
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2010

An Adaptable Group Communication System
Vikram Reddy Kayathi
Louisiana State University and Agricultural and Mechanical College, vkayat1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Kayathi, Vikram Reddy, "An Adaptable Group Communication System" (2010). LSU Master's Theses. 180.
https://digitalcommons.lsu.edu/gradschool_theses/180

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/180?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

AN ADAPTABLE GROUP COMMUNICATION SYSTEM

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in System Science

in

The Interdepartmental Program in
The Department of Computer Science

by
Vikram Reddy Kayathi

B. E., Chaitanya Bharathi Institute of Technology, Osmania University, 2008
December 2010

ii

Acknowledgements

I am very grateful to my advisor Dr. Supratik Mukhopadhyay for his guidance, patience

and understanding throughout this work. His suggestions, discussions and constant

encouragement have helped me to get a deep insight in my thesis work. I would like to thank

Dr. S. S. Iyengar and Dr. Konstantin Busch for sparing their time to be a part of my thesis

advisory committee. Also I would like to thank Dr. Sukhamay Kundu for providing valuable

inputs in my thesis work. Also I am very thankful to Department of Computer Science

Department.

Also I’m very thankful to the scalaris developer’s team who helped me a lot in my work.

I’m also very thankful to my friend Gaurav Mangukiya who helped me.

I wish to endow my earnest gratitude to my parents, who believed in me and have been

thorough all the rough times. I also want to thank my entire family and friends for their

affection, support and compassion.

iii

Table of Contents

Acknowledgements ... ii

Abstract.. iv

1. Introduction ... 1

2. Requirements: Mission Critical Systems Vs E Commerce Systems 3

3. Existing Group Communication Systems ... 9

4. Design and Development of Reliable Group Communication System over
Asynchronous State ... 16

5. Algorithms used in implementation of GComm ... 29

6. Related Work ... 50

7. Experimental Results .. 53

8. Conclusions .. 61

References .. 62

Vita .. 64

iv

Abstract

Existing group communication systems like ISIS, Spread, Jgroups etc., provide group

communication in a synchronous environment. They are built on top of TCP/IP or UDP and

guarantee virtual synchrony and consistency. However, wide area distributed systems are

inherently asynchronous. Existing group communication systems are not suitable for wide area

deployment. They do not provide persistent communication; i.e., if a node gets temporarily

disconnected, all messages directed to that node during that period are lost. Hence such

systems are not suitable for deployment in disadvantaged networks.

While, according to Brewer’s CAP theorem, it is impossible for a distributed computer

system to achieve the three objectives of consistency, availability and partition-tolerance

simultaneously, especially in an asynchronous environment, we present the design and

development a reliable group communication system over an asynchronous substrate, where

we achieve the objectives of eventual consistency, availability and partition-tolerance. We say

that distributed system is eventually consistent, over a long period of time, if no updates are

sent and all updates will eventually propagate through the system and all the nodes will be

consistent. By availability we mean that if a node failure does not prevent the system to

operate continuously. We say that distributed system is partition-tolerant if in the event of

network failure that splits the processing nodes which are communicating, then the system

should allow the processing to continue in both subgroups.

1. Introduction

Ever since the invention of computers, the communication between them became a

necessity. The purpose of communication may vary from message passing to file sharing. They

communicate through various communication channels in a network. A distributed system

consists of many computers which communicate through a channel in a network. A group

communication system is necessary for a distributed system, as it provides a communication

layer between the sender and receiver, and ensures that messages are delivered accordingly

with synchronous or asynchronous semantics.

According to Brewer’s CAP theorem, it is impossible for a distributed system to achieve

all the three objectives: consistency, availability and partition tolerance simultaneously in an

synchronous environment [4]. Distributed systems are inherently asynchronous, where the

sender of messenger will not wait for the receiver to be ready. The existing group

communication tools provide the communication in a synchronous semantics achieving the

virtual synchrony and consistency, but not efficient in asynchronous environments.

 To provide a group communication for asynchronous distributed systems, we

designed and developed a reliable group communication system over an asynchronous

substrate. The group communication tool being GComm and the asynchronous substrate is the

distributed database, scalaris [11]. As it is impossible to achieve all the three objectives of

Brewer’s CAP theorem, we relaxed and one of the objectives, consistency with eventual

consistency. Our group communication system achieves the three objectives: eventual

consistency, availability and partition tolerance, and provides no-message loss and uses

2

continuation passing to maintain the persistence. We implemented publish-subscribe

framework in our group communication system.

 This rest of thesis is organized as follows: Chapter 2 discusses the example of a

scenario which motivated us for design and development of our work, and compares the

requirements of mission critical systems and e-commerce systems with respect to group

communication. Chapter 3 explains some of the existing group communication tools and their

problems. Also it discusses about the Brewer’s CAP theorem and the relaxation of the CAP

theorem by replacing consistency with eventual consistency [3]. Chapter 4 explains our design

and development of reliable group communication system over an asynchronous substrate

along with the UML diagrams. Chapter 5 explains the series of algorithms used in the

implementation of the GComm. Chapter 6 covers the related work we did prior to design and

development of our system. Chapter 7 provides the experimental results achieved when we

implemented our work. Finally, chapter 8 concludes our work and discusses the future work.

3

2. Requirements: Mission Critical Systems Vs E Commerce Systems

2.1 Motivating Example

 The motivating example for our work is the series of the events which happens

after an accident crash in USA. After the accident, the node person who is involved in accident

will notify the emergency system by publishing the crash information like location, causalities,

need of ambulance services, need of fire services etc.., The node, person publish this

information in the transactional storage database by joining the group 1, then the node 911

subscribes to the information published by person by joining the group1.

 There are various other groups in the emergency system involving the nodes

911, cops, ambulance services, fire services etc.., The nodes 911 and cops are members of group

2, the nodes 911 and ambulance services are members of group 3, the nodes 911 and fire

services are members of group 3.

After 911 subscribed to the crash information, it publishes the information to the

transactional storage database. Then the node cops will subscribe to the information published

by 911, then react accordingly. Similarly, if there is a need of ambulance services and fire

services then they subscribe to information published by 911 and react accordingly. If the crash

involves any health emergencies and fire accidents which require attention of fire emergency

services, then the node 911 will publish the required information to the transactional storage

database, through which the nodes fire services and ambulance services will subscribe to the

database and respond accordingly.

4

Figure 2.1 Emergency system consisting various groups

2.2 Requirements: Mission Critical System Needs Vs E-Commerce System Needs

Mission critical system means if any of activity, module, functionality or system fails then

the whole business operation fails. If any business organization has to remove any constraints

or modules for some reason, the constraint or module should not be mission critical, as the

success of the project purely depends on the functionality of them. Electronic commerce

systems, also referred as e-commerce systems comprises of the purchasing and selling the

products of services over the internet or any other computer networks. Companies like

5

Amazon, EBay etc.., implement the e-commerce systems. The selling and buying are

implemented electronically in a real time environment. Both systems i.e., mission critical

system and e-commerce systems need to be operated in distributed computing environment.

Hence the nodes or computers in both the systems need to communicate with each other

through group communication system. So, we have compared the requirements of the mission

critical systems and e-commerce systems with respect to group communication. We compared

both of the systems with respect to different group communication attributes like robust

connectivity, sequential consistency, high availability, partition tolerance , churn tolerance,

mutable objects, real time response, relational operations, data persistence and large data.

2.2.1 Robust Connectivity Over Disadvantaged Links

Robust connectivity over disadvantaged networks means, the connectivity between the

nodes or computers in distributed computing environment always exists even though there is a

failure in the network for any reason. Usually, networks fail frequently either with power

disconnection or node failure, such networks are called disadvantaged networks. Mission

critical systems require robust connectivity over disadvantaged links, as the connection failure

might result in the whole system failure. While e-commerce systems doesn’t require the robust

connectivity because there may be connection failure at the end user in the process, and still

the transaction can be carried out once the end user reconnects.

2.2.2 Sequential Consistency

Sequential Consistency means “the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order specified by its program." [1]

http://en.wikipedia.org/wiki/Sequential_consistency#cite_note-0

6

The system is said to be sequentially consistent if all the operations carried out are in an order

and every read/write operation carried out by the node is clearly visible throughout the system

for every node in the system. Both mission critical systems and e-commerce systems need the

attribute sequential consistency.

