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Abstract

Given text which is a union of d documents of strings, D = d1, d2, ...., dd, the emphasis
of this thesis is to provide a practical framework to retrieve the K most relevant documents
for a given pattern P , which comes as a query. This cannot be done directly, as going
through every occurrence of the query pattern may prove to be expensive if the number of
documents that the pattern occurs in is much more than the number of documents (K) that
we require. Some advanced query functionality will be required, as compared to listing the
documents that the pattern occurs in, because a defined notion of “most relevant” must be
provided. Therefore, an index needs to be built before hand on T so that the documents
can be retrieved very quickly. Traditionally, inverted indexes have proven to be effective
in retrieving the Top-K documents. However, inverted indexes have certain disadvantages,
which can be overcome by using other data structures like suffix trees and suffix arrays.

A framework was originally provided by Muthukrishnan [29] that takes advantage of
the number of relevant documents being less than the occurence of the query pattern. He
considered two metrics for relevance:frequency and proximity and provided a framework
that took O(n log n) space. Recently, Hon et al [14] provided a framework that takes O(n)
space to retrieve the Top-K documents with more optimal query times, O(P + K logK)
for arbitrary score functions. In this thesis we study the practicality of this index and
provide added functionalities, based on the index, to retrieve Top-K documents for specific
cases like phrase searching. We also provide functionality to output the K most relevant
documents(according to page rank) when two patterns are given as queries.
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Chapter 1

Introduction

Since its inception, the Internet has grown far and wide. The expanse of information available
at our finger tips is mind boggling. In fact it has been stated that if one wished to read the
Internet it would take him fifty seven thousand years (given he never stops reading). This
gives us an estimate of how much information is actually there. No matter what we want to
search for, we just need to type in a few relevant words into any search engine and we get
millions and millions web sites which contain the information that we need. As an example,
a search for the word ‘thesis’ on google.com gives 55,200,000 results in 0.19 seconds. The
Internet search engines manage to find pages that contain the information that we need and
return them in some relevance order. What is even more amazing is that it does all this
under a second. Searching through millions of documents and ranking these results (such
that the most important are returned first) most definitely cannot be done directly when
the query is given. In order that it does all the above and does it fast we may need some
specialized indexes. This is our focus in this thesis.

Information retrieval (IR) is termed as retrieving meaningful or related information from
a huge pool of information or data. This text can be a union of a number of documents
and thus our problem can also refer to extracting documents that contain the meaningful
information we are looking for. This is termed as Document retrieval. This leads us to our
fundamental problem: Given a text of size N and a pattern of size P , find all locations in
text where this pattern occurs. Formally we say that the text, T is a union of D documents,
where d = d1, d2, d3, ..., dD is a collection of documents of total size N . The strings in these
documents are drawn from an alphabet set Σ. When the text is given before hand and the
queries come online (dynamically) it might be help to build a data structure on the text,
such that when the queries come in, retrieval is fairly fast O(P + occ) time [9].

A retrieval system must thus:

1. Find the documents that contain the query (pattern match).

2. Create an index that can return these documents according to some relevance ranking.

The most commonly used index in web search engines is the inverted index data structure.
Inverted indexes require you to define the terms used in text (which would be words in simple
English texts) [16]. Each of these terms or words is associated with a list of documents from
the document set, d. When the query is given, only the documents associated with the query
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need to be printed. These documents can also be stored in some relevance order if required.
Seems simple enough, however, this leads to one major problem, the query must compose
only of terms (as defined) in the index i.e.this technique will only work if documents consist
of distinct words. While for most natural language documents this might work, it is difficult
to make it work for a more general case where documents consist of a sequence of symbols
without any word boundaries. Some examples of these situations are when the documents
consist of a Far eastern language, which may not be easily parsed into words, or biological
data, like protein or DNA data. Natural language text derived from OCR or speech-to-text
systems may not also contain easily definable terms. OCR writes it as it sees it. A common
source of problems is the hyphenations. OCR, being unable to read it, splits the words into
two words. This can increase the index size and the query word can only be retrieved if it
is an inverted index was built for phrase searching. Stopwords are not normally indexed by
inverted indexes, but stopwords can be read wrong and end up getting indexed. This can
be a further waste in space. Overall, inverted indexes may prove to be infeasible in certain
cases (as mentioned above) and puts restrictions on queries.

For biological applications, n-gram analysis is required on the text and a specialized n-
gram based inverted index may have to be used for the same. There are two ways in which
we may be able to extend inverted indexes to be able to perform either substring searches
or n-gram analysis:

1. Create an inverted index for all substrings of D

2. Create an inverted index over all possible n-grams of D, i.e. over all sub-strings of D
of length n.

The space requirement for approach (1) might prove to be quadratic, thus making it
inefficient. As far as approach (2) goes, the searches are now restricted to queries of size n.
If pattern P turns out to be of length m > n the retrieval is performed by analyzing every
n gram in the list [25]. Each n- gram must also be associated with a list of positions where
it occurs in text T . The documents, that the pattern P occurs in, can then be determined
by merging all occurrence lists of all the n-grams, which P consists of. This can prove to be
very time consuming, as the longest list can be much longer than the number of occurrences
of pattern P .

If one can afford to use a little more space, we can negate all of these problems by using
other full-text-indexes like Suffix Trees [31] or its more space efficient alternative, Suffix
Arrays [24].

The Suffix tree is a data structure that presents all the suffixes of a given text (or string)
in the form of a tree for particularly fast identification. The tree is stored such that any suffix,
S from the text will be represented by exactly one path from the root to a certain node.
Strings are represented by edges on this tree. Identification or retrieval time is therefore
directly proportional to the size of the pattern (P ) you are searching for. Suffix Arrays are a
more space efficient representation of the Suffix Tree. They store the starting positions of all
suffixes present in text,in lexicographic order, in an array of integers. Further explanations
of suffix trees and suffix arrays are provided in Chapter 2.

When it comes to search engines, most queries are bag-of-word queries. You are more
likely to refine your search by searching for ‘thesis suffix tree’ rather than ‘thesis’ and then
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search for the one’s with suffix tree. Some queries are proper nouns, and cannot be handled
by a bag-of-word model. Some queries have phrases marked in quotes [16]. For all these kind
of queries it might be more advantageous to use a suffix tree.

We now need to explain what we mean by ‘relevant documents’ in information retrieval.
Relevance Ranking refers to the ranking of the documents in some order, so that the result
returned first is what the user wants to look at most. This can be the document where the
given query occurs most number of times (frequency). It can also be defined by a similarity
metric, which can be the proximity of one pattern to a certain word or another pattern.
Another form of ranking is by TF-IDF score; TF stands for term frequency (number of times
the word occurs in document,d) and IDF stands for inverse document frequency (logarithm
of the inverse of document frequency for query). The TF-IDF score is the product of TF and
IDF. If a certain term appears in lower number of documents its idf score will be high and
therefore the product will be high and if it is a term occuring in higher documents its idf
score is decreased. It then stands that the Top-K documents are returned ordered by the
similarity metric which ensures that a high frequency in a certain document means it has a
higher ranking and a high frequency over all documents reduces its contribution. Another
ranking technique is the page ranking scheme, where every document has a certain weight(in
the case of web searching it could be how many times this document was found relevant
or was retrieved for this particular query). Thus, the Top-K documents would then be the
documents with the highest weight or pagerank value. Further explanations of different
indexing techniques are provided in chapter 2.

This thesis is organized as follows: Chapter 2 explains the Basic Concepts and Prelim-
inaries including various indexing methods available. It also goes into other work related
to this Thesis. Chapter 3 explains the Index Construction and the different components
needed to construct it. Chapter 4 describes the implementation carried out along with dif-
ferent compression techniques and how we applied them to our index. Chapter 5 discusses
the experimental analyses that we carried out on the index. Finally, Chapter 6 summarizes
and provides a conclusion along with outlining further work that can be carried out.

