
ADVANCES IN MATHEMATICS 6,239-251 (1971) 

Generalized Gaussian Measures and a “Functional Equation” : III. 

Measures on Rn 

LAWRENCE CORWIN* 

Department of Mathematics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139 

1. INTRODUCTION 

The Gaussian distribution can be characterized as the sole probability 
distribution which is “invariant under rotations in R2.” More precisely, 
let U, : R2 -+ R2 rotate the plane through an angle 0 which is not a 
multiple of 77/2. Given a probability distribution p on R, define u to be 
the distribution on R2 given by o(E) = p x p( U,(E)). Then if u = 
v x v for some probability distribution Y, p is Gaussian. The first 
theorem along these lines seems to have been due to Kac [14] ; see 
Feller, [3, pp. 77-81, for a more complete account. 

In this paper, we prove similar results for more general u-additive set 
functions on R”. That is, p is required only to be a (complex) linear 
combination of regular measures on R n. The function ~1 itself need not 
be a measure, since it may be undefined on some Bore1 sets in R”. 
(For instance, if E.L were Lebesgue measure on [0, co) and the negative of 
Lebesgue measure on (- co, 0), then p would be covered by the theorem, 
although p(R) is not defined.) For brevity, we shall refer to p as a measure. 

The first main result of this paper is the following: 

THEOREM 1.1. Let A : Rn + R” be an invertible self-adjoint operator. 
DeJine .!JA : Rn x Rn + Rn x Rn by 

&4(x, Y) = (x + AY, Ax -Y)- 
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(metaphorically) with the help of a predoctoral N.S.F. fellowship; other results were 
found under the protection of AFOSR Contract F44620-67-C-0029. The author is, of 
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Suppose that TV, v are measures on Rn such that for all measurable sets 
ECR” x R”, 

P x P(E) = v x v(5,W). (1.1) 

Suppose further that for some positive real number a, the function 
exp(a(x, x)) is p-integrable. ((, ) is the usual inner product on R”.) Then t-~ 
is concentrated on a subspace of Rn, which we may assume is R”. Further- 
more, 3a constant c and a symmetric complex n x n matrix B on R” such 
that 

dp(x) = c exp(-(TTTBx, x)) dx. (1.2) 

The hypothesis that exp(-a(x, x)) be integrable is not very aesthetic; 
in at least one case, it is unnecessary. 

THEOREM 1.2. Supp ose in Theorem 1.1 that A = I (i.e., 4(x, y) = 
(x + y, x - y).) Then the conclusion of Theorem 1.1 holds without the 
hypothesis that exp( -a(x, x)) is p-integrable. 

A theorem like Theorem 1.2 should hold for a wider class of operators 
A, for instance, for A = hI (h # 0). With the methods used in this 
paper, however, one runs into rather messy technical difficulties. It is 
quite possible, too, that Theorem 1.1 holds for a wider class of operators 
A. For instance, one may need only to assume that A and I + A2 are 
invertible. The only obstacle to proving this more general result is 
Lemma 3.2. 

The work in proving Theorem 1.1 occurs in the case where p is finite; 
this case is discussed in Section 3 of this paper. Section 2 is concerned 
with some technical lemmas about matrices, and the theorems are proved 
in Section 4. 

Theorem 1.2 has some obvious applications to the generalized Gaussian 
measures discussed in [2]. A brief discussion of these results is given 
in Section 5. Section 6 examines the more general case of measures CL, 
vi , vs satisfying 

P x CLME) = Vl x %@N* (1.3) 

2. SOME LEMMAS 

In what follows, A is the operator defined in Theorem 1.1, and 
D = (I + A2)p1. The F ourier transform of f is given by f(x) = 
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SfW 2rri(a*z) da; thus Lebesgue measure is its own dual for Fourier 
inversion. If x = (xi ,..., xn), y = (rr ,..., m) are n-tuples of complex 
numbers (x, r) = & xiyi . 

LEMMA 2.1. 11 D 11 < 1, II AD/I < 1, II A211 < 1. 

Proof. For 11 x 11 = 1, set x = (I + A2)z. Then if z # 0, 

(ADx, ADx) = (AZ, AZ) < (x, x) + 2(Az, AZ) + (A?z, A2z) 

= ((A2 + I)%, (A2 + I).+ = (x, x) = 1. 

