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We study homotopy-coherent commutative multiplicative 
structures on equivariant spaces and spectra. We define 
N∞ operads, equivariant generalizations of E∞ operads. 
Algebras in equivariant spectra over an N∞ operad model 
homotopically commutative equivariant ring spectra that only 
admit certain collections of Hill–Hopkins–Ravenel norms, 
determined by the operad. Analogously, algebras in equi-
variant spaces over an N∞ operad provide explicit const-
ructions of certain transfers. This characterization yields a 
conceptual explanation of the structure of equivariant infinite 
loop spaces.
To explain the relationship between norms, transfers, and 
N∞ operads, we discuss the general features of these operads, 
linking their properties to families of finite sets with group 
actions and analyzing their behavior under norms and 
geometric fixed points. A surprising consequence of our study 
is that in stark contract to the classical setting, equivariantly 
the little disks and linear isometries operads for a general 
incomplete universe U need not determine the same algebras.
Our work is motivated by the need to provide a framework to 
describe the flavors of commutativity seen in recent work of 
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the second author and Hopkins on localization of equivariant 
commutative ring spectra.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most important ideas in modern stable homotopy theory is the notion 
of a structured ring spectrum, an enhancement of the representing object for a multi-
plicative cohomology theory. A structured ring spectrum is a spectrum equipped with 
a homotopy-coherent multiplication; classically the coherence data is packaged up in an 
operad. When the multiplication is coherently commutative (as in the familiar examples 
of HZ, ku, and MU ), the classical operadic description of the multiplication involves an 
E∞ operad.

May originally observed that all E∞ operads are equivalent up to a zig-zag of maps of 
operads [17] and showed that equivalent E∞ operads have equivalent homotopical cate-
gories of algebras. As an elaboration of this basic insight it is now well-understood that 
all possible notions of commutative ring spectrum agree. For instance, in the symmetric 
monoidal categories of EKMM S-modules [5] and of diagram spectra [16] (i.e., symmetric 
spectra and orthogonal spectra), the associated categories of commutative monoids are 
homotopically equivalent to the classical category of E∞-ring spectra [18,14]. Moreover, 
the homotopy theories of the categories of commutative monoids are equivalent to the 
homotopy theories of the category of algebras over any reasonable E∞ operad [5, §II.4].

Our focus in this paper is on equivariant generalizations of E∞ ring spectra. At first 
blush, it might seem that we can give an analogous account of the situation. After all, 
for any compact Lie group G and universe U of finite dimensional G-representations, 
there is the classical notion of an equivariant E∞ ring spectrum structured by the equiv-
ariant linear isometries operad on U [14]. For each U , there are equivariant analogues 
of the modern categories of spectra (i.e., equivariant orthogonal spectra and equivari-
ant S-modules) that are symmetric monoidal categories [15,10]. Moreover, once again 
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commutative monoids in these categories are equivalent to classical equivariant E∞ ring 
spectra (see [15, §4-5]).

However, this is not the whole story. Fix a symmetric monoidal category SpG of 
equivariant spectra that is tensored over G-spaces and is a model of the equivariant 
stable homotopy category specified by a complete universe U . For any operad O of 
G-spaces, we can form the category of O-algebras in SpG. There are many different 
G-operads O such that the underlying non-equivariant operad is E∞; for instance, for 
any universe U ′, the equivariant linear isometries operad over U ′ provides an example. 
Any operad with that property might be entitled to be thought of as a G-E∞ operad. 
However, operadic algebras in SpG over different such operads can look very different, 
as the following example illustrates.

Motivating Example. Let E be an E∞ operad in spaces, and view it as an operad in 
G-spaces by giving it the trivial G-action. Thus the nth space is equivalent to EΣn

with a trivial G-action. Let EG denote any E∞ operad in G-spaces for which the nth 
space (EG)n is a universal space for (G × Σn)-bundles in G-spaces (e.g., the G-linear 
isometries operad for a complete universe U). Then algebras over E and algebras over EG
in orthogonal G-spectra are different. In fact, for almost all positive cofibrant orthogonal 
G-spectra E,

En+ ∧Σn
E∧n �� (EG)n+ ∧Σn

E∧n.

The easiest way to see this generic inequality is by computing the G-geometric fixed 
points. If E = Σ∞G+, then for all n, E∧n is a free G-spectrum. This means, in particular, 
that the geometric fixed points of the free E-algebra on E are S0. However, if n = |G|, 
then (EG)n has cells of the form G × Σn/Γ, where Γ is the graph of the homomorphism 
G → Σn describing the left action of G on itself. The G-spectrum

(G× Σn/Γ)+ ∧Σn
E∧n

is the Hill–Hopkins–Ravenel norm NG
e (E), and in particular, the geometric fixed points 

are non-trivial.

Moreover, it turns out there are many intermediate classes of G-operads that struc-
ture equivariant commutative ring spectra that are richer than E-algebras but are not 
EG-algebras. Our interest in these different notions of equivariant commutative ring spec-
tra was motivated by recent work of Hopkins and the second author which showed that 
equivariantly, Bousfield localization does not necessarily take EG-algebras to EG-algebras. 
For formal reasons, the Bousfield localization of any equivariant commutative ring spec-
trum must have a multiplication that is an E-algebra, but that is all that is guaranteed. 
An antecedent of this general result appears in work of McClure [21] which shows that the 
Tate spectrum of an EG-algebra only necessarily has a multiplication that is structured 
by E and is usually not itself an EG-algebra.
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Our goal in this paper is to provide conceptual descriptions of these intermediate 
multiplications on equivariant spaces and spectra in terms of the Hill–Hopkins–Ravenel 
norm. We do this via a careful study of the G-operads that structure intermediate multi-
plications, which we characterize in terms of the allowable norms on algebras over them, 
as suggested by the example above. For this reason, we refer to such operads as N∞
operads.

Fix a finite group G. A G-operad O consists of a sequence of G ×Σn spaces On, n ≥ 0, 
equipped with a G-fixed identity element 1 ∈ O1 and a composition map satisfying 
equivariant analogues of the usual axioms (see Definition 3.1 for details).

Definition 1.1. An N∞ operad is a G-operad such that

(i) The space O0 is G-contractible,
(ii) The action of Σn on On is free, and
(iii) On is a universal space for a family Fn(O) of subgroups of G × Σn which contains 

all subgroups of the form H × {1}.

In particular, the space O1 is also G-contractible.

Forgetting the G-action, an N∞ operad yields a non-equivariant E∞ operad. Examples 
include the equivariant little isometries operads and equivariant little disks operads; see 
Definition 3.11 for details.

Our first main theorem is a classification of N∞ operads in terms of the relationship 
between the universal spaces On forced by the operadic structure maps. Associated to 
an N∞ operad, there is a naturally defined collection (indexed by the subgroups of G) 
of categories of finite sets, called admissible sets. We can organize the admissible sets 
as follows. Define a symmetric monoidal coefficient system to be a contravariant functor 
C from the orbit category of G to the category of symmetric monoidal categories and 
strong monoidal functors.

There is a canonical coefficient system that assigns to the orbit G/H the category of 
finite H-sets and H-maps, with symmetric monoidal product given by disjoint union. 
We have a poset I of certain sub-coefficient systems of the canonical coefficient system, 
ordered by inclusion (i.e., the ones closed under Cartesian product and induction, see 
Definition 3.23). Let N∞-Op denote the category of N∞ operads, regarded as a full 
subcategory of G-operads and G-operad maps.

Theorem 1.2. There is a functor

C:N∞-Op −→ I

which descends to a fully-faithful embedding

C: Ho(N∞-Op) −→ I,
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where the homotopy category is formed with respect to the maps of G-operads which are 
levelwise G × Σn-equivalences.

We conjecture that in fact this embedding is an equivalence of categories; as we explain 
in Section 5.2, there are natural candidate N∞ operads to represent each object in I. 
An interesting question is to determine if all homotopy types are realized by equivariant 
little disks or linear isometries operads.

Remark 1.3. The proof of the preceding theorem involves a calculation of the derived 
mapping space between N∞ operads (see Proposition 5.5); in particular, we show that 
the space of endomorphisms of an N∞ operad is contractible.

The import of this classification theorem is that it establishes that N∞ operads are 
essentially completely controlled by the isotropy condition in the definition. This allows 
for very surprising results about the cofree spectra with an action of an N∞ operad.

Theorem 1.4. If O is an N∞ operad and R is an O-algebra with the property that the 
natural map

R −→ F (EG+, R)

is an equivariant equivalence, then R is equivalent (as O-algebras) to an EG-algebra.

Our other main theorems provide a characterization of structures on algebras over 
N∞ operads. The indexed product construction that underlies the norm makes sense 
in the symmetric monoidal category of G-spaces with the Cartesian product, where the 
resulting functor is simply coinduction. In this situation, we show in Theorem 7.1 that 
an algebra over an N∞ operad has precisely those transfers H → G such that G/H is 
an admissible G-set. Specifically, we have the following result.

Theorem 1.5. For an algebra X in G-spaces over a suitable N∞ operad, the abelian group 
valued coefficient system

πk(X):Set −→ Ab

defined by

(T ∈ SetH) �→ πk

(
F (T,X)H

)
has transfer maps

f∗:πk

(
F (T, i∗HX)H

)
−→ πk

(
F (S, i∗HX)H

)
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for any H-map f : T → S of admissible H-sets and all k ≥ 0. Moreover, for the little 
disks and Steiner operads, these transfers maps agree with the classical transfers.

These are therefore incomplete Mackey functors, studied by Lewis during his analysis 
of incomplete universes [11,12].

Remark 1.6. In the result above, “suitable” refers to a certain technical property of 
N∞ operads that we prove for the equivariant Steiner and linear isometries operads in 
Section 6.3.

In orthogonal G-spectra, we show in Theorem 6.11 that an algebra over a suitable 
N∞ operad is characterized as a G-spectrum equipped with maps

G+ ∧H NT ι∗HR −→ R

for the admissible H-sets T . This gives rise to the following characterization:

Theorem 1.7. If R is an algebra in orthogonal G-spectra over an N∞ operad O, then

π0(R)

is a commutative Green functor.
If the O action interchanges with itself, then for any admissible H-set H/K we have 

a “norm map”

π0(R)(G/K) nH
K−−−→ π0(R)(G/H)

which is a homomorphism of commutative multiplicative monoids.
The maps nH

K satisfy the multiplicative version of the Mackey double-coset formula.

Thus just as the homotopy groups of algebras in spaces over the Steiner operad on 
an incomplete universe gave incomplete Mackey functors with only some transfers, the 
zeroth homotopy group of an algebra in spectra over the linear isometries operad on an 
incomplete universe gives incomplete Tambara functors with only some norms.

The paper is organized as follows. In Section 2, we explain our assumptions and con-
ventions about the kinds of operadic actions and categories of equivariant spectra we are 
working with. We introduce the notion of N∞ operads in Section 3. We use this to explain 
in Section 4 that associated to an N∞ operad, there is a naturally defined collection (in-
dexed by the subgroups of G) of categories of finite sets, called admissible sets, and that 
if two operads have the same admissible sets, then they are equivalent. In Section 4.3, 
we perform a surprising computation: we show that for a generic incomplete universe, 
the little disks operad and the linear isometries operad are different. In Section 5 we 
discuss the connection between the homotopy category of N∞ operads and the poset I. 
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In Section 6, we then show that the admissible sets correspond to indexed products that 
an algebra over the operad must have. In Section 7, we work out this characterization in 
equivariant spaces and spectra. In the case of algebras in G-spaces over N∞ operads, this 
perspective explains the transfers that arise in G-equivariant infinite loop space theory. 
In the case of equivariant spectra, this structure controls which norms occur in a ring 
spectrum. Finally, in the appendix we collect some miscellaneous technical results: in 
Appendix A we show that weakly equivalent N∞ operads have equivalent homotopical 
categories of algebras and we explain the comparison to rigid realizations of N∞ operadic 
algebras in terms of equivariant EKMM spectra, and finally in Appendix B we describe 
geometric fixed points of algebras.

