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Abstract

We consider the estimation of a deterministic unknown parameter in an encrypted wireless
sensor networks. Adaptive quantization is used on the sensor’s observation and the outputs
of the sensors are then encrypted using a probablisitic cipher. In a conventional fixed
quantization scheme, estimation error grows exponentially with the difference between the
threshold and the unknown parameter to be estimated. Hence, to avoid this, we used
and adaptive quantization scheme where each sensor adaptively adjusts its quantization
threshold.

We find the Cramer-Rao Lower Bound for the Ally Fusion Center (AFC) and then find the
optimal estimate of the unknown parameter for the AFC. To find this, we first prove that
the sequence of thresholds used for the quantization process forms a markov chain and that
this chain is recurrent non-null and thus has a stationary distribution. This distribution is
then obtained analytically in closed form as well as through numerical methods.

The optimal estimate of the unknown parameter for the AFC is obtained asymptotically
in the number of sensors. The performance of the Third Party Fusion Center (TPFC) is
only computed through simulation and compared to that of AFC.

vi



1 Introduction

1.1 Overview

With the recent technological advances, Wireless Sensor Networks (WSNs) are gaining great

research interests because of their wide range of applications in both consumer and security

fields. The developments in MEMS (Micro Electro Mechanical Systems), wireless commu-

nications and digital electronics have made sensors much smaller and cheaper. [1]. This

low-cost of sensors made the deployment of a large number of sensors in a geographical area

possible. Distributed sensor systems were originally motivated by their applications in mil-

itary surveillance where they use sensors for command, control and communication, [2] [3],

but are now used in wide variety of fields. Some of the application areas include health,

military, and security [4]. For example, they can be used to detect foreign elements in

atmosphere or water, monitoring of temperature or pressure in environment and so on.

One of the most important constraints in WSNs is the power requirement. Sensor nodes are

battery powered. Consequently they have a limited and irreplacable power source which

can be exhausted after a while. Therefore, while the traditional WSNs want to achieve

high quality of service (QoS), practical application of sensors primarily focus on power

conservation [4].

Wireless sensor networks have been studied for distributed detection and distributed estima-

tion [3]. Here we mainly deal with the fundamentals of decentralized estimation problem.

The problem of decentralized estimation has been studied in the context of distributed con-

trol [5], [6] and tracking [7] and most recently this has been exteneded to WSNs [8]- [13].
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For applications related to multiple-target detection and estimation, decentralized detec-

tion and estimation has surfaced. In a classical multi-sensor network model, it is assumed

that all the sensors send the data to a central processor (known as the fusion center) that

performs the optimal detection/estimation of the data. In a decentralized network, pro-

cessing of data is carried out at each individual sensor and then ultimately sent to the

fusion center [3]. Therefore this means that the network has intelligence at each node [14].

The centralized scheme is not practical and therefore we consider the case of decentralized

estimation. This scheme also has advantages like low communication bandwidth, increase

in reliability and low cost. In a decentralized system, there is partial information loss due

to the processing at individual sensors compared to a centralized system and hence the per-

formance is relatively degraded. However, this performance loss can be made minimal by

processing the information at the sensors optimally [15]. Based on the flow of data among

the sensors and the fusion center, various topologies have been classified. In general, a

distributed sensor network has to address various issues like the choice of topology, exis-

tence of communication between sensors, feedback of data from fusion center, and external

threats to the system [3].

1.2 Topologies

Wireless sensor networks can be catagorized based on the arrangement of sensor nodes and

the fusion center in the network. There are three major topologies based on this classifica-

tion - parallel, serial and tree topologies.

In parallel topology, sensors do not communicate with each other. They collect data si-
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multaneously from the phenomenon, process it and then transmit this processed data to

the fusion center where the decision is made based on the data from all the sensors.

S1 S2

Fusion Rule

x2x1

SN

xN

b1
b2 bN

b0

Figure 1.1: Parallel Topology of wireless sensor networks

Fig. 2 shows the serial topology of the WSN. Here, the sensors are connected in series with

each other i.e., they communicate with the neighbouring sensor in a unidirectional way.

This means that the first sensor processes the data from the phenomenon, makes a decision

and transmits this to the second sensor which makes a decision based on this recieved data

along with its own observation from the phenomenon. This decision is then transmitted to

the adjacent sensor and so on. Here the last sensor in this series can be considered as the

fusion center and the decision made by this is the final decision in the network.
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S1 S2

x1
x2 xN

SN

b1 b2 bN−1
bN

Figure 1.2: Serial Topology of wireless sensor networks

Now the tree topology is nothing but a combination of both series and parallel networks

combined together. Here sensors are arranged in various stages and the each stage gets the

decision from the preceeding stage and makes a decision based on this along with its own

observation. The final stage is the fusion center (also called as the root of the tree) here

and gives the final decision.

S1 SL
S2

z1
z2

C1

C2

Fusion Center

x1
x2 xL

Cluster 1

b1
b2 bL

CNc

zNc

z0 (Final decision)

Nc: Number of clusters

Figure 1.3: Tree Topology of wireless sensor networks
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Here in all these networks, the information flow is in only one direction which is nothing

but in the direction of the fusion center.

1.3 Literature

In this thesis, we consider the case of serial topology. In the decentralized WSN, because

of the bandwidth constraints, the sensors quantize the data before transmitting it further.

But this quantization degrades the performance of the system. Therefore, this decentralized

network is preferred only when there is bandwidth constraint.