3



Chapter 2

Preliminaries and Basic Concepts

2.1 Suffix Trees

The best known indexing technique for data that cannot be broken down into words is the
suffix tree[22]. On traversing the entire string, we define a suffix as the string we obtain
from each position to the end of the text. Thus for a text of size N we have N suffixes.
As an example we take the string = BANANA. The string used in a suffix tree is normally
terminated by a ‘$’, which is smaller in value than any other character in the alphabet set Σ.
The string thus becomes : BANANA$. The suffixes for this word, arranged in lexicographic
order, are:

1. A$

2. ANA$

3. ANANA$

4. BANANA$

5. NA$

6. NANA$

As can be seen from the figure 2.1 the suffixes are all represented in the suffix tree in the
same lexicographic order as listed. If these edges are hashed (for example according to the
node they originate from and the starting letter of the edge) they can be quickly identified
in O(1) time. We can, thus, identify the entire pattern in O(P ) time.

Suffix Tree requires the storage of a tree along with the edges and the nodes. Instead
of storing one character per edge, as would be done in a trie, space is conserved by using
a technique called path compression[31]. Paths that have only one child are compressed by
removing the nodes in the middle. Along the edges the strings are stored and, to conserve
space, position of the starting character and the length of the string are stored on the edge.
These edges are mapped to the node that the edge originated from and the node it led to.
At each node we need to keep track of its children, its sibling node and its parent node.
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Figure 2.1: A Suffix Tree

As can be seen in 2.1, the pattern P can be matched easily. For example, if we take a
pattern P = AN . The pattern is matched by first searching through the root node’s children
for an edge that starts with the letter A. Once such an edge is identified, the end node of this
edge is identified (end node is node 2 in the example). End node’s children are then traversed
for an edge which starts with the letter N. As can be seen in the figure the pattern P is said
to match at node 4, the locus of the pattern. Because of the lexicographic sorting,suffixes
that start with a given substring (which is our pattern) will form a range A[sp, ..., ep], where
A refers to an array of all the leaf nodes and sp and ep refers to the leaf numbers of the range
where the pattern matches (sp <= ep). The number of occurrences of the pattern can then
be calculated by occ= ep-sp+1. For this suffix tree sp=2 and ep=3(where 0 < sp : ep < n−1)
and occ= 3-2+1=2.

To find each suffix, of course, we will have to traverse the entire string atleast once. If
we take a position i, 0 < i < n − 1, the tree can be updated with the new suffix which is
the string from position i to n. On updating the tree with the new character, that came
in, we also need to update all positions where suffixes of the suffix being updated exist with
this new character. If we traverse each edge in the tree,searching for suffixes, the algorithm
would be an O(n2) algorithm. To avoid traversing unnecessary edges suffix links are created.
By definition, a suffix link is a pointer to the edge which contains the same string except for
the first character[31]. The end node for the edge representing banana$ has an arrow going
to an edge which represents anana$. This is the suffix link. The suffix link for the edge
anana$ in turn would contain a pointer to edge nana$ and so on. If you then want to update
all the edges which are suffixes of the edge being updated just follow the suffix link till you
hit the root node (at which point the root node may have to be updated if the character
is not already present as its child). Thus, the construction algorithm is a linear time O(n)
algorithm. However,this ease in identification comes with an expense. The space required
to store this suffix tree, though proportional to the size of text, can be up to 50 times the
text size (practically).
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2.2 Generalized Suffix Trees

The above definition of a suffix tree can index text from a single document. For our case,
we consider text which is a union of documents i.e. we have a collection D = d1, d2, ...., dd
of d strings, of total length N . Thus the suffix tree needs to be built on the entire collection
of d documents. Thus the documents are combined into one long document, with a unique
differentiating character (something that doesn’t occur in the rest of the text) between
documents. This is then indexed into a suffix tree and an external mapping system is used
to filter the final results. Each position of text can be mapped to the correct document id.

2.3 Suffix Arrays

A more space efficient version of the suffix tree is the Suffix Array [24]. It follows relatively
the same principal as the Suffix tree only that it doesn’t store the information in the form
of a tree. It stores it as a table as shown in 2.1 for a text T= abracadabra$

Table 2.1: Suffix Array - An Example

No. Index Sorted Suffix lcp

1 12 $ 0
2 11 a$ 0
3 8 abra$ 1
4 1 abracadabra$ 4
5 4 acadabra$ 1
6 6 adabra$ 1
7 9 bra$e 0
8 2 bracadabra$ 3
9 5 cadabra$ 0
10 7 dabra$ 0
11 10 ra$ 0
12 3 racadabra$ 2

The suffix array is [12 11 8 1 4 6 9 2 5 7 10 3].
SA[i] stores the starting position of the ith lexicographically smallest suffix in T . The

space taken by the suffix array is only about four times text. Saving on space comes with
a price. A binary search needs to be performed over the array to identify the presence of
the pattern. Matching the given pattern using the above array will take O(P log n) time as
compared to O(P ) time that the suffix tree takes. If the text is a union of documents, you
may need an external mapping system to find the documents the pattern occurs in.

In Table 2.1 [2], we see an entry for lcp, Longest Common Prefix. The LCP array stores
the longest common prefix, the number of letters in the prefix common between SA[i] and
SA[i−1]. For example, the longest common prefix between SA[3] and SA[2] is abra of size 4.
By using this information, pattern matching becomes a lot easier, as comparing characters
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that you already know exist need not be searched through when searching through the
suffixes. Using this information pattern matching can be done in O(P + log n).

2.4 Word Suffix Trees

The advantage of using suffix trees/arrays is that every suffix does not need to be indexed.
Indexing can also be done at certain points such as the beginning of each word. This leads to
a specialized suffix tree called the word suffix tree [3] and can lead to a considerable decrease
in the space taken by the suffix tree. For our purpose, we use the word suffix tree for a
specialized index to retrieve Top-K documents for phrases. Figure 2.2 shows an example of
a word suffix tree. So, if the query will only consist of whole words (in the case of phrase
searches) we don’t unnecessarily index other suffixes that won’t be required for query.

Figure 2.2: Word Suffix Tree

The space saving is apparent in the figure 2.2. The word separator used in this figure is
a dollar ($). Thus only suffixes that start with a character immediately following the word
separator, $ in this case, are updates in the suffix tree.

The above given methods work perfectly and provide full text indexes so that we can
identify the documents where the pattern occurs more efficiently. However, practically, space
does provide a concern and this has lead to the creation of compressed indexes where the
data structures are stored in compressed form. From the creation of Suffix Arrays more
compressed text indexes like Compressed Suffix Trees (CST) and Compressed Suffix Arrays
(CSA) were created.

2.5 Compressed Data Structures

A data structure that uses considerably lesser space (close to entropy compressed space) and
still manages to perform operations almost as fast as the uncompressed data structures are
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called compressed data structures. Examples of compressed data strutures are Compressed
Suffix Arrays [27]/ Trees [19], FM Index[11] etc. All these indexes can find the number of
occurrences of pattern P by finding the sp and ep values of the pattern (explained in section
2.3).

2.5.1 Compressed Suffix Array

The Compressed Suffix Array (CSA) provides a compressed form of the suffix array. Suffix
Array’s take n log n bits and this space is reduced to O(n log |Σ|)bits. Access time, how-
ever, increases from constant time to (O(logε n)). This was originally proposed by Grossi
and Vitter [27]. Sadakane [17] modified it to an index who’s space is proportional to the
zeroth order entropy and self indexing(can reproduce the text if needed). Basic operations
performed by the CSA are:

COMPRESS(T , SA): The Suffix Array is created using the text T . The suffix array
is then compressed and saved while the original uncompressed suffix array can be
discarded. The text, however, must be saved.

