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ABSTRACT 

 

This dissertation describes the development of microstructures and devices for 

applications in functional electrical stimulation. A nerve cuff electrode design has been 

developed for applications in neural electrical stimulation and recording, which addresses 

limitations with existing cuff electrodes. The developed clip-on micro-cuff electrode design 

consists of a naturally closed cuff with inner diameter in the micro-scale or above. A novel 

pinch-hinge feature allows a user to easily open the cuff and place it on target nerve tissue for 

stimulation or recording purposes. Upon release of the pinch-hinge, the cuff assumes its 

normally closed nature. The device conducts and reads electrical signals in the amplitude and 

frequency range of typical neural signals. A typical clip-on cuff device with 800 µm inner 

diameter is opened to its maximum extent by a relatively low force of less than 0.8 N, offering an 

alternative to other designs requiring application of a force for cuff closure. 

For applications involving gastric muscle stimulation, a novel gastric pacing electrode is 

fabricated in biocompatible silicone elastomer. In response to physiological temperature of about 

37 ˚C, polyethylene glycol embedded inside the device body melts due to which the structure 

changes from a more rigid state initially to a more flexible state. This is expected to reduce tissue 

penetration during and after electrode implantation.  

A comprehensive piece-wise discrete element equivalent circuit model has been 

developed to represent an electrode-neural tissue interface. This model addresses internal aspects 

of both the tissue and the electrode surface and is an improvement over previous models. The 

equivalent circuit is employed in conjunction with electronic circuit simulation software to study 

the electrical response of an axon to external stimulus. Simulation results broadly correlate with 

practical observations reported by others.  
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Lastly, a new percutaneous access device functioning as an interface between implants 

and the external world is reported here. The device made of silicone elastomer incorporates 

stress concentration features and shows promise for improved robustness and reliability. The 

device also incorporates micro-scale porous structures to allow for tissue in-growth to facilitate 

anchoring of the device.    
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CHAPTER 1: BRIEF DESCRIPTION OF CHAPTER CONTENT 

 

 A brief description of the following chapters is given below. 

 

Chapter 2: Introduction, Literature Review and Problem Statement 

Functional electrical stimulation (FES) is one of the important medical innovations of the 

current time. FES is based on periodic or constant electrical stimulation of specific nerves, nerve 

fibers and muscles by a single or multiple set of electrodes, for control and treatment of 

numerous pathological conditions. While the underlying physiological aspects form the basis for 

a particular FES technique, its development and implementation largely depend on the successful 

engineering of bio-implantable electrodes for electrical stimulation of biological tissue, recording 

of bio-potentials from said tissue, and devices capable of providing effective routing of electrical 

connections from the implanted electrodes to other external devices. Chapter 2 reviews the 

present state-of-the-art in the major technologies pertaining to FES, namely (1) electrodes for 

nerve stimulation; (2) electrodes for gastric stimulation; (3) equivalent electric circuits for the 

interface formed by an electrode with tissue; and (4) devices to route electrical wires from an 

implanted electrode to equipment external to the body. The review describes the challenges and 

drawbacks with existing technology in these four major areas, and lists specific 

needs/innovations necessary to address them. Chapter 2 also provides information leading to the 

contents of succeeding chapters. 

 

Chapter 3: Research Goals 

Based on the specific innovations required to address the present challenges in FES 

technology, Chapter 3 lists the innovations made in the present dissertation research. These 

innovations are listed under four major topics, namely (1) electrodes for nerve stimulation; (2) 
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electrodes for gastric stimulation; (3) equivalent electric circuits for the interface formed by an 

electrode with tissue; and (4) devices to route electrical wires from an implanted electrode to 

equipment external to the body.  

 

Chapter 4: Electrode Technology Development  

Chapter 4 describes the development of technology for nerve stimulation electrodes. For 

applications involving FES of nerves and nerve fibers, one of the most commonly employed 

electrode design is the cylindrical cuff electrode. This design offers several advantages. 

However, there are some problems involved with the current design technology. The currently 

available cuff electrodes need to be manually opened, placed on the target nerve and then closed 

during surgery. The cuff opening is typically secured by epoxy, wax or small piece of silicone 

rubber, in an intra-operative procedure immediately after implantation. This procedure becomes 

significantly more complicated when the cuff electrodes are small in dimension. Therefore, there 

is a need for an electrode design that can preserve the advantages of a cuff structure, while 

overcoming the cuff closure or securing problem.  

A problem with several existing cuff electrode designs is that they are made by the 

assembly of discrete components including cylindrical tubing serving as the cuff, and metal 

wires serving as electrode leads. The electrode wires are inserted into the cuff and secured by 

means of epoxy. This reduces the robustness of the device, as the interface between the electrode 

wire and cuff wall is vulnerable to pulling forces acting on the wire. A cuff electrode design that 

provides for a robust electrode wire-cuff interface is very essential. A major problem with 

commercially available cuff electrodes is that they are not suitable for small anatomies, i.e. 

smaller nerves and nerve fibers, often with diameters in the sub-mm or micro-scale. It is difficult 

to open and close regular cuff structures as they get smaller. Therefore, there is a need for a cuff 
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electrode design that can effectively address the stimulation of small diameter nerves and nerve 

fibers. 

Considering the above stated problem areas in the present nerve stimulation electrode 

technology, Chapter 4 describes the development of a novel electrode design to address the 

following: 

1. Problem of securing the cuff opening after implantation on a target nerve tissue.  

2. Develop cuff electrodes for sub-mm or micro-scale diameter nerve tissues. 

3. Improving robustness of the cuff-electrode wire interface. 

Chapter 4 also describes technology development for gastric stimulation electrodes. 

Gastric pacing or the electrical stimulation of the gastric wall and muscles is of interest in the 

treatment of obesity and obesity related conditions. Pacing electrodes are implanted in the 

muscular layer of the stomach wall, to incite the required response from the stomach muscle. 

However, this type of lead placement often results in the stomach wall being penetrated, causing 

experimental failure and possible patient trauma. This poses a bigger challenge in the case of 

intestinal electrical stimulation for obesity treatment where a similar placement of leads is 

required. The intestinal wall is thinner than the stomach wall, making it more susceptible to 

penetrations by the electrode leads. It has been suggested that smaller electrode leads are more 

appropriate for intestinal stimulation. Another major problem encountered with electrodes 

implanted in the stomach or intestinal wall is the displacement of the leads from the desired 

position, which has been attributed as a major reason for weight loss failure in gastric stimulation 

studies. Another problem is the device failure from lead fracture, due to rigid nature of the 

electrode implanted in an environment involving flexing muscle tissues.  
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Given the requirements for gastric pacing electrodes, Chapter 4 describes the 

development of electrode technology to address the following:  

1. Development of a miniaturized gastric stimulation electrode based on incorporating metal 

leads on flexible polymeric substrates, aimed at alleviating the lead penetration problem 

during implantation. The structural flexibility is expected to reduce lead fracture problems. 

The electrode incorporates a structure whose flexibility can be changed from a more rigid 

state initially to a more flexible state at physiological temperature. The structural flexibility is 

expected to reduce tissue penetration and lead fracture problems during and after 

implantation. 

2. Development of features that enable direct anchoring of the pacing electrode to gastric tissue 

at more than one electrode location. 

 

Chapter 5: Equivalent Circuit Model for Tissue-Electrode Interface for Nerve Stimulation 

The passage of an electrical stimulus signal through biological tissue may inflict injury 

by several possible mechanisms, the major of those being electrical in nature. For a specific 

stimulation electrode design, it is pertinent to understand the electrical effects at the tissue-

electrode interface during the stimulation process. This is important because it is essential to 

ensure that charge flow into the target tissue does not exceed acceptable levels during the 

electrical stimulation. Towards this, designing an equivalent circuit model of the tissue-electrode 

interface and studying its response to typical stimulation signals will help researchers in 

designing a safe and successful stimulation protocol. Previous reports have represented the 

electrode-tissue interface as an electrode immersed in an electrolyte and have neglected any 

representation of the internal components of the tissue being stimulated. Other reports have 

focused solely on representing the tissue being stimulated in terms of electrical circuit 
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equivalents, while neglecting to include any components or modules to represent the metal 

surface and the interface formed by it with the tissue. In this context, Chapter 5 describes 

development of an integrated equivalent circuit model with components to address both aspects 

of tissue being stimulated by a metal surface. This circuit behavior is analyzed using PSPICE 

electronic circuit simulation software.  

 

Chapter 6: Routing Technology for FES Applications 

An essential part of a typical FES research activity is the physical routing of electrode 

lead wires from the implanted electrode to equipment that supplies the electrical stimulation 

signal. This equipment may be implanted or situated externally i.e. outside the body. In many 

situations, it is difficult to implant the signal generator and electric power equipment. In such 

cases, it is more practical to supply the signal and electric power through a physical 

interconnection or wiring traversing between the implanted electrode and external signal/power 

source. Special devices, known as percutaneous access devices (PADs), are used to support 

electrical wiring as it exits the test animal‟s or human‟s skin and protect the wire from 

mechanical forces exerted by body motion and other causes.  

A typical PAD consists of a base or flange structure that is implanted and a conduit 

structure that allows an interconnection between the in-vivo and the external devices. The 

conduit structure is typically a skin piercing element, partially protruding out of the skin while 

being placed under it. The base or flange structure functions mainly as an anchor for the device. 

The skin piercing nature of PADs poses great challenges in the design and integration of these 

devices for FES applications. Some of the existing PAD designs are highly application specific, 

thereby restricting their general usage. Another drawback is that most of the currently available 

PADs rely on the use of specialized and expensive equipment for the device fabrication. 
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Additionally, device design changes may be difficult to implement on the fly. A major problem 

with existing PADs is the incidence of infection, leading to device failure caused mainly by 

relative movement of the base/flange structure due to external forces arising from routine motion 

of the body. There have been very few reports on PADs incorporating components that aid in 

relieving the forces acting on the base. Another area of concern is the incorporation of micro-

scale pores and microstructures, in the implanted part of the design in order to encourage 

connective tissue in-growth. Until now, most PADs having such porous structures are based on 

the attachment of commercially available discrete porous fabric or polymeric layers onto the 

main device. The attachment is typically done by an adhesive. Other PADs, with tailor-made 

porous structures, employ complicated methods and equipment to make such structures. It is 

beneficial to develop simple methods to form micro-scale pores and structures in biocompatible 

materials to facilitate growth of connective tissue.  

Chapter 6 describes several useful innovations in PAD technology being made in this 

dissertation research. This chapter specifically describes the following: 

1. Development of fabrication technology for PADs, based on convenient and easy-to-

implement processes involving proven bio-implantable materials.  

2. Novel PAD design with features aimed at reducing the forces transferred to the implanted 

portion of a typical PAD. 

3. Development of methodologies to create micro-porous and micro-patterned layers of highly 

biocompatible materials like medical grade silicone for applications in connective tissue 

growth. The developed processes enable pore dimensions from the sub-micron range to 

several hundred microns. The resulting porous layers may be inbuilt into PADs during their 

fabrication or may be free-standing to function as add-on structures.  
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Chapter 7: Summary, Conclusions and Recommendations for Further Research 

Chapter 7 summarizes the results of the present research work. It lists the conclusions 

drawn from various aspects of this dissertation and recommends areas for further research.  
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CHAPTER 2: INTRODUCTION, LITERATURE REVIEW AND PROBLEM 

STATEMENT 

 

2.1. Introduction 

Functional electrical stimulation (FES) is among the important medical innovations of the 

modern era. FES is based on a periodic or constant electrical stimulation of specific nerves, 

nerve fibers or muscles by a single or multiple set of electrodes, for the control and treatment of 

numerous physiological conditions [1, 2]. One of the first and the most widely known examples 

of a FES application is cardiac pacing, which involves the application of electrical pulses to the 

heart for the purpose of regulating the heart beat [3]. Ever since the advent of cardiac 

pacemakers some decades ago, the field of FES has evolved substantially and numerous FES 

devices have been developed for different medical applications. Some of the FES applications 

developed till date include control of paralyzed limbs, suppression of chronic pain, partial 

restoration of eye sight, bladder control, speech restoration and other types of organ function 

restoration [4-11].  

In recent years, there has been significant global interest in FES techniques for the 

treatment of obesity. The obesity epidemic has become one of the bigger challenges facing the 

well-being of humans worldwide [12]. The prevalence of obesity in children and young adults in 

almost every country is a cause for grave concern. In the U.S, one out of every three individuals 

is characterized as obese and 5% of the population is in the morbidly obese category [13, 14]. 

The effects of obesity and morbid obesity are manifested in a myriad of health conditions such as 

type-2 diabetes, high blood pressure/heart disease, osteoarthritis or rapid wear and tear of 

weight-bearing joints, sleep/respiratory problems, gastroesophageal reflux disease, infertility, 

urinary stress and menstrual irregularities [15-20]. Some of the common methods employed to 
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counter obesity such as pharmaceutical drugs and traditional weight loss programs are effective 

only for a small percentage of people. Weight loss programs have modest long-term results with 

participants typically known to recover their weight in a short time [21-23]. It has been shown in 

several studies that weight recovery will occur upon the withdrawal of pharmaceutical drug-

based therapy [24].  

Due to the long-term ineffectiveness of traditional treatment options, bariatric
1
 surgery 

(e.g. Roux-en-Y gastric bypass surgery for stomach reduction and rerouting the digestive tract) 

has been employed to avoid adverse effects resulting from morbid obesity for patients with body 

mass index greater than 40 or even 35, if the patient suffers from other serious medical 

conditions [25, 26]. The number of overall bariatric surgeries has grown by 900% in a span of 

just six years between 1998 and 2004 with a 20 fold increase in adults between ages 55 and 64 

during the same period [27]. According to a recent study, approximately 1% of eligible 

individuals with morbid obesity receive bariatric surgery [28]. That is more than 150,000 

individuals, by current population figures. Even though direct in-patient death rate during 

bariatric (gastric bypass) surgery has declined in recent years, its value of approximately 0.2% is 

still significant.  

In recent years, FES has become one of the important techniques being researched for the 

treatment and control of obesity [29]. FES of specific nerves and muscles has been shown to be 

useful in treating obesity and obesity-related physiological disorders [30-32]. In comparison to 

bariatric surgery, which is highly invasive and irreversible, a typical FES based method requires 

minor surgery with a much lower risk to the patients and hence is an extremely attractive 

alternative. 

                                                           
1
 Bariatrics: branch of medicine dealing with the causes, prevention, and treatment of obesity. 
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It is clear that FES technology has a very significant role to play in the future healthcare 

endeavors of mankind. With its multitude of applications, FES is one of the more important 

medical technologies in existence currently. The persisting global interest in FES research 

indicates the potential for substantial growth in the FES field in future years. While the 

underlying physiological aspects form the basis for a particular FES technique, its development 

and implementation largely depend on (1) successful engineering of bio-implantable electrodes 

for the electrical stimulation of biological tissue, (2) recording of bio-potentials from the tissue, 

and (3) devices capable of providing effective routing of electrical connections or transmission 

of power and signals to and from the implanted electrodes to other in-vivo
2
 or external devices. 

Successful engineering of such electrodes and devices is closely linked to development of 

methodologies to employ and structure proven biocompatible materials so they may be utilized 

for long-term in-vivo applications.  

It is the objective of this dissertation to address the development of novel electrode 

technology and routing and feed-through solutions for electrode wires. The research results 

reported in this dissertation may be applied to a variety of situations though the current work was 

initiated with a focus on obesity treatment applications.  

 

2.2. Electrode Technology for Nerve Stimulation 

 For applications involving FES of nerves and nerve fibers, numerous stimulation 

electrode designs have been developed till date [33]. The reported devices include those based on 

assembly of discrete components, wire strands, thin film technology, and micro-fabrication [34-

39]. One of the most commonly employed electrode design is the cylindrical cuff electrode [40-

                                                           
2
 In-vivo: inside the body; a term generally used in this document while referring to an implanted or internal 

condition. 
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44]. This design is characterized by its simplicity and relative ease of usage. Figure 2.1 shows an 

example of a cuff electrode.  

 

 

 

Figure 2.1: Schematic of a cuff electrode. The cuff body is typically made of a 

flexible material like silicone rubber or another polymer. 

 

 

 

2.2.1. Cuff Electrode Design 

 One of the major reasons for a general preference for the cuff type electrode design is its 

suitability for long term nerve stimulation or recording, and for situations where the subject 

undergoes motion, a situation common in most practical cases [45].  

 Cuff electrodes offer several advantages compared to other commonly used electrodes 

including reduction in stimulus intensity required for nerve activation, minimization of 

mechanical damage to nerves, reduced probability of lead failure, and selective stimulation of a 

target tissue
3
 [46-48]. However, there are some problems involved in the use of the cuff type 

design that need further consideration.  

                                                           
3
 Target tissue: a term generally used in this document to refer to the specific physiological organ or tissue being 

electrically stimulated. 
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2.2.1.1. Nerve Cuffs for Micro-scale Nerves and Nerve Fibers 

 One of the major drawbacks of the present nerve cuff technology is the paucity of cuff 

electrode designs for the stimulation of nerves and nerve fibers with effective diameters in the 

micro-scale, which is of interest for human and animal subjects and offers advantages in some 

applications [49]. For example, it is possible to achieve better bladder emptying while employing 

a FES-based approach by activating small nerve fibers innervating the bladder compared to when 

large and small fibers are simultaneously activated [50].  

 For any new FES technique involving nerve stimulation, it is the prevalent practice to 

first develop animal-based test protocols. While canine, feline, and porcine test platforms are 

routinely employed, rodent-based test platforms are preferred in numerous applications because 

of the smaller size of the animal and the corresponding reduction in the costs incurred. However, 

the development of FES-based rodent models has numerous challenges, primarily due to small 

diameters of rat nerves and fibers. To illustrate, the effective diameters of feline nerves and 

fibers are in the millimeter range depending on a particular nerve tissue, while values for similar 

nerve tissue in rats are in the millimeter and micrometer range [46, 51]. The electrodes employed 

for stimulating nerves in canine, porcine and feline test animals are generally not suitable for 

smaller test animals like rats. The smallest cuff electrodes commercially available in the United 

States are made for large nerve diameters and are generally not suitable for nerves and fibers 

with diameters in the micro-scale. For example, the smallest cuff electrode from Microprobes for 

Lifescience, Inc. has internal diameter of 500 µm, which may be too large for smaller diameter 

nerves [52]. Many cuff electrode designs reported are suitable for relatively large nerves, but are 

difficult to scale down for use with smaller nerves in the 0.5-1 mm diameter range [42]. Thus, 

there is a need for specific cuff electrode designs that cater to small dimensions of nerve tissues.   
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2.2.1.2. Cuff Electrode Closure Technology 

A typical cuff electrode has a lengthwise opening (Figure 2.1) that has to be closed after 

bio-implantation on the target nerve. The closure of the cuff is required in order to ensure that the 

cuff electrode stays secured on the target nerve. In applications involving bio-potential recording 

by nerve cuff electrodes, a closed cuff reduces unwanted electrical noise from surrounding 

physiological ambient [53]. A completely closed cuff ensures that there is usually a fixed amount 

of extracellular
4
 fluid trapped around the nerve by the cuff. Extracellular fluid can conduct 

electricity. A varying amount of extracellular fluid may surround the nerve in the case of a 

partially open cuff, causing undesirable electrical noise. The currently available cuff electrodes 

need to be manually opened, placed on the target nerve and then closed, prior to their operation. 

The cuff opening is typically secured by epoxy, wax, small pieces of silicone rubber, or suture 

thread [54-59]. This involves the use of intra-operative procedures during surgery to secure or 

seal the cuff opening immediately after its placement on a nerve. To illustrate, Jellema et al. 

fabricated a length-wise split cuff made of Impregnum, a polyether elastomer commonly used in 

dental impression applications [60]. The target nerve was placed in the cuff and sealed by freshly 

mixed Impregnum during surgery. This design attempted to solve the cuff sealing problem. 

However, there are some drawbacks with this type of approach. The cuff sealing procedure is 

intra-operative and has to be done with great care. The freshly mixed Impregnum may flow into 

the cuff and cover the electrode leads partially or even completely. Another drawback with 

Jellema et al.‟s design is that once the cuff is sealed, it may be difficult to remove from the 

nerve, with the removal procedures potentially damaging the nerve. This cuff closure method 

provides a permanent seal that may require sharp cutting tools to open. 

                                                           
4
 Extracellular: refers to the space outside a cell, occupied by fluid consisting of metabolites, ions, proteins and other 

substances that may affect cellular function. 
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 Among other designs, Loeb et al. reported a cuff electrode design based on a silicone 

rubber cuff with a length-wise slit opening [42]. Stainless steel wire strands inlaid in the cuff 

functioned as electrodes. During implantation surgery, the cuff was placed on the target nerve 

and a silicone rubber flap was used to seal the cuff opening. Silicone epoxy was used to attach 

the flap over the cuff and seal it. While the use of the silicone flap allows the cuff to stay closed 

and secured on the target nerve, this method of intra-operatively sealing the cuff is not 

convenient. 

Among other examples of cuff electrodes with cuff closure schemes, Banzett developed a 

design which consisted of a block of Teflon machined to include a groove or channel [61]. Silver 

wire electrodes were set within the channel and the target nerve was laid in it. Another plate of 

Teflon or alternately, a flexible piece of insulating material was sutured over the bottom plate 

containing the channel, to prevent the nerve from slipping out. The main drawback of this type of 

design is that the cuff is relatively bulky and stiff. The use of silver wires as electrodes is another 

drawback because silver is not considered a bio-compatible material [62]. Similar cuff electrode 

designs were reported by others [63, 64]. 

There are several cuff designs that are based on securing the cuff opening by suture 

thread [55]. The use of sutures to secure a cuff is prevalent in current state of the art 

commercially available cuff electrodes [52, 65]. Among the drawbacks of this method includes 

difficulty in tying suture threads around a cuff in regions of limited anatomical space. 

Additionally, there is a possibility of compressive nerve damage due to sutures being tied too 

tight. In some other electrode designs, suture threads have been used to tie electrodes directly to 

target tissue [66]. This is potentially hazardous due to a possibility of abrasive tissue damage 

from the relative motion of the cuff.  
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The intra-operative procedures to seal the opening of cuff electrodes may translate to 

additional time on the surgical table for the patient. The use of intra-operative procedures 

becomes significantly more complicated when the cuffs are small in dimensions, required for the 

smaller diameter nerves and nerve fibers [67]. Therefore, there is a need for an electrode design 

that can preserve the advantages of a cuff structure, while overcoming or reducing the cuff 

securing problem.  

Crampon et al. reported a nerve cuff electrode based on the use of a shape memory alloy 

(SMA) armature [68]. Nickel titanium SMA wires were used to form an armature, which was 

integrated into silicone rubber cuffs. The shape recovery temperature was set at slightly under 37 

0
C. At room temperature, the electrode was in an initial closed position. By cooling the electrode 

to 10 
0
C, the cuff could be easily opened by the surgeon and placed around the target nerve. 

After implantation, the physiological temperature of about 37 
0
C caused the SMA armature to 

reach its shape recovery temperature, and thereby regain its original closed shape. The armature 

rigidity has to be chosen carefully, which can be a drawback in the use of this device. 

Experiments showed that a low rigidity SMA caused the electrode to function improperly, while 

a more rigid armature tore the silicone cuff during closing.  

Durand et al. reported a nerve cuff electrode which could be closed by means of a snap 

closure feature with male and female mating structures [69]. The mating structures were engaged 

to close the cuff. The snap closure feature and the cuff body were made of silicone polymer. The 

main drawback of this cuff electrode is that its implantation requires a high degree of dexterity to 

avoid tissue damage during placement on a nerve and subsequent cuff closure. The authors 

reported that a force of about 2 N was required for cuff closure. This magnitude of force can 
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harm the nerve if the cuff is improperly closed using the snap closure structures. It may be 

difficult to implement this cuff electrode design for smaller diameter nerves and nerve fibers.  

A similar design was reported by Maschino et al. whose cuff electrode could be placed 

on a nerve and subsequently closed by means of interlocking structures [70]. The cuff electrode 

was made by incorporating metallic layers in a polymeric cuff body made by injection molding. 

This type of cuff electrode may not be easy to install on delicate nerves and nerve fibers, 

particularly those with smaller diameters. There is a possibility of tissue damage when pressure 

is applied on the cuff structure to engage the interlocking features. Additionally, the usage of this 

type of device may be challenging at smaller dimensions. 

Other approaches to address the cuff closure or cuff securing problem have been based on 

highly specific designs. For example, Dubkin et al. reported a cuff electrode design based on 

winding wire electrodes around a segment of rigid tubing which was secured to a target nerve by 

means of a segment of flexible tubing with a longitudinal slit [71]. The flexible tubing segment 

was secured in place by its own natural tension. A similar design was proposed by Barone et al. 

with a variation in that the flexible tubing segment was held in place by nylon suture threads tied 

around its exterior [45]. The main disadvantages with these designs include the possibility of 

nerve damage caused by placing a rigid tubing segment adjacent to the nerve. With Barone et 

al.‟s design, there is the additional possibility of nerve compression injury due to strapping the 

cuff to the nerve. Both these designs also limit the electrode surface area that can be in contact 

with the enclosed nerve. 

 Similarly, McCarty et al. developed a cuff consisting of electrodes set within the core of 

a stiff insulating cylindrical segment in which the nerve could lie [72, 73]. A zig-zag channel cut 

into the cylindrical segment allowed its implantation on a nerve while preventing the device from 
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slipping off the nerve. The main drawbacks of this design are the stiffness or rigidity of the cuff 

and the relatively delicate implantation procedure required to avoid nerve damage by the zig-zag 

ends of the cuff opening. There is a need to overcome the inherent drawbacks of cuff designs that 

are based on the natural rigidity of a cylindrical segment or cuff.  

A type of cuff electrode design that addresses the cuff closure and securing problems is 

the spiral cuff. There have been many reports on the development and use of cuff electrodes 

based on the spiral cuff design. Naples et al. reported one of the first spiral cuff electrodes [74]. 

In its most common configuration, the spiral cuff electrode is of the self-curling type, typically 

including a self-curling sheet of non-conductive material biased to curl into a tight spiral. The 

biasing is typically done by bonding a pre-stretched polymer layer to an un-stretched polymer 

layer [75]. Due to tensile stress of the pre-stretched layer, the structure curls, thus becoming a 

spiral. The inner diameter of the spiral can be pre-set by the fabrication process. The electrodes 

are typically metal wires or strips located peripherally around the inner diameter of the cuff. 

Alternately, the electrodes may be placed between the two polymeric layers and active electrode 

surfaces created by manually opening windows in the pre-stretched polymer layer.   

Spiral cuffs electrodes have several inherent drawbacks. A major drawback is the lack of 

applicability to small nerves. Existing spiral cuff electrodes do not reliably interface to small 

nerves [76]. Another major problem is the difficulty in implanting such electrodes on nerves that 

are located in regions with limited space. For example, the greater splanchnic nerve segment 

located just under the diaphragm in rodents is not easy to access [77]. This particular nerve 

segment is of interest in the treatment of obesity. The tissue access problem is exacerbated in 

cases where the target nerve fiber or bundle, due to its position in the body, is not easily 

encircled by spiral cuffs without complicated surgery or without inflicting damage to the 
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surrounding tissue. Additionally, there may be a need for special applicator tools to implant 

spiral cuffs on a nerve [76].  

A variation of the self-curling spiral cuff is the self-sizing spiral cuff [78]. Rather than 

curl into a spiral with a pre-set inner diameter, the self-sizing spiral cuff curls closely around the 

nerve. One of the drawbacks of the self-sizing spiral cuff electrode is that such electrodes tend to 

interfere with normal swelling and movement of the nerve. Damage to the nerve fibers can result 

when the self-sizing spiral cuff curls too tight around the nerve preventing the flow of nutrients, 

blood and other critical fluids [79]. Several self-sizing cuff electrode designs have been reported 

to be fragile and difficult to install [80]. Other self-sizing cuff designs have not produced long-

term satisfactory results because of difficulties related to their self sizing nature [81]. In contrast, 

conventional cuff electrodes have shown satisfactory results over continuous periods of 15 years 

and more [44]. Hence, though the spiral cuff design addresses the cuff securing and closure 

problem, the conventional cuff electrode design with the lengthwise slit cylinder is preferable.  

 

2.2.1.3. Robustness of Nerve Cuff Electrodes 

 Several cuff electrode designs reported so far have been based on the assembly of 

discrete components including cylindrical tubing serving as the cuff, and metal wires serving as 

electrode leads [54, 56, 57, 59, 82]. The electrode wires are inserted into the cuff and secured by 

means of epoxy [83].  

 An example is an electrode design by Sauter et al. whose cuff was a rigid tube of silicone 

rubber with a wedge-shaped longitudinal slit [83]. Platinum wire electrodes were inserted into 

the cuff and attached to the outer cuff wall by epoxy. Implantation involved sliding the cuff back 

and forth on a nerve till the nerve slipped through the slit into the cuff. The tube‟s rigidity caused 

it to spring close to prevent it from slipping off the nerve. In principle, by selecting tubing with 
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appropriate inner diameter, the cuff electrode can be made with micro-scale inner diameters. 

Implantation of this type of cuff electrode can be traumatic to the nerve. This type of cuff 

electrode employs the natural rigidity of a cylindrical tubing to enclose a nerve and stay secured 

to it. The rigidity of the tubing may cause nerve injury. 

 Another example of a cuff electrode made by assembly of various components is a device 

by Fenik et al. who used commercially available polyethylene tubing for the cuff body [54]. The 

inner diameter of the cuff was defined by choosing appropriate inner diameter commercial 

tubing. The device included two silver wire electrodes, one of which formed a hook around the 

nerve. The other electrode was placed near the nerve inside the cuff, in the extracellular fluid 

surrounding the nerve. The electrodes were held in place by applying molten dental wax to one 

end of the cuff after implantation and curing it at room temperature. The cured wax also secured 

the cuff to the nerve.  

 In principle, this cuff electrode can be made with micro-scale inner diameter by selecting 

tubing with appropriate inner diameter. A drawback of this cuff electrode design is that one of 

the cuff ends is closed. Therefore, it is suitable for capping cut nerves only because the design 

does not allow the cuff to be used with normal, continuous nerves. The sealing of one end of the 

cuff by dental wax has to be done with utmost care to avoid covering the electrodes. The use of 

silver as electrode material is not optimal in terms of biocompatibility. 

In both the aforementioned examples, only a limited amount of epoxy or wax secures the 

electrode wire-cuff interface. This reduces the robustness of the device, as the electrode wire and 

cuff wall interface is vulnerable to pulling forces that may act on the wire mostly due to play or 

relative motion of the internal organs. Detachment of the electrode wire from the cuff results in 

device failure, requiring surgical re-implantation of the cuff electrode device. In some cases, the 
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electrode leads are connected to insulated wire cables by soldering and the junction is sutured to 

tissue adjacent to the target nerve in order to relieve the stress at the junction [42]. This may 

result in tethering damage to the nerve and electrode leads. Therefore, it is advantageous to have 

a cuff electrode design that overcomes these problems and provides for a robust electrode wire-

cuff. 

 

2.2.2. Summary of Problems in Cuff Electrode Technology 

The problem areas in the present cuff electrode technology for the electrical stimulation 

of nerves and nerve fibers are summarized below: 

1. There is a paucity of cuff electrode designs suitable for nerves and nerve fibers in the 

sub-mm or micro-scale diameters. There is a need to develop a cuff electrode for micro-

scale diameter nerve tissue. 

2. The present methods of securing the opening of cuff electrodes after placement on a 

nerve include the use of epoxy or equivalent, or a piece of silicone to close the opening. 

Other methods involve the use of sutures to close the cuff opening, while others involve 

the use of a rigid cuff that tries to retain a closed condition. These methods have 

numerous drawbacks, making it imperative to solve the cuff closure problem by design 

innovations.   

3. In several existing cuff electrode designs, the electrodes are inserted into a cuff, and 

secured in place by means of epoxy or wax. This does not provide for a robust interface 

between the electrodes and cuff wall, making the overall device susceptible to failure. 

Therefore, there is a need to improve the robustness of nerve cuff electrodes, especially at 

the cuff-electrode wire interface. 
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2.3. Electrode Technology for Gastric Muscle Stimulation 

There are two fundamental FES approaches for the treatment of obesity and obesity 

related conditions. One approach involves the stimulation of nerves and nerve fibers specific to 

the digestive system, hunger, and satiety among others [84-86]. The other approach generally 

referred to as gastric pacing, involves the electrical stimulation of stomach muscles to modulate 

the frequency of the stomach‟s smooth muscle wave. This type of procedure has been found to 

be useful in the treatment of obesity and obesity related health problems [87-90]. However, there 

are several challenges being faced in gastric pacing applications due to the limitations of the 

currently available pacing electrode technology.  

 

2.3.1. Gastric Electrode Technology Review 

Gastric electrical stimulus may be applied at any location which allows the electrical 

stimulus to produce a local contraction at the desired section of the stomach or other organs in 

the gastro-intestinal tract [91]. To apply a gastric electrical stimulus, the pacing electrodes may 

be implanted on the inner or outer surface of the stomach or other organs in the gastro-intestinal 

tract [92]. It is pertinent to briefly review the structure of the stomach wall cross-section. The 

stomach wall has seven layers of tissues (Figure 2.2). The seven tissue layers include the oblique, 

circular, and longitudinal muscle layers of the muscularis externa that contract and expand, 

interposed between the interior stomach mucosa
5
 and the external serosa. The outermost layer is 

the serosa
6
 or a serous membrane. Gastric stimulation electrodes may be placed either on the 

serosa, or the mucosa or alternately placed between two layers such as the longitudinal and 

circular layers [93, 94]. 

 

                                                           
5
 Mucosa: mucus membrane lining various organs. 

6
 Serosa: a serous membrane or serosa is a smooth membrane made of a thin layer of cells which excrete fluid. 
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Figure 2.2: Schematic of cross-section of the stomach wall showing its different 

layers [Adapted from reference 94].  

 

2.3.1.1. Gastric Electrode Designs  

Most of the gastric pacing reports till date have involved the use of commercially 

available pacing electrodes from Medtronic Inc., Metacure (USA) Inc., and A&E Medical Corp. 