Various kinds of quantization techniques have been formulated. A quantizer maps the

real-valued measurements from the phenomenon to a finite set of values qi based on the

thresholds of the sensors τi. The quantizers are broadly classified as uniform and non-

uniform quantizers based on the step-size (distance between the thresholds). In a uniform

quantizer, all the thresholds are equally spaced and the outputs are the center values of

the intervals, while in non-uniform quantizer, the thresholds and the output values are

optimized based on a cost function.

Quantization for estimation has been studied for a single sensor case by [16] and [17]. The

multi-sensor case has been studied in [18] and [19]. Many methods have been formulated

for the design of quantizers with the aid of the prior distribution knowledge of the unknown

parameter to be estimated. These methods usually require knowledge of joint distribution

of this parameter along with the observed signals by the sensors [20]. Another category

of methods for quantization treat the unknown parameter as a deterministic value. An

example of this case is the fixed quantization approach where there is a common threshold
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for all the sensors [20]. The problem with this fixed quantization is that the choice of

the threshold value is very sensitive, i.e., the closer the threshold value is to the unknown

parameter, the better is the performance of the system. This disadvantage led to research in

adaptive quantization, where there is a different threshold value for eash sensor depending

on the data observed from the phenomenon. Some adaptive quantization techniques have

been proposed in [20] [21].

Many results have been published in the field on WSNs for serial topology. In [26] they

provided the necessary and sufficient conditions for the probability of error to go to zero

asymptotically for both binary and multiple hypothesis problems. [27] is the first paper

which proposed recursive equations for threshold values in serial topology WSN. All the

works in serial topology provided all the results asymptotically in the number of sensors.

But in [27], they considered a finite number of sensors and compared the probability of

detection and probability of false alarm and used an adaptive quantization scheme.

Most of the works in the detection and estimation of the data in distributed systems has not

considered the presense of the channel between the sensors which is an important factor.

That is, perfect reception of the data is assumed at sensors from the preceeding sensors.

This is not practical in general but analysis becomes some times difficult and hence we

consider a perfect channel. Here in our case, we consider a perfect channel as solving the

equations for a noisy wireless channel is out of our scope for now.

6



1.4 Adaptive Quantization

We consider a decentralized system to estimate an unknown parameter θ from quantiza-

tion observations. Suppose we have N sensors distributed spatially and each making an

observation of θ

xi = θ +Wi

where Wi denotes the additive i.i.d noise with zero-mean. The 1-bit quantizer used by the

ith sensor is given by

bi = Qi(xi)

1.4.1 Adaptive Quantization - Fixed Step-size (AQ-FS)

Adaptive quantization with fixed step-size was introduced in [21]. In this, the first sensor

uses an arbitrary threshold, say τ1 = 0 to generate the quantized bit b1

b1 = sgn{x1 − τ1}

Now, b1 is broadcasted to all other sensors and the fusion center. Sensor 2 computes

τ2 = b1∆ where, ∆(> 0) is the step-size. Then, b2 and τ3 are generated as

b2 = sgn{x2 − τ2}

τ3 = τ2 +∆b2

7



In general, for the nth sensor

τn = τn−1 +∆bn−1 = ∆
n−1
∑

k=1

bk

bn = sgn{xn − τn}

In this scheme, it is shown that τn converges to θ as n increases.

1.4.2 Adaptive Quantization - Variable Step-size (AQ-VS)

It can be observed that the determination of the threshold value has 2 stages: transient

phase which brings τn near θ and convergent phase where τn is around θ. To make the

convergence fast, we need to have large step-size, but to reduce the granular noise after

convergence, we need to have small ∆ value. Based on this, another scheme is introduced

using variable step-size.

Let b1 and b2 be generated in the same way as in AQ-FS. Now at next sensors, previous

bits are accumulated and weighted by a VS ∆n for nth sensor. Then,

τn = τn−1 +∆nbn−1

where ∆n is given by

∆n = ∆n−1K
bn−1bn−2 n = 3, 4, ...

where K > 1 is a constant. It is observed that AQ-VS converge faster and stay closer to θ

compared to AQ-FS.
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1.4.3 Adaptive Quantization - Maximum Likelihood (AQ-ML)

In AQ-VS, the step-size depends only on the previous 2 bits. So we can extend this scheme

to use more than two previous bits for a finer value of step-size. In this AQ-ML scheme,

we use nonlinear ML estimation to adjust the value of the threshold.

Let b1 be generated by AQ-FS. Then, the sensor 2 after receiving this value, computes

τ2 = ∆b1 and sets b2 = sgn{x2 − τ2}. Based on {b1, b2}, sensor 3 computes τ3 as

τ3 = argmax
θ
L3(θ; b1, b2)

where L3(θ; b1, b2) denotes the likelihood function of θ. Here τ3 is nothing but the ML

estimate of θ based on b1 and b2. Here, the step-size ∆ used by sensor 2 should be large

enough so that b1 and b2 have oppostive signs. Else, τ3 goes to positive or negative infinity

and hence should be avoided. Therefore, ∆ should be sufficiently large for this to be

satisfied. If, for a chosen ∆, the first two quantized bits have the same sign, the following

sensors can use AQ-FS or AQ-VS until they have opposite signs.

In general, for the nth sensor, we have,

τn = argmax
θ
Ln(θ; b1, b2, ..., bn−1)

where we get the quantized data {bk}n−2
k=1 from the previous thresholds {τk}n−1

k=1. Here,

although sensor n has to perform n − 3 recursive ML estimations, the complexity is still

moderate for Gaussian noise.

In all the three schemes mentioned above, the thresholds used by each scheme only depend
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on and can be inferred from the quantized data {bk}. No extra bandwidth is needed to

communicate the thresholds. AQ-FS and AQ-VS are simple to calculate while AQ-ML

offers the best performance among all the three and converges to the best 1-bit quantizer.