2. Conventions on operadic algebras in equivariant spectra

Fix a finite group G and a complete universe U of G-representations. Let SpG denote 
the category of orthogonal G-spectra [15]. We will always regard SpG as equipped with 
the homotopy theory specified by the weak equivalences detected by the equivariant sta-
ble homotopy groups indexed by U [15, III.3.2]; SpG is a model of the equivariant stable 
category and all representation spheres are invertible [15, III.3.8]. However, the multi-
plicative structures we study are often described by linear isometries operads over other 
universes and in general the language of incomplete universes is very useful in describing 
N∞ operads. The key point we want to emphasize is that although the multiplicative 
structure varies, the additive structure does not.

We now want to be clear about what we mean by an operadic algebra in SpG. Since 
SpG is tensored over G-spaces (with the tensor of a G-space A and an orthogonal 
G-spectrum E computed as A+ ∧ E), we can define the category SpG[O] of O-algebras 
for any operad O in G-spaces. This is the notion of operadic algebra we study in this 
paper. However, there is the potential for terminological confusion: even when O is a 
classical G-E∞ operad, for instance the G-linear isometries operad, the category SpG[O]
is not equivalent to the classical category of G-E∞ ring spectra [14]. The latter is defined 
using the category of “coordinate-free” G-spectra and the twisted half-smash product, 
and requires of necessity operads augmented over the G-linear isometries operad. (This 
terminological point is clearly explained in [20, §13].) Note that it is the case that the 
homotopy categories of SpG[O] and the classical category of G-E∞ ring spectra are 
equivalent. See Appendix A for further discussion of such comparison results.

We could also have worked with the equivariant analogues of EKMM S-modules (e.g., 
see [6] for a discussion of this category) based on U . However, since we rely at various 
points on the homotopical analysis of the norm from [10, App. B], it is convenient for 
our purposes to work with orthogonal G-spectra. We have no doubt that our theorems 
are independent of the specific model of the equivariant stable category, however.

Finally, we note that our results have analogues in the situation when the (additive) 
homotopy theory on SpG is indexed on an incomplete universe. However, in this situation 
some care must be taken. The underlying analysis was begun by Lewis [13], who analyzed 
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the homotopy theory of G-spectra on incomplete universes, and various subtleties about 
the connections between the additive and multiplicative structures are known to experts. 
We leave the elaboration in this setting to the interested reader. However, we note that 
our analysis in Section 4.3 of the linear isometries operads also provides a criterion for 
the special case when both the additive and multiplicative universes are the same but 
potentially incomplete.

3. Equivariant operads and indexing systems

In this section, we define N∞ operads and give a number of examples. We then move on 
to introduce definitions and notations for indexing systems, which allows us to precisely 
state our main result describing the homotopy category of N∞ operads in terms of a 
certain poset.

3.1. Equivariant N∞ operads

In this section we review the definitions and standard examples of G-operads that we 
will work with.

Definition 3.1. A G-operad O consists of a sequence of G × Σn spaces On, n ≥ 0, such 
that

(i) There is a G-fixed identity element 1 ∈ O1,
(ii) and we have G-equivariant compositions maps

Ok ×On1 × · · · × Onk
−→ On1+···+nk

which satisfy the usual compatibility conditions with each other and with the action 
of the symmetric groups (see [3, 2.1]). In particular, if n1 = · · · = nk = n, then the 
map is actually (G × Σk 	 Σn)-equivariant.

When O0 = ∗, we say that O is a reduced operad.

Remark 3.2. Note that in contrast to the usual convention, we will treat G-operads as 
having left actions of symmetric groups via the inversion, as this makes certain formulas 
easier to understand. It also allows a simultaneous equivariant treatment of the G and 
Σn-actions.

We will primarily be interested in the equivariant analogues of E∞ operads. For this, 
we need the notion of a family and of a universal space for a family.

Definition 3.3. A family for a group G is a collection of subgroups closed under passage 
to subgroup and under conjugacy.
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If F is a family, then a universal space for F is a G-space EF such that for all 
subgroups H,

(EF)H �
{
∗ H ∈ F ,

∅ H /∈ F .

For later purposes, there is an equivalent definition that is more categorical.

Definition 3.4. A sieve in a category C is a full subcategory D such that if B → C is in 
D and if A → B is in C, then the composite A → C is in D.

With this, we have two equivalent formulations of a family.

Proposition 3.5.

(i) A family of subgroups F determines a sieve in the orbit category by considering the 
full subcategory generated by the objects G/H for H ∈ F . Similarly, the collection 
of all H such that G/H is in a sieve in OG forms a family.

(ii) A family of subgroups F is also equivalent to a sieve SetF in the category of finite 
G-sets, where again the identification specifies that T is in the sieve if and only if 
the stabilizers of points of T are in the family.

Remark 3.6. An equivalent condition to condition (ii) in Proposition 3.5 is that the sieve 
in G-sets is the full subcategory generated by those G-sets T such that the space of 
G-equivariant maps from T to EF is contractible.

Definition 3.7. An N∞ operad is a G-operad such that

(i) The space O0 is G-contractible,
(ii) The action of Σn on On is free,
(iii) and On is a universal space for a family Fn(O) of subgroups of G × Σn which 

contains all subgroups of the form H × {1}.

In particular, the space O1 is also G-contractible.

Historically, most sources have focused on the situation where On is a universal prin-
ciple (G, Σn)-bundle; i.e., OΛ

n is nonempty and contractible for Λ which intersects Σn

trivially (e.g., see [3]). As we shall recall, this is the analogue of restricting attention to 
a complete universe. We will refer to such an N∞ operad as “complete” and follow the 
literature in calling these E∞ G-operads. For any H ⊂ G, there is a forgetful functor 
from N∞ operads on G to N∞ operads on H. When G = e, it is clear from the definition 
that an N∞ operad is an ordinary E∞ operad.

Lemma 3.8. The underlying non-equivariant operad for any N∞ operad is an E∞ operad.
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The category N∞-Op of N∞ operads, regarded as a full subcategory of the cate-
gory of G-operads and G-operad maps, is a category with weak equivalences. The weak 
equivalences are ultimately lifted from the homotopy theory on G-spaces where a map 
f : X → Y of G-spaces is a G-equivalence if the induced maps fH : XH → Y H on H-fixed 
points are nonequivariant weak equivalences for each (closed) subgroup H ⊂ G.

Definition 3.9. A map of O → O′ of G-operads is a weak equivalence if each map 
O(n)Γ → O′(n)Γ is an equivalence for all subgroups Γ ⊆ G × Σn.

Note that this definition of weak equivalence does not generalize the usual weak equiv-
alences on operads (i.e., the maps of operads which are underlying equivalences of spaces 
for each n) when G = e; rather, this is a generalization of Rezk’s notion of weak equiv-
alence of operads [22, §3.2.10]. The generalization of the usual notion would lead to a 
weak equivalence of N∞ operads being a levelwise G-equivalence of spaces, and under 
this definition the linear isometries operad on a genuine universe and any G-trivial E∞
operad would be equivalent via a zig-zag.

Remark 3.10. One can also ask for a weaker notion of weak equivalence wherein one 
checks only the fixed points for subgroups of G × Σn which intersect Σn trivially. This 
arises for instance in work of Dotto and Schlank considering G-operads in terms of 
presheaves on certain subcategories of the orbit category. For N∞ operads, the two 
notions coincide, since all of the other fixed points are assumed to be empty; for this 
reason, we do not discuss this further.

We now turn to examples. The N∞ operads which arise most frequently in equiv-
ariant algebraic topology are the linear isometries operad on a universe U and variants 
of the little disks operad on a universe U . To be precise, let U denote a countably 
infinite-dimensional real G-inner product space which contains each finite dimensional 
sub-representation infinitely often and for which the G-fixed points are non-empty. We 
emphasize that U is not assumed to be complete. Our presentation is heavily based on 
the excellent treatment of [7, §10]; we refer the interested reader to that paper for more 
discussion.

Definition 3.11.

(i) The linear isometries operad L(U) has nth space L(Un, U) of (nonequivariant) 
linear isometries from Un to U . The G × Σn-action is by conjugation and the 
diagonal action. The distinguished element 1 ∈ L(U, U) is the identity map, and 
the structure maps are induced from composition.

(ii) The little disks operad D(U) has nth space D(U)n given as the colimit of embeddings 
of n copies of the disk in the unit disk of a finite subrepresentation V in U . Precisely, 
let D(V ) denote the unit disk in V . A little disk is a (nonequivariant) affine map 
D(V ) → D(V ). We define DV (U)n as the space of n-tuples of nonoverlapping little 
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disks, where G acts by conjugation on each disk and Σn in the obvious way. The 
distinguished element 1 ∈ DV (U)1 is the identity map and the structure maps are 
induced from composition. For V ⊆ W , there is a map induced by taking the disk 
v �→ av + b to the disk w �→ aw + b. We define D(U) = colimV DV (U).

(iii) The embeddings operad can be defined as follows. Fix a real representation V ⊂
U with G-invariant inner product, and let E(V )n be the G-space of n-tuples of 
topological embeddings V → V with disjoint image (topologized as a G-subspace 
of the space of all embeddings with G acting by conjugation). The distinguished 
element 1 ∈ E(V )1 is the identity map and the structure maps are induced by 
composition and disjoint union. As above, we can pass to the colimit over V .

(iv) The Steiner operad K(U) is a (superior) variant of the little disks operad D(U). Fix 
a real representation V ⊂ U with G-invariant inner product. Define RV ⊂ E(V )1
to be the G-subspace of distance reducing embeddings f : V → V . A Steiner path 
is a map h: I → RV with h(1) = id. Let PV denote the G-space of Steiner paths 
(with G-action coming from the action on RV ). There is a natural projection map 
π: PV → RV given by evaluation at 0. Define K(V )n to be the G-space of n-tuples of 
Steiner paths {hi} such that the projections π(hi) have disjoint images. The Steiner 
operad is defined to be K(U) = colimV K(V ).

Remark 3.12. The equivariant little disks operad is unfortunately extremely poorly be-
haved; products of disks are not necessarily disks, and as observed in [20, §3], the colimit 
over inclusions V ⊆ W that defines D(U) is not compatible with the colimit of ΩV ΣV . 
These problems are fixed by the Steiner operad, and for these reasons the equivariant 
Steiner operad is preferable in most circumstances. Moreover, the Steiner operad is nec-
essary for capturing multiplicative structures (i.e., E∞ ring spaces) via operad pairings 
— there are equivariant operad pairs 

(
K(V ), L(V )

)
for each V ⊂ U and (KU , LU ). In 

contrast, it does not seem possible to have an operad pairing involving the little disks 
operad. See [7, 10.2] for further discussion of this point.

We have the following result about the G-homotopy type of the little disks and Steiner 
operads [7, 9.7, 10.1].

Proposition 3.13. Let V ⊂ U be a real representation with G-invariant inner product. 
Then the nth spaces D(V )n and K(V )n are G ×Σn-equivalent to the equivariant config-
uration space F (V, n).

Passing to colimits, this has the following corollary:

Corollary 3.14. The G-operads D(U) and K(U) are N∞ operads for any universe U .

The classical argument about contractibility of the spaces of equivariant isometries 
shows the following lemma.
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Lemma 3.15. The G-operad L(U) is an N∞ operad for any universe U .

One of our original motivations for this paper was to understand the relationship 
between D(U) or K(U) and L(U) in the case of a general universe U . We give an answer 
in the spirit of Lewis’ beautiful work relating dualizability of an orbit G/H to whether 
it embeds in the universe U [13]. The surprising conclusion of our study will be just how 
far apart K(U) and L(U) can be for an incomplete universe U ; see Section 4.3.

3.2. Indexing systems

There is a close connection between our N∞ operads and certain subcategories of the 
categories of finite G-sets. However, as is often the case in equivariant homotopy, we 
never want to consider just the group G; instead we should consider all subgroups on 
equal footing. This motivates the following replacement for a category.

Definition 3.16. A categorical coefficient system is a contravariant functor C from the 
orbit category of G to the category of small categories.

As we will almost never be talking about abelian group valued coefficient systems in 
this paper, we will often abusively drop the prefix “categorical”.

Definition 3.17. A symmetric monoidal coefficient system is a contravariant functor C
from the orbit category of G to the category of symmetric monoidal categories and strong 
symmetric monoidal functors.

If C is a symmetric monoidal coefficient system, then the value at H is C(G/H), and 
will often be denoted C(H).