Among these, the most commonly used electrode is the model 4300/4301 series made by 

Medtronic Inc [95, 96]. There have been several reports based on the use of this electrode for 

gastric pacing applications [32, 95, 97-99]. The model 4300/4301 pacing electrode consists of 

three sections, namely a connector section, body section and an anchoring section. The connector 

section includes a connector pin to electrically couple the electrode lead into a pulse generator. 

The body section includes an electrical conductor surrounded by an insulating material, 

terminating with the main electrode lead. The anchoring section consists of a curved needle 

coupled to the main electrode body by a suture thread, and a separate anchoring sleeve. The use 

of this type of electrode is based on partially piercing the stomach wall tissue at one location by 

the curved needle and its exit from another location on the stomach wall. The needle is used to 
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pull the suture thread through the tissue in order to implant the main electrode lead in an 

intramuscular position. 

 Generally, the lead (e.g. in model 4300) is sewn through the gastric serosa laterally into 

the muscularis externa to locate the stimulation electrode within. A large incision is necessary to 

access the implant location. With this type of device, there is a possibility of tissue damage 

during electrode implantation.  

 Most of the commercially available electrodes employ relatively rigid structural features 

[100]. Such structurally rigid electrodes have several drawbacks [101]. For functional electrical 

stimulation applications, the electrode size should be maximized because this minimizes the 

current density and thereby, minimizes tissue damage [102]. However, it is not feasible to 

increase the surface area of a rigid electrode as it would increase its overall size and increase the 

possibility of tissue damage on penetration by the electrode. Additionally, the normal flexing of 

surrounding tissue may be hampered or even prevented by rigid electrodes. If the target tissue or 

the surrounding tissue is sufficiently muscular, its flexing may result in tissue irritation or 

damage, especially at the electrode ends where tissue may be pinched against the rigid electrode. 

In contrast, a flexible electrode structure may allow for the maximization of electrode surface 

area in contact with the target tissue. Flexibility in an electrode enables it to adapt to the natural 

configuration and position of the tissue being stimulated. A flexible electrode has enough flexure 

itself and therefore does not constrain the tissue to the extent by a rigid electrode. 

 Gastric pacing electrodes are typically implanted in the muscular layer of the stomach 

wall, generally in the serosa i.e. the membrane that encloses the stomach [103]. This placement 

of the stimulation electrodes in the wall is required to incite the required response from the 

stomach muscle. However, the downside of this type of electrode lead placement is that it often 
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results in the stomach wall being penetrated due to the rigidity of the electrode, causing 

experimental failure and possible patient trauma [104]. The stomach wall penetration primarily 

occurs during implantation of the electrodes [105]. In the use of commercial gastric pacing 

electrodes, perforation of the gastric wall during implantation is so frequent that endoscopic or 

gastroscopic assessment of the lead placement is performed during the implantation procedure 

[104, 105]. A bigger challenge is faced in the case of intestinal electrical stimulation for obesity 

treatment, an extension of the gastric pacing technique where a similar placement of electrode 

leads is required [106]. The intestinal wall is thinner than the stomach wall, making it more 

susceptible to penetrations by the electrode leads. It has been suggested that electrode 

miniaturization can help reduce this problem [106]. So far, there have been no reports on 

miniaturized electrodes for gastric and intestinal pacing.  

Another problem with present gastric electrode technology is the device failure from 

electrode lead fracture, due to the rigid nature of the electrode implanted in an environment 

involving flexing muscle tissue [107]. Stress concentrations may be induced in the rigid 

electrodes due to surrounding tissues during the course of chronic implantation. These stress 

concentrations may cause fatigue failures in the electrode lead. A significant portion of muscle 

electrode failures have been attributed to mechanical causes [108, 109]. Some studies have 

reported electrode failure due to lead fracture in 50% of cases involving gastric electrical 

stimulation [110]. Fatigue related mechanical failures can be avoided by minimizing stress 

concentrations along the electrode [111, 112]. An electrode design should address the various 

types of mechanical stresses and strains which can result in failure. A flexible electrode can 

minimize the possibility of tissue penetration, and mechanical stress concentrations that may 

result in fatigue failure [108]. 
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Among the other commercial electrodes, stainless steel wires such as those manufactured 

by A&E Medical Corp have also been employed as gastric pacing electrodes [91, 113]. While 

tissue penetration and lead fracture problems may be reduced in the usage of wire electrodes, 

there are other problems associated with such electrodes. One of the major drawbacks of bipolar 

wire electrodes is the limited electrode surface area that is in contact with the tissue being 

stimulated. Gastrointestinal stimulation often requires high energy stimulation, distributed over 

large electrode surface areas to avoid tissue damage [101]. Due to the limited electrode surface 

area available in bipolar wire electrodes, only a limited amount of electrical stimulus energy can 

be transferred to tissue without damaging it.    

 

2.3.1.2. Gastric Electrode Anchoring 

A major factor deciding the eventual success of a pacing electrode is the anchoring or 

securing of the electrode to the tissue being stimulated. The proper anchoring of an electrode is 

important in order to fix its position at a certain location while improper or inadequate anchoring 

will result in the displacement of the electrode leads from its initial position. This latter 

displacement may occur over time and result in failure. Displacement of electrode leads 

implanted on the stomach or intestinal wall has been described as a major reason for weight loss 

failure in gastric stimulation studies [114]. In some studies, the partial or complete displacement 

of electrode leads has resulted in about 50% failure rate of the electrode leads [103]. The present 

commercial gastric pacing electrode technology has not adequately dealt with the lead 

displacement problem.  In one type of commercial electrode, the anchoring is usually done by 

suturing the proximal
7
 end of the electrode [97-99]. The sutures are applied at an anchoring 

sleeve. Some other commercially available electrodes are typically fixed to the stomach wall by 

                                                           
7
 Proximal: the beginning of a structure or organ; a term commonly used to refer to the point in the body where an 

implant joins the body. 



26 
 

means of similar anchoring sleeves or clips [115]. These electrodes require post-operative 

monitoring to detect electrode displacement. The current high incidence rate in electrode 

displacement after implantation implies that the present methods of suturing are not sufficient to 

prevent displacement. For pacing electrodes placed laterally on the stomach wall, suturing at one 

location of the electrode is not sufficient to anchor the lead body.    

Another anchoring method for pacing electrodes involves the use of a metallic barb at the 

tip of the electrode to engage target tissue by penetrating it to an extent [116-119]. This 

engagement is expected to secure or anchor the electrode to the tissue at the desired location. 

This type of anchoring is widely prevalent in present day pacing electrode technology. In this 

method, the electrode lead and the tissue anchoring mechanism are integrated in the same 

structure.  

When a tissue penetrating anchor is integrated with the electrode lead, it is said to be an 

active fixation. It is also possible that tissue penetrating anchors may exist separately from the 

electrode i.e. in a non-active fixation scheme, to solely function as anchors [120, 121]. The use 

of tissue penetrating anchors has several drawbacks. During insertion of the structure into tissue, 

the sharpened end of an anchoring corkscrew or helix may damage or even tear the adjacent 

tissue [100]. Movement of the inserted anchoring helix can result in damage and irritation to the 

tissue at the site of the attachment. Typical stomach wall motion or body motion, such as 

movement of limbs, may also cause the electrode to exert forces on the anchoring helix, which 

may cause irritation or inflammation of the tissue, or perforation of the tissue wall.  

A tissue penetrating anchoring helix or metallic barb is screwed into the tissue, typically 

by rotation of the entire electrode body. Often, a torque is applied when the surgeon attempts to 

screw-in the electrode anchor mechanism. Due to this applied torque, there is twisting of the 
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electrode body, which makes it more difficult for the surgeon to implant the electrode [122]. This 

makes it necessary for additional design features that enable one to screw in the anchor without 

twisting the device body, increasing the overall complexity of the device and its usage [123-125]. 

Another problem with screw-in type anchoring mechanisms is the danger of over-rotation of the 

screw anchor resulting in tissue damage and penetration [125]. This makes it necessary to 

incorporate features to prevent over-rotation of the anchoring screw, increasing the overall 

complexity of the device. Another drawback of helical or metallic barb anchored electrodes is 

the need for features that enable the easy manipulation and general handling of the electrode 

during implantation. The incorporation of such handling features may make the electrode device 

bulky [126]. In addition to all the aforementioned drawbacks of tissue penetrating anchors, a 

major problem is its relative lack of efficacy, with electrode displacement rates reported to be 

higher than desired [127]. Clearly, the present anchoring technology based on tissue penetrating 

anchor designs have their limitations and will benefit from further improvements.  

 

2.3.1.3. Non-commercial Gastric Electrodes 

The few reported non-commercial gastric pacing electrode designs are based on 

structurally rigid integrated electrode and anchor structures, and depend on tissue penetrating 

barb anchors. Therefore, the problems related to rigidity in the electrode body and electrode 

anchoring have persisted in these non-commercial designs as well.  

An example is the gastric pacing electrode design reported by Swoyer et al. which 

employed tissue penetrating helixes and barbed hooks with sharpened tips that perforated the 

gastric serosa and lodged in the muscularis externa or the submucosa [94, 128]. Another example 

is a pacing electrode reported by Cigaina, consisting of a pin electrode formed with retention 

barbs at its tip and pressed into the gastrointestinal wall [129]. The main drawback of these 
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designs is that the prevention of axial movement and perforation of the gastric wall at the site of 

attachment cannot be assured by the limited engagement of the necessarily short and minute 

anchoring barbs with the serosa or sub-serosa tissue. The maximum depth of penetration of a 

tissue penetrating anchor is typically in the range of 1 mm to 15 mm depending on the exact 

location of the structure, in order to ensure that its free end does not extend through the stomach 

wall [94, 130]. Other anchoring methods have been reported, mainly for the anchoring of tissue 

penetrating gastric pacing electrodes [131-134]. An example is a design by Tronnes et al. that 

included an anchor movable along the length of an electrode relative to another anchor so that 

tissue was captured between the two anchors [135]. The intention was to retain the electrode in 

position. The method of implantation of the stimulation electrode involved piercing the target 

tissue and pulling the electrode body through the tissue. Similar anchoring schemes for gastric 

stimulation electrodes were reported by Imran et al. [132, 133].  

The anchoring schemes reported by Tronnes et al. and Imran et al. can be traumatic to the 

stomach tissue due to the nature of the implantation method. Clearly, there is a need for better 

anchoring mechanisms to overcome the limitations of present anchoring technology. 

Specifically, the problems like electrode migration and dislodgment need to be addressed.  

 

2.3.1.4. Flexible Gastric Electrode Technology  

In order to solve some of the rigidity related problems with present pacing electrodes, a 

few researchers have proposed electrode designs incorporating flexible structures and 

components. Ben-Haim et al. recommended the use of flexible and elastic electrode leads for 

gastric electrical stimulation [136]. In their gastrointestinal stimulation experiments, they 

employed electrode leads made of a coiled wire, so that if the lead was stretched, the coil 

extended, rather than break the wire. The authors also included pre-selected weakened points in 
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the electrode leads, so that if the strain applied on the lead was above a pre-determined value, it 

would break at one of the preselected points, rather than damage adjacent tissue structures. 

Further details on the electrode design and materials were not provided.  

There have been other reports like those from Foley and Cigaina et al., involving flexible 

polymeric anchors attached to pacing electrodes [101, 126]. The main drawback of these designs 

is the need for sharp features at the tip of the device to allow the electrode to penetrate the target 

tissue prior to anchor deployment. Hess et al. reported a method wherein a helical penetrating 

anchor was provided with a flexible, polymeric coupling bridging the anchor to the rest of the 

electrode body [118]. The tip of the helical anchor functioned as the stimulation electrode lead. 

The flexible polymeric coupling was expected to relieve some stress at the anchor-electrode 

joint. However, the rigidity of the helical anchor itself and that of the actual electrode lead was 

not addressed. The aforementioned problems can be addressed by design innovations that allow 

incorporation of enhanced flexibility in gastric pacing electrodes. 

There has been inadequate development of flexible electrode technology for gastric 

pacing applications. The advantages offered by flexible electrodes include reduction of tissue 

penetration, and reduced incidences of lead fracture and electrode displacement [108, 137]. 

There are factors to consider while designing electrode flexibility. An electrode lead that is too 

compliant can be distorted by the surrounding tissue so that its load bearing capabilities are 

reduced [109]. In other words, an electrode lead that is too flexible may not be able to drive the 

muscle properly. Another factor to consider is the need for some rigidity in the electrode body, 

especially to facilitate ease of handling during its surgical implantation. A few reports on muscle 

pacing electrodes have reported employing features such as a stiffening stylet to stiffen the lead 

body and forceps to grasp the electrode to facilitate implantation [138]. Ideally, it is preferable to 
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have some initial rigidity in the pacing electrode to facilitate its handling during implantation 

surgery, followed by a subsequent increase in structural flexibility to ensure that rigidity related 

problems are avoided in the implanted condition. 

 

2.3.2. Summary of Problems in Gastric Electrode Technology 

The preceding review of the gastric stimulation electrode technology clearly shows some 

limitations with existing state-of-the-art. To summarize, the major problems include: 

1. Damage to the target tissue including tissue penetration and/or electrode lead 

fractures caused by the rigidity or lack of sufficient structural flexibility in the 

stimulation electrode structure. Hence, development of novel pacing electrode 

designs on flexible substrates needs to be investigated to address these problems. The 

new pacing electrode designs should also consider miniaturization to address 

requirements of intestinal pacing. 

2. Need for electrode designs that incorporate features allowing an electrode to be 

adequately secured to the tissue being stimulated, without being displaced during or 

after implantation. 

 

2.4. Equivalent Models for the Tissue-electrode Interface 

The ultimate objective of any FES application is to achieve the desired electrical stimulus 

on the target nerve or muscle, while ensuring that damage to the tissue is minimized or avoided 

in the process. The passage of an electrical stimulus signal through biological tissue may inflict 

injury by several possible mechanisms, the major of those being electrical in nature [139]. 

Therefore, for a specific electrode design, it is pertinent to understand the electrical effects at the 

tissue-electrode interface during the stimulation process [140-143].  
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Electric current in the electrodes and wires is carried by electrons, whereas current in the 

biological tissue is carried by ions. During electrical stimulation, chemical reactions occur at the 

tissue-electrode interface, which are still not fully understood. The waveforms used to apply the 

electrical stimulus can significantly affect some factors including stimulation threshold charge, 

tissue damage by high charge injection, and electrochemical by-products [144-149].  

The selection of parameters for the stimulus waveform is an important part of a FES 

application [150]. Towards this, developing an equivalent circuit model of the tissue-electrode 

interface and studying its response to typical stimulation signals will make it easier to select 

appropriate parameters for electrical stimulation. The behavior and response of such an 

equivalent circuit to different types of stimulus waveforms have to be understood prior to 

implantation of the actual electrode. This will help in designing a safe and successful stimulation 

protocol. 

 

2.4.1. Modeling the Nerve Tissue-electrode Interface 

The functional electrical stimulation of nerves is more critical than that of muscles 

because the required stimulation signals are much smaller, due to low stimulation thresholds for 

nerves. Consequently, there is an increased danger of tissue damage in nerve stimulation. 

Therefore, the present discussion is focused on developing equivalent circuit models for the 

interface formed by a nerve fiber with a stimulation electrode surface.  

Considering a nerve as the target tissue, it is relevant to review the structure of a nerve. 

The structural unit of the nervous system is a neuron which is a nerve cell. Neurons are designed 

to carry information from one location to another. The general structure of a motor neuron is 

shown in Figure 2.3.  
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Figure 2.3: Schematic diagram of a neuron or nerve cell.  

  

The dendrites receive input signals and transmit them to the cell soma, which is the main 

body of the neuron and contains the nucleus. The axon carries the signal from the soma to the 

target. The maximum length of an axon can extend up to a few feet. Axons may or may not be 

surrounded by a myelin sheath, which is a segmented, white fatty substance. There are 

unmyelinated regions between the myelin covered segments on the axon, known as nodes of 

Ranvier. The transit of signals through a neuron is made possible by flow of ions through the 

membrane of the neuron. Figure 2.4 shows a segment of a cell with its constituent ions. Neurons 

make use of different ions and their flow, to create electric currents. The flow of ions is 

influenced by concentration gradients, and special proteins that move the ions [151, 152]. When 

there is no current flow across the membrane of a cell or neuron, the potential across the 

membrane is constant and is called the resting potential. This resting potential is created by the 

difference in the concentrations of certain ions inside and outside the cell membrane. Under 

resting potential conditions, the concentration of sodium (Na
+
) ions inside the cell is lower than 

that of the cell exterior, while the reverse is true for potassium (K
+
) ions; and the inner surface of 

the cell membrane has a net negative charge while the outer surface has a net positive charge.  
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Figure 2.4: Schematic diagram of a cell or neuron segment, with typical 

constituent ions and their concentrations inside and outside the cell under resting 

potential condition. [A
-
] refers to the protein concentration inside the cell, 

considered to have a net negative charge. Unit mM refers to milli-molar. 

 

2.4.1.1. Neural Mechanism-based Equivalent Models 

The modeling of how an electric field applied on a nerve tissue elicits changes in the 

excitability of an axon can provide a valuable tool for the design, development and detailed 

understanding of a FES application protocol [153]. In order to model the behavior of a nerve 

fiber, some reports have proposed equivalent electrical circuits of an axon, based on the internal 

processes occurring in a nerve. Most of these equivalent circuits stem from a circuit model 

originally proposed by McNeal [154]. An equivalent electrical network was proposed to 

approximate a myelinated axon or a nerve fiber with a myelin sheath by McNeal, as shown in 

Figure 2.5 [154]. Myelin has a high electrical resistance, and therefore, the McNeal model for 

myelinated axons considers electrical current to be flowing between the nodes of Ranvier only. 

In the McNeal model, the membrane of every node consists of a nodal capacitance Cme, an ionic 

voltage source corresponding to the resting potential of the membrane (Vres), and a non-linear 

membrane conductance Gme. The axial internodal conductance or the conductance of the 

axoplasm between two nodes is represented by Gax. The internal potential or the potential inside 
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the axon at the n
th

 node is given by Vin,N. The external potential or the potential outside the axon 

membrane at the n
th

 node is represented by Vex,N. The resting potential Vres is the membrane 

potential on the interior side with respect to the exterior side in excitable cells in absence of 

excitation, and is considered a constant with a typical value of -70 mV [155]. The McNeal or 

similar models give a reasonable representation of the electrical effects inside an axon and make 

it possible to simulate currents in an axon.  

 

 

 

Figure 2.5: Schematic diagram of an electrical network representing a myelinated 

nerve fiber [Adapted from reference 154].  

 

Several other reported equivalent circuit models to simulate an axon or nerve fiber are 

either directly based on the McNeal model or are similar to it [49, 156, 157]. All these equivalent 

circuit models including the McNeal model represent neural mechanisms or the inner 

mechanisms of an axon, and do not consider the stimulating electrode surface and the interface it 

forms with the target nerve. Specifically, they do not include any faradaic and resistive elements 
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representing the interface, thereby not accounting for electrochemical processes occurring at the 

electrode-tissue interface. 

 

2.4.1.2. Electrochemical Mechanism-based Equivalent Models 

Some researchers have proposed equivalent electrical circuits for the tissue-electrode 

interface from an electrochemical perspective [158-160]. In the simplest form, this interface is 

considered as an interface formed when an electrode is immersed in an electrolytic solution. 

When an electrode contacts a solution, there exists a double layer of charge at the interface 

(Figure 2.6), as proposed by Helmholtz [161]. Such a layer is analogous to a charged capacitor, 

indicating that any model for the tissue-electrode interface must incorporate capacitance.  

 

 

 

Figure 2.6: Schematic diagram of a double layer of charge formed in the 

electrolyte near the interface when an electrode surface is immersed in an 

electrolytic solution [Adapted from reference 161].  

  

The electrochemistry based equivalent circuits developed to represent a tissue-electrode 

interface have included a double layer capacitance component. An illustration is an equivalent 

circuit proposed by Vetter [158]. This circuit was made of a combination of resistances and 



36 
 

capacitances (Figure 2.7A). The interfacial impedance was composed of a faradaic impedance in 

parallel with a double layer capacitance Cd which was in series with the solution resistance Rsol. 

The faradaic impedance was composed of the charge-transfer resistance Rct, the diffusional 

impedance Zdiff, and the reaction impedance, Zre. Similarly, Geddes et al. proposed two circuit 

models for the tissue-electrode interface, shown in Figure 2.7B [162]. Both models contained a 

half-cell potential (E1/2). In the first model, the Warburg capacitance (Cwa) was shunted by the 

faradaic resistance (Rfar) to account for the direct-current carrying property of the interface. The 

second model placed the half-cell potential in series with the Warburg components (Rwa, Cwa), 

and the Faradaic resistance was placed in parallel with the Warburg components to account for 

the direct-current property of the interface. Another model described by Sluyters-Rehbach et al. 

incorporated the Warburg components (Rwa and Cwa) and a resistance (Rse) in series with a 

parallel combination of resistance (Rpar) and capacitance (Cpar), as shown in Figure 2.7C. This 

combination was shunted by a capacitance (Csh) [163]. Similar equivalent circuits with 

combinations of resistances and capacitances have been reported by others [164].   

The tissue-electrode equivalent circuit models represented above have not included the 

target tissue. The target tissue‟s components and their properties have to be taken into 

consideration to understand the net effect of the stimulus signal on the tissue. Therefore, such 

equivalent circuits may not be adequate to model the behavior of the tissue-electrode interface in 

a practical scenario.  

For the functional electrical stimulation of nerve tissue, a more complete equivalent 

circuit model for the tissue-electrode interface should include both the electrochemical and 

neural aspects. Therefore, it is essential to develop an integrated model with both these aspects to 

model its electrical behavior. To the best of our knowledge, there are no reports on an integrated 
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equivalent circuit model. A detailed integrated equivalent circuit model is an important scientific 

tool to develop protocols for specific applications of stimulation electrode devices. A detailed 

study is required to examine the response/behavior of an integrated equivalent circuit model to 

different stimulation waveforms and parameters utilizing circuit simulation software such as 

PSPICE. 

 

 

 

Figure 2.7: Schematic diagrams of equivalent circuits for a tissue-electrode 

interface, based on physical structure and electrochemical mechanisms, as 

proposed by (A) Vetter [158]; (B) Geddes et al. [162]; (C) Sluyters-Rehbach et al. 

[163].  

 

 

2.4.2. Conclusions and Summary of Problems in Equivalent Models 

In order to avoid potential tissue damage caused by the passage of an electrical signal 

during stimulation, an understanding of the electrical effects on the nerve tissue is useful. 

Equivalent circuits representing the tissue-electrode interface help in this aspect and enable the 
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researcher to establish thresholds for safe and effective stimulation protocols. To summarize the 

problems pertaining to the development of equivalent circuit models for tissue-electrode 

interfaces, the following points are listed: 

1. Previous reports showing equivalent circuits for tissue-electrode interfaces have been 

focused disproportionately on one aspect of an interface i.e. either on the processes 

internally occurring at the target tissue or on the mechanisms/phenomena related to the 

metal electrode. A complete and reasonably accurate representation of a tissue-electrode 

interface is possible only when the two aspects are integrated into one model. There is a 

need for such an integrated equivalent model for studying functional electrical 

stimulation of nerve tissue. 

2. To date, a detailed examination of a tissue-electrode interface by modeling it with circuit 

simulation software like PSPICE or similar has not been reported. Such a software based 

study will help in simulating numerous practical scenarios, and provide data on the 

approximate parameters to be used for effective and safe stimulus of the target nerve.  

 

2.5. Routing Technology for FES Applications 

An essential part of a typical FES research activity is the physical routing of electrode 

lead wires from the implanted electrode to another module that supplies the electrical stimulation 

signal. This stimulation signal supply module may be implanted or situated externally i.e. outside 

the body. Implantable stimulation systems include an implanted signal and power source and 

therefore, preclude any necessity for a physical interconnection for the electrical wiring from the 

implanted electrode to any external electronic equipment. The stimulation signal and electrical 

power are supplied from the implanted electronics and battery. Also, bio-potential signals from 

the target tissue can be recorded and transmitted wirelessly to an external device. However, the 
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surgical procedure required to implant an electrical stimulation system is often a severe deterrent, 

particularly for non-clinical and research applications [108]. Additionally, implantable 

stimulation systems for FES applications are not easy to develop for animals with smaller 

anatomy like rodents, cats and dogs. The smallest commercial implantable stimulators are 

expensive and highly application-specific. To the best of our knowledge, there are no 

commercially available implantable stimulators in the United States for rodent-based FES 

research. A drawback of implantable stimulation systems is that the implanted batteries are not 

able to supply power for long duration in applications like gastric muscle pacing, where 

electrical power requirements are typically high [165]. The implanted batteries can be recharged 

wirelessly, but such systems are difficult to implement for small animal anatomies. In such cases, 

it is more practical to supply the stimulation signal information and electric power through a 

physical interconnection or wiring traversing between the implanted electrode and an external 

signal/power source. In general, for FES research based on small-animal test platforms, 

researchers often prefer the physical wiring approach, though it is comparatively rudimentary 

with respect to the implantable stimulator approach.  

It is a challenging task to establish physical routing of wires as it involves electrical 

wiring to pass through the skin of the test animal. The portion of wiring immediately exiting 

from the skin of the animal is susceptible to damage due to motion of the animal, often resulting 

in wire breakages and subsequent stoppage of the experiments [166]. The wire breakage after 

implantation can occur due to large mechanical stress created in the subcutaneous
8
 plane [107]. 

Another major problem is the maintenance of the skin around implanted wiring and cables 

exiting the skin in chronic animal implant applications [167]. Skin damage or tearing around the 

exiting wires and cables can occur easily, causing infections. Therefore, special devices are 
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 Subcutaneous: under the skin 
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needed for preventing wire breakage and infection at the interface of the skin and the exiting 

wire [168]. Such devices, known as percutaneous
9
 access devices (PADs), function to support 

the electrical wires as they exit the test animal‟s skin and protect the wires from mechanical 

forces exerted by the animal‟s motion and other causes. 

Percutaneous access devices have been employed in several FES studies to facilitate the 

exit of electrode wires through the skin to external stimulation equipment [55, 169-171]. A 

typical PAD consists of a base or flange structure that is implanted subcutaneously i.e. under the 

skin and a conduit structure that allows interconnection between the in-vivo and external devices 

(Figure 2.8). The conduit structure is typically a skin piercing element, and partially protrudes 

out of the skin from beneath. The base or flange structure under the skin functions mainly as an 

anchor for the device. The skin piercing nature of PADs poses great challenges in the design and 

integration of such devices in FES applications. The existing designs for PAD type devices 

suffer from one or a combination of reasons that are detailed in the following sections.  

 

2.5.1. PAD Fabrication Technology 

Most of the currently available PAD designs rely on the use of specialized equipment like 

chemical vapor deposition and etching machinery, and plasma sources for the device fabrication 

[172-174]. To illustrate, Cosentino et al. reported a PAD made of titanium and coated with 

carbon [175]. A vapor deposition process was employed to deposit the coating of carbon on the 

titanium body. Similarly, Klein et al. reported a PAD made primarily of titanium, and coated 

with vapor deposited carbon [176].  

Others have reported PADs either made of pyrolytic/vitreous carbon or coated with layers 

of carbon [174, 177]. Methods like these require vapor deposition equipment for the device 
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 Percutaneous: through the skin or piercing the skin. This term typically refers to an implanted device or application 

that exits the skin to permit interaction with the external world. 
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fabrication. It may be inconvenient for researchers to easily implement such PAD designs due to 

lack of easy access to the required equipment. Others have reported PADs made by ceramic 

materials, involving high temperature sintering processes in the device fabrication [178]. The 

sintering temperatures employed are about 1250 
0
C or higher. A major drawback posed by the 

use of rigid structures made of titanium, carbon or ceramic in a PAD is the limitation on the 

structural flexibility of the device. 

 

 

 

Figure 2.8: Schematic of a typical percutaneous access device (PAD) with an 

implanted base and a skin-piercing conduit.   

 

 

There have been reports of some PAD designs based on extensive manual assembly of 

sub-components or modules. To illustrate, Zimmerman proposed a PAD made by combining 

several components of different materials like polyester velour, and silicone plastic [179]. 

Similar PAD designs involving significant assembly of components have been developed by 

others [180]. In any PAD design, some degree of assembly is acceptable during the fabrication 

process. However, PADs made by combining or assembling many components are not 

convenient to realize. There are some PAD designs that require the assembly of some 

components just prior to implantation in a patient [181]. Such PAD devices are not convenient to 
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use. If the device fabrication processes are complicated, then design changes may be difficult to 

implement on the fly. Therefore, PAD designs based on convenient and easy-to-implement 

fabrication processes will be very useful to researchers.  

 

2.5.2. Bacterial Infection 

Infection caused by PADs remains a major problem in the use of such devices [182, 183]. 

PAD related infections ultimately result in failure of the implant or application [184, 185]. An 

important cause of infection and device failure is the migration of skin cells. It is the nature of 

the skin to grow inwards from its opening around the skin-piercing conduit of a PAD. This 

occurs by the downward migration of the epidermis or epithelial
10

 cells from the skin 

immediately around the conduit, a phenomenon known as epithelial downgrowth. A schematic 

representation of this phenomenon is shown in Figure 2.9. As a result of this phenomenon, 

bacteria may be carried into the body from the outside by the migrating skin cells causing 

infection. The prevention of bacterial infection is one of the most important factors determining 

the survival of the implanted PAD and by extension, the FES application employing the PAD. 

The epithelial downgrowth, if unchecked, will continue till the skin cells migrate around the 

implanted portion of the PAD, encapsulate it and push the PAD out of the body [186]. Therefore, 

it is essential to restrict the progress of epithelial downgrowth and prevent it from enveloping the 

device. 

For a successful PAD, the skin opening around the percutaneous conduit should be 

limited to the outer diameter of the conduit, thereby avoiding infection [187-189]. The 

movement of the PAD due to internal and external forces contributes to the enlargement of the 

skin opening around the PAD conduit. The enlargement of the skin opening can be prevented by 
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 Epithelial cells: the cells lining the cavities and surfaces of structures throughout the body. 
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the reduction of relative movement between the implant and skin [190]. This can be achieved by 

adequately anchoring the implanted base/flange section of the PAD in subcutaneous tissue. 

 

 

 

Figure 2.9: Schematic of the downward migration of epidermis or epithelial 

downgrowth occurring at the skin immediately around the conduit of a PAD.   

 

 

It is common for PADs to incorporate micro-scale pores and microstructures in the 

implanted part or the base of the device to encourage connective tissue in-growth to enable 

stronger anchoring of the implanted base [191]. The anchoring is made possible by the growth of 

connective tissue into the porous features [192]. Anchoring of the percutaneous access device 

greatly minimizes or even prevents the motion of the PAD base, caused by external forces acting 

on the external portion of the device thereby minimizing the risk of bacterial infection. To 

illustrate, Merritt et al. studied infection rates in implants made of porous and dense material in 

mice [193]. They concluded that the infection rate at the sites with porous implants was less than 

that with the dense implants, if tissue in-growth occurred in the porous implants prior to 

exposure to bacteria. Similar results were reported by Kiechel et al. [194].  

Connective tissue also aids in inhibiting epithelial downgrowth [195]. Winter reported 

that percutaneous implants made of porous polytetrafluorethylene (PTFE) became invaded by 
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fibrous tissue which prevented the migration of epidermis
11

 alongside the implants and therefore, 

a stable ring of epidermal tissue was formed near the skin surface [196]. Winter suggested that 

the epidermal cell movement was halted when they were confronted by healthy collagen bundles 

incorporated in the pores of the implants. This indicates that the placement of pores need not be 

limited to the base or flange of the PAD. For example, porosity in the lower conduit structure 

may help in providing a barrier for the downward migration of epidermal cells. Strategic 

placement of pores and structures of appropriate dimensions may prevent the downward 

migration of bacteria-carrying epithelial cells thereby reducing the risk of bacterial infection 

[196, 197].  

 

2.5.2.1. Porosity 

It is essential to ensure that porous materials employed for the growth of connective 

tissue have proper pore dimensions [198]. There has been some diversity in the reported values 

of optimal pore dimensions for connective tissue growth in literature. Several studies have 

reported that for porous meshes and layers, materials with small pore sizes (< 50-80 µm) 

experience less tissue in-growth than those with larger pore sizes (> 80-100 µm) [199-203]. 

Other studies have recommended pore sizes of ≥40 µm for connective tissue to be formed on the 

surface of a percutaneous implant [192]. Others have recommended pore sizes greater than or 

equal to 80 µm for tissue in-growth [204]. Deviations from these dimensional trends occur when 

the pore dimensions in the materials are made small enough to compare with cell dimensions in 

tissue [205, 206]. Winter recommended a 10 µm pore size for PTFE materials [196]. Squier et al. 

recommended a pore size greater than 3 µm in Millipore filter material based on PTFE [207]. In 

another study by Brauker et al., it was reported that porous mesh membranes of PTFE material, 
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with pore diameters of 0.8 – 8 µm are appropriate for connective tissue growth [208]. Table 2.1 

summarizes some porous materials and pore dimensions employed for connective tissue growth 

in percutaneous access device applications.  

 

Table 2.1: List of some porous materials and optimal pore dimensions for the 

growth of connective tissue, as recommended in literature. 

 

 

Reference Pore size (diameter) recommended, and material used 

Hulbert et al., 1972 [200] 100-150 µm, CaO.Al2O3, CaO.TiO2, CaO.ZrO2 

Winter, 1974 [196] 10 µm, Polytetrafluorethylene (PTFE) 

40 µm, Hydron sponge 

Cestero et al., 1975 [201] 200 µm, Polyethylene 

300 µm, Polypropylene 

Merritt et al., 1979 [193] 100-200 µm, Vitallium 

100 µm, Polyethylene 

Kantrowitz et al., 1980 

[209] 

500 nm, Hytrel polyester elastomer, Copel silicone 

polycarbonate, Lexan polycarbonate, VITUF polyethylene 

terephthalate, Mylar 

Squier et al., 1981 [207] ≥ 3 µm, Millipore
®
 filter 

Bessette et al., 1981 [210] ≥ 3 mm, Silastic silicone elastomer 

von Recum, 1984 [192] ≥ 40 µm, Polyester terephthalate (Dacron
®
 velour ) 

Lundgren et al., 1986 

[204] 

≥ 80 µm, Titanium coated monofilament polyester fabric 

Campbell et al., 1989 

[211] 

1-3 µm, Versapor
®
 filter (polyvinyl chloride/polyacrylonitrile 

copolymer) 

Poirier et al., 1990 [212] 50-125 µm, Polytetrafluorethylene (PTFE) 

400-800 µm, Polyester velour (Dacron velour) 

Kantrowitz et al., 1993 

[213] 

0.5-1 µm, Silicone-polycarbonate 

Dacron
®
 velour 

Brauker et al., 1995 [208] 0.8-8 µm, Polytetrafluorethylene (PTFE) 

Sanders et al., 2005 [206] 12-68 µm, Polyurethane (68 µm maximum size tested) 

 

The diversity in pore dimensions may be attributed to the type of material being 

employed for the percutaneous implant, species of the test animal and other aspects of the 

application at hand. Therefore, it is impractical to assign the same specific optimal pore 

dimensions to all material cases for tissue in-growth for a given application. There are several 
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drawbacks with the technology currently available for the incorporation of micro-scale pores and 

structures in PAD applications. The following sections describe these drawbacks in detail. 