And we can also note that AQ-FS and AQ-VS require no knowledge of the distribution

of data and can be considered as nonparametric quantizers. On the other hand, AQ-ML

needs the distribution of the sensor observations.

Inspired by this, we use AQ-FS in our system.

1.4.4 Motivation for This Work

Most of the previos works in decentralized estimation problem used a fixed quantization

technique. The probability of error increase exponentially with the difference between the

threshold value and the unknown parameter to be estimated for this case. So in order to

minimize this error in estimation, we try to use an adaptive quantization scheme where

the quantization threshold value changes according to the observations of all the previous

sensors in the system.

In all the previous works, they mainly focussed on the energy or the cost constraints.

Security, which is an important issue for the system has been neglected. In a WSN there

might be an eavesdropper (Third Party Fusion Center or the Enemy Fusion Center) who try

to tap the channel and get the information from the sensor observations and then further

estimate the unknown parameter for its own benefit. If it knows the model of the system

completely, it might also try to distort the channel between the sensors and the fusion

center by sending some jamming signals so that the estimate made by the original (Ally)

10



fusion center is no more effective. So this physical layer security is an important issue in

the design of a WSN. Aysal et. al., first proposed a stochastic encryption scheme so as to

improve the security. Inspired from this, we use a similar kind of encryption scheme in this

thesis.

Here we thus discuss the performance of the serial wireless sensor network using adaptive

quantization with security added. Stochastic enciphers are introduced in the system at the

sensors end so that the performance of the AFC is better than that of the TPFC which

try to seek information from the network illegally. Hence it is reasonable to assume that

probability distribution of the encipher is known only to the AFC.

Here we also assume that the TPFC has no knowledge that there is an encryption process

going in the system. Even if it comes to know about the encryption, as it does not the know

the probability distribution of the ciphering used, there is always an error in the estimate

for TPFC.

11



2 System Model

In this chapter, we will discuss the model of the system we assumed. We consider an

encrypted WSN system in our design so as to protect the information against any unau-

thorized user. In a general WSN, any third-party fusion center (TPFC) can moniter the

transmission medium and can have an access to the quantized sensor outputs using which

they can perform the same calculations as an ally fusion center (AFC) and find an optimal

maximum-likelihood (ML) estimate for the unknown parameter [8]. Hence, we consider a

probabilistic encryption scheme in our thesis.

We consider the estimation of a deterministic unknown parameter θ from quantized obser-

vation in an encrypted WSN. Suppose we have N sensors distributed spatially and each

making an observation of θ

xi = θ +Wi (2.1)

whereWi denotes the additive noise (i.i.d) with zero-mean. Here we assume that the binary

output of the sensor is encrypted probabilistically. We consider symmetric-key encryption

where the ”0” and ”1” enciphering probabilities are equal. We derive the Cramer-Rao

lower bound for this estimation problem for the ally fusion center. Further, we also try to

analyze the effect of this encryption on the enemy fusion center (Third party fusion center)

which does not know that the system is encrypted. The 1-bit quantizer used by the sensor

is

bi = Qi(xi) (2.2)

12



Now the binary data bi is encrypted and sent to the fusion center to make an estimate

of θ. We assume that the sensors use the channel by time-sharing and transmit the data

sequentially [20]. We assume that the data transmitted by each sensor can be heard by

every other sensor in the network due to the broadcasting nature of the channel. We further

assume that the data is received without any errors and assume that the quantization

process is independent of the channel.

2.1 Quantization

The sensor 1’s 1-bit quantizer uses an arbitrary threshold, say τ1 = 0, to generate b1 which

is encrypted and sent to all other sensors by broadcasting.

b1 = sgn{x1 − τ1} (2.3)

Here these decisions are transmitted to the fusion center through a wireless channel which

can be accessed by any other unauthorized user who can estimate θ from its observations.

In order to degrade the estimation of this unauthorized user, we encrypt the data and then

transmit it through the channel so as to make it inaccessible to other users. We use a

probabilistic cipher whose distribution is known only to the AFC (Ally Fusion Center).

The encryption method used here is defined as

Pr(b̃n = 1|bn = 0) = Pr(b̃n = 0|bn = 1) = p

Pr(b̃n = 0|bn = 0) = Pr(b̃n = 1|bn = 1) = 1− p

13



Here note that the performance of the system is degraded due to this encryption process

and hence the performance of the non-encrypted network is always better compared to the

encrypted one.

Now, sensor 2 receives b̃1 instead of b1 because of this cipher and it then computes τ2 = b̃1∆,

where ∆ is a positive number referred to as stepsize. Using this, sensor-2 generates b2 and

τ3 as

b2 = sgn{x2 − τ2} (2.4)

τ3 = τ2 + b̃2∆ = (b̃1 + b̃2)∆ (2.5)

In general, for the nth sensor we have

τn = τn−1 + b̃n−1∆ = ∆
n−1
∑

k=1

b̃k (2.6)

and the sensor generates bn using this τn as

bn = sgn{xn − τn} (2.7)

and transmits b̃n.

Note that usually sensors are deployed in a large number and so we have resource constraints

on WSNs. This restricts the cost of the sensors and power utilization. This, in turn restricts

the bandwidth and the number of computations at the sensors. Hence, we considered the

most restricted case in our system in which each sensor trasmits a single bit. As the

probabilistic enciphering scheme used is just like coin flipping, it does not increase the

number of bits, communication costs, or bandwidth utilization. [8]
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3 Analysis for AFC

In this chapter we try to find the optimal estimate of the unknown parameter θ for the AFC.