For a symmetric monoidal coefficient system C, let

i∗H : C(G) −→ C(H)

denote the restriction map associated to the natural map G/H → G/G.

We can also consider “enriched” coefficient systems that take values in enriched cat-
egories. Most of the naturally arising categories in equivariant homotopy actually sit in 
enriched symmetric monoidal coefficient systems.

Definition 3.18. Let T op(−) be the enriched coefficient system of spaces. The value at 
H is T opH , the category of H-spaces and all (not just equivariant) maps. Similarly, let 
T op(−) be the associated “level-wise fixed points”, the value at H is T opH , the category 
of H-spaces and H-maps. There are two compatible symmetric monoidal structures: 
disjoint union and Cartesian product.

Let Sp(−) be the enriched coefficient system of spectra. The value at H is SpH , the 

category of H-spectra and all maps. Let Sp(−) be the associated coefficient system whose 
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value at H is the category of H-spectra and H-maps. We again have two symmetric 
monoidal structures we can consider: wedge sum and smash product.

The most important category for our study of N∞ operads is the coefficient system 
of finite G-sets.

Definition 3.19. Let Set be the symmetric monoidal coefficient system of finite sets. The 
value at H is SetH , the category of finite H-sets and H-maps. The symmetric monoidal 
operation is disjoint union.

We will associate to every N∞ operad a subcoefficient system of Set. The operadic 
structure gives rise to additional structure on the coefficient system.

Definition 3.20. We say that a full sub symmetric monoidal coefficient system F of Set is 
closed under self-induction if whenever H/K ∈ F(H) and T ∈ F(K), H ×K T ∈ F(H).

Definition 3.21. Let C ⊂ D be a full subcategory. We say that C is a truncation subcategory
of D if whenever X → Y is monic in D and Y is in C, then X is also in C.

A truncation sub coefficient system of a symmetric monoidal coefficient system D is 
a sub coefficient system that is levelwise a truncation subcategory.

In particular, for finite G-sets, truncation subcategories are those which are closed 
under passage to subobjects.

Definition 3.22. An indexing system is a truncation sub symmetric monoidal coefficient 
system F of Set that contains all trivial sets and is closed under self induction and 
Cartesian product.

Definition 3.23. Let Coef(Set) be the poset of all subcoefficient systems of Set, ordered 
by inclusion. Let I be the poset of all indexing systems.

With this, we can state our main result describing the homotopy category of N∞
operads.

Theorem 3.24. There is a functor

C:N∞-Op −→ I

which descends to a fully-faithful embedding of categories

C: Ho(N∞-Op) −→ I.
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4. Admissible sets and N∞ operads

The construction of the functor C proceeds in two steps. We first define a functor, 
also called C, from symmetric sequences with an analogous universal property for their 
constituent spaces to the poset Coef(Set). We then show that if a symmetric sequence 
arises from an operad, then the resulting value of C actually lands in I.

4.1. Symmetric sequences and the functor C

We begin looking very generally at what sorts of families of subgroups can arise, using 
only at the universal space property of the spaces in an N∞ operad and the freeness of 
the Σn-action.

Definition 4.1. An N∞ symmetric sequence is a symmetric sequence O in G-spaces such 
that for each n,

(i) On is a universal space for a family Fn(O) of subgroups of G × Σn and
(ii) Σn acts freely.

In particular, the underlying symmetric sequence for an N∞ operad is always of this 
form.

Our entire analysis hinges on a standard observation about the structure of subgroups 
of G × Σn which intersect Σn trivially.

Proposition 4.2. If Γ ⊂ G ×Σn is such that Γ ∩({1} ×Σn) = {1}, then there is a subgroup 
H of G and a homomorphism f : H → Σn such that Γ is the graph of f .

Thus the subgroup Γ is equivalent to an H-set structure on n = {1, . . . , n}. It will be 
essential to our future analysis to recast the whole story in terms of H-sets.

Definition 4.3. For an H-set T , let ΓT denote the graph of the homomorphism H → Σ|T |
defining the H-set structure. We write that an H-set T is admissible for O if ΓT ∈
F|T |(O).

The requirements associated to the stipulation that F∗(O) forms a family (closure 
under subgroups and conjugacy) translates to the following observation in terms of ad-
missibility:

Proposition 4.4. If an H-set T of cardinality n is admissible, then

(i) for all subgroups K ⊂ H, i∗K(T ) is admissible, and
(ii) the gHg−1-set g · T is admissible.
(iii) every H-set isomorphic to T (as an H-set) is admissible.
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Proposition 4.4 actually shows that the admissible sets assemble into a sub coefficient 
system of Set. This allows us to define the functor C.

Definition 4.5. Let C(O) denote the full subcoefficient system of Set whose value at H
is the full subcategory of SetH spanned by the admissible H-sets.

Proposition 4.6. If O → O′ is a map of N∞ symmetric sequences, then

C(O) ⊂ C(O′).

Proof. Let T be an admissible set for O. By definition, this means that OΓT

|T | �= ∅. Since 
we have a G × Σ|T |-equivariant map O|T | to O′

|T |, we know that the ΓT fixed points of 
O′

|T | cannot be empty. �
To refine our map, we recall the relevant notion of weak equivalence for G-symmetric 

sequences.

Definition 4.7. A map f : O → O′ between G-symmetric sequences is a weak equivalence 
if for each n it induces a weak equivalence of G × Σn spaces.

Notice that a weak equivalence of N∞ operads gives rise to an underlying equivalence 
of N∞-symmetric sequences. Unpacking the definition immediately gives the following 
proposition.

Proposition 4.8. If f : O → O′ is a weak equivalence between N∞-symmetric sequences, 
then C(O) = C(O′).

4.2. Symmetric monoidal structure of C(O) and the operadic structure

For an N∞ operad O, the spaces On do not exist in isolation, and the structure maps 
on O assemble to show that C(O) has extra structure. We first show that C(O) is never 
empty.

Proposition 4.9. For all subgroups H and for all finite sets T of cardinality n, the trivial 
H-set T is admissible.

Proof. This follows from condition (iii) of Definition 3.7. �
Lemma 4.10. The coefficient system C(O) is closed under (levelwise) coproducts, and is 
thus a symmetric monoidal subcoefficient system of Set.

Proof. We give the proof for the case of S � T ; other cases are analogous. Let m1 = |S|
and m2 = |T |. By definition, the fact that S and T are admissible H-sets means that 



A.J. Blumberg, M.A. Hill / Advances in Mathematics 285 (2015) 658–708 673
there exist subgroups Γ1 ⊂ G × Σm1 and Γ2 ⊂ G × Σm2 which are the graphs of 
homomorphisms

f1:H −→ Σm1 and f2:H −→ Σm2

respectively.
Since O is an operad, we know there exists a composition map

γ:O2 ×Om1 ×Om2 −→ Om1+m2

which is at least G × ({e} × Σm1 × Σm2) equivariant. Let Γ ⊂ G × Σm1+m2 be the 
subgroup specified by the graph

Γ = {(h, f1(h) � f2(h)) |h ∈ H}.

Consider the map γΓ induced by passage to fixed points. On the left hand side, by 
hypothesis we know that the fixed points are contractible — this is true for Om1 and 
Om2 by admissibility, and for O2 by Proposition 4.9. Therefore, OΓ

m1+m2
cannot be 

empty and is therefore contractible. Translating, this means precisely that S � T is an 
admissible H-set. �

Already we have neglected structure on the category of finite G-sets. In addition to 
the disjoint union, there is a Cartesian product. This is a form of the disjoint union, 
however, as G/K ×G/H is the “disjoint union” of G/H indexed by the G-set G/K:

G/K ×G/H ∼=
∐
G/K

G/H,

where G acts on both the indexing set and the summands. Induction has a similar 
formulation as an indexed coproduct, and our admissible sets are closed under some 
forms of each operation.

Lemma 4.11. For each H, the category CH(O) is closed under Cartesian product, and 
thus C(O) inherits the structure of a symmetric bimonoidal category levelwise.

Proof. Without loss of generality, we may assume that H = G, and let S be an admissible 
G-set of cardinality m and T one of cardinality n. Associated to S is a subgroup ΓS which 
is the graph of f : G → Σm, and associated to T , we have a similar subgroup ΓT and 
function h: G → Σn. Now there is an embedding

Δ: Σm × Σn −→ Σm 	 Σn

which is just the diagonal on the Σn factor, and we let F : G → Σm 	 Σn be Δ ◦ (f × h). 
Finally, let ΓS×T be the graph of F .
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We need now to show two things:

(i) that (Om × Om
n )ΓS×T is non-empty (which in turn forces the ΓS×T -fixed points of 

Omn to be non-empty) and
(ii) that the function F classifies the G-set S × T .

For the first part, we observe that ΓS×T acts on Om ×Om
n via its natural action on 

the two named factors. Thus

(Om ×Om
n )ΓS×T = OΓS×T

m × (Om
n )ΓS×T .

The action on the Om term factors through the canonical quotient map

G× Σm 	 Σn −→ G× Σm,

and the image of ΓS×T under this quotient map is ΓS . By assumption, OΓS
m is con-

tractible, and hence so is OΓS×T
m .

The action on the second factor is slightly more complicated. We make the following 
observation: the diagonal map On → Om

n is (G × Σm × Σn)-equivariant, where Σm

acts trivially on the first factor and where we have identified Σm × Σn with its image 
under Δ. The group ΓS×T is contained in the subgroup G × Im(Δ), and so the diagonal 
map is ΓS×T -equivariant. By constructions, the action of ΓS×T on On is via ΓT , and we 
therefore have fixed points. This implies that Om

n has ΓS×T -fixed points as well.
For the second part, we make a simple observation: in the arrow category of finite sets, 

the automorphism group of the canonical projection S×T → S is isomorphic to Σm 	Σn. 
The Σm acts by permuting the base, and then the Σm

n acts as the automorphisms of the 
fibers. By our construction of F , the resulting G-set is the one in which the base is the 
G-set S, and where all of the fibers are the G-set T . �
Lemma 4.12. The symmetric monoidal coefficient system C(O) is closed under self-
induction.

Proof. Without loss of generality, we may assume H = G, as for the proof given, we 
may simply replace all instances of G with H. Now assume that G/K is in CG(O), and 
let T be in CK(O). Let n be the cardinality of T , and let m be the index of K in G.

Associated to T is a homomorphism π: K → Σn, and by assumption, OΓT
n � ∗. 

Finally, let g1, . . . , gm ∈ G be a complete set of coset representatives for G/K, and let 
σ: G → Σm be the homomorphism induced by the left action of G on G/K. Again, by 
assumption, OΓG/K

m � ∗.
To prove the result, we must explicitly describe the induced set G ×KT . The argument 

is standard. Since {g1, . . . , gm} is a complete set of coset representatives of G, for 1 ≤
i ≤ n, we have a homomorphism
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(
σ, (k1, . . . , kn)

)
:G −→ Σm 	K,

where σ and each of the functions ki are defined by

g · gi = gσ(i)ki(g).

The homomorphism G → Σnm describing the induced set G ×K T arises from this 
homomorphism via the map π:

Ind(g) =
(
σ(g),

(
π(k1(g)), . . . , π(km(g))

))
∈ Σm 	 Σn.

We need to now analyze the fixed points of Γ, the graph of Ind, on Om ×
(
On

)m. 
The group G × Σm 	 Σn acts independently on Om and on Om

n . On Om, it acts via the 
canonical quotient to G × Σm, and on Om

n , G acts diagonally while Σm 	 Σn has the 
obvious action. Thus

(
Om ×

(
On

)m)Γ
= OΓG/K

m ×
(
Om

n

)Γ
.

It will suffice to show that these fixed points are non-empty. The first factor is actually 
contractible, by assumption, so we need only produce a fixed point for the second factor. 
Since the ΓT -fixed points of On are non-empty, we can find a point x ∈ On such that

(k, πk) · x = x

for all k ∈ K. Then we quickly show that

y =
(
(g1, 1) · x, . . . , (gm, 1) · x

)
is a Γ-fixed point. To streamline the typesetting, let σ = σ(g), and ki = ki(g), and let

γ =
(
g, σ,

(
π(k1), . . . , π(km)

))
.

