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1. Introduction

1.1. Limit multiplicity

We begin this introduction by explaining our results on counting discrete automorphic 
representations. Let G be a semisimple group over a totally real field F . Write F∞ :=
F ⊗Q R. Consider a sequence of lattices {Γj}j≥1 in G(F∞) whose covolumes tend to 
infinity as j → ∞. For an irreducible unitary representation π∞ denote by m(π∞, Γj)
the multiplicity of π∞ occurring in the discrete spectrum of L2(Γj\G(F∞)). DeGeorge-
Wallach [24,25] in the compact case and Rohlfs-Speh [59] and Savin [63] in the arithmetic 
non-compact case proved that if {Γj} is a normal series whose intersection is the identity, 
then

lim
j→∞

m(π∞,Γj)
vol(Γj\G) = deg(π∞). (1.1)

Here deg(π∞) is the formal degree which by convention is non-zero if and only if π∞
is square-integrable. By different methods it is shown in [1] that (1.1) holds if {Γj} is 
Benjamini-Schramm convergent and uniformly discrete (which recovers the compact case 
but not the non-compact case).

Our goal is to investigate refinements where instead of the lattice Γj we impose a 
prescribed supercuspidal representation σj. Let u be a finite place, and consider a se-
quence {σj}j≥1 of tame supercuspidal representations of G(Fu) whose formal degrees 
tend to infinity as j → ∞. For an irreducible algebraic representation ξ of G(F∞) with 
regular highest weight, let Π∞(ξ) denote the L-packet of square-integrable representa-
tions of G(F∞) whose infinitesimal and central characters are dual to those of ξ. Write 
m(ξ, σj) for the number of discrete automorphic representations π in L2(G(F )\G(AF )), 
counted with automorphic multiplicity m(π), such that π∞ ∈ Π∞(ξ), πu � σj , and π is 
unramified at all finite places away from u. By results of Harish-Chandra the cardinal-
ity |Π∞(ξ)| is equal to the order of the Weyl group of G(F∞) divided by the order of 
the Weyl group of a maximal compact subgroup of G(F∞). Informally one of our main 
results (Corollary 5.8, cf. (1.4) below) states, provided that the residue characteristic of 
Fu is sufficiently large, that
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lim
j→∞

m(ξ, σj)
deg(σj)

= c|Π∞(ξ)|dim ξ (1.2)

for a positive constant c independent of ξ. We refer to §5.2 for the determination of c
which is related to the Tamagawa number of G.

Note that the integer |Π∞(ξ)| dim ξ is equal to 
∑

π∞∈Π∞(ξ) deg(π∞) up to a multi-
plicative constant depending only on the Haar measure on G(F∞). Compared with (1.1), 
we are averaging over π∞ ranging in the L-packet Π∞(ξ) for technical simplicity in the 
trace formula; this simplification does not interfere with the new phenomena at the finite 
prime u that we are concentrating on.

Example 1.1. For the group PGL(2) consider discrete automorphic representations that 
ramify above a single prime q and are unramified elsewhere. Let Dk be the discrete 
series representation of PGL(2, R) of weight k ≥ 2 (necessarily even). For each simple 
supercuspidal representation σ of PGL(2, Qq) with q > 3, there is an exact multiplicity 
formula

m(Dk, σ) + m(Dk, σ
′) = k − 1

12 (q2 − 1), (1.3)

where σ′ is the other representation with the same affine generic character as σ, see [38]. 
(The assumptions in [38] differ slightly, but one can verify that the same argument 
applies, the key point being that PGL(2, Q) has no q-torsion.)

Simple supercuspidal representations for PGL2(Qq) coincide with the representations 
of GL2(Qq) of conductor q3 and trivial central character. There are 2(q − 1) distinct 
simple supercuspidal σ’s, partitioned into q − 1 pairs {σ, σ′}, thus (1.3) leads to the 
observation [38] that for any even integer k ≥ 2 and any prime q > 3, the dimension of 
the space Sk(q3)new of newforms of weight k and level Γ0(q3) is1

m(Dk,Γ0(q3))new = dimSk(q3)new = k − 1
12 (q + 1)(q − 1)2.

Since the formal degree of Dk is k−1
12 , this is a strong form of the limit multiplicity 

property (1.1) as q → ∞.
On the other hand, we establish by the same method of proof as (1.2), see also [73], 

the following asymptotic

m(Dk, σ) ∼ k − 1
24 (q2 − 1), as k, q → ∞,

1 This formula can also be established from

dimSk(q3)new = dimSk(q3) − 2 dimSk(q2) + dimSk(q),

and the dimension formulas of Sk(N) derived from Riemann-Roch [52].
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because the formal degree of simple supercuspidals is deg(σ) = deg(σ′) = q2−1
2 . Thus, 

the asymptotic (1.2) and the exact formula (1.3) are consistent, although none implies 
the other.

Depth aspect

Recall the notion of depth of an admissible representation [55]. As a special case of 
Conjecture 3.15 below, we conjecture that for a sequence (σj)j≥1 of supercuspidal repre-
sentations of a p-adic group, the condition deg(σj) → ∞ is equivalent to depth(σj) → ∞. 
In our present context of tame supercuspidals, this is easy to verify (see, e.g., the proof 
of Proposition 3.13).

We may refer to the asymptotic (1.2) as a limit multiplicity result in the depth aspect. 
Indeed we view it as an analogue at finite places of the limit multiplicity in the “weight 
aspect” [69,70]. Indeed in the weight aspect, the roles of σj and ξ are interchanged, 
namely σj remains fixed and ξ → ∞ (in the sense that the highest weight for ξ gets 
arbitrarily far from the walls), whereas the above families have fixed ξ and deg(σj) → ∞. 
In fact, we also establish hybrid results in this paper, where both ξ and σj tend to infinity. 
For example our results below allow us to obtain an error bound for (1.2), saving powers 
for both dim(ξ) and deg(σj) (Corollary 5.10 below).

