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1. Introduction

This paper focuses on the study of classes of graded algebras whose graded projective resolutions of the semisimple
part have special properties. We also investigate the relationship between the algebra having projective resolutions with
certain special properties and the structure of the Ext-algebra of the semisimple part of such an algebra. In the past, some
of the strongest results have been obtained for Koszul algebras, a special class of graded algebras that has occurred in many
diverse settings. Generalizations of Koszul algebras, for example, d-Koszul algebras [2,12], have recently been studied. In
this paper, we continue the investigation of d-Koszul algebras and begin a study of a new classes of algebras which we call
2-d-determined algebras and 2-d-Koszul algebras. We begin by summarizing the major results of the paper. Precise
definitions for many of the terms used can be found later in this section and the next section.

In the summary below, we let A = KI'/I, where K is a field, I" a finite quiver, KI" the path algebra, and I an ideal
generated by length homogeneous elements. Let | be the ideal in K I” generated by the arrows of I" and assume that I C J2.
The length grading of KI" induces a positive Z-grading of A = Ay @ A1 @ - - -, where Ay is the K-space spanned by the
vertices of I". In particular, Ag = A/(J/I) andJ/I = A1 & A, & - - - is a graded Jacobson radical of A.

After the summary of results, this section ends with the introduction of notation, background, and a brief overview of
the theory of Grobnerbases for path algebras. In Section 2 we recall constructions of projective resolutions found in [1,15],
which we call the ‘AGS resolution’, and also review the general approach to the structure of projective resolutions found
in [17]. Given A = KI'/I, using the theory of Grobner bases, we associate a monomial algebra, Ao, to A, where by
‘monomial algebra’, we mean a quotient of a path algebra by an ideal that can be generated by a set of paths. In this case,
Amon = KT /Inon, Where I, is the ideal generated by the ‘tips’ or ‘leading terms’ of I. One of the main objectives of the
paper is the study of the interrelationship of A and Ap,y. In Section 3, we turn our attention to d-Koszul algebras, which
were introduced by Berger [2]. Let N denote the natural numbers {0, 1,2,...} and letd € N with d > 2. Consider the
function § : N — N defined by

nq ifnis even
— 12
5(")—{";151_1_1 if nis odd.
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We say that A = KI'/I is a d-koszul algebra if the nth-projective module in a minimal graded projective A-resolution of
Ap can be generated in degree §(n). More generally, if F: N — N, we say that A is F-determined, (respectively weakly
F-determined) in the case where the nth-projective module in a minimal graded projective A-resolution of Ay can be
generated in degree F(n), (resp. < F(n)), for all n € N. The notion of F-determined algebras was introduced in [11] and
also investigated in [13]. Proposition 7 shows that, in particular, if A, is weakly F-determined, then so is A. We use this
result to show that if A, is a d-Koszul algebra then so is A in Corollary 8. Theorem 10 gives a partial converse, showing
thatif A = KI"/I and I has a reduced Grébner basis concentrated in degree d, then A, is a d-Koszul algebra. Theorem 12
summarizes the main results of the section.

In Section 4, we introduce the class of 2-d-determined algebras. We say that A is 2-d-determined if I can be generated
by homogeneous elements of degrees 2 and d, and A is weakly §-determined. We say a 2-d-determined algebra is
2-d-Koszul if the Ext-algebra, P, , Ext, (Aq, Aog), can be finitely generated. In this section, we mainly consider the case
where A is a monomial algebra. Theorem 14 proves that if A = KI"/I and I is generated by paths of lengths 2 and d, then
A is a 2-d-determined algebra if and only if KI"/(%4) is a d-Koszul algebra, where G4 denotes the set of paths of length d
in a minimal generating set of I. In Theorem 16, we show that a monomial algebra with generators in degrees 2 and d is
2-d-determined if and only if the Ext-algebra, P, . o Ext’, (Ao, Ao), can be generated in degrees 0, 1, and 2. Algebras, whose
Ext-algebra can be generated in degrees 0, 1, and 2 have been called K2 algebras by Cassidy and Shelton [6].

In the final section, Section 5, we study 2-d-determined algebras in general. Proposition 17 shows that if Ap,, is
2-d-Koszul then A is 2-d-determined. The next result is the main result of the section.

Theorem 18. Let A = KI'/I, where I is a homogeneous ideal in KI", and let > be an admissible order on B. Suppose that the
reduced Grobner basis G of I with respect to > satisfies ¢ = G, U G4 where G, consists of homogeneous elements of degree 2 and
G4 consists of homogeneous elements of degree d, where d > 3. Then A is 2-d-determined if KI" / {tip(44)) is a d-Koszul algebra.

Section 5 ends with some open questions.

We end this section with some definitions and notations that will be used throughout the remainder of the paper. We
always let I denote a finite quiver and K I” its path algebra over a fixed field K. The K-algebra K I" is naturally a positively
Z-graded algebra, where, if n is a nonnegative integer, then (KI"),, denotes the homogeneous component of KI" which is
the vector space with basis the set of paths of length n. We denote the length of a path p by £(p) and let I}, denote the set of
directed paths of length n in I"; in particular, Iy is the set of vertices of I and I7 is the set of arrows in I". We call this the
length grading of KI" and say that an element of K I" is homogeneous if all the paths occurring in the element have the same
length. In particular, if f € (KI"),, then we say that f is homogeneous of (length) degree n and write £(f) = n.If I is an ideal
in KI', we say that I is a homogeneous ideal if I can be generated by homogeneous elements. Clearly, if I is a homogeneous
ideal in KI", then KI'"/I has a grading induced from the length grading of KI", and we call this the length grading on KI"/I
induced by the length grading on KI", or simply, the induced length grading on KI" /1.

Ifanideal I can be generated by a set of paths in I, then we say that I is a monomial ideal and that A = KI"/I is a monomial
algebra. Since every monomial ideal is a homogeneous ideal, every monomial algebra has an induced length grading.