LOOKUP(i): This gives the value of SA[i] from the compressed index.

The build time is O(n) and the look up time is O(log log n).

2.5.2 Compressed Suffix Tree

Compressed Suffix Tree (CST) [19] provides all functionalities of the original suffix tree but
only with much lesser space (proportional to entropy compression of the data). It is thus a
very good substitute for the suffix tree as it reduces space and provides all functionalities of
the tree including the ability to perform substring matches and indexing text that cannot
be disintegrated into terms. It thus provides a very good edge over the inverted index. It
also has a self indexing property which enables us to discard the original text (in comparison
to the inverted index where the original text must be kept). These indexes can return the
values of sp and ep using which we can determine the occurrence of pattern P . Any operation
that a suffix tree can perform can be performed by the CST with a slowdown of a factor of
polylog(n).

The Compressed Suffix Tree is essentially compossed of three components:

Compressed Suffix Array(CSA): As explained above a Compressed Suffix Array is a
compressed version of the suffix array. Based on CSA, Compressed Suffix Tree’s were
developed. The functions required for the CSA to be applied to a CST are :

1. lookup(i) :Explained in section 2.5.1.

2. inverse(i): Returns j = SA−1[i] such that SA[j] = i.

3. Ψ[i]: SA−1[SA[i] + 1]

4. substring(i,l): Returns T [SA[i]..SA[i] + l − 1]

8



The function Ψ[i] in the compressed suffix array is defined as:

Ψ[i] =

{
i′ if SA[i] < n (such that SA[i′] = SA[i] + 1 )
0 if SA[i] = n

Space of the CST in bits is O(nH0 +n log log Σ). Query time to retrieve the SA value,
tSA is O(logε n) and tΨ is O(1)[17].

Balanced Parantheses Representation of Trees: A rooted tree which consists of n nodes
can be encoded in 2n + o(n) bits. Such an encoding enables navigational operations
also to be performed. Thus a suffix tree for a text of length n has 2n−1 nodes and can
be encoded in at most 4n+o(n) bits [23]. Further explanation on Balanced Paranthesis
encoding is provided in section 4.1.1.

LCP Array and Height Array: It has been shown [30] that the traversal of a suffix tree
can be simulated by using the suffix array and the array storing a set of the lengths of
the longest common prefixes between two suffixes,called the Hgt array.

Hgt[i] =

{
lcp(TSA[i], TSA[i+1]) 1 ≤ i ≤ n− 1
0 i=n

Hgt requires n log n bits to store these values. Even though the values are small the
largest value stored can be n − 1. In [17] it was shown that using a data structure of
size 2n+ o(n) bits a value Hgt[i] can be computed in constant time, thus providing an
space-efficient data structure for storing lcp values.

2.5.3 FM Index

FM Index is a Compressed index which provides pattern matching functionality. This index
is based on Burrows Wheelers Transform (an algorithm used in compression techniques like
bzip2). This index occupies space proportional to the entropy of the input data and does
so with no significant slowdown in query time. It performs substring searches (unlike the
inverted index) and is self indexing (can reproduce parts of the text by only decompress-
ing portions of it) thus leading to significant space savings. The index originally occupied
5nHk(T ) + o(n) bits of storage, where Hk is the Kth order of entropy, and performs query
in O(p+ occlog1+εn), where occ is the number of times the pattern occurs in text and ε >0.
It can find the number of occurrences of the pattern and locate this pattern (O(logc n)),
extract a part of the text and can display L characters surrounding the pattern P [11]. A
variant of FM Index was later introduced [10] which took nHk(T ) + o(n) bits of storage.
This holds for all k <= α log|Σ| n, constant 0 < α < 1 and |Σ| = O(polylog(n)). Occurence

of a pattern P can be found in O(P ) time and it locates each pattern in O(log1+ε n) time
for any constant 0 < ε < 1 and reports a text substring of length l in O(l + log1+ε n) time.

As an example, if T = mississippi$ and we want to find pattern Q = ssi, the Burrows
Wheeler’s Transform is shown in 2.3 [8] :

The Last column, L, is BWT (T ) = ipssm$pissii. Using this information, the text is
trasformed into another string, BWT (T ), which is easier to compress. From this string, the
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Figure 2.3: BWT for Text=mississippi$

text can be retrieved using a mapping function between F and L [10].
LF (i) = C[L[i]] + rankL[i](L, i)
where C[c] counts the number of symbols less than c in the string L and rankc(L, i) counts
the occurence of c in the string L(1, i). Array L occupies O(|Σ| log n) space.

Finding the sp and ep values or the suffix range where the pattern occurs is called
“Backward Search”. The pattern is read backwards i.e. the pattern is read in the order
iss. First the suffix range for i is found and this is transformed to the suffis range where si
is found and so on. Assume that you have the suffix range for i, sp=2 and ep=5. Within
this range we look for entries where L has the value s, as these are the entires where, in
the original text, you get substring si. Using the formula sp = C[c] + rankc(L, sp − 1) + 1
ep = C[c] + rankc(L, ep)

We can intuitevely see that C[c] would take you to the position where s starts (as C[c]
returns the number of symbols less than s) and rankc(L, sp− 1) + 1 would take you to the
position where, in L, i starts within the suffix range for s thus giving you the beginning of
the suffix range for si. ep can also be mapped in the same way. In this way if you go through
the entire length of the pattern you can find the required suffix range, sp and ep for the
pattern.

A related notion to compressed data structures is the succinct data structure. This refers
to a data structure that uses space close to the information theatrical lower bound while the
space of the compressed data structures is proportional to the size of data given.

2.6 Inverted Index

The Inverted Index is one of the most commonly used indexes to retrieve documents con-
taining the specified pattern. The input text is disintegrated into terms and for each word a
list that contains all the documents it occurs in is stored. Thus to find the documents that
the query occurs in we just need to output its document list [16].

The words are stored in alphabetical order, so that finding the word in the list is faster.
Document id’s are stored in ascending order so as to make use of this property to compress
the list. When a list is stored in ascending order, gap encoding can be used explained in
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Algorithm 1 SEARCH PERFORMED USING BWT-FM INDEX [12]

Backwards search(Q[1,q])
i = q, c = Q[q], sp = C[c] + 1, ep = C[c+ 1];
while sp ≤ ep and i ≥ 2 do
c = Q[i− 1];
sp = C[c] + rankc(L, sp− 1) + 1;
ep = C[c] + rankc(L, ep);
i = i− 1;

end while
if ep < sp then

return “Pattern not Found”;
else

return [sp, ep]
end if

section 4.2.
There are several variations when it comes to inverted index, different implementations

according to what we may require off of the index. If you want to retrieve the Top-K
documents you could store, along with the doc id’s, the frequency of that word in each
document (Frequency Ordered Lists). This list can be stored in decreasing order of frequency
for quick retrieval of the Top-K frequencies. However, it is important to point that since it
is no longer stored in increasing order of document id’s, it becomes harder to compress these
lists.

Another variation of the Inverted Index is the storage of a position list to be able to
perform phrase queries and proximity searches(Position Ordered Lists). Position’s can be at
any preferred granularity either on a word level or paragraph level (according to the prox-
imity that may be required in the query). It is more common to store the position’s at a
word level. It is harder to compress these lists as position lists will be more haphazard. As
an example let us assume[1]:
T0 = “it is what it is”, T1 = “what is it” and T2 = “it is a banana”. The inverted index
will be as follows (0,1 and 2 refer to the document id)
Frequency Ordered Listing
“a”: 2
“banana”: 2
“is”: 0, 1, 2
“it”: 0, 1, 2
“what”: 0, 1

Position Listing
“a”: (2, 2)
“banana”: (2, 3)
“is”: (0, 1), (0, 4), (1, 1), (2, 1)
“it”: (0, 0), (0, 3), (1, 2), (2, 0)
“what”: (0, 2), (1, 0)
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Thus, if P= “what it is the output would be:
first list (without positions): 0,1
second list (with positions): 0

The space taken by an inverted index can vary form 5% of the text to 100% due to the the
various implementations and variations available. But as inverted indexes are word based
they are not suitable for data with no word boundaries. And, as is seen above, they aren’t
very efficient for phrase searches as they need to find the list of documents for each word
in the phrase and then apply the position list to find the documents where the words occur
consecutively in the correct order (as shown in example 2 with the word list).