1.2. Quantitative equidistribution for a family

In the same context as before, for simplicity, let G be a split semisimple group over 
a totally real field F with trivial center. (In the main text G need not be either split or 
semisimple with trivial center.) Let each of S0 and S be a finite set of finite places of 
F such that S 	= ∅ (but S0 could be empty) and S0 ∩ S = ∅. Denote by S∞ the set of 
infinite places of F and put S := S∞∪S0∪S. Set FS0 :=

∏
v∈S0

Fv and AS
F :=

∏′
v/∈S Fv. 

Let KS0 be an open compact subgroup of G(FS0), and KS an open compact subgroup 
of G(AS

F ) which is the product of hyperspecial subgroups over v /∈ S (which arise from 
a global Chevalley group for G over Z). We will consider

• irreducible algebraic representations ξ of G(F∞) with regular highest weight,
• irreducible supercuspidal representations σ of G(FS).

For a technical reason we will impose the condition that ξ ∈ IrrregC (G(F∞)) for a fixed 
constant C ≥ 1 (see §5.4 for details; the error bound in the theorem depends on C).

Let F(ξ, σ, KS0) be the multi-set of discrete automorphic representations π, counted 
with multiplicity m(π) dim(πS0)KS0 (a number occurring naturally in the limit multi-
plicity problem), such that π∞ ∈ Π∞(ξ), πS � σ, and (πS)KS 	= 0. We let both ξ
and σ vary, which puts discrete series representations at infinite places (grouped in L-
packets) and supercuspidal representations at finite places on an equal footing. Write 
m(ξ, σ, KS0) := |F(ξ, σ, KS0)|. Fix a Haar measure on G(AF ).
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Our main result in a simpler form is the following Sato-Tate equidistribution for the 
family F . See Theorem 5.4 and Corollaries 5.8 and 5.10 for precise statements. In the 
special case where σ is fixed, our result generalizes [70, Thm. 9.19].

Theorem 1.2. Suppose that the residue characteristic of every v ∈ S is sufficiently large 
(in a way depending on G). We have the limit multiplicity formula as dim(ξ), deg(σ) →
∞

m(ξ, σ,KS0) ∼ c · dim(ξ) deg(σ) (1.4)

for an explicit constant c > 0. Moreover there exist ν, A > 0 depending only on G such 
that for every ξ and σ as above, and for every function φ : G(AS

F ) → C which is the 
characteristic function of a KS-double coset, we have the asymptotic formula∑

π∈F(ξ,σ,KS0 )

trπS(φ) = m(ξ, σ,KS0)φ(e) + O(m(ξ, σ,KS0)1−ν‖φ‖A1 ). (1.5)

The multiplicative constant depends on G, C, S, KS0 but is independent of ξ, σ and φ.

Example 1.3. Suppose G = PGL(2) and F = Q. We take S0 = ∅ and S any non-empty fi-
nite set of sufficiently large finite primes. We are counting, for even integer weights k ≥ 2,
and irreducible supercuspidal representations σ of PGL(2, QS), the number m(Dk, σ) of 
cusp forms f ∈ F(Dk, σ) of weight k unramified outside of S and with local component 
σ at S. The limit multiplicity asymptotic (1.4) recovers [73] as in Example 1.1:

m(Dk, σ) ∼ k − 1
12 deg(σ) as k,dim(σ) → ∞.

The second assertion (1.5) on Sato-Tate equidistribution is new already in this case of 
PGL(2). For example, if the function φ is a Hecke operator Tn for some integer n ≥ 1
not divisible by any prime in S, then:

∑
f∈F(Dk,σ)

an(f)√
n

= m(Dk, σ)δn=� + O(n), (1.6)

where δn=� is one if n is a perfect square and zero otherwise. Note that we normalize 
an(f) in such a way that Deligne’s bound reads |ap(f)| ≤ 2. The above precise error 
term (corresponding to ν = 1 and A = 0) is derived from the Sally-Shalika character 
formula [46, App. A]. Similarly as in §1.1, the equidistribution (1.6) is a refinement of 
an earlier result. Namely, Serre [65] considered the trace of the Hecke operator Tn on 
the space Sk(N) of cusp forms f of weight k and level Γ0(N), and established for n ≥ 1
coprime with N ,

∑ an(f)√
n

= m(Dk,Γ0(N))δn=� + O(n).

f∈F(Dk,Γ0(N))
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Remark

Interestingly, the depth aspect families studied in this paper are rather thin compared 
to the families formed by varying a lattice subgroup. In favorable situations, and assum-
ing that S0 = ∅, the global root number of π ∈ F(ξ, σ, ∅) depends only on ξ and σ. This 
almost never happens for thicker families arising from limit multiplicity problems where 
the whole lattice subgroup Γj varies.

Conductor vs depth

We view the sets F(ξ, σ, KS0) with varying tame supercuspidal representations σ of 
G(FS) as forming a harmonic family in the sense of [62]. Then Theorem 1.2 essentially 
gives us the Sato–Tate equidistribution for families stated as Conjecture 1 in [62]. One 
difference is that the formulation of [62, Conj. 1] involves analytic conductors whereas 
our results are expressed in terms of formal degrees. The relation between formal degree 
and conductor is not yet established in general, this is a problem closely related to that 
of the depth preservation in the local Langlands correspondence [75].