For that, we first analyze the distribution of the thresholds of the sensors. We minimize

the maximum likelihood function to find the maximum likelihood estimate of θ. In our

system, we have seen that AFC has access to the encryption probability p.

We first try to find the distribution of the thresholds. We can observe that bi ∈ {±1}. This

means, τn = i∆ implies

τn+1 =



















(i+ 1)∆, if b̃n = 1

(i− 1)∆, if b̃n = −1

(3.1)

From which we can find the transition probability as

P (τn+1 = (i+ 1)∆|τn = i∆) = P (b̃n = 1|τn = i∆)

= P (b̃n = 1|τn = i∆, bn = 1)P (bn = 1|τn = i∆)

+P (b̃n = 1|τn = i∆, bn = −1)P (bn = −1|τn = i∆)

= (1− p)P (xn > i∆) + pP (xn < i∆)

= (1− p)FW (i∆− θ) + p [1− FW (i∆− θ)]

and
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P (τn+1 = (i− 1)∆|τn = i∆) = P (b̃n = −1|τn = i∆)

= P (b̃n = −1|τn = i∆, bn = 1)P (bn = 1|τn = i∆)

+P (b̃n = −1|τn = i∆, bn = −1)P (bn = −1|τn = i∆)

= pP (xn > i∆) + (1− p)P (xn < i∆)

= pFW (i∆− θ) + (1− p) [1− FW (i∆− θ)]

Therefore, in general,

P (τn+1 = j∆|τn = i∆) =



































pFW (i∆− θ) + (1− p) [1− FW (i∆− θ)] , if j = i− 1

(1− p)FW (i∆− θ) + p [1− FW (i∆− θ)] , if j = i+ 1

0, else

(3.2)

From this it can be seen that, {τn} is a homogeneous random walk. Let Pn,j , P (τn = j∆).

Then the pmf of τn is given by

Pn,j = Pn−1,j−1P (τn = j∆|τn−1 = (j − 1)∆) + Pn−1,j+1P (τn = j∆|τn−1 = (j + 1)∆) (3.3)

3.1 Stationary Distribution

In the following section, we prove that the chain τn is a recurrent non-null and therefore has

a stationary distribution. We also find a closed form solution for this stationary distribution.
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Let

pi,j = P (τn+1 = j∆|τn = i∆) (3.4)

This is a two-sided random walk. For p = 0 or p = 1, this reduces to the problem analyzed

in [22], [20].

What about p 6= 0, 1? Is there a stationary distribution for {τn}?

{τn} is a periodic (period 2) irreducible Markov chain. Thus all states belong to the same

class: all transient, all recurrent null or all recurrent non-null.

They can not be all transient. Suppose they are. Then the chain τn must drift to ±∞,

that is, for any x > 0

lim
n→∞

P (|τn| < x) = 0 (3.5)

This, however, implies that the majority of Xn’s must be greater than x in magnitude. Let

µn(x) = number of |X1|, |X2|, ..., |Xn| that are greater than x. Then, the above equation

implies that

lim
n→∞

P

(

µn(x)

n
> 1/2

)

> 0 (3.6)

Let

Ii =



















1, if |Xi| > x

0, else

Then, µn(x) =
n
∑

i=1

Ii. This implies,

Eµn(x) =

n
∑

i=1

EIi =

n
∑

i=1

P (|Xi| > x)
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Let P (|Xi| > x) = ε(x), where ε(x) is determined by the distribution of Xn. Clearly for x

large enough, ε(x) can be made arbitrarily small i.e.,

lim
x→∞

ε(x) = 0

Thus,

Eµn(x)

n
=
nε(x)

n
= ε(x) (3.7)

Now the above equation and the weak law of large numbers implies that

lim
n→∞

P

(

µn(x)

n
> 1/2

)

= 0

This shows that the chain is not transient. Therefore it is recurrent.

We will try to find a stationary distribution. If such distribution exists, then the chain is

recurrent non-null.

Writing the balance equations, we get,

Πkpk,k+1 = Πk+1pk+1,k

For k > 0,

Πk+1 = Πk
pk,k+1

pk+1,k

= Πk−1
pk−1,k

pk,k−1

pk,k+1

pk+1,k

= .... = Π0

k
∏

i=0

pi,i+1

pi+1,i

For k < 0,

Πk = Πk+1
pk+1,k

pk,k+1

= .... = Π0

k+1
∏

i=0

pi,i−1

pi−1,i
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Let Gi =
pi,i−1

pi−1,i
. Then,

Gi =
pFn(i∆− θ) + (1− p) [1− Fn(i∆− θ)]

(1− p)Fn((i− 1)∆− θ) + p [1− Fn((i− 1)∆− θ)]

=
(1− p)− (1− 2p)Fn(i∆− θ)

p+ (1− 2p)Fn((i− 1)∆− θ)

Then, we have

Πk =























































Π0







k
∏

i=1

Gi







−1

; k > 0

Π0; k = 0

Π0







k+1
∏

i=0

Gi






; k < 0

(3.8)

Now by choosing

Π0 =











1 +
∞
∑

k=1







k+1
∏

i=1

Gi







−1

+
−1
∑

k=−∞







k+1
∏

i=0

Gi

















−1

we ensure that
∞
∑

−∞
Πk = 1 and thus Πk is the stationary distribution.This follows from the

following theorem.

Theorem: Let X be an irreducible recurrent chain with the transition matrix P . Then

ν = νP has a strictly positive solution which is unique to within a constant multiplication.

This theorem and the fact that τn is recurrent implies that Π0 6= 0 and thus Πk is strictly
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positive.