2.7 RMQ Index

In our index we use a Range Maximum Query (RMQ) index to find the documents where
our query pattern occurs most frequently. Definition : Given an array, A of numbers. A
can be preprocessed such that to create a linear space data structure that can give you the
position and value of the maximum value in a sub range A[i, .., j] such that 0 <= i, j <= N ,
where N is the number of numbers in array A. We use this property to find the largest K
numbers given t such ranges.

RMQ schemes normally use Cartesian tree and LCA to obtain the minimum within a
range. All schemes give the answer in O(1) time. Berkman and Vishkin proposed a data
structure which takes O(n log n)+ |A| bits, where |A| is size of the input array A[26]. In [28],
Schieber and Vishkin introduced a data structure that also took O(n log n) + |A| space. A
simpler scheme was later shown in [6] by Bender et al.

There can be special cases where the values in the input array A vary by ± 1. In
such cases there are different alogrithms to find RMQ with better space bounds. For such
cases, Sadakana[20] built an data structure that takes O(n log2 log n/ log n + |A|) space for
document retrieval. Fisher and Heun extended this result to improve the space bounds to
O(n log log n/ log n)[15].

2.8 Top-K Retrieval

As mentioned earlier, initial data structures used in this field were the suffix tree and suffix
array. However, due to the huge space requirements, these did not do as well as inverted
indexes. Its advantages, however, lead it to become popular and in order to bring down
the space concerns, compressed indexes were introduced. These indexes include Compressed
Suffix Arrays, Compressed Suffix Trees and the FM Index, based on the Burrows Wheelers
Transform. Thus, the space taken was competitive with the inverted index but also exploited
the advantages of substring and phrase searches. With this compressed indexing became
more popular.

As mentioned earlier, document retrieval is an important problem studied. One can
answer this problem by finding the documents where the pattern occurs by just solving the
Occurrence Listing problem. However, a certain pattern may occur extremely frequently
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in a certain document (as each document may be connected with a different subject), but
overall may have very few documents that it may occur in (ndoc). So, if there could be
an index that could retrieve the documents according to how many documents the pattern
occurs in, rather than the overall occurrence, it may work faster. Thus, the first framework
was given by Matias et al [21], which answered the query in O(P logD + ndoc)time. The
algorithm used a generalized suffix tree augmented with extra edges. Muthukrishnan [29],
then improved these bounds to O(P +ndoc) by replacing the augmented edges with a divide
and conquer approach. The space taken was, however, O(n log n) bits, which was later
improved by Sadakane to O(|CSA|+ 4n+O(D log n/D) + o(n))bits[18].

In the IR community and database community, the study of Top-K retrieval is important,
as there are many cases where only K documents are required (for example in Web Searches).
Bialynicka-Birula and Grossi[7] gave a general framework that can add rank information to
items being outputted from any range reporting data structure. Recently, Hon et al [14]
came up with a solution that solves this problem in O(P + K logK) time while keeping
O(n log n) bits of space. This thesis is based on implementation and experimentation on this
data structure. A compressed version was also given with 2|CSA|+ o(n) +N log(n/N) bits
of space and O(|q|+K log4+e n) query time.
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Chapter 3

Index Construction

This chapter goes to explain, in a more in-depth way, the specific data structure we build
to perform Top-K retrieval. The index is based on the generalized suffix tree (explained in
Chapter 2) and can therefore perform even substring and phrase queries effectively. This
data structure takes linear space.

As a base, we build a generalized suffix tree over all documents. The construction of this
takes linear time and linear space. Such a tree has N leaf nodes (N being the size of text)
and at each leaf node, we store the Document ID of the suffix that branch represents.

3.1 Lowest Common Ancestor Queries

This structure is built on a tree, so as to be able to perform quick Lowest Common Ancestor
(LCA) queries. By definition, given two nodes, x and y, we define its lca as the lowest
common (node away from the root) ancestor that they both share.

The problem of finding the LCA of two nodes (in a rooted tree, as shown above) is a
fairly basic concept in algorithmic graph theory. It is an important and useful structure
when it comes to data structures based on trees. It has numerous applications and has been
used extensively in our data structure.

In [5], an effective technique to find LCA in a tree was proposed. The Range Minimum
Query (RMQ) Problem (introduced in Chapter 2) is quite closely related to the LCA problem.
The concept uses both the Cartesian Tree[13] and an RMQ built on the same.

A Cartesian Tree of an array A[0, ..., n] is a rooted binary tree, consisting of a root v,
that is labelled with a position i, of the minimum in the array A. There are atmost two
subtrees connected to v. The left child of v is the root of the Cartesian Tree of A[0, .., i− 1]
and the right child is the root of the Cartesian Tree A[i+ 1, ...., n]. In short:

• Root: Minimum element of A at position i.

• Left subtree: Recursively build a Cartesian tree on A[1], ..., A[i− 1].

• Right subtree: Recursively build a Cartesian tree on A[i+ 1], ..., A[n].

The Cartesian Tree does not depend on the exact value of the minimum but only on its
position. Thus, Cartesian Tree’s are not unique to each array.

14



For an Array : A = [40, 1, 30, 10, 20, 5, 40, 15, 35] the Cartesian Tree would be as follows:

Figure 3.1: Cartesian Tree

The solution to the LCA problem depends on the solution to the RMQ problem. The
LCA problem can be reduced to a special case of the RMQ problem based on the observation:
The LCA of nodes u and v is the shallowest node encountered between the visits to u and
to v during a depth first seach traversal of tree T [5].

• Perform a Euler walk (visit each edge once) in preorder fashion.

• Store the nodes visited during the traversal in an array, EW . This array will contain
2n− 1 entries.

• The Level Array of the nodes are then computed. Level Array refers to the level of the
node in the Cartesian Tree T .

• As you can see, each element in this Level Array differs from the previous by ± 1. A
specialized RMQ index (as mentioned in Chapter 2) can be built over this.

After building the structure as explained above we can find the LCA between any two
nodes in the tree. Suppose we need to find LCA(30, 40) from figure 3.1. From the array
in figure 3.1 the nodes between 30 and 40 i.e. EW [5, ..., 11] are the nodes visited when
traversing from node 30 to node 40. While travelling to node 40 it reaches the closest point
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Figure 3.2: Path of traversal between the two nodes 30 and 40, whose LCA we need to find

to 30 from where it can turn to reach 40 i.e.the closest node it has in common to 40 (implying
that this is the shortest path it can take through the tree, as shown in figure 3.2).

The highest level it reaches while traversing between these two nodes would be the
LCA(30, 40) or the Minimum Level in the LevelArray[5, ...11] would be the common node
between 30 and 40. This transforms to a Range Minimum Query between the range (5,..,11).

Thus finding theRMQ(5, .., 11) gives us the answer to LCA(30, 40) which is EW [min pos]=5
as can be seen in figure. This structure take O(1) time to return the LCA and uses space
O(n).

3.2 N-Structure

A structure known as the N-structure was defined in [14]. N-structure is a structure, Nv,
which is stored at certain nodes in the GST that has been built. At any node v, we store an
array of three tuples, namely document d, frequency c (for a score function of frequency),
parent pointer t. Every leaf node will have an entry for document di and a frequency of 1.
On moving up in the suffix tree, an internal node v will have an entry for document di if
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and only if at least two of its children have an entry for document di in their subtrees. The
parent pointer t points to its lowest ancestor which has an entry for document di.