2.2.3 High Availability

The term availability means, the group communication system should be almost always

be up and continue to communicate between the nodes, even though there is a node failure. It

shouldn’t prevent the other nodes to communicate with each other. Both mission critical

systems and e-commerce systems require the high availability attribute.

2.2.4 Partition Tolerance

A group communication system is partition tolerant “if there is a network failure that splits the

processing nodes into two groups that cannot talk to each other, then the goal would be to allow

processing to continue in both subgroups” [3]. The system continues to operate despite arbitrary

message loss. Mission Critical systems strongly require the partition tolerance, while e-commerce

systems are less stringent towards having the partition tolerance requirement.

2.2.5 Churn Tolerance

A group communication system is churn-tolerant if the nodes can join into the system and

leave the system at any point of time. The nodes inlet and outlet in the group communication

system shouldn’t affect the functionality of the other participating nodes. Mission Critical

systems strongly require the churn-tolerance, while e-commerce systems are less stringent

towards having the churn tolerance requirement.

7

2.2.6 Mutable Objects

The objects in the group communication system are mutable, if the objects can get

modified and again join the system at any point of time. Both mission critical systems and e-

commerce systems require the mutable objects in their group communication system.

2.2.7 Real Time Response

The operation in the group communication system should be implemented in real time

environment. Mission critical systems require real time response, where there will be a definite

time to react on a given input. While e-commerce systems may not need real time response

from the group communication system.

2.2.8 Relational Operations

Relational operations are database tables which have data ordered and organized on

the basis of different common characteristics in the form of tables. Mission critical systems

usually don’t require the relational operations. While e-commerce systems usually require

relational operations between the data as there will be a large amount of data associated with

the group communication system.

2.2.9 Data Persistence

Data persistence means, the data will be made available even though the process

terminates. As the Mission critical systems don’t deal with large data, they don’t require the

data persistence. On the other hand, e-commerce systems require the data persistence for

their group communication system.

8

2.2.10 Large Data

Mission critical systems don’t require large data; on the other hand e-commerce

systems require large data for their group communication.

9

3. Existing Group Communication Systems

Group communication systems provide the communication medium between the

nodes/users in a network. They are implemented over synchronous and asynchronous

networks. In a synchronous network, the sender sends the message to the receiver only when

the receiver is ready to receive it i.e., the sender waits for the receiver to be ready. In an

asynchronous network, the sender sends the message to the receiver and will not wait for the

receiver to be ready. A group communication system provides a communication layer between

the sender and receiver, and ensures the messages are delivered accordingly with synchronous

or asynchronous semantics. A group communication tool has a very effective implementation

of constructing replica system. They are generally implemented over distributed database.

There are some prominent group communication tools such as:

 ISIS (Birman et. Al.)

 Spread (Amir et. Al.)

 Jgroups (Commercial implementation in Java underlying the Jboss middleware)

The above tools provide group communication in a synchronous environment. They are

built on the top of TCP/IP or UDP protocols. The key features they provide are virtual synchrony

and consistency. Virtual synchrony is a property that allows the nodes to form the process

groups to receive the messages. Every node in the process group receives the message sent to

the process group which they belong and in the same order even though they receive more

than one message. The uses of the virtual synchrony are data replication, fault tolerance, event

notification and caching. All the nodes in a network are consistent when there are any write

operations; it is clearly visible in the network to the other nodes. All nodes will see the

10

messages in the same order. Either all nodes receive a message or none. If nodes are in a group,

then if one node receives a message then each node in that process group will receive and if

any one node in a process group will not receive a message then, no other node in the process

group will receive the message. The goal is to have all or nothing semantics.

3.1 ISIS

The ISIS group communication tool is developed in Cornell University. It implements the

virtual synchrony for its group communication system. There are four different process groups

implemented in ISIS, they differ in their implementation of interaction with the groups. The

four groups are: peer groups, client groups, diffusion groups and hierarchical groups [5] [6].

 Peer groups comprise of processes which contain replicated data given as input to

algorithms processing concurrent data.

 Client groups contain the nodes which try to communicate with any process group with

a group name and proper authorization, and then the process group makes that node as

a client to the group by registering it with the group.

 Diffusion groups are groups of nodes depicting the client server architecture. Client

nodes interact with server nodes by giving input and getting desired output from the

server nodes.

 Hierarchical groups contain one or more process groups. There will be one base group

root which will have other groups called sub groups under it.

ISIS nodes may or may not aware of one another. ISIS implements message delivery

ordering rather than implementing the casual relationship between messages. As mentioned

11

earlier, multiple modules are allowed to form a group under a group name and any message

transmitted to the group will be received by all the nodes in that group.

3.2 Spread Group Communication Toolkit

The Spread wide area group communication system (Amir et. Al.) is developed in John

Hopkins university. Spread comprises of two low level protocols, ring and hop. Ring is

implemented on local area networks and hop is implemented on wide area networks. And it

implements daemon-client architecture. In this architecture, the group membership updates

are done with minimal effort. When any node joins and leaves the group, the whole process is

translated into a single message. But when there is network partition between the nodes in

local area network, the update causes a fully fledged change in node’s group membership.

Extended virtual synchrony is implemented in spread group communication system; it means

that the messages are transmitted despite the loss of messages using a variant of the

alternating best protocol. Data is transmitted to the network comprising of necessary minimal

set of components. User have control over the spread group communication system, they can

send a message with priority over other messages transmitted in the network. Another

prominent feature of this group communication system is that any node which is not a member

of the group can transmit the message to the whole group [8].

3.3 Jgroups

Jgroups is the commercial implementation of a group communication system in java

underlying the Jboss middleware. Jgroups is a group communication system which implements

the reliable multicast communication. In Jgroups, groups containing nodes can be created and

12

deleted. The nodes are spread across local area networks and wide area networks. And when

every node joins or leaves the group, the update is notified to every node in the group. The

messages between nodes are of two types: node to node and node to group. Jgroups can

implement different protocols like User Datagram Protocol (UDP), Transmission Control

Protocol (TCP) and Java Message Service (JMS). Large messages are subjected to fragmentation

and are encrypted when required. If there is any message loss, then the message is

retransmitted. One more important feature of Jgroups is failure detection; the crashed nodes

are removed from the group [7].

3.4 Problems with Existing Group Communication Systems

 Distributed systems are inherently asynchronous. In distributed systems, the sender

sends the message to the receiver and will not wait to send the next message until

the receiver receives the first message. Distributed systems have nodes which are

across over local area networks (LAN) and wide area networks (WAN).

 The existing group communication systems which are discussed earlier are

synchronous, where the sender sends the message to the receiver and will wait to

send the next message until the receiver receives the first message and send the

acknowledgement.

 Existing group communications systems which are synchronous are not suitable for

asynchronous environments.

 The existing group communication systems are centralized. They have a single point

of failure i.e., failure of one node can cause failure of the whole system.

13

 The existing group communication systems will have components which are not

completely aware of other components in the system. For example, In ISIS the nodes

in the system may or may not know the other nodes in the system.

 Whenever a component gets disconnected, all the messages directed to it are lost

during the disconnection. For example, Spread group communication system

experiences the loss of messages due to component failure and various reasons.

 Only two of Brewer’s CAP theorem attributes are implemented in the existing group

communication systems which are discussed earlier.

3.5 Brewer’s CAP Theorem

 According to the Brewer’s CAP theorem, it is not possible for a distributed system to

achieve all the three attributes mentioned below simultaneously especially in an asynchronous

environment [4]:

 Consistency

 Availability

 Partition Tolerance

3.5.1 Consistency

A group communication system containing the nodes in a distributed computing

environment is said to be consistent when it promises to have the familiar all-or-nothing

semantics, commonly supported by group communication systems is achieved. Stronger

requirements can include no message reordering. In addition, each node in the system should

be consistent. The nodes in the system are said to be consistent if

14

 All nodes in the system will see the message in the same order.

 Either all nodes in the group will receive the message or none of them will receive.

 When a node leaves or join the group communication system, every node which is

already a member of the system should be notified of the update.

3.5.2 Availability

A group communication system is said to be highly available when the system is almost

always up even though the failures occur. The failures may be a node failure, module failure,

component failure etc.., The node failure should not prevent the survivors continuing its

operations. If there is a failure in the node, then the system should switch to another node in

order to keep the systems running [3].