It can be proved that for 0 6 p < 0.5, the Markov chain is recurrent non-null and therefore

we have a solution. But for 1 > p > 0.5, the chain becomes transient and for p = 0.5, it

becomes recurrent null. Therefore for 0 6 p < 0.5, the chain has a stationary distribution.

3.2 Asymptotic Distribution of Thresholds

Calculating Cramer-Rao Bound (CRB) using the previous described distribution of thresh-

olds is not so convenient. Therefore, we examine the asymptotic performance of this dis-

tribution. We can notice that {τn} form a Markov chain with the transition probabilities

given above.The convergence in distributions of {τ2n} and {τ2n+1} follows from a station-

arity theorem [22]

lim
n→∞

P2n,k = Pe,k, lim
n→∞

P2n+1,k = Po,k (3.9)

We can observe that τ2n takes only odd states {±∆, ....,±(2n− 1)∆} and τ2n+1 takes only

even states {0,±2∆, ....,±2n∆} i.e., Pe,2i = 0 and Po,2i+1 = 0 for any integer i. Thus

the chain is periodic with period 2. For a large number of states, we have atypical states

whose steady-state probability decereases with increase in n value and typical states whose

steady-state probability remains significant as n increases. These typical states are those

threshold values which are relatively close to θ. Here we see the asymptotic analysis by

ignoring the atypical states and just considering the typical states. We define a new vector

Π as

Π , [Po,−2k, Pe,−2k+1, Po,−2k+2, Pe,−2k+3, ...., Po,2k, Pe,2k+1]
T (3.10)
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where k is chosen large enough so as to include all typical states in the Markov chain. By

this asymptotic analysis, considering the transition between {τ2n} and {τ2n+1}, we can see

that

Pe,2j+1 = Po,2jP (τ2n = (2j+1)∆|τ2n−1 = 2j∆)+Po,2j+2P (τ2n = (2j+1)∆|τ2n−1 = (2j+2)∆)

Po,2j = Pe,2j−1P (τ2n+1 = 2j∆|τ2n = (2j − 1)∆) + Pe,2j+1P (τ2n+1 = 2j∆|τ2n = (2j + 1)∆)

where the transition probability is given by (3.2) and is independent of n. We can assume

{Pe,±2k1+1} and {Po,±2k1} to be zero for k1 > k if k is large enough to include all typical

states. We can write these equations in a matrix form as

Π = PΠ (3.11)

where P is the transition matrix given by

P =





































0 t−2k+1,−2k 0 ... 0

t−2k,−2k+1 0 t−2k+2,−2k+1 0 ... 0

0 t−2k+1,−2k+2 0 t−2k+3,−2k+2 0 ... 0

...
. . .

...

0 . . . t2k−1,2k 0 t2k+1,2k

0 . . . t2k,2k+1 0





































(3.12)

where, ti,j , P (τn+1 = j∆|τn = i∆).
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We see that P is a sparse matrix and its non-zero entries can be predetermined for the

specified values of σW (the variance of the noise distribution Fw) and ∆. Using these equa-

tions Π can be easily solved.
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Figure 3.1: Asymptotic distribution of τ for θ = 3 for Gaussian noise of mean = 0 and
σW = 1

The above plot is plotted for ∆ = 0.2,p = 0.2 by using the condition 2k∆ > |θ| + 5σW

which gives the proper choice of k for Gaussian noise. [20]

3.3 Maximum Likelihood Function

We develop the Maximum Likelihood (ML) estimators at the fusion center to estimate

the value of θ based on the binary data {b̃1, ...., b̃N}. We can observe that the sequence

b̃1, b̃2, ..., b̃N is correlated in general. Now we can write the joint probability mass (pmf) of
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Figure 3.2: Asymptotic distribution of τ under different values of θ for Laplacian noise
with b = 1

b̃1, b̃2, ..., b̃N as

P (b̃1, ..., b̃N ; θ) =
N
∏

n=1

P (b̃n|b̃1, ..., b̃n−1; θ)

=
N
∏

n=1

P (b̃n|τn; θ)
(3.13)

We know the conditional probability of bn based on the threshold τn is given by

P (bn|τn; θ) = [FW (τn − θ)](1+bn)/2 × [1− FW (τn − θ)](1−bn)/2

We also have,

P (b̃n = 1|τn, θ) = [FW (τn − θ)](1− p) + [1− FW (τn − θ)](p)

= p+ FW (τn − θ)(1− 2p)

, q(θ, τn, p)

(3.14)
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P (b̃n = −1|τn, θ) = [FW (τn − θ)](p) + [1− FW (τn − θ)](1− p)

= 1− q(θ, τn, p)

(3.15)

Now the conditional probability of b̃n based on the threshold τn is given by

P (b̃n|τn; θ) = [q(θ, τn, p)]
(1+b̃n)/2 × [1− q(θ, τn, p)]

(1−b̃n)/2 (3.16)

Therefore the log-likelihood function can be written as

L(θ) =

N
∑

n=1

















1 + b̃n
2






ln[q(θ, τn, p)] +







1− b̃n
2






ln[1− q(θ, τn, p)]











(3.17)

3.4 Fisher Information

To evaluate the Cramer-Rao Lower bound (CRLB), we first find the Fisher information

as CRLB is just the inverse value of the Fisher information. Fisher information for the

estimation problem is given by ( [23])

J(θ) = −E











∂2L(θ)

∂θ2











(3.18)

Hence, to evaluate J(θ), we need to compute
∂2L(θ)

∂θ2
.