Figure 3.3: Example showing a Generalised Suffix Tree

In figure 3.3, we see a generalised suffix tree where the nodes have been given preorder
ranks. To construct the N-structures the leaf nodes, which are appended with the document
id that the suffix belongs to, are traversed. The leaf nodes that belong to document d are
identified and the lca of every consecutive two leaf nodes are taken. The red nodes in figure
3.3 represent the lca’s and the leaf nodes that belong to document 3. A document suffix tree
is then formed using the nodes that were identified as lca’s and the leaf nodes that belonged
to doucment d3. For example if we take d=3 we get a tree as shown in figure 3.4.

Using this tree we can populate the N-structures for each document in the GST. Every
node in this document suffix tree will have an entry for document di. The leaf nodes will
each have a frequency of 1 and a document id of di (which is 3 in figure 3.4). The parent
pointer for each of these nodes will be the parent of the node in the document suffix tree. As
you go higher in the tree, each node will have the same document id of di and parentpointer
pointing to its parent in the document suffix tree. The frequency at each node that is not a
leaf node is equal to the number of leaf nodes (in the document suffix tree) that fall within
its subtree. As you move up the tree this field can be incremented accordingly.

This same procedure is followed for each document at the end of which the N-structures
would have been augmented to the GST, as shown in figure 3.5. It is important to note that
each node can have one entry per document.
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Figure 3.4: Example showing N Structures creation in a Document Suffix Tree ; D=3

Figure 3.5: Example showing N-Structures creation in a Suffix Tree
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Figure 3.6: Example showing I-Structures creation in a Suffix Tree

3.3 I-Structure

If we take a node v, where the pattern matches, we have a (2,1,1) range query. We first
need to find parent pointers that originate from the subtree of node v (which creates two
constraints) and these parent pointers must point outside the subtree (to one of the nodes
that fall within the path of the pattern) to ensure that only distinct documents are obtained
as shown in figure 3.6. Finally, out of these entries the Top-K documents, according to score
function (frequency in this case) need to be extracted. Since a (2,1,1) range query is difficult
another entry known as the I-structure is introduced.

One of the fields in the N-structure stored is the parent pointer. For any node v, which
has an entry for document di, the parent pointer t points to a node x. At node x we store
an array of three tuples, namely frequency, document id and origin. The origin refers to the
pre-order rank of the node v whose parent pointer pointed to node x, the frequency stores
the frequency at node v and document is di.

For document d=3 the document suffix tree is shown in figure 3.7. The entries at every
parent pointer now store the information of its children (in the document suffix tree). I-
structures can be constructed for each document based on the N-structures.

The structure is stored in increasing order of the origin entry (pre order ranks). If there
are entries coming from the same node (multiple entries with same origin value), they are
stored in increasing order of documents. Entries with same document value but from different
origins can also exist. On the array containing the frequency values an RMQ strcuture is
built to find the maximum value, quickly, given a range.

One important observation that can be made in figure 3.7 is that from each subtree we
get only one entry per document. Therefore, if the pattern matched at node 20 there is
only one I-structure entry from the subtree [20,26] in any node from the path between node
20 and root that has an entry for document 3. We can, however, have entries from the
same subtree but for a different document like, for example, at node 2 we have entries from
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Figure 3.7: Example showing I Structures creation in a Document Suffix Tree: D=3
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document 3 and from document 2 from the sub tree [3,11]. Once the I-structures are created
the N-structures can be deleted.

3.3.1 Variation on I-structure

Using this index, our implementation also provides a scheme to return the Top-K documents
according to their page rank value. Thus, instead of storing the frequency we simply store the
page rank value of the document and perform the same technique to retrieve the documents.
This index can also be extrapolated to retrieve Top-K documents for two pattern queries
according to their page rank values.

3.4 Querying The I-Structure

Let us assume that we are searching for the Top-K documents in which a pattern P , occurs.
To find documents that P occurs in, we search the I-structures in all nodes that exist in
the path from root to the node where the pattern matched. The I-structures have three
parameters, Origin, Document ID and Frequency. The I-structures whose origin are from
within P ′s subtree need to be identified (which can be done by performing a binary search
over the sorted origin array) as shown in figure 3.8. The frequency of these entires would
give us the frequency of P in the document.

Figure 3.8: Example showing the retrieval of Top-K documents
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A Range Maximum Query data structure, built on the frequency field, is used to find
the position of the maximum frequency, at each of the |P | nodes that go from root to node
where P matched. Each of these maximum values is inserted into a heap as shown in figure
3.9.

Figure 3.9: Example showing the heap after traversing from P to root

After inserting the maximum values from each range, we extract the maximum value
from the heap and identify the range, for which this value was maximum. The range of I-
structures at the identified node then gets divided into two parts and we find the maximum
value within each of the two ranges and insert into the heap. We recursively continue to
perform the same function (extract max from heap, identify the range it was taken from,
break the range at the position of this value,find maximum in each range and insert into
heap) till we have extracted K values form the heap. At this point we will have the the
Top-K documents that our pattern occurred in and the frequency with which it occured in
each. In figure 3.10 when Top-1 is extracted i.e. 23 the range that 23 was taken from is
identified (at node 1 (8,11)). The range is then divided and from range (10,11) we obtain
the maximum, 12 and from range (8,8) the maximum 15 and insert these values into the
heap as shown.

Figure 3.10: Example showing the heap after extracting Top-1

This index can be used to perform document listing and output all the I-structure entries
from root to node P whose origins fall within the subtree of P . Comparative studies are
shown in Chapter 5.
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Chapter 4

Implementation

The complete index along with suffix tree can take upto 70 times text. To provide a space
efficient index to retrieve the Top-K documents the index is compressed by using the following
techniques.

4.1 Compression of Trees

When we consider a tree data structure one of the biggest bottlenecks for this data structure
is the space it occupies (especially a suffix tree). There are three ways in which this can be
done, Balanced Parantheses Encoding, DFUDS and LOUDS.

We need to be able to traverse the tree. To be able to do this we need to store pointers
at each node. Each pointer needs atleast log n bits of space to be able to address n different
locations (n being the number of nodes in a tree). This leads us to have to store O(n log n)
bits to represent a tree. The more number of operations we need this tree to perform (like
finding parent node) the higher the constant becomes. Instead, by using compression, we
can store these trees in O(n) bits and provide structures to perform operations to perform
effective tree traversals. Basic operations to provide for navigation functionalities are as
follows [4]:

• findclose(x): Find the index of the closing paranthesis that matches the opening
paranthesis at position x.

• findopen(x): Find the index of the opening paranthesis that matches the closing
paranthesis at position x. Between its opening and closing paranthesis lies the node
information.

• enclose(x): Find the index of the opening paranthesis of the pair that most tightly
encloses node x.

• rank((x): Find the number of opening paranthesis upto position x.

• rank)(x): Find the number of closing paranthesis upto postion x.

• select((x): Find the position of the xth opening paranthesis.

23



• select)(x): Find the position of the xth closing paranthesis.

4.1.1 Balanced Parantheses

A tree with N nodes can be represented by a string of length 2N , using this representation.
Each node is represented by a pair of opening and closing paranthesis (), thus leading to
there being N left and N right bracket sequences. The subtree of the node is represented
in between each nodes opening and closing bracket [(.....)]. The code is built by performing
a depth-first search on the tree. Opening paranthesis is written when you arrive at the
node for the first time and a closing paranthesis is written when you leave. An example
of this representation for figure 4.1 would be, ((()(()()))()()). As can be seen there are 8
opening paranthesis and 8 closing paranthesis (balanced). A leaf node can be identified by
the consecutive opening and closing sequence, ((()(()()))()())

Figure 4.1: A tree structure marked with preorder ranks

Using this sequence the tree can be recreated, but, we need to be able to navigate through
the tree for it to be useful. If we take each opening bracket representation as ‘1’ and each
closing bracket as a ‘0’ we have ourselves a bitstream of zeros and ones. To be able to perform
navigational operations we need to build an additional data structure of o(N) bits. The basic
navigational operations can be brought down to the operations shown above. Hashing based
Heuristics [23] can be used to store the values of findclose/findopen. A three level blocking
is shown to be optimal, where we take two parameters, b = logN and s = b logN . Values
for distance less than b are calculated by using a stored excess array (how many opening
paranthesis exist more than closed paranthesis, upto this position). For distances between
b + 1 and s distance from the position are stored in log s bits. For greater distances the
actual value is stored in log n bits.