In other words, a group communication system shouldn’t be a centralized system,

where the single point failure occurs. In a centralized group communication system, when there

is any failure in node or component, then the whole system is down. For availability purposes, it

should not be a centralized system rather it should be decentralized system.

3.5.3 Partition Tolerance

A partition happens when there is occurrence of network failure resulting in a

communication gap between the two nodes in a group. A group communication system is said

to be partition-tolerant whenever there is any split in the communicating nodes due to network

failure then the aim of the system should be to allow the processing to continue in the both

subgroups [3]. In a group communication system, there will be three types of communication:

node to node, node to group, group to group.

15

So when there is a failure in the network which may cause interruption in the

communication between the groups, the individual groups should continue to operate

independently. This situation may experience the arbitrary message loss but the system

continues to operate.

3.5.4 Eventual Consistency

 As mentioned earlier, according to Brewer’s CAP theorem it is impossible for distributed

systems to provide the three objectives: consistency, availability and partition tolerance

simultaneously in an asynchronous environment. We relaxed one of the objectives:

consistency, as the other two objectives cannot be compromised by the distributed system in

an asynchronous environment. Hence, we relaxed the objective consistency and replaced it

with eventual consistency.

Eventual Consistency means, “Over a long time period where no updates are sent, we

can expect that during this period, all updates will eventually, propagate through the system

and all the nodes will be consistent” [3].

16

4. Design and Development of Reliable Group Communication System
over Asynchronous State

To achieve the three objectives, Eventual Consistency, Availability and Partition

Tolerance, a Reliable group communication system over a distributed database is developed.

We use the distributed database scalaris as our substrate. Our group communication tool is

GComm.

Distributed systems are inherently asynchronous, where the sender will not wait for the

receiver to be ready. As the existing group communication systems are suitable for synchronous

environment, doesn’t implement the Brewer’s CAP theorem, centralized and suffer from a

single point of failure. Our system implements the Brewer’s CAP theorem by relaxing one of its

objective mentioned, consistency. We relaxed the attribute consistency with the Eventual

Consistency (Michael Stonebrecker et. Al.). The system is eventually consistent if for a long

period of time, there are no updates sent, we expect that all the updates will go through the

system and all the nodes will be consistent during this period. When a node joins or leaves the

network, the system will not be consistent at that particular moment. But when there is no

update of node joining and node leaving the group for a long time period, then all the nodes

will become eventually consistent in this time period [3].

Our system always continues to operate despite of the node failures or component

failures, which makes the system available all the time. If there is a node failure, then the

system switches to another node and continues to run as before. It never lets the survivor

nodes to abort the operation when there are failures. If our system suffers a network failure

which frequently happens in a disadvantaged network, then it will not abort the

17

communication between the groups. Instead, it allows the operations in the sub groups

individually, and it continues to operate despite the arbitrary message loss which makes the

system partition tolerant.

Our work, a reliable group communication system over asynchronous substrate

achieves all the three objectives mentioned below:

 Eventual Consistency

 Availability

 Partition Tolerance

Apart from the three main objectives mentioned above, our system has mutable objects

which mean the values of the objects can be changed as desired. Nodes can join and leave the

group at any point of time without any restriction making the system churn-tolerant. When the

nodes frequently join and leave the group, the system will not be eventually consistent in that

time period, as the updates sent to the system continuously. The real time response objective is

achieved in the system.

4.1 Group Communication System (GComm)

A Group Communication System (GComm), a group communication system which is

suitable for asynchronous and disadvantaged networks. GComm achieve the three main

objectives: eventual consistency, availability and partition tolerance, along with other

objectives churn tolerance, mutable objects and real time response. It uses the continuation

message passing to maintain the data persistence in the disadvantaged networks, which have

frequent failures in the network. GComm guarantee the objectives: no message loss and no

18

message reordering. GComm consist of none or more nodes grouped under a group. A group

with a unique name has one or more nodes as its members. The definition of the group and

node are discussed in next section.

GComm uses publish-subscribe framework in its infrastructure. According to publish-

subscribe framework, the publisher publishes the topic, on which values are written with a

sequence number associated with them. If the subscriber wants to read those values, it has to

subscribe to the topic with the time period of subscription called lease. The publisher and

subscriber join the group as the members of the group. When subscriber finishes reading the

values of the topic published, it issues the delete command to the system. The system verifies if

all the subscribers to a particular topic issued the delete command and make sure the lease

period is expired to delete the values of the topic published. A topic can be subscribed by none

or more subscribers. The system tracks the subscriber’s last read sequence number and its state

in order to continue from the same instant when subscriber gets disconnected due to any

reason like network failure.

4.1.1 Definition of a Group

 A group is an environment, consisting of one or more nodes communicating with each other.

Other features of the group are as follows:

 Group is a non-empty set of nodes, with a unique name which is also its identifier.

 A group is initiated by a client by registering its name with the GCS system, and this

client immediately becomes the first member of the group.

19

 The membership relation between clients and groups is many to many, which is onto

the groups but need not be onto the clients.

 Two or more groups can overlap i.e., two or more groups can consist one or more nodes

in common (as their members).

 Group becomes nonexistent if there are no nodes in it. The group communication

system, GComm will delete the groups as soon as they become nonexistent.

 Any number of nodes can join or leave the group at any point of time. A group may also

shrink when a member (which may be the creator of the group) exits the group and

when a group becomes empty, it is deleted from the GCS

 Each member of group has a view of that group.

 Each node will have view for each group it is member of.

Every group in the system has following attributes:

 Group name

 Members list -> it contains the list of the nodes which are currently in the group.

 Readers list -> Readers list is subset of the members list. Whenever there is an update of

node joining or leaving the group, the nodes in the members list will read the update

and add themselves to the reader list.

 Changemakers list -> it contains the list of nodes which induces the update.

 State of group (Stable/Unstable) -> the group is stable, if reader list is equal to the

members list and vice versa.

20

Scenario: A node N1 creates a group G1, and then Node N2 joins G1. Node N1 leaves the group,

and then Node N2 leaves the group. The group G1 which don’t have any nodes in it becomes

nonexistent and the system deletes the group.

4.1.2 Definition of a Node

 A node is a member of a group, which communicates with the other nodes in the group.

Every node has a node configuration file, which has details of:

 Node name

 Group name, which is to be joined.

 IP address of the database

The node configuration file is created by node admin. Node admin can change the node

configuration file, if it wants the node to join other groups in a system by adding those group

names to the file.

 When Node joins or leaves the group, it updates its view.

 Every node can be a member of one or more groups. If a node N1 is member of groups

G1 and G2, G1 is stable and G2 being unstable. Then N1 is said to be stable with respect

to G1.

4.1.3 GComm Architecture

 In GComm infrastructure, all the nodes share the data randomly.

 The agents run on the different nodes of the network are programmable. The agents

subscribe to transactional storage and generate action

21

 As the agents subscribe to the transactional storage, they publish on the network,

 The agents can be deployed automatically or manually.

Figure 4.1.3.1 A Structure of GComm consisting of the nodes

 Every Node is aware of the presence of other nodes facilitating the data

replication in the system.

 The individual process running on different machines interact through GComm.

 Nodes can join or leave the group at any point of time.

 Each node can be a member of one or more groups in GComm.

22

Figure 4.1.3.2 Message Passing in Gcomm consisting of four nodes, where message is passed
from Node A0 to Node A3

If the nodes in the GComm are located in different time zones, there may be a conflict in

time stamps of the messages. To prevent that conflict, Mattern’s GVT Algorithm [17] is

implemented. According to the Mattern’s GVT algorithm, the nodes which have a time conflict

between them will participate in a token ring procedure, in which any of participating node’s

time is selected as leader election time. The leader node’s time will be the standard time for

the procedure, which will be called as Global Virtual Time (GVT) [17].

In the above figure, there are nodes A0, A1, A2 and A3 are in GComm environment.

Node A0 sends a message to node A3 which is inactive. When the message is transmitted from

the A0, the message is time stamped with the GVT. As individual process running on different

23

machines interact through GComm, nodes A1 and A2 are also notified of the process between

nodes A0 and A3. When node A3 becomes active, it checks its messages and the receiving time.

It checks the current time and processes the message sent from node A0 if it is valid.

4.1.4 Application Programming Interface

Seq = publish(Topicname, Value);

Id = subscribe(Topicname, Lease);

<Value, Seq> = read(Topicname, Id);

Delete(Topicname, Id, Seq, State);

<State, Seq> = subscribe(Topicname, Lease, Id);

 Seq = publish(Topicname, Value);

When the publisher publishes the topic and value on top of it, the GComm system will

provide the sequence number to the corresponding value.