 

2.5.2.1.1. Commercial Porous Materials 

To date, most percutaneous access devices reported with porous structures are based on 

the attachment of commercially available discrete layers of porous fabric onto the main device 

[176, 180, 214, 215]. The attachment is usually done by an adhesive [212, 214]. The discrete 

porous layers are typically not made of the same material as the PAD body. Currently, one of the 

most commonly used commercially available porous materials is Dacron
®

, which is a polyester 

terephthalate material [216].  

As seen in Table 2.1, the diversity in the reported values of optimal pore dimension 

points to a need for tailor-made porosity with specific range of dimensions of pores for a given 

application. In applications calling for tailor-made porosity in a specific material, it may be 

inconvenient to employ commercially available porous layers due to possible unavailability of 

material meeting the desired specifications. For example, in a study by Bessette et al., silicone 

implants with pores ranging up to 6 mm were implanted in monkeys [210]. To the best of our 

knowledge, there are no current commercial sources for porous medical grade silicone layers. In 

general, there is a need for greater control on dimensions of porosity in the materials employed 

for PAD applications. This can be made feasible if methodologies are developed to create 

porosity of specific desired dimensions in a given material.     

 

2.5.2.1.2. Tailor-made Porous Materials and Methods 

Currently available PAD designs that incorporate tailor-made porous structures employ 

methods like nuclear bombardment and other complicated processes to make such structures 
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[181, 217]. Kantrowitz et al. reported a PAD design which incorporated porous surfaces where 

the pores or cavities were formed by nuclear bombardment on a polycarbonate surface by a 

Californium-252 spontaneous fission source in a vacuum chamber, followed by a chemical 

etching process in a sodium hydroxide solution [181]. Kojima et al. reported the use of 

microscopic carbon fibers to create porous surfaces, especially on the base of their PAD [174]. 

The carbon fibers were commercially procured or alternately, made by chemical vapor 

deposition. Subsequently, the base of the PAD was treated with oxygen plasma to improve the 

biocompatibility of the carbon coating. Shimotoso et al. reported porous ceramic layers made by 

laminating sheets of perforated ceramic sheets, so that the pores communicated with each other 

[178]. Subsequently, a sintering process was performed at more than 1300 
0
C.    

Manual methods are some of the most common techniques employed to date for pore 

formation in different materials for PADs. Lee et al. reported a PAD design which incorporated a 

polymeric base perforated with holes to facilitate growth of connective tissue [172]. The 

fabrication of these holes was by a mechanical process requiring a rack and pinion tool. The 

authors suggested that alternate methods may be employed to makes pores including punching, 

shear-punching, drilling, piercing and machining. The main drawback of these pore formation 

methods is that they are labor intensive and may not easily form micro-scale dimension pores. 

Similar methods reported for making Silastic medical grade silicone rubber layers porous, 

included employing a leather punch to manually make perforations in silicone layers [210]. This 

method is tedious and does not easily allow for the formation of micro-scale dimension pores.  

In another report, three dimensional porous structures were made by stacking thin sheets 

of silicone rubber, for PAD applications [217]. Each individual sheet had pores in the desired 

diameter and was patterned with protrusions, made by molding the silicone rubber over a master 
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mold template made by photolithography or electron discharge micromachining. The protrusions 

on the stacked sheets created the effect of interconnected pores. Similar development of three 

dimensional porous structures by stacking microfabricated layers of polymer have been reported 

by others [218]. The main drawback of these types of methods is the extensive assembly required 

after the fabrication of individual patterned silicone rubber sheets. Brown et al. reported a porous 

metal mesh for tissue in-growth [219]. The porous metal mesh was made by subjecting a 

titanium metal sheet to perforation, contouring and expansion by drawing it in two directions to 

open pores. The use of metal meshes may place restrictions on the structural flexibility of the 

device, especially if the device body is polymeric. Metal meshes like these have to be manually 

attached to a PAD by means of an adhesive. It would be beneficial to develop simple methods to 

form micro-scale pores and structures with any desired dimensions in biocompatible materials to 

facilitate the growth of connective tissue.  

 

2.5.2.1.3. Role of Micro-structured Surfaces 

There have been reports that micro-machined surfaces may be beneficial in preventing 

the downward growth of epithelial cells, and for directed cell orientation and migration [220, 

221]. Earlier efforts on micro-machined texturing of percutaneous implants involved the usage of 

micro-machined epoxy substrates. Chehroudi et al. placed grooved and smooth epoxy 

percutaneous implants in the parietal area of rats [222]. They observed that after ten days of 

implantation, the epidermis migrated downward to the subcutaneous flange in the smooth 

implants, while in the grooved implants the epithelial migration was inhibited. In another report 

showing similar results, percutaneous implant surfaces made of micromolded epoxy were 

sputter-coated with 50 nm of titanium [223]. The implants had micro-scale groove patterns, with 

the grooves separated by about 20 µm. These reports followed previous studies that showed that 



49 
 

inflammatory cells behaved distinctly different at smooth and rough surfaces [224, 225]. 

Inflammatory cells play an important role in the response of tissue to implants [226, 227]. The 

main drawback of micro-machined epoxy substrates is that epoxy resin can offer limited 

biocompatibility, at best. It is therefore important to explore the micro-machining of other 

materials that offer high biocompatibility.  

While titanium offers high biocompatibility, it is useful to develop micro-machined 

polymeric materials to provide greater structural flexibility to the device. However, there are 

several challenges in the micro-scale patterning of proven biocompatible materials. Primary 

among them is the incompatibility of such biocompatible materials with standard micro-

fabrication processes. Conventionally used materials (e.g. silicon, photoresist) offering excellent 

micro-fabrication ability may be limited in terms of biocompatibility. Material and structural 

properties of silicon make it unsuitable for many biological applications. There have been no 

studies conducted on the long-term usage and stability of photoresist materials in physiological 

ambient. Therefore, there is a need for developing methods to pattern highly biocompatible 

materials that are proven for implantable applications and for employing them to realize more 

efficacious PADs.  

 

2.5.3. Action of Mechanical Forces 

The action of forces on the PAD structure results in shearing or tearing at the skin-PAD 

interface [228]. Forces acting externally on the skin-piercing conduit of a typical PAD are 

translated to the implanted base of the PAD, causing its movement [209]. Any movement of the 

implanted base prevents the PAD from being adequately anchored to the subcutaneous tissue and 

may easily translate to infection, and subsequent device failure. Forces on the conduit also create 

its motion, resulting in tearing of the surrounding skin [209]. The tearing of skin around the PAD 
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conduit provides an enlarged opening for bacteria to enter the body from the external ambient 

(Figure 2.10). Therefore, the reduction of the relative movement between the PAD and skin 

increases the chances of a successful percutaneous device [229, 230]. 

 

 

 

Figure 2.10: Schematic of the action of external forces on a PAD conduit, 

resulting in skin tearing around the conduit. The enlarged opening in the skin 

enables bacteria to enter the body from outside.   

 

There is a need to include specific structures and features in a PAD design that can help 

in reducing the effects of forces incident on the PAD in its normal operational ambient. Several 

PAD devices reported previously were based on rigid structures, without features to enable the 

reduction of stress caused by incident forces [231]. There have been only a few reports on 

devices incorporating features to minimize the mechanical stresses at the PAD-skin interface 

[232-235]. These reports either deal with highly specific applications or do not adequately 

address the reduction of stress due to incident forces.  

 

2.5.3.1. Bone Anchoring to Reduce Stresses 

Some researchers have reported PADs anchored in the bones of test animals to reduce the 

effect of incident forces. It was reported that direct and indirect bone-anchoring favored the 

longevity of percutaneous implants, by minimizing the mechanical stresses at the interface 
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between the PAD implant and the skin [235-237]. Though the anchoring of a PAD to 

subcutaneous bone is a simple and effective method to minimize interfacial mechanical stress, it 

is more appropriate for certain locations of the body like the head, and not generally suitable for 

areas of the body where the skin moves relative to the underlying organs [238].  

In cases where no underlying bone is available for PAD anchoring, the bone-based 

anchoring methods cannot be used. For example, peritoneal dialysis requires the placement of a 

percutaneous implant for a catheter in the highly mobile tissue of the abdominal wall. In such 

situations, PAD devices have to be anchored in soft-tissue.   

 

2.5.3.2. PADs with Features for Stress Reduction 

To date, there have been only a few reports on soft-tissue anchored PAD designs with 

features that can reduce stress [239]. In one report, Kantrowitz et al. described a PAD whose 

skin-piercing conduit was made of a soft, flexible, biocompatible material such as silicone [213]. 

The authors suggested that the use of a soft, flexible material would allow the conduit structure 

to absorb the forces acting externally on the PAD. Some others have also advocated the use of a 

flexible silicone conduit in a PAD as a method for stress relief [240]. The use of a flexible 

material like silicone for the PAD conduit may not be sufficient to absorb the incident forces. 

While silicone materials allow a degree of flexibility in a member, there is still a need for 

additional methods to reduce the effect of forces incident on the PAD conduit. 

Grosse-Siestrup et al. reported a PAD with an air-filled elastic ring incorporated around 

the skin piercing conduit, located between the conduit and the neighboring skin [232]. The 

authors suggested that the air-filled ring may act as a low modulus area and reduce stresses 

caused by movement of the conduit. A major drawback of this design is that the stress relieving 

feature (the air-filled ring) is placed at the junction of the PAD conduit and the surrounding skin. 



52 
 

This type of placement may allow for only a limited degree of movement of the conduit without 

damaging the interface formed by the conduit with the neighboring skin. Therefore, other types 

of design features may be required for more effective stress relief.  

Hastings et al. reported a PAD with a design feature aimed at relieving stress [233]. In 

their design, the skin piercing conduit was attached to and placed in a cylinder at the PAD-skin 

interface. A gap was incorporated between the conduit and the outer cylinder. It was expected 

that this gap would serve as a stress reduction area, permitting the axial movement of the conduit 

and compensating for axial forces. This design is applicable mainly for the reduction of axial 

forces, and does not address the reduction of stresses from lateral and torsional forces. In this 

PAD design, the subcutaneous base or flange structure has been omitted. A base structure would 

have provided additional stability and stress relief.  

Among other reports, Becker et al. described a PAD design for introducing a catheter into 

the body [241]. Their device incorporated an external bend in the skin piercing conduit. The 

authors suggested that the external bend reduced stress on the PAD–skin interface because no 

bending moment was generated when a dressing was applied to the PAD implant location. A 

similar PAD design was employed by Holmberg et al. in their experiments with total artificial 

heart implants [186]. Their device consisted of a skin piercing conduit which was bent at an 

angle to the plane of the skin.  

The main drawback with both these designs is that while an external bend in the PAD 

conduit may serve a very specific purpose, it is not sufficient to address the reduction of forces 

generally acting on the PAD in its regular operational conditions. For example, the PAD 

developed by Becker et al. deals with a specific purpose i.e. the reduction or prevention of 

bending moments while applying dressings at the PAD implant location [241]. An improvement 
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to these designs is one reported by Kojima et al., whose PAD had an elastic spring-like 

component to aid in stress relief [174]. This feature was located under the skin inside the body in 

order to address the reduction of in-vivo stresses acting on the PAD. However, there was no 

feature in the design to address external forces acting on the conduit which are much more severe 

than typical in-vivo forces. 

 

2.5.4. Conclusions and Summary of Problems with Current PAD Designs 

The preceding sections have detailed the problem areas in existing PAD technology and have 

highlighted the need for innovation to address these problems. Specifically, there is a need to 

address the following aspects: 

1. Development of fabrication technology for PADs based on convenient and easy-to-

implement processes involving proven bio-implantable materials.  

2. Development of methodologies to create micro-porous and micro-patterned layers of 

highly biocompatible materials such as medical grade silicone, for applications in 

connective tissue growth and prevention of epithelial downgrowth, among others.  

3. Novel PAD designs with features aimed at reducing forces transferred to the implanted 

portion of a typical PAD. 
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CHAPTER 3: RESEARCH GOALS 

 

3.1. Nerve Cuff Electrode Technology 

Considering the problem areas detailed in the previous chapter in the sections pertaining 

to the present cuff electrode technology for stimulating nerves and nerve fibers, the present 

dissertation describes development of novel electrode design features aimed at addressing the 

following aspects:  

1. Development of a cuff electrode for micro-scale diameter nerve tissues. 

2. Solving the problem of securing the opening of a cuff electrode, after its implantation on 

a target nerve tissue.  

3. Improving the robustness of cuff electrodes, especially at the cuff-electrode wire 

interface. 

 

3.2. Gastric Pacing Electrode Technology 

The present dissertation research aims at addressing the following aspects in gastric 

pacing electrode technology:  

1. Development of miniaturized gastric stimulation electrodes based on incorporation of 

metal leads on flexible substrates, aimed at alleviating the lead penetration problem 

during implantation.  

2. Design feature that allows the electrode to transform from an initial more rigid state to a 

more flexible state. 

3. Features that enable the direct anchoring of the pacing electrode to the gastric tissue, at 

more than one location of the electrode and preferably employing mechanisms that avoid 

tissue penetrating anchors. 
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4. Other features and structures integrated on the electrode, capable of promoting the 

growth of connective tissue, aimed at minimizing electrode displacement after 

implantation i.e. enhancing the anchoring of the electrode to the gastric tissue. The 

features may include microstructures integrated on the electrodes, capable of promoting 

the growth of connective tissue, aimed at minimizing electrode displacement after 

implantation. 

 

3.3. Modeling the Tissue-electrode Interface 

To avoid potential tissue damage caused by the passage of an electrical signal during 

stimulation, an understanding of the electrical effects due to the electrode leads is useful. 

Therefore, a part of the proposed dissertation research aims at addressing: 

1. Electrical modeling of a nerve-electrode interface for the micro-cuff electrode being 

developed in this research. Towards this, an equivalent electrical circuit representing the 

nerve-electrode interface is developed and modeled using the PSPICE electronic circuit 

simulation software.  

2. The study of the response of the equivalent circuit model to different types of electrical 

stimulus signal protocols.   

 

3.4. Percutaneous Access Device (PAD) Technology 

This dissertation describes several useful innovations in the development of PAD 

technology for FES applications. Specifically, this dissertation addresses the following aspects: 

1. Development of fabrication technology for PADs based on convenient and easy-to-

implement processes involving proven bio-implantable materials.  
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2. Novel PAD design with features aimed at reducing the forces transferred to the implanted 

portion of a typical PAD. 

3. Development of methodologies to create micro-porous and micro-patterned layers of 

highly biocompatible materials like medical grade silicone for applications in connective 

tissue growth and prevention of epithelial downgrowth. The developed layers may be 

free-standing to function as add-on structures or inbuilt into percutaneous access devices 

during their fabrication. The developed processes should enable pore dimensions from 

the sub-micron range to several hundred microns.  
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CHAPTER 4: ELECTRODE TECHNOLOGY DEVELOPMENT  

 

4.1. Nerve Cuff Electrode Development 

4.1.1. Introduction 

The importance of a cuff electrode design in the functional electrical stimulation (FES) of 

nerves and nerve fibers has been described in Chapter 2. There are several problems involved in 

the use of the cuff design that have not been addressed by currently available cuff electrodes. 

These problems involve the closure of a cuff electrode‟s opening after implantation on a nerve, 

and securing of the cuff electrode to a target nerve. Other drawbacks with existing technology 

include the lack of available designs for micro-scale dimension nerves, and limited robustness of 

the cuff-electrode wire interface.    

 A cuff electrode design, called the clip-on micro-cuff electrode (Figure 4.1), is developed 

here to address the challenges present in currently available cuff electrodes [242, 243]. This 

developed cuff design can be used for stimulation of nerves and nerve fibers with diameters in 

the micro-scale or above, in humans and animals. The developed cuff electrode can also be 

extended to applications involving recording of electrical signals from nerves and nerve fibers. 

The proposed cuff device involves metal wire or foil electrodes incorporated in a cuff made of 

Silastic, a commercially available medical grade silicone elastomer (Figure 4.1). The cuff is in a 

naturally closed position. A pinch-hinge type structure is incorporated in the cuff electrode by 

which the user can conveniently open and close the cuff to enclose the tissue being stimulated. 

Once implanted, the cuff will stay on the nerve due to its naturally closed position, till the pinch 

hinge is used to open it [242, 243]. The clip-on design feature is expected to enhance the general 

ease of handling such cuff devices. The electrical connection wires leading away from the main 
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electrodes are enclosed in an insulation that is embedded in the device body. This provides 

strength to the interface between the electrode wire and cuff body. 

 

 

 

Figure 4.1: Schematic representation of the developed clip-on cuff electrode that 

ensures complete closure of the cuff in its natural state. A pinch-hinge feature 

allows for easy opening and closing of the cuff. By means of the pinch-hinge, the 

device can be „clipped-on‟ to a target nerve.  

 

The developed cuff electrode is designed to address the following factors:  

1. The problem of securing the cuff opening after implantation on a target nerve tissue.  

2. The need for a cuff electrode for micro-scale diameter nerve tissue.  

3. Complete closure of the cuff. 

4. Improving the robustness of cuff type electrodes, especially at the cuff-electrode wire 

interface. 

The developed clip-on cuff electrode can also be used for larger diameter nerves and 

nerve fibers. The fabrication of the device is based on processes that include simple processing 

technology, and molding of silicone elastomer. The details of the fabrication processes and some 

test results on the developed clip-on micro-cuff electrode are discussed in the following sections.  
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4.1.2. Materials and Methods 

4.1.2.1. Fabrication with a Molding Step 

To realize the clip-on micro-cuff device shown in Figure 4.1, the following fabrication 

procedure was employed. In the first step, a flat sheet of plastic was used as the base substrate 

and was cleaned with de-ionized (DI) water and air dried (Figure 4.2A). A layer of polyvinyl 

alcohol (PVA) was spin-coated on the substrate to function as a mold release layer (Figure 4.2B). 

An aqueous solution of PVA (1:8 ratio by weight of PVA dissolved in DI water) was used for 

this purpose. After spin-coating, the mold release layer was allowed to solidify at room 

temperature for 8 hrs.  

Subsequently, a thin layer of Silastic (medical grade silicone) was spin-coated on the 

solid mold release layer (Figure 4.2C). This silicone layer was cured in a convection oven at 60 

0
C for 3 hrs. In the next step, a metal wire of a known diameter was coated with a thin layer of 

the mold release chemical, as shown in Figure 4.2D. This was done by dip-coating the wire in an 

aqueous solution of PVA (1:8 ratio by weight of PVA to DI water) for two minutes. The wet 

mold release layer was solidified at room temperature for 8 hrs.  

The coated metal wire was placed in conformal contact with the thin silicone layer on the 

substrate. Two metal foil electrodes were placed in contact with approximately half-the 

circumference of the metal wire (Figure 4.2E). These metal foils were previously cut to size from 

commercially available 25 µm thick stainless steel foil and spot-welded to long stainless steel 

wires, which served as interconnecting wires from the implanted electrode to other electronic 

equipment. The stainless steel interconnecting wires were insulated from the surroundings by 

small diameter tubing made of medical grade silicone. In the next step, a thick layer of uncured 

silicone liquid was poured over the wire-foil assembly and cured at 60 
0
C for 3 hrs (Figure 4.2F). 



60 
 

As this thick layer was cured, it bonded permanently with the underlying thin silicone layer. 

Subsequently, the entire cured silicone structure was released from the substrate by dissolving 

the mold release layer on the substrate. The free-standing, cured silicone structure with the 

embedded wire-foil assembly is shown in Figure 4.2G. 

In the next step, a plastic material was patterned by machining. The pattern was 

complementary to the pinch-hinge structure required for the clip-on electrode. This patterned 

plastic layer served as a master mold template for molding the silicone pinch-hinge structure. 

The mold was coated with mold release chemical, using the coating process described earlier. 

Subsequently, uncured silicone liquid was poured over the mold and allowed to settle into the 

features (Figure 4.3A). Subsequently, the free-standing cured silicone structure with the 

embedded wire-foil assembly was inverted and placed on the mold coated with uncured silicone, 

as shown in Figure 4.3B.  

The entire set-up was thermally cured, so that the uncured silicone permanently bonded 

with the cured silicone. The cured structure was then released from the mold to yield a pinch-

hinge feature added on to the existing silicone structure with the embedded wire-foil assembly 

(Figure 4.3C). 

At this stage of the fabrication process, the hollow cuff and its opening were still needed 

to be defined. The cuff opening was defined by manually making a slit/cut on the cured structure, 

as shown in Figure 4.3D. Subsequently, the structure was placed in an ultrasonic bath of water. 

The cuff opening allowed water to enter and dissolve the mold release coating on the wire. This 

allowed the embedded cylindrical wire piece to be removed from the cured silicone, leaving 

behind a hollow cuff structure with a length-wise slit. The obtained cuff structure was in a 

naturally closed position. Depressing the pinch-hinge structure allowed the cuff to be opened. To 
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obtain the final device shown in Figure 4.1, the extra silicone was trimmed from the cured 

structure.  

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic of the initial steps involved in the cuff electrode 

fabrication process.  
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Figure 4.3: Schematic of the remaining steps involved in the cuff electrode 

fabrication process.  

 

4.1.2.2. Layer-by-layer Fabrication  

An alternate fabrication method was investigated based on a layer-by-layer approach. The 

clip-on cuff electrode design shown in Figure 4.4 was realized by this method.  
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Figure 4.4: Schematic diagram of an embodiment of the clip-on micro-cuff 

electrode made by a layer-by-layer fabrication process. 

 

In the first step, a flat sheet of plastic to be used as the base substrate was cleaned with DI 

water and air dried. A layer of PVA was spin-coated on the substrate to function as a mold 

release layer (Figure 4.5A). An aqueous solution of PVA (1:8 PVA to DI water ratio by weight) 

was used for this purpose. After spin-coating, the mold release layer was allowed to solidify at 

room temperature for 8 hrs.  

A thin layer of medical grade silicone (Silastic) pre-polymer was spin-coated on the solid 

mold release layer (Figure 4.5B). This layer was cured in a convection oven at 60 
0
C for 3 hrs. In 

the next step, a metal wire of a known diameter was dip-coated with a thin layer of PVA (Figure 

4.5C). The wet PVA layer was solidified at room temperature for 8 hrs. The coated metal wire 

was placed in conformal contact with the cured Silastic silicone layer on the substrate (Figure 

4.5D). In the next step, a thicker layer of uncured silicone liquid was poured over the wire and 
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cured thermally at 60 
0
C for 3 hrs (Figure 4.5E). As this thicker layer was cured, it bonded 

permanently with the underlying thin silicone layer. Subsequently, the cured silicone structure 

was released from the substrate by dissolving the mold release coating on the substrate in an 

ultrasonic bath of water. Further ultrasonic treatment in a bath of water dissolved the mold 

release coating on the wire, allowing for the wire to be easily pulled out from the silicone (Figure 

4.5F).  

By means of a blade, the free-standing cured Silastic structure with the hollow cylinder 

was manually trimmed at the sides to the desired lateral dimensions of the cuff. One side of the 

structure was manually cut to remove some silicone material, to form a pinch-hinge feature 

(Figure 4.5G). On the other side of the structure, the edges were trimmed (Figure 4.5H). This 

served to reduce the overall size and mass of the device. In the next step, the cuff opening was 

defined by manually making a slit on the cured structure, as shown in Figure 4.5I.  

At this stage of the fabrication process, the main body of the device was obtained with 

the cuff structure in a naturally closed position. Depressing the pinch-hinge structure allowed the 

cuff to be opened. To complete the cuff electrode device, electrodes needed to be incorporated in 

the cuff. A 12 inch segment of electrode wire (multi-strand stainless steel, with Teflon 

insulation) was stripped of its Teflon coating at one end to expose a length of bare wire. The 

purpose of this particular length of wire (50 µm diameter) was to function as an electrode lead 

inside the cylindrical space of the cuff. The cuff body (Figure 4.6A) resulting from the earlier 

fabrication steps was slightly opened by holding the arms of the pinch-hinge and applying a 

squeezing force (Figure 4.6B). A syringe needle (26½ gauge) was employed to pierce the cuff 

body from the pinch-hinge side (Figure 4.6C). The needle was allowed to exit from the cuff side, 

through the open cuff. The insulated end of the electrode wire was inserted into the needle from 
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the cuff side (Figure 4.6D). When the wire appeared at the other side of the needle, it was held 

by tweezers and gently pulled through till a few cm of the wire came out (Figure 4.6E). 

 

 

 

Figure 4.5: Schematic of the initial steps involved in the cuff fabrication process.  
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At this juncture, the syringe needle was disengaged from the cuff body leaving the wire 

inside the cuff body. This was done by holding the electrode wire at the cuff opening side and 

the cuff body with one hand, and gently pulling out the needle with a twisting motion (Figure 

4.6F). As the needle was pulled out, the cuff body material collapsed around the wire, holding it 

tightly. In the next step, the wire was pulled further from the pinch-hinge side till only the un-

insulated part of wire was inside the cylindrical opening (Figure 4.6G).  

The entire process was repeated to introduce two more electrode leads (Figure 4.6H). At 

this juncture, there were three electrode leads in the open space of the cuff cylinder (Figure 

4.6H). These electrode leads need to be bent against the cuff inner walls, so that they lie along 

part of the cuff cylinder‟s circumference. Therefore, the next step involved opening the cuff to 

enclose a pin and rotating the pin to bend the electrode leads (Figure 4.6I). This operation shaped 

the electrode leads, so that they lay against the cuff inner wall (Figure 4.6I). Subsequently, the 

electrode wire-cuff body interface or the point of exit of each electrode wire was reinforced by 

some silicone (Figure 4.6J). 

 

4.1.2.3. Conventional Cuff Electrode Fabrication 

To obtain a perspective on the advantages of the clip-on micro-cuff electrodes, it was 

pertinent to compare them to conventional cuff electrodes. Towards this, conventional cuff 

electrodes based on cylindrical tubing were fabricated along the lines of fabrication processes 

reported for such cuff devices [83].  

A commercially available silicone rubber cylindrical tubing of appropriate inner diameter 

was chosen. With a razor blade, a segment of desired length of the silicone tubing was slit open 

along its full length. Two holes were defined on the cylinder by means of a hypodermic syringe 

needle, and metal wires were inserted into the cuff (Figure 4.7A).  
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Figure 4.6: Schematic of the remaining steps in the cuff fabrication process. The 

figures are not drawn to scale. 

 

The wire sections inserted into the cuff were un-insulated, whereas the sections of the 

wires exiting the cuff were insulated. Using a pin, the wire sections inside the cuff were shaped 

to form hooks or lie against part of the inner circumference of the cuff (Figure 4.7A). The exit 

point of the wires from the cuff wall was reinforced by applying epoxy at the interface of the 

wires and the cuff exterior (Figures 4.7A and 4.7B). 
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Figure 4.7: (A) Schematic diagrams of a conventional cuff electrode based on a 

cylindrical tubing segment; (B) Stereo microscope images of a conventional cuff 

electrode resulting from the described fabrication process.  

 

4.1.3. Results and Discussion 

4.1.3.1. Device Fabrication 

A version of the clip-on micro-cuff electrode, shown in Figure 4.1, was successfully 

fabricated using the process detailed in section 4.1.2.1. Figure 4.8A shows stereo microscope 

images of the fabricated device. The micro-cuff electrode shown in Figure 4.8B has cuff 

dimensions of ~300 µm inner diameter and a cuff length of 2 mm as seen in Figure 4.8C. This 

device can be used for nerves with diameters in the range 200-250 µm and lengths of 3-4 mm, 

like the celiac ganglia nerve branches in rodents (Appendix B). Metal foils were incorporated 

inside the cuff to function as electrode leads (Figure 4.8C). The spot-welded joint between the 



69 
 

metal foils and the electrical wires was embedded in the silicone material of the body. 

Additionally, the electrical wires were enclosed in medical grade silicone tubing which was 

partially embedded in the silicone body of the cuff (Figure 4.8D). This was designed to provide 

for a robust interface between the cuff and the electrical wiring. This fabrication process can be 

used to make cuffs with any specific inner diameter in the range 100 µm to >1mm. The 

dimensions of the pinch hinge and the overall device can be reduced. The total weight of the 

micro-cuff device including the electrode wires for the version made by this method was in the 

range of 0.2-0.3 gm. 

 

 

 

Figure 4.8: Stereo microscope images showing a version of the clip-on micro-

cuff electrode made by the fabrication process with a molding step, showing, (A) 

the cuff edges in a naturally closed position; (B) close-up view of the cuff cross-

section showing the naturally closed cuff edges, highlighted in the previous 

image; (C) a perspective of the cuff showing the incorporated metal foil 

electrodes; (D) electrode insulation embedded into the main body of device.   
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Another version of the clip-on micro-cuff electrode device was made by the layer-by-

layer fabrication method described in section 4.1.2.2. Devices with cuff inner diameters of 

approximately 400 µm and 800 µm were made (Figure 4.9). Bare metal wires were incorporated 

inside the cuff and insulated portions of wires exited from the cuff body. The exit point of the 

wires was reinforced by applying liquid silicone pre-polymer and curing it thermally (Figure 

4.9B). This provided the effect of embedding these wires in the cuff body.  

The use of the same type of silicone material for the device body and the wire 

reinforcement is designed to provide for a robust interface between the cuff body and electrical 

wiring. A maximum of three electrode wires were incorporated in the present devices. More 

number of electrodes can be installed, if required. The total weight of the micro-cuff device 

including the electrode wires for the version made by the layer by layer method was in the range 

of 0.2-0.3 gm. 

Silastic silicone elastomer has been considered an appropriate material for human 

implantation primarily because of its relative immunological inertness [244-246]. For 

applications such as the developed clip-on micro-cuff electrode, the choice of Silastic as the 

body material offers advantages such as molding ability, and relative ease of fabrication. For 

both versions of the clip-on micro-cuff device, efforts are on-going to reduce the overall mass of 

the device. However, it must be pointed out that there is a limitation on how much mass can be 

reduced. Due to the presence of the clip-on feature, it is not feasible to expect a mass comparable 

to conventional cuff electrodes that are built on light-weight silicone rubber tubing. The pinch-

hinge feature contributes to the mass of the device.  

In addition to the two fabrication methods described here, a molding method, described 

in Appendix C, was investigated to fabricate a version of the developed clip-on micro-cuff 
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electrode design. In summary, our experimental observations indicate the feasibility of realizing 

the clip-on micro-cuff device by a molding process. 

 

 

 

Figure 4.9: Stereo microscope images of a version of the clip-on micro-cuff 

electrode made by the layer-by-layer process. The device is placed adjacent to a 

1/64 inch scale ruler.   

 

4.1.3.2. Device Characterization 

The clip-on micro-cuff electrodes resulting from the fabrication method in section 4.1.2.1 

and the layer-by-layer process were tested for the electrical connectivity of electrode leads, the 

efficacy of the closed cuff, and the general durability of the cuff-electrode wire interface. The 

results are discussed in the ensuing sections. The devices fabricated with a molding step in 

section 4.1.2.1 having effective electrode foil areas in the range 0.3–0.4 mm
2
 and weighing 

between 0.2-0.3 gm were tested. The layer-by-layer devices tested had effective electrode wire 

areas in the range 0.2-0.3 mm
2 

and weighed in the range 0.2-0.3 gm. The total surface area of the 
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former devices was in the range 45-60 mm
2
. The total surface area of the layer-by-layer devices 

was in the range 55-70 mm
2
.    

 

4.1.3.2.1. Electrical Testing 

To check for electrical connectivity, the electrical impedance between the electrode leads 

of the developed micro-cuff devices was measured in air ambient and in potassium chloride 

(KCl) solution at room temperature. The impedance measurement in solution was done by 

immersing the cuff electrode into a glass beaker with 100 ml of 2M KCl solution and measuring 

impedance between the electrode leads (Figure 4.10) with an impedance meter (Tenma
®
 dual 

display LCR meter, model 72-960). For a two-electrode device, impedance was measured 

between the two electrode leads. For a three-electrode device, two electrode leads were tied 

together and impedance was read between the tied leads and a third electrode lead. The process 

was repeated with other combinations of electrode leads. This type of impedance measurement 

on cuff electrodes has been employed by others [247]. 

The measured electrical impedance readings are listed in Table 4.1. In air ambient, the 

impedance between the electrode leads was very high, i.e. it was over the limit of measurement 

(10
7
 Ω) for the impedance meter used. This indicated that the electrode leads were separated 

from each other. The impedance values of the devices in solution were found to be inside a range 

from 300 Ω to 3 kΩ. This is close to the range of values reported for other cuff devices in 

literature [9, 248]. The impedance readings indicated that the electrode leads inside the cuff 

functioned properly i.e. they were sufficiently exposed inside the cuff. The electrical 

connectivity test is required to ensure that the fabrication processes did not affect the electrode 

leads inside the cuff. For the cuff devices made by the process involving a molding step, it is 

important to ensure that the electrode leads inside the cuff are not inadvertently covered by 
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silicone pre-polymer during fabrication. For the devices made by the layer-by-layer method, it is 

necessary to ensure that sufficient lengths of electrode leads are available inside the cuff, since 

some electrode leads may be pulled out during the electrode wire incorporation process.  

 

 

 

Figure 4.10: Schematic diagrams of electrical connectivity tests on the developed 

clip-on micro-cuff electrode devices in (A) two-electrode configuration; (C) 

three-electrode configuration. 

 

 

Table 4.1: Electrical impedance readings for the clip-on micro-cuff electrode, 

measured between its electrode leads. 