Using this we can perform all basic navigational operations like parent(x), firstchild(x),
sibling(x), degree(x). We can also find the LCA(a, b), the rank(x): preorder rank of x,
select(x): position of node with rank x and other such important operations. The ith
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child and degree(x) operations are performed by finding the firstchild(x) and then tracing
through its siblings. Compressed Suffix Trees (CST’s) uses the balanced paranthesis rep-
resentation for the tree as lca operations are more frequent and important for suffix trees
(which DFUDS could not incorporate). In our implementation we use the Compressed Suffix
Tree(CST) to construct our index and to perform pattern match(simulating the suffix tree
which would take more space than the CST would).

4.2 Encoding Techniques for Numeric Arrays

The I-structures occupy the next big chunk of space in our index. There are different
encoding schemes available to us to encode each field of the I-structure (Origin, Document
ID and Frequency).

1. VARIABLE LENGTH ENCODING Normally, while programming, we store every
number in an array in the form of an integer array. This would imply that it stores
each value using 32 bits. However, some numbers can be as small as 2, which needs
only 2 bits to represent it. The most space efficient way to store this array would be
if each number only took as many bits as was needed to represent it. Therefore, if
each number is represented using only log i bits, where i is the value, we would have
very effective compression. Since each number may take different number of bits, this
is called variable length encoding. To find the number we are looking for, we can
store a bit vector (a vector of zeros and ones) over this array, where 1 represents the
beginning of a new number and 0 represents continuation of the number. Thus if we
representing numbers A=[2 10 50], we can represent it as Aenc=[10 1010 110010] and
bitvector=1010001000001. This though leads us to waste an equivalent number of bits
on the bitvector and an additonal structure should be built on the bit vector to be able
to retrieve the values.

To retrieve the values back we need to build an additional structure on this to perform
select operations. select(i) returns the position where the ith 1 is present. Thus, in
the above example, if you wanted to retrieve the 3rd number select(3) would give 6.
The bits in A from 6 to select(4), which is at position 12, give you the number 50.
The index to perform rank and select queries can take nH0(S) + o(n), where H0(S)
represents the zeroth order empirical entropy of S to perform queries in O(1) time.

2. FIXED LENGTH ENCODING As described above, variable length encoding may not
be an optimal solution, even though it seems most likely. Another variation would be
to find out the maximum value in the array we are compressing and store all values
with log(max) bits. This will work best if the biggest number requires way less than
32 bits and all numbers need around the same number of bits. The advantage in this
method is that we do not need to store a bitvector or a rank/select structure above.
This may save significant space and time (while decoding the values).

To implement the above we will have to make use of bit shifting operations as stan-
dardised data types available are only 8, 16, 32 etc bits (unless the max number is a
multiple of 8).

25



3. GAP ENCODING This encoding scheme is applied when the array is sorted. It would
work well if the difference between consecutive elements is not very large. Thus, in-
stead of storing the explicit values we store its difference with the previous number
(which would require lesser number of bits as the difference should be small). A bit
vector can be stored above this to decode the values. As an example:

A=[1 3 4 5 8 14 16 20]

Aenc=[1 2 1 1 3 6 2 4]

The encoded values are smaller than the original array and therefore will take fewer
number of bits to store. The differences have been stored using variable encoding
scheme explained earlier in this section.

This has a disadvantage of having to go through all previous values to find the value
we require. If we need to decode the above encoded array and find the 5th element
we need to add every element in the array, upto the idex of the value we need, to get
the value (2+1+1+3+6+2+4=20). This can create a huge time overhead. One way to
reduce the time overhead would be to implement a blocking system and store explicit
values at the beginning of each block. Another variation would be not to store the
consecutive difference, but the difference with a value at the beginning of the block
(thus preventing the overhead of going through the whole block to decode the value).
The disadvantage for this would be that space would be higher. Another variation
is that the consecutive differences can be stored along with explicit values at certain
intervals. This would also refer to a blocking scheme where you only need to walk
within your block to decode the value. Many time space tradeoff’s can be worked out
in this way. We can also play around with the blocking scheme and implement either
fixed blocking or variable blocking schemes.

4. RUN-LENGTH ENCODING Sometimes there may be a run of the same number in
some arrays. In cases like this, it seems unnecessary to write each of these values
explicitly (even if delta encoding has been applied to it, it can lead to a run of zeros).
Thus, it may make more sense to write how many times the number repeats rather
than repeat the number, so as to save space. This would also prove beneficial when
performing operations like binary search on this array (as the size of array it needs to
go through is significantly reduced).

Each field in the I-structure has a property that enables us to compress them effectively.

4.2.1 Origin Compression

As mentioned before the Origin’s are stored in increasing sorted order. We also observed
that entries come from node’s that are quite close together. Thus the difference between
consecutive entries are relatively smaller. Using these properties gap encoding seems to be
the most promising method of compression. We store explicit values at every bth entry, b
being the blocking factor. However, the time taken to walk through the array to decode and
the space taken by the explicit values are major disadvantages that this method has.
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Another observation was that many of the entries come from the same node thus leading
to a run of entries having the same origin value. Thus another encoding technique that
we applied was run length encoding where we simply stored how many times the number
repeated rather than storing the number that many times. On this encoded array gap
encoding could be applied.

Another technique that we performed to compress the origin values was to store the
difference between the origin entry and the pre-order rank of the node the I-structure repre-
sents. This also led to considerable compression and beats the two disadvantages with gap
encoding, having to walk through the entire block to decode the value and storing a very
space expensive explicit value. Another variation that can be applied is to store the explicit
values as the difference between the origin entry and the pre-order rank of the node. Run
length encoding was applied on this scheme as well.

When it comes to blocking there are two different schemes that can be applied:

1. Fixed Blocking Scheme We consider a fixed size as the blocking factor and store explicit
values for every b values.
O=[2 2 10 10 10 14 15 30 34 34 40 50]
EncArray=[2 0 8 0 10 4 1 15 34 0 6 10]

2. Variable Blocking Scheme We decide to store explicit values only at entries whose
difference from the previous value is higher than a set threshold. This may appear
to be beneficial but requires an extra bit vector to be stored defining the boundaries
where the explicit values are stored, thus increasing the space taken.
EncArray=[2 0 10 0 0 4 1 30 4 0 6 50] for a threshold of 8
A comparison between these schemes is provided in Chapter 5 in section 5.4.5.