 Id = subscribe(Topicname, Lease);

When subscriber subscribes to the topic by providing the topic name and lease period,

the GComm system will provide the subscriber ID to it.

 <Value, Seq> = read(Topicname, Id);

When the subscriber reads any value on the topic to which it subscribed with topic

name and subscriber ID, the GComm will update the value as last read value and

sequence number as last sequence number.

 Delete(Topicname, Id, Seq, State);

Subscriber issues the delete command when it finishes reading the values by providing

the topic name, ID, sequence number and the state.

24

 <State, Seq> = subscribe(Topicname, Lease, Id);

If a subscriber wants to reconnect and read the values of topic published, then it will provide

topic name, lease and ID. The GComm verifies the subscriber lease period, if it is in the lease then it

updates the state of subscriber and provides the sequence number, which is incremented by one to last

read sequence number. Else, it updates the state and sequence number as last read sequence number.

4.2 Scalaris

Many global businesses comprising of e-commerce platforms deploy the distributed computing

which require highly efficient concurrent access to it. There will be several millions of the read

operations which conflicts with the write operations; they have to been done in a fraction of

seconds. Enterprises like Amazon, Ebay or Google tackle these problems by deploying several

thousands of the servers in the distributed data centers. But the problem arises in maintaining

the consistent state hiding the failures from the application, as there is a failure in components

frequently. Till now peer-to-peer protocols have been providing the self management among

the peers which allows only write once and read many type of data sharing. The missing feature

of the peer-to-peer protocol is the support of consistent replication and fast transactions which

is a substantial quality [10].

To overcome the disadvantages peer-to-peer facing, scalars is developed. Scalaris, a

scalable, distributed key/value store. Scalaris is built on a structured overlay network and uses a

distributed transaction protocol, both of them implemented in erlang with an application

interface in Java [10]. It uses Lamport’s paxos algorithm [18] to maintain the consistency and

uses primary memory storage. The paxos algorithm makes sure that every node is consistent.

The paxos algorithm tries to bring the consensus among the nodes in a system which have a

25

conflict in choosing a value. There may be in delay of messages because time will be taken to

bring the consensus among the node.

 Also, the scalaris implements the ACID properties on the structured overlay network

mentioned above. To prove the efficiency of the scalaris , it is implemented with a simple

Wikipedia at the front end and the scalaris database on the backend. As the wikipedia, requires

several thousands of read operations and write operations which are to be done concurrently

maintaining the consistency, it is ideal to prove the efficiency of the scalaris [10].

4.2.1 Scalaris System Architecture

As mentioned earlier, scalaris is a distributed key/value store which is built on the

structured peer-to-peer overlay that allows consistent read/write operations. The system

architecture comprises of three layers, as follows [10]:

1. P2P Layer

2. Replication Layer

3. P2P Layer

The bottom layer is a structured P2P overlay network which performs logarithmic routing and

builds the basis for the key/value store. This network stores the keys in lexicographical order

unlike many distributed hash tables. The middle layer as the name suggests, it implements the

replication and transaction, i.e.., ACID properties (Atomicity, Concurrency, Isolation, Durability)

for the concurrent write operations. And the top layer hosts the real application, a distributed

key/value store. This layer can be used as a scalable, fault-tolerant backend for online services

for shopping, banking, data sharing or social networking websites [10].

26

4.3 UML Diagrams

This section consists of UML diagrams i.e.., use case diagram and state diagram mentioning the

activities of the node in a group in GComm. As mentioned earlier, the group in a group

communication system GComm is a non-empty set of nodes, with a unique name which is also

its identifier. Two or more groups can overlap i.e., two or more groups can consist one or more

nodes in common (as their members). Group becomes nonexistent if there are no nodes in it.

Any number of nodes can join or leave the group at any point of time. A group may also shrink

when a member (which may be the creator of the group) leaves the group and when a group

becomes empty, it is deleted from the GCS. A node is a member of a group, which

communicates with the other nodes in the group. Every node has a node configuration file,

which has details of: node name, group name, which is to be joined and IP address of the

database.

A node in a group communication system GComm has following activities:

 A node can create a group, if it doesn’t exist.

 A node can join a group.

 A node can read the state of the group.

 A node can publish a topic.

 A node can subscribe to a topic

 A node can leave the group.

27

Figure 4.3 A use case diagram displaying the node and its activities in a group communication
system.

28

 Create

 Group Doesn’t Exist?

 Leave the Group

 Join the Group

 Publish Subscribe

Figure 4.4 A state diagram displaying the nodes and its activities in a group communication
system

New Node

Transactional
Storage Database

Member

29

5. Algorithms Used in Implementation of GComm

5.1 Join Group

The complete infrastructure of publish-subscribe implemented on the scalaris database

is explained in the previous algorithms. The publisher will publish the topic name with a

publisher ID, the value corresponding with a sequence number is written on the topic name.

The subscriber will subscribe to the topic with subscriber ID and a definite amount of time

period called the lease. The subscriber once gets subscribed can read the value corresponding

to a sequence number provided the subscriber is in lease. The publisher/subscriber can delete

the value corresponding to the sequence number on the topic published, and if the lease is

expired the value gets automatically deleted.

This algorithm explains the procedure of the assign the group to the scalaris database.

There are additional parameters like members list, readers list, and makers list. And there will

be time parameters, time out and delay which are defined in the configuration file of the group

communication. The group name after written into the scalaris has two states, stable and

unstable. The group entry record is stable if the number of readers in readers list is equal to the

number of the members in the members list. There is a view which is to be updated when there

is group entry record written to the scalaris. And whenever there is group entry record, there is

a list of parameters which will be written in group entry record, they are group name, node

name, members list, readers list, makers list and the status(stable/unstable).

The inputs for the Join group algorithm are the configuration file of group

communication. After getting the configuration file, the group name and node name are

30

retrieved from it. If group name does not exist in scalaris, then the list of the parameters

mentioned above will be written to the scalaris. And if group name entry record in already

written to scalaris, and it is unstable then the time out and delay values are retrieved from the

configuration file. After retrieving them, if the timeout value is greater than zero and the group

name entry is unstable then the timeout value is decremented by the value of one and there

will be a wait time of delay value. The above procedure is a loop; the loop is executed until the

timeout value becomes zero. When the time out value will become zero then the group record

entry is written to scalaris, then the list of the parameters are written to the scalaris and the

group record entry is updated as unstable. Then self view is updated

Algorithm:

Inputs

 The configurations file of group Communication

 groupName <= Retrieve group name from the configurations file

 nodeName <= Retrieve node name from the configurations file

 If groupName does not exists in Scalaris then

Write to Scalaris <groupName, {nodeName} as MembersList, { }as ReadersList,

{nodeName} asLastChangemakerslist, stable>

 Update view

 Else if groupName entry Record is Unstable then

 timeOut <= Retrieve Time-Out value from configurations file

 delay <= Retrieve the delay time from configurations file

 while timeOut > 0 ^ groupName entry Record is Unstable do

 timeOut <= timeOut - 1

 wait(delay)

 End while

31

 Write to Scalaris <groupName, {nodeName} U {MembersList}, { }, {nodeName}

 U [LastChangemakerslist], unstable>

 Update self view

End if

5.2 Read Group State

In the previous algorithm, the group record entry is written into the scalaris, with a list

of parameters like Members list, Readers list, change makers list and the status of the group

entry record (stable/unstable).

In the read group state, the group entry record is retrieved from the scalaris. If it is

stable then the state of the group which is stable is returned, else entry record in unstable. For

all change maker node belongs to the members list and it does not belong to the self node

name, and then execute the following loop.

If the change maker node belongs to members list and it does not belong to view then

add the change maker node to the view. And if the change maker node does not belongs to

members list and it belongs to view then remove the change maker node from the view. Then

add the self node to the readers list. If the number of readers in the readers list equals to the

number of the members in the members list then make the group entry record stable

otherwise make it unstable.