1.3. Bounds towards Ramanujan

We can deduce from Theorem 1.2 an average bound towards Ramanujan. For every 
place v /∈ S and every θ > 0, there is 	 > 0 such that

#{π ∈ F(ξ, σ,KS0), logv |α(πv)| > θ} � m(ξ, σ,KS0)1−�, (1.7)

where α(πv) is the Satake parameter of the unramified representation πv. It is unitarily 
normalized so that |α(πv)| = 1 if and only if πv is tempered. The multiplicative constant 
and the exponent 	 are independent of ξ and σ (they depend only on G, C, S, KS0 , θ, 
v). The proof proceeds in the same way as for [53, Cor. 1.8]. Namely we first construct a 
function φ1 which is a bi-Kv-invariant function on G(Fv) such that trπv(φ1) is uniformly 
small for |α(πv)| ≤ 1 and uniformly large for |α(πv)| ≥ qθv . Then we apply Theorem 1.2
for φ := (φ1 ∗ φ∨

1 )∗k with the integer k ≥ 1 chosen proportional to logm(ξ, σ, KS0), 
see [53, §3].

The estimate (1.7) shows that exceptions to the Ramanujan bound are sparse. For 
quasi-split classical groups the Ramanujan bound may be reduced to the self-dual or 
conjugate self-dual case of general linear groups via work of Arthur [12] and Mok [54]. The 
latter case is settled when cuspidal automorphic representations are cohomological (over 
totally real fields in the self-dual case; over CM fields in the conjugate self-dual case) by 
[18,50,68,19,15]. In particular the Ramanujan conjecture is known for the representations 
π ∈ F(ξ, σ, KS0) if G is a split classical group.2 For exceptional groups G very little is 
known and even a formulation of the Ramanujan conjecture is delicate, see [61] and [67]
for recent treatments.

2 Here we use the fact that ξ has regular highest weight. This forces the representation of Arthur’s SL(2)
in the global Arthur parameter to be trivial by examining the infinitesimal character at infinite places.
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1.4. Trace formula and tame supercuspidal coefficients

We find that the limit multiplicity and quantitative equidistribution described above 
are related to asymptotic properties of orbital integrals. The first step in the proof of The-
orem 1.2 is to express the left-hand side of (1.5) as the spectral side of the trace formula 
for a suitably chosen test function. Since the weight ξ is regular and σ is supercuspidal 
we can use the simple trace formula.

There exist test functions fσ that single out the given supercuspidal representation σ
in the trace formula, obtained by forming matrix coefficients.3 In our situation J.-K. Yu’s 
construction gives σ as compactly induced from a finite dimensional representation on a 
compact open modulo center subgroup of G(FS). (Every σ arises in this way if the residue 
characteristics of places in S are sufficiently large by the exhaustion theorem [45].) This 
provides an explicit fσ which is essential for our purpose.

We can now explain in more details the geometric side in the application of the trace 
formula. The geometric side is a sum over conjugacy classes of semisimple elements 
γ ∈ G(F ) of a volume term times a global orbital integral. The global orbital integral is 
a product of orbital integrals at ramified places in S, for which the main contribution is 
Oγ(fσ), and orbital integrals at unramified places.

Here we are varying the supercuspidal coefficient fσ which is unlike the usual applica-
tions of the trace formula where it is fixed. A general approach to this situation appears 
in [70] in the weight aspect and we can use the results of [70] to estimate most of the 
terms in the geometric side of the trace formula, except for Oγ(fσ) which is new.

For the proof of (1.2) we establish that |Oγ(fσ)| = o(deg(σ)) as deg(σ) → ∞, and 
for any fixed γ. The proof of Theorem 1.2 is much more difficult due to the uniformity 
in φ. As in [70] the number of terms in the geometric side is unbounded, and uniform 
estimates for orbital integrals are needed. Moreover the estimate for Oγ(fσ) has to be 
made quantitative and uniform in γ which we discuss in the next subsection.

1.5. Asymptotic behavior of orbital integrals

We have seen in the previous subsection that our approach leads to the problem of 
establishing uniform bounds for orbital integrals of supercuspidal coefficients. In gen-
eral it would be desirable to develop a quantitative theory of orbital integrals. This is 
for example advocated in the introduction of [29]. Our present problem of establishing 
uniform bounds for Oγ(fσ) goes in this direction.

Theorem 3.11 below states that there exists a constant η < 1 depending only on 
the group G(FS) such that for all noncentral elements γ and all tame supercuspidal 
representation σ of G(FS), we have

3 In general fσ is compactly supported only modulo center of G, but the center is finite as G is semisimple. 
In the main text we work with reductive groups with compact center but see Remark 3.14.
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D(γ) 1
2 |Oγ(fσ)| � deg(σ)η, (1.8)

where D(γ) is the discriminant of γ. This result is the technical heart of the paper.
The properties of Oγ(fσ) are related to the trace character Θσ(γ). In fact the two 

quantities agree if γ is regular elliptic, and we derive some consequences in §3.5. However 
it should also be noted that for our application it is essential to include the case where 
γ is non-regular elliptic (in which case Θσ(γ) is undefined). For explicit computations of 
Θσ(γ) for regular semisimple γ, we refer to [6,30,43].

In some special cases Oγ(fσ) can be computed exactly, especially if one allows an 
additional average of σ (over an L-packet). In fact one could allow σ to be not only 
supercuspidal but also discrete series representations. Notably if σ is the Steinberg rep-
resentation, then Kottwitz [49] constructed an Euler-Poincaré function fEP which is a 
pseudo-coefficient for σ. In this case (1.8) holds with fσ = fEP in the horizontal aspect 
as the residue characteristics of places in S grow to infinity, see Section 6.

