA) and 

anti-human serum albumin (anti-HSA).  HSA is a predominant protein in the human blood 

plasma and the detection of HSA is used to indicate various complications including renal, liver, 

and kidney diseases.  MWCNT labels that were covalently attached to HSA were used for signal 

detection.  Capture HSA was immobilized on the IDA microelectrode, where the binding 

 1 mm 
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reaction took place.  After immobilization of capture HSA, blocking scheme was carried out on 

both the glass and the PDMS substrates by flowing through the microfluidic channel in order to 

minimize non-specific binding.  Following the blocking treatment, both substrates were rinsed 

with DI water and blown using N2 gas.  After fully dried, the two substrates were sealed together.  

Sample and conjugate solutions were then applied through the sample inlet, where the sample 

was driven by capillary action once the front meniscus reaches the absorbent pad.  The flow rate 

was determined by the capillary pump at the end of the PDMS channel that absorbed the excess 

reagents.  As the sample flow over the IDA microelectrode, anti-HSA was captured by the 

immobilized HSA.  MWCNT-HSA conjugate was also captured by the anti-HSA.  The amount 

of binding was indicated by the MWCNT labels forming network/matrix across the IDA 

microelectrode.  Electrical current response through the MWCNTs was monitored using the IDA 

microelectrode.   

5.6.2 Materials and Reagents 

Human serum albumin (HSA) and anti-human serum albumin (anti-HSA) were obtained 

from Sigma-Aldrich (St. Louis, MO).  Carboxylated MWCNTs (Purity > 95 wt%) were obtained 

from Cheaptubes, Inc., (Brattleboro, VT).  Hi-flow Plus nitrocellulose membranes (HF13502) 

were obtained from Millipore (Bedford, MA).  PDMS Sylgard 184 was obtained from (Dow 

Corning, Midland, MI).  Polyvinylpyrrolidone (PVP, MW 10,000), bovine serum albumin 

(BSA), Tween-20, glutaraldehyde, and 2-(N-morpholino)ethanesulfonic acid (MES) were from 

Sigma-Aldrich.  1-(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-

hydroxysulfosuccinimide (Sulfo-NHS) were obtained from Thermo Fisher Scientific, Inc. 
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(Rockford, IL).  1X PBS buffer was prepared by diluting PBS powder concentrate (Fisher 

Scientific, Inc., Pittsburg, PA) in DI water and adjusting the pH to 7.4.   

5.6.3 Experimental Procedure 

 Each PDMS microfluidic structure was cut out from the mold and an inlet with ~ 1 mm 

in diameter was punched through.  The PDMS structure was then washed with DI water and 

dried using N2 gas.  2 µl of the HSA solution with 10% (v/v) concentration was used for 

immobilization on the IDA electrode.  The PDMS substrate was placed on the IDA electrode and 

5 µl of blocking solution was applied through the inlet.  The blocking solution was prepared 

using 2 % BSA in PBS buffer with 0.05 % Tween-20 (v/v).  After 10 minutes of incubation, the 

blocking solution was rinsed by applying PBS buffer through the inlet.  The PDMS and glass 

substrates were separated and completely dried before sealing again.  The MWCNT-HSA 

conjugate solution was prepared following similar procedures discussed in Chapters 3 and 4.  

HSA solution, 0.3 % (v/v) in PBS buffer was used for conjugation.  The electrical current 

readings for 1V applied voltage were obtained using Keithley 6485 Picoammeter (Keithley 

Instruments Inc.,) with RS232 interface for data recording.  

5.7  Results and Discussion 

5.7.1 On-Chip Immunoassay 

The developed PDMS microfluidic device for CNT-based immunoassay is shown in 

Figure 5.10.  Continuous flow of the applied sample solution in the microchannel was obtained 

by the capillary pump of the absorbent pad.  Initial investigation of the flow behavior revealed 

that the flow could be too fast in order to realize efficient binding and detection capability.  