Algorithm

 Retrieve the group entry record from scalaris < groupName, MemberList, ReadersList,

 ChangeMakersList, {stable/unstable} Flag >

 If Group has state stable then

32

 Return

 End If

 For all (changeMakerNode ChangeMakersList) ^ (changeMakerNode ≠ selfNodeName)

 Do

 If (changeMakerNode MembersList) ^ (changeMakerNode view) then

 Add changeMakerNode to view

Else If (changeMakerNode MembersList) ^ (changeMakerNode view) Then

 Remove changeMakerNode from view

 End if

End for

 Add selfNode to ReadersList

 If Number of Readers Equal Number of Members then

 Make Group Entry Record stable

 Else

 Make Group Entry Record unstable

End If

5.3 Partition Algorithm

A partition occurs between the groups when there is a failure of network resulting in

communication gap between the nodes in a group. When GComm detects the network failure,

the node implements the partition algorithm. In this algorithm, when there is a split in the

group due to network failure, the nodes form a subgroup and begin to function individually in

the subgroups. The subgroups have the same group name as of the original group name, and

they differ by the number of nodes and their names in them. When the network connection

resume, the subgroups containing the nodes form together to the original group with the same

group name. In this way our group communication system implements one of the objectives of

CAP theorem, partition tolerance.

33

 For this algorithm, the configuration file of group communication system along with

group entry record containing group name, node name, members list, readers list and change

makers list are retrieved. If partition occurs, the members list and the readers list are made

empty making group entry stable. Then the node will add itself to the members list first, and

then to the readers list making the group entry stable. Similar procedure is followed in the

merger of two sub groups resulting after resuming the network connection.

Algorithm

Retrieve the group entry record from scalaris < GroupName, MemberList, ReadersList,
ChangeMakersList, {stable/unstable} Flag >

If partition occurs then

Make MemberList empty

 Make Readerslist empty

 Make group entry record unstable

 Add itself to Memberslist

 Add itself to Readerslist

 Add itself to ChangeMakersList

 Make group entry record unstable

 Else If merger occurs then

 Make MemberList empty

 Make Readerslist empty

 Make group entry record unstable

 Add itself to Memberslist

 Add itself to Readerslist

 Add itself to ChangeMakersList

 Make group entry record unstable

 End If

34

5.4 Register and Publish

A topic name which is to be published has to get registered in the scalaris database. Values

will be written on that particular topic. Initially the topic should get registered with a unique

name. The inputs of the register and publish algorithm is the topic name of data type string. If

that particular topic name is not yet registered, then the output of this algorithm will be an ID

which is randomly generated integer. After the ID is generated, the topic name and the

randomly generated ID will be written to the scalaris database. The ID is a publisher ID, on

which topic name gets published.

Algorithm:

Inputs

String : topicName

Outputs

Integer : Publisher ID

Require: A unique String topicName

Ensure: A new positive integer ID

If topicName exists then

Return -1

Else

ID <= Randomly Generated Positive Integer

Write to Scalaris <topicName, ID, -1>

Return ID

End If.

5.5 Write a Value on a Topic

After generating a randomly generated positive integer ID with the unique topic name, the

value has to be written on that particular topic. The value can be anything string or integer. The

35

inputs of this particular algorithm are topic name, publisher ID associated with the topic name

and the value which has to be written on the topic. The output will be the Sequence number,

associated with the value.

The publisher ID has to publish the topic name in the scalaris database, then the value

will get associated with the topic name. After the publisher ID writes a value on the topic name

and a sequence number will be generated, and will be written on scalaris database along with

the topic name and the publisher ID. When the sequence number is written to the scalaris

database, the Global Virtual Time (GVT) will be retrieved at the time of writing to the scalaris.

The Global Virtual Time will also be written to the scalaris, associated with the sequence

number, topic name and publisher ID.

Algorithm:

 Inputs

 String: topicName

 Integer: Publisher ID

 String: Value

 Outputs

 Integer: SequenceNo

 Require: Any String Value and a topicName published by publisher ID

 Ensure: The sequence number SequenceNo of the value published.

 If ID publishes topicName then

 Retrieve the entry <topicName, ID, PrSeqNo>

 SequenceNo <= PrSeqNo

 Write to Scalaris <topicName, ID, SequenceNo>

 GVT <= Get Global Virtual Time

 Write to Scalaris <<topicName, ID>, SequenceNo, GVT >

36

 Return SequenceNo

End if

5.6 Publish a Topic

After writing the value on the topic name, it has to be published in the scalaris database.

We have publisher ID, topic name with value, the sequence number is associated with the value

and the Global Virtual Time (GVT) available. In order to publish the topic name on the scalaris

database, we need the topic name and the publisher ID, so that through the ID , the publisher

of the topic name can be traced. The inputs of this particular algorithm are topic name and

publisher ID, and the output will be the Boolean status, which will ensure whether the topic

name is published or not. If there is a name conflict in the topic name, then this algorithm will

not allow publishing the topic name with the same name of the topic name which is already

published.

Algorithm:

Inputs

 String: topicName

 Integer: Publisher ID

Outputs

 Boolean: Status

Require: A unique string topicName and a registered publisher ID

 If Topic topicName is not published yet then

 Write to Scalaris <topicName, ID, -1>

 Return true

 Else

 Return false

End if

37

5.7 Subscribe to a Topic

We have topic name and its publisher ID has published in the scalaris database. If this

topic name has to be accessed, then it needs to be subscribed. The users who subscribes to the

topic published are called the subscribers. The subscription to the topic will be given for only a

certain amount of the time called lease time. The lease time has to be mentioned at the point

of subscription. Similar to the publisher, the subscriber will be assigned a randomly generated

positive ID called Subscriber ID. In other words, the subscriber will subscribe to the topic

published with parameters lease time and the Subscriber ID. For each topic, there can be none

or more subscribers. If the topic has one or more subscribers, then the details of subscribers of

that topic can be retrieved by the option Subscriber list. And whenever the subscriber will

subscribe to the topic, it will get added to the list of subscribers of that topic. The list of

subscribers of a topic will have the details of the subscribers i.e., the list will have the

subscribers ID and their lease time.

 The inputs of this algorithm will be the topic name and the parameter lease time, and

the output will be the ID, in other words subscriber ID. The lease should be a positive integer,

the subscriber ID generated will be a random positive integer. If the topic name is already

published, then the subscriber ID will be added to the list of the subscribers with the lease time

associated with it. And if the topic name is not yet published then, the subscriber will be added

to the list of the subscribers of the topic with the lease time associated with it. As the topic

name is not yet published, the topic name and the list of the subscribers of that topic will be

written on the scalaris database.

Algorithm

38

Inputs

String : topicName

Integer : Lease

Outputs

Integer : ID

Require: Lease >= 0

ID <= Randomly Generated Positive Integer

If Topic topicName is already published then

Add to the list of subscribers <ID, Lease, -1>

Else

SubscriberList <= Get list of Subscribers of topicName

SubscriberList := [<ID, Lease, -1>]

Write to Scalaris <topicName, NULL, -1, SubscriberList>

End If

Return ID

5.8 Subscribe to a Topic with an ID

In earlier algorithm, subscriber ID is created when it initially tries to subscribe to a topic

with a certain amount of the lease time. In this way, the subscriber will get an ID for itself. A

subscriber can subscribe to one or more topics with same or different lease times. So the

subscriber with a subscriber ID can subscribe to one or more topics with different lease times.

The subscriber with an ID can resume the accessibility to the topic at the same point if he exits

at that point of accessing the topic provided the subscription is valid i.e.., the lease time

shouldn’t expire. This will ensure the continuity of the accessing to the topic by the subscriber

with an ID. For every subscription to the topic, there will be parameters LastState and

LastReadSequenceNumber. The LastState refers to the last state of the topic name, it will

39

mention whether the topic is still published or not. The LastReadSequenceNumber will be the

last sequence number of the topic name read by subscriber ID.

In this particular algorithm, the inputs will be a topic name, Subscriber ID and lease. The

output will be LastState of the topic name and the LastReadSequenceNumber of the topic

name read by the subscriber ID. The lease time should be a positive integer. If subscriber ID is

not subscribed to a topic name then add the subscriber ID to the subscribers list of the topic

name. If subscriber ID is already subscribed to the topic, then this algorithm will return the

LastState of the topic name and the LastReadSequenceNumber of the topic name read by the

subscriber ID.