Though exact formulas for orbital integrals and for trace characters are extremely 
difficult to obtain beyond some special cases, we manage to prove the desired asymp-
totic (1.8). We indicate an outline of our proof. It follows from Yu’s construction that 
the function fσ can be chosen as a matrix coefficient and is supported on an explicit 
open compact subgroup J ⊂ G(FS). We recall in Section 2 how J is constructed from a 
generic G-datum. From this we reduce the estimate to the orbital integral of the charac-
teristic function of a larger compact open subgroup Ls which is generated by a principal 
congruence subgroup and a parahoric subgroup of a proper twisted Levi subgroup. We 
conclude the proof in Section 4 based on a detailed analysis of Moy-Prasad subgroups.

1.6. Prescribed Steinberg representations

In a direction somewhat orthogonal to our main results described above, we have 
developed the case of families with prescribed Steinberg representations. We let the 
group G and the finite sets S, S0 of finite places be as before (§1.2). Let StS be the 
Steinberg representation of G(FS). We consider the multi-set F(ξ, StS , KS0) of discrete 
automorphic representations π, counted with multiplicity m(π) dim(πS0)KS0 such that 
π∞ ∈ Π∞(ξ), πS � StS , and (πS)KS 	= 0. We let S vary and refer to F(ξ, StS , KS0) as an 
horizontal family. This is to be compared with the previous vertical families F(ξ, σ, KS0)
where S was fixed and σ was a varying supercuspidal representation of G(FS).

In this case the needed estimates for orbital integrals can be deduced from results of 
Kottwitz on Euler-Poincaré functions [49]. We establish the Sato-Tate equidistribution 
for these horizontal families. The main point is that our method [70] described above for 
vertical families applies almost without change to these horizontal families, but with the 
simplification that the rather subtle bound on orbital integrals from Sections 3 and 4 is 
replaced with easier bounds such as (6.5) below. In the following example we explain the 
significance of the result for classical modular forms and refer to Theorem 6.4 for the 
precise statement in general.
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Example 1.4. Consider again the group PGL(2). The Steinberg representation Stq and 
the quadratic twist of the Steinberg representation Stq ⊗ χq are the two representations 
of PGL(2, Qq) of level Γ0(q), thus

m(Dk,Stq) + m(Dk,Stq ⊗ χq) = dimSk(q)new = dimSk(q) − 2 dimSk(1).

We note that F(Dk, Stq) (resp. F(Dk, Stq ⊗ χq)) is the set of cuspidal modular forms 
of weight k, level Γ0(q) with global root number 1 (resp. −1), see e.g. [21]. Iwaniec–
Luo–Sarnak [42, Cor. 2.14] proved that the following asymptotic holds:

m(Dk,Stq) ∼
k − 1
24 q, as k, q → ∞

and similarly for m(Dk, Stq ⊗ χq). We shall discuss this in a more general context in 
Section 6 and revisit the PGL(2) case in Example 6.6.

1.7. Notation

Let F be a number field, S (any) finite set of places of F , and S∞ the set of all 
infinite places of F . Then set FS :=

∏
v∈S Fv, F∞ := F ⊗Q R, AS

F :=
∏′

v/∈S Fv, and 
AS,∞

F :=
∏′

v/∈S∪S∞
Fv, where 

∏′ denotes the restricted product over all places v under 
the given constraint. Now let G be a connected reductive group over F . The center of 
G is denoted Z(G), the maximal Q-split torus in the center of ResF/QG is AG, and 
AG,∞ := AG(R)0. Write G∞ for ResF∞/R(G ×F F∞).

Let H(G(AS
F )) = C∞

c (G(AS
F )) denote the space of locally constant compactly sup-

ported C-valued functions on G(AS
F ). Similarly H(G(FS)) is defined. The unitary dual 

of G(FS) is denoted G(FS)∧. Its Plancherel measure is written as μ̂pl
S . We typically write 

φS for an element of H(G(FS)) and φ̂S for the associated function πS �→ trπS(φS) on 
G(FS)∧.

When π is an admissible representation of a p-adic group G, write Θπ for its Harish-
Chandra character. We write [g, h] := ghg−1h−1 for g, h ∈ G.

1.8. Acknowledgment

We thank late Paul Sally for helpful discussions. We are grateful to the referees for 
their numerous corrections and suggestions. S.W.S. is partially supported by NSF grant 
DMS-1449558/1501882 and a Sloan Fellowship. N.T. is partially supported by NSF grant 
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2. Yu’s construction of supercuspidal representations

In this section we review the construction of supercuspidal representations of a p-
adic reductive group from the so-called generic data due to Jiu-Kang Yu and recall 
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from [45] that his construction exhausts all supercuspidal representations provided the 
residue characteristic of the base field is sufficiently large. The construction yields a 
supercuspidal representation concretely as a compactly induced representation, and this 
will be an important input in the next section.

2.1. Notation and definitions

The following local notation will be in use until Section 4. Let p be a prime. Let k be 
a finite extension of Qp. Denote by q the cardinality of the residue field of k. Let G be a 
connected reductive group over k, whose Lie algebra is denoted g. Denote the center of G
by ZG. Write G and g for G(k) and g(k), respectively. For a tamely ramified extension 
E of k, denote by B(G, E) the extended building of G over E. If T is a maximal E-split 
k-torus, let A(T, G, E) denote the apartment associated to T in B(G, E). It is known 
that for any tamely ramified Galois extension E′ of E, A(T, G, E) can be identified with 
the set of all Gal(E′/E)-fixed points in A(T, G, E′). Likewise, B(G, E) can be embedded 
into B(G, E′) and its image is equal to the set of the Galois fixed points in B(G, E′)
[60,57].