We know that F ′
W (x) , (∂FW (x)/∂x) = −fW (x). So we can write the second derivative of

24



the log-likelihood function L(θ) as

∂2L(θ)

∂θ2
=

N
∑

n=1

















1 + b̃n
2













q′′θ (θ, τn, p)

q(θ, τn, p)
− [q′θ(θ, τn, p)]

2

[q(θ, τn, p)]2







−







1− b̃n
2













q′′θ (θ, τn, p)

1− q(θ, τn, p)
+

[q′θ(θ, τn, p)]
2

[1− [q(θ, τn, p)]2]2

















,
N
∑

n=1

A(b̃n, τn, θ)

(3.19)

where q′θ(θ, τn, p) = ∂q(θ, τn, p)/∂θ and q′′θ (θ, τn, p) = ∂q′θ(θ, τn, p)/∂θ are the derivatives

with respect to θ. Now the Fisher information is given by

J(θ) = −
N
∑

n=1

Eb̃n,τn
{A(b̃n, τn, θ)} (3.20)

where Eb̃n,τn
denotes the expectation with respect to the joint distribution of b̃n and τn.

We have

P (b̃n, τn; θ) = P (τn; θ)P (b̃n|τn; θ) (3.21)

Hence we can write

J(θ) = −
N
∑

n=1

Eτn{Eb̃n|τn[A(b̃n, τn, θ)]}

=
N
∑

n=1

Eτn







f 2
W (τn − θ)(1− 2p)2

[q(θ, τn, p)][1− q(θ, τn, p)]







=
N
∑

n=1

∫

P (τn; θ)G(τn; θ)dτn

(3.22)
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where Eτn denotes the expectation with respect to the distribution P (τn, θ), Eb̃n|τn denotes

the expectation with respect to the conditional distribution P (b̃n|τn; θ). We write the first

equality based on the fact that b̃n is a binary random variable with

P (b̃n = 1|τn, θ) = q(θ, τn, p)

P (b̃n = −1|τn, θ) = 1− q(θ, τn, p)

and

q′θ(θ, τn, p) = −fW (τn − θ)(1− 2p)

where p denotes the probabilistic cipher parameter. Define

G(τn; θ) ,







f 2
W (τn − θ)(1− 2p)2

[q(θ, τn, p)][1− q(θ, τn, p)]







We can observe that for symmetrical Gaussian noise or Laplacian noise, G(τn; θ) is a uni-

modal, positive and symmetric function achieving its maximum at τn = θ for any value

of the crossover probability p and hence maximizing the Fisher information value when

P (τn; θ) = δ()τn − θ. This means that the best achievable performance of the AQ (Adap-

tive Quantization) scheme will not exceed that of the FQ (Fixed Quantization) approach

with the optimal threshold (τ = θ).
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Figure 3.3: Plot of G(τn; θ) for different values of p for Gaussian noise
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Figure 3.4: Plot of G(τn; θ) for different values of p for Laplacian noise
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3.5 Cramer-Rao Bound for AFC

Cramer-Rao Bound (CRB) or Cramer-Rao Lower Bound (CRLB) gives a lower bound on

the variance of the estimators of a deterministic parameter. This states that the variance

of an estimator is atleast as high as the inverse of the Fisher information [25]. An estimator

which achieves this lower bound is said to be efficient. Hence, to see the performance of

the estimator we describe later, we first try to evaluate the CRLB value for AFC.

We can rewrite equation (3.21) as the summation of two terms as

J(θ) =
N
∑

n=1

∫

P (τn; θ)G(τn; θ)dτn

=
Nc
∑

n=1

∫

P (τn; θ)G(τn; θ)dτn +
N
∑

n=Nc+1

∫

P (τn; θ)G(τn; θ)dτn

, J1 + J2

(3.23)

where Nc is chosen so that the distribution P (τn; θ) converges or has negligible difference

from the steady-state probability vector Π for n > Nc. We have

Nc
2

πσ2
n

> J1 > 0 (3.24)

and

J2 =
1

2
(N −Nc)g

TΠ (3.25)
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where the above equality comes from the fact that P (τn; θ) is discrete and invariant for

n > Nc. Therefore we have the upper and lower bounds of CRBAFC as

N

N −Nc

2

NgTΠ
> CRBAFC(θ) >

N

N +Ncε

2

NgTΠ
(3.26)

where ε , (2/(πσ2
n))− (gTΠ/2).
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Figure 3.5: CRB as a function of number of sensors for different values of probability p for
Gaussian noise

Since N ≫ Nc, we can assume that both upper and lower bound approach to (2/(NgTΠ)).

Therefore we have

CRBAFC(θ) → 2

NgTΠ
(3.27)
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Figure 3.6: CRB as a function of number of sensors for different values of probability p for
Laplacian noise
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Figure 3.7: CRB as a function of probability p for N = 200, θ = −1 with Gaussian noise
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where g is defined as

g , [G(−2k∆; θ) G((−2k + 1)∆; θ) ... G((2k + 1)∆; θ)]T

From fig 3.7 we can observe that CRB is an increasing function for 0 < p < 0.5. As

mentioned earlier, we have a solution only for 0 6 p < 0.5. From fig 3.5 and 3.6 we can also

observe that CRB value decreases with the number of sensors deployed for both Gaussian

and Laplacian noise.

3.5.1 Comparison of CRLB for Adaptive Quantization and Fixed
Quantization Schemes

In the previous section we found out the CRLB value for AFC using adaptive quantization

scheme. The CRLB value for AFC using fixed quantization is given in [8]. So now in this

section, we try to compare these two CRLB values and try to show that the performance of

our system is better compared to that of a system using a FQ technique using simulations.