Because the unit ball of R” is compact, 11 AD 11 < 1. The other parts are 
similar. 

LEMMA 2.2. Suppose B is a symmetric n x n complex matrix whose 
real part is positive definite. Then B is invertible, and B-l is symmetric 
and its real part is positive definite. If f (x) = l/det B exp(-rrTT(Bx, x)), 
then f(x) = exp(--x(B-l x, x)), when the proper sign is chosen for the 
square root. 

Proof. This is essentially the content of Lemmas 4.1 and 4.2 of 

PI* 

LEMMA 2.3. Let C be an invertible symmetric n x n complex matrix; 
say C = C, + iC, , where the Cj are real. Suppose that C, is positive 
semidefkite. Then 36 > 0 such that 6C22 - SC, + C, and 6-l I - C, 
are both positive dejnite. 

Proof. Pick 8 so that l/S > largest eigenvalue of C, . Then 6-i] - C, 
is positive definite. If x E R”, write x = xi + x2 , with xi E ker C, and 
x2 1 ker C,; then 

qsc22 - &Cl2 + qx, + x2), Xl + X2> 

= (SC&, + x2), CA + x2> + (C,(I - SC,) x2, X2). 

On (ker C&-L, C has a square root; therefore the second term is positive 
if x2 # 0. If x2 = 0, but xi + 0, then the first term is >0, as C, # 0 
on ker C, (since C is invertible.) 

This proves the lemma. 
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3. PROOF OF THE THEOREM FOR FINITE MEASURES 

We now prove Theorem 1.1 under the added hypotheses that p (and 
hence also V) are finite and that p(R”) # 0. The rest of the proof will 
consist of reducing the general situation to this more special one. 

Letf, g be the Fourier-Stieltjes transforms of p, Y, respectively. Then 

f (0) # 0. 

LEMMA 3.1. f(x)f(y) = g(D(X + Ay))g(D(Ax - Y)). 

PYOOf. 

f@>f(r) = SS exp(- 2h-i ( 01, xi) exp(--24% Y)) 444 44B) 

= !“i 
exp(-24(a + &%0(x + 4)) + <Aa - /3, D(Ax - Y))) 

RnxR” 

x 4P x P)(% P) 

= IS 
exp(-‘W(a + 4% 0(x + AY)> + (Aa - 13, Wx - y))) 

R” xR” 

x d(v x v)(a + A/3, Aol - j3) 

= il exp( -2ni(cl, D(x + Ay))) exp( -2G(/?, D(Ax - y))) 
RnxRn 

x dv(4 w3) 

= d&x + AY)) gPW - ~1). 

Note that Lemma 3.1 implies 

&)idy) = f@ + Ay)f(Ax - Y>. (3.1) 

LEMMA 3.2. f(x) # 0, g(x) # Ofor all x. 

PYOO~~ It suffices to prove either half. If the lemma is false, let x,, be 
an element with minimal norm such that f(q) = 0. By hypothesis, 
x0 # 0. But f(xJ = 0 * g(Dx,) g(DAx,) = 0, and g(y,) = 0 * 
f(Yo>f(AYo) = 0; h ence f(qJ = 0 ~f(o~o)f(oA~o)zf(oAz~o) = 0. 
Now Lemma 2.1 gives a contradiction. From Lemma 3.1 ,f(0)z = g(0)2; 
by taking constant multiples of p and v, we may assumef(0) = g(0) = 1. 
Note thatf(x> = g(+)) g(D(Ax)) and thatf( y) = g(Wy)) g(D(-y); 
set y = x to show that g(x) = g( -x). Similarly, f is even. 
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Set 4x, 39 = f(x + r>lf(x)f(r)- 

LEMMA 3.3. h(x, y) is bilinear in x andy. 

Proof. Since h is clearly symmetric in x and y, it suffices to show 
linearity in either variable. Hence it suffices to show that h(x + x, Ay) = 
h(x, Ay) 42, AY); we may assume further that z = (A2 + 1)~. 