4.2.2 Frequency Compression

We notice that most entries in the frequency field are very small values (about 95% ≤ 2).
Thus we form a four tier system to store the values effectively. We create four arrays that
store 4 bit, 8 bit, 16 bit and 32 bit values each. Each entry is pushed into one of these arrays
according to how many bits they take and a bitvector is built on them to accertain which
array to pick the value from. This proves to be an effective form of compression as most
entries fall in the lower bracket and take just as many bits as they should and thus save
about 28 bits each.
For example, if we have a frequency array F=[1 1 1 2 7 3 23 54 1 3 18 2 14 80 20 95000]
Size =16*4 =64 bytes
Array1=[1 1 1 2 7 3 1 3 2 14] =40 bits
Array2=[23 18 20] =24 bits
Array3=[54 80] =32 bits
Array4=[95000] =32 bits
Total size= 16 bytes
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4.2.3 Document Compression

Since each value from 1 to d will be present as an entry in the document array, the only
way to compress this is to make sure that they only occupy as much space as the largest
number needs. We thus use Fixed Length Encoding and store each value using logD bits
where D is the number of documents present in the text(or the largest value that will need
to be stored).
For example, if D=[3 10 5 13 25 64 2 7 25 31 70 100 32 53 77 39]
Size =16*4 =64 bytes
Assume we have 100 documents; 100 takes 7 bits
Denc=[0000011 0001010 0000101 ..... ]
Size =(7*16)/8= 14 bytes

4.2.4 Page Rank

We give each document a unique random number from 1 to D, where D is the number of
documents, to simulate a page ranking system. These values follow the same trend as the
document array and thus are stored using the same Fixed Block Encoding scheme using
logD bits.

4.3 Two Pattern Queries

We can have a situation wherein the user may want to find the Top-K documents on giving
two patterns as input. Using our index to retrieve Top-K documents for one document we
have extended the same to perform two pattern queries.

Let us say we have two patterns P1 and P2 that match at nodes p1 and p2. We can
seperately find the Top-K documents that each of these patterns P1 and P2 occur in.
Once we have two lists of Top-K documents for each pattern, we need to perform certain
heuristics to retrieve the highest page ranked documents that both the patterns occur in. The
documents come out in page rank order. We traverse through the list of Top-K documents
for pattern, P1, and find in the corresponding list for pattern, P2, if this document exists.
Since the page ranks are sorted in order and each document has an unique page rank, if the
list of pattern, P2 has this document its page rank would also be present and can be found
by performing a binary search over the page rank’s of pattern P2. Before we perform the
binary search, we need to determine which of the following cases our search will fall under
(list 1 is the list which contains the documents in which pattern P1 is present and list 2 is
the same for pattern P2)

• Check if each list occurs in atleast K documents. If either of these patterns occur in
less than K documents we retrieve only as many documents as the pattern occurs in
and traverse the list that occurs in less than K documents. Once we have traversed the
entire list for the pattern (list 1 or list 2), we finish even if we do not have K documents

• Check if the lowest page rank in list 2 has a page rank that is higher than the value
we are searching for. In this case, we know that our document cannot be within the
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Top-K and generate the next K + 1 to 2K documents for list 2 and perform this check
again.

• Check if the highest page rank in list 2 has a page rank which is lower than the value
we are looking for. In this case, we first make sure that the lowest value in list 1 is not
greater than the highest value in list 1. In case this is true, as in step 2, the next K
documents from list 1 are retrieved and the check is performed again.

• If all the above checks have been performed and they came out false, we traverse either
list and perform a binary search in the other list to find if the page rank exists there.
If it does then we can directly extract it out.

• These steps are performed till we get K such documents by generating the next K
documents if we exhaust the list.

4.4 Phrase Searching

Using our index to generate Top-K we also make an alteration to the index to create a
specialized index to produce Top-K documents where the queries are phrases. In suffix tree
based indexes, one of the advantages is that we can find the occurence of any substring as
it would appear as a suffix in the tree. For example, in 2.1 we can not only find BANANA$
we can also find ANANA$ or AN if we needed to. However, if we are sure that we are never
going to get substring queries, we can create a word based suffix tree like in figure 2.2. This
avoids having to store substrings and the other auxillary strucutres related to them like the
I strucutres for these substrings. The tree also becomes more sparse and the space spent
encoding it and the time take to traverse these auxillary structures reduces. In essence, we
keep information only for strings that begin after a space(“ ”) or any other word separating
character leading to a heavy drop in space. This brings it down to a structure comparable
to the Inverted Index as just like the Inverted Index we keep only words and their Document
ID’s along with some auxillary structures and we have the added advantage of not having
to go through a position lists to find words that are located next to each other (for phrase
queries) as we can match the entire phrase directly using a suffix tree. Experimental results
for this are provided in Chapter 5.

To create a specialized phrase searching index we do the following:

1. Traverse the edges of the suffix tree. If the edge has a space or any word seperating
character we mark the end node of the edge. These are the only nodes of the suffix
tree we take into consideration for the phrase index. We can simplify this traversal by
identifying the child whose first character is space(which will most likely be the first
child as the ascii value of space is 32 and is most likely to lexicographically be the
smallest). All the phrases that may exist in the index will definetely be a child of this
node. This creates one restriction that the query must always start with a space.

2. Once the nodes of the new reduced suffix tree have been identified we can create the
N-structures and I-structures based on this new suffix tree.
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3. When a phrase query is given as input we identify the Top-K documents in the same
manner as we do for regular queries.

In section 5.4.8, this phrase index is compared to an inverted index to retrieve the Top-K
documents in which a query pattern which is a phrase occurs. An inverted index performs
phrase searching in the following way:

1. For each word in the phrase a document list (of all the documents the word occurs in)
is generated.

2. An intersection of the document lists of all the words should be found.

3. The position list must be traversed to find only the documents where each of these
words occur next to each other in correct order.

4. The Top-K list must then be generated out of the documents that cross all three levels.
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Chapter 5

Experimental Analyses

In this chapter, we provide an empirical study and analyses on the practicality of the index.
We explain the experimental setup and provide variations and extended functionalities that
the index possess. We also study the space taken by the index and provide alternate methods
thus creating an opportunity to take advantage of different tradeoff schemes.

5.1 Experimental Setup

We primarily use two data sets based on which we perform the experiments.

• Random : The text in this collection has been generated randomly containing a mixture
of different english texts(e.g. bible), whose alphabet size Σ=26 and contains only letters
from a to z. The total size of this collection comes upto 6MB with 1600 documents.

• Enron Email Dataset: The text in this collection is a collection of emails sent within
enron. Source of this dataset is : http://www.cs.cmu.edu/ enron/. This colelction
contain alphabets, numbers and symbols and the total size of the collection comes
upto 16 MB with 5060 documents.

5.2 Platform

This index was implemented using the programming language C++ with a GCC 4.2 compiler.
The operating system is Mac OS X 10.6 with a 64 bit architecture. The processor is 2.26
GHz Intel Core 2 Duo with 4 GB RAM.

5.3 Source Code

Components of the Source code both for implementation and comparitive studies were ob-
tained from the following sources:

• Compressed Suffix Tree : We used the implementation(based on Sadakane’s method)
available for download at http://www.cs.helsinki.fi/group/suds/cst. This implemen-
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tation is a part of the SUDS project at the University of Helsinki Alternatively, code for
Compressed Suffix Tree can also be downloaded at http://www.uni-ulm.de/in/theo/research/sdsl.html.

• Bit vector Dictionaries : We used the implementation available for download at http://www.uni-
ulm.de/in/theo/research/sdsl.htm. Compiler options -O3 and -DNDEBUG must be
used to get best performance.

5.4 Experimentation

5.4.1 Experiment 1

The theoretical bounds provided by the paper [14] for retrieval of Top-K documents are
O(P+K logK). In our first experiment we check the time taken to retrieve Top-K documents
practically. We use the Compressed Suffix Tree here to match the given pattern and return
the range [sp, ep]. The I strutures in this experiment are uncompressed.

We also show the variation of retrieval time as a function of K. Experiments have been
performed using data set 2, with 10 patterns for each length and running each query 20
times. In figure 5.1 we also show the variation of retrieval time with pattern length.

Figure 5.1: Shows the effect of varying K on the retrieval time (for patterns of size 5 and 10
showing variation of |P | with time)

5.4.2 Experiment 2

We now show the time taken to retrieve the Top-K documents when the I-structures are
compressed (explained in section 4.2). The set up remains the same. Data Set 2 was used
for these experiments.