In the above graphs, the continuous plots are for system using FQ and dotted plots are for

AQ system. In fig. 3.8, the fixed threshold value for the FQ scheme used is τ = 0 which is

quite deviated from the true θ value which is 1. Here, if we can find an optimal estimate

for the unknown parameter for both the systems, the performance of our system is better

than that of the system using FQ technique as we can achieve a much lower CRLB value.

But in fig 3.9, the fixed threshold value for the FQ scheme used is τ = 0.5 which is closer

to θ. Here the performance of system using FQ is better for smaller value of number of
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Figure 3.8: CRLB as a function of probability p for N = 200, θ = −1 with Gaussian noise
and τ = 0, θ = 1 for fixed quantization

sensors. But as the number of sensors increase asymptotically, the performance of both the

systems is nearly the same.

In general, AFC will not know the prior probablities (distribution of θ) of the unknown

parameter. Hence, if the choice of the threshold for FQ is very much deviated from the

true value of θ, which is the general case, the performace of our system is always better.

3.6 Maximum Likelihood Estimate for AFC

Maximum Likelihood estimator (MLE) estimates the value of the unknown parameter θ

that most likely causes a given value of observation to occur. Simply to state, we can get

the value of MLE by maximizing the likelihood function. So now we try to find MLE for
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Figure 3.9: CRLB as a function of probability p for N = 200, θ = −1 with Gaussian noise
and τ = 0.5, θ = 1 for fixed quantization

the AFC.

We can observe that the ML estimate of θ for varying τn does not have a closed form

solution. Therefore we now try to find out the ML estimate of AFC based on threshold

τn. We have log-likelihood function given by (3.17). Because for the ML estimate, the

likelihood function is maximized, we differentiate this log-likelihood function with respect

to q(θ, τn, p) and equate to zero. Then we get

N
∑

n=1

q̂ML(θ, τn, p) =

N
∑

n=1







1 + b̃n
2






(3.28)
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Now we have,

1

N

N
∑

n=1

q̂ML(θ, τn, p) =
1

N

N
∑

n=1







1 + b̃n
2







Since τn is an irreducible Markov chain with stationary distribution Π, we can write

1

N

N
∑

n=1

q(θ, τn, p) −→ E{q(θ, τ, p)}

where E{.} denotes the expectation value and τ has the distribution Π.

Note that

q(θ, τn, p) = p+ FW (τn − θ)(1− 2p)

. So we can write the expectation value as

E{q(θ, τ, p)} = p+ (1− 2p)
∑

i

Fw(τi − θ)πi (3.29)

We can approximate the discrete distribution of τi in continuous form. By plotting the τ

distribution and appoximating it with a generalized gaussian distribution, we can write the

pdf of τ as

pτ i(τi) =
β

2αΓ(1/β)
exp











−







τi − µ

α







β









(3.30)

where β = 2 is the shape constant and α is the scale constant which varies with the p.

Now we can write
∑

i

Fw(τi − θ)πi =

∫

Fw(τ − θ)pτ (τ)dτ
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Figure 3.10: Approximation of τ distribution by a continuous distribution for p = 0.2
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Figure 3.11: Approximation of τ distribution by a continuous distribution for p = 0.3
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Let us calculate this integral as follows

∫

Fw(τ − θ)pτ (τ)dτ =
∫ 1

2











1− erf







τi − θ − µ1

σ
√
2

















β

2αΓ(1/β)
exp











−







|τi − µ2|β
α

















dτ

=
β

4αΓ(1/β)

∫











1−







τi − θ − µ

σ
√
2

















exp











−







|τi − θ − µ|β
α

















dτ

=
β

4αΓ(1/β)

∫






exp











− |τi − θ − µ|β
α











− 2√
π

∫

τi−θ−µ

σ
√

2

t=0 exp{−t2}dt.exp











− |τi − θ − µ|β
α
















dτ

=
β

4αΓ(1/β)

∫∞
−∞ exp











− |τi − θ − µ|β
α











τ. i

− β

2α
√
πΓ(1/β)

∫∞
−∞

∫

τi−θ−µ

σ
√

2

t=0 exp{−t2}. exp











− |τi − θ − µ|β
α











dτdt

Let c1 =
β

4αΓ(1/β)
, c2 =

β

2α
√
πΓ(1/β)

, the first integral in the above equation be I1 and

the second integral be I2. Define A ,
∫

Fw(τ − θ)pτ (τ)dτ .

Now

I2 =

∫ ∞

−∞
exp











− |τi − θ − µ|β
α

















τ−θ−µ

σ
√

2
∫

t=0

exp{−t2}dt






dτ (3.31)
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We can find that

τ−θ−µ

σ
√

2
∫

t=0

e−t
2

dt =
∞
∫

t=0

e−t
2

dt−
∞
∫

τ−θ−µ

σ
√

2

e−t
2

dt

=
1√
π











1

2
−Q







τ − θ − µ

σ

















(3.32)

Substituting this in I2, we get,

I2 =
1

2
√
π

∫∞
−∞ exp











− |τ − θ − µ|β
α











dτ

− 1√
π

∫∞
−∞ exp











− |τ − θ − µ|β
α











Q







τ − θ − µ

σ






dτ

(3.33)

Let the second integral in the above equation be I3. This implies,

A =






c1 −

c2
2
√
π






I1 +

c2√
π
I3

We have already seen that β = 2 in our case from the previous graphs. Hence, substituting

that value and simplifying, we get

I1 =

∫ ∞

−∞
exp











− (τ − θ − µ)2

α











dτ
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But we know,

1

b
√
2π

∫ ∞

−∞
exp











− (x− a)2

2b2











dx = 1

for any variable x. Hence, we get,

I1 =
√
πα (3.34)