Optimization of the flow was thus conducted to obtain slower speed based the absorbent pad 
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property and the selected dimensions.  The speed of the flow was reduced by keeping the 

absorbent pad moist prior to sample application.  For analyte detection, anti-HSA solution was 

prepared in varying concentrations. Sample solution containing each concentration of the anti-

HSA solution and conjugate solution were prepared 1:4 ratio, respectively.  Prior to sample 

application, the current through each chip was measured to ensure the viability and consistency 

of the devices.  5 µl of sample solution was then applied to each chip.  Anti-HSA and conjugates 

were captured as the solution moved across the IDA, where the MWCNT labels formed a 

network/matrix corresponding to the amount of binding.  Detection of 0, 0.5, 1, 5, 10, 20 ng/ml 

of anti-HSA was made successfully.  The flow was fast immediately after sample application and 

it slowed down as the flow front reached the absorbent pad at the end of the channel.  The flow 

was continuously driven by the capillary action.  The current response for the binding reaction 

was monitored starting from sample application and long after the sample was removed from the 

channel as shown in Figure 5.11.  Signal fluctuation was observed when the flow front first 

reached the IDA.  The signal increased instantly, but dropped back and continued to stabilize for 

the remaining measurements.  The current drop observed overtime could be explained by the 

binding reaction that mostly occurred at early stage of the flow.  Figure 5.12 shows the measured 

stabilized current as a function of time for varying anti-HSA concentrations.  The current values 

during the last 60 seconds after the flow completely crossed the IDA electrode (~ t = 200 

seconds) were used to plot the calibration curve with the relative standard deviation as shown in 

Figure 5.13 and Table 5.1.   
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Figure 5.10 Developed PDMS microfluidic chip with integrated IDA microelectrode for 

immunoassay.   

 

 

 

 

 

 

 

 

 

Figure 5.11 Plot of the full current reading starting at sample application until signal saturation 

was reached.   
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Figure 5.12 Plot of the current measurements as a function of time obtained for on-chip  

immunoassay with varying anti-HSA concentrations in ng/ml (a) 0, (b) 0.5, (c) 1, (d) 5, (e) 10, 

and (f) 20.  

 

Table 5.1 Summary of the measured current for varying anti-HSA concentrations for on-chip 

immunoassay. 

 

 

 

 

Concentration 

(ng/ml) 

Current 

(µA) 

Standard 

Deviation 

0 0.025 0.0007 

0.5 0.028 0.0016 

1 0.077 0.0082 

5 0.083 0.0109 

10 0.108 0.0110 

20 0.136 0.0086 
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Figure 5.13 Calibration curve for anti-HSA detection using PDMS microfluidic chip.   

 

The measured current values increased with increasing antigen concentration.  Results 

show that the on-chip immunoassay provides a sensitive detection mechanism with concentration 

below 1 ng/ml.  In addition, the PDMS microfluidic chip provides convenient sample delivery 

with autonomous flow control.   

The formation of the MWCNT network on the IDA was characterized using SEM as 

shown in Figure 5.14.   The images show the MWCNT network formation connecting the fingers 

of the IDA electrode.  Higher density of MWCNT labels corresponding to larger amount of 

captured target analyte (concentration) is shown in Figure 5.14(a).  A lower coverage of the 

MWCNT labels is shown for lower amount of captured analyte in Figure 5.14(b). 
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Figure 5.14 SEM characterization of MWCNT matrix formation across the IDA microelectrodes 

as a result of HSA and anti-HSA binding (a) lower density of the MWCNT labels for low anti-

HSA concentration and (b) higher density of the MWCNT matrix for larger anti-HSA 

concentration (Figure 5.14 con’d).  

 

 

(a) 

(a) 

(b) 



107 

 

5.7.2 Flow Characterization  

Figure 5.15 represents the sequence of images that occurred within the first three seconds 

after sample application.  The time prior to sample application is indicated by t = 0 seconds, 

where no solution was present within the microchannel or in sample drop zone.  The point of 

sample application was set as t = 1 second.  At t = 2 seconds, the figure demonstrates that the 

solution had just crossed the electrodes, but did not reach the absorbent pad yet.  This stage is 

equivalent to the spike in current reading as shown in Figure 5.11.  At t = 3 seconds, the solution 

has reached the absorbent pad and the electrode was fully covered with the sample solution.  As 

demonstrated in the pictures, the initial flow of the solution is extremely fast, where the flow 

front moved at average speed of ~ 5.5 mm/s.  However, the average flow speed of the solution 

was much slower than the initial speed.  This average speed was determined by optimizing the 

pumping rate of the absorbent pad.  In order to achieve the experimental flow speed, the 

absorbing capacity of the pad without causing back flow into the microchannel was first 

determined.  Accordingly, 10 µl of buffer solution was applied to each absorbent pad prior to the 

sample application into the microchannel.  The applied buffer reduced the pumping capacity of 

the absorbent pad.  The modified rate of the absorbent pad determined the flow rate and total 

volume of the applied sample solution.  The flow speed of the solution was optimized to give an 

average velocity of 153 µm/s.  