(2.1) shows that g(x) = f(x) f (Ax), and hence that 

Therefore h(x, Ay) = f (h)f (y)lf(Ax - Y) and ~0 

= f(Ay + A24 h(x + w, Ay + A24 
f(AV & + w, A2w)f(Ay) 

MY + A24f(Ax + Aw)f(y + A4 
= f(A2w)f(Ay) h(x + w, A2w)f(Ax - y) 

= WY + A24 . f(Aw + Y) . few 
f CAY 1 f(A2w) fw4 f(Ax - Y> 

= h(A2w, Ay) h(Aw, y) h(x, Ay). 

For x = 0, this says that h(z, Ay) = h(A2w, Ay) h(Aw, y); the lemma 
follows. 

LEMMA 3.4. f(x) = h(x, x/2). 

Proof. h(x, -x) = f (x)-‘f(-x)-l = f (x)-“; hence h(x, x) = l/h(x, -x) = 
f (x)2. Furthermore, f (2x) = h(x, x) f (x)” = f (x)“. Substitute x/2 for x; 
then h(x, x/2) = h(x/2, x/2)2 = f (x/2)4 = f (x). 

LEMMA 3.5. Set u = p * p, and define q : Rn x Rn -+ Rn x R” by 
~(x, y) = (x + y, y - x). Then ((T x u(v(E)) = p x p(E) for all mea- 
surable E C R” x Rn. 

Proof. The Fourier-Stieltjes transform of u is F = f 2. F(x) F(y) = 

f (x + Y)f (x - Y), as a simple ‘computation using Lemma 3.4 shows. 

607/6/2-9 



244 CORWIN 

The formula F(x)F(y) = f(x + y)f(x - y) means that 

whenever u is a product of characters on R”. It therefore holds for al1 
functions u which are uniform limits of sums of such characters, and 
hence for all C” functions in Rn x R” with compact support. Take 
limits again; then the formula holds for all continuous u with compact 
support. By the Riesz representation theorem, it also holds when u = xlpE, 
the characteristic function of $Z; then, since (x + y, x - y) E qE o 
(x, y) E E, we get (J x u(?E) = p x p(E), as desired. 

LEMMA 3.6. The support of p is a subspace of R". 

Proof. This proof is an easy modification of the proof of Lemma 4.1 
in [l]. 

In view of this result, we may as well assume that p is defined on all 
of R”. 

We now proceed to prove the theorem for p. From Lemma 3.3, we 
may assume that f = ~1 is a quadratic character. Let e, ,..., e, be the 
usual basis for R”. For a, b E R, set hj(a, 6) = f ((a + b)ej)/f(aej)f(bej). 
Then hj is bilinear, and so 3c,, E C with hj(a, b) = exp(-2cjjab). 
Similarly, let hij(a, b) = f (aei + bej)lf(aei) f (bej) for i f j; then 
hij(a, b) exp(-2mijab) for some cij E C. Moreover, cij = cji . Let 
C = (cij); we show that f(x) = exp((--nCx, x)). To do this, we write 
x = Cz, x,1, and induct on the number of nonzero xi . If x = xiei , 
then Lemma 3.4 shows that the formula holds; it is also easy to check the 
formula for x = xiei + xiei . Th e induction step follows from the 
formulas 

= fbl + ~2)fh + %).0X2 +x4 

f(Xl> f-(X2) f(%) ' 

<C(Xl +x2 + 4, Xl + 32 +x3> 

= <C(x, +x21, Xl +x2> + <C(% + 4x1 + x3) 

+ CC@2 + 4, x2 + 4) - <%), Xl> - <C(x,), x2> - <C(%), 4. 
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Re( C) is at least positive semidefinite, since f is bounded. If Re( C) is 
positive definite, then Lemma 2.2 and Fourier inversion show that 
dp(x) = ddet B exp(-vrBx, x) dx, where B = C-l. In that case we 
are done. We now show that Re(C) = C, is positive definite. Otherwise, 
C, is positive semidefinite, but not positive definite. Set C, = Im(C). 
C is invertible, since otherwisef is constant on cosets of ker C and hence 
supp p # R” (by [5, Theorem 2.7.11). By Lemma 2.3, 3a such that 
ac22 - o~C’~~ + C, and 0l-l1 - C, are both positive definite. Then 
Re(cw-lI - C) and Re(C - olC2) are positive definite; hence a-l1 - C 
and C - (wC2 are invertible. Let their inverses be B, , B, , respectively, 
and let g(x) = exp((-+C - aC2) x,x)), h(x) = exp((-rr(cll-l1- C) x1x)). 
Then g, h are the Fourier transforms of g(x) = ddet B2 exp((-nB,x,x)) 
and h(x) = ddet B1 exp((lrB,x,x)), respectively. Moreover, (& *h) =g. 
However, 