Then we have a chain of equalities

γ · y = (g, 1) ·
((

gσ−1(1), πkσ−1(1)
)
· x, . . . ,

(
gσ−1(m), πkσ−1(m)

)
· x

)
=

((
g · gσ−1(1), πkσ−1(1)

)
· x, . . . ,

(
g · gσ−1(m), πkσ−1(m)

)
· x

)
=

(
(g1, 1)

(
kσ−1(1), πkσ−1(1)

)
· x, . . . , (gm, 1)

(
kσ−1(m), πkσ−1(m)

)
· x

)
=

(
(g1, 1) · x, . . . , (gm, 1) · x

)
= y.

Thus we conclude that 
(
Om × (On)m

)Γ is non-empty, and therefore so is OΓ
nm. �
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One way to package Lemmata 4.10, 4.11, and 4.12 is via the G-symmetric monoidal 
structure on the category of finite G-sets. Induction is actually a special kind of disjoint 
union: we simply allow the group G to act on the indexing set (in this case G/H) for 
the disjoint union. Working more generally, we see that we can easily make sense of a 
disjoint union of (−)-sets St indexed by a G-set T provided

(i) St is a Stab(t)-set and
(ii) Sg·t is in bijective correspondence with St and the action of g intertwines the Stab(t)

and gStab(t)g−1 actions.

Our lemmas can then be repackaged in this language.

Corollary 4.13. If T ∈ CG(O) and if for all t ∈ T , we have an admissible Stab(t)-set St

satisfying the compatibility condition above, then
∐
t∈T

St ∈ CG(O).

Warning 4.14. While it is true that C(O) forms a coefficient system and is closed un-
der some indexed coproducts, it is not true that C(O) is always closed under arbitrary
induction (making it a kind of category-valued Mackey functor). The norm machinery 
described in Section 6.2 can be used to produce operads which close up C(O) under 
certain inductions.

Thus far we have used only the composition structure of the operad (and hence, all of 
this would work in a non-unital context). For the last piece of structure, we must have 
a unital algebra.

Lemma 4.15. The coefficient system C(O) is a truncation subcoefficient system of Set: if 
Z = S � T is an admissible G-set, then both S and T are admissible.

Proof. We use the unit map to show this. The admissibility of Z shows that there is a 
map f : G → Σ|Z| and OΓZ

|Z| � ∗. The disjoint union decomposition of Z into S�T shows 
that we can choose this map to factor through the inclusion Σ|S| ×Σ|T | ⊂ Σ|Z| (in fact, 
the subgroup ΓZ corresponding to Z probably does not have this property; however, 
a conjugate of ΓZ will). In this case, the projection of ΓZ onto G × Σ|S| realizes the 
subgroup ΓS corresponding to S, and similarly for T .

We now use the composition and the identity to deduce the result. Consider the 
composition:

O|Z| ×O|S|
1 ×O|T |

0 −→ O|S|.

This map is (G × Σ|S| × Σ|T |)-equivariant, where on the first factor, the action is via 
the obvious inclusion and where the action on the target is via the quotient to G ×Σ|S|. 
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Since the map defining the G-action on Z factors through Σ|S| × Σ|T |, the group ΓZ is 
actually a subgroup of G × Σ|S| × Σ|T |. The ΓZ-action on O|S| is via the quotient Γ|S|, 
so

OΓZ

|S| = OΓS

|S|.

Since the spaces in the operad are universal spaces for a family, it will again suffice to 
show that

(
O|Z| ×O|S|

1 ×O|T |
0

)ΓZ = OΓZ

|Z| × (O|S|
1 ×O|T |

0 )ΓZ �= ∅.

By assumption, the first factor is non-empty. For the second, the diagonal map

O1 ×O0 −→ O|S|
1 ×O|T |

0

is Σ|S| × Σ|T |-equivariant, with the image being the fixed points. The space O1 ×O0 is 
G-equivariantly contractible, so we know that in fact

∅ �= (O|S|
1 ×O|T |

0 )G×Σ|S|×Σ|T | ⊂ (O|S|
1 ×O|T |

0 )ΓZ . �
Corollary 4.16. The coefficient system C(O) is closed under finite limits.

Proof. Equalizers are subobjects in Set, and Lemma 4.11 shows that each category is 
also closed under finite products. �

Putting together all of these lemmas, we deduce the following theorem.

Theorem 4.17. The functor C is a functor from the homotopy category of N∞ operads to 
the poset I.

4.3. Application: linear isometries and little disks

We pause here to provide a surprising application: for all but three finite groups G, 
there are universes U such that the linear isometries and little disks (or Steiner) operads 
associated to U are inequivalent. To show this, we need only apply our functor C.

Theorem 4.18. For the equivariant linear isometries operad on U , the admissible H-sets 
are those T such that there is an H-equivariant embedding

Z[T ] ⊗ U −→ U.

Proof. In fact, the statement of the theorem is a restatement of definition of the linear 
isometries operad. If T is an admissible H-set, then by definition

L(U⊕n, U)ΓT = LΓT
(U⊕n, U) �= ∅.
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The group ΓT acts on U via the quotient H. The only question is how it acts on

U⊕n = Z{1, . . . , n} ⊗ U.

On the tensor factor U , the ΓT -action is again via the quotient H. On the other tensor 
factor, by the definition of T , the ΓT -action is the H-action on Z[T ]. This gives the 
result. �

The truncation and disjoint union conditions on our indexing sets show that admis-
sibility is completely determined by the admissibility of orbits H/K. The condition for 
admissibility for L(U) then is that there is an H-equivariant embedding

IndH
Ki∗KU −→ i∗HU.

This requirement is actually a “cofamily” condition in H: if K is subconjugate to some 
K ′ in H, then Z[H/K ′] ⊗ U H-embeds into U whenever Z[H/K] ⊗ U does.

Theorem 4.19. For the equivariant little disks operad on U , the admissible H-sets are 
those T such that there is an H-equivariant embedding

T −→ U.

Proof. This is essentially due to Lewis. An embedding of T into U can be fattened into 
a tiny equivariant neighborhood of T embedded into U . This is an embedding of T ×D

into U which is H-equivariant, and this is exactly what an element of the ΓT -fixed points 
of

D
(

n∐
1

D,D

)
= D({1, . . . , n} ×D,D)

looks like. Just as in the linear isometries case, the existence of a single embedding is 
sufficient to have a contractible space. �
Corollary 4.20. For any universe U , there is a map in the homotopy category of operads

L(U) −→ D(U).

Proof. For any finite H-set T , T always H-equivariantly embeds into R{T}. Thus if T
is admissible for L(U), then it is also admissible for D(U). �

Since the condition on the category C(L(U)) described in Theorem 4.18 is much more 
stringent than the one for the category C(D(U)) described in Theorem 4.19, there is, 
a priori, no reason that the operads need be the same for a particular universe. We 
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will show that in fact, they can be different (and for most groups, hugely different, as 
explained in Theorem 4.24 below). We first show an important example in which they 
coincide.

Theorem 4.21. If N is a normal subgroup in G and if UN is the universe generated by 
R[G/N ], then L(UN ) and D(UN ) are equivalent.

This universe is the N -fixed points of the complete universe, and this statement should 
be viewed as an analogue of the symmetric monoidal embedding of G/N -spectra in 
G-spectra.

Proof. We just have to show that the admissible sets are the same in both cases, and 
these are the sets with stabilizer containing N . Since N is normal in G, there is no 
difference between restricting to H and restricting to HN , and in this case, UN restricts 
to UN but with G replaced by HN . It therefore suffices to look at those G sets which 
are admissible.

The admissible G-sets for D(UN ) are those with stabilizer H such that G/H embeds 
in UN . Since G is finite,

EmbG(G/H,U) = UH −
⋃

H<K

UK ,

where H < K means H is properly subconjugate to K. For all subgroups H, the H
fixed points are equal to the HN -fixed points, and so if H does not contain N , there 
are no embeddings of G/H into U . On the other hand, if H does contain N , then the 
transfer shows that the H-fixed points of UN is the universe generated by R[G/H]. This 
visibly contains G/H. Thus the admissible G-sets for D(UN ) are those with stabilizers 
containing N .

For L(U), we need only to determine those H such that Z[G/H] ⊗UN embeds in UN . 
The universe UN has the defining feature that all of N fixes UN and such that larger 
subgroups of G move points. If H contains N , then the desired condition obviously 
holds. If H does not contain N , then N does not fix Z[G/H], and therefore, there are 
no embeddings.

Thus in both cases, the admissible G-sets are precisely those whose stabilizers con-
tain N , and Dn(UN ) and Ln(UN ) are equivalent. �

We can now prove the main result in this subsection: for all but two groups, there are 
universes U such that L(U) and D(U) are inequivalent.

Theorem 4.22. If G is a finite group of order bigger than 3, then there is a universe U
such that L(U) and D(U) are not equivalent.

The proof follows immediately from a small, representation theoretic lemma.
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Lemma 4.23. If G is a finite group of order bigger than 3, then there is a representation 
V such that

(i) G embeds into V , and
(ii) there is a non-trivial irreducible representation W of G such that W is not a sum-

mand of V .

In fact, V can be chosen as a faithful representation.

Proof. First note that if G is a simple group of order at least 5, then every non-trivial 
representation of G is faithful. By the class equation, there are more than 2 non-trivial 
irreducible complex representations, and hence at least 2 non-trivial, irreducible real 
representations. Any one such representation will satisfy the conditions of the lemma.

Now assume that N is a non-trivial, proper normal subgroup of G. Let ρ̄N denote the 
quotient of the real regular representation of N by the trivial summand. Then we claim 
that V = IndG

N ρ̄N satisfies the conditions of the lemma.
The reduced regular representation is faithful and induction preserves this property. 

Since the representation is faithful, the collection of all vectors with non-trivial stabilizer 
is a union of proper hyperplanes of V , and since G is finite, this is a proper subset of V . 
Thus G embeds into V .

For the second condition, let λ denote a non-trivial real representation of the quotient 
group G/N . Frobenius reciprocity shows that there are no non-trivial maps between 
complexifications of V and λ (since the restriction of λ to N is always trivial), and thus 
λ is not a summand of V . �
Proof of Theorem 4.22. Let V be a faithful representation of G satisfying the conditions 
of Lemma 4.23, and let U = ∞(1 +V ). Then by assumption, G embeds into U , so G/{e}
is an admissible G-set for D(U). However, U is not the infinite regular representation, 
since V does not contain every irreducible representation of G, and so G/{e} is not an 
admissible G-set for L(U). �

If G has order 2 or 3, then this will fail: there are only two irreducible real represen-
tations: the trivial one and multiplication by the corresponding root of unity. Thus in 
these cases there are only two universes: the trivial universe and the complete universe.

With slightly more care, we can refine the above theorem.

Theorem 4.24. If G is not simple, then there is a universe U such that D(U) is not 
equivalent to L(W ) for any universe W .

Proof. Let N be a non-trivial, proper normal subgroup of G, and let V = IndG
N ρ̄N as in 

the proof of Lemma 4.23. Since this is a faithful representation of G, we know that G
embeds in V . If G is admissible for L(W ), then Theorem 4.18, W must be the compete 
universe. In particular, C(L(W )) = Set.
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We prove the theorem by showing that G/N itself does not embed in U = ∞(1 + V ). 
Obviously, any such embedding lands in a finite subrepresentation, so we show that G/N

does not embed into k(1 + V ) for any k. A map of G-sets

G/N −→ k(1 + V ),

is the same as an N -fixed point of k(1 + V ). However, since N is a normal subgroup,

i∗NV = [G : N ]ρ̄N ,

which has no fixed points. Thus any map lands entirely in the trivial factor, and hence 
is a constant map on G/N . �
Remark 4.25. We do not know for which simple groups Theorem 4.24 holds. For cyclic 
groups of prime order, it fails: there are only two indexing systems, the trivial and 
complete one, both of which correspond to little disks and linear isometries operads. For 
A2n+1, the restriction of the quotient of the defining representation for Σ2n+1 by the 
trivial summand generates a universe in which A2n+1/D4n+2 does not embed, showing 
that for A2n+1, Theorem 4.24 holds.

5. The homotopy category of N∞ operads

In this section, we show that the functor C is a fully-faithful embedding and explain 
why we believe that it is fact an equivalence.

5.1. Faithfulness

We begin by recording some easy results about the relationships between coefficient 
systems that correspond to natural constructions on operads.