For (x, r) ∈ B(G, E) ×R, there is a filtration lattice g(E)x,r and a subgroup G(E)x,r
if r ≥ 0 defined by Moy–Prasad [55]. We shall normalize the valuation of E to extend 
the valuation of k, which is a different convention than in [55] (where the valued group 
is normalized to be Z). Our convention is so that for a tamely ramified Galois extension 
E′ of E and x ∈ B(G, E) ⊂ B(G, E′), we have [2, Prop. 1.4.1]:

g(E)x,r = g(E′)x,r ∩ g(E).

If r > 0, we also have

G(E)x,r = G(E′)x,r ∩ G(E).

For simplicity, we put gx,r := g(k)x,r, etc, and B(G) := B(G, k). For r ∈ R and x ∈ B(G)
we will also use the following notation:

• gx,r+ := ∪s>rgx,s, and if r ≥ 0, Gx,r+ := ∪s>rGx,s.
• g∗x,r :=

{
χ ∈ g∗ | χ(gx,(−r)+) ⊂ pk

}
, where pk is the maximal ideal of the ring of 

integers of k.
• gr := ∪y∈B(G)gy,r and gr+ := ∪s>rgs.
• Gr := ∪y∈B(G)Gy,r and Gr+ := ∪s>rGs for r ≥ 0.

Lastly, for x ∈ B(G), we denote the stabilizer of x in G by G[x].
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2.2. Generic G-datum

Yu’s construction of supercuspidal representations starts with a generic G-datum, 
which we recall. The reader is referred to [74] for further details and any notions undefined 
here.

Definition 2.1. A generic G-datum is a quintuple Σ = (�G, x, �r, �φ, ρ) satisfying the follow-
ing:

D1. �G = (G0, G1, · · · , Gd = G) is a tamely ramified twisted Levi sequence such that 
ZG0/ZG is anisotropic.

D2. x ∈ B(G0) = B(G0, k).

D3. �r = (r0, r1, · · · , rd−1, rd) is a sequence of positive real numbers with 0 < r0 < · · · <
rd−2 < rd−1 ≤ rd if d > 0, 0 ≤ r0 if d = 0.

D4. �φ = (φ0, · · · , φd) is a sequence of quasi-characters, where φi is a generic quasi-
character of Gi (see [74, §9] for the definition of generic quasi-characters). When d = 0, 
φ0 is trivial on Gx,r+

0
, but, nontrivial on Gx,r0 . When d ≥ 1, φi is trivial on Gi

x,r+
i

, but 
non-trivial on Gi

x,ri for 0 ≤ i ≤ d − 1. If rd−1 < rd, φd is nontrivial on Gd
x,rd

and trivial 
on Gd

x,r+
d

; otherwise, φd = 1.

D5. ρ is an irreducible representation of G0
[x], the stabilizer in G0 of the image [x] of x in 

the reduced building of G0, such that ρ|G0
x,0+ is isotrivial and c-IndG0

G0
[x]
ρ is irreducible 

and supercuspidal.

In D5, note that G0
x is compact while G0

[x] is only compact mod center. Recall from 
[74, p.585] that there is a canonical sequence of embeddings

B(G0, E) ↪→ B(G1, E) ↪→ · · · ↪→ B(Gd, E).

Hence, x can be regarded as a point of each of B(Gi) = B(Gi, k).
Also D5 implies that x is rational as a building point of B(G) because it is a vertex 

of B(G0). This will become important in Hypothesis (E ).(ii) below.
Given a generic G-datum Σ = (�G, x, �r, �φ, ρ), we introduce an open compact-mod-

center subgroup of G

JΣ := G0
[x]G

1
x,s0 · · ·G

d−1
x,sd−2

Gd
x,sd−1

,

where we set si := ri/2 for each i. Yu constructs a finite dimensional representation ρΣ
of JΣ from the datum. His key result is that

Theorem 2.2 (Yu). πΣ = c-IndG
J ρΣ is irreducible and thus supercuspidal.

Σ
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Fix a positive Haar measure volG on G and denote the formal degree of πΣ by deg(πΣ). 
It is well-known (see for example [22] or [46, Lem 2.9.(i)]) that we have

deg(πΣ) = dim(ρΣ)
volG/Z(JΣ/Z) . (2.1)

The construction of ρΣ is complicated, but in what follows we shall only need the in-
equality dim(ρΣ) ≤ qdimG, see [46, Lem 2.9.(ii)] for a proof. For later reference, we write 
sΣ := sd−1.

2.3. Supercuspidal representations via compact induction

Denote by Irr(G) the set of (isomorphism classes of) irreducible smooth represen-
tations of G. Write Irr2(G) (resp. Irrsc(G)) for the subset of square-integrable (resp. 
supercuspidal) members. Define IrrYu(G) ⊂ Irrsc(G) to be the subset of all supercuspi-
dal representations which are of the form πΣ as above. Write Irrc-ind(G) ⊂ Irrsc(G) for 
the set of π compactly induced from a representation on an open compact-mod-center 
subgroup of G. We have that

IrrYu(G) ⊂ Irrc-ind(G) ⊂ Irrsc(G),

where the first inclusion comes from Theorem 2.2. The second inclusion is expected to 
be an equality but not known in general; see [46, §2.6] for references to partial results by 
Bushnell, Kutzko, Stevens and others in this direction. The main result of [45] says that 
the above inclusions are equalities under a rather explicit set of four hypotheses (namely 
(Hk), (HB), (HGT), and (HN ) in [45, §3.4]); in particular the equalities hold when p is 
greater than some lower bound depending only on the absolute root datum of G and the 
absolute ramification index of k.4

3. Orbital integrals of pseudo-coefficients

We keep the notation from the last section and assume that G = G(k) has compact
center throughout this section and the next section. (We will briefly explain how to carry 
over the results of the current section to the non compact center case in Remark 3.14
below.) For π ∈ IrrYu(G) attached to a generic G-datum we will construct an explicit 
coefficient fπ of π and study the asymptotic behavior of the orbital integral of fπ on 
noncentral semisimple elements as deg(π) → ∞ (note that we use π instead of σ to denote 
a representation of G). The result admits an interpretation as an asymptotic formula for 
character values, cf. §3.5 below, and will be applied in §5 to obtain an equidistribution 
theorem for families of automorphic representations.