($&9 = j exp(--rr+, 4) 44 444 

= j exp(--rri<x, 4) (j 4g) exp(~G, z>) dz) 444 

= li 
R(x) exp(( --7&z, x - x)) &(a) dg 

= j &z)$(x - z) dx = h*@(x). 

Thus g = @), or g = hp. Hence dp(x) = g(x)/h(x) dx is absolutely 
continuous. It is also finite. Thus c(x) vanishes at 00; it follows that C, 
is positive definite. This finishes the proof. 

4. PROOF OF THE MAIN THEOREMS 

Given the results of the last section, it is not hard to prove Theorem 1.1. 
It suffices to find a positive self-adjoint matrix T, which commutes with 
A, such that Se- WJ) dp(x) exists and is nonzero. For then dp’(x) = 
e-(Tz,z) dp(x) and d/(x) = e-<D*a,,z) dv(x) satisfy the hypotheses for 
Section 3. 

By hypothesis, e-<az,z) is p-integrable, i.e., dp(x) = e-(“lz,z> dp(x) is 
finite. For each positive self-adjoint matrix T which commutes with 
A,f&) = e- ~7~) is PI-integrable. If !!T such that Jan fT(x) dpl(x) # 0, 
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we are done. Otherwise, the fr span a dense set on the space of continuous 
functions on Rn which vanish at CQ (by the Stone-Weierstrass theorem). 
Then JR” fC-4 444 = 0 f or all continuous functions f which vanish at 
infinity, and (by the Riesz representation theorem) pL1 = 0. This contra- 
dicts the hypothesis, and Theorem 1.1 is proved. 

To prove Theorem 1.2, it suffices to show that if p, v satisfy (l.l), 
then 5~ > 0 such that e-a(z~s) is p-integrable. 
For 01 > 0, define 

For any E, 0 < E < CX, S(201 + 3~/2) x S(E/~) C 4(S(o1 
as is easily checked. 
Similarly, 

S(cd + e) x s ($-) c 5-l (s (a + $) x s (a 

From (l.l), 

M(” + q > N (201 + g, N (+), 

N (a + +)’ > M(a + c) M ($1; 

hence if c = N(E/~)~AI(E/~), 

M(a + c)” > cM(2ol + E). 

+ 

4 

(4-l) 

Since p # 0, M # 0. There is no loss of generality in assuming that 
3~ < 1 with M(c/2) > 0. Moreover, we may multiply p and v by the 
same nonnegative constant without affecting the result; thus we may 
assume c = 1. 

To prove that e-a(z,r) is integrable, it suffices to show that it is inte- 
grable on the complement of S(1). Let T, be the complement of 
S(2”-l) in S(2%). 
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On T, , e-a(z~+) < exp(--2212-2); hence 

j 1 e-Q<“,“’ d/L(x) 1 < M(29 exp( --a22n-2) 
TlZ 

< M(2” + E) exp (- z 2’*) 

<1M(l +E)2P~exp(-~2zn)=(M(1 +~)e+/~)2~~. 

If a is chosen such that ea/4 > M( 1 + z), then xz==, ) ST, e-a(x~x) &(x) 1 
converges. The theorem follows. 

It should be noted that Theorems 1 .l and 1.2 apply to v as well as to p. 
The simplest way to show this is to set pe(E) = p(DE); then v x v(E) = 

PO x PO(c4A(m and the theorems can be applied directly. 