Just as Experiment 1, in figure 5.2, we show that the retrieval time increases with increase
in K. We show the increase in retrieval time for patterns |P |=10 as compared to |P |=5 in
figure 5.2.
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Figure 5.2: Shows the effect of varying K on the retrieval time

5.4.3 Experiment 3

We show the variation in retrieval time on compressing the I-structures. This experiment
shows the effect of compression (as explained in section 4.2) on the retrieval time. Data Set
2 was used for these experiments.

Figure 5.3: Shows the effect of varying |P | on the retrieval time

Both figures, 5.3 and 5.4 show an increase in retrieval time on using compressed I Struc-
tures. Compressed Indexes will take some more time to retrieve the documents as they need
extra time to decode the encoded values. We see that the retrieval time for the compressed
version is approximately doubled.

5.4.4 Experiment 4

We study the space taken by the index, both in its compressed form and its uncompressed
form. We can see the space taken by each component in figure 5.5 and 5.6. Data set 2 was
used for these experiments.
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Figure 5.4: Shows the effect of varying K on the retrieval time(Experiment 3)

Figure 5.5: Shows the distribution of space in the uncompressed index
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Figure 5.6: Shows the distribution of space in the compressed index

5.4.5 Experiment 5

We study the effect of different encoding methods on the origin field of the I-structures as
explained in section 4.2.1. We also show the effectiveness of the compression techniques
listed in section 4.2 for all three fields of the I-structures. Data set 2 was used for these
experiments.

Figure 5.7: Shows the effect of different compression techniques on the origin field on space

After applying the listed compression techniques(in Chapter 4) the level of compression
we were able to obtain on the I-structures are shown in figure 5.9.

As mentioned in Chapter 4, there are few techniques that can be used to compress the
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Figure 5.8: Shows the effect of different compression techniques on the origin field on time

Figure 5.9: Shows the effect of compression on space occupied by I-Structures.
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origin field in the I-structures:

1. Gap Encoding FB(Delta Encoding): We store the difference between consecutive val-
ues. To prevent having to walk through the entire array (as mentioned in Chapter 4)
we store explicit values at certain intervals. Thus the entire array is divided into a
number of block. To decode a value, you need to find which block it falls under (in the
case of fixed blocking you can simply find mod(decode position/blockingfactor) and
walk within the block to find the original value. In figure 5.7 and figure 5.8, we use a
fixed blocking factor of 10. FB stands for Fixed Blocking.

2. Gap Encoding VB: The essence of this method is the same as above. However, instead
of storing explicit values at fixed intervals we store them at variable intervals (VB:
Variable Blocking). The Blocking is determined by a difference, only if the difference
between the next explicit value and the previous one is above a certain threshold do
we store it as an explicit value. In this case, since we cannot directly calculate the
block the value we need to decode may occur in, we store a bitvector over the array(1
represents that the value is an explicit value and 0 represents that it is a vlue within
a block). The block can now be identified by finding how many one’s are in front of
it or rank(decode position). Once the block is identified, we walk within the block to
decode the value as in the case of fixed blocking.

• VB1: The difference between the explicit values must atleast be 8.

• VB2: The difference between the explicit values must atleast be 16.

• VB3: The difference between the explicit values must atleast be 32.

3. Difference: In all the above methods we need to walk a certain distance, within the
block, to decode the value. This proves to be time consuming. We therefore adapted
a technique wherein we store the difference between the origin value and the rank of
the node these I-structures are for. We find, just as the difference between consecutive
values in the origin is very small, the difference with the node id is also small. This
also has the added advantage of not having to walk to decode the value thus saving
some query time.

Run Length encoding was applied on all the above techniques. The space analysis for
these techniques is shown in figure 5.7.

5.4.6 Experiment 6

We compare the time taken to perform document listing, by our index, and then retrieving
the Top-K documents to directly using the index to retrieve the Top-K documents. Data set
2 was used for this experiment.

This index can also be used to list all the documents that the query pattern occurs in.
After pattern matching we find the node P where the pattern mathces. To retrieve the
documents that the query occurs in we traverse the suffix tree from root node to node P ,
just as how we retrieve top-K values. At each node we find the range of I-structures whose
origin’s fall within the subtree of P and output the document field of these I-structures as
the documents that this pattern occurs in.
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Figure 5.10: Shows the effect on retrievel time on performing Top-K using the document
listing approach as opposed to our index which takes advantage of the property that K is
mostly probably small

5.4.7 Experiment 7

We study the retrieval of Top-K documents(based on page rank) when 2 patterns are given
as queries (both time and space). Data set 2 was used for these experiments. We take two
cases to study this behaviour. Explanation is given in section 4.3.

The Two Patterns are highly co-related

Both patterns used in this case are highly co-related and occur in more than 5000 documents
together. We show variation of retrieval time for different values ofK and patterns of different
length.

Figure 5.11: Shows the effect of varying K on the retrieval time

The Two Patterns are not very highly co-related

For Pattern |P |=3, P1 occurs in 534 documents and P2 occurs in 2000 documents. For
Pattern |P |=10, P2 occurs in 930 documents and P2 occurs in 1500 documents. From figure
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Figure 5.12: Number of Common documents
=13 resulting in the heavy rise in retrieval time
after K=12.

Figure 5.13: Number of common docu-
ments=6 resulting in the heavy rise in retrieval
time after K=6.

5.13, we can see that since P=10 must go through atleast 930 documents, as compared to
P=3, which has to go through 534 documents, to accertain that there are no more common
documents the increase in retrieval time at K=8 for P=10 is more than at K=14 for P=3.

5.4.8 Experiment 8

We study the retrieval of Top-K documents when the queries are phrases. We study both
the space and time to retrieve these documents and compare them to the Inverted Index.
We use data set 1 for this experiment. Explanation of the phrase index is given in section
4.4.

Space Analysis

As mentioned in Chapter 4 we extended our Index to provide a specialised index to per-
form phrase searching that can reduce space significantly. The space taken by our index is
comparable to the space taken by an Inverted Index with position lists(which it requires to
perform phrase searches).

It is more profitable (by virtue of space alone) to use an FM Index(instead of CST) based
index. While using an FM Index based approach we need to store the encoding of the tree
as well. Space taken by the balanced paranthesis can be reduced considerably while using
this for a phrase index. In addition to this space drop there is an advantage provided by the
FM Index.

Variation of retrieval time with number of words in the phrase query

From 5.15 we can see that the performance of the inverted index decreases when the number
of words in the query increases while our index comparatively performs optimally.
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Figure 5.14: Space Comparison between Inverted Index and Our FM Index based index

Figure 5.15: Shows the effect of increasing the number of words in query on retrieval time
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Variation of retrieval time with input data size(for 2 word queries)

Figure 5.16: Shows the effect of increasing data size on retrieval time

From 5.16 we can see that the performance of the inverted index decreases with increase
in data size. In figure 5.16 the retrieval time of our index cannot be clearly noted as the
difference in retrieval time between the inverted index and our index is very high.

5.4.9 Experiment 9

We compare our index with other indexes that perform Top-K document retrieval in 5.17.

Figure 5.17: Shows the comparison between our index and other available Top-K indexes
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Chapter 6

Conclusion and Future Work

In this thesis, we provided a practical and efficient retrieval system for Top-K documents. We
showed an index with optimal retrieval time with considerably lower space bounds than the
previously known indexes with competative time bounds. We also showed the effectiveness
of this index by extending its functionality to retrieve Top-K documents based on arbitrary
score functions (like page rank) and the ability to alter the index to provide application
specific indexes with more optimal bounds for both space and time. The index can also be
used to retrieve Top-K documents when two patterns are given as query in optimal time.
Overall this index can prove to be a very effective and multifunctional index.

Future work can include checking the feasibilty of retrieving Top-K document for two
pattern queries using their tf-idf scores. The practical optimality of the compressed space
index provided in Hon et al [14] remains to be seen.
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