4 While this paper was under review, Fintzen [34] announced the proof that IrrYu(G) = Irrsc(G) only 
assuming that p does not divide the order of the Weyl group of G.
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3.1. Pseudo-coefficients

As before we have G = G(k) and write Z for the center of G. Let us recall the 
definition of pseudo-coefficients, cf. [31, A.4].

Definition 3.1. Let π ∈ Irr2(G). A function fπ ∈ H(G) is said to be a pseudo-coefficient
of π if trπ′(fπ) = δπ,π′ for every tempered π′ ∈ Irr(G).

The existence of fπ follows from the trace Paley-Wiener theorem, cf. [17, Prop 1]. 
(For real groups this is due to Clozel and Delorme [20, Cor, p.213].) To make fπ explicit, 
one can employ Bruhat-Tits buildings as in [64, §III.4] for any π ∈ Irr2(G) or proceed 
as in Lemma 3.3 below for π ∈ Irrc-ind(G).

Although fπ is not unique, the orbital integrals of fπ and the trace values of fπ against 
irreducible admissible representations of G are uniquely determined by the condition of 
Definition 3.1. So, by [44, Thm. 0], its orbital integrals are uniquely determined. Note that 
fπ is a cuspidal function in the sense that the trace of every induced representation from 
a proper parabolic subgroup is zero against fπ. (This fact is built into the construction 
of [17, Prop 1].) Moreover the orbital integrals of fπ are well known to encode the elliptic 
character values of π (recall that γ ∈ G is said to be elliptic if the centralizer ZG(γ) is 
compact). When γ is regular elliptic, we will use the Haar measure on the compact group 
Gγ assigning total volume 1 in the definition of the orbital integral below.

Proposition 3.2. If γ ∈ G is regular semisimple, we have

Oγ(fπ) =
{

Θπ∨(γ), γ : elliptic,
0, γ : non-elliptic.

(3.1)

Moreover Oγ(fπ) = 0 for every γ that is (non-regular) non-elliptic semisimple.

Proof. The first assertion can be derived from [10, Thm 5.1] specialized to the M = G

case. The last assertion is Lemma III.4.19 of [64] (noting that the Euler-Poincaré function 
in that lemma is a pseudo-coefficient in view of Proposition III.4.1 and Theorem III.4.6 
of [64]). �
3.2. Explicit supercuspidal coefficients

In the following lemma, we construct an explicit matrix coefficient (which is also a 
pseudo-coefficient) associated to a compactly induced supercuspidal representation.

Lemma 3.3. Let ρ be a finite dimensional admissible representation of an open compact 
subgroup J of G. Suppose π := c-indG

J ρ is irreducible (thus supercuspidal). Let
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.

fπ(g) =
{

1
vol(J)Θρ∨(g) if g ∈ J

0 otherwise

where Θρ∨ is the character of ρ∨. Then, we have

(i) trπ′(fπ) = δπ,π′ for every π′ ∈ Irr(G),
(ii) fπ(1) = dim(ρ∨)

vol(J) = dim(ρ)
vol(J) = deg(π),

(iii) Supp(fπ) ⊂ J .

In particular, fπ is a pseudo-coefficient and 
|fπ|

deg(π) ≤ 1J , the characteristic function of 
J .

Proof. Assertion (iii) is immediate, and (ii) is [46, Lem 2.9]. Assertion (i) follows from 
the fact that fπ is a matrix coefficient of π∨ and from Frobenius reciprocity which implies 
HomJ(ρ, π′) = δπ,π′ . �

We will need the following hypotheses on the group G for Theorem 3.11. Hypothesis 
(T ) will be used in Lemma 4.1. Hypothesis (E ) will be used in the proof of Proposi-
tion 4.4 and Lemma 4.7. Observe that the hypotheses are inherited by tame twisted Levi 
subgroups.

3.3. Hypotheses

(T ) For any tame maximal torus T, and r > 0, every nontrivial coset in Tr/Tr+ contains 
a G-good element.

(E ) There is a tamely ramified extension E of k such that
(i) every k-torus in G splits over E;
(ii) the k-order, in the sense of [58, §3.3], of every building point x ∈ B(G), which 

is a vertex in the building of some tamely ramified twisted Levi subgroup of 
G divides the ramification index of E over k;

(iii) for every r ≥ 1, the exponential map induces a homeomorphism

exp : g(E)x,r → G(E)x,r,

and an abelian group homomorphism G(E)x,r
/
G(E)x,r+ � g(E)x,r

/
g(E)x,r+

We recall the notion [5] of G-good elements (we shall simply write good when there is 
no risk of confusion). Define the depth dT(γ) of a compact element γ ∈ T0 as the unique 
r ∈ R≥0 such that γ ∈ Tr \ Tr+ . A compact element γ ∈ T0 of positive depth r > 0 is 
G-good if for each α ∈ Φ, either α(γ) = 1 or ord(α(γ) − 1) = r. A compact semisimple 
element γ of depth 0 is G-good if it is absolutely semisimple.
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Hypothesis (E ) may appear complicated at first. In fact, it achieves different purposes 
simultaneously:

• If the tame extension E of k satisfies (E ).(i), (resp. (E ).(ii)), and E′/E is a larger 
tame extension, then E′ also satisfies (E ).(i), (resp. (E ).(ii)), because the ramification 
index of E′ over k is divisible by the ramification index of E over k.