 

 

Fabrication method 

of micro-cuff 

Average impedance 

In air ambient In 2M KCl solution at room 

temperature 

120 Hz 1 KHz 120 Hz 1 KHz 

Involving a molding 

step (section 4.1.2.1) 

> 10
7
 Ω > 10

7
 Ω 2.11 kΩ 310 Ω 

Layer-by-layer 

(section 4.1.2.2) 

> 10
7
 Ω > 10

7
 Ω 2.83 kΩ 372 Ω 
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The clip-on micro-cuff electrodes were evaluated for their applicability in bio-potential 

recording. The device was immersed in KCl solution and the electrical impedance between its 

electrode leads was measured. The KCl solution was then agitated by a magnetic stir bar, to 

simulate the effects of physiological ambient in motion. The impedance readings showed 

considerable, random fluctuations in the readings, ranging between 2.5 kΩ -14 kΩ for a 120 Hz 

measurement. In the next step, the two circular openings at the lateral ends of the micro-cuff 

were closed by attaching pieces of silicone. The cuff electrode was introduced into the KCl 

solution again. The KCl solution entered the cuff gradually and filled the cuff interior. 

Subsequently, electrical impedance readings were obtained and found to be in the range of those 

measured in stationary KCl solution, with the cuff ends open. The solution was then agitated by 

magnetic stirring. It was observed that the impedance readings did not show appreciable changes 

due to the moving solution, ranging between 2.2 kΩ - 3 kΩ for a 120 Hz measurement.  

Subsequently, the cuff endings were opened by removing the silicone pieces and electrical 

impedance was measured in agitated KCl solution. The impedance values were found to 

fluctuate considerably. These results indicate that the normally closed position of the cuff in the 

developed device more or less fixes the volume inside the cuff, when its lateral openings are 

closed.  

When a cuff electrode encloses a nerve, the lateral openings of the cuff can be considered 

closed for practical purposes. For the developed micro-cuff electrode, this implies that there is 

negligible electrical noise from the ambient, when the cuff encloses a nerve. Therefore, the clip-

on micro-cuff electrode can be used for the recording of electrical signals from the enclosed 

tissue, without the risk of reading tangible electrical noise from the ambient.  
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In another test, electrical signals in the micro-volt range and at a given frequency were 

fed to the electrodes of the clip-on cuff by means of an experimental test set-up (Figure 4.11) in 

air ambient. A resistor R2 was connected between electrodes E1 and E2 to simulate an enclosed 

nerve. The electrical resistance of a nerve trunk of 1.06 mm diameter is approximately 28.75 

kΩ/cm [249]. Due to a spacing of 2 mm between the electrodes, the value of R2 was chosen to be 

5.6 kΩ, to simulate a 2 mm long nerve trunk enclosed between the electrodes. The signals read 

by the electrodes were recorded after amplification.  

A recorded sinusoidal wave voltage signal at 1 kHz with amplitude of approximately 150 

µV, amplified by a gain of 91, is shown in Figure 4.11. Signals with amplitude as low as 75 µV 

and frequency in the range 100 Hz – 5 kHz were successfully read by the self-closing cuff. These 

signals are in the range of typical electroneurogram (ENG) signals in terms of magnitude and 

frequency [250].  

 

4.1.3.2.2. Mechanical Testing 

An objective of the developed cuff electrode design was to provide a robust interface 

between the cuff body and the electrode wiring. The developed micro-cuff electrode was 

subjected to a mechanical pull test to study robustness of the electrode wire-cuff interface. The 

force test involved opening the cuff to enclose a metal pin and allowing the cuff to return to its 

normally closed state. The metal pin had an outer diameter slightly smaller than the cuff inner 

diameter and its length was significantly greater than the cuff length. Subsequently, the 

longitudinal slit opening of the micro-cuff device was sealed by epoxy. The enclosed metal pin 

was clamped at its two ends (Figure 4.12). The electrical wires exiting the cuff were attached to 

the hook of a force gauge (Chatillon, NY, USA, Gauge-R, Model 516-1000). A pulling force was 

applied to the electrical wires and progressively increased till the removal of one or all the wires 
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from the cuff body. The force values at which the wire removal occurred were noted and are 

shown in Table 4.2.  

 

 

 

 

Figure 4.11: (A) Schematic of external testing of versions of the developed cuff electrode to 

study their applicability in stimulation or recording. Digital oscilloscope data of real-time 

recording of (B) an artificially generated voltage signal Vin given to the electrodes of the cuff 

device through a R2/(R1 + R2) voltage divider; (C) an amplified signal read by the electrodes of 

the layer-by-layer cuff, with R1= 220 kΩ; (D) an amplified signal read by the electrodes of the 

micro-cuff, with R1= 440 kΩ. The signal inversion is due to the use of an amplifier in the final 

stage of the test set-up. No filtering component or equipment was employed for removal of 

electrical noise.  
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Figure 4.12: Schematic diagrams of force test set-up for the clip-on micro-cuff 

electrode devices made by (A) layer-by-layer process; and (B) process involving a 

molding step. 

 

The force tests were conducted for the two versions of the micro-cuff electrode, i.e. the 

versions of the devices made by the layer-by-layer method and by the method involving a 

molding step. For comparison, force tests were also conducted in the same manner on 

conventional-type cylindrical cuff electrodes. During the course of all the force test experiments, 

the metal pin enclosed in the cuff did not bend from the force applied on the wires. The force 

tests on all three types of cuff electrodes were conducted in two stages – as the devices were 

manufactured and after their immersion in Ringer‟s solution for 1 month. The force tests on the 

clip-on micro-cuff devices showed that the electrode wires could withstand significant values of 

pulling force, without getting displaced from the main cuff body. In contrast, the force tests on 

the conventional-type cuff electrodes showed that the wires were removed from the cuffs at a 



78 
 

much lower pulling force value (Table 4.2). In the case of the clip-on cuff device made by the 

process involving a molding step, the strength of the electrode wire - cuff body interface can be 

attributed to embedding of the electrode wire insulation in the cuff body. Another factor is the 

use of the same material for the device body and the embedded insulation of the electrode lead 

wires, which provides for a robust interface. In the case of the clip-on cuff made by the layer-by-

layer process, the strength of the interface between electrode wire and silicone cuff body can be 

attributed to the use of silicone elastomer for reinforcing the interface. Both versions of the 

micro-cuff devices retained the strength of the cuff-wire interface after 1 month immersion in 

Ringer‟s solution (Table 4.2). This indicated the applicability of the micro-cuff devices for long 

term implantations. In contrast, the conventional cuff showed a small decrease in robustness of 

the cuff-wire interface.  

 

Table 4.2: Data from force testing of the cuff-wire insulation interface. 

 

 

Device type Average force for cuff-insulation failure 

As manufactured 1 month immersion in 

Ringer’s solution @ room 

temperature 

Layer-by-layer micro-cuff 3.2 N 3.2 N 

Micro-cuff involving a molding step 3.3 N 3.3 N 

Conventional cylindrical cuff 1.2 N 1.1 N 

 

A major goal of the present research is to address securing of a cuff electrode to a target 

tissue. Force tests performed on the clip-on micro-cuff device indicated the efficacy of its 

normally closed cuff design in addressing the securing problem. A metal pin was enclosed in the 

micro-cuff and the cuff was returned to its normally closed state. The enclosed metal pin was 

clamped at both its ends. The electrical wires exiting the cuff were attached to the hook of a 

force gauge and a pulling force was applied to the wires. During the course of the testing, the 



79 
 

enclosed metal pin did not bend from the force applied. The force was progressively increased 

till the cuff was removed from the enclosed wire. The force value at which the cuff removal 

occurred was noted. Table 4.3 shows the force data collected in this manner. It can be seen that 

the naturally closed cuff stays on the wire up to an applied pulling force of 1.9 N. While 

reference data is not available on the magnitudes of typical forces acting on a cuff electrode in an 

implanted condition, it has been reported that muscle electrodes with tissue penetrating anchors 

can be pulled free from the muscle tissue at forces in the range 0.5 N – 2.3 N [251, 252].  

 

Table 4.3: Data from force testing of the closed cuff enclosing a metal pin.  

 

 

Device type Average force for cuff removal 

Layer-by-layer micro-cuff 1.9 N 

Micro-cuff involving a molding step 1.9 N 

Conventional cylindrical tube cuff 0.2 N 

 

The pinch hinge feature in the developed micro-cuff electrode was subjected to durability 

testing by pressing the arms of the pinch-hinge structure till they contacted each other, thereby 

opening the cuff to its maximum extent. The pinch-hinge was released to return the cuff to its 

normally closed condition. This procedure was repeated continuously several times. The pinch-

hinge did not fail during the testing process nor did it sustain any visible damage during the 

testing process. The tests indicated that the cuff can withstand more than 50 open-close 

operations, which is significantly more than needed during a typical lifetime of such a device.   

 

4.1.3.2.3. Boiling Water Test  

In order to test for the durability of the cuff body material, the clip-on micro-cuff 

electrodes were immersed in boiling water for 5 min. The boiling water test is typically 
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employed to test polymeric structures and layers for the extent of cross-linking. As proof of 

cross-linking, the polymeric structures are expected to remain insoluble in water at 100 
0
C for 5 

min [253]. The cuff electrodes survived the boiling water test, indicative of adequate cross-

linking of the Silastic silicone used for the device body. Optical microscopic inspection of the 

devices indicated no disintegration of the polymeric body. Raman spectral analysis of different 

parts of the Silastic body after the boiling water test showed all the frequency assignments 

characteristic to Silastic. It can be concluded that the material properties of the cuff were not 

appreciably affected by the boiling water test. The cuff electrodes were subjected to a 

mechanical pull test after the boiling water test. The results showed that the electrode wire-cuff 

wall interface failed at force levels similar to those of unboiled cuff electrodes. This indicated 

that there was no weakening or degradation of the electrode wire-cuff wall interface. The overall 

integrity of the cuff body and the pinch hinge did not appear to be affected by the boiling water 

test. The choice of Silastic silicone elastomer as the device material and the present fabrication 

processes are appropriate for the developed micro-cuff electrode.  

 

4.1.4. Discussion 

Two versions of the clip-on micro-cuff electrodes proposed here have been developed. 

The pinch-hinge structure incorporated in the electrode is a useful innovation by which the user 

can easily open the cuff and place it on the tissue being stimulated. When the pinch hinge is 

released by the user, the cuff assumes its normally closed nature. The pinch hinge feature negates 

the need for securing the cuff electrode to the target nerve by suture threads or some other intra-

operative procedure. The clip-on cuff electrode offers researchers an easy means to stimulate 

nerves and nerves fibers with effective diameters in the micro-scale and higher. In addition to 

general applications involving electrical stimulation of nerves, the developed clip-on micro-cuff 
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electrode design may be useful for the recording of electrical signals from nerve tissue [254]. For 

recording applications, it is important for the nerve or nerve fiber to be enclosed or confined in a 

nearly finite space with non-conductive walls. It is important to ensure that stray signals are not 

recorded from the ambient and neighboring organs. It is also beneficial to have a nearly constant 

amount of extracellular fluid around the nerve tissue at the region where recordings are being 

made. These criteria are met by the developed clip-on cuff electrode design. The impedance 

measurements from the sealed micro-cuff electrode indicate that the cuff can hold an 

approximately constant volume inside, in solution ambient. This indicates that the electrode leads 

inside the cuff will not read signals from outside the cuff when a nerve is enclosed by the cuff.  

The cuff fabrication processes are relatively simple and can be extended either directly or 

with slight modifications to other biocompatible polymer materials such as polyimides, and 

polyethylene, among others. All the fabrication processes investigated here allow for the number 

of metal electrodes in the device to be increased or decreased, depending on the application. For 

the purpose of technology demonstration, stainless steel foils and wires have been used as 

electrode material in the present research. The choice of this material for electrodes is by no 

means an endorsement of its properties for implantable applications. Alternately, platinum or 

platinum-iridium or any other appropriate metal can be used as electrode material with the 

fabrication processes described here.  

Initial commercial feedback received on the present embodiments of the clip-on cuff 

electrode indicated that the devices may be slightly bulkier than desired [255]. The feedback 

recommended that it is beneficial to reduce the overall dimensions and mass of the device. 

Therefore, this research has attempted to decrease the overall dimensions of the cuff electrode. 

There may be a limitation on the extent to which the pinch-hinge feature can be dimensionally 
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reduced. If the pinch-hinge feature is made too small, then it may not allow for easy operation by 

the user. More importantly, if the pinch-hinge is too small, then depressing it may not allow the 

cuff to be opened sufficiently, as indicated by our mechanical modeling study. Therefore, other 

parts of the cuff have to be dimensionally reduced. Our mechanical modeling study, detailed in 

the following section, suggests that reduction of the cuff wall thickness may be beneficial.  

 

4.1.5. Modeling 

4.1.5.1. Cuff 

A mechanical modeling study was conducted to understand the effects of some of the 

cuff dimensions. Assumptions made in the modeling study are as follows: 

1. The cuff is modeled as a thick-walled hollow cylinder with open ends (Figure 4.13).  

2. Since the clip-on cuff electrode has a closed cuff in the normal position, the presence of 

the length-wise cuff opening is neglected.  

3. The nerve enclosed by the cuff is considered as an incompressible fluid. This is a worst 

case assumption, because actual nerves may be compressible and there may be changes in 

volume.   

4. Any possible effects from the metal electrode leads are not considered. 

5. The Young‟s modulus of the cuff material, i.e. Silastic silicone elastomer, is considered 

constant, for the stress range in a closed cuff.   

6. It is assumed that there are no temperature changes.  

7. It is assumed that there is no external pressure acting on the cuff.  

8. A uniform internal pressure of 20 mm of Hg is assumed to be acting on the inner walls of 

the cuff. The selection of this particular value of internal pressure is based on the 

correlation of tissue pressure and blood flow. Nerve tissue enclosed in a cuff device may 
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experience swelling. When this occurs inside a closed cuff, there is a pressure applied on 

the enclosed nerve tissue. If the pressure applied on a nerve is about 20 mm of Hg, the 

intra-neural blood flow is initially impaired [256]. By about 80 mm of Hg, neural blood 

flow stops completely [257]. Since there is only a minimal interference with neural blood 

flow at 20 mm of Hg, the present modeling study assumes an internal pressure of 20 mm 

of Hg acting on the inner walls of the cuff.  

 

 

 

 

Figure 4.13: The clip-on micro-cuff is modeled as an open-ended, thick-walled 

cylinder, with an internal cuff radius = d1, outer cuff radius = d2, and an internal 

force P1 and an external force P2.   

 

Since the cuff is considered as a hollow cylinder in this modeling study, the change in the 

inner radius of a thick-walled cylinder due to uniform internal and external pressures is given by 

[258]: 

    
 

    
     

  
            

       
    

        
   

 

  
         ,  (4.1) 

where Δr = change in cuff internal radius, P1 = uniform internal pressure, P2 = uniform external 

pressure, r = radial coordinate, E = modulus of elasticity (Young‟s modulus) of the cylinder 
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material, v = Poisson‟s ratio of the cylinder material, d1 = cuff internal radius, and d2 = cuff 

external radius.  

Under an internal pressure, the cuff undergoes expansion to an extent, i.e. an internal 

pressure changes the cuff inner radius. Since it is assumed that there is no external pressure 

acting on the cuff, P2 = 0. The internal pressure is considered to act on the inner surface, i.e. r = 

d1. Therefore, equation 4.1 becomes,    

    
    

    
     

  
         

           
  .      (4.2) 

The Young‟s modulus E for Silastic is set at 2.5 N/mm
2
. The Poisson‟s ratio υ for Silastic 

is set at 0.5. These values are obtained from literature [259, 260]. Employing equation 4.2, the 

change in internal radius of the cuff was plotted as a function of the cuff inner radius (Figure 

4.14).  

Figure 4.14 shows the variation in cuff inner radius when the internal pressure P1 of the 

cuff changes to 20 mm of Hg from zero. Different values of cuff inner radius were used to 

calculate the corresponding change in internal radius. As expected, Δr is also a function of the 

cuff wall thickness.  

The results indicate that the effect of cuff wall thickness on Δr does not appear to be 

significant in cuffs with smaller inner radius d1 for somewhat thicker wall thickness values. 

However, the cuff wall thickness has a greater role to play in cuffs with larger inner radius. For 

cuffs with larger d1, the thinner the cuff wall, the larger is the change in Δr. These results imply 

that the cuff wall thickness is not a critical factor for cuffs with smaller inner radius. For cuffs 

with larger inner radius, it is beneficial to keep the cuff wall thickness to a smaller value, in order 

to accommodate internal pressure changes.  The modeling also considered the effect of the 

elastic properties of the cuff body. For a cuff wall thickness of 2 mm, the Δr values have been 
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plotted as function of the cuff inner radius d1, for different values of Young‟s modulus of Silastic 

silicone (Figure 4.15).  

 

 

 

 

 

 

Figure 4.14: (A) Change in the inner radius of a cuff Δr as a function of its 

original internal radius d1 for different values of wall thickness, when an uniform 

internal pressure of 20 mm of Hg is applied on the inner walls of the cuff and 

outer wall pressure is zero; E = 2.5 N/mm
2
. (B) Percentage change in the ratio of 

Δr/d1 with d1.  
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The results indicate that in general, a lower Young‟s modulus allows for a larger Δr, and 

is therefore desirable for the cuff body material. The influence of the Young‟s modulus is not 

significant for cuffs with smaller d1. As the d1 value increases, the Young‟s modulus of the cuff 

material plays an increasing role in determining Δr, i.e. the extent of cuff expansion. These 

results hold true for other values of cuff wall thickness and higher values of cuff inner radius.    

The Young‟s modulus based modeling results show the need for modulation of elasticity 

in the cuffs. In general, it may be beneficial to make the cuff with a more elastic material. 

Previous reports on polydimethylsiloxane (PDMS) silicone elastomer have indicated that the 

curing process of PDMS pre-polymer influences the mechanical properties of the cured PDMS 

[261-263]. Other reports have indicated the effect of heat treatment during curing on the 

mechanical properties of PDMS [264].  

In summary, the following conclusions can be drawn on the influence of some 

dimensions and material properties of the cuff: 

1. For larger inner radii, it is beneficial to keep the cuff wall thickness to a smaller value to 

provide flexibility.  

2. The influence of the Young‟s modulus is not significant in cuffs with smaller inner 

radius. As the cuff inner radius increases, a lower Young‟s modulus allows for a larger 

Δr, and is therefore desirable in cases where increase in pressure P1 is accompanied by 

increase in nerve volume. 

 

4.1.5.2. Pinch-hinge 

A mechanical modeling study was conducted to understand the effects of the pinch-hinge 

dimensions. Assumptions made in the modeling study are as follows: 
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1. The developed cuff electrode has a pinch hinge feature that is akin to a partially v-shaped 

filleted hinge structure (Figure 4.16A). Therefore, the pinch-hinge is modeled as a 

partially v-shaped filleted hinge.  

2. The opening force acting on the pinch-hinge is assumed to act on one of the arms of the 

pinch-hinge (Figure 4.16B). The other arm is assumed to be in a stationary, fixed 

position. This is a reasonable assumption considering the symmetry of the pinch-hinge 

structure [265]. 

The width of the pinch-hinge arms hw is small in our devices. Hence, this dimension is 

considered zero where applicable. 

The pinch-hinge subjected to a bending moment Mz will rotate about the z-axis, and the 

angular displacement is βz. Extending the compliance equations for v-shaped flexure hinges, the 

torsional stiffness k of the pinch-hinge structure is given by [266]: 
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where k = torsional stiffness of the pinch-hinge, α = angle of the pinch-hinge arm from the 

horizontal axis, E = Young‟s modulus of the cuff material i.e. silicone. E = 2.5 N/mm
2
, wc = 

width of the pinch-hinge, lc = radius of the pinch-hinge joint,  

    
  

   
 , and            (4.4) 

    
  

   
 .           (4.5) 

Here, tc = minimum thickness of the hinge or distance between the hinge joint to the cuff, and 
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fc = height of the pinch-hinge arms. 

 

 

 

 

Figure 4.15: (A) Change in the inner radius of a cuff under uniform internal 

pressure of 20 mm of Hg and zero external pressure, as a function of its original 

internal radius at zero internal pressure for different values of Young‟s modulus. 

The cuff wall thickness is set at 2 mm. (B) Percentage change in the ratio of Δr/d1 

with d1.  
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Figure 4.16: (A) Schematic of the pinch-hinge structure of a clip-on cuff without 

electrodes inside. The various geometric parameters are marked. (B) A two-

dimensional rendering of the cuff with a force FP acting on an arm of the pinch-

hinge, with the other arm fixed.  

 

In equation (4.3), parameters such as E, wc, have a linear relationship to torsional 

stiffness k and are therefore not the focus of attention here. The other parameters such as tc, fc, α 

are studied for their effect on k. The nominal dimensions of the pinch-hinge include tc = 1 mm, 

wc = 4 mm, lc = 5 mm, and fc = 4 mm.  
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Using equation (4.3), the torsional stiffness k is calculated as a function of fc, the height 

of the pinch-hinge arms. The plot shown in Figure 4.17 indicates a negligible influence of fc on 

stiffness k. However, at low values of fc (< 2 mm), there is some minor variation in k. Also, 

decreasing α decreases stiffness k for a given value of fc. The calculations were done using 

MATLAB software. An example program to calculate torsion stiffness of the pinch-hinge is 

provided in Appendix D.   

 

 

 

Figure 4.17: Torsional stiffness k of the pinch-hinge as a function of fc, the height 

of the pinch-hinge arms, plotted for different values of α. Here, E = 2.5 N/mm
2
, tc 

= 1 mm, wc = 4 mm, and lc = 5 mm.  

 

Equation (4.3) is used to determine torsional stiffness k as a function of tc, the distance 

between the hinge joint to the cuff (Figure 4.18). In general, the value of k increases as tc 

increases. This indicates the benefit of having a low tc value. Another aspect is the correlation 

with α. For larger values of α, an increase in tc results in a more significant increase in stiffness. 

This indicates that it is beneficial to employ a lower angle of the pinch-hinge arm.  
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Figure 4.18: (A) Torsional stiffness k of the pinch-hinge as a function of tc, the 

vertical distance from the pinch-hinge joint to the cuff, plotted for different values 

of α. Here, wc = 4 mm, lc = 5 mm, and fc = 4 mm. (B) An expanded view showing 

the torsion stiffness values for lower range of tc.  

 

Equation (4.3) was used to determine k for different values of α (Figure 4.19). In general, 

the value of k increases with an increase in α. The increase in k is not significant for low values 
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of the ratio Χ1. For higher values of ratio Χ1, the stiffness increases considerably. Though the plot 

does not show data for Χ1 > 1, the behavior is applicable for Χ1 > 1. Since Χ1 = tc/2lc, it is 

beneficial to employ tc smaller than lc. For devices fabricated in this work, Χ1 is typically lower 

than 1.  

 

 

Figure 4.19: Torsional stiffness k of the pinch-hinge as a function of α. Here, 

   
  

   
 , wc = 4 mm, lc = 5 mm, and fc = 4 mm.  

 

Extending the theory for typical pinch-hinge type gripper clips to the present pinch-hinge 

structure, the cuff opening force FP can be expressed by [265]: 

         ,            (4.6) 

where FP = opening force, RP = distance of force application on the pinch-hinge arms, k = 

torsional stiffness of the pinch-hinge, calculated by equation (4.3), and θ = rotational angle, in 

radians.  

For sake of simplicity, in discussing the results of the present modeling study, θ values 

are converted to degrees and expressed as such, in the following text. 
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From Figure 4.16, we have, 

           
     

  
 ,         (4.7) 

where θ0 is the angle when the pinch-hinge arm is at the rest position to the central axis, as 

shown in Figure 4.16B; and DP(θ) is the distance between the pinch-hinge arm and the central 

axis for a rotational angle of θ. Therefore, equation (4.6) becomes: 

   
 

  
          

     

  
  .        (4.8) 

In the rest position, i.e. for θ = 0, DP(θ) = DP; where DP is half the distance between the pinch-

hinge arms. For θ = θ0, DP(θ) = 0. The force needed to move the pinch-hinge arm from rest 

position to the center, i.e. the case where θ = θ0 is given by: 

   
 

  
      

 

  
      

  

  
 .        (4.9) 

The rotation angle (θ) can be related to the cuff opening CP by a chord length equation, given by: 

         
 

 
 ,           (4.10) 

where rc is the cuff inner radius. 

The cuff horizontal opening CO due to motion of one arm of hinge is given by: 

          .           (4.11) 

The total cuff opening from symmetry if equal amount of force FP is applied in opposite 

directions on each hinge is 2rcsinθ.  

Equations (4.6) and (4.11) allow the calculation of the opening force to be exerted on the 

pinch-hinge to open the cuff by a certain extent. Here, the equations (4.6) and (4.11) are used to 

plot the cuff opening as a function of the opening force (Figure 4.20). Here, as the force is 

increased, the value for rotational angle θ increases till it reaches the maximum value of θ0 at the 

extreme point shown on the graph. It can be seen that a larger force allows for a larger cuff 
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opening. The correlation of force FP with the cuff opening Co is influenced by the torsional 

stiffness (k) of the pinch-hinge (Figure 4.20). For a specific cuff opening, the opening force 

increases with an increase in torsion stiffness. 

 

 

 

Figure 4.20: The cuff opening force FP on one arm as a function of the cuff 

opening CO. The distance of force application (RP) was 3 mm, and DP = 4.5 mm 

which corresponds to a θ0 = 40˚. The dimensions of the structure were tc = 1 mm, 

wc = 4 mm, lc = 5 mm, fc = 4 mm, and rc = 0.4 mm.   

 

The correlation of applied force with the cuff opening is influenced by the distance RP. 

For a specific cuff opening, as expected, the opening force decreases with an increase in distance 

RP. This is validated by experimental readings of opening force FP shown in Table 4.4. The 

experimental data shown in Figure 4.21 were obtained from a clip-on cuff with the same 

dimensional parameters as the modeled case. In theoretical calculations of FP, the value of k is 

0.001 Nm/rad based on nearest match to data obtained in Figure 4.17 for α = 50˚.  

The maximum cuff opening values shown in Figure 4.21 result from the motion of one 

pinch-hinge arm when θ = θ0 = tan
-1

(DP/RP), and the pinch-hinge arm moves from its rest 

position by a distance DP. From symmetry consideration, the total cuff opening will be twice this 
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amount when both arms are pinched with the magnitude of force FP acting on opposite 

directions.  

 

 

 

Figure 4.21: The cuff opening force FP as a function of the cuff opening CO due 

to a single arm of the pinch-hinge, calculated using equation (4.6). The torsional 

stiffness k for this case is 0.001 Nm/rad. The dimensions of the structure include 

tc = 1 mm, wc = 4 mm, lc = 5 mm, fc = 4 mm, DP = 4.5 mm, and rc = 0.4 mm.   

  

 

Table 4.4: Force data obtained by opening a cuff to its maximum extent, with one 

pinch-hinge arm contacting the other, and 2θ = 2θ0 ≈ 80˚. Dimensions of the cuff 

are tc = 1 mm, wc = 4 mm, lc = 5 mm, fc = 4 mm, rc = 0.4 mm, and 2DP = 9 mm. 

Value of k is 0.001 Nm/rad in theoretical calculation of FP.  

 

 

RP (mm) FP (Experimental) FP (Theoretical) 

3 0.72 ± 5% N 0.465 N 

4 0.51 ± 5% N 0.349 N 

5 0.42 ± 5% N 0.279 N 

  

The experimental measurements of opening force FP were obtained by applying force on 

one arm of the pinch-hinge by means of a force gauge. The other arm was kept fixed and 
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stationary by means of a clamp. For maximum cuff opening, the pinch-hinge arms were made to 

contact each other. There is some variation between experimental and theoretical values of FP. 

This can be attributed to factors such as experimental procedure, among others. Due to manual 

placement of the force gauge on the pinch-hinge arm, there may be some deviation in intended 

values of RP. Another factor is the size of the force gauge component that makes contact with the 

pinch-hinge arm. The relatively large dimension of this component creates some error in 

measuring RP exactly. Another aspect to consider is the torsional stiffness value used in the 

theoretical calculations. This value is calculated by considering Young‟s modulus (E) as 2.5 

N/mm
2
. The value of E depends partially on the curing temperature of the silicone elastomer and 

the amount of curing agent employed. Variations in these factors will lead to a variation in E 

value, and therefore torsional stiffness.  

In the present case, the clip-on cuff has θ0 value of approximately 40˚. Using equation 

(4.11), the maximum cuff opening 2CO can be obtained for a given cuff inner diameter. Table 4.5 

lists the maximum opening theoretically possible for clip-on cuffs with inner diameter 400 µm 

and 800 µm respectively. It also lists the target nerve diameters based on recommendations that 

the cuff inner cross-section area be 2.5-3 times that of the target nerve ideally [267]. It can be 

seen that for a rotational angle of θ = 40˚, the clip-on cuffs can accommodate the nerve 

diameters recommended for a specific cuff inner diameter.  

  

Table 4.5: Maximum possible cuff opening, 2CO, calculated for a rotational angle 

of θ = 40˚. 

 

 

Cuff inner 

diameter, 2rc (µm) 

Maximum cuff opening 

possible, 2CO (µm) 

Nerve diameter 

recommended (µm) [267] 

400 257  231-253 

800 514 462-506 
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The gap between the pinch-hinge arms plays a role in the interaction of the opening force 

with the distance of force application (Figure 4.22). A smaller gap between the arms implies a 

lower force requirement to open the cuff. As the distance of force application (RP) increases, the 

gap between the arms does not significantly influence the opening force. Figure 4.22 refers to the 

force needed for the maximum opening of the cuff for θ = θ0. 

 

 

 

Figure 4.22: The cuff opening force as a function of RP, the distance of force 

application, calculated using equation (4.9). The torsional stiffness k for this case 

is 0.001 Nm/rad. The dimensions of the structure were tc = 1 mm, wc = 4 mm, lc = 

5 mm, fc = 4 mm, and rc = 0.4 mm.   

 

In summary, these results have the following implications on design and usage of clip-on 

cuff electrode devices: 

1. For a larger cuff opening CO, it is beneficial to increase the rotational angle θ. 

2. For a given set of cuff dimensions, a larger distance of force application (RP) is 

beneficial. In other words, it is beneficial to apply force at the ends of the pinch-hinge 

arms, for maximum leverage to open to the cuff.  
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3. It is beneficial to have a low value of torsional stiffness, as this would decrease the force 

needed to open the cuff. This can be achieved by incorporating (a) a lower Young‟s 

modulus (generally caused by a higher curing temperature for silicone elastomer); (b) a 

smaller angle α of the pinch-hinge arms; (c) a smaller distance (tc) between the joint of 

the pinch-hinge arms and the cuff. 

 

4.2. Gastric Pacing Electrode Technology Development 

4.2.1. Introduction 

There is significant interest in the treatment of obesity and obesity related physiological 

conditions using gastric electrical stimulation or gastric pacing. In this regard, technology 

development for applications in gastric pacing electrodes is of great importance. The problems 

faced with present gastric pacing electrodes have been detailed in Chapter 2. These include 

electrode lead fracture, tissue penetration and electrode displacement, all occurring during and/or 

after implantation. These problems are mainly related to the structural rigidity of the pacing 

electrode.  

To address this, a new pacing electrode with a flexible body is developed here [268]. It is 

expected that the flexibility of the developed pacing electrode may minimize or even eliminate 

electrode lead fractures during chronic implantation. The flexibility of the developed electrode 

may also reduce or eliminate tissue penetration and electrode displacement.  

Use of flexible electrodes may face certain potential limitations. Deformations during 

implantation may hamper proper placement of a flexible electrode on a tissue. A few reports on 

muscle pacing electrodes have reported features such as a stiffening stylet employed during 

implantation to stiffen the lead body and forceps to grasp the electrode to facilitate implantation 

[138]. Therefore, it appears that initially some rigidity may be required in the electrode body to 
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facilitate ease of handling and implantation, followed by a subsequent increase in structural 

flexibility.  

The embodiments of the new gastric pacing electrode design developed here incorporate 

the following innovations/features [268]: 

1. A flexible gastric pacing electrode made of bio-implantable polymer, aimed at alleviating 

the lead penetration problem during implantation.  

2. Incorporation of a design feature that transforms the electrode structure from a more rigid 

initial state to a more flexible state later [269].   

3. Suture holes at different locations along the periphery of the electrode structure to enable 

its direct anchoring to the gastric tissue by means of sutures. The peripheral anchoring of 

the electrode structure is expected to reduce its displacement after implantation.   

4. Micro-scale porosity optionally built into the electrode structure, and aimed at promoting 

the growth of connective tissue. This is expected to help minimize electrode displacement 

after implantation by enhancing anchoring of the electrode to the gastric tissue. 

 

4.2.2. Developed Design for Gastric Pacing Electrode 

The developed gastric pacing electrode consists of a silicone elastomer body 

incorporating metal foil electrodes (Figure 4.23). Windows in the surface of the silicone body 

expose underlying metal foil electrodes, which are otherwise embedded in the silicone body. A 

medical grade silicone elastomer such as Silastic is used as the material for the body. Through 

holes are provided peripherally on the silicone body of the electrode. These holes are used to 

apply sutures and secure the device to target tissue (e.g. the gastric wall), so that the electrode 

foils lie flush against the tissue, in contact with it. Optionally, micro-scale porosity is provided in 

the silicone body where it comes in contact with the target tissue [268]. The micro-scale porosity 
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is expected to encourage the growth of connective tissue into the silicone material, with the 

objective of enhancing the device anchoring.  

In another embodiment of the developed pacing electrode design, additional rigidity is 

provided to the device structure by means of a sealed trough provided at the back of the electrode 

body. This trough contains a thermo-responsive polymer polyethylene glycol (PEG). 

Polyethylene glycol is a highly biocompatible material that has been employed in a variety of 

biomedical applications [270-273]. Ideally, the PEG contained in the trough is in solid form at 

room temperature, imparting some rigidity to the electrode body. After implantation, at 

physiological temperature (~37 
0
C), the PEG melts to liquid form, causing the electrode body to 

lose some rigidity. A grade of PEG known as PEG-1000 melts at about 37 
0
C. This embodiment 

of the developed electrode is useful if the flexibility of the original embodiment poses handling 

problems during implantation. Alternately, a sealed channel network filled with PEG can be 

employed for additional rigidity [269].  