Most of the binding reaction occurred when the sample solution first covered the IDA 

microelectrode.  The average time for the flow to finish crossing the IDA was 180 + 10 seconds.  

Figure 5.16 shows before and after the sample flow end crossed the IDA electrode.  The anti-

HSA and HSA binding took place on the IDA microelectrode surface followed by the MWCNT-
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HSA conjugate.  Then the MWCNTs formed a conducting network on the IDA electrode 

corresponding to the amount of binding.  The current measurement taken for one minute duration 

after 200 seconds was used to plot the calibration curve and quantify the amount of binding.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Characterization of the flow of the sample solution in the PDMS microfluidic 

channel in the first three seconds of sample application at (a) t = 0 s, (b) t = 1 s, (c) t = 2 s, and 

(d) t = 3 s.     

(c) (d) 

(a) (b) 

t=0s 

t=2s 

t=1s 
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Figure 5.16 Characterization of the flow in the PDMS microfluidic channel before and after the 

sample solution crossed over the IDA at (a) t = 160 s, (b) t = 170 s, (c) t = 180 s, (d) t = 200 s, 

and (e) t = 230 s (Figure 5.16 con’d).     
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5. 8  Simulation 

5.8.1 Fundamental Equations in Microfluidics 

The basic equation governing incompressible fluid dynamics is the Navier-Stokes 

equation  

 

where  is the density, u is the fluid velocity, P is the pressure, η is the fluid viscosity, and f is 

body forces.  The Navier-Stokes equation comes from conservation of mass and momentum 

equations assuming that density and viscosity is constant for a given fluid.  The terms on the left 

side are for the inertial acceleration of the fluid and the terms on the right are for forces acting on 

the fluid including body forces.  Scaling flow equations and dimensions of the microfluidic 

t=230s 

(e) 
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geometry provides a reasonable method in analyzing the different forces acting on the flow and 

characterizing the flow in the microchannels.   

Another important parameter often expressed in dimensionless number is the Reynolds 

number.  The Reynolds number provides the ratio of the inertial force to the viscous forces  

 

where uo is the average flow velocity and l is the characteristic length.  At low Reynolds 

numbers, the fluid dynamics is dominated by the viscous drag rather than by inertia.  For fluid 

flow in microstructures having characteristic length of 10 ~ 200 µm, the Reynolds number 

ranges between 10
-3

 and 10.  In such cases of low Reynolds number, fluid flow has a laminar 

pattern.  The governing Navies-Stokes equation also simplifies, since the left-hand side of 

Equation 5.1 dealing with inertial terms can be ignored.  The simplified Navies-Stokes equation 

becomes linear eliminating the time derivatives 

 

In this case, the fluid flow is dominated by the pressure distribution, the incompressibility 

constraint, and the boundary condition at the walls.  

5.8.2 Microfluidics Simulation 

In this research, simulations were performed in order to analyze the different parameters 

involved in the developed microfluidic immunoassay system.  Simulation can provide an in-

depth understanding of the kinetics of microfluidic immunoassay system. In addition, numerical 
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analysis is essential to the efficient design of the microchannel with optimized parameters.  

These parameters include analyte concentration, flow velocity, and height of microfluidic 

channel.  Similarly, bulk analyte transport and binding ability are important factors in the 

reaction kinetics between analytes and immobilized capture molecules such as anti-IgG and IgG.  

The specific binding kinetics of anti-IgG and immobilized IgG occurs at the solid-liquid 

interface/binding surface of the immunosensor.  In this work, a microelectrode was used as the 

reaction surface where the binding occurred.  The detected immunoassay signal was dependent 

on the reaction kinetics of association and dissociation, and diffusion based analyte transport 

within the microchannel [134].  Several numerical studies have been conducted in regards to 

binding kinetics of antibody-antigen related to microfluidic immunoassay [135-138].  