Proposition 5.1. If O and O′ are N∞ operads, then O ×O′ is an N∞ operad, and

C(O ×O′) = C(O) ∩ C(O′).

Proof. The only part that requires any proof is the second part; the operadic properties 
are straightforward. The second part is actually a standard observation in equivariant 
homotopy theory: if EF and EF ′ are universal spaces for families F and F ′ respec-
tively, then EF × EF ′ is a universal space for F ∩ F ′. This follows immediately from 
consideration of the fixed points. The translation to the categorical version is then as 
above. �
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Corollary 5.2. If C(O) ⊂ C(O′), then the natural projection

O ×O′ −→ O

is a weak equivalence.

Proof. For all n, both (O × O′)n and On are universal spaces for the same family of 
subgroups. �
Corollary 5.3. If C(O) = C(O′), then in the homotopy category, O and O′ are isomorphic.

Proof. Apply Corollary 5.2 twice to the zig-zag O ← O ×O′ → O′. �
Corollary 5.4. If C(O) ⊂ C(O′), then in the homotopy category, we have a map

O −→ O′.

In order to go further, we calculate the derived space of maps between two operads 
O and O′.

Proposition 5.5. The derived mapping space from any G-operad O to an N∞ operad O′

is either empty or contractible.

Proof. We perform the calculation in the category of G-operads in simplicial sets. Since 
G is discrete, there is a model structure on G × Σn-simplicial sets where the weak 
equivalences and fibrations are detected on passage to fixed point spaces (and the cofi-
brations are the monomorphisms) [22, 3.1.9]. Let SymSeqGSetΔop denote the category of 
symmetric sequences of G-simplicial sets. Since this is equivalent to the product (over 
n ≥ 0) of the categories of G × Σn-simplicial sets, there is a levelwise model structure 
on SymSeqGSetΔop in which the weak equivalences and fibrations are detected pointwise. 
The forgetful functor from the category of G-operads in simplicial sets to SymSeqGSetΔop

has a left adjoint free functor, and the transfer argument of [22, 3.2.10] applies to lift 
the model structure on SymSeqGSetΔop to one on G-operads in simplicial sets. Note that 
these model structures are simplicial and cofibrantly-generated.

Let G-Op(T ) denote the category of G-operads in topological spaces and let 
G-Op(SetΔ

op
) denote the category of G-operads in simplicial sets. The geometric re-

alization and singular complex functors preserve products and so induce an adjoint pair

Sing:G-Op(T ) � G-Op(SetΔ
op

): | − |.

Furthermore, since both of these functors preserve weak equivalences [22, 3.1.10], we can 
compute the derived mapping space in either category. More precisely, the fact that | −|
and Sing preserve equivalences and are such that the unit and co-unit of the adjunction 
are natural weak equivalences implies that there is a weak equivalence
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LHG-Op(T )(O,O′) � LHG-Op(SetΔ
op

)(SingO, SingO′),

where LH denotes the Dwyer–Kan simplicial mapping space.
This latter can be computed as the internal mapping space in the model category 

of operads in G-simplicial sets after replacing the source with a cofibrant object and 
the target with a fibrant object. In this model structure a cofibrant replacement of a 
G-operad can be computed as a retract of a cell operad. Moreover, the fibrant objects 
are precisely the levelwise fibrant objects and so in particular SingO′ is fibrant.

Thus, we can compute the mapping space by resolving the G-operad SingO as a 
cell object. That is, SingO = colimnXn, where each stage Xn can be described as the 
(homotopy) pushout

FAn Xn−1

FBn Xn.

Here F is the free functor from SymSeqGSetΔop to G-Op(SetΔ
op

). Therefore, there is an 
equivalence

Map(SingO,−) � holimnMap(Xn,−).

It now suffices to show that Map(Xn, −) is contractible. Inductively, we can use the 
pushout description of Xn above to reduce to the case of free G-operads. Finally, ob-
serve that maps from a free operad into any N∞ operad are contractible or empty: by 
adjunction, they are computed on the level of symmetric sequences, and any N∞ operad 
is made up of universal spaces. �
Corollary 5.6. The functor C is a faithful embedding of Ho(N∞-Op) into I.

5.2. Towards fullness

We now explain why we believe that in fact C is an equivalence of categories. We will 
use the categorical Barratt–Eccles operad of Guillou–May [7, 2.3]. To produce operads 
in spaces, we simply take the geometric realization of the nerve.

Definition 5.7. The categorical Barratt–Eccles operad is defined by

On = i∗Map(G,Σn),

where i∗: Set → Cat is the right-adjoint to the “object” functor.
The operadic structure maps are simply induced by the embeddings of products of 

symmetric groups into bigger ones.
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The functor i∗ assigns to each set the category whose objects are the set and for which 
there is a unique morphism in each direction between any pair of objects.

Remark 5.8. The operad O is the norm from trivial categories to G-categories of the 
Barratt–Eccles operad Σ, defined by

Σn = i∗Σn.

From this perspective, it is immediate that On has fixed points for all subgroups H of 
G × Σn for which H ∩ Σn = {e}.

Associated to an element of Coef(Set) is a collection of families Fn of subgroups of 
G × Σn: T is an H-set in our coefficient system if and only if ΓT is in F|T |. Using this, 
we can build a sub-symmetric sequence in categories of O.

Definition 5.9. If F∗ is a sequence of families of subgroups of G × Σ∗, then let

O
F
n = i∗{f ∈ On |Stab(f) ∈ Fn}.

Since the family is closed under conjugation, for each n, OF
n is a G ×Σn-subcategory 

of O. By construction, the geometric realization of OF is an N∞ symmetric sequence, 
and similarly, we immediately have the following.

Proposition 5.10. Let F∗ be the sequence of families of subgroups associated to an N∞
symmetric sequence O. Then we have

C(|OF |) = C(O).

We make the following conjecture, which would establish an equivalence of categories 
between Ho(N∞-Op) and I.

Conjecture 5.11. If C is an indexing system and if F is the associated sequence of families 
of subgroups, then OF is a sub-operad of O.

An interesting question (about which we do not have a conjectural answer) is whether 
or not all homotopy types in N∞-Op are realized by the operads that “arise in nature”, 
i.e., the equivariant Steiner and linear isometries operads.

6. The structure of N∞-algebras

Although we can consider algebras over an N∞ operad O in any symmetric monoidal 
category enriched over G-spaces, we are most interested in the examples of orthogonal 
G-spectra with the smash product and G-spaces with the Cartesian product. In both 
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of these examples, the notion of weak equivalence of operads given in Definition 3.9 is 
validated by the fact that a weak equivalence of N∞ operads induces a Quillen equiva-
lence of the associated categories of algebras. (See Appendix A for details.) Therefore, 
the associated data of the coefficient system captures all of the relevant structure. We 
now turn to describing this structure in geometric terms.

Specifically, the name N∞ refers to the additional structure encoded by an N∞ op-
erad: norms, or more precisely indexed products. In spectra with the smash product, 
these arise as the Hill–Hopkins–Ravenel norm, and the operadic structure encodes the 
analogue of the counit of the adjunction between the norms and the forgetful functors for 
commutative ring spectra. In spaces with the Cartesian product, these arise as coinduc-
tion, and the operadic structure maps encode the transfer in algebras over the Steiner 
operads.

In the following definition, we use the technical device of exploiting the equivalence 
of categories between orthogonal G-spectra on the complete universe and orthogonal 
G-spectra on a trivial universe [15, §VI.1], as pioneered in the Hill–Hopkins–Ravenel 
construction of the norm. Specifically, given an orthogonal G-spectrum X on a complete 
universe, we forget to the trivial universe, perform the construction indicated in the 
formula, and then left Kan extend back to the complete universe.

Definition 6.1. Let T be an G-set.

(i) If E is an orthogonal G-spectrum, then let

NTE =
(
G× Σ|T |/ΓT+

)
∧Σ|T | E

∧|T |.

(ii) If X is a G-space, then let

NTX =
(
G× Σ|T |/ΓT

)
×Σ|T | X

×|T |.

As stated, there is a potential conflict of notation — NTE could refer to the preced-
ing definition or to the Hill–Hopkins–Ravenel norm. This ambiguity is resolved by the 
following proposition, which uses the fact that G-spaces and orthogonal G-spectra are 
tensored over G-spaces. If X and Y are G-spaces, we write F (X, Y ) to denote the space 
of all continuous maps from X to Y , given the conjugation G-action.

Proposition 6.2. Let T be an H-set.

(i) Let E be an orthogonal G-spectrum. Then a decomposition T =
∐

i H/Ki gives a 
homeomorphism

(
G× Σ|T |/ΓT+

)
∧Σ|T | E

|T | ∼= G+ ∧H

∧
i

NH
Ki

i∗Ki
E,

where NH
K is the Hill–Hopkins–Ravenel norm.
i
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(ii) Let X be a G-space. Then we have a homeomorphism

(
G× Σ|T |/ΓT

)
×Σ|T | X

×|T | ∼= G×H F (T,X).

Proof. The first statement is essentially the definition of the norm. The second follows 
immediately from the Cartesian product endowing G-spaces with a symmetric monoidal 
structure. �
Proposition 6.3. The assignments

(T,E) �→ NT (E) and (T,X) �→ NT (X)

specify strong symmetric monoidal functors in both factors, and moreover we have natural 
homeomorphisms

NS×T (E) ∼= NSNT (E) and NS×T (X) ∼= NSNT (X).

Proof. The first part is immediate from the definition. For the second, unpacking 
Lemma 4.11 makes the above isomorphisms very clear. The identification of the sub-
group of Σ|S×T | associated to ΓS×T shows that the two sides are the same. �
6.1. The structure of O-algebras

We focus on the general structure of O-algebras in G-spaces and orthogonal G-spectra. 
For brevity of exposition, we will describe all of our maps and structure for orthogonal 
G-spectra herein, using the smash product. Everything we say holds mutatis mutandis
for G-spaces using the Cartesian product.

We start with the most basic structure: an algebra over an N∞ operad looks like an 
ordinary, classical algebra over a non-equivariant E∞ operad.

Proposition 6.4. If R is an O-algebra in spectra, then R is a naive E∞ ring spectrum in 
the sense that R has a multiplication that is unital, associative, and commutative up to 
all higher homotopy.

Proof. Choose an ordinary, non-equivariant E∞ operad E and endow it with a trivial 
G-action. Since C(E) is the initial object in I, we know that we have a map from (an 
operad equivalent to) E to O. Thus any O-algebra is by restriction an E-algebra. �

The other admissible sets appear as extra structure.

Construction 6.5. For an orthogonal G-spectrum E and T an admissible H-set for O
with associated subgroup ΓT , then by definition of admissibility, we are given a (G ×
Σ|T |)-contractible space of maps
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(G× Σ|T |)/ΓT −→ O|T |,

and smashing over Σ|T | with E∧|T | yields a contractible space of maps

G+ ∧H NT i∗HE −→ O|T |+ ∧Σ|T | E
∧|T |.

This contractible space of maps gives us extra structure for an O-algebra.

Lemma 6.6. If R is an O-algebra and T is an admissible H-set, then there is a contractible 
space of maps

G+ ∧H NT i∗HR −→ R

built from the maps of Construction 6.5.

Proof. The maps in question are the composite

G+ ∧H NT i∗HR −→ O|T |+ ∧Σ|T | R
∧|T | −→ R,

where the first map is any of the maps in Construction 6.5 arising from the contractible 
space

FG×Σ|T |(G× Σ|T |/ΓT ,O|T |) = OΓT

|T |. �
Remark 6.7. By convention, we assume that the empty set is always admissible. In this 
case, we can again construct a contractible space of maps

G+ ∧H N∅i∗HR −→ R,

since by assumption, N∅i∗HR is the symmetric monoidal unit.

We can strengthen these results. Recall that the category of algebras over an E∞
operad is homotopically tensored over finite sets in the sense that given an algebra R
and a map T → S of finite sets, we have a contractible space of maps R|T | → R|S|

encoding the multiplication. An analogous result holds in this context, where here the 
algebras over an N∞ operad O are homotopically tensored over CG(O).

Theorem 6.8. If T and S are admissible G-sets and f : T → S is a G-map, then for any 
O-algebra R, we can construct a contractible space of maps NTR → NSR encoding the 
multiplication.