As mentioned earlier, we denote by J, the ideal of KI" generated by the arrows of I". By ‘module’, we mean ‘left module’
unless otherwise stated. If A = KI"/I, where I is an ideal contained in ] and we denote by Ay, the semisimple A-module
Ao = (A/I)/(J/I). Suppose further that I is a homogeneous ideal and A = KI'/I is given the induced length grading. Note
that J/I is the graded Jacobson radical of A. The A-module A, will also be viewed as a graded A-module whose support is
concentrated in degree 0.1f Sy, . .., S, is a full set of nonisomorphic simple A-modules, then Ay = @I_;S;, as an (ungraded)
A-module. We also note that, in the category of graded A-modules, Aq has a minimal graded projective resolution

o> P2 5Pl 5 P05 Ay — 0,

in the sense that each P" is a graded projective A-module, each map P" — P"~!is a degree 0 homomorphism, and, for each
n > 1, the image of P" in P"~! is contained in (J/I)P"~!.

If A = KI'/I, for some homogeneous ideal I in KI", and v € [Ij, then we view Av as an indecomposable graded
A-module generated in degree 0 by v. f M = ®;czM; is a graded A-module, then we let M[n] denote the nth-shift of
M; that is, M[n] = @®iczN;, where N; = Mjy,. It is well known, for example, see [7], that every graded indecomposable
projective A-modules is isomorphic to Av[n], for some unique n € Z and v € I} and that every finitely generated graded
projective A-module can be written as a direct sum of projective modules of the form Av[n].

Given aset X in KI", we denote by (X), the two sided ideal in KI" generated by X. We will freely use the terminology and
results about Grobner bases for path algebras found in [8]. For the reader’s benefit, we recall some of the definitions. We
say a nonzero element x € K I is uniform if there exist vertices v, w € Ip such that vx = x = xw. Note that any nonzero
element of K I is a sum of uniform elements and that any ideal in KI" can be generated by uniform elements.

Let B = U,sol7 be the set of paths in I". We say that a well ordering > on 8 is an admissible order if the following
conditions hold forall p, g, r,s € 8.

(1) If p > g, then rp > rq, if both are nonzero.
(2) If p > q, then pr > gr, if both are nonzero.
(3) If p = grs, thenp >r.
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Ifx € KI', thenx = Zp%, app, where o, € K and almost every o, = 0. If x # 0, the tip of x, denoted tip(x), is the path
p € 8 suchthata, # 0and p > q, for all g such that ag # 0.1f X C KT, then tip(X) = {tip(x) | x € X \ {0}}. We say a path
poccursin}_ 5 qq € KIif oty # 0.

Fix an admissible order > on B and let I be an ideal in KI". We say a set  of nonzero uniform elements in I is a Grébner
basis of I (with respect to >) if (tip(4)) = (tip(I)). We say a Grobner basis § of I is the reduced Grébner basis if, for every
g € g, the coefficient of tip(g) is 1 and, if p is a path occurring in g and p contains a subpath t, where t = tip(g’), for some
g’ € g,theng = g’. We note that given > and an ideal I in K I", the reduced Grébner basis of I exists and is unique. Using
the Buchberger algorithm as generalized for path algebras, one can see that if I is a homogeneous ideal in K I", the reduced
Grobner basis of I consists of homogeneous uniform elements.

Now suppose that § is the reduced Grobner basis of an ideal I with respect to >. Let I,,,o, the associated monomial ideal to
I, be the ideal in KI" generated by the tips of . If A = KI'"/I, we let Ayon = KT /Iipon. We call Ay, the associated monomial
algebra of A with respect to >. We note that if I is a monomial ideal, then I = I;,o,, and this is independent of the choice of
>; whereas, if I is not a monomial ideal, then I,,,, usually depends on the choice of admissible order.

2. The AGS resolution

Although the proofs of the results in this section appear in other papers, they are not stated or combined together in a
fashion that we need throughout the remainder of the paper. Hence we have included this survey for the readers’ benefit.

Inboth [1] and [15], methods for constructing a projective A-resolution of Aq are given and we will call such a constructed
resolution the AGS resolution. The reader may check that these constructed resolutions of Ag are, in fact, the same; although
in [15], resolutions of a larger class of modules, that includes A, are given. Both methods employ an admissible order on
B and a Grobner basis of I (with respect to the chosen admissible order). Furthermore, the reader may check that, if I can
be generated by length homogeneous elements, then the AGS resolution is, in fact, a resolution in the category of graded
A-modaules, see [14]. In general, the AGS resolution is not minimal, but, if the Grébner basis is finite, the projective modules
occurring in the resolution, viewed as graded A-modules, can be written as finite direct sums of projective A-modules of
the form Av[n], where v is a vertex in I", and n € Z. Note that, if I has a Grobner basis that consists only of paths (of length
at least 2), then the AGS resolution is minimal.

In a path algebra KT, if x € KI' is a nonzero element such that vx = x, where v € Iy, then we let o(x) = v. Similarly, if
Xxv = x, where v € Iy, then we let t(x) = v.

Let > be an admissible order, I a homogeneous ideal in KI', A = KI'/I, and § be the reduced Grobner basis for I.
Suppose that § = {g;}ics, for some index set {, i.e. it is the Grébner basis, which we use to describe the second projective on
the minimal projective resolution on the monomial algebra, accordingly with the notation used in [14]. If v is a vertex, by
abuse of notation, we will let Av also denote the graded projective A-module generated by v with v in degree 0. Suppose
that

> QP> Q' =5 Q° > 40

is the AGS (graded) resolution of Aq. Then Q% = ®ycr, Av, Q' = Bqer, A0(a)[—1], and Q? = Bic; Ao(g)[—£(g)].