 

 

 

 

Figure 4.23: Schematic of the developed gastric pacing electrode.  



101 
 

4.2.3. Device Fabrication  

The fabrication of the developed gastric pacing electrode is a layer-by-layer process 

starting from the uppermost layer of the device. In the first step, a porous silicone elastomer layer 

is fabricated in the form of a circular ring (Figure 4.24A) by molding uncured silicone or silicone 

pre-polymer doped with a foreign material. The doped pre-polymer is poured on an appropriate 

master mold, followed by thermal curing. The cured layer is made porous by extracting the 

foreign material in a suitable solvent. The pore formation processes are described in greater 

detail in Chapter 6. In the next step, silicone is molded on a suitable complementary master mold 

to obtain a solid silicone layer with two windows in it (Figure 4.24A). The window dimensions 

are slightly smaller than the total surface area of the metal electrodes. The windows allow the 

metal electrode surfaces to make contact with the target muscle tissue, while holding the 

electrodes in place. The silicone layer with the windows is bonded to the porous silicone ring-

shaped layer (Figure 4.24B) by a simple process described below in section 4.2.3.2.  

In the next step, electrodes in the form of metal foils of suitable size are spot-welded to 

electrical contact wires and placed on top of the solid silicone layer with the windows (Figure 

4.24C). Subsequently, uncured silicone is cast over the electrode foil assembly and allowed to 

cure. This results in the electrode foils being embedded in the silicone body, except for the areas 

where the foils are partially exposed by the windows on the other side. A portion of connecting 

wires spot-welded to the electrode foils are also partially embedded in the silicone body (Figure 

4.24D). In the next step, a solid silicone layer separately molded with a sealed trough is placed in 

conformal contact with the layer containing the electrode foils. Both layers are bonded to yield a 

single layer, with the empty trough embedded in between. The bonding process is described 

below in section 4.2.3.2.   
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In the next step, the trough is incorporated with heated liquid polyethylene glycol from 

one end by injecting with a hypodermic syringe needle. Prior to injection, the trough is 

perforated with one or more outlet holes. The injection is continued till appearance of PEG 

solution droplets at the outlet holes. The PEG is then allowed to solidify at the room temperature 

or lower. This typically occurs in few minutes. Subsequently, all the perforations in the trough 

are closed by applying silicone and curing it at room temperature for 18-20 hrs. There is a very 

small increase in volume when PEG changes from solid to liquid state. So, to accommodate for 

the volume change, the volume of PEG injected into the trough is slightly lower than the total 

inner volume of the trough.  

 

 

 

Figure 4.24: Schematic of the fabrication process of the developed gastric pacing 

electrode. A cross-sectional representation of the fabrication process steps is also 

shown.  
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4.2.3.1. Method of Coring Silicone to Form Suture Holes 

The peripheral suture holes on the pacing electrode body can be made by coring the final 

silicone body of the electrode with a modified syringe needle as shown in Figure 4.25. A 

hypodermic syringe needle of a specific gauge is cut by means of a diamond saw to obtain a flat 

edge (Figures 4.25A-C). The cut end with the flat edge is then filed to impart an angle to the 

needle walls at the cut end (Figures 4.25D, E).  

 

 

 

 

 

 

 

Figure 4.25: Schematic of (A) a hypodermic syringe needle; (B) cutting the 

curved tip of the needle by a diamond saw; (C) the resulting cut end of the needle 

with a flat edge; (D) filing of the cut end to impart an angle to the needle walls at 

the tip; (E) the final modified needle with angled sidewalls at its tip. Microscope 

images of the tip of (F) an unmodified syringe needle; (G) a modified needle with 

a flat tip formed by the sawing operation, and angled sidewalls at the flat tip.  
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In the next step, a solid silicone layer is placed on a flat hard surface. The modified 

needle tip is then held perpendicular to the plane of the solid silicone layer and pushed into it 

manually till it fully penetrates through the silicone layer (Figure 4.26). Subsequently, the needle 

is slowly pulled out of the silicone layer. A plug of the silicone material is removed from the 

layer by the exiting needle.  

 

 

 

 

Figure 4.26: Schematic of the coring of a solid silicone layer by a modified 

hypodermic syringe needle, showing; (A) the placement and insertion of the 

needle perpendicular to the plane of the layer; (B) pulling out of the needle after it 

has penetrated through the silicone layer; (C) a hole with diameter less than or 

equal to the inner diameter of the needle is formed in the layer.  

 

Ideally, the angled walls of the cut end of the needle allow the needle to enter the silicone 

layer and displace silicone material in the form of a cylindrical mass. The diameter of the 

displaced cylinder is approximately equal to the inner diameter of the needle. The length of the 

displaced cylinder is equal to the silicone layer‟s thickness. A typical cylindrical hole formed in a 

silicone layer by a modified syringe needle is shown in Figure 4.27. Though this method of 

making holes is a serial process, it is suitable for the present fabrication process of the gastric 

pacing electrode. Alternately, holes can be formed on the electrode body by a molding process.    
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Figure 4.27: Optical microscope images of (A) a hole cored by a modified 

syringe needle in a silicone layer of thickness 500 µm; (B) the silicone material 

removed in the hole formation, in the form of a cylinder. 

 

 

4.2.3.2. Method of Bonding Two or More Silicone Layers 

The fabrication of the developed gastric pacing electrode involves the bonding two or 

more layers of solid or cured silicone. The method of bonding cured silicone layers is shown in 

Figure 4.28. A thin layer of uncured silicone is coated on one of the solid or cured layers (Figure 

4.28A). The second cured layer is gently placed in contact with the uncured silicone coating 

(Figure 4.28B). The curing of the silicone coating sandwiched between the solid layers results in 

the formation of a single silicone structure (Figure 4.28C).  

Thermal or room temperature curing can be used to solidify the sandwiched uncured 

silicone coating. The uncured silicone layer is typically made by spin-coating silicone pre-

polymer on one of the cured silicone layers. Alternately, the uncured silicone layer can be made 

by spread-casting silicone pre-polymer on one of the cured silicone layers. This method can be 

extended to bond multiple layers of solid silicone. If there are molded features or structures on 

one or more of the cured layers, then the uncured layer must have a thickness less than the cured 

layers being bonded. 
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Figure 4.28: Schematic of the bonding of two or more cured silicone layers.  

 

 

4.2.4. Results  

A version of the gastric pacing electrode design, shown in Figure 4.29, was successfully 

fabricated using the processes detailed in section 4.2.3. The electrode body is a flat circular disc 

of approximately 24 mm diameter, with a total thickness of approximately 800 µm. The 

electrode body can be made thinner if required. The total effective electrode area i.e. the surface 

area of the electrodes exposed to the target tissue is approximately 37 mm
2
. Suture threads can 

be applied at the peripheral through-holes on the silicone body to secure the electrode to the 

tissue being stimulated. To enhance the anchoring of the device to the tissue, micro-scale 

porosity is provided in the silicone body where it comes in contact with the target tissue. The 
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total weight of a typical pacing device is 2.75 g without electrical wiring, and 2.90 g with wiring. 

The weight increases if PEG is incorporated in the structure.  

The developed gastric pacing electrode was subjected to mechanical force tests. A gastric 

pacing electrode device embedded with PEG was fixed at its edges in a mechanical jig and 

subjected to a central force (Figure 4.30). The force needed to deflect the center of the device by 

a certain distance (df) was measured. It was ensured that the silicone layers did not sustain 

tearing or damage during the test process. The PEG was subsequently melted, and the force test 

was repeated. It was observed that more force was needed to deflect the layer embedded with 

solid PEG, as compared to the case when PEG was melted in the layer. The tests were repeated 

for different quantities of PEG in the structure.  

 

 

 

 

Figure 4.29: Images of a version of the developed gastric pacing electrode, 

showing (A) a device with a PEG support layer; (B) the device with the PEG 

layer melted. The scale nearest to the device in both images has 1/64 inch 

divisions. 
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Figure 4.30: Schematic diagrams of force test set-up for the developed gastric 

pacing electrode structures.  

 

As the amount of PEG was increased in the structure, more force was required to deflect 

it by the same distance (Figure 4.31). This indicates the feasibility of employing solid PEG 

(embedded or otherwise) to increase the rigidity of the pacing device structure.  

 

 

 

 

Figure 4.31: Variation of force required to deflect the center of the pacing 

electrode body embedded with solid PEG by a specific distance df = 3 mm. The 

electrode body diameter was approximately 24 mm.  
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The use of PEG does not affect the material properties of silicone elastomers like Silastic. 

Raman spectral analysis of a prototype structure formed by two Silastic layers sandwiching a 

PEG layer indicated no composite formation between Silastic and PEG (Figure 4.32).  

 

 

 

 

 

 

Figure 4.32: Raman spectra of (A) PEG sandwiched between two layers of 

silicone, showing only PEG-related frequency assignments; (B) the sandwich 

structure formed by the two silicone layers when the PEG was removed. Only 

silicone related frequency peaks can be seen.  
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The frequency assignments for the silicone elastomer and PEG are given in Table 4.6. In 

conclusion, the choice of PEG to impart thermally regulated structural rigidity in the present 

device is appropriate. 

 

Table 4.6: Raman spectrum assignments for silicone elastomer and PEG. 

 

 

Material Raman shift (cm
-1

) Assignment 

Silicone ~495 Si-O stretch 

~615 Si-CH3 symmetric rocking 

~713 Si-C stretch 

PEG ~281 C-O-C bend 

~1234 CH2 twist 

~1286 Amorphous 

~1486 CH2 bend 

 

4.2.5. Discussion 

The flexible body of the developed gastric pacing electrode is expected to minimize 

problems pertaining to rigid electrodes, including tissue penetration, device fracture, and 

displacement. To address the electrode displacement problem further, the flexible body of the 

pacing electrode is incorporated with suture holes by which the electrode can be secured to the 

target tissue by applying suture threads. The incorporation of a sealed trough filled with PEG as 

a „backing layer‟ in the developed device is expected to allow for a degree of flexibility 

modulation, from a less flexible state initially to a flexible state after implantation. The PEG 

injected in the backing layer is solid at room temperature, but melts at physiological 

temperatures. Therefore, the device has some rigidity initially, but becomes flexible after 

implantation. Flexible electrodes can avoid gradual displacement often observed with rigid 

electrodes during long-term experiments due to continued differential motion in the tissue [274, 

275]. This type of displacement occurs when a rigid electrode passes through the interface 
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between an active muscle and a relatively inactive adjacent muscle [108, 137]. Another 

advantage of electrode flexibility is the reduced possibility of electrode lead fracture in the 

implanted environment [108, 137]. Flexibility of the electrode lead is also desired in other 

applications such as cardiac pacing [137]. 

The development of muscle stimulation electrodes may follow a path different than for 

nerve stimulation electrodes. This is primarily due to different dimensions and geometry of 

muscle tissue. In comparison to nerve stimulation electrodes, stomach pacing electrodes have 

relatively larger surface areas in contact with the tissue being stimulated, which is typically 

muscle on the duodenal wall. In general, gastric pacing requires higher stimulus signals 

compared to nerve stimulation. It is impractical to employ metal wires as stimulation leads. This 

is a reason for employing flat metal foil electrodes in the developed design. This allows for the 

maximization of electrode surface area that can be in contact with the tissue. The developed 

design can be made with a larger or smaller effective electrode area, as required.  

Another reason for using commercially available metal foils is the difficulty in patterning 

metal on flexible polymeric surfaces such as those made of silicone elastomer. Silicone surfaces 

are not compatible with standard UV photolithographic processes and materials like photoresist 

developers. Metal layers deposited on layers of silicone elastomers and other polymers by 

methods like RF/DC sputtering, thermal evaporation and electrodeposition may suffer from 

problems like cracking due to flexure. This is especially relevant for an application like gastric 

pacing where flexure of the pacing electrode can occur due to gastric wall motion. The use of 

commercially available metal foils of the desired thicknesses allows the fabrication of 

stimulation electrodes while minimizing problems like metal cracking. Alternately, other 

techniques like screen printing can be used for patterning metal on polymeric surfaces.  
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The developed design can be made with any lateral dimensions and thickness of the 

body, as required by the application. The general geometry of the present version of the 

developed gastric pacing electrode is circular. However, the fabrication processes can be applied 

to make pacing electrode with other geometries. The choice of silicone elastomer as the body 

material for the developed device is influenced by factors such as biocompatibility, and structural 

flexibility. Silicone covered flexible electrode leads have been shown to produce no tissue 

necrosis or inflammation in animals [276].  

Due to the embedding of the spot-welded junction between the electrode foils and the 

electrical contact wires, the junction is relatively protected from mechanical forces. For a certain 

degree of additional strain relief, coiled electrical conductor wires can be used to connect the 

pacing electrode to other implanted or external devices.  
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CHAPTER 5: EQUIVALENT CIRCUIT MODEL FOR TISSUE-ELECTRODE 

INTERFACE FOR NERVE STIMULATION 

  

5.1. Introduction 

Functional electrical stimulation (FES) of nerves involves creating neuro-electrical and 

neuro-chemical changes for a desired physiological effect. Therefore, it is useful to have an 

understanding of the electrical effects at the stimulation electrode-nerve tissue interface. An 

equivalent model representing such an interface would help in understanding the electrical 

affects of the stimulus signal on the nerve tissue to ensure that proper electrical stimulus is given 

to the axons inside the nerve with minimal or no tissue damage.  

Several electrode-tissue interfaces have been proposed in the past. In this work, the 

interface between the stimulating leads of the micro-cuff electrode developed in our laboratory 

and the target nerve has been modeled by an equivalent circuit involving resistors and capacitors 

[277]. A detailed examination of the circuit model by circuit analysis software like PSPICE, to 

our knowledge, has not been previously reported. Such software based analysis is useful in 

anticipating practical scenarios, and in providing data on the physical parameter values to be 

used for effective and safe stimulus of the target nerve. The behavior and response results from 

the equivalent circuit model to different types of stimulus waveforms enables effective and 

optimal design and use of the stimulating electrodes.  

The goal of electrical stimulation of an excitable nerve tissue is the triggering of action 

potential in an axon
12

. Electric field generated by an electrode will interact with an axon 

membrane causing a redistribution of charge on the membrane. The extracellular region i.e. the 

region outside the axon membrane is driven to a more negative potential, which is equivalent to 

                                                           
12

 Axon: a basic component of a neuron or nerve cell. The axon carries signals from the main body of the neuron 

containing the nucleus to a target. 
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driving the inside of the axon to a relatively higher positive potential [278]. This sets in motion a 

cycle of changes in the transmembrane
13

 potential that constitutes an action potential
14

. Since 

electrical stimulation of a nerve tissue mainly deals with the axon, this study focuses on 

modeling the interactions between an electrode and an axon.  

 

5.2. Methodology and Assumptions 

A cuff with two electrode leads is considered in the case study here. This model can be 

extended to a cuff with more than two electrodes. When a cuff electrode with bipolar stimulating 

electrode leads is placed on a nerve or a nerve fiber, the two electrode leads are above the nerve 

element (axon) being stimulated. The stimulating current flows through the tissue between the 

electrode leads. In the tissue, the current can travel either along the extracellular space, or within 

the membrane of the nerve cell being stimulated (Figure 5.1). The former current is called the 

extracellular current and the later current is called the transaxonal current. In the latter case, the 

current enters the nerve or the axon at a point and exits through another location. 

Only the transaxonal current affects the membrane potential and travels through the nerve 

cell. Therefore, only this component of the applied current produces stimulation i.e. generates an 

action potential. It is, hence important to determine the transaxonal component of total current 

for a given magnitude and type of the applied stimulus signal. This is achieved in this work by 

modeling the electrical properties of the electrode-tissue interface by an equivalent circuit 

consisting of passive elements, namely resistors and capacitors. An electrode-tissue contact 

viewed as an electrode-electrolyte interface has been studied by several authors [141, 159, 279]. 

                                                           
13

 Transmembrane potential: the potential difference between the inside and just outside an axon‟s membrane.  

 
14

 Action potential: the cycle of changes in the transmembrane potential, from negative to positive to negative again, 

that characterizes an excitable tissue. This cycle is also described as the membrane transitioning from a resting state 

to an excited state, and subsequently returning to the rest state.   
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When a metal object or electrode is placed in an ionic solution, a space charge layer builds up at 

the interface. In terms of an electrical circuit equivalent, this space charge layer represents a 

capacitance, referred to in this study as the interface or interfacial capacitance, CI. 

 

 

 

 

Figure 5.1: Schematic of stimulus current pathways through a nerve subjected to 

an electrical stimulus by means of two electrodes. Transmembrane potential is 

measured across the axon membrane.   

 

Some charge manages to leak through the charge layer due to electrochemical reactions 

taking place at the interface [277]. Such charge leakage experiences a „charge transfer‟ 

resistance, represented by RCT in this study. RCT forms a parallel combination with CI, as shown 

in Figure 5.2. The final element to be considered in the circuit model represents the net resistance 
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RS encountered by a current spreading out from an electrode into a conductive solution. RS is in 

series with the parallel R-C combination [277]. 

 

 

 

Figure 5.2: Schematic of an equivalent circuit representing an interface between 

an electrode and an electrolyte.    

 

 

 The second step in the development of the equivalent circuit is to represent the nerve 

tissue in terms of electrical elements [277]. The impedance for the extracellular current through 

the extracellular fluid around the axon will be primarily resistive and is represented by RE in 

Figure 5.3A. Current can enter and exit an axon at the nodes i.e. the sections of the axon not 

covered by an insulating myelin sheath
15

. This entry and exit of current, represented by points 

M1 and M2 in Figure 5.3 encounters impedance associated with the membrane of the axon. The 

axon membrane can be represented by a capacitance CM forming a parallel combination with a 

resistance RM, shown in Figure 5.3C. The current flow in the axon encounters some resistance 

inside the axon or intra-axonal resistance RA.  

Following assumptions have been made in the present study [277]: 

                                                           
15

 Myelin sheath: a segmented, white fatty substance covering the axons. Myelin has a high electrical resistance and 

is considered to be electrically insulating.  
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1. The general ambient surrounding the cuff electrode device is considered to be a physiological 

saline medium. 

2. For the purpose of simplicity, it is assumed that the cuff device has only two electrode leads.  

3. The electrodes are made from platinum and are planar and rectangular with one side exposed 

to tissue. Though the fabrication of the clip-on micro-cuff device detailed in Chapter 4 

describes the incorporation of stainless steel foil electrodes, this was intended for 

demonstration purposes only. Platinum foil electrodes can be incorporated using the same 

fabrication processes.  

4. Effective surface area of the electrode i.e. the surface area exposed to tissue is 0.5 mm
2
. The 

choice of this value is based on the electrode surface area in one of our clip-on micro-cuff 

embodiments which incorporated metal foil electrodes. 

5. The myelin sheath has an infinitely high resistance i.e. it is a perfect insulator. Typical value 

for myelin sheath resistivity is 5-8 × 10
14

 Ω.cm [280]. 

 

5.3. Results and Discussion 

5.3.1. Developed Equivalent Circuit 

A version of the equivalent circuit for the electrode-tissue interface is shown in Figure 

5.4. The equivalent circuit modules E1 and E2 include elements representing the interface 

capacitance, charge transfer resistance, and spreading resistance [277]. The modules E1 and E2 

are adaptations from theoretical models typically used to represent the electrode-electrolyte 

interface [164, 281-283]. Our study does not include the Warburg impedance due to diffusion of 

the chemical reactants in solution. It has been reported that for electrodes based on platinum and 

platinum alloys, the Warburg impedance does not significantly contribute to the overall 

impedance in the frequency range 10
-2

 to 10
5
 Hz [284].  
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Figure 5.3: Schematic of (A) a nerve under electrical stimulus by means of 

electrodes E1 and E2; (B) entry and exit of current from an axon through points 

M1 and M2 at the nodes; (C) equivalent circuit representing the membrane at the 

two nodes, and the intra-axonal resistance.   
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Figure 5.4: Schematic of an equivalent circuit for the electrical stimulus of a 

nerve by a two-electrode configuration. The circuit contains elements to represent 

the electrode-tissue interface and the main component axon of the nerve tissue 

being stimulated.   

 

For the axon model, the distributed impedance for the extracellular current is represented 

by a resistor represented by RE. The representation of the impedance for the trans-axonal current 

is slightly more complex. The membrane impedances at the entry and exit points into and out of 

the axon are represented by a capacitor CM and a resistor RM in parallel [277]. The intra-cellular 

axial resistance or intra-axonal resistance (i.e. the resistance inside the axon) is represented by 

resistor RA. Current flowing in the axon or the axonal current is represented by iA. The next stage 

involves the selection of appropriate parameters for the various elements of this equivalent 

circuit.  
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5.3.2. Selection of Circuit Element Parameters 

Spreading resistance 

The spreading resistance Rs (in Ω) for a planar rectangular electrode with one side 

exposed, is given by [282]: 

    
 

  
   

  

 
  ,        (5.1)  

where ρ is the resistivity of the solution (in Ω.cm), l and w are the length and width of the 

rectangle. The solution resistivity ρ is 72 Ω.cm for physiological saline [282]. The values of l and 

w for the electrode in this study are 1 mm and 0.5 mm respectively and the aspect ratio l/w = 2. 

Using equation (5.1), we get RS equal to 476.8 Ω.  

 

Charge transfer resistance: 

The charge transfer resistance RCT, is derived from the Butler-Volmer equation, and for 

small applied signal amplitudes, is given by [285, 286]: 

     
  

     
 ,         (5.2) 

where J0 is the exchange current density, n is the number of electrons involved in the electrode 

reaction, R is the gas constant, T is the temperature (K), F is the Faraday constant. RT/F = 26 mV 

at 298 K and A is the electrode area. The exchange current density and the number of electrons 

involved in the reaction depend on the electrode material and the specific reaction occurring at 

that electrode [277]. In the present study, we assume that the electrode material is platinum. The 

value of J0 is 4.5 x 10
-6

 A/cm
2
 for a platinum electrode in physiological saline solution [282, 

287]. The value of J0 depends on electrode surface morphology. For the case of Pt electrode, 

charge transfer arises from the electrolysis of water, given by [288]:  

2H2O ↔ O2 + 4H
+
 + 4e

-
.       (5.3) 
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From this reaction, n is equal to 4. Substituting for n, J0, and RCT, from equation (5.2), the value 

for RCT obtained in this fashion is 289 kΩ for a 0.5 mm
2
 Pt electrode in saline solution. A similar 

methodology can be used to calculate RCT for different electrode materials in a specific solution, 

when J0 values are known. Table 5.1 lists the J0 values for some electrode materials in 

physiological saline solution.  

 

Table 5.1: Values of exchange current density J0 reported for some electrode 

materials operating in physiological saline ambient.  

 

 

Material Exchange current density (A/cm
2
) Reference 

Bright platinum  8.5 x 10
-8 

[284] 

Platinum 90%, iridium 10%  6.41 x 10
-8

 [283] 

Gold 2 x 10
-9

 [289] 

 

Interface capacitance, CI 

A theoretical derivation of the interface capacitance is given by the Gouy-Chapman-Stern 

model [285]. The interface capacitance CI is considered as a series combination of the Helmholtz 

capacitance CH, and the diffuse layer capacitance CG, and is given by [282]: 

 

  
  

 

  
  

 

  
  

    

    
  

 

                    
  ,  (5.4) 

where dOHP is the thickness of the double-layer, ε0 is the permittivity of free space, εr is the 

permittivity of the double layer, z is the charge on an ion in solution, V0 is the applied electrode 

potential (in volts) with respect to the solution, C
*
 is the bulk concentration (in moles/liter) of the 

solution. The values of these variables and constants used in the determination of CI are listed in 

Table 5.2.  

For the sake of simplicity, the diffuse layer capacitance CG has been neglected here. The 

calculated value of CI from equation (5.4) for a platinum electrode in saline ambient is calculated 
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to be approximately equal to 1.39 F/m
2
. For the electrode surface area (0.5 mm

2
) in our study, the 

CI capacitors in the equivalent circuit have value of approximately 0.6 µF. 

 

Table 5.2: Values for variables and constants used in evaluating parameter CI.  

 

 

Parameter Value Note/Reference 

dOHP 5.8 Å For physiological saline, dOHP is 5 Å approximately [282] 

ε0 8.85 x 10
-12

 F/m  

εr 78.54 For dilute aqueous solution [282, 285] 

z 4 For electrolysis reaction (platinum electrode) [290] 

C
*
 0.154 mol/liter For physiological saline [282] 

 

Extracellular resistance 

Typical extracellular impedance between two electrode leads is about 2 to 5 kΩ [291]. 

Therefore, RE for our study is considered to range between 2 to 5 kΩ.  

  

Membrane capacitance and resistance 

For the myelinated fiber, the entry and exit points for current will be at the nodes of 

Ranvier, as the inter-nodal transmembrane impedance is very high [280, 292]. An average value 

for the membrane capacitance CM at a node of Ranvier of a myelinated axon is 0.8 - 1.5 µF/cm
2
 

[293, 294]. The membrane surface area at a node is given by 2π × (axon radius) × (node length). 

The axon radius is 5 µm in our model. The node length is assumed to be 4 µm [156]. For the 

membrane area under consideration, the calculated values of CM range from 1 - 1.9 pF. The 

membrane resistance depends on its conductance and its surface area under consideration. The 

membrane conductance is about 30.3 mS/cm
2 

[154]. Therefore, the calculated RM value is about 

26.3 MΩ. In literature, the membrane resistance RM has been assumed to be 500 MΩ, with no 

specification on the membrane surface area or geometry [291]. Depending on the dimensions of 
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the electrodes, it is possible that current may enter the axon over more than one node. In such 

cases, the circuit considerations will get more involved. 

 

Intra-axonal resistance 

The intra-axonal resistance RA or the resistance faced by the axonal current will depend 

on how far along inside the axon the current actually flows and the diameter of the axon. RA can 

be determined by the following equation: 

     
   

   
 ,          (5.5) 

where ρA is the axoplasmic resistivity, lA is the length of axon segment, and r is the radius of the 

axon. The axon diameter is assumed to be 10 µm. This value matches the axon diameter values 

experimentally observed in frogs and cats [295]. The value of ρA is about 90-100 Ω.cm [280, 

292]. For the present study, ρA is assumed to be 90 Ω.cm. The nodes of an axon are normally 1-2 

mm apart, with 1 mm being a widely accepted value [296-298].  

If we assume the axonal current flows in and out at immediately adjacent nodes spaced 1 

mm apart on an axon, then the resistance to the axonal current will be about 11.46 MΩ. RA will 

vary, depending on the length of the axon considered in the model and the spacing between the 

electrodes. Our micro-cuff electrode has two stimulating electrode leads separated by about 0.5 - 

1 mm. Considering an electrode separation of 1 mm, RA in our model is taken to be 11.46 MΩ. 

The values and value ranges for various elements in the developed equivalent circuit model are 

summarized in Table 5.3.   

 

5.3.3. Selection of Stimulus Signal Parameters 

Electric current in the electrode wires is carried by electrons, whereas current in the biological 

tissue is carried by ions. Chemical reactions which occur at the electrode-tissue interface are still 



124 
 

poorly understood. The shape and magnitude of the stimulus waveform used can significantly 

affect the tissue threshold response, the interface electrochemistry, and any resultant tissue 

damage [299]. 

 

Table 5.3: Values for the equivalent circuit components shown in Figure 5.4 for 

0.5 mm
2
 electrode area, axon diameter = 10 µm and node length = 4 µm.  

 

 

Component Description Value / value range 

RS Resistor representing the spreading resistance 477 Ω 

RCT Resistor representing the charge transfer resistance 290 kΩ 

CI Capacitor representing the interface capacitance 0.6 µF 

RE Resistor representing the extracellular resistance 2 – 5 kΩ 

RM Resistor representing the axon membrane 

resistance 

26.3 MΩ 

CM Capacitor representing the axon membrane 

capacitance 

1 - 1.9 pF 

RA Resistor representing the resistance inside an axon 

for 1 mm axon length 

11.5 MΩ 

 

The parameters of interest for the stimulus signal are pulse duration, pulse amplitude, 

signal shape, and frequency. These parameters are linked to the amount of stimulus charge 

supplied per pulse as they directly influence the amount of current flowing through the axon. 

These parameters also influence the electrochemical reactions occurring at the electrode surface 

[300]. The cuff electrode geometry and the details of the stimulus signal need to be optimized for 

achieving desired specific physiological effect. 

For the stimulation of nerves, either current or voltage pulses can be used. Pulse 

amplitude and width depend on the charge requirement per pulse for the specific application 

selected. Stimulation of muscles, peripheral nerves or cortical surfaces require charge per pulse 

on the order of 0.04 – 5 µC [278, 301]. Charge per pulse required for neural stimulation is 

generally low. For nerves including the splanchnic or celiac ganglia, current signals with 
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amplitude from µA to mA range have been used [302]. The selection of pulse width parameters 

for the stimulus waveform is an important part of a FES application. There are some factors to 

consider including tissue damage by high charge injection, and electrochemical by-products. The 

selection of the pulse duration primarily depends on the chronaxie of the tissue to be stimulated. 

Chronaxie is the minimum interval of time necessary to electrically stimulate a muscle or nerve 

fiber, using twice the minimum current needed to elicit a threshold response. To minimize 

neuronal damage by the electrodes, the pulse duration should be at the level of the chronaxie of 

the stimulated tissue or slightly lower [144]. For stimulus durations of less than about one quarter 

chronaxie, nerve fibers will not be excited [291]. The chronaxie value mainly depends on type of 

tissue being stimulated. For example, chronaxie for human motor nerve has been reported to be 

about 0.01 ms, while that for pain receptors is 0.25 ms [303, 304]. The chronaxie for mammalian 

myocardium is about 2 ms [305]. For small-diameter nerve fibers, the chronaxie is about 1.5 ms 

[306]. Additionally, the chronaxie also depends on whether the neurons have a myelin sheath or 

not. The chronaxies for myelinated neurons determined with metal electrodes typically vary from 

0.05 to 0.6 ms [307-311]. The chronaxie of unmyelinated neurons can be as high as 4 ms [310].  

A review of literature seems to indicate benefits of short stimulus pulses, in general. 

Short stimulus pulses minimize the threshold charge, which is the amount of charge that must be 

injected to generate an action potential [145]. Minimizing the injected charge is an important 

consideration for prevention of electrode corrosion which depends on the charge density on the 

electrode surface [146]. Short stimulus pulsewidths minimize the time available for irreversible 

electrochemical reactions to occur on the electrode [148]. Short pulse widths should be used for 

neural stimulation when maximum selectivity is desired because they improve the ability to 

activate discrete groups of nerve fibers [150]. Finally, short stimulus pulses may prevent 
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stimulus induced neural damage [147, 312]. As regards to the frequency of the stimulus signal, 

frequencies from less than 100 Hz to kHz range have been employed for nerve stimulation [105, 

313]. For applications such as electrical stimulation for obesity treatment, frequencies of 100 Hz 

or lower have been used [302]. Table 5.4 summarizes the typical parameter ranges for current 

stimulus signals as obtained from literature survey.  

 

Table 5.4: Typical parameter range for current signals employed in the functional 

electrical stimulation of nerves and nerve fibers, obtained from literature.  

 

 

Parameter Value / value range 

Pulse amplitude ≤ 3 mA 

Pulse width 0.01 – 1.5 ms 

Frequency <100 Hz  – <10 kHz 

Charge delivered per pulse  0.04 – 5 µC 

 

5.3.4. Results and Discussion 

5.3.4.1. PSPICE Simulation Results 

The developed equivalent circuit in Figure 5.4 for the electrode-tissue interface is 

simulated by means of PSPICE software. The values for the circuit elements used in the 

simulation are listed in Table 5.5. These have been chosen from the value ranges calculated in 

section 5.3.2.  

 

Table 5.5: Values for the elements in the equivalent circuit shown in Figure 5.4.   

 

 

Element Value  

RS 477 Ω 

RCT 290 kΩ 

CI 0.6 µF 

RE 2 kΩ 

RM 26.3 MΩ 

CM 1.44 pF 

RA 11.5 MΩ/mm 
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A monophasic current pulse iS (Figure 5.5) is applied as the stimulus signal to the circuit. 

The parameters for the current pulse are I1 = 0, I2 = 0.5 mA, and a pulse-width PW of 0.5 ms. 

The period PER is set at 1 ms. The rise time tr and fall time tf are set at 1 ns. 

 

 

 

 

Figure 5.5: Current pulse waveform given as input to the equivalent circuit. The 

notations are as follows: I1 = initial current level, I2 = pulsed peak current level, 

and td is the pulse delay time.  

 

 

The simulated axon current iA is shown in Figure 5.6. This is a typical current range 

inside an axon during a normal action potential [291]. The PSPICE simulation conditions, 

parameters and an example output file are provided in Appendix E. This simulated current 

matches the theoretical current (Figure F.1, Appendix F) obtained from equation (F.22), upon 

excitation by a step pulse of amplitude of 0.5 mA at t = 0. The details are provided in Appendix 

F. The time constant for the axon current given by equation (F.9) is 6.8 µs resulting in the circuit 

approaching steady state value in less than 0.05 ms.  
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Figure 5.6: The axon current iA as a function of time, simulated on PSPICE for a 

pulsed current input signal shown in Figure 5.5. The parameters of the input 

signal are I1 = 0, I2 = 0.5 mA, td = 0, tr = 1 ns, tf = 1 ns, PW = 500 µs, PER = 1 ms. 

 

5.3.4.1.1. Effect of Input Current Signal  

The magnitude of the steady-state axon current iA during the period PW is a function of 

the amplitude of input current signal iS (Figure 5.7). For PW and (PER-PW) greater than 5τ (in 

this case, 34 µs), the magnitude of the steady-state axonal current iA is not significantly 

influenced by the values of PW and PER. However, for PW and (PER-PW) within 5τ, the axon 

current does not approach steady-state values and is influenced by the pulse-width and the period 

of the input signal.  

The axon power changes parabolically with axon current due to relationship between 

current (iA) and power (iA
2
RA) (Figure 5.8). The axon power peaks at the pulse transitions and 

should reach a steady-state value exponentially with time constant of τ/2 during the pulse period 

PW. The PSPICE results indicate that steady-state values are not reached for PW less than 5τ, 

which in the present case is 34 µs.  
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Figure 5.7: Amplitude of steady-state axon current iA as a function of the steady-

state input signal amplitude. I1 = 0, I2 = 10, 30, 80, 200, and 500 µA, td = 0, tr = 1 

ns, tf = 1 ns, PW = 500 µs, PER = 1 ms.  