Proof. For S a trivial G-set, this is the content of Lemma 6.6. For the general case, we 
observe that a general map between G sets can be written as a disjoint union of surjective 
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maps onto orbits inside S. Disjoint unions correspond to external smash products, and 
hence, it suffices to consider S a single orbit and T → S surjective. This, however, can 
be rewritten as

T −→
∐

|T/G|
S −→ S,

where the first map is the disjoint union of the surjection restricted to each orbit of T
and the second is just the fold map. It will therefore suffice to show two things:

(i) That associated to the fold map we can construct a contractible space of maps, and
(ii) associated to a surjective map G/H → G/K, we can construct a contractible space 

of maps.

The fold map in turn is just S times the fold map sending |T/G| points with trivial 
G action to a single point. We have a contractible space of maps

R∧|T/G| −→ R

by Lemma 6.6 again, applied to the trivial G-set. Taking the norm NS(−) of these 
produces the required contractible space of maps for the fold.

Now consider T = G/H and S = G/K. By possibly composing with an automorphism 
of T , we may assume that H is a subgroup of K and that the map is the canonical 
quotient. In this case, the map is

G×K (K/H −→ K/K).

Since K/H is a summand of i∗K(G/H), we know that K/H is an admissible K-set. 
Lemma 6.6 gives us a contractible space of maps

NK/H(i∗KR) −→ i∗KR.

Applying the functor NG
K produces a contractible space of maps

NG/H(R) −→ NG/K(R),

as required. �
Remark 6.9. One way of interpreting Theorem 6.8 is that equivariant operads should 
really be indexed on finite G-sets, not just (a skeleton of) finite sets. Such a definition 
is very natural using the perspective on ∞-operads developed in Lurie [8] — instead 
of working with fibrations over Segal’s category Γ, equivariant ∞-operads should be 
defined as fibrations over the equivariant analogue ΓG. We intend to return to explore 
this perspective in future work.
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Corollary 6.10. If S, S′, and S′′ are finite admissible G-sets, and

S
f−→ S′ f ′

−−→ S′′

are maps of G-sets and if R is an O-algebra, then for any choice of maps coming from 
Theorem 6.8, the following diagram commutes up to homotopy

NSR
f�

(f ′◦f)�

NS′
R

f ′
�

NS′′
R.

Theorem 6.11. An O-algebra R is an orthogonal G-spectrum with maps

G+ ∧H NT i∗HR −→ R

for all admissible H-sets T such that the following conditions hold.

(i) For all admissible G-sets S and T , the following diagram homotopy commutes

NS
TY � NSR ∧NTR R ∧R

R.

(ii) For all admissible G-sets S and T , the following diagram homotopy commutes

NS×TR � NSNTR NSR

R.

(iii) For all admissible sets S and T such that for some K ⊂ G, i∗K(S) ∼= i∗K(T ), the 
following diagram homotopy commutes

i∗KNSR � N i∗KSi∗KR N i∗KT i∗KR � i∗KNTR

i∗KR.

In fact, all of these diagrams commute up to coherent homotopy; this coherence data is 
precisely the information encoded by the operad.
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The first two conditions express compatibility with the multiplication and with the 
other norms. The third part shows that the structure is well-behaved upon passage to 
fixed points. We spell out a short, illuminating, example.

Example 6.12. Let G = C2 (although any finite group will work here), and let O denote 
an N∞ operad weakly equivalent to the Steiner operad on the complete universe. By 
assumption, O2 is the universal space EC2Σ2 for Σ2-bundles in C2-spaces. If we let ρ2
denote the regular representation of C2 and τ denote the sign representation of Σ2, then 
a cofibrant model for O2 is given by

S
(
∞(ρ2 ⊗ τ)

)
= lim

→
S(nρ2 ⊗ τ).

Inside of this is of course S(ρ2 ⊗ τ). This has a cell structure given by

(
(C2 × Σ2)/C2 � (C2 × Σ2)/Δ

)
∪f (C2 × Σ2) × e1,

where Δ is the diagonal copy of C2 = Σ2, and f is the canonical quotient

f : (C2 × Σ2) × S0 = (C2 × Σ2) � (C2 × Σ2) −→ (C2 × Σ2)/C2 � (C2 × Σ2)/Δ.

Thus if we have an O-algebra R, then the zero cells together give a map

R∧2 ∨NC2i∗eR −→ R,

while the attaching map for the one-cell identifies the restriction of the map on the first 
factor with the restriction of the map on the second factor.

6.2. Norms, coinductions, and cotensors of N∞ operads

We now describe the behavior of N∞ operads and characterizations of their collec-
tions of admissible sets under various standard functors. Our basic tool is the following 
standard result:

Proposition 6.13. Let F : C → D be a lax symmetric monoidal functor between symmetric 
monoidal categories C and D. Given an operad O in C, then FO is an operad in D, and 
F induces a functor

C[O] −→ D[FO]

connecting the categories of O-algebras and FO-algebras.

Proof. The fact that FO forms an operad in D is a standard consequence of regard-
ing operads as monoids in symmetric sequences; e.g., see [24, 3.3] for a more detailed 
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discussion. To see that F induces a functor on algebras, it suffices to exhibit a natural 
map

(FO)FX −→ F (OX)

in D, where (FO)X denotes the free FO-algebra on X. Writing this out, we want a 
natural map

∞∐
n=0

FO(n) ⊗Σn
(FX)n −→ F

( ∞∐
n=0

O(n) ⊗Σn
Xn

)
.

The lax symmetric monoidal structure of F induces a composite

FO(n) ⊗ (FX)n −→ FO(n) ⊗ F (Xn) −→ F (O(n) ⊗Xn),

and now we map this into the orbits and then the coproduct. By the universal property 
of the coproduct, as n varies these maps assemble into the desired map. �
6.2.1. Coinduction and N∞ operads

Just as restriction of an N∞ operad is again an N∞ operad, coinduction preserves the 
collection of N∞ operads.

Definition 6.14. If O is an H-N∞ operad, then let NG
HO = FH(G, O) be the N∞ operad 

defined by

FH(G,O)n = FH(G,On) ∼= FH×Σn
(G× Σn,On).

These spaces assemble into an operad using the diagonal map on G to see that coinduc-
tion is lax symmetric monoidal. The last equality shows that this is actually a universal 
space for a family of subgroups of G ×Σn. Identifying the family is fairly straightforward 
and lets us identify the admissible sets.

Proposition 6.15. For any finite group G, if F is a family of subgroups of H ⊂ G, then 
FH(G, EF) is a universal space for the family of subgroups of G corresponding to the 
sieve i∗H

−1SetF .

Proof. By the adjunction, for any finite G-set T (in fact, for any G-space), we have a 
homeomorphism

FG(T, FH(G,EF)) ∼= FH(i∗HT,EF).

This space is either contractible or empty according to whether i∗HT is in SetF or not, 
respectively. �
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Specializing to the families which arise from an N∞ operad, we conclude the following.

Proposition 6.16. Let O be an H-N∞ operad. For any K ⊂ G, a K set T is admissible 
if any only if for all g ∈ G,

iH∩gKg−1g · T ∈ C(O)(H ∩ gKg−1).

Proof. Let n be the cardinality of a finite K set T . Consider G ×Σn/ΓT . By the previous 
proposition, we need only check that the restriction of this to H × Σn is in the family 
associated to O|T |. By the double coset formula, this restriction is a disjoint union of 
H × Σn-sets of the form

H × Σn/
(
H × Σn ∩ (g, σ)ΓT (g, σ)−1).

The conjugates of ΓT are all again graphs of functions. In this case, the conjugate of ΓT

is the graph of the function describing the gKg−1-set g · T (with σ here just providing 
an isomorphism of this gKg−1-set with another). Intersecting this with H × Σn is again 
the graph of a homomorphism, this one with domain H ∩ gKg−1. The result follows. �

We can now explain the connection between norms of algebras and algebras over the 
norm of an N∞ operad O. One of the defining features of the norm in spectra is a 
homeomorphism

NG
HΣ∞(X+) ∼= Σ∞(

FH(G,X)+
)
,

which follows immediately from the fact that Σ∞
+ is a symmetric monoidal functor from 

spaces with Cartesian product to spectra with the smash product. Thus we expect a 
close connection between algebras in spaces or spectra over an N∞ operad and those 
over its norm. The following corollary is an immediate consequence of Proposition 6.13.

Corollary 6.17. If R is an O-algebra in spaces or spectra for an N∞ H-operad O, then 
NG

H (R) is naturally a NG
HO-algebra.

6.2.2. Cotensoring and N∞ operads
We close this subsection with a small result of independent interest: cofree naive 

commutative G-ring spectra are automatically genuine commutative G-ring spectra. This 
follows from the cotensoring operation of spaces on N∞ operads.

Proposition 6.18. Let E be a universal space for a finite group G. If X is a G-space, then 
F (X, E) is again a universal space for G.

Proof. A universal space is determined by the property that for any G-space Y , the 
space of G-equivariant maps
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F (Y,E)G

is either empty or contractible. Using the adjunction

F
(
Y, F (X,E)

)G ∼= F (Y ×X,E)G,

we see that F (X, E) again has the desired property. �
Proposition 6.19. If X is a non-empty G-space, then for any N∞ operad O, there is an 
N∞ operad F (X, O) defined by

F (X,O)n = F (X,On),

where X is viewed as a G × Σn-space with trivial Σn action and with coordinatewise 
structure maps.

Proof. Since the cotensor is lax monoidal (using the diagonal map on X), Proposi-
tion 6.13 implies that F (X, O) forms an operad. Proposition 6.18 then implies that all 
spaces are universal spaces for some family of subgroups of G ×Σn. We need only show 
that Σn acts freely.

Let H ⊂ Σn be non-trivial, and consider the H-fixed points of F (X, On). Since Σn

acted trivially on X and since X was non-empty, the restriction of X to H is built 
entirely out of cells with stabilizer H. Since i∗Σn

On = EΣn, freeness follows. �
Naturality of the function object immediately gives the following proposition.

Proposition 6.20. If f : X → Y is a map of non-empty G-spaces, then f∗ is a map of 
G-operads

F (Y,O) −→ F (X,O),

and hence any F (X, O)-algebra is naturally an F (Y, O)-algebra.

In particular, the map to the terminal space ∗ shows that any F (X, O)-algebra is 
naturally an O-algebra.

When the N∞ H-operad is the restriction of an N∞ G-operad, then we can combine 
Proposition 6.20 and Corollary 6.17.

Corollary 6.21. If R is an O-algebra in spaces or spectra for an N∞ G-operad O, then 
NG

H i∗H(R) is again naturally an O-algebra.
More generally, if T is a finite G-set, then NT (R) is naturally an O-algebra.

There is an extremely important (and somewhat surprising) case when X = EG — 
the cotensor F (EG, O) is then a genuine G-E∞ operad for any O. To make sense of 
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this claim, consider the mapping space F (EG, EΣn), regarded as a G ×Σn-space where 
G × Σn acts on EG via the projection to G and on EΣn via the projection to Σn. 
Regarded as a universal space for a family of subgroups of G ×Σn, EΣn can admit maps 
only from spaces with isotropy contained entirely in G ×{1} — but this is precisely the 
case for EG.

Proposition 6.22. For any N∞ operad O, the N∞ operad F (EG, O) is a G E∞ operad.

Proof. It suffices to show this for the trivial N∞ operad Otr , since F (EG, Otr) maps to 
F (EG, O) for any other N∞ operad O.

Let Γ be any subgroup of G ×Σn that intersects Σn trivially. To show that the Γ fixed 
points of the cotensor are nonempty, by adjunction we need only show that

(G× Σn/Γ) × EG

can be built out of cells of the form G/H ×Σn. The cellular filtration of EG shows that 
it in turn suffices to show that G × Σn-equivariantly, we have an isomorphism

(G× Σn/Γ) × (G× Σn/Σn) ∼=
∐

G× Σn

This follows immediately from the equivalences

G× (G× Σn/Γ) ∼= (G× Σn/{e} × Σn) × (G× Σn/Γ)
∼= G× Σn ×{e}×Σn

i∗{e}×Σn
(G× Σn/Γ).