5. APPLICATIONS 

In [l] the notion of a Gaussian measure was generalized to locally 
compact Abelian groups G for which x 4 2x is an automorphism: p is 
symmetric Gaussian on G if 3 a measure v on G such that p x p(E) = 
v x v([(E)) for all measurable E C G x G (5 : G x G -+ G x G is 
defined by &x, y) = (x + y, x - y)). Theorem 1.2, in effect, charac- 
terizes the Gaussian measures on R”. 

We now characterize the symmetric Gaussian measures on groups 
of the form G = Rffl x C, where C is a compact group such that x it 2x 
is an automorphism. The first step is to reduce the problem to one with 
finite measures. For (x, y) E R” x C, define 11(x, y)lj = 11 x 11. 

LEMMA 5.1. If p is symmetric Gaussian on G = R” x C, then 3 
a real number a and a$nite symmetric Gaussian measure p,, on G such that 
dp(x) = e-allrlla dp,(x). 

The proof is exactly like that used to deduce Theorem 1.2 from 
Theorem 1.1. 

Now let p be a finite Gaussian measure on G. Then (as in Lemma 3.6) 
supp p is a closed subgroup of G closed under x ++ 2x. Because of the 
structure theorem for Abelian groups [.5, Theorem 2.41, there is no 
generality in supposing that supp p = G. The Fourier-Stieltjes trans- 
form, &, is a multiple of a quadratic character (by [l, Lemma 5.2]), 
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and hence is nonzero on a subgroup of G. That subgroup includes R” 
(because ~(0) # 0). Th en the argument of [2, Theorem 2.11, shows 
that we may assume $ is never zero on G. 

Let G, be the dual of the discrete rationals. R can be imbedded in G, 
by identifying x E R with the character a ++ esnixa. In this way, G can be 
imbedded in G, = G,n x C. G, is a subgroup of G; if one regards p as 
a measure on G, , its Fourier-Stieltjes transform (on G,) is the restriction 
of P to G, . 

Theorem 5.1 of [2] h s ows that (as a measure on G,) p = pL1 * pZ , 
where pi is a large Gaussian measure on G, and pa is a matricial Gaussian 
measure concentrated on a subgroup of G. The Fourier-Stieltjes trans- 
form p1 is a finite-valued-quadratic character; it must therefore be 
constant on the cosets of (G,“) = Qn. Hence p1 is concentrated on C. 
pi is invertible. Regard it as a measure on R” x C; then we may 
regard p2 = p-l * p as a measure on R x C. We have proved 

THEOREM 5.2. A finite symmetric Gaussian measure p whose support 
is Rn x C and whose Fourier-Stieltjes transform never vanishes can be 
written as p = t+ * pz , where p1 is a “matricial” Gaussian measure on 
Rn x C and pz is a large Gaussian measure concentrated at fkitely many 
points of C. 

The quotation marks are around “matricial” because the term was 
defined only for compact groups in [2]. The extended meaning should 
be clear. 

A slight extension of this proof enable one to find all finite Gaussian 
measures on group G for which x ~jr 2x is an automorphism. 

6. A GENERALIZATION OF THE MAIN THEOREM 

Theorem 1 .l has a generalization, obtained by using (1.3) as the 
“functional equation.” 

THEOREM 6.1. Suppose that p, v1 , and vg are nonzero measures on R” 
which satisfy (1.3), and assume further that 3 a E R such that e-allsli2 is 
integrable with respect to all three measures. Then p is a translate of a 
character times a measure satisfying (1.1); that is, 3 a measure p,, and a 
character OL on Rn such that t+, is of the form described in Theorem 1.1 and 
a(x) dp,(x) is a translate ojp. The same applies to the vi . 
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To begin the proof, note that (as in the proof of Theorem 1.1) we may 
assume that p and the vi are finite measures and that p(R”) # 0. Then 
setting f = p,, , gi = vi (i = 1, 2), one obtains (as in Lemma 3.1) 

&5(x) g,(y) = f(x + AY)fW - YIP (6.1) 

and it follows (as in Lemma 3.2) that f and the g, never vanish. We may 
also assume that f(0) = 1, g,(O) = 1 (i = 1,2). 

The meat of the rest of the proof if contained in an algebraic lemma. 