We briefly describe the structure of Q3, leaving details to be found in [15]. For this, we need a few more definitions. If
D, q € B, we say p overlaps q if there are paths r and s such that pr = sq and £(s) < £(p), and that the overlap is proper
if £(r) > 1and £(s) > 1. We say q is a subpath of p if p = rqs for some paths r and s, and that q is a proper subpath of p,
if p = rgs, for some paths r and s, with £(r) > 1and £(s) > 1. As remarked earlier, since § is a reduced Grébner basis, if
g = Z}L a;qj, where each «; is a nonzero element of K and the g;’s are distinct paths, then if s # i, tip(g;) is not a subpath
ofgj,forj=1,...,m.

If p is a set of paths of length at least 2, and t, g € B, then we say a path p is the maximal overlap of t with q with respect
to p if the following two conditions hold.

(1) If t overlaps g such that there exist paths s, s’ € 8 with £(s') > 1withp =s'q = ts.
(2) Forallt’ € p,t"is not a proper subpath of p.

In this case, we say that p maximally overlaps q with respect to p.
We will be interested in maximal overlaps of elements of tip(4) with various paths with respect tip(4). In particular, let

T3 = {p € B | pis the maximal overlap of t’ with t with respect to tip(4), wheret,t’ € tip(9)}.
Note that if § is a finite set, then T? is also a finite set. In general, we have the following.

Proposition 1 ([15]). Let A = KI" /I where I is a homogeneous ideal in KI" and suppose that > is an admissible order on B.
Let

-~~—>Q2—>Q1—>Q°—>A0—>O
be the AGS (graded) resolution of Aq. Then, as graded A-modules,
Q’ = B3 A0 (D[ —L(D)],
where T = {p € 8 | p is the maximal overlap of t’ and t, for somet,t' € tip(4)}.
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The AGS resolution is a special case of projective A-resolutions of modules which are studied in [14]. We recall some
definitions and results from that paper, since the perspective and notation developed there will be used in some of the
proofs that follow. For ease of notation, we will sometimes denote K" by R.

Let M be a KI"'-module and m be a nonzero element of M. We say that m is left uniform if there exist u in Iy such that
m = um. In this case, we let o(m) = u. Note that if I" has a single vertex then every nonzero of M is left uniform.

Suppose that M is a finitely generated A-module. Then, as shown in [14], there exist t, and u, in {0, 1, 2, ...} U oo with
up = 0, {f"ietu=1,....tap» a0 {f " }icup=(1,....un) SUCh that

(i) Each fio is a left uniform element of R, for all i € Tp.

(ii) Eachf* isin @jeanRfj"’l and is a left uniform element, for alli € T, and alln > 1.
)
)

(iii) Each f/" isin @jeanIj;-"’] and is a left uniform element for alli € U, and alln > 1.

(iv) Foreachn > 2,
(Biet,_ R N ®ier, LI ) = @ier, R ® Bicv, RE™.

An explicit description of the tip set of T, for the AGS resolution of Ay, is given in Proposition 5 below. The next result

explains how the sets {f"}icr, and {fi’"}ieu,1 give rise to a projective A-resolution of M. We have the following isomorphisms:

@R/ O, Ifi = ©L, (Rfi/Ifi) = @, Ao(fy).

Theorem 2 ([14]). Let M be a finitely generated A-module and suppose that, forn > 0, t, and u, are in {0, 1,2, ...} U oo,
{fMYieta=t1....t0 and {fi " Yicun=11.....uy) are chosen satisfying (i)-(iv) above. Let

" =P Ao
ieTy
Then there exist maps e": LI — L"~! and a surjection L° — M such that

en+1 el 1en—1 e,1 0
L' .S P >M—=0

is a projective A-resolution of M.

Although we do not use explicit descriptions of the maps e" in this paper, we note that such descriptions can be found
in [14]. The AGS resolution is obtained by constructing particular f;’s which satisfy (i)-(iv). By Proposition 1, we see that,

for this choice of the f"’s, {tip(f,-3)}ig3 is precisely the set of maximal overlaps T? defined earlier. From this observation, we
have the following useful result.

Proposition 3. Let > be an admissible order, I a homogeneous ideal in KI', A = KI" /I, and § be the reduced Grébner basis for
1. Suppose that

o> P2 5Pl 5P 5 A0

is a minimal graded projective A-resolution of Ag. Then P3 is isomorphic to @IE(T*)s Ao(t)[—I(t)], for some subset (T*)> of the
set of maximal overlaps of § with respect to G.

Proof. Let --- — Q?> — Q' — Q° — Ay — 0 be the (graded) AGS resolution of Ag. By Proposition 1, Q3 =
D, cr3 Ao(H)[-I(t)], where T3 is the set of maximal overlaps of tip(§) with respect to tip(4). The result now follows from
[14, Theorem 2.4] after by applying the proof of [ 14, Theorem 2.3]. O

In a similar fashion, the following more general result is a consequence of the proof of Theorem 2.3 and Theorem 2.4 in
[14].

Proposition 4. Let > be an admissible order, I a homogeneous ideal in KI", and A = KI' /1. Suppose that
o> PP 5Pl 5PV Ag >0
is a minimal graded projective A-resolution of Ag and that
~--—>Q2—>Q1—>Q0—>A0—>0
is the (graded) AGS resolution of Aq. IfQ" = @fjneTn Ao(}j.”)[—é(j;”)], then P" is isomorphic to EBGHE(TH)* Ao(fj")[—f([}”)],for
some subset (T,)* of Ty.

We introduce some notation that will be needed later in the paper. Let p be a set of paths of length at least 2 such that
no path in p is a subpath of any other path in p. We define the sets AP(n) of admissible paths of order n, with respect to p.
First let AP(0) = Iy, AP(1) = I, and AP(2) = p. Next, we let AP(3) be the set of all maximal overlaps of elements of p
with elements of p, with respect to p. Assume AP(n — 2) and AP(n — 1) have been defined. Then define AP(n) to be the set
of paths a, in I" which satisfy the following conditions.
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(A1) There are paths a,_1 € AP(n — 1) and r € 8 such that £(r) > 1and a, = ra,_;.
(A2) Ifa,_1 = sa,_p with a,_, € AP(n — 2), then rs = a,s’ for some s’ € 8, some a, € p, and we have that £(r) < £(ap).
(A3) ays’ does not contain any element of p as a proper subpath.