Since {e} × Σn is normal and since by assumption

Γ ∩ {e} × Σn = {e},

we have an equivariant isomorphism

i∗{e}×Σn
(G× Σn/Γ) ∼=

∐
|G/H|

{e} × Σn,

where H is the image of Γ under the projection to G. �
This now gives the following theorem.

Theorem 6.23. If R is an algebra in orthogonal G-spectra over any N∞ operad O, then 
the localized orthogonal G-spectrum

F (EG+, R)

is automatically an algebra over the terminal N∞ operad. Moreover, the map
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R −→ F (EG+, R)

is a map of O-algebras, where the target is an O-algebra by the diagonal map O →
F (EG+, O). Analogous results hold for an algebra over O in G-spaces.

Proof. We give the proof for spectra; the case of spaces is analogous. First, observe 
that F (EG+, R) is an algebra over the operad in spectra specified by the cotensor 
F (EG+, Σ∞

+ O), since F (EG+, −) is lax monoidal (using the diagonal map on EG). 
Next, there is a natural map of operads

Σ∞F (EG,O)+ −→ F (Σ∞EG+,Σ∞O+)

induced by the continuity of the functor Σ∞(−)+. The first assertion now follows from 
Proposition 6.22, and the second is immediate. �
6.3. Multiplicative action maps

Based on the example of algebras over the commutative operad, one expects that 
the operations parametrized by N∞ operads are multiplicative in the sense that for any 
point o ∈ O(n), the induced map

μo:X∧n −→ X

is itself a map of O-algebras, where the domain is given the diagonal action of O. More 
generally, we would expect this also to hold equivariantly, where now the maps described 
in Lemma 6.6 and Theorem 6.8 are maps of appropriate algebras.

Classically, this situation is described via the formalism of interchange of operads [4, 
§1], which we review below. To study the case of Theorem 6.8, wherein we consider the 
norm of a map of O-algebras, we need to also address the connection between algebras 
over the norm of an operad and the norm of algebras over an operad.

Recall that given an object X which is simultaneously an O-algebra and an O′-algebra, 
we say that the two actions interchange if for each point x ∈ On, the map Xn → X is 
a map of O′-algebras and vice-versa. We can express this relationship by requiring that 
the diagram

(Xn)m
∼=

αm

(Xm)n
βn

Xn

α

Xm
β

X

commute for each α ∈ O(n) and β ∈ O′(m), where the homeomorphism is given by the 
permutation that takes lexicographic order to other lexicographic order.
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Interchange of operads is described by the tensor product of operads; by construction, 
X is an O-algebra and an O′-algebra such that the actions interchange if and only if X
is an O⊗O′-algebra [4, §1]. The universal property of the tensor product of operads can 
also be described in terms of the theory of pairings of operads [19] (see [7, §6.1] for a 
discussion in the equivariant setting); a pairing

(O,O′) −→ O′′

is a collection of suitable coherent maps On ×O′
m → O′′

nm. In this language, the tensor 
product is the universal recipient for pairings.

The N∞-condition is a homotopical one, parameterizing (as we saw above) the ways 
to coherently multiply elements where we allow the group to act on both the elements 
and on the coordinates. We therefore expect that the tensor product of N∞ operads will 
always be N∞:

Conjecture 6.24. If O and O′ are N∞ operads, then (subject to suitably cofibrancy con-
ditions) O ⊗O′ is an N∞ operad and moreover

C(O ⊗O′) = C(O) ∨ C(O′),

where ∨ denotes the least upper bound in the poset I.

In particular, the conjecture implies that for any algebra over an N∞ operad O, the 
operad action interchanges with itself.

An immediate corollary of the definition of interchange is that when the operadic 
action interchanges with itself, the maps in Lemma 6.6 are maps of O-algebras:

Proposition 6.25. Let R be an algebra over an N∞ operad O, and assume that the 
O-action interchanges with itself. Then for any surjective maps S → T of admissible 
H-sets, the structure maps in Theorem 6.8

NSi∗HR −→ NT i∗HR

are maps of NT i∗HO-algebras.

We intend to return to a general analysis of the theory of the tensor product of 
G-operads elsewhere. However, for the cases of most interest in applications, namely the 
equivariant Steiner and linear isometries operads, it is possible to verify the necessary 
interchange relations directly.

In [7, §10], it is shown that there is a pairing of operads

(
K(V ),K(W )

)
−→ K(V ⊕W ),
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relying on an interchange map

θ:Kn(U) ×Km(U) −→ Knm(U ⊕ U)

that takes n Steiner paths {k1, . . . , kn} and m Steiner paths {k′1, . . . , k′m} to the collection 
of the nm product paths

ki × k′j : I −→ RU ×RU ⊂ RU⊕U

ordered lexicographically. Choosing an equivariant homeomorphism U ⊕ U → U , we 
deduce the following consequence:

Proposition 6.26. Let X be an algebra over the equivariant Steiner operad on U . Then 
the operad action satisfies interchange with itself.

Corollary 6.27. If X is an algebra over K(U), then for any admissible H-set T , the 
structure maps

NT i∗HX −→ i∗HX

are maps of K(U)-algebras.

Essentially the same construction works for the linear isometries operad. To be 
precise, given f ∈ Ln(U) and g ∈ Lm(U), we can decompose these into their com-
ponents — f : Un → U gives rise to f1, f2, . . . , fn: U → U and g: Um → U gives rise to 
g1, g2, . . . , gm: U → U . The interchange map here takes {fi}, {gi} to the map

(U ⊕ U)mn −→ U ⊕ U

by the lexicographic pairings {fi⊕ gj}. Therefore, using again a chosen homeomorphism 
U ⊕ U → U , we have the following result.

Proposition 6.28. Let R be an algebra over the equivariant linear isometries operad on U . 
Then the operad action satisfies interchange with itself.

Corollary 6.29. If R is an algebra over L(U), then for any admissible H-set T , the 
structure maps

NT i∗HR −→ i∗HR

are maps of L(U)-algebras.
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7. N∞-spaces and N∞-ring spectra: transfers and norms

In this section, we interpret the structure on algebras over N∞ operads in the two cases 
of most interest: G-spaces and orthogonal G-spectra. In the former, the admissible sets 
control which transfer maps exist; this provides a conceptual interpretation of the way in 
which N∞ operads control the structure of equivariant infinite loop spaces. In the latter, 
the admissible sets control which norms exist; this provides a conceptual interpretation 
of the way in which N∞ operads control the structure of equivariant commutative ring 
spectra.

7.1. N∞ algebras in spaces and the transfer

We begin by applying the machinery developed above to produce the transfer in 
algebras over an N∞ operad in spaces. The most important examples of N∞ operads 
from the point of view of spaces are the equivariant Steiner operads K(U), which model 
equivariant infinite loop spaces. The goal of this section is to describe how the transfer 
naturally arises from the operadic structure maps.

In this section, we state our results in terms of an operad O such that the action of 
O on any O-algebra X interchanges with itself. (Recall that Proposition 6.26 tells us 
this is true for K(U).) The following is a restatement of Theorem 6.8 in the context of 
G-spaces.

Theorem 7.1. If O is an N∞ operad, S and T are admissible H-sets, and f : T → S is 
an H-map, then for any O-algebra X in G-spaces, we have a contractible space of maps

F (T, i∗HX) −→ F (S, i∗HX),

and if the map f is surjective, then any choice is homotopic to a map of NS(O)-algebras.

Applying fixed points and passing to homotopy groups, we produce interesting maps:

Theorem 7.2. If S and T are admissible H-sets, if f : T → S is an H-map, and if X is 
an O-algebra in G-spaces, then there is unique, natural (in X) map of abelian groups

f∗:πk

(
F (T, i∗HX)H

)
−→ πk

(
F (S, i∗HX)H

)
for all k ≥ 0.

Proof. Without loss of generality, we may assume that H = G. If the map f is not 
surjective, then we may use the splitting

S = Im(f) � S′
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to produce a decomposition

F (S,X) ∼= F (Im(f), X) × F (S′, X).

Proposition 6.4 guarantees that for all k ≥ 0, the induced decomposition on homotopy 
groups of fixed points is a splitting of abelian monoids. Our map f∗ is the composite of 
the map induced by f : T → Im(f) with the inclusion of the summand associated to S′. 
We therefore may assume that f is surjective.

Since the spaces in our operad are contractible, there is a unique homotopy class for 
the structure map given by Theorem 7.1

fG
� :F (T,X)G −→ F (S,X)G,

which gives rise to a unique map of homotopy groups:

f∗:πk

(
F (T,X)G

)
−→ πk

(
F (S,X)G

)
.

Proposition 6.4 guarantees that for all k ≥ 0, the homotopy groups of all fixed points 
of NT (X) are abelian monoids. It is obvious that f∗ is a map of abelian groups for 
k ≥ 1. Since we may assume that the f� comes from a surjective map, our interchange 
assumption guarantees that the map f� is a map of NS(O)-algebras. Thus f∗ is a map 
of abelian monoids for all k. �
Corollary 7.3. If H/K is an admissible H-set, then associated to the canonical projection 
map

πH
K :H/K −→ H/H

we have a natural map of abelian monoids

trHK = πH
K∗:πkX

K −→ πkX
H .

This map has the feel of the transfer map: on homotopy groups, we have a map that 
goes from the fixed points for a subgroup back to the fixed points for a larger group. We 
shall shortly verify that upon passage to spectra that this does give the usual transfer. 
Before doing so, we deduce some very nice structural corollaries from Theorem 6.11.

Proposition 7.4. If H/K is an admissible H-set, then the double coset formula determin-
ing the restriction of trHK to any subgroup K ′ of H holds:

resHK′ trHK =
⊕

g∈K′\H/K

trK
′

K′∩gKg−1resKK′∩gKg−1 .
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This proposition, often called the “Mackey double coset formula” really has a simpler 
interpretation: the restriction to a subgroup K ′ of the transfer associated to an H-set T
is the transfer associated to the K ′-set i∗K′T . As such, this is an immediate consequence 
of Theorem 6.11 (iii).

Corollary 7.5. For an O-algebra X for which the O-action interchanges with itself, the 
abelian group valued coefficient system

πk(X):Set −→ Ab

defined by

(T ∈ SetH) �→ πk

(
F (T,X)H

)
has transfers for any admissible sets.

These are therefore incomplete Mackey functors, studied by Lewis during his analysis 
of incomplete universes [11,12].

Remark 7.6. The forgetful functor on abelian group valued coefficient systems has a 
right adjoint: coinduction. By the universal property of the product, we have a natural 
isomorphism

πkF (G/H,X) ∼= CoIndG
Hi∗Hπk(X).

This can be further simplified, using the construction of coinduction:

CoIndG
Hi∗HM(T ) = M(G/H × T ).

This final formulation has an obvious extension to more general G-sets than orbits, and 
we follow Lewis’s notation

MS(T ) = M(S × T )

for a fixed G-set S.
The O-algebra structure that interchanges with itself endows the homotopy coefficient 

system of an O-algebra X with natural transformations

πk(X)
T
−→ πk(X)

for all admissible sets T and which commute with restriction. If all sets are admissible, 
then this is equivalent to a Mackey functor structure on πk(X) [9].
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Remark 7.7. One of the classical ways to package the data of a Mackey functor is via 
additive functors from the Burnside category of spans of finite G-sets into some other 
category. There is an “incomplete” version of these that can be used in our context. The 
appropriate notion of a “span” for our incomplete Mackey functors is an isomorphism 
class of a pair of maps S ← U → T , where U → T is a pull-back of a map between admis-
sible sets. These objects form a subcategory of the Burnside category. A full treatment 
of this approach also engages with the issues from Remark 6.9 of indexing our operads 
on finite G-sets rather than on natural numbers. We intend to return to this issue in a 
subsequent paper.

Having seen that the homotopy groups of an O-algebra in G-spaces have transfers 
analogous to those possessed by the homotopy groups of genuine spectra, we restrict 
attention to O = K(U) or O = D(U) for a universe U and show that we are in fact 
constructing the usual transfer. Recall that an equivariant O-algebra X is “group-like” 
if π0(XH) is an abelian group for all H ⊂ G. We have the following delooping result:

Proposition 7.8. (See [3].) If X is a group-like K(U)-algebra or D(U)-algebra then there 
is an equivariant spectrum X indexed on U for which X is the zero space. Similarly, a 
map of K(U)-algebras X → Y deloops to a map X → Y of spectra indexed on U .