 Algorithm:

 Inputs

 String : topicName

 Integer : ID

 Integer : Lease

 Outputs

 String, Integer : LastState, LastReadSequenceNo

Require: Lease >= 0

 If ID is not subscribed to topicName then

 Add ID to subscribers list of topicName

 Else

 LastReadSequenceNo <= Get last sequence number of topicName read by

subscriber ID

 LastState <= Get Last state of topicName

 Return <LastState, LastReadSequenceNo>

 End if

40

5.9 Read Value

Earlier Algorithms mentioned the procedure of subscriptions to the topic. Every topic

has a publisher ID and every Subscriber has a unique subscriber ID. The ultimate reason behind

the publish-subscribe procedure is subscriber should read the value/values in the topic

published by the publisher, provided the subscriber is subscribed to that topic. And every topic

has sequence number which is last read by the subscriber with an ID, through which it can

retrieve the value when it tries to read the topic again.

In this algorithm, in order to read a value published on a topic by a publisher we need

topic name and the subscriber ID as inputs, then we get value, sequence number which is last

read by the subscriber ID and the sequence number will be incremented by the value of one.

After getting topic name and the subscriber ID as inputs, then the algorithm checks if there is

any value corresponding to the sequence number exists on the given topic name. If there is

value associated with the sequence number, it will retrieve the time stamp of the sequence

number on which value is written on the topic name, Global Virtual Time (GVT) and the lease

time parameter which was mentioned at the time of subscription to a topic published. If the

Global Virtual Time (GVT) is greater than the sum of the time stamp and the lease parameter

then the sequence number is updated with the increment by the value of one and returns the

value published on that topic at that sequence number. If the Global Virtual Time (GVT) is less

than the sum of the time stamp and the lease parameter then the last sequence number is

updated as the current sequence number and the value published on the topic corresponding

to the topic is returned. And if there is no value corresponding to the sequence number which

exists on the topic name then the maximum sequence number retrieved. The maximum

41

sequence number corresponds to the sequence number of the last written value on the topic

name. If maximum sequence number is greater than or equal to the current sequence number,

the value has been deleted by the garbage collector and the NULL value is returned. And if

maximum sequence number is less than the current sequence number, then the sequence

number seeking is not yet published, the same sequence number is maintained and will execute

the loop again. The above procedure mentioned in this algorithm is a loop process. The loop is

executed till the end until the lease period gets expired.

This is the regular procedure followed in order to read the value corresponding to a

sequence number published under a topic name by the subscriber who subscribed to that

particular topic with a subscriber ID.

Algorithm:

Inputs

 String: topicName

 Integer: ID

Outputs

 String : Value

 SeqNo <= Retrieve the sequence number last read by ID

 SeqNo <= SeqNo + 1

 Loop

 If Value corresponding to SeqNo exists on topicName then

TimeStamp <= Retrieve time Stamp of SeqNo th Value written on Topic

topicName

 GV T <= Get Global Virtual Time

 Lease <= Get Lease of Subscriber ID on topicName

 if GV T > TimeStamp + Lease then

42

 SeqNo <= SeqNo + 1

 Else

 Update Last Read Sequence number as SeqNo

 Return Value corresponding to SeqNo

 End if

 Else

 MaxSeqNo <= Retrieve Sequence number of the last written Value on

Topic topicName

 If MaxSeqNo >= SeqNo then

 Return NULL as the Value has been deleted by Garbage collector

 Else

 SeqNo is not yet published hence maintain the same SeqNo and

loop to wait.

 End if

 End if

End loop

5.10 Read Sequence Number’s Value

In Previous algorithm, we have seen the procedure of reading the value corresponding

to a sequence number published under a topic name by the subscriber who subscribed to that

particular topic with a subscriber ID. In the read sequence number’s value algorithm, we explain

how to read a value corresponding to a particular sequence number published on a topic by a

publisher ID provided the subscriber is subscribed to the topic name. The subscriber should

subscribe to the topic with a unique subscriber ID and the current Global Virtual Time (GVT)

should be greater than the sum of the time stamp of the value corresponding to that sequence

number of the topic published and the lease time period which was mentioned at the point of

subscription to the topic.

43

In this algorithm, to read the value corresponding to a particular sequence number

given we should have topic name, subscriber ID and sequence number as the inputs, then we

can retrieve the value corresponding to that particular sequence number can be retrieved. The

procedure followed is almost similar to the previous algorithm i.e.., read the value algorithm,

the only difference being the input. In this algorithm, we give sequence number as input

parameter, while in the previous algorithm we don’t have the sequence number as the input.

After getting topic name, the subscriber ID and the sequence number as input, then the

algorithm checks if there is any value corresponding to the sequence number exists on the

given topic name. If there is value associated with the sequence number, it will retrieve the

time stamp of the sequence number on which value is written on the topic name, Global Virtual

Time (GVT) and the lease time parameter which was mentioned at the time of subscription to a

topic published. If the Global Virtual Time(GVT) is greater than the sum of the time stamp and

the lease parameter then the sequence number is updated with the increment by the value of

one and returns the value published on that topic at that sequence number. If the Global

Virtual Time(GVT) is less than the sum of the time stamp and the lease parameter then the last

sequence number is updated as the current sequence number and the value published on the

topic corresponding to the topic is returned. And if there is no value corresponding to the

sequence number which exists on the topic name then the maximum sequence number

retrieved. The maximum sequence number corresponds to the sequence number of the last

written value on the topic name. If maximum sequence number is greater than or equal to the

current sequence number, the value has been deleted by the garbage collector and the NULL

value is returned. And if maximum sequence number is less than the current sequence

44

number, then the sequence number seeking is not yet published, the same sequence number is

maintained and will execute the loop again. The above procedure mentioned in this algorithm

is a loop process. The loop is executed till the end until the lease period gets expired.

Algorithm:

Inputs

 String: topicName

 Integer: ID

 Integer: SeqNo

Outputs

 String : Value

 SeqNo <= Retrieve the sequence number last read by ID

 SeqNo <= SeqNo + 1

 Loop

 If Value corresponding to SeqNo exists on topicName then

TimeStamp <= Retrieve time Stamp of SeqNo th Value written on Topic

topicName

GV T <= Get Global Virtual Time

 Lease <= Get Lease of Subscriber ID on topicName

If GV T > TimeStamp + Lease then

 SeqNo <= SeqNo + 1

 Else

 Update Last Read Sequence number as SeqNo

 Return Value corresponding to SeqNo

 End if

 Else

 MaxSeqNo <= Retrieve Sequence number of the last written

Value on Topic topicName

45

 If MaxSeqNo >= SeqNo then

 Return NULL as the Value has been deleted by Garbage collector

 Else

SeqNo is not yet published hence maintain the same SeqNo and loop to

wait.

 End if

 End if

End loop

5.11 Delete the Sequence Number’s Value

In earlier algorithms, we’ve seen the procedure of subscription to a topic published and

how to read the value corresponding to the sequence number on a topic published. The

publisher publishes a topic with a publisher ID and the subscriber subscribes to the topic

published with the subscriber ID and lease period. Every subscriber can subscribe to one or

more topics with a corresponding unique subscriber ID. And the subscriber can read the value

on the basis of sequence number and resume the subscription with the last sequence number

read by the subscriber.

In this delete the sequence number’s value algorithm, the procedure of deleting the

value corresponding to the sequence number will be explained. The value deleted will be

collected by the garbage collector. In order to delete the value corresponding to the sequence

number, we need topic name, publisher ID and sequence number as input. Then the value

corresponding to the sequence number is deleted which is the output. After we get the inputs

required, then the algorithm checks whether the value corresponding to the sequence number

exists on the topic name or not. If exists, then the publisher ID will be added to the delete-

46

doers list. The delete doers list consists of the pair topic name and sequence number. And if

there is no value corresponding to the sequence number, then the algorithm is not executed.

Algorithm:

 Inputs

 String: topicName

 Integer: Publisher ID

 Integer: SeqNo

 If Value corresponding to SeqNo exists on topicName then

 Add ID to Delete-Doers list of <topicName, SeqNo>

End if

5.12 Delete the Sequence Number’s Value with the State

In the previous algorithm, we have seen the procedure of deleting a value

corresponding to a particular sequence number of a topic published by the publisher ID. In the

delete the sequence number’s value with the state algorithm, we follow the similar procedure

of the delete the sequence number’s value algorithm, and additionally we update the state of

the publisher ID to the State. Every Publisher ID will have a state which mentions whether there

are any topics which are publishing or stopped publishing.