The reader may check that for n > 2, given a, € AP(n), then there exist unique paths r € 8 and a,_; € AP(n — 1)
such that a, = ra,_. Again, it is not hard to show that, in the above notation the overlap of a, with s is maximal with
respect to p. For n > 2, we associate to a path a, € AP(n), its admissible sequence (with respect to p), which is defined to be
(Pn-1, Pn—2, - . ., 1), Where

(1) Eachp; € p = AP(2),

(2) ap = pn—1Sp—1an_2, for some s, 1 € B and a,_, € AP(n — 2),

(3) a, = ra,_q,forsomer € 8 and a,_, € AP(n — 1), and, if n > 3, then
(4) (pn—2, ..., p1) is the admissible sequence for a,_; with respect to p.

Proposition 5 ([15,9]). Let A = KI'/I, for some homogeneous ideal of KI". Fix some admissible order > on 8B, and let § denote
the reduced Grébner basis for I with respect to >. For n > 0, let {f"}ic1, denote the elements defined in [15] in the construction

of the AGS A-resolution of Ay. Let AP(n) be the set of admissible paths of order n with respect to tip(4). Then, for n > 0,

{tip(f") tier, = AP(n).

Finally, the following result relates the AGS A-resolution of A to a minimal projective Apy,-resolutions of (Apen)o. The
proof follows from [9].

Proposition 6. Let A = KI"/I, where I is a homogeneous ideal in K I" generated by elements of homogeneous length at least 2.
Fix an admissible order > on 8B and let AP(n) denote the admissible paths of order n with respect to tip(4), where § is the reduced
Grébner basis of I with respect to >. Let --- — [> — L' — [ — (Amen)o — 0 be a minimal projective Apmon-resolution of
(Amon)o and --- — Q% — Q' = Q% — Ay — 0 be the AGS A-resolution of Ag. Then

"= P Anono®).

peAP(n)

and

Q" = EB Ao(p).

PEAP(n)

3. d-Koszul algebras

Fix the following notation for the remainder of this section. We let K denote a field, I" a quiver, KI" the path algebra,
I a homogeneous ideal in KI" contained in J> = (arrowsin I")2, A = KI'/I, which is given the induced length grading,
> an admissible order, and § = {g?}ic, is the reduced Grobner basis for I with respect to >, where { is an index set. Let

- — P2 — P} — P} — A; — 0be aminimal graded projective A-resolution. Recall that if F: N — N and, for each
n > 0, P" can be generated in degree F(n), we say that A is F-determined. If, for each n > 0, P" can be generated in degrees
< F(n), we say that A is weakly F-determined.If §: N — N is defined by

ng ifnis even
— )2
5(”)—{"21d+1 ifnis odd,

and A is 5-determined, we say that A is d-Koszul. Note if d = 2, then we see that 2-Koszul is the same as Koszul. We use
the term “d-Koszul” and note that this usage is consistent with our definition of §-Koszul, which states that an algebra is
called §-Koszul when it is §-determined and its Ext algebra is finitely generated. If an algebra is d-Koszul, for d > 2, then its
Ext-algebra is finitely generated (in degrees 0, 1, and 2) [ 12]; whereas if the algebra is Koszul, then its Ext-algebra generated
in degrees 0 and 1, [16]. Also note that, since §(2) = d, the ideal I is homogeneous and can be generated by homogeneous
elements of degree d.

In [1], there is a number of results of the following form: if A, has some property, then so does A. The two next results
are of this nature.

Proposition 7. Let A = KI"/I be as above. Suppose that F : N — N s a set function such the Ap,y, is weakly F-determined. Then
A is weakly F-determined. Furthermore, if F is not strictly increasing, then Aq has finite projective dimension both as a A-module,
and as a Apen-module. In particular, if F(s + 1) > F(s), for 0 < s < m, and F(m + 1) < F(m), then the projective dimensions
of Ap <m.

Moreover, if Ao is F-determined, then A is F-determined and the AGS A-resolution of Ag is minimal.
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Proof. First assume that A, is either weakly F-determined or F-determined. Let - - - — [*> — L' = [® = (Amon)o — O
be the graded AGS A mon-resolution of (Amen)o, which is a minimal projective App-resolution of (Apen)o. Let - -+ — P? —
P! - P° - Ay — 0be a minimal graded A-resolution of Ag and --- — Q% — Q! — Q% — Ay, — 0 be the graded
AGS A-resolution of Ag. Let {f"}icr, be the elements constructed in the AGS A-resolution of Ag. Then, by Proposition 4,
for each n > 0, there are subsets T; of T, such that P" = @jcrx Ao(f")[—£(f")]. By Proposition 6, for each n > 0,
L" = ®jer, Amon0(tip(fi")[—L(tip(f"))]. Since Apoy is either weakly F-determined or F-determined, we see that, for each
n > 0, either £(tip(f")) < F(n) or £(tip(f{")) = F(n), for all i € T,. Since £(f") = £(tip(f")), which is the degree of f", for
every i and n, we see that A is weakly F-determined if A, or F-determined if A, is.

Now assume further that F(s + 1) > F(s),for0 < s < mand F(m + 1) < F(m).Since --- — [> > ' — [* —
(Amon)o — 0 is minimal graded AGS Aon-resolution of (Amen)o, We know that the image of L" in L"~! is contained in
J /Imonl™ 1, for n > 1. 1In particular, if L" # (0), then F(n) > F(n — 1) + 1. Thus, L™*! = (0). Hence, T,,;1 = @. Thus, we also
have P™1 = Q™! = (0) and we see that the projective dimension of Ag, as a A-module, and the projective dimension of
(Amon)o, as a Apop-modaule, is less than or equal to m.