• On the other hand, the radius of convergence of the exponential map in (E ).(iii) 
decreases with the ramification index. In particular, Hypothesis (E ).(iii) may be 
satisfied for the extension E of k, and fail for larger extensions E′/E.

To show that Hypotheses (T ) and (E ) hold true for sufficiently large p, we begin with 
a few general group-theoretic lemmas.

Lemma 3.4. Fix a root datum R. Then there exists a constant dR > 0 such that for every 
field K0 and every connected reductive group G over K0 with absolute root datum R, the 
group G splits over an extension of K0 with degree at most dR. In fact every maximal 
torus of G defined over K0 splits over an extension with degree at most dR.

Proof. Let T be a maximal torus of G defined over K0. Then T splits over a finite 
separable extension K/K0 such that Gal(K/K0) acts faithfully on X∗(T). Choose a 
Z-basis for X∗(T) to identify X∗(T) � Zr so as to obtain a group embedding

Gal(K/K0) ↪→ GL(r,Z).

By Minkowski’s lemma (see e.g. [66]), GL(r, Z) has only finitely many finite subgroups 
up to conjugacy (for a fixed r), hence [K : K0] admits a bound dr ∈ Z>0 only in terms 
of r. The lemma is proved with dR := dr, as r depends only on the root datum R. �

When K0 is a local field, we have an explicit and relatively tight bound on dR assuming 
that the residual characteristic is not too small.

Lemma 3.5. Fix a root datum R. Let MR be the largest integer m such that ϕ(m) ≤
rank(R), and pR := rank(R). Then for every local field K0 of residual characteristic 
p > pR, every K0-torus T in a connected reductive group G over K0 with absolute root 
datum R, splits over a tamely ramified extension of K0 of degree ≤ M2

R.

Proof. We will deduce this from the argument for Lemma 3.4. In the proof of that 
lemma, retaining the same notation, it suffices that the order of the finite subgroup 
Gal(K/K0) ↪→ GL(r, Z) be coprime to p for K/K0 to be tame. By Minkowski’s 
lemma [66], this holds if p > r + 1. Moreover, the exponent m of every finite sub-
group of GL(r, Z) satisfies ϕ(m) ≤ r, because the eigenvalues of an element of order m
inside GL(r, Z) consist of all m-th roots of unity (see [72, App. B, claim (1) p.256] for 
a similar argument). So K/K0 is a finite tamely ramified extension of exponent m with 
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m ≤ MR. If K ′ denotes the maximal unramified subextension of K/K0 then K/K ′ and 
K ′/K0 are cyclic so [K : K ′] and [K ′ : K0] divide m. Therefore [K : K0] ≤ m2. �
Lemma 3.6. Fix a root datum R. Then there exists a constant NR > 0 such that for 
every field K0 of characteristic zero and every connected reductive group G over K0 with 
absolute root datum R, there exists a K0-embedding G ↪→ GL(n) with n ≤ NR.

Proof. Denote by G0 the Chevalley group over k0 := Q determined by R. Fix a k0-
embedding G0 ↪→ GLk0(V0) with V0 a finite dimensional space over k0 once and for all. 
We will prove the lemma with NR := dR dimk0 V0 with dR as in Lemma 3.4.

Let G and K0 be as in the current lemma. By Lemma 3.4, there exists K/K0 with 
[K : K0] ≤ dR such that G ⊗K0 K is a split group, so that G0 ⊗k0 K � G ⊗K0 K. 
By base change, we have a K-embedding G0 ⊗k0 K ↪→ GLK(V0 ⊗k0 K). Let ResK/K0

denote the Weil restriction of scalars with respect to K/K0. Using the obvious embedding 
G ↪→ ResK/K0(G ⊗K0 K), we obtain a chain of K0-embeddings

G ↪→ ResK/K0(G ⊗K0 K)

� ResK/K0(G0 ⊗k0 K) ↪→ ResK/K0GLK(V0 ⊗k0 K) ↪→ GLk(V0 ⊗k0 K).

The last embedding follows from viewing V0 ⊗k0 K as a K0-vector space. Since 
dimK0(V0 ⊗k0 K) = [K : K0] dimk0 V0 ≤ dR dimk0 V0 = NR, the proof is complete. �
Remark 3.7. For certain kinds of groups G, one can proceed more directly as follows:

• If G is semisimple, then we have Aut(G) � Inn(G) � Aut(R), and the action of 
Gal(K0/K0) on T factors through W � Aut(R). Thus it is sufficient that pR be 
larger than every prime factor of the Weyl group W and the automorphism group 
Aut(R).

• If G is already split over a tamely ramified extension of K0, then pick one tame 
K0-torus T. To ensure that all the other K0-tori are tame, it suffices that the image 
of H1(K0, NG(T)) → Hom(Gal(K0/K0), W ) consists of elements of order coprime 
to p, which happens if pR is larger than every prime factor of W .

Proposition 3.8. Hypotheses (E ) and (T ) are satisfied if p is sufficiently large, depending 
only on the absolute root datum of G and the absolute ramification index of k over Qp.

Proof. Let R be the absolute root datum of G. Assuming p > pR, choose a tamely 
ramified extension K/k with [K : k] ≤ M2

R as in Lemma 3.5. We shall construct E as 
an extension of K, thus (E ).(i) will be automatically satisfied.

Concerning Hypothesis (E ).(ii), the key is to observe that every x ∈ B(G, k) contained 
in a generic datum is a vertex of the sub-building B(G0, k) attached to a tamely ramified 
twisted Levi subgroup G0 ⊂ G. Let T0 be a maximal k-torus in G0 so that x ∈
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B(G0, k) ∩ A(G, T0, K). In particular x is a Gal(K/k)-fixed point of A(G, T0, K). Let 
S0 ⊂ T0 be the maximal k-split subtorus of T0.