 

 

 

 

Figure 5.8: Steady-state power dissipated in an axon during the pulse period PW 

as a function of input signal amplitude. The input signal was a pulsed current 

signal with I1 = 0, I2 = 10, 30, 80, 200, and 500 µA respectively; td = 0, tr = 1 ns, tf 

= 1 ns, PW = 500 µs, PER = 1ms.  
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5.3.4.1.2. Axon Length 

Figure 5.9 shows the steady-state membrane voltage during the pulse period PW as a 

function of distance from the node, or in other words length of the axon. The membrane voltage 

is the voltage across the membrane, measured at node E with respect to node F in the circuit 

shown in Figure 5.4. The axon resistance, RA increases as its length increases. Consequently, the 

membrane voltage decreases as RA increases. The decrease in membrane voltage observed in this 

simulation is similar to that seen in actual measurements of membrane voltage in axons [314].  

 

 

 

Figure 5.9: The steady-state axon membrane voltage during the pulse period PW 

as a function of the axon length. The input signal was a pulsed current signal with 

I1 = 0, I2 = 80 µA; td = 0, tr = 1 ns, tf = 1 ns, PW = 500 µs, PER = 1ms.  

 

Figure 5.10 shows the steady-state axon current iA during the pulse period PW as a 

function of length of the axon. As can be expected, the steady state axon current decreases with 

an increase in axon length, and hence increasing RA. The change in RA also causes a change in 

the time constant. These results are supported by equations (F.9) and (F.19) in the theoretical 

calculations detailed in Appendix F.  
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Figure 5.10: The steady-state axon current iA during the pulse period PW as a 

function of the axon length. The parameters of the input signal were I1 = 0, I2 = 80 

µA; td = 0, tr = 1 ns, tf = 1 ns, PW = 500 µs, PER = 1ms.  

 

5.3.4.1.3. Axon Radius 

The radius of the axon plays an important role in defining its electrical behavior. Figure 

5.11 shows the membrane voltage at node E with respect to node F in Figure 5.4 as a function of 

the axon radius. As the axon radius increases, its membrane resistance (RM) decreases and its 

capacitance (CM) increases. The axon resistance (RA) also decreases with an increase in the axon 

radius. The changes in these component values influence the membrane voltage. A change in 

axon radius influences the axon current (Figure 5.12). The axon current transients are affected 

due to change in both the membrane capacitance and the resistance. The magnitude of steady-

state axon current iA during the pulse period PW is affected by a change in the value of resistance 

only and not by membrane capacitance (Figure 5.12). This is evident from PSPICE simulation 

data, not shown here. 
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Figure 5.11: Steady-state membrane voltage during the pulse period PW as a 

function of the axon radius. The parameters of the input signal were I1 = 0, I2 = 80 

µA; td = 0, tr = 1 ns, tf = 1 ns, PW = 500 µs, PER = 1ms.  

   

 

 

 

Figure 5.12: The steady-state axon current iA during the pulse period PW as a 

function of axon radius. The input signal was a pulsed current signal with I1 = 0, 

I2 = 80 µA; td = 0, tr = 1 ns, tf = 1 ns, PW = 500 µs, PER = 1ms.  
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When axon radius is increased, an overall consequence is decrease in time constant for 

the axon current (Figure 5.13). This is consistent with the reported observation that a larger 

diameter of axon results in a faster conduction velocity or the rate at which the axon transmits a 

signal [315].  

 

 

 

Figure 5.13: Time constant of axon current as a function of its radius, obtained 

using equation (F.9) in Appendix F.  

 

5.3.4.1.4. Charge per Pulse  

For a given set of circuit element values, the charge per pulse injected depends on the 

amplitude of the input current signal amplitude iS and the pulse-width (PW) for monophasic 

signals. The calculation of the charge per pulse is straightforward, given by a product of iS and 

PW. The typical values of charge/pulse employed in electrical stimulation of neural tissue for 

various biomedical applications are wide ranging. Some reports have employed relatively low 

charge/pulse with neuronal damage being reported at charge values as low as 8 nC/pulse [316]. 

However, many other reports on neural stimulation have employed larger charge/pulse values. 
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The charge per pulse can be minimized by employing shorter pulse-widths [274]. To the best of 

our knowledge, there are no reports on the actual charge flow inside an axon during electrical 

stimulation. 

 

5.3.4.1.5. Monophasic and Biphasic Current Pulses 

The main drawback with monophasic current pulse signals is that voltage level at the 

electrode (measured at node A with respect to node C in Figure 5.4) builds up by adding on to 

that of the preceding cycle (Figure 5.14A). This results in voltage levels that can be high enough 

to induce certain electrochemical reactions at the electrode which may not be desirable in terms 

of either electrode integrity or for avoiding or minimizing neural damage [317]. Additionally, as 

voltage levels increase, average power levels over a period also increase at the electrode (Figure 

5.14B). The power dissipation is measured between the nodes A and C in Figure 5.4. 

The voltage at the electrode in the case of monophasic current pulse increases as the duty 

cycle is increased to 50%. Electrode voltage data for three different duty cycles of 10%, 33% and 

50% is shown in Figure 5.14A. This is due to a large value associated with electrode capacitance 

CI. For a monophasic current pulse, it is preferable to employ a low duty cycle by keeping the 

pulse-widths small.  

One way to address the voltage problem is to discharge or depolarize the electrode after 

every monophasic pulse [318]. This will help maintain voltage levels in a desirable range. 

PSPICE simulation results suggest a better way to address this by employing biphasic current 

pulses, where the current goes from a negative to a positive value and returns to the negative 

value. The electrode voltage magnitude decreases as duty cycle increases to 50% for a biphasic 

current pulse signal (Figure 5.15A). The average power dissipated during a cycle at the electrode 

is also low for the 50% duty cycle, compared to 10% and 33% duty cycles (Figure 5.15B).  
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Figure 5.14: (A) Electrode voltage as a function of time for three different PW 

values of 100 µs, 300 µs, 500 µs respectively, for a monophasic pulsed current 

input signal. (B) Average power dissipated per cycle at the electrode as a function 

of time, for the same signal. In both cases, the parameters of the input signal are I1 

= 0, I2 = 80 µA, td = 0, tr = 1 ns, tf = 1 ns, PER = 1 ms. 

 

For biphasic current pulses, a duty cycle of more than 50% yields increased voltage at the 

electrode, and therefore increased power dissipation at the electrode. Therefore, it can be inferred 

that it is appropriate to employ a duty cycle of 50% for biphasic current pulses or a charge 

balanced current signal. It has been reported by several researchers that charge balanced biphasic 

current pulses yield good results in terms of reduced neuronal damage [319, 320]. 
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Figure 5.15: (A) Electrode voltage as a function of time for three different pulse-

width values of 100 µs, 300 µs, 500 µs respectively, for a biphasic pulsed current 

input signal. (B) Average power dissipated per pulse at the electrode as a function 

of time, for the same signal. In both cases, the parameters of the input signal were 

I1 = - 40 µA, I2 = 40 µA, td = 0, tr = 1 ns, tf = 1 ns, PER = 1 ms. 

 

5.3.4.1.6. Pulsed Voltage Signals as Input 

PSPICE simulations are presented here for the case of a monophasic pulsed voltage 

signal as input. The parameter description of this voltage signal is the same as the pulsed current 

signal described in Figure 5.5, except that units of amperes are replaced with volts. Figure 5.16 

shows the input current in the case of a 1V monophasic square pulse signal for two different duty 

cycles of 10% and 33% respectively. As the pulse-width increases, input current decreases 
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during the „ON‟ time of the input pulse (Figure 5.16A). For long enough voltage pulse-widths 

(PW > 5 time constants), input current will approach the steady-state value during the „ON‟ time 

(Figure 5.16B). It is desirable to have input current as constant as possible. For this reason, it is 

preferable to employ a smaller duty cycle or shorter pulse-width for monophasic voltage pulses.  

In the case of a voltage pulse input, the problem pertaining to voltage build-up at the 

electrode and therefore power dissipated at the electrode is decreased, compared to monophasic 

and biphasic current pulses. This is evident from simulation results showing the average power 

dissipated at the electrode as a function of time (Figure 5.17), when a 1V square pulse is given to 

the equivalent circuit. The average power dissipated per pulse from t = 0 to t = 1s is displayed. 

This power is measured between nodes A and C in the circuit shown in Figure 5.4. As in the case 

of monophasic current signals, the average power is lower for a smaller duty cycle. For a 10% 

duty cycle, the average power is approximately 5 µW. For 33% and 50% duty cycles, the 

average power is approximately 11 µW, and 14 µW respectively. So, shorter PW is desirable 

here.  

 

5.3.4.1.7. Tissue Heating 

The normal temperature of physiological tissue is 37 
0
C. It is a well-established fact that 

thermal necrosis or damage to cells and biological tissue starts at 42 
0
C [321, 322]. For the range 

of stimulus parameters typically employed in FES, ohmic heating has been excluded as an injury 

causing mechanism [323, 324]. In their study on heating of tissue in neural stimulation, Ruggeri 

et al reported that for electrodes with surface area greater than 0.0013 mm
2
 operated with current 

densities greater than 10 A/cm
2
, the peak temperature rise is less than 1 

0
C [324]. They also 

reported that smaller electrodes or higher current densities will produce greater temperature rise. 

This implies that tissue heating will not be a factor in our study where the surface area of each 
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electrode is 0.5 mm
2
 and the maximum current density is 2 A/cm

2
, assuming a worst-case 

scenario of a 10 mA pulsed current input signal. Therefore, in the present modeling study, tissue 

heating aspect has been omitted. 

 

 

 

 

 

Figure 5.16: (A) Magnitude of input current iS as a function of time, for a 

monophasic pulsed voltage input signal vS with a period of 1 ms, PW of 100 µs, 

and 300 µs respectively. (B) Input current as a function of time, for the same 

monophasic pulsed voltage input signal, but with a period of 3 ms and a PW of 

1500 µs. In all cases, the parameters of the input signal were V1 = 0V, V2 = 1V, td 

= 0, tr = 1 ns, tf = 1 ns. 
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Figure 5.17: Average of power dissipated per pulse at the electrode (between 

nodes A, C in the circuit) as a function of time, for a monophasic pulsed voltage 

input signal. The parameters of the input signal were V1 = 0V, V2 = 1V, td = 0, tr = 

1 ns, tf = 1 ns, PER = 1 ms, PW = 100 µs, 300 µs, and 500 µs. 

 

5.3.5. Summary 

An elaborate discrete element equivalent circuit model has been developed to represent 

an electrode-neural interface. The phenomena occurring in an axon during electrical stimulation 

define the physiological response incited by the applied electrical stimulus. The equivalent 

circuit of an axon under electrical stimulation described here can be employed to study the 

influence of a particular stimulus signal on nerve tissue and to optimize the stimulation protocol. 

The methodologies described here can be applied to model interfaces formed by electrode 

surfaces with other types of tissues. The accuracy of the PSPICE simulations, verified by 

theoretical calculations, shows the feasibility of using this software as a modeling tool in 

conjunction with such equivalent circuits.  
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Previous reports have represented the electrode-tissue interface as an electrode immersed 

in an electrolyte and have neglected any representation of the internal components of the tissue 

being stimulated [164, 281-283]. Other reports have focused solely on representing the tissue 

being stimulated in terms of electrical circuit equivalents. To illustrate, some equivalent circuits 

have been reported to represent nerve tissue and axons in specific [154, 156, 313, 325-327]. 

However, these models do not include any components or modules to represent the metal surface 

and the interface formed by it with the tissue. In this context, the present development of an 

integrated equivalent circuit model with components to address all the aspects of tissue being 

stimulated by a metal surface is of value.   
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CHAPTER 6: ROUTING TECHNOLOGY FOR FES APPLICATIONS 

 

6.1. Introduction 

In the use of a percutaneous access device (PAD), the interface between the PAD body 

and the skin tissue has to be preserved for the proper operation of the PAD [328, 329]. A typical 

PAD has a skin piercing conduit for making connections to the external world. Forces on the 

skin-piercing PAD conduit create motion, resulting in tearing of the surrounding skin and the 

loosening of the PAD-tissue anchoring interface at the base [187-189, 209, 228]. This can 

prevent the PAD from being anchored and provide for pathways for bacterial infection [190, 

209]. Therefore, it is essential to minimize the mechanical stresses at the PAD-skin interface, 

caused by external forces [229, 230]. 

In a structure subjected to a load, the stress is often assumed to be distributed uniformly 

over each cross-section. However, there may be conditions that may cause the stress at a point in 

a structure to be different from the rest of the structure. These conditions including some specific 

feature or geometrical discontinuity in the structure, may result in stress gradients. Typically, 

large localized stresses due to stress concentrations are developed only in a small portion of the 

structure. The nature of stress in the neighborhood of a geometrical discontinuity in a solid can 

be explained by the theory of lines of force or stress trajectories. The latter, whose paths lie in the 

material, cluster together when passing around a geometric discontinuity with reduced average 

spacing between the lines signifying higher local stress [258, 330-332]. The theory of lines of 

force has been extended to the design of novel PADs developed here [333, 334]. These PAD 

designs attempt to localize stress in the PAD conduit structure by means of circumferential 

notches and corrugations with notches in the conduit [333, 334]. The concept of lines of force 

suggests a redistribution of strain energy from the regions surrounding a notch to a highly 
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strained region at the tip or the root of the notch. The stress due to applied forces is hence not 

entirely focused on the base of the PAD conduit due to presence of these high strained regions. 

The developed PAD designs incorporate a conduit with one or more circular notches or 

corrugations with notches located circumferentially in the exposed part of the conduit (Figure 

6.1).  

These designs also incorporate a base with tailor-made pores to allow for device 

anchoring by connective tissue growth [333]. Ideally, stress is concentrated at the root of a notch 

on application of an external force, permitting the conduit to bend more easily at the notch rather 

than at the PAD-skin interface, extending the life of the PAD. This may also reduce or eliminate 

dermal tear around the conduit, thereby reducing the risk of bacterial infection.  

The following sections detail the methodologies to achieve the developed PAD designs. 

One of the developed designs, the notched conduit PAD structure, has been realized by a 

molding process using Silastic, a medical grade silicone elastomer. The pores of the PAD base 

were in-built, i.e. made in the device body material [333, 335]. 

 

6.2. Theoretical Modeling 

Mechanical modeling of a PAD with a single, circular, circumferential notch on the 

conduit is considered first to understand the effects of the presence of a notch on the PAD 

conduit. The study allows selection of optimal parameters for the dimensions of the notch and 

the PAD base. The following assumptions have been made in the current model: 

1. The PAD conduit is assumed to exit the skin at right angles to the plane of the skin. This 

is a reasonable assumption because most PADs penetrate the skin at right angles to the 

skin plane [228]. 
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2. In FES applications, a PAD is typically used to route electrical wires from implanted 

electrodes to externally situated equipment. A small inner diameter of the conduit is 

sufficient for this purpose since diameter of the insulated electrical wires used is typically 

small. For example, in nerve cuff devices used in this work, multiple wires from the 

electrode are enclosed in insulation with a total outer diameter of 300 to 500 µm. Since 

the inner diameter of the conduit is small compared to its overall diameter (typically 

about a few mm), the present modeling study considers the PAD conduit as a solid 

cylindrical shaft.  

3. For a typical PAD device, lateral, axial, and torsional forces can be present on the skin 

piercing conduit [228]. Seldom does a situation exist in which only one of these forces is 

acting alone. More often, two or perhaps all the three forces act simultaneously. 

However, for the sake of simplicity, effect of each force is considered separately in the 

present modeling study. 

4. A typical PAD is expected to act as a routing interface for the exit of electrical wires 

from an implant to outside the body. Wires exiting the body are usually enclosed in 

cables which may be attached to electronic hardware and instrumentation. The entire 

cable assembly typically weighs 3.5-13 gm, but this weight is largely supported by relief 

mechanisms outside the body [336]. Therefore, the actual load experienced by the body is 

low, with some values reported in the range of ≤0.01 N [55]. The present model assumes 

forces acting on the PAD to be in the range 0.1-0.2 N.   

5. In the simulations, the PAD base is considered as a curved beam with a rectangular cross-

section. A cylindrical through-hole is formed at the center of the curved beam. The inner 
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diameter of the cylindrical through-hole is equal to the outer diameter of the PAD 

conduit.  

6. In a typical PAD, forces acting externally on the PAD conduit are transferred to the PAD 

base [337]. The present model includes combined forces acting on the base. 

 

The notched conduit of the PAD is modeled as a cylindrical shaft with a notch along the 

circumference of the shaft (Figure 6.2). The circumferential notch has a circular cross-section. 

To determine the effect of the notch in the conduit, Neuber‟s theorem is applied to a cylindrical 

member with a circumferential notch. Neuber described a dimensionless stress concentration 

factor to study the influence of cracks, grooves or notches in a member [338, 339]. In the present 

study, a Neuber-type analysis has been applied to study the effect of a notch on the PAD conduit 

and the influence of the notch parameters on the concentration of stress at the notch. This kind of 

analysis has been often employed to study the effect of cracks and related stress concentrations 

in structures [340, 341]. 

The calculated stress concentration factor (Scc) is a dimensionless quantity that is 

indicative of the extent of stress concentration in a structure. For a cylindrical member 

containing a notch, Scc is given by Neuber as [338, 339]:  

       
                  

                     
 
 ,       (6.2-1) 

where Scs is the calculated stress concentration factor when the notch is shallow, and Scd is the 

calculated stress concentration factor when the notch is very deep. 

        
 

 
 , and         (6.2-2) 
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Figure 6.1: Schematic representations of (A) a PAD with circumferential notches 

on its conduit; (B) a PAD with circumferential corrugations on the outer side of 

the conduit; (C) a PAD with corrugations on both sides of the conduit. All devices 

have pores incorporated in the bases. Diagrams are not drawn to scale.   

 



146 
 

 

 

 

 

Figure 6.2: Schematic diagram of a cylindrical member with a circumferential 

notch. The notch has a circular cross-section. The cylindrical member is fixed at 

one end. The conduit of the developed PAD design is modeled by this structure. 

Diagram is not to scale. 

   

     
  

 

 
      

 

 

 
 

 
             

 

 
     

 

 

  ,       (6.2-3)   

where t is the depth of the notch, ρ is radius of curvature at the root of the notch, b= rb - t 

is the cross-section radius at the root of the notch. Using the equations listed above, the influence 

of the notch dimensions on the stress concentration factor is studied.  

Figure 6.3 shows the variation of the stress concentration factor Scc as a function of the 

depth of the notch. The results show that the presence of a notch is clearly a factor influencing 

the localization of stress in the cylindrical member. When the value of notch depth is zero, Scc is 

at its lowest value of 1. As t increases, Scc increases. With increased notch depth, more stress is 

concentrated at the notch. The increase in Scc is not significant for larger values of ρ at the notch 

root located at distance b from the center axis. This is apparent from Figures 6.3 and 6.4. The 

effect of the notch depth on the Scc value is reduced for larger values of radius of curvature at the 
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notch root. When the value of notch depth is zero, Scc remains constant at its lowest value of 1 

indicating that in the absence of a notch, the cylindrical member will not localize the stress in the 

structure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Variation of the stress concentration factor Scc as a function of the 

depth of the notch t. The calculations are repeated for different radii of curvature ρ 

at the notch root. b = 5 mm. Reprinted with permission from N.S. Korivi, and 

P.K. Ajmera, “Percutaneous access device with stress relief features,” 

Proceedings of the ASME 2010 5
th

 Frontiers in Biomedical Devices Conference, 

Paper Number BioMed2010-32022. Copyright 2010 by ASME. 
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Figure 6.4: Variation of Scc as a function of the radius of curvature ρ at the notch 

root. The data has been plotted for different values of notch depth t. b = 5 mm. 

Reprinted with permission from N.S. Korivi, and P.K. Ajmera, “Percutaneous 

access device with stress relief features,” Proceedings of the ASME 2010 5
th

 

Frontiers in Biomedical Devices Conference, Paper Number BioMed2010-32022. 

Copyright 2010 by ASME. 

 

 

The following equations were employed to calculate the nominal stress produced at the 

notch root by each type of force [258]:  

Stress from axial force   
 

   
 ,       (6.2-4) 

Stress from shear force   
     

    ,       (6.2-5) 

Stress from bending moment   
  

    , and      (6.2-6) 

Stress from twisting moment   
  

   
 ,       (6.2-7) 
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where P, V, M, T are the axial force, direct shear, bending moment and twisting moment 

respectively, b= rb - t is radius of the cylinder cross-section at the root of the notch. The b value 

is indicative of the physical extent or depth of the notch t for a given overall cylinder radius. As 

equations (6.2-4) through (6.2-7) give the stress at the notch root and since t ≥ ρ, the radius of 

curvature of the notch is not a factor in these equations. The magnitude of a particular incident 

force was maintained constant and its effect on the induced stress in the cylinder was studied for 

different values of b.  

 Figures 6.5 and 6.6 show the variation of nominal stress as a function of the cross-section 

radius at the notch root when a force or moment is applied. These results may be seen with two 

different perspectives. In the first case, if the notch depth t is maintained constant and the cross-

sectional radius b at the notch root is changed, then the cylinder outer radius rb or (b + t) 

changes. Figures 6.5 and 6.6 indicate the expected results that a larger b value will function to 

reduce the effect of forces or moments applied on the cylinder.  

 The second case arises when the outer radius of the cylinder (b + t) is kept constant. 

Then, an increase in b implies a complementary decrease in t. As the b value increases, implying 

decreasing notch depth, the stress related to a particular incident force or moment is reduced or 

as the b value decreases, the stress is increased. This is an expected effect of the notch depth 

influence on stress concentration. For smaller b values, i.e. larger notch depths, there is more 

effect of the applied force or moment. This can be observed for the four types of forces and 

moments incident on the cylindrical structure. Regardless of the particular perspective by which 

these results are observed, the general trends for the results shown here are valid. 

For the same magnitude, the direct shear appears to have more influence on the nominal 

stress than the axial force. Similarly, for the same magnitude, the bending moment appears to 
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have more influence on the nominal stress than the twisting moment (Figure 6.6). This is clearly 

evident in the lower b region. It should be noted that a value of 0.1 N.mm has been employed to 

represent each type of moment in these simulations.  

 

 

 

Figure 6.5: Plot showing variation of nominal stress at the notch root due to 

direct shear V and axial forces P acting separately on the cylinder as a function of 

b. A value of 0.1 N is used to represent V or P in this simulation. 

 

In practical cases, the magnitude of different types of forces acting on the cylindrical 

structure may be different. The magnitude of one type of incident force may be larger than the 

other type(s). However, these results are valid for any magnitude of incident force, within elastic 

limit. The yield strength of silicone is about 15 MPa [259]. This corresponds to an elastic limit of 

15 N/mm
2
. 

In practical problems of stress concentration, the state of stress in the neighborhood of a 

notch is three dimensional in nature. However, due to the complexity of developing three 

dimensional solutions, the majority of mathematical solutions to stress concentration problems 

are approximate two-dimensional solutions of plane stress cases [342]. In this light, it is 



151 
 

reasonable to consider the modeling results presented here as approximate two-dimensional 

computations of stress at the notch root. 

 

 

 

Figure 6.6: Plot showing variation of nominal stress at the notch root due to 

bending and twisting moments acting separately on the cylinder as a function of b. 

A value of 0.1 N.mm is used to represent the bending and twisting moments 

respectively in this simulation. 

 

One of the objectives of the developed PAD designs is to reduce the effect of forces 

acting on the implanted base and to minimize and/or prevent its lateral motion. Therefore, it is 

necessary to study the influence of the dimensions of the PAD base on the mechanical response 

of the device. Theoretical simulations were performed to determine a range of dimensional 

parameters for optimal response of the PAD base vis-à-vis the reduction of circumferential 

stresses. In the simulations, the PAD base is considered as a curved beam with a rectangular 

cross-section (Figure 6.7). A cylindrical through-hole is formed at the center of the curved beam. 

The inner diameter of the cylindrical through-hole is equal to the outer diameter of the PAD 

conduit. Due to the symmetry of the curved beam, only a segment of the beam is considered for 
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analysis [343]. Due to action of external forces on the PAD conduit, a combined force is 

transferred to the PAD base from its conduit. So, the present model assumes a combined force 

acting centrally on the base. The circumferential stress (σθθ) is given by the equation [258]: 

     
 

 
  

           

           
 ,        (6.2-8) 

   
   

 
 ,          (6.2-9) 

         , and         (6.2-10) 

      
 

 
 ,          (6.2-11)  

where N is a force acting centrally at the base, R is the distance between the center of curvature 

of the curved beam to the centroid of the beam, r is the distance of a point from the center of 

curvature, a is the outer radius of the conduit or the inner radius of the PAD base, c is the outer 

radius of the PAD, Mx is a moment acting on the face of the beam cross-section, A is the area of 

cross-section of the curved beam, Am has the dimensions of length.  

For the purpose of illustration, a force N of 0.2 N has been used in these simulations. The 

circumferential stress on the base was determined for different thicknesses of the base. Figure 6.8 

shows the circumferential stress values calculated for different PAD base thicknesses. The 

different base thickness values simulated are displayed on the upper right corner of the Figure 

6.8. It can be observed that as expected the PAD base thickness influences the circumferential 

stress. The thicker the base, the lower the values of circumferential stresses produced on the 

base. A thicker base provides more stability to the device. From a practical perspective, there are 

limits on the thickness of the PAD base that can be implanted. While a thicker base can be 

implanted in larger animals and humans, it may pose problems for smaller animals. Also, an 

increased thickness of the base may pose problems in the percutaneous placement of the base in 

animals of all sizes.  
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Figure 6.7: Schematic showing the PAD base, modeled as a curved beam with a 

rectangular cross-section. A force or load N is considered to be acting centrally on 

the base. Diagrams are not drawn to scale.  

 

Figure 6.8 plots the circumferential stress values from inner edge of the PAD base (r = a 

= 1 mm) to its outer edge (r = c = 5 mm). The maximum circumferential stress is produced at the 

inner edge of the base. This can be attributed to the fact that the force is applied on the inner 

edge of the base. The stress produced on the inner edge is tensile and it decreases towards the 

centroid of the beam, located at (a+c)/2 or at 3 mm in the present case. From the centroid 

onwards, the stress changes from tensile to compressive. Towards the outer edge of the beam, the 

compressive stress increases. This behavior of induced stress is independent of thickness h as the 

location of the centroid is not influenced by h.  
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Figure 6.8: Plot of the circumferential stress distribution from the inner edge of 

the PAD base (r = a = 1 mm) to its outer edge (r = c = 5 mm). A force of 0.2 N is 

assumed to be acting on the PAD base center. The stress calculations are repeated 

for different thickness h values of the PAD base.  

 

 

The tensile stress produced at the inner edge is greater than the compressive stress at the 

outer edge, typical for this type of section profile. For a more balanced stress distribution in the 

base, a wider inner section and a thinner outer section will be appropriate. The above results hold 

true for other values of incident force within elastic limit, though only the simulation data for a 

0.2 N force are discussed here. 

The maximum tensile stress produced on the base for different values of outer radius c of 

the PAD base is examined for force N = 0.2 N. The thickness h of the base is maintained 

constant in these calculations at 1 mm. It can be observed from Figure 6.9 that the stress values 

are reduced when the outer radius c of the base is increased. The larger the footprint of the base, 
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the more effective it will function to reduce stress and provide stability to the PAD, consistent 

with suggestion made by Kantrowitz et al. [213]. Additionally, in the developed PAD design, the 

base is a circular disc to ensure uniform distribution of stress in the base. Other geometries like a 

square or rectangle-shaped base will result in non-uniform stress distribution.  

 

 

 

 

Figure 6.9: Variation of the maximum tensile stress as a function of the outer 

radius of the PAD base for force N = 0.2 N. The maximum tensile stress is 

calculated at the inner edge of the PAD base, by substituting r = a = 1 mm in 

equation (6.2-8). Thickness h is constant at 1 mm.  

 

Another dimension of interest is the inner radius a of the PAD base. While the 

application at hand largely determines the value of a, its contribution to the stress on the PAD 

base has to be considered. To study this, the maximum compressive stress has been calculated at 

the outer radius r = c held constant at 10 mm with varying values of the inner radius a of the 

PAD base. Figure 6.10 shows that the absolute value of compressive stress increases as the 

conduit outer radius or the PAD base inner radius is increased. The force N = 0.2 N and thickness 
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h = 1 mm for data shown in Figure 6.10. The increase in stress is not significant for smaller 

values of a.  

 

 

 

Figure 6.10: Variation of the maximum compressive stress as a function of the 

inner radius a of the PAD base for force N = 0.2 N. The maximum compressive 

stress is calculated at the outer edge of the PAD base, by substituting r = c = 10 

mm in equation (6.2-8). Thickness h = 1 mm. 

 

In Figure 6.10, the increase in stress in not significant for (c-a) ≤ 5 mm. This value is in 

the typical range of commercially available PAD devices [344]. As the a value approaches that 

of c i.e. the outer radius of the PAD, the increase in stress is beyond the elastic limit for the PAD 

material indicated by broken line in the figure. These results imply that the outer radius of the 

conduit should be small and generally below the lateral width (c-a) of the base. Based on the 

results of the mechanical modeling, the following design considerations are arrived at: 

1. The notch feature in the conduit is useful to localize stress.  

2. For a given diameter of the conduit, a smaller radius of curvature at the notch root on the 

conduit will focus more stress at the notch root. 
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3. For a given diameter of the conduit, a larger notch depth will focus more stress.  

4. For lower stress, the PAD base should be as thick as practically possible. 

5. For lower stress, the lateral dimensions or lateral width of the PAD should be as large as 

practically possible. 

6. The outer radius of the PAD conduit has to be carefully chosen. In terms of forces acting 

on the base, the outer radius of the conduit should be small. 

As an alternative to the grooved conduit approach, the walls of the PAD conduit can be made 

sufficiently thin, to make it more flexible. However, this can reduce the general robustness of the 

device. Thin walls may be more susceptible to operational wear and tear. The modeling of the 

PAD base presented here is applicable to other types of PADs with bases having circular lateral 

geometry.  

In a variation to the notched conduit design, a PAD with a corrugated conduit has also been 

studied. A mechanical model is given in Appendix G to examine the feasibility of employing 

corrugations to impart greater flexibility to a PAD conduit and to localize external forces away 

from the PAD-skin interface.  

 

6.3. Experimental 

6.3.1. Pore Formation in Silicone Elastomer 

Four different techniques were developed for forming pores in a silicone elastomer [335, 

345]. Medical grade silicone elastomer referred to as Silastic from Factor 2 Inc. was employed in 

this study.  

First, in order to realize porosity in Silastic silicone material, layers were formed by 

doping the silicone with a foreign material and subsequently the layers subjected to selective 

removal of the dopant (Figure 6.11). Polyvinylidene fluoride (PVDF) powder as a dopant is 
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dissolved in n-methyl pyrrolidone (NMP), an organic solvent. Liquid Silastic silicone elastomer 

was mixed with its curing agent in a 10:1 ratio by volume.  This mixture is referred to as Silastic 

pre-polymer in this document. A blend was prepared by mixing Silastic pre-polymer and the 

PVDF dissolved in NMP. The Silastic to PVDF ratio was 40:1 by weight. After vacuum de-

aeration to remove trapped air bubbles, the pre-polymer blend was cured at 60 
0
C for 3 h. 

Alternately, the layer can be cured at room temperature for 24 hrs. Subsequently, the PVDF was 

removed by soaking the cured Silastic layers in an ultrasonic bath of acetone at room 

temperature for 1 day. The acetone was replaced after 12 hrs.  

Second, a suspension based method was also employed to make pores in the silicone 

elastomer. This method involved preparing a suspension of Silastic pre-polymer and PVDF 

powder (7:1 ratio by weight). This suspension was poured into a flat dish or alternately cast on a 

flat surface and cured at 60 
0
C for 3 h to form a solid layer. Alternately, the layer can also be 

cured at room temperature for 24 hrs. Subsequently, the cured layer was immersed in an 

ultrasonic bath of acetone or NMP to remove the PVDF for 3 days or more depending on the 

thickness of the layer. The solvent was replaced every 12 hrs.  

Third, for formation of pores in micro-scale dimensions and higher, deionized (DI) water 

was blended with Silastic pre-polymer to form an immiscible blend, poured into a Petri dish and 

thermally cured at 100 
0
C for 1 h. The curing process crosslinked the Silastic and evaporated the 

water (Figure 6.12A). The water to Silastic ratio was 1:2 by volume.  

In the fourth technique developed here, food grade salt (Morton
®
) particles (average 

diameter 150-200 µm) were dispersed over uncured Silastic layers. After the Silastic layers were 

cured at room temperature, they were placed in an ultrasonic bath of DI water at 35 
0
C for 2 days 

to leach the salt particles (Figure 6.12B). 
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Figure 6.11: Schematic diagram of pore formation in Silastic by doping it with 

PVDF and subsequently removing the dopant from the cured Silastic. Diagram is 

not drawn to scale.   

 

6.3.2. PAD Fabrication 

The notched conduit PAD developed here was made by molding Silastic silicone 

elastomer in the desired shape and dimension. The molding involved pouring liquid Silastic pre-

polymer into the recesses of a complementary master mold and curing the silicone to solidify the 

same. The first step involved fabrication of a master mold. From experimentation, it was 

determined that a master mold consisting of individual modules or parts enabled easy de-

molding of cured Silastic silicone structures. Therefore, for the fabrication of the developed 
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PAD, a master mold was made by assembling four parts, made of plastic with some metal 

components, and machined to have the desired features.  

 

 

 

 

Figure 6.12: Schematic diagrams for pore formation in Silastic by (A) water 

evaporation, and (B) particulate leaching. Diagrams are not drawn to scale. 

 

Part #1 of the master mold was the bottom layer (made of acrylic) drilled with a hole at 

its center (Figure 6.13). A modified hypodermic syringe needle was pressure fitted in the hole at 

the center of part #1. The diameter of the modified hypodermic syringe needle defined the inner 

diameter of the protruding conduit of the final PAD device. Part #2 was the middle layer that 
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defined the shape and dimensions of the base of the PAD. Typically, the middle layer was a 

circular ring whose inner diameter matches the outer diameter of the flat base of the PAD. 

Alternately, the shape and dimensions of the flat base may be changed by employing an 

appropriate second layer of the master mold.  