LEMMA 6.2. Iff, g, , and g, are nonaanishing functions satisfying (6. l), 
then 3 a homomorphism s : Rn -+ C* such that f. = fs and g&x) = 
gl(x) s(x) s(Ax) satisfy (3.1). 

Proof. Set r(x) = f(x)lf(-x). Then since f(x)f(Ax) = gl(x), 
f(Ax)f(-x) = g2(x), we have r(x) = gl(4/g&). Next, 

fW - AY) _ f(Ax - AY)fW +r> r(Ax - 4) = f(Ay - Ax) - f(y + Px)f(Ay - Ax) 

= &w4 &3-Y) 

gl(Y) g2w 
= r(Ax) gs* 

1 

For x = 0, we find that r(Ay) = ga(y)/g,(-y); hence r(Ax - Ay) = 
r(Ax) r(-Ay). Since A is an isomorphism, Y is a homomorphism. 
Let s(x) = r(--x/2), fo = fh, go(x) = gl(4 4% + Ax), g& = 
g2W $4~ - 4. Then g&4 = go(~)(g2W&4 4-W = go(49 and so 
fo(x + AY)foW - Y) = &I(4 h(Y) = g&4 go(Y), as desired* 

It now follows that fo(x) = exp((-Kx, x)) for some symmetric 
matrix C, as in Theorem 1.1. Moreover, s(-X) = exp(-rr(a, + 2ia, , x)), 
where a,, and a, are n-tuples of real numbers. Hence 

f(x) = exp(--a(Cx + a, + 2ia, , x)). 

Since f is bounded, a, E range (Re C). For let a, = 6, + c,, , with 
b, E range (Re C), b, E range (Re C). Then Re(cb,) = 0, since Re C is 
self-adjoint. Hence 1 f (-&)I = exp((-na, , --Xb,)) = exp(h 11 b, 11”) is 
bounded, and so b, = 0. 

Pick x0 with 2C(x,) = a,, + 2ia, . Then 

f(x) = K exp(2m(a, - al , x - 4) exp(--rr<C(x - x0), x - x0>), 
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where K is a constant. Set &,(x) = exp(2+-xx, , x)) dp(x + a, - a2). 
Then ps(x) = K exp(- ( r cx, x}), as desired. The result for vi and vs 
follows similarly, by expressing g, and g, in terms of g, . 

In the case where A = I, we can say a bit more. 

THEOREM 6.3. Suppose that p1 , f.~~ , v1 , v2 are measures on Rn such that 

for all measurable E C Rn x R”. Assume further that 1 a real number a 
such that exp(-a I/ x 11”) is integrable with respect to the pi , vi . Then the 
pi , vi are translates of characters times measures satisfying (l.l), as in 
Theorem 6.1. 

Proof. Most of the analysis is just like that of Theorem 6.1; what 
we need to prove is the analog of Lemma 6.2. To be precise, we need 
to show that if fi , f2, g, , g, are nonvanishing functions, with fi(0) = 
g,(O) = 1, satisfying 

.a(4 gz(Y) = fib + Y)fi(X - Y), (6.3) 

then 3 a homomorphism u : R” -+ Cx such that for G, = giu, G, = g2u, 

fi(X + Y)fi(X - Y) = G,(x) G2bh moreover, f2 = flu. To show this 

set W = g2(4/g2(--x) = fi(x)f2(-x)ifi(-x)fz(x); then 

qx + y) = fib + Y)f2(--x -Y> 
f1(-x - Y>fib + Y> 

= fib + Y)f2(X - Y).A-Y + 4f‘2(-Y - 4 
f1(-Y - 4f2(-Y + 4fl(X - Y)fi(X + Y) 

= g1w &2(Y) &C-Y) &4 
81(-Y) &A(-4 g1(4 g2(-Y) - t(x) t(Y)* 

Now let U(X) = t(-x/2). Then G,(x) G,(y) = F,(x + y) fi(x - y) and 
G,(Y) = GA-Y). H ence Fdx + y) f2(x - y) = F2(x - Y)fi(x + Y>, or 

Fl;(x + y)/fdx + Y) = F& - y)/f2(x - y), for all x, y. For x = y, we 
find Fl/fi = Fl(0)/f2(O) = 1. This p roves the assertion. The rest of the 
theorem now follows. 
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