The reaction kinetics can be expressed as a two-step process [139].  The first is a mass-

transport process, where the IgG is transported by diffusion from the bulk solution toward the 

microelectrode surface. 

Cbulk  Csurface 

The second is a chemical reaction process where the binding of the antigen-antibody 

takes place, 

Csurface + B  CB 

where Cbulk is the concentration of the anti-IgG in the bulk, Csurface is the anti-IgG concentration 

at the binding surface, B is the immobilized IgG concentration at the surface of the 

microelectrode, and CB is the anti-IgG and IgG complex concentration.   
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 Analyte concentration gradient is often formed when the analyte/anti-IgG takes a longer 

time to travel to the reaction surface than the binding reaction [140].  The thickness of the 

gradient layer depends on the influence of the reaction and diffusion rates as well as the flow 

velocity [141].  The diffusion velocity of many biomolecules is relatively slow compared to the 

reaction rate in a fluid environment, as measured by the Damkoehler number [141].  Therefore, 

analyte concentration gradient layer was formed on the reaction surface of the microelectrode 

(with the assumption of no-slip condition at the walls).   

COMSOL Multiphysics, a finite element analysis software package, was used to simulate 

the reaction of immobilized IgG and anti-IgG biomolecules on a microelectrode and understand 

the influence of the microfluidics and flow parameters.  A 2-D sketch is drawn in Figure 5.17 

representing the model used in the simulation.  The conjugate solution flows from left to right in 

the positive y-axis direction.  The microelectrode is assumed to be fully covered by the 

immobilized IgG with a concentration of B.   

The fluid is incompressible and obeys the Navier-Stokes equations of fluid motion.  

Fick’s second law also governs the diffusion of the anti-IgG, with the equation described as,  

 

(5.4) 

 

where C is the same as Cbulk, s is the component of the velocity in the x direction, q is the 

component of the velocity in the y direction, and D is the coefficient of diffusion of IgG equal to 

5 x 10
-11

 m
2
/s [142].  The concentration of the anti-IgG and IgG complex obviously increases 

with time, and follows the Langmuir model as [143], 
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Figure 5.17 2D model of the sample flow in a microchannel with microelectrode as a binding 

surface for immunoassay.   

 

 

(5.5) 

where B0 is the initial concentration of the immobilized IgG, and ka and kd are the association and 

dissociation rate constants of the reaction, respectively. 

)()(
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 At the microelectrode, which represents the entire reaction surface, the diffusion is set 

equal to the reaction rate, 

(5.6) 

 

The association and disassociation rate constants, ka and kd, used in this simulation were 2.5 x 

10
5
 m

3
/(mole·s)

 
and 3 x 10

-4
 (1/s), respectively [134, 142]. 

5.8.3 Flow Conditions 

 Prior to discussing the results of the simulation, the initial flow and boundary conditions 

as well as the fixed microfluidic parameters are stated.  The flow was considered as a neutral 

buffer solution with similar properties as water.  The flow in the microfluidic channel was 

laminar with low Reynolds number.  The velocity of the flow was taken as 1 mm/s unless stated 

otherwise.  The microchannel had a length of 500 m and height of 150 m.  The microelectrode 

had a length of 50 m and height of 1 m.  The height of the microchannel and length of the 

microelectrode varied for computation to observe their influence on the binding reaction.  The 

left end point of the microelectrode was located at the middle distance of the channel, 250 m.  

The boundary conditions were set as P = 0 for the pressure at the outlet and no-slip conditions at 

the walls.  Initial concentration of the anti-IgG in the solution and therefore on the surface of the 

microelectrode was the same as the analyte concentration in the solution.  The anti-IgG and IgG 

complex concentration on the surface of the microelectrode at t = 0 was also equal to zero.  The 

initial concentration of the immobilized IgG, B0, was taken to be 2 x 10
-8

 mole/m
2
. 