Parts #3 and #4 were the upper layers of the master mold that defined the conduit of the 

final PAD structure. To make these layers, a single flat piece of acrylic was drilled with a 

through-hole. The diameter of the hole corresponded to the outer diameter of the tubular conduit 

of the PAD. One end of the through-hole widened into a larger circular recess, created by partial 

drilling with a larger-diameter drill bit. This recess corresponded to the widened base of the 

tubular conduit of the interface (Figure 6.13). After making the conduit hole, the single flat piece 

of acrylic was cut into two halves to form parts #3 and #4. To define the notch, a stainless steel 

wire of appropriate diameter was attached to the mold parts #3 and #4 by means of thin layer of 

epoxy. The wire diameter depended on the dimensions of the notch desired on the final PAD 

conduit. After fabrication, the mold parts were coated with a thin layer of poly vinyl alcohol 

(PVA), which functioned as a mold release agent. This was done by dip-coating the mold parts in 

an aqueous solution of PVA (1:8 ratio of PVA to water by weight) for two minutes, and letting 

the PVA layer solidify at room temperature. The PVA coating was typically a few µm thick. 

All parts of the master mold were assembled together by clamping bolts (Figure 6.14A). 

Silastic silicone elastomer was used as the main material for the PAD body. A specific amount of 

uncured silicone or silicone pre-polymer was doped with PVDF. Additionally, the doped silicone 

was blended with salt particles. This blend was subjected to vacuum de-aeration. The doped pre-

polymer blend in a measured amount was manually poured into the recess of the master mold 



162 
 

(Figure 6.14B). The doped silicone was thermally cured to form the bottom-most layer of the 

interface base (Figure 6.14B).  

Subsequently, the remaining recess of the mold was filled by un-doped Silastic pre-

polymer liquid (Figure 6.14C). The uncured Silastic was allowed to seep into the features of the 

mold for 10 min. Entrapped air appearing in the form of bubbles was removed by vacuum de-

aeration at 25 inches of Hg for 20 min. Following the de-aeration process, the uncured elastomer 

was placed in a convection oven and thermally cured at 70 
0
C for 2 h. Subsequently, the mold 

was de-assembled by unclamping the mold layers (Figure 6.14D). 

 

 

 

 

 

 

 

Figure 6.13: Schematic representation of the master mold employed in the 

fabrication of the developed PAD with notched conduit. Two dimensional 

representations of the mold parts are also shown. Diagrams are not to scale. 
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Figure 6.14: Schematic diagram of the fabrication process of the percutaneous 

access device. Diagrams are not drawn to scale. 

 

The flexible PAD device was released by placing the mold in a water bath to dissolve the 

intermediate PVA layer. Finally, the free-standing PAD was chemically treated in an ultrasonic 

bath of acetone to remove the dopant material (PVDF) from the bottom-most layer, yielding 

pores in the base (Figure 6.14E). The PAD was subsequently placed in an ultrasonic bath of 

water to leach out the salt particles. Subsequently, suture holes were defined on the PAD base by 
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coring the base layer with a modified syringe needle. Finally, the PAD was rinsed in DI water 

and dried in nitrogen. 

 

6.4. Results  

6.4.1. Pore Formation in Silicone Elastomer 

In order to form micro-scale and submicron pores in Silastic layers, a dopant, PVDF, was 

incorporated in the Silastic layers by forming a direct blend, as described in section 6.3.1. 

Subsequently, the PVDF was removed by placing the cured Silastic layer in an ultrasonic bath of 

acetone. The removal of PVDF created pores in the Silastic layer (Figure 6.15). The acetone did 

not affect the cured Silastic layer. It was observed that the pore dimensions and characteristics 

depended on the amount of dopant i.e. PVDF in the Silastic layers.  

The Raman spectra of the Silastic with the PVDF dopant and after its removal are shown 

in Figure 6.15. The spectrum of the doped Silastic sample shows the peaks corresponding to the 

standard assignments for Silastic and PVDF, as listed in Table 6.1. After removal of PVDF in 

acetone, Raman spectra showed only the peaks corresponding to Silastic, including its Si-O and 

Si-C stretch transitions at 495 cm
-1

 and 713 cm
-1

 respectively. No new bonds were observed in 

the Silastic samples after dopant removal. This implies that there were no new chemical bonds 

formed in the doping process, indicative of the absence of composite formation.  

It is possible that some PVDF dopant may still remain in the inner crevices of the silicone 

layers after the acetone bath treatment. These layers may require further treatment in acetone. In 

the dopant removal technique, the pore dimensions and characteristics may depend on the type of 

dopant and the method used for its removal.  

It is relevant to consider the resolution limits of the Raman instrument (LabRAM
®

, 

Horiba Jobin-Yvon) used for the analysis. This instrument has a lateral resolution ranging from 
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0.86-3.1 µm, depending on the objective magnification used. The axial or depth resolution 

ranges from 1-2 µm, depending on the instrument settings.    

 

 

 

Figure 6.15: Optical microscope images of: (A) Silastic thin film made by doping 

Silastic pre-polymer with PVDF (40:1 ratio by weight of Silastic to PVDF) prior 

to dopant removal, and (B) after extraction of PVDF in acetone. Corresponding 

Raman spectra are also given and show only the peaks corresponding to Silastic 

after removal of PVDF.  

 

 

Table 6.1: Raman spectrum assignments for PVDF. Raman spectrum 

assignments for silicone elastomer are provided in Table 4.6. 

 

 

Material Raman shift (cm
-1

) Assignment 

PVDF ~800 CH2 rocking 

~840 CH2 rocking 

CF2 anti-symmetric stretching 
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One of the primary requirements for connective tissue growth and for incorporation of 

cells is the interconnection of pores, or porosity distributed throughout a material or layer. This is 

achieved by the Silastic-PVDF blend based pore formation technique. Microscopic observation 

of the cross-section of a porous Silastic layer clearly showed a sponge-like structure, indicative 

of interconnected porosity throughout the layer. A ratio of 7:1 by weight of Silastic pre-polymer 

to PVDF was employed to make this layer.   

Pores can also be formed in Silastic by a suspension based method where PVDF powder 

is suspended in Silastic pre-polymer. The pre-polymer-PVDF suspension layer is cured and 

treated in an ultrasonic bath of a solvent like acetone or NMP. The suspension based method 

yields pores in the micro-scale dimensions based on the size of PVDF powder, similar to the 

blend based method. Interconnected porosity throughout a Silastic layer can be obtained by 

increasing the quantity of the PVDF powder that is suspended in the Silastic pre-polymer 

solution.  

The dopant removal method can be applied to realize porosity in thicker layers. In our 

experiments, layers of thickness up to 1 mm have been made with interconnected pores 

distributed throughout the bulk of the material. Figure 6.16 shows a 500 µm thick Silastic layer 

with pores. The layer was made by a suspension based method (7:1 ratio of pre-polymer to 

PVDF by weight). Both sides of the layer have pores (Figure 6.16A and 6.16B). An examination 

of the edge of the layer shows a sponge-like characteristic, indicating interconnected porosity 

(Figures 6.16C and 6.16D).    

In the dopant removal method, the pore characteristics i.e. the pore density and 

interconnectivity depends on the amount of PVDF in the silicone layer [345-347]. Based on 

observations, a silicone to PVDF weight ratio of 8:1 or less is generally required to achieve 
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interconnected porosity. In general, a larger dopant concentration results in more porosity in the 

silicone layer.  

 

 

 

 

 

 

Figure 6.16: Optical microscope images of: (A) Surface of a 500 µm thick porous 

Silastic layer made by extracting PVDF from a doped Silastic layer; (B) Reverse 

side of the same 500 µm thick layer; (C) and (D) Sidewalls of 500 µm thick 

layers, showing sponge-like structure indicative of interconnected porosity. The 

pores were formed by a Silastic-PVDF suspension method. The size of the PVDF 

powder ranged from a few µm to < 25 µm.  

 

Another factor to consider is the thickness of the polymer layer. In general, it is more 

difficult to incorporate porosity in thicker layers of silicone as it is enclosed on one side by the 

underlying substrate, making it difficult to remove PVDF from that side. For surface coatings 

and discrete layers, the thickness of the porous silicone layer can be controlled by the viscosity 
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of the polymer blend and by the coating process employed. The viscosity of the material 

increases as the silicone:PVDF weight ratio decreases [346, 347]. If required, additional solvents 

like toluene, ethanol among others, can be used to decrease the viscosity of the silicone/PVDF 

blend. With a decreased viscosity, thinner layers and coatings can be made. 

Among the drawbacks of the dopant removal method is the difficult in precisely 

controlling the shape of pores in the silicone layer. Second, the overall pore formation process 

time is relatively long, mainly due to the PVDF removal time. However, this is not seen as a 

limiting factor in a high throughput application as the process can be carried out inexpensively in 

a large scale parallel operation. Employing thinner coatings of silicone where permissible allows 

for faster removal of PVDF because of smaller etchant path [346, 347]. The dopant etching time 

can be also reduced with choices of a faster dissolving combination of the dopant material and 

the solvent.  

Micro-scale and larger dimension pores are formed in Silastic layers by water 

evaporation technique. Water and silicone elastomer are immiscible. So, when water and silicone 

pre-polymer liquid are combined, water remains in the blend in form of droplets and bubbles. 

These bubbles are removed by evaporation during thermal curing of the silicone elastomer, 

leaving behind pores (Figure 6.17A). The ratio of water to Silastic pre-polymer influences the 

porosity. This is especially a factor when the pre-polymer and water blend is subjected to 

ultrasonic treatment.  Figure 6.17B shows a porous Silastic layer formed by curing a manually 

mixed pre-polymer and water blend (2:1 ratio by volume) at 100 
0
C for 1 hr on a hot plate. The 

pores formed in this layer are relatively sparse with some moisture and vapor embedded in the 

surface. In contrast, when a Silastic pre-polymer and water blend (2:1 ratio by volume) is 

prepared by ultrasonic treatment for 1 hr and cured at100 
0
C for 1 hr on a hot plate, more pores 
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are formed with a smaller average size (Figure 6.17C). This is because water is dispersed 

throughout the pre-polymer in small droplets as a result of the ultrasonic treatment. With manual 

blending, water is sporadically distributed in larger pockets in the pre-polymer.  

 

 

 

 

 

 

Figure 6.17: Optical microscope images showing Silastic layers with (A) pores 

formed by water evaporation; (B) embedded vapor and moisture bubbles 

interspersed with pores, seen in layers made from a manually mixed pre-polymer 

and water blend; and (C) pores formed by curing a Silastic layer prepared by 

blending Silastic pre-polymer and water with ultrasonic treatment.  

 

The moisture and vapor embedded in the surface is manifest in the form of bubbles 

covered by cured Silastic. These embedded bubbles may have a cyst-like appearance. Raman 

analysis of the surface embedded bubbles shows the suppression of Silastic related frequency 

assignments, indicating the deficiency of Silastic inside the bubbles (Figure 6.18). These 
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embedded bubbles are not desirable and need to be minimized. Our experiments indicate that a 

curing temperature of 100 
0
C may not be sufficient to remove embedded bubbles completely, as 

shown in Figure 6.19. To an extent, higher curing temperatures can be used in this regard. An 

investigation of the effect of ultrasonic treatment on the pore formation revealed a correlation 

between the time of ultrasonic treatment and the size and number of pores formed. In silicone 

layer samples prepared by a longer duration ultrasonic treatment, the average pore size is smaller 

and number of surface pores is greater, as determined by microscopic observations (Table 6.2). 

The maximum duration for the ultrasonic treatment was limited to 60 min at room temperature, 

to avoid the onset of eventual polymerization of the elastomer. Polymerization occurs in samples 

of silicone pre-polymer containing curing agent, even when they are left at room temperature, 

albeit at a lower rate than thermally cured samples.   

 

Table 6.2: Effect of room temperature ultrasonic treatment on pore formation by 

water evaporation in silicone layers.  

 

 

Time of ultrasonic 

treatment (min)                                    

Average number of surface 

pores / mm
2
 of surface 

Average size range of 

surface pores (µm) 

0 98±10% 35-85 

20 124±10% 30-68 

40 207±10% 22-51 

60 312±10% 7-35  

 

In general, the porosity achieved by the water evaporation method is influenced by the 

curing temperature. During curing at a high temperature, the water droplets and bubbles in the 

bulk of the silicone are transported to the outer surfaces of the layer from where they evaporate. 

If the temperature is not adequate, then water will not evaporate completely and remain in 

relatively large quantities within the layer. Typically, curing temperatures of at least 100 
0
C or 
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more have to be used. If the curing temperature is increased drastically, then the vapor exits the 

layer in a violent manner, leaving behind larger amount of pores.  

 

 

 

 

Figure 6.18: Raman spectra of a cured Silastic layer with pores made by water 

evaporation: (A) Inside a surface embedded bubble; and (B) at a relatively plain 

region away from surface embedded bubble. The sample was formed by a 2:1 pre-

polymer to water ratio, pouring it in a layer in a glass Petri dish and curing at 100 
0
C on a hot plate. The inset in (A) shows a screen capture of the Raman software 

display of the region inside of a surface embedded bubble.  

 

Our experiments indicated a delicate balance between curing temperature and pore size 

and structure. At higher temperatures, pores are more easily formed due to easier evaporation of 
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water. However, a higher curing temperature (>100 
0
C) can result in water exiting the polymer in 

a violent manner, leaving behind larger pores with irregular shapes. A bigger problem is posed 

by the onset of the polymerization process, which is accelerated by thermal treatment. 

Polymerization prior to the evaporation of water results in the entrapment of water in the 

polymer. Figure 6.19 shows cross-sectional images of Silastic layers with pores made by water 

evaporation. Figure 6.19A shows a typical large pore formed by this method. Figure 6.19B 

shows an arbitrary distribution of pores of varying dimensions. These images show the general 

isolation of pores i.e. lack of interconnection in the pores in the bulk of the material. 

Interconnection may exist at a few locations, but is not distributed throughout the layer, and does 

not match the level of interconnection obtained by the dopant removal method. The water 

evaporation method is mainly suitable to form shallow pores.  

 

 

 

Figure 6.19: Optical microscope images of: (A) Cross-section of a cured Silastic 

layer showing a large pore; and (B) Cross-section of a cured Silastic layer made 

from ultrasonic treated pre-polymer-water blend. These Silastic layers were made 

from a 2:1 ratio (by volume) blend of Silastic pre-polymer to water.  

   

Pores have been formed in Silastic layers by a particulate leaching method (Figure 6.20). 

The particulate leaching method studied here is suitable to form shallow pores. This is because 

the particulate matter is dispersed over the surface layer of Silastic pre-polymer, prior to the 
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curing process. In general, the size of the pores formed by the particulate leaching method 

depends on the dimensions of the particulates used. However, larger pores can sometimes result 

if the surface of the Silastic layer is sufficiently packed by particulates prior to leaching. In such 

cases, some particulates may aggregate and form a larger pore. Pores may also be formed smaller 

than the particulates due to the partial dissolution of some of the particulates in the Silastic pre-

polymer solution. Figure 6.20 shows some pores smaller than the average diameter 150-200 µm 

size of the particulates used. This situation can be remedied by selecting some other particulate 

material that does not dissolve in the pre-polymer solution. For particulate matter such as salt 

particles, dissolution is minimized by curing the Silastic layers at room temperature, as is done in 

this study.   

 

 

 

 

Figure 6.20: Three different optical microscope images showing cured Silastic 

layers with pores formed by particulate leaching. Food grade salt with average 

diameter of 150-200 µm was used as the particulate matter.  
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Previous reports on particulate leaching have described pore formation in materials such 

as polymers of lactic and glycolic acid, polyurethanes, among others [348, 349]. This method has 

been suggested for some other types of silicone elastomers [350], but to our knowledge, has not 

been used for making pores in medical grade silicone such as Silastic and for PAD devices in 

general. Pore formation methods like water evaporation and particulate leaching can be used to 

form shallow pores in Silastic silicone layers that allow access to the material enclosed in the 

inner folds of the Silastic layer. These methods can be employed in conjunction with the dopant 

removal technique to realize highly porous and fibrous silicone layers. For pore formation by 

water evaporation and particulate leaching, Raman analysis showed that these processes were 

benign, i.e. there was no formation of any new composite material. 

In comparison to water evaporation and particulate leaching methods, the dopant removal 

method is more suitable for formation of interconnecting pores. This is due to the fact that PVDF 

is dissolved on a molecular level before being introduced as a dopant in the elastomer. The pore 

dimensions achieved by all the three methods are summarized in Table 6.3.  

 

Table 6.3: Summary of pore sizes formed by different methods. 

 

 

Method Pore size 

Dopant removal ~ 700 nm to 5 µm 

Water evaporation ~ 7 µm to 85 µm 

Particulate leaching ~65-200 µm  (depends on particle size) 

 

The PVDF dopant removal by acetone or NMP is a room temperature process. 

Additionally, Silastic layers doped with PVDF can be formed at room temperature i.e. by room 

temperature curing. Water evaporation based pore formation cannot be performed at room 

temperature. This means that it is not suitable for certain applications, where it is needed to form 
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pores on structures that may include biological or temperature sensitive material. The particulate 

leaching method can usually be done at a low temperature, though certain situations may call for 

heating the sample in a solvent to leach out the particles. In general, both the dopant removal and 

particulate leaching methods require more time than the water evaporation method.    

Previous methods reported for making pores in Silastic have included manual techniques 

involving the use of a leather punch [210]. Pores have also been made by a mechanical process 

requiring a rack and pinion tool [172]. Other methods including punching, shear-punching, 

drilling, piercing and machining have been suggested [172]. The main drawback of these 

methods is the difficulty in making pores in micro-scale dimensions or smaller. Microfabrication 

based methods have also been employed to make porous silicone elastomer. Pores were created 

in silicone (PDMS) sheets by molding PDMS over a master mold template made by electron 

discharge micromachining [217] or photolithography [218]. This type of technique does not 

allow for the formation of interconnected pores in a material. For interconnected pores, 

individual Silastic sheets with pores have to be stacked over each other and carefully offset 

relative to each other [217]. Among other reports, micro-wave curing has been employed to 

obtain porous silicone elastomer [351]. A method like this may not be compatible with the 

molding processes used to make the PAD. Additionally, if there are biological components 

already incorporated on a silicone structure, this method may not be suitable to make pores on 

that structure. Other reports include the use of a high intensity narrow beam laser to make pores 

in a silicone elastomer layer [352]. However, this is a serial process and may not be easy to use 

to realize highly arbitrary and interconnected pore structure. More recent methods have included 

the extrusion of a silicone layer over a mold to form pores [353]. The pore formation methods 

investigated in the work reported here can yield interconnected pores in Silastic with dimensions 
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appropriate for cell incorporation and growth of connective tissue in percutaneous implants. 

These methods can also be applied to makes pores in other polymers. 

 

6.4.2. Device Fabrication 

One of the developed PAD designs, specifically the notched conduit PAD, was fabricated 

by molding Silastic, using the multi-part master mold described in section 6.3.2. Figure 6.21 

shows some of the fabricated PADs. Notches were incorporated on the PAD conduit by the wire 

mold method detailed in section 6.3.2. The base of the PAD was incorporated with pores using a 

combination of dopant removal and particulate leaching. The use of a multi-part master mold 

facilitates the easy fabrication of the PADs. Since the main body of the developed PAD is made 

in one piece, the fabrication process is more convenient than those reported by others where 

individual components were fabricated separately and assembled together to form the PAD [179, 

180]. In PADs made by combining components together by adhesive materials such as silicone 

rubber adhesive, there have been cases of infection caused by failure of the adhesive [199]. The 

fabrication process negates the necessity for the user to manually assemble components together 

prior to use, as required by some other reports [181, 354].   

The developed PADs were implanted in adult male Sprague-Dawley rats for a maximum 

period of four weeks. No sign of rejection or infection was observed during and after the 

implantation period. PAD related problems such as infections due to epidermal migration usually 

occur within two to three weeks of their implantation [195]. Typical observations periods for 

PAD related infections span two weeks [200]. Therefore, it is reasonable to conclude that the 

developed PADs are suitable for chronic implantation applications. The developed fabrication 

processes can be applied to most biocompatible polymers that can be injection molded. The 

processes can also be applied to other materials like biocompatible polyimide, polyethylene 
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among others. Mold-based methods to fabricate PADs using Silastic have been reported on two 

other instances [355, 356]. However, the previous reports did not mention porosity or rather, in-

built porosity (i.e., the pores incorporated in the same material as the device body) as is done 

here in our devices. The length of a PAD conduit is influenced by the location of its base below 

the skin and can be changed by employing an appropriate master mold. The actual depth of the 

PAD base/flange below the skin will depend on the type of animal receiving the implant. For 

example, in pigs, the flange may be typically positioned between 0.5-0.8 cm below the skin 

surface in the subcutaneous plane [357].  

 

 

 

 

 

 

Figure 6.21: Images of: (A) PADs of different dimensions based on the notched 

conduit design; (B) a PAD conduit with four notches individually spaced by 

approximately 1 mm. Each notch has a radius of approximately 0.1 mm, and a 

depth of slightly less than 0.1 mm; (C) a PAD base incorporated with pores. 

Reprinted with permission from N.S. Korivi, and P.K. Ajmera, “Percutaneous 

access device with stress relief features,” Proceedings of the ASME 2010 5
th

 

Frontiers in Biomedical Devices Conference, Paper Number BioMed2010-32022. 

Copyright 2010 by ASME. 
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Other considerations in the fabrication process include the removal of air pockets and 

solvent vapor bubbles that may be trapped in the mold recesses, preventing the flow of pre-

polymer into all regions of the mold. Degassing by vacuum may not be sufficient to remove 

these pockets or bubbles. It is beneficial to incorporate specific outlets in the mold for their 

removal. In our case, a small-bore outlet provided in mold part 3 was useful (Figure 6.22). A 

similar small-bore outlet in mold part 1 is more useful in this regard (Figure 6.22), but may result 

in some leakage of pre-polymer.  

 

 

Figure 6.22: Schematic of the mold assembly provided with special outlets for 

the removal of trapped air pockets and solvent vapor bubbles. The diagram is not 

to scale. 

 

6.5. Discussion 

 The developed PAD designs involving conduit with notches or corrugations are designed 

to concentrate stress caused by applied external forces, at one or more pre-selected points on the 

PAD conduit. The pre-selected points on the conduit are typically located away from PAD-skin 

interface. Under the action of external forces, stress is concentrated at the root of a notch on the 

PAD conduit, away from the crucial PAD-skin interface that needs to be preserved for survival 

of the PAD. Under the action of external forces, it is expected that the PAD conduit will bend 

more easily at the notch, rather than at the point of exit from the body. This is expected to relieve 
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stress on PAD base. It is anticipated that the developed PAD design will attempt to overcome 

problems indicated in previous reports where forces applied on the conduit could lift the edges of 

the implanted base of the PAD [337].  

 For the most part, the PAD-skin interface failure is due to a gross difference between the 

modulus of elasticity of the skin and the modulus of elasticity of the PAD material. Therefore, 

the closer the match of the modulus of elasticity of the skin to the PAD material, the lower is the 

risk of interface failure. Unfortunately, there is no suitable material that exactly meets these 

elasticity requirements [228]. The skin is non-linear viscoelastic material that in some ways can 

be compared with an elastomeric material [234]. Therefore, using a material with mechanical 

properties similar to that of skin will help reduce the possibility of the failure of the PAD-tissue 

interface. This is the rationale behind using the Silastic silicone elastomer for the PAD body.    

Once the PAD is fabricated, it can be sterilized by autoclaving and is ready for 

implantation. The user does not have to assemble any components, or perform any processes to 

get the PAD ready for implantation. Due to in-built porosity in the PAD, there is no need for 

assembling discrete layers containing porous features. In-built porosity in medical grade silicone, 

to our knowledge has not been reported earlier including its use in conjunction with molding 

methods to make PAD devices.  

 Each pore formation technique reported here is capable of producing pores with 

dimensions in a certain range and with certain characteristics. Tailor-made porosity can be 

achieved by combining two or more pore formation methods. In conjunction with these pore 

formation methods, micromolded Silastic structures can be developed to promote growth of 

connective tissue onto and around the surfaces of biomedical implants, aimed at anchoring 

implants in-vivo and making them friendlier to the body.  
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 The developed PAD can be readily used for electrical interconnections for functional 

electrical stimulation (FES) applications. However, the applicability of the developed PAD is not 

limited to FES applications. PAD technology finds significant usage in wide ranging biomedical 

applications like chronic measurements/studies on physiological organs and analytes, continuous 

infusion, chronic measurement of blood pressure and bio-potentials, electrical power and control 

signal transmission to artificial organs, and plastic surgery, among others [358-362]. The 

innovations made in this research can be used in their present condition or easily modified to 

cater to other biomedical applications. The developed PAD can be applied for any biomedical 

application requiring a physical interconnection between in-vivo and external ambient. 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER RESEARCH 

 

7.1. Summary 

7.1.1. Clip-on Cuff Electrode 

Two embodiments of the clip-on micro-cuff electrode have been successfully fabricated 

with inner diameters of approximately 300 µm, 400 µm, and 800 µm. The total weight of a 

typical device including the electrode wires is in the range of 0.2-0.3 gm with total outer surface 

area in the range 45-60 mm
2
. The cuff device can be made with larger cuff inner diameters, in 

the 1 – 2.5 mm range and higher. 

Electrical signals with amplitude as low as 75 µV and frequency in the range 100 Hz – 5 

kHz have been successfully read by the micro-cuff device on a laboratory bench. These signals 

are in the range of typical electroneurogram signals in terms of magnitude and frequency. 

Electrical impedance measurements in stationary and moving solution ambient indicate little 

electrical noise from the ambient when the lateral openings of the micro-cuff device are closed. 

These results are attributed to the more or less fixed enclosed volume inside the cuff when it is 

under normally closed position, a situation analogous to when the cuff encloses a nerve. 

Therefore, the developed device can be used for the recording of electrical signals with a high 

signal to noise ratio from a nerve tissue.  

Mechanical force tests indicate the potential of the normally closed cuff to stay secured to 

a target tissue. The developed micro-cuff device can withstand forces up to 1.9 N before removal 

from an enclosed pin. This compares favorably to a force of 0.2 N measured for a conventional 

cylindrical cuff device with outer surface area and total weight similar to those of the micro-cuff 

device. Force tests also indicate the superior robustness of the interface between cuff wall and 
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electrode wiring in the micro-cuff, as compared to that of conventional split cylinder cuff. For a 

typical micro-cuff device having a total outer surface area 45-60 mm
2
 and a weight of 0.2-0.3 g, 

an average force of < 0.8 N is required to open the cuff to its maximum extent. Durability testing 

of the pinch-hinge feature of the developed cuff electrode indicated that the cuff can withstand 

more than 50 open-close operations, which is significantly more than needed during a typical 

lifetime of such a device.  

Mechanical modeling indicates the influence of the cuff wall thickness and the cuff 

material properties on the response of the cuff structure to internal pressure changes. The 

modeling results should be considered in the context of internal pressure applied on the cuff 

walls, a case that may occur when a nerve experiences swelling after a cuff is implanted on it.  It 

is preferable to have cuff walls that can expand to accommodate an increase in internal pressure. 

For larger inner radius, it is beneficial to keep the cuff wall thickness to a smaller value to 

provide flexibility. Modeling also shows the influence of the cuff material properties such as the 

elastic modulus. The influence of the Young‟s modulus is not significant in cuffs with smaller 

inner radius, but becomes a factor as the cuff inner radius increases.  

Mechanical modeling of the pinch-hinge structure demonstrates that factors such as 

dimensions of the pinch-hinge arm and torsion stiffness of the pinch-hinge influence the force 

required to open the cuff. For a given set of cuff dimensions, as expected, a larger distance of 

force application requires a lower force to open the cuff by a certain extent. It is beneficial to 

apply force at the ends of the pinch-hinge arms, for maximum leverage to open the cuff. The 

opening force increases with an increase in the torsional stiffness. Torsion stiffness can be 

decreased by reducing the angle of the pinch-hinge arms, and/or by reducing the distance 

between the joint of the pinch-hinge arms and the cuff. 
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7.1.2. Pacing Electrode 

A novel electrode for applications in gastric pacing has been successfully fabricated using 

method based on solution casting of moldable silicone elastomer. The electrode body made of 

silicone elastomer, is a flat circular disc of approximately 24 mm diameter, with a total thickness 

of approximately 800 µm. The effective electrode area i.e. the total surface area of the two 

electrodes exposed to the target tissue is approximately 37 mm
2
. Through-holes are provided 

peripherally on the silicone body. These allow the application of suture thread to secure the 

electrode to the tissue being stimulated.  

A sealed trough is incorporated in the silicone body into which polyethylene glycol 

(PEG) is introduced as a heated liquid. Upon cooling to below its melting point, the PEG 

solidifies imparting additional rigidity to the electrode body. The total weight of a typical pacing 

device without PEG is 2.9 g including the electrical wiring.  

Micro-scale porosity is provided in the silicone body where it comes in contact with the 

tissue. The porosity is expected to encourage the growth of connective tissue into the silicone 

material, with the objective of enhancing the device anchoring.   

Mechanical testing conducted by fixing the device at its edges and deflecting it by a 

distance of 3 mm at its center shows the influence of PEG on its structural rigidity. More force is 

needed to deflect the structure embedded with solid PEG, as compared to the case when PEG in 

the layer is melted. As the amount of PEG is increased in the structure, more force is required for 

deflection.  

Raman spectral analysis on prototype structures of Silastic silicone elastomer layers 

encompassing PEG reveals lack of any composite formation between PEG and the silicone.  
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7.1.3. Equivalent Circuit Model 

A piece-wise equivalent circuit model has been developed to represent the interface 

formed by an axon with an electrode. The response of this circuit to an electrical stimulus signal 

is studied by means of PSPICE software. Simulation results show influence of axon dimensions 

on its electrical response. An increase in axon length implies an increase in intra-axonal 

resistance. This results in a decrease in the steady-state current and steady-state membrane 

voltage during the pulse ON time. Similarly, the radius of the axon plays an important role in 

defining its electrical behavior. As expected, the steady-state axon current and the steady-state 

membrane voltage are influenced by the axon radius. As the axon radius changes, the resistance 

and capacitance associated with its membrane change along with the axon resistance. When axon 

radius is increased, an overall consequence is the decrease in time constant for axon current. This 

matches practical observations by others indicating a smaller time constant in larger diameter 

axons.  

The response of the equivalent circuit to different stimulus pulses has been studied. 

Drawbacks with monophasic current pulse signals are evident in terms of increased voltage 

levels at the electrode with successive cycles.   This results in voltage levels that can be high 

enough to induce certain electrochemical reactions at the electrode which may not be desirable in 

terms of electrode integrity and avoiding or minimizing neural damage. Additionally, as voltage 

levels increase, power levels also increase at the electrode. Another observation with monophasic 

current pulse is that the electrode voltage increases as the duty cycle is increased from 10% to 

33% and then to 50%. It is the opposite case for biphasic current pulses, where the electrode 

voltage magnitude decreases as duty cycle increases to 50%. The power dissipated at the 

electrode is also low for the 50% duty cycle, compared to 10% and 33% duty cycles. For 
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biphasic current pulses, a duty cycle of more than 50% yields increased voltage at the electrode, 

and therefore increased power dissipation at the electrode. In the case of a voltage pulse input, 

voltage build-up at the electrode and therefore power dissipated at the electrode are decreased, 

compared to monophasic and biphasic current pulses. For monophasic voltage pulses, as the 

pulse-width increases, input current decreases during the „ON‟ time of the input pulse.  

The PSPICE simulation results are supported by theoretical calculations, indicating that 

this software can be used in conjunction with equivalent circuits to model the electrical response 

of tissue to electrical stimulus.  

 

7.1.4. Percutaneous Access Device 

Mechanical modeling of the percutaneous access device (PAD) with a notched conduit 

shows that stress from external forces is concentrated at the root of the notch. This implies that 

the presence of a notch in the PAD conduit may allow for stress to be focused away from the 

PAD-skin interface. Modeling of a PAD with corrugated conduit shows that the conduit‟s 

torsional and axial stiffness values are influenced by the presence of bellow-like corrugations, 

more specifically their number and dimensions. As expected, both torsional and axial stiffness 

are decreased as the number of corrugations increases. A few corrugations can suffice to 

decrease the stiffness or increase the flexibility of the conduit. For a lower torsional stiffness, it is 

beneficial to have a smaller ratio of inner and outer radii of the corrugations. For a lower axial 

stiffness, it is beneficial to keep the inner radius of the corrugations as small as possible and the 

outer radius as large as possible.  

PADs based on these designs are successfully fabricated in Silastic medical grade 

silicone elastomer by means of a molding process. The PADs are incorporated with pores having 

micro-scale lateral dimensions, to allow for tissue in-growth for the purpose of anchoring the 



186 
 

implanted part of the PAD. Implantation of the PADs for four weeks in adult male Sprague-

Dawley rats did not cause bacterial infections.  

 

7.1.5. Pore Formation 

Four different techniques are investigated for forming pores in Silastic silicone elastomer. 

The dopant removal method allows the formation of interconnected pores, which is one of the 

primary requirements for connective tissue growth and for incorporation of cells. Pores with 

sizes in the range 700 nm to 5 µm are possible with this method. The pore characteristics i.e. the 

pore density and interconnectivity depends on the amount of polyvinylidene fluoride (PVDF) in 

the silicone layer. A silicone to PVDF weight ratio of 8:1 or less is generally required to achieve 

interconnected porosity. In general, a larger dopant concentration results in more porosity in the 

silicone layer.  

Micro-scale and larger dimension pores in the size range of 7 µm to 85 µm are formed in 

Silastic layers by water evaporation technique. This method does not yield the level of 

interconnection possible by the dopant removal method. In general, the porosity achieved by the 

water evaporation method is influenced by the curing temperature and ultrasonic treatment of 

Silastic pre-polymer and water blend.  

In the particulate leaching method, the size of pores formed depends on particle size. In 

the present research, pore sizes in the range 65-200 µm are formed in Silastic layers. This 

method is suitable to form shallow pores. This is because the particulate matter is dispersed over 

the surface layer of Silastic pre-polymer, prior to the curing process. In general, both the dopant 

removal and particulate leaching methods require more time than the water evaporation method. 

Raman analysis of all the investigated methods shows that the processes are benign, i.e. there is 

no change in the chemical structure of Silastic silicone. The Raman spectral results also show 
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that there is no formation of any new composite material. 