It remains to show that, assuming that A,,,, is F-determined, then the AGS A-resolution of Ay is, in fact, minimal. By the
argument given above, the minimality of the AGS Ap,,-resolution of (Aon)o, implies that, if Q" # (0), F(n) > F(n—1)+ 1.
But then the image of Q™ in Q"' is contained in (J/I)Q"~! and the result follows. O

We remark that if - - - — P> — P! — P® — Ay — 0 be a minimal graded A-resolution of Ay, then an easy induction
argument shows that if P" # 0, then the generators of P" occur in degrees n or higher. Thus, we always assume that the
functions F under consideration have the property that F(n) > n, for all n > 0. Moreover, we assume, without loss of
generality, that each P! can be generated degrees greater than or equal to i, since the only possible exceptions occur if
P! = 0. These remarks and conventions, allow us to redefine weakly F-determined to mean that, for each n > 0, P" can be
generated in degrees bounded below by 1, and bounded above by F(n). A generalization of these remarks can be found in
the proposition 2.1 of [5]. This generalization was proved in great detail in the Appendix of [18].

We now apply Proposition 7 to the d-Koszul case.

Corollary 8. Let A = KI'/I, where I is a homogeneous ideal in KI" contained in J2. If, for some admissible order, the associated
monomial algebra A,y is d-Koszul, then A is d-Koszul algebra, and the reduced Grobner basis of I is concentrated in degree d.
Moreover, the AGS A-resolution of Ay is a minimal graded projective A-resolution.

Surprisingly, the following partial converse of Proposition 7 is true.

Proposition 9. Let A = KI'/I be as above. Suppose that F: N — N is a set function such that A is F-determined and assume
that the AGS A-resolution of Ag is minimal. Then A, is F-determined.

Proof. The proof follows from Propositions 5 and 6. O

In general, homological properties of A do not translate to Ao, but the above result and the next result are exceptions
to this. We now state the converse to Corollary 8 and note that we do not assume that the AGS A-resolution of Ag is minimal.
A related result can be found in [3], Proposition 2.3.

Theorem 10. Let A = KI'/I where I is a homogeneous ideal in K I". Assume that > is an admissible order on 8B such that the
reduced Grobner basis of I is concentrated in degree d, where d is a positive integer greater than 1. Then A being d-Koszul implies
that Apep is d-Koszul.

Proof. Let § be the reduced Grébner basis of I with respect to >, T, be the set of tips of §, and T3 be the set of maximal
overlaps of T, with respect to §. Since the paths in T, are a set minimal generators of I;,,, and every path in T, is of length d,
by [12], we need only show that every element of T3 is of length d + 1.

Let g1, 8 € ¢ and t; = tip(g;), fori = 1, 2. Assume that t; maximally overlaps t, with respect to § with p = ;5 = rt;
the maximal overlap, where r,s € &B. Assume that £(p) > d + 1 and let £(p) = d*. Note that d* < 2d. We
show that this assumption leads to a contradiction. Clearly, rg; — g5 is a homogeneous element of degree d*. Since §
is a Grobner basis of I, there exist elements nonnegative integers, A and B, and elements, oy, ..., o4, B1,..., B8 € K,
X1, Xa Y1, -, VB 21, ..., 28 € B, with £(z5) > 1,forj = 1,...,B,and g',...,84,8"1,...,8"s € §, such that

A B
181 — &S = Z aixig'i + Z Big" iz, ()
i=1 =1

where tip(rg; — g5) < rtip(gy). Since § is a reduced Grobnerbasis, the right hand side of () is unique.
Since the elements of § are all homogeneous of degree d, we may assume that £(x;) = d* —d, fori =1, ..., Aand that
Lyj) +4L(z)) =d* —d,forj=1,...,B.Now let

A B
F=1g—) axgi=gs+ ) Bye'i
i=1 J=1
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We see that tip(F) = rty, which is a path of length d*.
Let {f"}icr, be given by the AGS A-resolution as in [15]. As shown in [14], we may obtain sets V,, with V,, C T, so that
{f"}iev, correspond to a minimal graded projective A-resolution of Ao. As we stated in Section 2, we have, for eachn > 2,

(Biev, KTF"™) N (Biev, LI %) = @iev, KTf) & (Diew, Ri™), (%)

where each f;" is in @,-Ewnfllfi”’l, and the W, are given in [15] and [14]. Now, fori = 0, 1, V; = T, since [7; is the set of
j;i's in both the minimal and the AGS A-resolutions for Ag. Our assumption that the reduced Grébner basis of I consists

of homogeneous elements in one degree d, implies that V, = T, since, in this case, § is the set ofj;z‘s for Ag in both the
minimal and the AGS A-resolutions for Ay. Applying (), we see that

(@eesKI'8) N (@aery1a) = @iev,KTf7) @ (@iewsREY).
From the definition of F, we see that F € (®gegK1'g) N (Bqerla). Thus,

F=Y hff+ > 0,

ieVy ieWs

for some h;, h'; € KI'. But, since eachff/ € @geglg and I is generated by §, we conclude that the eachff/ is homogeneous
of length at least 2d. Noting that 2d > d*, we conclude that each h’; = 0 and

F=) hf.

ieVy

Our assumption that A is d-Koszul, implies that each f> is homogeneous of length d 4+ 1. Thus each h; is homogeneous of
length d* — d — 1 > 1. But then tip(F) = tip(h;) tip(ff), for some i € V5. Now tip(F) is the maximal overlap of tips of  of
length d* and tip(ff) is a maximal overlap of tips of § of length d + 1. This is a contradiction since distinct maximal overlaps
of elements of tip(4) cannot be subwords of one another. This completes the proof. O

A consequence of the results of this section is that, if the reduced Grobner basis of an ideal I consists of elements, all
homogeneous of one degree, then there is a finite check to determine whether or not KI"/I is d-Koszul.

The next proposition is related to the Proposition 2.3 in the work of Berger [3]. Also we note that in the language of the
paper [4], to say that X is a Grobner basis concentrated in degree d is equivalent to say that X is concentrated in degree d
and it is confluent [4].