)()()( 0 CBkCBBCk
x

C
D dsurfaceasurface 
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5.8.4 Simulation Results 

 One of the most important parameters in the simulation was the anti-IgG concentration in 

the solution.  As in the case of the experimental work conducted using anti-HSA, the resulting 

binding reaction or detection signal varied based on the amount of anti-IgG.  Anti-IgG 

concentrations used in the simulation were 0.5 x 10
-9

, 1 x 10
-9

, 10 x 10
-9

, 40 x 10
-9

, and 80 x 10
-9 

mole/m
3
.  Figure 5.18 demonstrates the simulation results of the surface concentration of the 

anti-IgG and IgG complex with varying concentration of the anti-IgG solution.  The saturation 

concentration for the complex was lower with decreasing anti-IgG concentrations.  Similarly, the 

rate of reaction decreased when the anti-IgG concentration was reduced.  The time to reach 

complex saturation concentration increased dramatically for the low anti-IgG concentrations, as 

shown in Table 5.2.  The other parameters such as flow velocity, immobilized IgG concentration, 

length of the microchannel and height of the microelectrode were kept constant in this 

simulation.  The results signify the importance of optimization of these experimental parameters 

in order to increase the binding reaction time for low analyte concentrations.  The influence of 

some of these experimental parameters will be discussed later. 

 The saturation concentrations of the anti-IgG and IgG complex are also shown in Figure 

5.19, where the saturation values for the IgG and anti-IgG complex concentrations were larger 

for higher anti-IgG concentrations.  The saturation concentration represents the maximum limit 

of the complex value that can be obtained from a set of experimental parameters.  Figure 5.19 

demonstrates the relationship between one of these parameters, the anti-IgG concentration, C, 

and the saturated complex concentration, CB.  The relationship is obtained from simulation and 

setting Equation (5.5) to zero 
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Figure 5.18 The anti-IgG and IgG complex concentration at the microelectrode surface as a 

function of time for anti-IgG concentrations in mole/m
3
 (a) 80 x 10

-9
, (b) 40 x 10

-9
, (c) 10  x 10

-9
, 

(d) 1 x 10
-9

, and (e) 0.5 x 10
-9

. 

 

Table 5.2 Saturation concentration and time for the anti-IgG and IgG complex at the surface of 

the microelectrode.  

 

Anti-IgG 

Concentration 

(10
-9

 mole/m
3
) 

Complex 

Concentration 

(mole/m
2
)   

from Equation 5.7 

Complex 

Concentration 

(mole/m
2
)   

from Simulation 

Saturation Time 

(s) 

80 1.970 x 10
-8

 1.974 x 10
-8

 1513 

40 1.942 x 10
-8

 1.949 x 10
-8

 2862 

10 1.786 x 10
-8

 1.801 x 10
-8

 13967 

1 9.091x10
-9

 9.373x10
-9

 207300 

0.5 5.882 x 10
-9

 6.097 x 10
-9

 414000 

(b) 

(c) 

(d) 
(e) 

(a) 
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and resulted in parameters,  

(5.7) 

There was no significant difference between the complex concentration values obtained from 

simulation and theory (Equation 5.7). 

 

Figure 5.19  The relationship of anti-IgG concentration and the saturation concentration for the 

anti-IgG and IgG complex.  
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The analyte concentration gradient that was formed near the microelectrode surface had 

lower anti-IgG concentration due to the higher rate of binding reaction than the diffusion mass 

transport of the anti-IgG.  Reducing the gradient layer thickness can be assumed to be similar to 

increasing the anti-IgG concentration in the original gradient layer.  Figure 5.20 shows the 

analyte concentration gradient of the reaction after 0 (initial), 100, 500, and 1600 (saturation) 

seconds.  The gradient slowly diminished during this association phase as the supply of the anti-

IgG continues [143]. 

Another important parameter for the microfluidic-based immunoassay was the flow 

velocity in the microchannel.  Figure 5.21 clearly demonstrates the influence of velocity, where 

the rate of reaction increased with increasing velocity.  However, the saturation values of the 

complex remained the same with varying flow velocity.  Therefore, faster speed could be 

advantageous if the solution was expected to be abundant.  For the same flow duration, more 

anti-IgG molecules would cross over the microelectrode for flows with higher velocity.  

Therefore, faster flows would have higher potential for the formation of anti-IgG and IgG 

complex than slower flows.  However, if the available sample solution would be expected to be 

small in quantity, as in the case of microfluidic immunoassay, lower velocity would provide 

similar results.   
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Figure 5.20 Analyte concentration gradient at the microelectrode for 80 x 10
-9 

mole/m
3
 anti-IgG 

concentration after (a) 0 (initial), (b) 100, (c) 500, and (d) 1600 (saturation) seconds.  The graphs 

are plotted with the x and y axes reversed. 