 

7.2. Conclusions 

For functional electrical stimulation (FES) technology to progress further, it is essential 

to develop devices and structures that address the challenges with present state-of-art. To this 

extent, the development of technology detailed in this dissertation is useful in biomedical and 

medical areas.  

The cuff electrode reported here addresses limitations with existing cuff electrodes, 

namely the aspect of cuff closure after implantation on nerve tissue and a need for cuff devices 

for micro-scale diameter nerves and nerve fibers. The pinch-hinge feature of the developed cuff 

device negates the need to close the cuff electrode on the target nerve by suture threads or some 

other intra-operative procedure. The developed cuff device can be made with any specific 

internal diameter by means of relatively simple fabrication processes. Due to its superior ease of 

usage and its applicability for nerves and nerve fibers with wide-ranging effective diameters 

from sub-mm and greater, the developed cuff device has the potential to be applied in medical 

devices for neural stimulation and recording.   

The results of the mechanical force tests indicate that the naturally closed micro-cuff may 

stay on a nerve after implantation, and withstand more pulling forces compared to conventional 

cylindrical cuffs. It offers an alternative to devices that involve securing the electrode directly to 

the target tissue by means of suture threads, which can be problematic in regions of limited 

anatomical space. With such devices, there is also the potential hazard of abrasive tissue damage 

from the relative motion of the cuff. The relatively small force required to open the micro-cuff 

shows that the self-closing cuff design offers an alternative to other designs requiring application 
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of a force for cuff closure such as those involving snap and lock mechanisms, and shape memory 

alloy structures. 

In the electrical stimulation of gastric tissues, the main problems encountered are in the 

use of pacing electrodes. These problems include (a) tissue penetration during and after 

implantation of the electrodes on the gastric wall, primarily caused by rigidity of electrodes, and; 

(b) electrode displacement after implantation. The gastric pacing electrode developed in this 

research shows promise to alleviate these problems. The embedded solid PEG gives some 

rigidity to the pacing electrode structure, preferable during implantation surgery to facilitate 

handling. The electrode structure changes to a more flexible state inside the body as the 

embedded PEG subsequently melts at physiological temperature. Mechanical force tests indicate 

the feasibility of employing solid PEG (embedded or otherwise) to increase the rigidity of the 

pacing device structure. The choice of PEG in the device appears appropriate due to its high 

biocompatibility, coupled with its compatibility with silicone elastomers. Peripheral holes 

provided in the electrode structure allow for suture thread to be applied, facilitating the securing 

of the electrode to a target tissue. Porosity in the silicone material in contact with the tissue 

provides means for connective tissue growth thereby improving anchoring of the electrode. The 

fabrication processes used to make the device allow for the gastric electrode body to be made 

thinner if required.  

The equivalent circuit of an axon under electrical stimulation described in this 

dissertation can be employed to study the influence of a particular stimulus signal on nerve tissue 

and to optimize the stimulation protocol. To illustrate, monophasic and biphasic current pulses 

influence the circuit differently, as shown by the PSPICE simulations. For monophasic current 

pulses, it is appropriate to employ a low duty cycle or to keep the pulse-widths small. For 
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monophasic voltage pulse signals, it is preferable to employ a smaller duty cycle or shorter 

pulse-widths, in order to have input current as constant as possible. In terms of electrode voltage 

reduction, it is better to employ biphasic current pulses compared to monophasic current pulses. 

For biphasic current pulses, it is better to employ a duty cycle close to 50% to minimize the 

voltage build-up at the electrode, and thereby reduce power dissipated at the electrode. 

Monophasic voltage pulses are better than monophasic current pulses in terms of reduction of 

electrode voltage. These results are concurrent with previously reported practical observations. 

The accuracy of the PSPICE simulations, verified by theoretical calculations, shows the 

feasibility of using this software as a modeling tool in conjunction with such equivalent circuits. 

The methodologies described in developing and simulating the circuit can be applied to model 

interfaces formed by electrode surfaces with other types of tissues.  

The silicone elastomer based PAD developed here allows for a physical interconnection 

between an FES implant and the outer world during chronic animal experiments. The mechanical 

modeling of the PADs indicates their promise for improved reliability and robustness. The PAD 

designs developed here have the potential to decrease the stresses acting on the PAD-skin 

interface, thereby decreasing the possibility of bacterial infection in the PAD. This may extend 

the life of the PAD and improve its overall reliability. Porous features have been formed on the 

implantable base of the PAD to encourage the growth of connective tissue. The porous features 

are inbuilt on the PAD body, which is an improvement over previous approaches. The use of the 

developed device is not limited to FES applications, and can be extended to other generic 

application requiring an interconnection between an implant and external devices.  

 Among the pore formation processes developed to incorporate pores in the micro-scale 

dimension and above in silicone elastomer layers, the dopant removal method has been 
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successfully employed to form pores in the gastric pacing electrode and the PAD. In the dopant 

removal technique, the pore dimensions and characteristics may depend on the type of dopant, its 

concentration and the method used for its removal. The dopant removal method is more 

appropriate for making interconnected pores in silicone elastomer layers. Methods such as water 

evaporation and particulate removal are suitable for making shallow pores. To our knowledge, 

the pore formation methods investigated in this research have not been employed for making 

pores in medical grade silicone such as Silastic and for PAD devices in general. 

 

7.3. Recommendations for Further Research 

7.3.1. Electrode Development 

The continued and growing interest in FES means that the use of devices like cuff 

electrodes and pacing electrodes will not be limited primarily to research in the future. They will 

find increasing human implant applications either with humanitarian device exemption or some 

other approval. The increasing number of FES type devices and systems being commercialized 

under humanitarian device exemption in the recent years lends credence to this thought. Due to 

their attributes, the developed clip-on cuff electrode and the pacing electrode have the potential 

to be candidates for FES medical devices either with humanitarian classification or some other 

approval. Towards this, it is pertinent to conduct chronic implantation studies in animals to 

evaluate these devices for FES applications. In the case of the pacing electrodes, histopathology 

studies are required to determine the functionality of the in-built porosity in tissue anchoring.   

 

7.3.2. Equivalent Circuit Models 

In the developed equivalent circuit model representing the interface formed by an axon 

with an electrode, the axon membrane is represented by a linear R-C combination, which may 
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suffice in most cases. In reality, the behavior of the membrane capacitance and resistance may be 

non-linear and dependent on how the sodium and potassium channels in the axon membrane 

respond to applied voltage. Therefore, it may be pertinent to model R and C components of the 

membrane by voltage dependent resistance and capacitance components. Additionally, the 

membrane resting potential may be represented by an independent voltage source situated either 

in series with the membrane capacitance or its resistance. These modifications to the membrane 

representation will increase the complexity of the overall circuit model. 

 

7.3.3. PAD Technology 

Theoretical and short-term implantation studies on the PAD developed in this research 

indicate its potential for chronic implantation applications. Further evaluation is necessary to 

improve our understanding of how this device functions in a practical scenario. In this regard, it 

is important to conduct further implantation studies including histopathology. This will also 

allow the evaluation of porous features on the device for connective tissue growth applications. It 

may also be useful to conduct physical experiments in laboratory environment that allow us to 

study how the PAD responds to forces acting in a real-life application. The resulting information 

will complement the theoretical study described in Chapter 6. The challenge here lies in 

replicating the conditions of an implanted device outside the body in the laboratory.  

 

7.3.4. Pore Formation Methodologies 

  A part of this dissertation describes new processes to incorporate porosity, micro-pattern 

and structure medical grade silicone elastomer for connective tissue growth applications. It is 

pertinent to conduct further characterization of the resulting porous material in terms of pore 
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dimension, pore volume and surface area, pore distribution by means of techniques such as 

porometry and bubble-point tests. Though this research was initiated with silicone elastomer, the 

developed pore formation techniques and micro-patterning methods have been extended to other 

highly biocompatible materials like polyvinyl alcohol hydrogel, polyethylene oxide, and 

polyimide. Our results, not described here, have potential applications in biomedical areas such 

as biomimetics, tissue engineering and in-vitro cell culture growth among others. Further work 

can focus on the application development aspect for these materials.  
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APPENDIX A: GLOSSARY OF TERMS 

 

[1] Action potential – the cycle of changes in the transmembrane potential, negative to positive 

to negative again, that characterizes excitable tissue. This cycle is also described as resting to 

excited and returning to rest.   

[2] Axon – a basic component of a neuron or nerve cell. The axon carries signals from the main 

body of the neuron containing the nucleus to a target. 

[3] Chronaxie – the minimum interval of time necessary to electrically stimulate a muscle or 

nerve fiber using twice the minimum current needed to elicit a threshold response. 

[4] Depolarization – a process that is said to occur whenever the transmembrane potential 

becomes more positive than a resting potential.  

[5] Extracellular – outside a cell. 

[6] Intracellular – inside a cell. 

[7] Myelin - a segmented, white fatty substance forming a sheath on the axons. 

[8] Myelinated – a term used to describe parts of the axon that are covered by a myelin sheath.  

[9] Repolarization – a process that usually follows depolarization and causes the transmembrane 

potential to return to its polarized state. 

[10] Transmembrane potential – the potential inside a cell membrane measured with respect to 

the potential just outside the membrane.  

[11] Unmyelinated - a term used to describe parts of the axon that are not covered by a myelin 

sheath. There are unmyelinated regions between the myelin covered segments on the axon, 

known as nodes of Ranvier. 
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APPENDIX B: DETERMINATION OF TARGET NERVE DIMENSIONS 

 

Fluorescence Tests 

Some of the cuff electrodes developed in this research were intended for a pilot project 

undertaken by the Pennington Biomedical Research Center to evaluate functional neural 

stimulation for obesity treatment in rodents. Prior to designing the electrodes, it was necessary to 

accurately determine the dimensions of the nerve tissue targeted for electrical stimulation. This 

was done by means of fluorescence tests conducted by Dr. Jolene Zheng of the Louisiana State 

University Agricultural Center, under an approval from the Institutional Animal Care and Use 

Committee (IACUC). Three test rats (Adult male, Sprague-Dawley) were individually injected 

with Fluoro-Gold
TM

 (3mg/ml) in 0.9% saline. Fluoro-Gold
TM

 (Fluorochrome LLC, Denver CO) 

is a fluorescent retrograde marker typically used for neuronal labeling and neuroanatomical 

tracing [1].  

After a waiting period of three to five days, the rats were dissected and the inner tissues 

were observed under a dissection microscope. Under ultra-violet light, the Fluoro-Gold
TM

 

injected nervous tissue was clearly observed. The celiac ganglion hub was found to be about 2-

2.5 mm in diameter and 5 mm in length. The left and right celiac branches were observed to be 

approximately 250-300 µm in diameter with a length of 3-4 mm (Figure B.1). The branch 

dimensions were significant because it was intended to electrically stimulate the celiac branches 

for obesity control. 
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Figure B.1: Microscope image of celiac ganglia anatomy in adult male Sprague-

Dawley rodents. [Courtesy of Dr. Jolene Zheng, Louisiana State University] 
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APPENDIX C: FABRICATION OF CLIP-ON MICRO-CUFF ELECTRODE BY 

MOLDING 

 

Fabrication by Molding 

A molding process was investigated for its feasibility in fabricating the clip-on micro-cuff 

electrode. The process consisting of a single molding step employs a master mold comprising of 

two or more individual parts. The fabricated version of the clip-on micro-cuff electrode is shown 

in Figure C.1.  

 

 

 

Figure C.1: Schematic of a version of the clip-on micro-cuff electrode to be 

realized by a molding process.  

 

The master mold parts are made by machining individual pieces of plastic, and then 

assembled together. Figure C.2 shows a master mold made of plastic with two main parts. One 

part of the master mold consists of a half cylinder, with a pin attached at its bottom (Figure 

C.2A). The pin is attached by means of adhesive epoxy. A semi-circular groove is provided on 

one side of this mold part, extending from the centrally located pin to the outer edge of one side 

of the mold part. This groove serves to hold electrode wires. Another part of the master mold 

consists of a half cylinder, with two grooves at its bottom (Figure C.2B). Similar to the first part 
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of the mold, a semi-circular groove is provided on the second mold part, extending from the 

center to the outer edge of one side of the mold part. This groove serves to hold electrode wires. 

The two parts of the master mold are coated with a mold release chemical, polyvinyl alcohol 

(PVA), by a dip-coating process. The PVA coating is allowed to cure at room temperature.  

 

 

 

 

Figure C.2: Schematic diagram of molding-based fabrication of the clip-on 

micro-cuff electrode. A single molding step is employed with a master mold 

consisting of two individual parts.  

 

 

Metal foil electrodes (two are shown in Figure C.2A) are placed in contact with 

approximately half the circumference of the pin in the first mold part. The number of metal foil 

electrodes depends on the application. The metal foil electrodes are previously cut to size from 

commercial available stainless steel foil (25 µm thick) and spot-welded to wires made of 
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stainless steel. These wires serve as interconnecting wires from the implanted electrodes to other 

electronic equipment. The stainless steel wires are coated with insulation and additionally, 

surrounded by silicone tubing. The wires with the insulation are placed in the mold groove 

leading away from the foil electrodes placed on the pin. The two parts of the master mold are 

secured together by means of the holes provided for clamping (Figure C.2C). Optionally, more 

holes, threaded or plain, can be employed to hold the parts of the mold together.  

After the mold parts are clamped together, the master mold is placed vertically on a glass 

surface such as a Pyrex dish and Silastic silicone elastomer pre-polymer liquid is poured into the 

enclosed cavity of the mold. The silicone is cured thermally at 60 
0
C for 3 hrs. Following the 

curing process, the master mold assembly is unclamped and the two mold parts are detached. 

Dissolving the mold release layer in an ultrasonic bath of water aids the detachment of the parts. 

The removal of the mold release layer also causes the cured silicone structure to be released from 

the mold. Subsequently, the cured silicone structure is optionally trimmed to obtain the clip-on 

micro-cuff with the desired cuff length. A typical master mold for the molding process is shown 

in Figure C.3.  

Some problems were encountered in the molding of thicker layers of Silastic silicone i.e. 

layers with thickness in the order of a few mm or more. To study this problem, molds made of 

materials such as aluminum, stainless steel, acrylic, polypropylene, polyethylene, and polyvinyl 

chloride were investigated. Silastic pre-polymer did not cure completely when poured over mold 

parts or into cavities made by assembling mold parts together. More specifically, it was observed 

that Silastic silicone was being cured in areas away from the mold walls, but not in the 

immediate vicinity of the mold walls. The curing parameters like temperature and time were 

changed. Temperatures ranging from room temperature to 100 
0
C and curing periods ranging 
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from 2 hours to 7 days were investigated. Modulating these parameters did not appear to have an 

appreciable impact on the curing of the Silastic silicone adjacent to the mold surfaces. 

 

 

 

Figure C.3: Photographic images of (A) the two parts of the master mold for 

fabrication of the clip-on micro-cuff electrode; (B) the two parts of the mold 

clamped together; (C) cross-sectional view of the mold parts clamped together. In 

addition to the originally envisioned clamp hole-holding pin scheme, a threaded 

bolt arrangement has been included for enhanced clamping in the most recent 

embodiment of the master mold. The master mold with both parts clamped 

together has dimensions of 18 mm (height) x 40 mm (length) x 40 mm (width).   

 

The effect of the curing ambient was also investigated by curing some samples in vacuum 

at a specific temperature. The incomplete curing persisted in the vacuum cured samples. 

Decreasing the ratio of the Silastic pre-polymer to curing agent from a manufacturer 

recommended 10:1 to 8:1 and even 7:1 enhanced the curing to an extent, but did not adequately 
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solve the curing problem. This applied for all the plastic and metal mold materials tested. A 

drawback of increasing the amount of curing agent was the increased rigidity in the resulting 

cured Silastic structures. This was not desirable because of the need for flexibility in the cuff 

body.  

In subsequent experiments, the mold parts were subjected to oxygen plasma treatment 

(100W, 50 mTorr) for 15 min, prior to the molding process. It was found that the curing of 

Silastic was enhanced with all the different mold materials. Silicone elastomers are generally 

hydrophobic [1-3]. An oxygen plasma treatment of the mold parts enhances their hydrophilic 

nature. This allows for the naturally hydrophobic Silastic pre-polymer to make a more intimate 

contact with the mold walls. Subsequently, the extent of curing in the immediate vicinity of the 

mold walls is improved.  

 In further experimentation, it was observed that better curing results were obtained by 

heating the Silastic pre-polymer solution, before introducing it onto the mold cavities. Heating 

the Silastic pre-polymer accelerates its cross-linking process. When the heated pre-polymer is 

poured onto the mold cavities, it is easier to cure further, since the curing process i.e. the cross-

linking has already started. When silicone pre-polymer is heated, its viscosity increases [4]. 

Therefore, the pre-heating of the Silastic pre-polymer has to be moderated, to ensure that the 

viscosity does not increase to the extent that its flow and coverage characteristics are 

considerably altered. Our experiments showed that Silastic samples cured at higher temperatures 

(90-100 
0
C) for extended periods of time (3-4 hours) resulted in more flexible structures in 

general. This observation is corroborated by a recent report that heat treatment of cured 

polydimethylsiloxane (PDMS) layers results in enhanced flexibility due to reduced mechanical 

strength of the material [5]. In summary, our experimental observations indicate the feasibility of 
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realizing the clip-on micro-cuff device by molding process. As an alternate to silicone elastomer, 

any biocompatible, injection moldable polymer can be used for the molding based fabrication 

process described here. 
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APPENDIX D: MATLAB CODE EXAMPLE FOR CALCULATION OF TORSIONAL 

STIFFNESS 

 

% Torsion stiffness of cuff 

clear all; close all; clc; 

 

% Equation driving parameters 

wc = 4E-3; 

tc = 1E-3; 

NumPoints = 50; 

AlphaDeg = linspace(0.0001,90,NumPoints)'; 

Alpha = AlphaDeg*pi/180; 

E = 2.5E6; 

Eta1 = [0.2 0.4 0.6 0.8 1.0]; 

lc = 5E-4; 

fc = 4E-3; 

Eta2 = tc/(2*fc); 

[m n] = size(Eta1); 

Stiff = zeros(NumPoints,n); 

for i = 1:n 

%  Compute the most used terms 

sT = sin(Alpha); 

cT = cos(Alpha); 

B = Eta1(i); 

Bsq = B.^2; 

B2 = 2*B; 

 

% Compute constants, numerators and denominators 

C1 = 3./(2*E*wc*lc.^2); 

C2 = 1./(B2+Bsq); 

N1 = (1+B).*sT; 

D1 = (1+B-cT).^2; 

N2 = (3+B2+Bsq).*sT; 

D2 = (B2+Bsq).*(1+B-cT); 

N3 = 6*(1+B).*atan(sqrt((2+B)./B).*tan(Alpha/2)); 

D3 = (B2+Bsq).^1.5; 

N4 = Eta2^2.*cot(Alpha); 

D4 = Bsq.*((1+Eta2).^2); 

N5 = cot(Alpha); 

D5 = (1+B-cT).^2; 

 

% Compute equation 

K = C1.*(C2.*(N1./D1 + N2./D2 + N3./D3) - N4./D4 + N5./D5); 

Stiff(:,i) = 1./K; 

end 
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plot(ThetaDeg,Stiff(:,1),'*b-'); hold on; 

plot(ThetaDeg,Stiff(:,2),'vg-'); hold on; 

plot(ThetaDeg,Stiff(:,3),'or-'); hold on; 

plot(ThetaDeg,Stiff(:,4),'^k-'); hold on; 

plot(ThetaDeg,Stiff(:,5),'sm-'); title('Stiffness of hinge'); grid on; 

legend('Eta1 = 0.2','Eta1 = 0.4','Eta1 = 0.6','Eta1 = 0.8','Eta1 = 1.0','Location','NorthWest'); 

xlabel('Alpha---->');ylabel('Stiffness---->'); 

 

% Export values  

xlswrite('varyalpha.xlsx', [AlphaDeg Stiff],'stiff'); 
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APPENDIX E: PSPICE SIMULATIONS 

 

E.1. PSPICE Schematic 

An example circuit used to simulate the electrode-tissue interface developed in this study is 

shown in Figure E.1. The corresponding simulations results are described in Chapter 5, section 

5.3.4. The output file generated by the PSPICE software for this circuit is given below in section 

E.2.  

 

Figure E.1: PSPICE schematic representation of the developed equivalent circuit 

for the electrode-tissue interface.  

 

E.2. Output File for Schematic 

The output file generated by the PSPICE software for the above circuit is given below. 

**** 04/20/11 18:37:10 ******* PSpice 16.2.0 (Oct 2008) ******* ID# 0 ******** 

 ** Profile: "SCHEMATIC1-bias"  [ C:\Users\Naga\fns 8oct2010-

pspicefiles\schematic1\bias.sim ]  

 ****     CIRCUIT DESCRIPTION 

****************************************************************************** 

** Creating circuit file "bias.cir"  

** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN 

BY SUBSEQUENT SIMULATIONS 

*Libraries:  

* Profile Libraries : 

* Local Libraries : 

C1

0.5975u

C2

1.44p

C3

1.44p

C4

0.5975u

0

R16

290k

R17

477

Current

TD = 0

TF = 1n

PW = 0.5m

PER = 1m

I1 = 0

I2 = 0.08m

TR = 1n

R8

290k

R9

1000

R10

1000

R11

26300k

R12

26300k

R13

11464968

R15

477
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* From [PSPICE NETLIST] section of C:\OrCAD\OrCAD_16.2\tools\PSpice\PSpice.ini file: 

.lib "nom.lib"  

*Analysis directives:  

.TRAN  0 3ms 0  

.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))  

.INC "..\SCHEMATIC1.net"  

**** INCLUDING SCHEMATIC1.net **** 

* source FNS 8OCT2010 

C_C2         N46397 N46369  1.44p  TC=0,0  

R_R16         N46085 0  290k TC=0,0  

R_R12         N46379 N46077  26300k TC=0,0  

R_R17         N46077 N46085  477 TC=0,0  

R_R13         N46369 N46379  11464968 TC=0,0  

C_C3         N46379 N46077  1.44p  TC=0,0  

C_C4         N46085 0  0.5975u  TC=0,0  

I_Current         0 N46115 DC 0Adc AC 0Aac 

+PULSE 0 0.08m 0 1n 1n 0.5m 1m 

R_R8         N46115 N46487  290k TC=0,0  

C_C1         N46115 N46487  0.5975u  TC=0,0  

R_R9         N71573 N46077  1000 TC=0,0  

R_R10         N46397 N71573  1000 TC=0,0  

R_R11         N46397 N46369  26300k TC=0,0  

R_R15         N46487 N46397  477 TC=0,0  

**** RESUMING bias.cir **** 

.END 

**** 04/20/11 18:37:10 ******* PSpice 16.2.0 (Oct 2008) ******* ID# 0 ******** 

 ** Profile: "SCHEMATIC1-bias"  [ C:\Users\Naga\fns 8oct2010-

pspicefiles\schematic1\bias.sim ]  

 ****     INITIAL TRANSIENT SOLUTION       TEMPERATURE =   27.000 DEG C 

****************************************************************************** 

 NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE 

(N46077)    0.0000 (N46085)    0.0000 (N46115)    0.0000 (N46369)    0.0000      

(N46379)    0.0000 (N46397)    0.0000 (N46487)    0.0000 (N71573)    0.0000  

    VOLTAGE SOURCE CURRENTS 

    NAME         CURRENT 

    TOTAL POWER DISSIPATION   0.00E+00  WATTS 

          JOB CONCLUDED 

**** 04/20/11 18:37:10 ******* PSpice 16.2.0 (Oct 2008) ******* ID# 0 ******** 

 ** Profile: "SCHEMATIC1-bias"  [ C:\Users\Naga\fns 8oct2010-

pspicefiles\schematic1\bias.sim ]  

 ****     JOB STATISTICS SUMMARY 

****************************************************************************** 

  Total job time (using Solver 1)   =         .05 
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APPENDIX F: THEORETICAL RESPONSE OF EQUIVALENT CIRCUIT TO A STEP 

FUNCTION 

 

F.1. Theoretical Derivation for Axon Current 

An expression for the theoretical magnitude of axon current is derived when a current 

pulse (similar to that shown in Figure 5.5) is applied as the stimulus signal to the equivalent 

circuit shown in Figure 5.4. The values for the circuit elements used here are listed in Table 5.5. 

These have been chosen from the value ranges calculated in section 5.3.2. The impedance ZM 

associated with the axon membrane is considered since it is associated with the entry and exit 

points for the axon. This impedance is given by: 

ZM = RM || (1/sCM),           (F.1) 

where s is a complex frequency. The derivation of the axon current will involve a study of the 

transient characteristics of the equivalent circuit. The total impedance ZA associated with the 

axon is given by: 

ZA = 2ZM + RA.           (F.2) 

    
   

       
     ,          (F.3) 

    
                  

       
 .         (F.4) 

By current division,  

  

  
  

  

      
 .           (F.5) 

Substituting the expression for ZA from equation (F.4) in equation (F.5),  

  

  
  

            

                             
 .        (F.6) 

The equation (F.6) is of the form, 

  

  
  

      

     
 ,           (F.7) 



234 
 

where s1, s2 and K are given by: 

    
 

    
 ,           (F.8) 

    
           

            
 ,          (F.9) 

   
  

      
 ,           (F.10) 

First, the input response of the equivalent circuit is determined for a step function defined by 

f     
     
     

  . 

For the step function, the Laplace transform is given by: 

L          
 

 
 .          (F.11) 

Therefore,     
 

 
 .          (F.12) 

Equation (F.7) becomes: 

     
      

     
 
 

 
 ,          (F.13) 

      
  

       
   

    

        
  .         (F.14) 

The inverse Laplace transform of 1/(s+s2) is given by [1]: 

L  
-1 

 

       
        .          (F.15) 

The inverse Laplace transform of 1/(s+a)(s+b) is given by [1]: 

L  
-1 

 

               
   

 

   
            .       (F.16) 

In the present case (a = 0, b = s2): 

L  
-1 

 

          
   

 

  
          .       (F.17) 

Therefore, equation (F.14) becomes, 

                 
  

  
            ,       (F.18) 
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      .        (F.19) 

The time constant is given by 1/s2 and from equation (F.9) is equal to 6.8 µs.  

The equation (F.19) is the input response for t > 0. iA(t) can also be represented by: 

       
    

  
        

  

  
           ,       (F.20) 

where u(t) is a unit step function, defined by       
     
     

 . 

The circuit response is studied for a pulse function, defined by         
         
            

 .  

This pulse function of width t0 can also be represented by iS1(t) = f(t) – f(t – t0). 

Since the system is a linear time invariant system, the axon current is given by: 

                      ,        (F.21) 

        
    

  
        

  

  
              

    

  
        

  

  
                   .  (F.22) 

Based on the values of components given in Table 5.5, the values of K, s1 and s2 are calculated 

and substituted in equation (F.22) to plot the response of the circuit to a pulse input with A = 0.5 

mA, t0 = pulse-width (PW) = 0.5 ms. This theoretical response shown in Figure F.1 matches the 

PSPICE simulated response to a current pulse with the same amplitude and PW.  
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Figure F.1: The axon current as a function of time, calculated theoretically using 

equation (F.22). This is the input response for a pulse signal of amplitude 0.5 mA, 

and pulse-width 0.5 ms.  
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APPENDIX G: MECHANICAL MODELING OF A PAD WITH CORRUGATED 

CONDUIT 

 

In a variation to the notched conduit design, a PAD with corrugations in its conduit is 

modeled here as a thin-walled cylindrical member with circular bellows, located axially along 

part of its length (Figure G.1). The bellows have rectangular geometry. The equations developed 

in bellow theory are applied here [1-3]. A more accurate representation of the PAD corrugations 

is a U-shaped bellows. However, analysis of this particular geometry of bellows is rather 

complex, with wide-ranging deviations reported between theoretical and experimental data [4-6]. 

When a bellows is modeled using equations for thin shells, calculations such as those for 

torsional stiffness vary less than 10% over the complete range of bellow geometries [7]. 

Therefore, modeling the corrugations of the PAD as a rectangular geometry bellows is a 

reasonable approach for bellows with thin shells.  

A PAD conduit is considered to have circumferential corrugations of total length for „n‟ 

corrugations equal to Lc, wall thickness of t1, inner radius of Rin, and outer radius of Rout. The 

total length Lc of the corrugations is given by: 

       ,           (G-1) 

where 4a1 is the pitch of each corrugation as shown in Figure G.1. The average radius of the 

corrugations is given by: 

    
        

 
 .          (G-2) 

The average cross-sectional area of the corrugations is: 

          .           (G-3) 

The torsional stiffness of the member due to the corrugations is given by [7]: 

     
  

     
   

    
 ,         (G-4) 
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where G is the modulus of rigidity, given by [8-9]: 

  
 

      
 ,          (G-5) 

where E is the Young‟s modulus and ν is the Poisson‟s ratio of the PAD conduit material. For 

Silastic silicone, E = 2.5 N/mm
2
 and ν = 0.5. 

The ratio of the inner and outer radii ζ is given by: 

ζ   
   

    
 .            (G-6) 

Therefore, the average radius can be expressed as: 

   
   

      
 

 
 ζ   ζ       .        (G-7) 

Substituting the expression for Rav in equation G-4, the torsional stiffness equation becomes: 

     
  

      
    ζ

   ζ       

     
 .        (G-8) 

The axial stiffness of the member is given by [7]: 

     
  

         

    
 ,          (G-9) 

where E’ is a modified Young‟s modulus given by: 

    
    

              
   

              
  
   

 
 
                    

 ,      (G-10) 

in which    

    
         

 
 ,           (G-11) 

   
         

         
 ,          (G-12) 

     
         

         
 
  

 
  

  

 
  ,        (G-13) 

                      ,        (G-14) 

                     ,        (G-15) 
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                             ,       (G-16) 

    
               

                   
  ,        (G-17) 

    
               

                   
  ,        (G-18) 

    
       

   

                 
 ,         (G-19) 

    
       

   

                
 , and        (G-20) 

   
     

   
            (G-21) 

 

The use of the modified Young‟s modulus E’ in the place of a traditional Young‟s 

modulus value allows one to employ a beam bending treatment towards modeling bellows [10]. 

Using equations G-8 and G-9, the torsional and axial stiffness of the corrugated PAD conduit can 

be determined.  

The presence of the corrugations has an effect on the flexure characteristics of the 

conduit. This is evident from Figure G.2 which shows the torsional stiffness KθxMx as a function 

of the number of corrugations, obtained by equation G-8. The stiffness decreases as the number 

of corrugations or bellows increases. This is expected because the corrugations impart some 

degree of flexibility to the PAD conduit. The decrease in stiffness becomes minor as the number 

of corrugations increases.  

For the dimensions of the corrugated conduit modeled here, the decrease in stiffness is 

considerably small for more than 5 corrugations. This implies that a few corrugations can suffice 

to decrease the stiffness or increase the flexibility of the conduit.  
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Figure G.1: A rectangular geometry bellow configuration showing modeling 

parameters used. Diagrams are not to scale. 
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Figure G.2: Variation of the torsional stiffness KθxMx of a Silastic silicone PAD 

conduit as a function of the number of corrugations n on the conduit, calculated 

using eq. G-8 for t1 = 0.5 mm, a1 = 1.5 mm, Rout = 2.5 mm, and ζ = Rin/Rout = 0.3 

and 0.7.  

 

The torsional stiffness is also influenced by the inner and outer radii of the corrugations. 

This is apparent from Figure G.3 which plots the torsional stiffness as a function of the ratio of 

inner and outer radii (Rin/Rout) of the corrugations. Two cases are shown here, for 1 corrugation 

and for 3 corrugations respectively. However, the result holds true for other number of 

corrugations. It is beneficial to have a smaller value for the ratio of inner to outer radii ζ for a 

lower value for torsional stiffness. As inner and outer radii of the corrugations become 

comparable, the torsional stiffness increases. In Figure F.4, ζ = 1 corresponds to a straight 

hollow tube with no bellows. 
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Figure G.3: Variation of the torsional stiffness KθxMx of a Silastic silicone PAD 

conduit as a function of the ratio ζ of inner and outer radii of the corrugations, 

calculated using eq. G-8 for t1 = 0.5 mm, a1 = 1.5 mm, Rout = 2.5 mm, and n = 1 

and 3.   

 

The axial stiffness KΔxMx of the PAD conduit is influenced by the dimensions and the 

number of corrugations (Figure G.4). As in the case of the torsional stiffness, the axial stiffness 

decreases as the number of corrugations on the PAD conduit increase (Figure G.4). Again, this 

decrease in stiffness is not significant for higher number of corrugations. Similar to the torsional 

stiffness, the axial stiffness is influenced by the dimensions of the corrugations. This can be seen 

in Figure G.5, which plots axial stiffness as a function of the ratio b1 which is an aspect of the 

lateral dimension of the corrugations. In general, a smaller value of b1 yields larger axial 

stiffness. Note that b1=0 corresponds to no corrugations.   
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Figure G.4: Variation of the axial stiffness KΔxMx of a Silastic silicone PAD 

conduit as a function of the number of corrugations n on the conduit, calculated 

using eq. G-9 for t1 = 0.5 mm, a1 = 1.5 mm, Rin = 2.5 mm, and ζ = 0.3. 

 

 

 

 

Figure G.5: Variation of the axial stiffness KΔxMx of a Silastic silicone PAD 

conduit as a function of b1, calculated using eq. G-9 for t1 = 0.5 mm, a1 = 1.5 mm, 

Rin = 2.5 mm, and b1 dependent on Rout which was varied from 2.5 mm (b1 = 0) to 

10.5 mm (b1 = 4). 
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In summary, the following conclusions can be drawn from the mechanical modeling of 

the PAD with a corrugated conduit:  

1. The presence of the corrugations has an effect on the torsional and axial stiffness 

characteristics of the conduit. 

2. The torsional stiffness is influenced by the inner and outer radii of the corrugations. It is 

beneficial to have a smaller ratio of inner to outer radii for a lower torsional stiffness. As 

the inner and outer radii of the corrugations become comparable, the torsional stiffness 

increases. 

3. The dimensions and number of corrugations influence the axial stiffness of the member. 

The axial stiffness decreases as the number of corrugations on the PAD conduit increase. 

The incremental decrease in stiffness with corrugation number is not significant for 

higher number of corrugations.  
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