Proposition 11. Let A = KI" /I and > an admissible order such that the reduced Grébner basis of I is concentrated in degree d.
Then A is d-Koszul if and only if the set of maximal overlaps of elements of tip(§) with respect to § are all of length d + 1.

Proof. Let § be the reduced Grobner basis of I with respect to >. If A is d-Koszul, the proof of the above theorem shows that
every maximal overlap of tips of § is a path of length d + 1. On the other hand, if the set of maximal overlaps of elements of
tip(4) are all of length d + 1, then since I, has tip(4) as its minimal generating set, by [ 12, Theorem 10.2], Ao, is d-Koszul.
Then A is d-Koszul by Corollary 8. O

The following result summarizes the main ideas of this section.

Theorem 12. Let A = KI'/I and > an admissible order such that the reduced Grébner basis of I is concentrated in degree d,
with d > 2. Then the following statements are equivalent:

(1) Ais ad-Koszul algebra.

(2) Amon is a d-Koszul algebra.

(3)If--- - P> - P! — P - Aq — 0is a minimal graded A-projective resolution of Ao, then P* is generated in degree
d+1.

(4) If--- — P> > P! — PY — (Apon)o — 0is a minimal graded A ,on-projective resolution of (Amen)o, then P is generated
in degree d + 1.

(5) If g is the reduced Grébner basis of I with respect to >, the every maximal overlaps of two elements of {tip(4)} with respect
to G, is of length d 4 1.

4. 2-d-determined monomial algebras are 2-d-Koszul

Let A = KI'"/I, where I is a homogeneous ideal. We keep the convention that §: N — N is defined by

nq if nis even
— )2
5(")—{"21514-1 if nis odd.

Wealso let --- — P? — P! — P9 — A, — 0 be a minimal graded projective A-resolution of Ag. We say that A is
2-d-determined if A is weakly §-determined; that is, for each n > 0, P" can be generated by elements of degree at least n
and not greater than §(n).
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In keeping with the philosophy that the use of the word ‘Koszul’ should imply that Ext-algebra is finitely generated, we
say that a 2-d-determined algebra is a 2-d-Koszul algebra if its Ext-algebra, P Ext’}l20 (Ag, Ap) is finitely generated. We prove
later in this section that if A is 2-d-determined monomial algebra, then A is a 2-d-Koszul algebra; in particular, we show
that the Ext-algebra of A can be generated in degrees 0, 1, and 2.

For the remainder of this section, we restrict our attention to monomial algebras such that the minimal generating set of
monomial relations occur in exactly two degrees, 2 and d, where d is an integer greater than 2. We fix the following notation
for the remainder of this section. Let d be an integer greater than 2, K is a field, I is a quiver, I is a monomial ideal generated
by paths of length 2 and paths of length d and A = KI'/I. Since I is generated by monomials, there is a unique minimal
set of generating paths, g, such that 4 is the reduced Grobner basis of I with respect to any admissible order on 8. Let 4,
denote the set of paths of length 2 in I. Let §4 denote the set of paths of length d in §. Note that §, and hence §, and §4 are
independent of the choice of > and that our assumption that I is a monomial ideal generated in degrees 2 and d implies that
§2U Ga = §.

Our first result gives necessary and sufficient conditions for the monomial algebra A to be 2-d-determined. Before giving
the result, we recall Theorem 10.2 from [12], see also [3], Proposition 4.1.

Proposition 13. Let A = KI"/I, where I is a monomial ideal generated by a set, p, of paths of length d with d > 2. Then A is
d-Koszul algebra if and only if, for each pair of paths p, q € p, if pr = sqwith 1 < £(r) < d then every subpath of pr of length d
isin p.

Theorem 14. Keeping the notations above, A is 2-d-determined if and only if the algebra A = KI'/ < G4 > is a d-Koszul
algebra.

Proof. For n > 0, let AP, (n) be the admissible sets for p = §4, defined in Section 2 and AP 4 (n) be the admissible sets for
pP=5

Letn > 0and assume that A is a d-Koszul monomial algebra. We need to show thatifa,, € AP, (n),thenn < £(a,) < §(n).
By definition of the AP, (n)’s, the inequalities hold for n = 0, 1, 2. Assume by induction, that n > 3 and the inequalities hold
for n — 2 and n — 1. There are unique elements

a,_1 € AP,(n — 1), an_» € AP, (n — 2), r,se a8,

such that a, = ra,_; and a,_{ = sa,_,. Furthermore, there is some a, € AP,(2) such that a, maximally overlaps rs
with respect to § and a, = ayta,_,, for some path t. If £(a;) = 2, then £(a,) = €¢(a,—1) + 1 and the result follows from
induction. If £(ay) = d and £(s) = 1, then again the result follows. Finally if £(a;) = d and £(s) > 1,then {(s) < d — 1
and it follows that s is a prefix of an element a, of AP(2) of length d. Hence a, overlaps dj. By Proposition 13 and the
maximality of the overlap with respect to 4, we have that a, = rs. Thus £(a,) = d + €(a,_3). Our assumption implies that
L(ap—3) <8(n—2) = ((n—2)d/2)+1ifnisevenand £(a,—;) < §(n—2) = ((n—3)d/2) if nis odd, and the result follows.

Now we assume that A is 2-d-determined. By Proposition 13, it suffices to show that if a,, a;, € §4 and a; overlaps a),
then every subpath of length d is in §4. Suppose that a,r = sa;, with £(r) > 1. We proceed by induction on the length of r. If
£(r) = 1, then we are done. Suppose that £(r) > 1 and that ayr = atg(q,r)¢(ayr)—1 * - - @201, With the ;s arrows. It suffices
to show that a; = ag1aq--- @2 € §q, since, if so, a, overlaps a with a,r* = s*a5 and £(r*) = £(r) — 1. Since £(r) > 1,
£(azr) > 8(3) = d + 1. Hence a,r ¢ AP(3) and we conclude that the overlap of a, with a/, is not maximal with respect to
§. Thus there is @, € § that maximally overlaps a) with respect to §. If £(d,) = 2, then @, is a subpath of a,, contradicting
that g is a reduced Grébner basis. Thus, a, has length d and, since §(3) = d + 1, we see that G, = g4 1 - - - &3, as desired. O

Since 4 being the Grébner basis of d-Koszul algebra is equivalent to the length of every element in AP(3) (with respect
to G4) having length exactly d + 1, we have the following consequence of Theorem 14.