Now,

I3 =

∫ ∞

−∞
Q







(τ − θ − µ)

σ






exp











− (τ − θ − µ)2

α











dτ

Let τ−θ−µ√
α

= ψ√
2
. Then,

I3 =
∫∞

−∞Q







ψ
√
α

σ
√
2






exp











− ψ2

2











√

α

2
dψ

=

√

α

2

∫∞
−∞Q







ψ
√
α

σ
√
2






exp











− ψ2

2











dψ

=
√
απ Eψ






Q







ψ
√
α

σ
√
2













Where ψ ∼ N (0, 1). To calculate the above equation, we first find the expectation of Q(x)

for x ∼ N (0, 1) as follows
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Ex[Q(x)] =
1√
2π

∫∞
−∞Q(x)e

−x2/2 dx

=
1

2π

∫∞
−∞

∫∞
x
e−

x2+t2

2 dt dx

=
1

2π

∫∞
−∞

∫∞
0
e−

x2+t2

2 dt dx

= 1/2

where we get the second equality from the fact that the curve we are integrating is symmet-

rical(axial symmetry) and hence the integral will be the same even if we rotate the curve

along the z-axis.

Therefore, we have

Eψ






Q







ψ
√
α

σ
√
2












= 1/2

Substituting all these values in A and simplifying, we get

A = c1
√
πα

Now using the fact that β = 2 and Γ(1/2) =
√
π, we get

A = 1/2
√
α

Hence,

Eq(θ, τ, p) = p+ (1− 2p).(1/2
√
α) (3.35)

Rearraging and expressing θ in terms of q(θ, τn, p), we get
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θ = τn − F−1
W







q(θ, τn, p)− p

1− 2p







We know that the ML estimate of a transformed parameter α = g(θ), where g(.) is a one-

to-one function, is given as α̂ = g(θ̂) [8].Here q(θ, τn, p) is a one-to-one function of θ. This

gives us the ML estimate of θ for AFC as

θ̂AFCML = τn − F−1
W







q̂(θ, τn, p)− p

1− 2p







= τn − F−1
W (1/2

√
α)

(3.36)

for p 6= 0.5. Here F−1
W denotes the inverse complementary cumulative distribution func-

tion(CCDF) of noise.
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4 Analysis for TPFC

In this chapter we consider the effects of using an encrypted WSNs for the TPFC or the

enemy/unauthorized fusion center. It is assumed that the TPFC has access to the output

values of the sensors and the adaptive quantization scheme employed but has no knowledge

about the encryption being used in the WSN. Note that the performance of TPFC would

further deteriorate if these parameters are unknown.

For an unencrypted system, the log-likelihood function is given by [20]

L(θ) =

N
∑

n=1

















1 + bn
2






ln[FW (τn − θ)] +







1− bn
2






ln[1− FW (τn − θ)]











(4.1)

As TPFC has no knowledge of this encryption, it assumes b̃n to bn. Therefore, the log-

likelihood function for TPFC is

LTPFC(θ) =
N
∑

n=1

















1 + b̃n
2






ln[FW (τn − θ)] +







1− b̃n
2






ln[1− FW (τn − θ)]











(4.2)

The analysis for TPFC would be exactly like in [20] except for the fact that it uses b̃n

instead of bn and hence the performance is degraded. The MLE for this given by

θ̂TPFCML = argmax
θ
LTPFC(θ) (4.3)

In general, the above equation has no closed form solution and hence we can use a searching

algorithm to compute numerically. For Gaussian noise, it can be shown that the above
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likelihood function is concave in nature and therefore, any one-dimensional graidient based

search algorithms with a random initial estimate would converge to the global maximum

[20].
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5 Conclusions and Future Work

We proposed a secure adaptive quantization scheme for a tandem sensor network where

each sensor’s quantization threshold value is adaptively adjusted according to the incoming

data from both the sensor’s observation and its previous sensor’s transmission.

We first showed that chain of thresholds represented in the topological order of the network

form a stationary distribution for AFC design. This stationary distribution is then obtained

in closed form analytically as well as through numerical methods. Using this, we found the

CRB and the optimal estimate for AFC. We showed that the performance of the system

using adaptive quantization is better than that of the system using fixed quantization if the

system does not know about the prior distribution of the unknown parameter and hence

using a fixed threshold value which is quite deviated from the true value of the unknown

parameter by comparing their CRLB values.

Although we discussed about the analysis of TPFC, we could not provide an analytical

optimal estimate of the unknown parameter for the TPFC. We would try to get some

numerical results for the estimates using some one-dimensional graidient based search al-

gorithm for both AFC and TPFC so that we can compare the performance of both systems

and analyze the effectiveness of this encryption scheme.

After having accomplished the mentioned results, many interesting extensions can be

forseen, some of which are listed below.

As an immediate extension to our present formulation, we would like to analyze our AFC

design using a more complicated encryption scheme where the cipher deterministically hops
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from one distribution to another with in a pool of a known set of distributions. Another

interesting extension is to consider a variable step-size adaptive quantization scheme with

encryption so as to improve the rate of convergence of the threshold to the unknown para-

mater.

Another important extension is to provide an analytical solution to the TPFC’s estimate,

its variance and the performance gain guarenteed at AFC over TPFC. On can also envision

optimal search algorithms to estimate the unknown parameter with better performance in

terms of computational complexity.

Another very interesting problem is to analyze the performance of AFC in the presence of

compromised (misbehaving) sensor nodes with a constraint on the performance of TPFC.

The presence of misbehaving nodes in a tandem sensor network has a tremendous impact

on the convergence of thresholds to the unknown parameter.
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