In this delete the sequence number’s value with state algorithm, the procedure of

deleting the value corresponding to the sequence number and updating the state of the

subscriber will be explained. The value deleted will be collected by the garbage collector. In

order to delete the value corresponding to the sequence number, we need topic name,

subscriber ID, sequence number and state of subscriber as inputs. Then the value

47

corresponding to the sequence number is deleted which is the output. After we get the inputs

required, first it will update the state of the subscriber ID to the state then the algorithm

checks whether the value corresponding to the sequence number exists on the topic name or

not. If exists, then the publisher ID will be added to the delete-doers list. The delete doers list

consists of the pair topic name and sequence number.

Algorithm:

 Inputs

 String: topicName

 Integer: Subscriber ID

 Integer: SeqNo

 String: State

 Update state of ID to State

 If Value corresponding to SeqNo exists on topicName then

 Add ID to Delete-Doers list of <topicName, SeqNo>

End if

5.13 Leave Group

In previous two algorithms, the publishers and subscribers join the group, then written

into scalaris. The group record entry state can also be retrieved, whether it is stable or

unstable. If the publishers and subscribers want to leave the group, then the leave group

algorithm is implemented.

The inputs for the leave group algorithm are the configuration file of group

communication. After getting the configuration file, the group entry record is retrieved from it.

The group entry record consists of the list of parameters group name, members list, readers

48

list, change makers list and state of the group entry record (stable/unstable). Also the time

based parameters time out and delay values are retrieved from the configuration file. After

retrieving them, if the time out value is greater than zero and the group name entry is unstable

then the time out value is decremented by the value of one and there will be a wait time of

delay value. The above procedure is a loop which gets executed until the group name entry

record is stable. When the time out value will become zero then the group record entry is

written to scalaris with the list of the parameters group name, members list, self node, readers

list, change makers list and make the group record entry as unstable. Thus the publishers and

subscribers leave the group.

Algorithm

 Inputs

 The configuration file of group Communication.

 Retrieve the Group Entry Record from Scalaris <groupName, MembersList, ReadersList,

 ChangeMakersList, {stable/unstable}Flag>

 Timeout <= Retrieve Time-Out value from Configuration file

 Delay <= Retrieve the delay time from Configuration file

 While timeOut > 0 ^ groupName entry Record is Unstable do

Timeout <= timeOut - 1

 Wait(delay)

 End while

Write to Scalaris <groupName, MembersList \ {selfNode}, { }asReadersList, ChangeMakersList U

{selfNode}; unstable>

5.14 Garbage Collector

49

In the previous two algorithms, the procedure of deleting a value corresponding to a

sequence number of the topic name published by updating the state of the publisher ID is

explained. There are three reasons to delete a value corresponding to the sequence number,

they are as follows:

 The value can be deleted by the subscriber ID

 If the lease period of the subscription is expired

In the Garbage collector algorithm, the procedure of the deleting the value is explained. If the

publisher/subscriber wish to delete or the lease period of the subscription is expired, then the

value corresponding to the sequence number of the topic name published is deleted. The lease

is expired, when the Global Virtual Time (GVT) is greater than the sum of the time stamp

recorded at the point of publishing and the lease period value which is mentioned at the point

of the subscription.

Algorithm:

For all topicName Topics published till now do

For all seqNo Sequence numbers of values written on topicName do

For all subscriber Subscribers of topicName do

If subscriber has issued a delete V lease of subscriber has expired then

Delete < topicName, seqNo, Value >

End if

End for

End for

End for

50

6. Related Work

We have compared different distributed databases and group communication systems

with respect to group communication attributes like consistency, availability, partition

tolerance, mutable objects, churn tolerance and real time response.

The OMG Data-Distribution Service (DDS) [9] provides the implementation of publish-

subscribe concept, in which publisher publishes the message and subscriber subscribes to the

messages published. The Data Distribution Service (DDS) have two layers of interfaces: the

lower level of interface Data-Centric Publish Subscribe (DCPS) make sure that every message

published will be delivered to the subscriber, and the higher level of interface Data-Local

Reconstruction Layer (DLRL) enables the integration into the application layer. The DDS

infrastructure doesn’t provide all the group communication characteristics like consistency,

availability, partition tolerance, mutable objects and churn tolerance. It provides only real time

response. Some reliable multicast group communication systems like ISIS [5][6] and Spread[8]

will provide only two of the group communication characteristics, partition tolerance and real

time response. These systems are centralized and have single point failure, when there is failure

in the node or component then the whole system fails.

Google’s Bigtable [11], which is implemented in many Google applications like Google

earth, Google Finance and web services is a distributed storage system for organizing the

structured data. Bigtable has achieved the group communication characteristics like

consistency, availability and partition tolerance; but they fail to achieve the other group

communication characteristics churn tolerance, mutable objects and real time response.

51

Cassandra [12] is developed by the Facebook, is a distributed storage system managing

the large data deployed on the servers located at various geographical locations. It runs on the

top of the nodes located in various locations. It is decentralized and doesn’t have single point

failure. It achieves the group communication characteristics like availability and mutable

objects, but fail to achieve other attributes consistency, partition tolerance, churn tolerance

and real time response. Another database, Apache’s CouchDB [13] is an open source

documented oriented database. It is written in Erlang language, and it stores the data in the

form of a collection of JSON documents instead of tables. The couchDB achieves group

communication objectives, consistency and mutable objects. But it fails to achieve availability,

partition tolerance, churn tolerance and lacks real time response.

Distributed Hash Table (DHT) [14] implements the key-based routing in a structured

way, thus achieving the decentralization, fault tolerance and scalability. Also, it achieves the

group communication characteristics like mutable objects and real time response. But it fails to

implement Brewer’s CAP theorem completely. It fails to achieve the group communication

characteristics like consistency, availability, partition tolerance and churn tolerance. Amazon’s

dynamo is a key-value store [15]. To achieve the high availability, it gave up the consistency

objective. It achieves availability, partition tolerance and mutable objects; but fails to achieve

other group communication characteristics like consistency, churn tolerance and real time

response. Last middleware system we compared is gizzard, which is implemented on twitter

[16]. It runs on Java virtual machine (JVM) and achieves the objectives availability, partition

tolerance, churn tolerance and real time response. It fails to implement the objectives of group

communication system, consistency and mutable objects.

52

Unlike above group communication systems and distributed databases, our work

reliable group communication system over asynchronous substrate implements all the group

communication objectives with a slight modification in objective consistency. We achieved

“Eventual Consistency” instead of consistency, availability, partition tolerance, churn tolerance,

mutable objects and real time response. We designed and developed a reliable group

communication system over an asynchronous substrate, the group communication system

being GComm, and the asynchronous substrate being distributed database scalaris.

53

7. Experimental Results

To implement our design and development, we implemented our work on two nodes to get

results and performance analysis. We’ve choose two nodes named Kayathi and Anvesh-PC. And we’ve

configured them with scalaris database and GComm group communication system.

7.1 Screenshots

When two nodes: Kayathi and Anvesh-PC joins a group named root, the series of the

events happened in explained in the screenshots below.

Figure 7.1.1 A screenshot of node kayathi joining the group

 Initially, the node kayathi wants to join the group, root. The node admin of the kayathi

will build the node configuration file with node name kayathi, group name node and IP address

of the scalaris database. As the group name node doesn’t exist in the group communication

system, the system will create a group named root. In other words, as the group root doesn’t

exist, it is created by the node kayathi. After creating the group, it updates its view which is

54

shown below. The view shows the node kayathi is the one and only member of the group

named root.

Figure 7.1.2 A screenshot of Node Kayathi’s view after joining the group named root.

 When the other node named anvesh-pc wants to join the group named root. The node

administrator of the node anvesh-pc will build the node configuration file with node name

anvesh-pc, group name root and IP address of the database. When the group communication

system receives the request, it checks whether there is a group named root exists. As it was

already created by the other node kayathi, it joins the node anvesh-pc into the group named

root. Then the anvesh-pc updates its view, which shows both nodes kayathi and anvesh-pc are

55

members of group named root. The view will appear same to the bothe nodes kayathi and

anvesh-pc.

Figure 7.1.3 A screenshot of node Anvesh-pc joining the group

Figure 7.1.4 A screenshot of Node Anvesh-pc‘s View after joining the group named root.

56

The view showing two nodes, kayathi and anvesh-pc in the group named root.

Figure 7.1.5 A screenshot of terminal window, when node kayathi leaves the group.