We can now deloop any of our structure maps since Corollary 6.27 implies that they 
are infinite loop maps.

Corollary 7.9. Fix some universe U , and let H/K be an admissible H-set for K(U). If 
X is a grouplike K(U)-algebra, then we have a map of spectra indexed by U :

FK(H,X) −→ i∗HX,

where X is the spectrum whose zero space is X, and where FK(H, X) is the coinduced 
spectrum. Moreover, the homotopy class is unique.

In this context, we see another interpretation of Theorem 6.11 (iii). The relevant 
spaces in the operad O parameterize the homotopies making the diagrams

i∗KNSX � N i∗KSi∗KX N i∗KT i∗KX � i∗KNTX

i∗KX

commute. This is again an incarnation of the double-coset formula.
When O is K(U) for some universe U , then these transfers recover the classical trans-

fers.
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Proposition 7.10. If X is a group-like K(U)-algebra, then the operadic transfer map 
associated to an admissible set G/H gives rise to the ordinary transfer.

Proof. This identification essentially follows from the definition of the action of the little 
disks operad on ΩV SV . Due to the problems with suspension in the context of the little 
disks operad, we will have to shift between K(U) and D(V ) in the following argument.

First, observe that if G/H is an admissible G-set for K(U), then it is an admissi-
ble G-set for D(U) and so for some finite dimensional subspace V ⊂ U , we have a 
G-equivariant embedding

G/H ×D(V ) ↪→ D(V ).

For a particular subspace V , these choices can be inequivalent, but letting the dimension 
grow yields our contractible space of maps

G/H ×D(U) ↪→ D(U).

Thus in the limit, any choices we made become equivalent, and we can restrict attention 
to some finite dimensional V and the V -fold loops.

Since X is a K(U)-space, delooping [3] implies that X � ΩV Y as a K(U)-space 
for some Y . Changing operads, we can regard X as having a D(V ) action which is 
compatible with the K(U) action. Any embedding of the form G/H × D(V ) ↪→ D(V )
induces a Pontryagin–Thom map

SV −→ G/H+ ∧ SV .

Taking maps out of this produces a map of algebras

FH(G+, i
∗
HΩV Y ) ∼= F (G/H+ ∧ SV , Y ) −→ ΩV Y,

which in this case manifestly represents the same homotopy class as the map constructed 
in Theorem 6.8; the Pontryagin–Thom collapse yields precisely the operadic structure 
map in this case. But of course this collapse is also the same as the classical construction 
of the transfer map [1]. �
Remark 7.11. One can also deduce the preceding comparison of transfers from the fact the 
description of the transfer as the composite of the inverse of the Wirthmuller isomorphism 
and the action map G ∧H X → X [23, 4.15]. Specifically, the result follows from this 
characterization along with the fact that the delooping of the operadic multiplication of 
a group-like O-space produces the fold map of G-spectra.
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7.2. N∞-ring spectra and the norm

We now study the case of N∞ algebras in orthogonal G-spectra. The arguments are 
essentially the same as in the preceding subsection, but the interpretation is different. 
The proof of the following is identical to the proof of Theorem 7.2 and Proposition 7.4, 
so we omit it.

Theorem 7.12. If R is an algebra over an N∞ operad O, then

π0(R)

is a commutative Green functor.
If the O action interchanges with itself, then for any admissible H-set H/K we have 

a “norm map”

π0(R)(G/K) nH
K−−−→ π0(R)(G/H)

which is a homomorphism of commutative multiplicative monoids.
The maps nH

K satisfy the multiplicative version of the Mackey double-coset formula.

Thus just as the homotopy groups of algebras in spaces over the Steiner operad on 
an incomplete universe gave incomplete Mackey functors with only some transfers, the 
zeroth homotopy group of an algebra in spectra over the linear isometries operad on an 
incomplete universe gives incomplete Tambara functors with only some norms.
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Appendix A. The homotopy theory of algebras over N∞ operads in SpG

In this section, we quickly present some technical results about the abstract homotopy 
theory of categories of algebras over N∞ operads.
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A.1. Model structure and comparison results

Given an N∞ operad O, there is an associated monad O on SpG formed in the usual 
fashion: for an object X in SpG, the free O-algebra can be described as

OX =
∨
n

O(n)+ ∧Σn
X∧n.

The category of O-algebras is the category SpG[O] of algebras over the monad O. For 
our model category results, we require a mild hypothesis on the spaces in the operad (we 
could equivalently assume that the operads arise as the geometric realization of simplicial 
operads). We believe that in fact this sort of hypothesis is unnecessary, but we do not 
study that issue here.

Proposition A.1. Let O be an N∞ operad for which each space On is of the homotopy 
type of a G × Σn-CW complex. Then the category of O-algebras has a model structure 
in which the weak equivalences and fibrations are lifted from SpG.

Proof. We use the criteria of [16, 5.13], which gives conditions for a monad on a topo-
logical model category to generate lifted model structures on the associated category of 
algebras. As observed in the argument for [10, B.130], the nontrivial aspect of verifying 
these criteria is showing that given a generating acyclic cofibration A → B and a map 
OA → X, the map X → Y in the pushout square

OA OB

X Y

is a weak equivalence. It is easy to see that OA → OB is an h-cofibration (i.e., it satisfies 
the homotopy extension property) and so it suffices to show that OA → OB is a weak 
equivalence. By our hypotheses on O, the proof of [10, B.115] applies here to establish 
the analogue of [10, B.113], which yields the result. �
Warning A.2. The verification that O takes the acyclic cofibrations to weak equivalences 
is not trivial and can fail in other seemingly similar situations. For example, if we localize 
the category of orthogonal spectra at the EF̃ -equivalences, the free commutative algebra 
monad does not preserve equivalences and so the construction of the model structure 
on commutative ring objects fails. This subtlety is closely related to the localization 
phenomena discussed in [9].

Associated to a map f : O → O′ of operads is an adjoint pair

f!:SpG[O] SpG[O′]: f∗
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where f∗ is the pullback and f! is the coequalizer

O
′
OX O

′X,

where one map is the action map on X and the other is the composite of f and the 
multiplication on O′. In the standard model structures on SpG[O] and SpG[O′], it is 
clear that this pair forms a Quillen adjunction since f∗ clearly preserves fibrations and 
weak equivalences.

The following result justifies the notion of weak equivalence of N∞ operad. The argu-
ment is a standard cellular induction starting from the easy comparison on free algebras; 
e.g., see [2, 3.14].

Theorem A.3. Let f : O → O′ be a weak equivalence of N∞ operads. Assume that O1 and 
O′

1 have nondegenerate G-fixed basepoints and each On and O′
n are of the homotopy type 

of G × Σn CW-complexes. Then the adjoint pair (f!, f∗) is a Quillen equivalence.

A.2. Comparison to rigid commutative monoids

In the category of orthogonal spectra, the symmetric monoidal structure given by 
the smash product is constructed so that a commutative monoid encodes the classical 
homotopy-coherence data of an E∞ ring spectrum [16]. The key technical underpinning 
of this comparison is the equivalence

(EΣi)+ ∧Σi
X∧i −→ X∧i/Σi, (A.4)

for a positive cofibrant orthogonal spectrum X [16, 15.5]. Furthermore, since the category 
of orthogonal spectra is enriched in spaces, we can consider E∞ objects in orthogonal 
spectra; these have a homotopy theory equivalent to that of commutative monoids and 
hence classical E∞ ring spectra [20, 13.2].

The category of orthogonal G-spectra is also symmetric monoidal, and we have the 
following analogue of equation (A.4)

(EGΣi)+ ∧Σi
X∧i −→ X∧i/Σi, (A.5)

for a positive cofibrant orthogonal G-spectrum [15, III.8.4] (see also [10, B.117]). Once 
again, this implies that the homotopy theory of commutative monoids is equivalent to 
the homotopy theory of classical E∞ ring spectra (over the linear isometries operad). 
Moreover, we have the following comparison between algebras over complete N∞ oper-
ads and commutative monoids in the category of orthogonal G-spectra, which follows 
from the same kind of inductive argument as Theorem A.3, using the equivalence of 
equation (A.4) to start the induction (i.e., to do the comparison on the free algebras).
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Theorem A.6. Let X be an algebra in orthogonal G-spectra over a complete N∞ operad O. 
Assume that O has a nondegenerate G-fixed basepoint and each On has the homotopy 
type of a G ×Σn CW-complex. Then there exists a commutative monoid X̃ in orthogonal 
G-spectra such that X � X̃ as algebras over O. (Here we are using the pullback along the 
terminal map from O to the commutative operad to give X̃ the structure of an O-algebra.) 
This correspondence is functorial, and there is a zig-zag of equivalences on Dwyer–Kan 
simplicial localizations between the category SpG[P] of commutative monoids in SpG and 
the category SpG[O] of O-algebras in SpG.

In fact, using the same argument we can obtain a more general comparison result on 
the category of orthogonal G-spectra indexed on an incomplete universe U . Specifically, 
there is a zig-zag of Dwyer–Kan equivalence between algebras over the commutative 
operad and algebras over any N∞ operad weakly equivalent to the G-linear isometries 
operad indexed on U .

Appendix B. Operadic algebras and geometric fixed points

One of the most important constructions in equivariant stable homotopy theory is that 
of geometric fixed points for a normal subgroup N (e.g., see [15, §V.4]). We finish our 
general analysis of O-algebras by describing the structure carried by their N -geometric 
fixed points. We let ΦN (−) denote the point-set N -geometric fixed point functor [15, 
§V.4].

We first address the effect of fixed points on the operad and the admissible sets.

Lemma B.1. Let N be a normal subgroup of G, and let O be an N∞ operad. Then

(i) ON is an N∞ G/N -operad and
(ii) the admissible H/N -sets for ON are the admissible H sets for O which are fixed 

by N .

Proof. It is obvious that ON still forms a G-operad, and it is also clear that there are 
no fixed points for the symmetric groups. Both parts of the lemma then rely on under-
standing the way families behave upon passage to fixed points by a normal subgroup. 
Let Γ be a subgroup of G/N × Σn. Then

(ON
n )Γ = Oπ−1(Γ)

n ,

where π: G → G/N is the canonical projection, is either empty or contractible. Thus On

is in fact a universal space, making ON an N∞ G/N -operad.
For the second part, we again use the above equality of fixed points. If ΓT corresponds 

to an admissible H/N -set T for ON , then the above equality shows that π−1(ΓT ) cor-
responds to an admissible H-set for O. Since this contains N × {1}, we see that this 
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admissible H-set is simply T again, now viewed as an H-set. Thus the admissible sets 
for ON are precisely the admissible sets for O which are fixed by N . �

The N∞ G/N -operad ON is also an N∞ operad via the quotient G → G/N . Thus 
it is a sub N∞ operad of O, and by restriction of structure, any O-algebra R is also an
ON -algebra. This is the heart of the following theorem.

Theorem B.2. If R is an O-algebra, then ΦN (R) is an ON -algebra.

Proof. Since N acts trivially on ON , the fact that ΦN is lax symmetric monoidal gives 
rise to a canonical composite

ON
n+ ∧Σn

ΦN (R)n −→ ON
n+ ∧Σn

ΦN (Rn) −→ ΦN (ON
n+ ∧Σn

Rn).

All of our structure maps are then induced by ΦN applied to the structure maps for the 
ON -algebra R. �
Corollary B.3. If O′ is any sub N∞ operad of O on which N acts trivially and R is an 
O-algebra, then ΦN (R) is an O′-algebra.

In particular, in the absolute worst case possible, we choose O′ to be the G-fixed 
subspace. The only admissible sets are those with trivial action (and this becomes an 
operad modeling a “coherently homotopy commutative multiplication” with no other 
structure). Then Corollary B.3 shows that for any O-algebra R and for any normal 
subgroup N , ΦN (R) is an O′-algebra and in particular, has a coherently homotopy 
commutative multiplication.

Remark B.4. The same statements are true for the actual fixed points, rather than the 
geometric fixed points. The proofs also largely carry through mutatis mutandis. The 
only change is in the proof of Theorem B.2, in which the homeomorphism comparing 
ΦN (R)∧n and ΦN (R∧n) is replaced by a map

(RN )∧n −→ (R∧n)N .

See [24] for analysis of operads obtained in this fashion.
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