Corollary 15. Let A = KI'/I be as in Theorem 14 and let - - - P> — P' — P® — Ay — 0 be a minimal graded projective
A-resolution of Ag. The following statements are equivalent:

(1) The algebra A is 2-d-determined.
(2) The projective module P in the minimal projective A-resolution of Ay can be generated in degrees bounded above by d + 1.

Proof. Let a, a, € § = AP,(3), where AP, (n) are the admissible paths of order n with respect to §. Suppose that a,
maximally overlaps s, with respect to § and let p € AP,(3) be the overlap. If either £(a;) = 2 or £(a;,) = 2, then
£(p) <d+ 1= 35(3).Ifboth a, and d}, are of length d, then the previous theorem and the properties of d-Koszul monomial
algebras. O

We now turn our attention to the Ext-algebra of a monomial 2-d-determined algebra. Recall that the Ext-algebra of
A, which we denote by E(A), is the algebra @nzo Ext’, (Ao, Ag). We view E(A) as a positively Z-graded algebra, where
E(A), = Ext’, (Ao, Ao). The next result shows that every 2-d-determined monomial algebra is a 2-d-Koszul algebra.

Theorem 16. Let A = KI'/I, where I is a monomial ideal generated by paths of 2 and d with d > 3. Then A is 2-d-determined
if and only if A is 2-d-Koszul. In this case, E(A) can be generated in degrees 0, 1, and 2.
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Proof. It suffices to show that if A is a 2-d-determined monomial algebra, then E(A) can be generated in degrees 0, 1, and
2. Let 4 be the reduced Grobner basis of I with respect to some admissible order. We let § = §, U 4, where §, are the
elements of  of degree 2 and 4,4 are the elements of § of degree d. Let AP, (n) be the admissible paths with respect to .
Suppose n > 3 and a, € AP, (n). There are unique elements

ap_1 € AP,(n—1), an_» € AP, (n — 2), r,s € 8,

such that a, = ra,_; and a,_; = sa,_,. Furthermore, there is some a, € AP, (2) such that a, maximally overlaps rs with
respect to § and a, = ayta,_,, for some path t. We also have that there is some a; € AP,(2) such that a,_; = a}p, for some
path p.

By [17], it suffices to show that either a, = a,a,_», or a, = a;a,_1, for some a, € AP, (1) = I'1.If £(a,) = £(a,_1) + 1,
then a, = a,a,_1, for some a; € AP,(1) = I'; and we are done. Suppose that £(a,) > £(a,_1) + 2. Then a, has length > 2
and we see that £(a;) = d.

We must show that £(t) = 0; that is, we must show that t is a vertex. If £(t) > 0, then £(a,_1) > €¢(a,—2) + 1and we
conclude that £(a}) = d. Hence, suppose that £(a}) = d. We know that a, maximally overlaps rs with respect to §. We have
that a} = ss’ for some path s’. Thus a, overlaps aj. By our assumption that A is 2-d-determined, by Theorem 14, we see that
KT /{$4) is d-Koszul. Hence, by Proposition 13, every path of length d in the overlap of a, with @} isin 4 C $. In particular,
this implies that t must be a vertex. This completes the proof. O

5. 2-d-determined algebras and Grébner bases

Let d > 2,1 be a homogeneous ideal in KI", and A = KI"/I. In this section we study conditions on A that imply that A
is 2-d-determined. At this time, we do not know if every 2-d-determined algebra is a 2-d-Koszul algebra. Throughout this
section, we fix an admissible order > on 8. Since, by definition, a 2-d-determined algebra is just a weakly §-determined
algebra, the next result is an immediate consequence of Proposition 7.

Proposition 17. Keeping the above notations, if Apon is 2-d-Koszul then A is 2-d-determined.

We now prove another result that gives sufficient conditions for A to be 2-d-determined. Observe that we use here
conditions for a monomial algebra to be d-Koszul, this was described in various places, see for instance Proposition 3.8 of
[2], Proposition 4.1 of [3], of the characterization given in [12].

Theorem 18. Let A = KI'/I, where I is a homogeneous ideal in KI", and let > be an admissible order on 8B. Suppose that the
reduced Grébner basis § of I with respect to > satisfies § = §, U G4 where 4, consists of homogeneous elements of degree 2 and
G4 consists of homogeneous elements of degree d, where d > 3. Then A is 2-d-determined if KI" /{tip(44)) is a d-Koszul algebra.

Proof. We begin by showing that if KI"/(tip(4q4)) is a d-Koszul algebra, then Ay, is 2-d-determined. By Theorem 14 and
Proposition 17, this then shows that if KI" /{tip(44)) is a d-Koszul algebra, then A is 2-d-determined. Assume K I" / {tip(%4))
is a d-Koszul algebra and, for n > 0, let AP, (n) be the admissible sets for p = tip(4q), defined in Section 2. Let AP, (1)
be the admissible sets for p = tip(4).