 

  

  

(a) (b) 

(c) (d) 
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Figure 5.21 Influence of flow velocity on the rate of reaction or surface concentration of anti-IgG 

and IgG complex in mm/s are (a) 10, (b) 5, (c) 1, and (d) 0.5.   

 

Other parameters that could influence the binding reaction were height of the 

microchannel and length of the microelectrode.  Figure 5.22 shows the reaction rate for varying 

height of the microchannel.  The simulation results have not shown any significant difference in 

binding reaction rate for the range of 18.5 - 300 m microchannel height.  However, the rate of 

reaction has decreased in the case of 4.6875 and 9.375 m channel height.  The similarity in the 

reaction rate in the 18.5 - 300 m height range could be explained by the fact that the analyte 

concentration gradient layer was not affected significantly.  Therefore, the change in 

(b) 

(c) 

(a) 

(d) 
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microchannel height did not influence the ratio of the anti-IgG diffusion rate to the binding 

reaction rate.  The observed binding rate reduction for the 4.6875 and 9.375 m could be 

explained by the significant reduction of the amount of anti-IgG in the gradient layer.  Therefore, 

the analyte reaching the microelectrode was considerably lowered for the same time duration.  

The sample flow velocity was kept the same for the different heights in this simulation while the 

flow rate varied due to change in dimensions.  Therefore, it could be concluded that the channel 

height would influence the binding reaction based on the range of dimensions considered.   

 

Figure 5.22 Influence of microchannel height on the rate of reaction.  The heights used are (a) 

300, (b) 150, (c) 75, (d) 37.5, (e) 18.75, (f) 9.375, and (g) 4.6875 m. 
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Final parameter considered was the flow velocity by modifying the microchannel 

geometry around the microelectrode.  The modification was based on varying the protrusion 

from the opposite side of the microelectrode.  Figure 5.23 shows the 2D model used for the 

modified geometry and the corresponding rate of reaction for varying height of the 

microchannel.  The simulation results show that the reaction time decreased as the flow gap 

between the microelectrode and protruded geometry reduced.  In the case of microchannel 

geometry modification, the initial flow velocity was fixed and therefore constant flow rate was 

maintained.  Constant flow rate provides control of the sample volume necessary to carry out 

immunoassay tests.  In the previous case where the flow velocity was varied based on different 

flow rates, faster reaction time was achieved using a constant flow rate. This was achieved by 

varying the velocity at the microelectrode due to the change in the microchannel geometry.  This 

also provides a reasonable comparison to the developed microfluidic immunoassay where the 

flow rate was determined by the capillary action of the absorbent material.   

 

5. 9  Summary 

On-chip immunoassay capability was successfully demonstrated using MWCNT labels 

for antibody reaction on IDA microelectrode.  The detection was based on selective binding 

between HSA and anti-HSA, a protein with relevance in clinical diagnosis of liver, kidney, and 

renal complications.  MWCNTs were conjugated with HSA, providing dynamic current response 

for real-time monitoring of the binding reaction.  The fabricated PDMS microfluidic system 

provided passive sample flow control by capillary action.  Active/external flow control 

mechanism was not needed and detection signal was obtained once the sample was dispensed in 
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Figure 5.23 Influence of microchannel geometry on the rate of reaction.  The heights used are (a) 

15, (b) 25, (c) 50, (d) 100, and (e) 150 µm from the microelectrode surface.  
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the inlet using a pipette.  This immunoassay mechanism was simple and sensitive, with detection 

capability of anti-HSA below 1 ng/ml concentration.  The detection capability obtained could be 

attributed to the MWCNT matrix maintaining high conductivity on the IDA microelectrode.   

The MWCNTs provided a stable and highly conductive labeling technique that was easily 

integrated within a microfluidic chip.  Signal measurement could be conducted with multimeters 

or current measuring tools found in most laboratories with micro/nano ampere measuring 

capability.  Overall, the fabrication materials and techniques of the immunoassay chip were 

simple and sensitive for high throughput point-of-care testing.   