 When the node kayathi leaves the group named root, the terminal in the kayathi node

displays the command “Exiting” as shown above. The view of node kayathi will be closed, as it’s

not a member of any group in the group communication system. The node has to be a member

of any group in the group communication system, if it is present in the system.

 On the other hand, the node anvesh-pc is still the member of group named root, even

though the creator of the group leaves the group. The view of node anvesh-pc will show only

itself as the member of the group, root. And if the node anvesh-pc will leave the group root,

then the group root will become nonexistent and the group communication system GComm

will delete the group root. As mentioned earlier, a group in a GComm must contain at least one

node as its member otherwise it will become nonexistent.

57

Figure 7.1.6 A screenshot of Node Anvesh-pc’s view after the node kayathi leaves the group.

7.2 Performance Analysis

 We recorded the time take for each activity carried by the node in GComm by running

our execution for 30 iterations. The activities for which we recorded the time are node joining

the group, leaving the group, writing a value, reading a value and deleting a value. The

performance graphs (figure 7.2.1 and figure 7.2.2) has units of time in seconds, while the

performance graphs (figure 7.2.3, figure 7.2.3 and figure 7.2.3) has units of time in milliseconds.

58

Figure 7.2.1 A performance graph displaying the time taken (in seconds) for node to join the
group in 30 iterations

Figure 7.2.2 A performance graph displaying the time taken (in seconds) for node to leave the
group in 30 iterations

0.79

0.792

0.794

0.796

0.798

0.8

0.802

0.804

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No. of Iterations

Join the Group

0.39

0.392

0.394

0.396

0.398

0.4

0.402

0.404

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No of Iterations

Leave the Group

59

Figure 7.2.3 A performance graph displaying the time taken (in milliseconds) for writing a
value

Figure 7.2.4 A performance graph displaying the time taken (in milliseconds) for reading a
value

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Write a Value

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Read a Value

60

Figure 7.2.5 A performance graph displaying the time taken (in milliseconds) for deleting a
value

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Delete a Value

61

8. Conclusions

We have designed and developed a reliable group communication system over an

asynchronous substrate which provide persistent communication in disadvantaged networks

and guarantees of

 Eventual Consistency

 Availability

 Partition Tolerance

Our system implemented publish-subscribe framework successfully. Our system comprises of

mutable objects, which can be altered. Also, it achieved churn tolerance and real time

response.

62

References

1. Lamport, L.; , "How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs," Computers, IEEE Transactions on , vol.C-28, no.9, pp.690-691,
Sept. 1979 [doi: 10.1109/TC.1979.1675439]
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1675439&isnumber=
35185

2. W. Vogels. Eventually Consistent. ACM Queue vol. 6, no. 6, December 2008.

3. Stonebraker, Michael. "Errors in Database Systems, Eventual Consistency, and the CA P
Theorem." Communications of the ACM. ACM, 05 04 2010. Web. 20 Oct 2010.
<http://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-eventual-
consistency-and-the-cap-theorem/fulltext>.

4. Eric A. Brewer, Towards robust distributed systems (abstract), Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, p.7, July 16-
19, 2000, Portland, Oregon, United States [doi>10.1145/343477.343502]

5. Kenneth P. Birman, Reliable Distributed Systems: Technologies, Web Services, and
Applications, Springer-Verlag New York, Inc., Secaucus, NJ, 2005

6. Kenneth P. Birman. 1993. The process group approach to reliable distributed computing.
Commun. ACM 36, 12 (December 1993), 37-53. DOI=10.1145/163298.163303
http://doi.acm.org/10.1145/163298.163303

7. B. Ban. JGroups, a toolkit for reliable multicast communication.
http://www.jgroups.org/, 2002.

8. AMIR,Y.AND STANTON, J. 1998. The spread wide area group communication system. TR
CNDS-98-4, The Center for Networking and Distributed Systems, The Johns Hopkins
University.

9. Pardo-Castellote, G.; , "OMG Data-Distribution Service: architectural overview,"
Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International
Conference on , vol., no., pp. 200- 206, 19-22 May 2003
doi: 10.1109/ICDCSW.2003.1203555
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203555&isnumber=
27094.

10. Thorsten Schett, Florian Schintke, and Alexander Reinefeld. 2008. Scalaris: reliable
transactional p2p key/value store. In Proceedings of the 7th ACM SIGPLAN workshop on
ERLANG (ERLANG '08). ACM, New York, NY, USA, 41-48. DOI=10.1145/1411273.1411280
http://doi.acm.org/10.1145/1411273.1411280

11. Fay Chang , Jeffrey Dean , Sanjay Ghemawat , Wilson C. Hsieh , Deborah A. Wallach ,
Mike Burrows , Tushar Chandra , Andrew Fikes , Robert E. Gruber, Bigtable: A

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1675439&isnumber=35185
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1675439&isnumber=35185
http://queue.acm.org/detail.cfm?id=1466448
http://portal.acm.org/citation.cfm?id=343502&CFID=108643274&CFTOKEN=64764285
http://portal.acm.org/citation.cfm?id=343502&CFID=108643274&CFTOKEN=64764285
http://portal.acm.org/citation.cfm?id=343502&CFID=108643274&CFTOKEN=64764285
http://doi.acm.org/10.1145/343477.343502
http://portal.acm.org/citation.cfm?id=1062408&CFID=108644143&CFTOKEN=50665116
http://portal.acm.org/citation.cfm?id=1062408&CFID=108644143&CFTOKEN=50665116
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203555&isnumber=27094
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203555&isnumber=27094
http://portal.acm.org/citation.cfm?id=1365816&CFID=108650831&CFTOKEN=11723868
http://portal.acm.org/citation.cfm?id=1365816&CFID=108650831&CFTOKEN=11723868

63

Distributed Storage System for Structured Data, ACM Transactions on Computer
Systems (TOCS), v.26 n.2, p.1-26, June 2008 [doi>10.1145/1365815.1365816] Scalaris

12. A. Lakshman, P. Malik. Cassandra - A decentralized structured storage system, in: 3rd
ACM SIGOPS International Workshop on Large Scale Distributed Systems and
Middleware, 2009.

13. "The CouchDB Project." Apache CouchDb: The CouchDB Project. The Apache Software
Foundation, 2009. Web. 20 Oct 2010. <http://couchdb.apache.org/>.

14. E. Sit and R. Morris, “Security Considerations for Peer-to-Peer Distributed Hash Tables,”
Proc.1st Int’l. Wksp. Peer-to-PeerSystems (IPTPS), Cambridge, MA, USA, Mar. 2002.

15. D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: amazon’s highly available key-value store,” in ACM Symposium
onOperating Systems Principles, 2007.

16. "Twitter's Gizzard." Gizzard: a library for creating distributed datastores. Github Inc.,
2010. Web. 20 Oct 2010. <https://github.com/twitter/gizzard/>.

17. Mattern, F., Mehl, H., Schoone, A., Tel, G. Global Virtual Time Approximation with
Distributed Termination Detection Algorithms. Tech. Rep. RUU-CS-91-32, Department of
Computer Science, University ofUtrecht, The Netherlands, 1991.

18. Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system.
Communications of ACM 21, 7 (July 1978), 558-565. DOI=10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563

http://doi.acm.org/10.1145/1365815.1365816

64

Vita

Vikram Reddy Kayathi was born in Hyderabad, India in August 1986. He earned his

primary and secondary education from Kakatiya Central High School in Hyderabad, Andhra

Pradesh. After finishing his high school, he took a very competitive entrance examination for

engineering known as EAMCET and stood in top 0.5%. After qualifying this examination he got

admission to Department of Information Technology, Chaitanya Bharathi Institute of

Technology (CBIT) one of the prestigious institutes in Andhra Pradesh, India. He received his

Bachelor of Engineering (B.E.) from Osmania University, Hyderabad, India, in sping 2008. Then

he came to United States of America to pursue master’s degree. He then joined the graduate

program at Louisiana State University, Baton Rouge, in fall 2008. Apart from the academics, he

is involved in voluntary activities through Association of India’s Development (AID), as a

president of Baton rouge, Louisiana, chapter. His career interests are cloud computing,

middleware technologies and web technologies, and would like to continue his career in those

fields. He is a candidate for the degree of Master of Science in System Science to be awarded at

the commencement of fall, 2010.

	Louisiana State University
	LSU Digital Commons
	2010

	An Adaptable Group Communication System
	Vikram Reddy Kayathi
	Recommended Citation

	tmp.1483774927.pdf.Yil4v