We need to show that if a, € AP, (n), thenn < £(a,) < §(n). By definition of the AP, (n)’s, the inequalities hold
forn = 0, 1, 2. Assume by induction, that n > 3 and the inequalities hold for n — 2 and n — 1. There are unique elements

an—1 € APy, (n — 1), Gn—y € APy,,,,(n — 2), r,s € 8,

such that a, = ra,_; and a,_; = sa,_,. Furthermore, there is some a, € AP, (2) such that a, maximally overlaps rs with
respect to tip(4) and a, = ata,_,, for some path t. If £(a;) = 2, then ¢(a,) = ¢(a,—1) + 1 and the result follows from
induction. If £(a;) = d and £(s) = 1, then again the result follows. Finally, if £(a;) = d and £(s) > 1,then ¢(s) < d — 1
and it follows that s is a prefix of an element a’, of AP ,,,,, (2) of length d. Hence a; overlaps a,. By Proposition 13 (applied to
the d-Koszul algebra KI'"/(tip(44))) and by the maximality of the overlap with respect to tip(4), we have that a, = rs.
Thus ¢(a,) = d + £(a,—2). Our assumption implies that ¢(a,_,) < d(n — 2) = ((n — 2)d/2) + 1 if n is even, and
f(ap—3) < 8(n—2) = ((n—3)d/2) ifnis odd, and we have shown that A, is 2-d-determined. O

Suppose, as in the theorem above, that d > 3 and § is the reduced Grébner basis for a homogeneous ideal and that
4 = G5 U G4, where §, consists of quadratic elements and 4 consists of homogeneous elements of degree d. If d > 3,
then §; is the reduced Grébner basis of the ideal it generates and hence, by [10], KI"/(4.) is a Koszul algebra. On the other
hand, if d = 3, then §; need not be the reduced Grobnerbasis of the ideal it generates and it is not necessarily the case that
KI'/{$,) is a Koszul algebra.

The next result is a partial converse to the above theorem.

Proposition 19. Let A = KI"/I, where I is a homogeneous ideal in KI", and let > be an admissible order on 8. Suppose that the
reduced Grébner basis § of [ with respect to > satisfies § = §, U G4 where G, consists of homogeneous elements of degree 2 and
G4 consists of homogeneous elements of degree d, where d > 3. If A is 2-d-Koszul and the AGS A-resolution of A is minimal,
then KI' /{tip(4q)) is a d-Koszul algebra.



448 E.L. Green, E.N. Marcos / Journal of Pure and Applied Algebra 215 (2011) 439-449

Proof. We follow a line of reasoning similar to that found in the proof of Theorem 10. If {f}icr, are given by the AGS
A-resolution, which, we are assuming, is a minimal graded projective A-resolution of Ag. As we stated in Section 2, we
have, for eachn > 2,

(@ier, KT 0 (@ier, LI = @ier, KTf") ® (Dicw, RE™),

where each fi" is in @iewn,llf,v"_l. and the W, are given in [15,14]. We are assuming that the reduced Grébner basis of I

consists of homogeneous elements in two degrees, 2 and d. Our assumption that A is 2-d-determined, implies that every
fi € V5 is homogeneous of degree < d + 1. In fact, from the construction of the fi’s, the homogeneous degrees of elements
in T3 are either 3ord + 1.

Suppose that A is 2-d-determined and the AGS A-resolution of Ag is minimal. Let A = KI"/{tip($4)). We wish to show
that A is a d-Koszul algebra. For this, let AP, (n) denote the admissible sequences for tip(44). It suffices to show that if
as € AP,(3), then £(as) = d + 1 by Proposition 11. Let a3 € AP, and suppose that a,, a, € AP,(2) are such that as is
the maximal overlap of @) with a,. Let g5, g) € 44 such that tip(g;) = a, and tip(gj) = a,. If p and q are paths such that
as = a,p = qas, then, since § is a reduced (homogeneous) Grébnerbasis, there exist homogeneous elements ry,, sy, ty € KT,
for h € § such that

9% —gp =y rh+ Y sphty,

heg he§

with each term occurring has the same length and each nonzero s; has length > 1. Let X = qg, — Zheg =gp+ Zheg sphtp.

Then we see that tip(X) = as, X is one of theff’s and hence of length < d + 1. It follows that £(as) < d + 1 and we are
done. O

We can now put together our results in the following theorem.

Theorem 20. Let A = KI'/I, where I is a homogeneous ideal in KI", and let > be an admissible order on B. Suppose that the
reduced Grobner basis G of I with respect to > satisfies ¢ = G, U G4 where G, consists of homogeneous elements of degree 2 and
G4 consists of homogeneous elements of degree d, where d > 3. Then the following are true.

(1) IfKT" /{4q) is d-Koszul then A is a 2-d-determined algebra and K I" / (tip(4)) is 2-d-Koszul.

(2) IfKTI" /(tip(4)) is 2-d-Koszul, then A is 2-d-determined.

3)If--- - P> - P2 - P! — P — (KI'/{94))o is a minimal graded projective KI" /{Gq)-resolution and P* can be
generated in degree < d + 1, then A is a 2-d-determined algebra.

Assuming the AGS A-resolution of Aq is minimal, the following statements are equivalent.

(4) The algebra A is 2-d-determined.
(5) The algebra Aon is 2-d-Koszul.
(6) The algebra KI" /(tip(Gq)) is d-Koszul.

Proof. By Theorem 12 ((1) implies (2)), we see that KI"/(%4) being d-Koszul implies that KI"/{%4)mon is d-Koszul. But
KI'/{($d)mon = KI'/(tip($q4)) and part (1) follows from Theorem 18. Part (2) follows from Theorems 14 and 18. Part (3)
follows from Corollary 15 and Theorem 18.

We have seen that (5) implies (6) and that (6) implies (4). That (4) implies (5), follows from Proposition 19. O

We end with the obvious questions:
Questions. Assume that A = KI"/I, where [ is a ideal generated by homogeneous elements of degrees 2 and d.

(i) If A is a 2-d-determined algebra, then, is the Ext-algebra E(A) = @,>0 Ext’, (Ao, Ao) finitely generated?
(i) If A is a 2-d-determined algebra and the Ext-algebra E(A) finitely generated, is it generated in degrees 0, 1, and 2
(assuming that the global dimension of A is infinite).
(iii) If A is not of finite global dimension and E(A) is generated in degrees 0, 1, and 2, then is A 2-d-determined?
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