Simulation of the flow in a microfluidic immunoassay system was demonstrated in this 

research.  Simulation shows that the anti-IgG and IgG complex concentration is directly related 

to the analyte concentration.  Varying the channel height influences the binding reaction only if 

the analyte concentration gradient layer is affected reducing the amount of analyte transported to 

the binding surface.  The reaction rates are faster for higher velocities and the complex saturation 

values remain the same.  Modifying the channel geometry close to the reaction surface provides 

constant flow rate and reduces the overall reaction rates.  Therefore, simulation can lead to an 

optimized microfluidic immunoassay that uses small volume and short detection time.   In 

addition, simulation can facilitate the experimental design and tests.   

 



126 

 

CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

6.1.1 Functionalization of Carbon Nanotubes 

Functionalization protocol was successfully developed for chemically modifying the 

surface of MWCNTs for immunosensing based on electrical detection.  The modification of 

MWCNTs was carried out in covalent and non-covalent methods with multiple functional groups 

for uniform dispersion and antibody conjugation in aqueous solution.  Dispersion is essential in 

exposing the surface of the nanotubes for robust antibody conjugation on the MWCNT through 

stable and irreversible amide linkage.  A comparative work was conducted for surfactant assisted 

dispersion of the MWCNTs suitable for immunoassay process.  The nanotube suspension was 

studied using PEG, PVP, and DI water, separately.  Summary of the dispersion and the 

conjugation results are summarized below: 

  PVP treatment was the most effective in the initial dispersion of the MWCNTs and 

maintenance of the solubility over a period of time, 

 PEG also provided reasonable MWCNT dispersion and solubility,  

 DI water without surfactant had the least solubility and experienced phase separations in 

the solution when interacting with coupling agents, confirming the importance of CNT 

modification with surfactants, 
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 Surfactants have also provided efficient blockage mechanism in order to avoid non-

specific interaction of the CNTs with antibodies and therefore reduced false signaling, 

 Antibody, specifically human-IgG, was effectively conjugated on MWCNT using 

EDC/Sulfo-NHSS coupling method, and 

 The number of antibody conjugated on the MWCNTs was limited by the available 

(surfactant free) nanotube surface area.  However, the amount was sufficient to provide 

immunoassay test.  

Optimization of the conjugation process was conducted in order to increase the number 

of antibodies per CNT.  Enhancing the amount of conjugated antibodies could lead to better 

detection capability.  Two parameters were identified for optimization: reducing the amount of 

surfactant coverage and increasing the concentration of antibody for conjugation.  Reducing the 

amount of PVP used to disperse the MWCNTs resulted in increased number of conjugated 

antibodies.  The reduction of the PVP was able to provide more binding sites for the antibodies.  

However, reducing the amount of PVP too low was also shown to have a reverse effect on 

conjugation by compromising the uniform dispersion of the CNTs.  On the other hand, 

increasing the concentration of the antibody used for conjugation also resulted in increased 

amount of antibodies attached on the CNTs.  However, an increase in antibodies not bound to the 

CNTs was also observed.  This observation could require different conjugation protocol in order 

to achieve better detection capability.   



128 

 

6.1.2 Carbon Nanotube Labels for LF Immunoassay 

Immunoassay for antigen detection using MWCNTs as a sensing label on lateral flow 

system was developed.  Competitive and sandwich immunoassay formats were demonstrated, 

where the MWCNTs provided electrical conductimetric and colorimetric detection for 

quantitative and qualitative measurements.  Integrated electrode system was also developed in 

order to measure the electrical signals across the capture zone on the immunosensors.  The 

developed functionalization methods were implemented to disperse the MWCNTs and attach the 

antibodies.  Summary of the LF immunoassay detection results are provided below:   

 The high conductivity of carbon nanotube network on LF immunosensor coupled with 

highly specific biorecognition capabilities of antibodies provided enhanced signal 

detection for simple and rapid detection mechanism suitable for point-of-care diagnostics, 

 The LF competitive immunoassay clearly showed the feasibility of electrical 

conductimetric and colorimetric measurements for concentrations of target human IgG 

varying from  25 to 200 µg/ml, 

 The LF sandwich immunoassay provided sensitive and quantitative electrical 

measurements, detecting antigen concentration below 1 ng/ml.  Visual evaluation of the 

test strips also corroborated the conductance results demonstrating varying color intensity 

for different concentrations,  

 Improved LF cartridge was developed with integrated electrodes for simple and direct 

electrical measurements.  The cartridge also was used to house the immunostrips for 

portable and easily disposable POC tests, and  

 Results showed the feasibility of obtaining lower detection limit.   
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6.1.3 Microfluidic Immunoassay Using Carbon Nanotube on IDA Microelectrodes 

Microfluidic immunosensing based on conductimetric detection using CNT matrix was 

demonstrated using HSA protein in sandwich format.  PDMS microfluidic system was developed 

for passive sample transport to the detection surface by capillary action.  The binding reaction 

occurred on IDA microelectrode that was fabricated on a glass substrate and incorporated within 

the microfluidic channel.  CNTs conjugated with antibody formed a conducting matrix across the 

IDA providing electrical signal corresponding to the amount of captured antigen.  The developed 

functionalization methods were implemented to disperse the MWCNTs and attach the antibodies.  

Simulation is used in order to understand the influence of the different parameters involved in 

the microfluidic system.  Summary of the on-chip immunoassay detection results are provided 

below:    

 The PDMS microfluidic system enabled the manipulation of small sample volume with 

passive control.  In addition, replication of the PDMS structure was carried out under 

normal laboratory condition, once the mold master was fabricated using lithography 

process,    

 The IDA microelectrode provided large sensor area for real-time monitoring of the 

antibody reaction through the formation of CNT matrix between the electrodes,   

 The microfluidic immunoassay system provided sensitive and low-concentration 

detection of anti-HSA in sandwich format with detection capability below 1 ng/ml and   

 The simple fabrication technique, passive flow control, CNT-based electrical detection 

provided immunosensing chip with a potential for high throughput screening of proteins 

and disease markers in a POC setup.   
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6.2  Future Work 

6.2.1 Carbon Nanotube-Antibody Conjugation and Quantification 

 Increasing the number antibodies on the CNTs could lead to improved detection 

capability.  One of the methods to accomplish this is by using higher antibody concentration for 

conjugation.  However, in doing so, it is important to modify some of the conjugation parameter 

such as incubation time and washing step in order to minimize unbound antibodies.  Depending 

on the increase, longer incubation time could be used in order to increase the chance of 

conjugation.  The washing step also could be increased to ensure that all unbound antibodies are 

removed.  In this case, it is important not to wash away the CNTs.  Another possibility for 

optimizing the antibody and CNT conjugation would be to implement a quantification protocol 

to identify the amount of unbound antibodies.  Efficient quantification would provide the 

flexibility in choosing the antibody concentration for conjugation that could lead to sensitive 

detection.   

6.2.2 Pathogen Detection on Lateral Flow System 

The developed methodology for functionalization of CNTs allows the detection of 

various analytes in different configurations.  Some of the interesting follow up work could be to 

use the LF immunoassay system for clinical application of viral detection.  Accurate and rapid 

diagnostic tools for viral detection such as dengue and malaria have a global need.  This work is 

underway by Fang Liu, a PhD student in the BioMEMS and Bioelectronics lab under Dr. Choi.  

This work will be conducted in collaboration with Department of Tropical Medicine at Tulane 

University, who will be supplying the samples and certified testing facility.  Automation of the 

sub-system of the LF immunosensing could be useful in achieving lower detection limits.  For 
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example, the immobilization of capture antibodies could be conducted using systems such as 

inkjet printer, spraying, or sputtering.  In addition, reagent storage of the MWCNT-antibody 

conjugate solution pre-dried on porous membrane and incorporated within the LF system would 

minimize the sample application steps enabling one-step immunoassay.  

6.2.3 Microfluidic Parameters for On-Chip Immunoassay  

For the developed PDMS microfluidic immunoassay, the flow rate and total volume was 

determined based on the optimization of the capillary pump.  An absorbent pad inserted within 

the fluidic structure continuously drove the sample by capillary action.  These parameters could 

be manipulated further by changing the dimensions of the capillary pump for better detection 

capability without changing the chip design.  In addition, reducing the channel dimensions could 

reduce the sample volume and influence the sensitivity of the immunoassay tests further.   The 

CNT-antibody conjugate solution could be embedded within the microfluidic system in order to 

eliminate the application of multiple reagents.  Simulation of the microfluidic system could be an 

efficient method of characterizing the different parameters rather than continuous experimental 

based testing.   
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