Similarly as in [58, §2.6], if we fix an alcove and consider the finitely many affine roots 
ψi whose zero loci bound an alcove and which are positive valued on the alcove, then 
there is a linear relation 

∑
i biψi = 1 with bi ∈ Z>0. Let �ψi

be defined as in [55, 3.1]. 
Put bG := l.c.m(�ψi

bi). Since x is a vertex of B(G0, k), we have ψ(x) ∈ 1
bG

Z for every 
affine k-root ψ ∈ Ψ(G0, S0, k). We view Ψ(G0, S0, k), resp. Ψ(G, T0, K), as affine linear 
functions on X∗(S0, k) ⊗Z R, resp. X∗(T0, K) ⊗Z R. We need to recall the details of 
how B(G0, k) injects in B(G, k), see p.585, Rem.2.11, Rem.3.4 of [74]. The affine iso-
morphism A(G0, T0, K) � A(G, T0, K) is canonically defined only up to translation by 
X∗(ZG0 , K) ⊗Z R. The choice in [74] is made essentially in such a way that the isomor-
phism be Gal(K/k)-equivariant. Recall that ZG0 is anisotropic because ZG is anisotropic. 
Hence the origin is the only Gal(K/k)-fixed point in X∗(ZG0 , K) ⊗Z R, and the iso-
morphism is uniquely determined. To rigidify the situation, we identify the apartments 
A(G0, S0, k) and A(G, T0, K) with X∗(S0, k) ⊗Z R and X∗(T0, K) ⊗Z R, respectively. 
Since the center ZG0 is anisotropic, we have that the Q-span of Ψ(G0, S0, k) is equal to 
the space of all affine linear functions on X∗(S0, k) ⊗ZQ. There is a positive integer e such 
that the Z-span of 1

eΨ(G0, S0, k) contains the image of Ψ(G, T0, K) under restriction 
to X∗(S0, k) ⊗Z Q. We have ψ(x) ∈ 1

bGeZ for every affine root ψ ∈ Ψ(G, T0, K). Since 
the integers bG and e depend only on the relative root system attached to (G0, S0, k), 
the absolute root system R attached to (G, T0), and the action of Gal(K/k), and since 
there are finitely many root systems of given rank (possibly non-reduced, and possibly 
reducible), we have bGe|eR for some positive integer constant eR depending only on R. 
If p � eR, then a totally tamely ramified extension E/K of degree eR will satisfy (E ).(ii).

For (E ).(iii), one needs to show that for X, Y ∈ g(E)x,r,

log(exp(X) exp(Y )) ≡ X + Y (mod g(E)x,r+). (∗)

The Campbell-Hausdorff formula in the form given by Dynkin is

log(exp(X) exp(Y )) =
∞∑
d=1

(−1)d+1

d
Zd = X + Y +

∞∑
d=2

(−1)d+1

d
Zd,

with

Zd =
∑

si+ti≥1
sd+td=1

ad(X)s1ad(Y )t1 · · · ad(X)sd−1ad(Y )td−1(Y )(XsdY td)∑d
i=1(si + ti) ·

∏d
i=1 ri!si!

,

where the convention is that XsdY td is equal to X if sd = 1, td = 0, and is equal to Y if 
sd = 0, td = 1.

Since [g(E)x,a, g(E)x,b] ⊂ g(E)x,a+b, each summand in Zd is in g(E)x,r′ where

r′ = r
∑

(si + ti) − ordE(d) − ordE

(∑
(si + ti)

)
−

∑
ordE(si!) −

∑
ordE(ti!).
i i i i
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By Legendre formula

ordE(si!) = ordE(p)
p− 1 (si − σ) < ordE(p)si

p− 1 ,

where σ is the sum of the base-p expansion digits of si, we have

r′ > r
∑

i
(si + ti) − ordE(p)

(
logp(d) + logp

(∑
i
(si + ti)

)
+

∑
i(si + ti)
p− 1

)
.

If r >
ordE(p)
p− 1 , then we have r′ → ∞ as d → ∞, because 

∑d
i=1(si + ti) ≥ d. Hence the 

infinite sum converges. Since logp(x) ≤ x

2 log p for every x ≥ 2,

r′ >

(
r − ordE(p)

log p − 1
p− 1

)∑
i
(si + ti).

Thus ordE(p)
log p + 1

p− 1 ≤ 1
2 ≤ r

2 implies r′ > r, and that (∗) is satisfied.

Consider again a totally tamely ramified extension E/K of degree eR. Then ordE(p) =
eRordK(p) ≤ eRMRordk(p). The conclusion is that if

p > pR, p � eR, and eRMRordk(p)
log p + 1

p− 1 ≤ 1
2 , (∗∗)

then the extension E satisfies the second statement of Hypothesis (E ).(iii). We observe 
that the above calculation shows that exp(g(E)x,r) is a group when p satisfies (∗∗).

We finally need to verify the first statement of Hypothesis (E ).(iii). Under the condi-
tion that p > dim(G)ordE(p) +1, the map exp : g(E)0+ → G(E)0+ is a homeomorphism 
by [72, App.B] (An alternative approach would be to consider a faithful representa-
tion G ↪→ GLn for some n, see also [28, App.B]. Note that g(E)0+ (resp. G(E)0+) are 
the set of topologically nilpotent (resp. unipotent) elements since p > dim(G).) Hence, 
expr = exp |g(E)x,r

is injective. We also need to show that expr maps onto G(E)x,r. To 
see this, write g(E) = t0(E) ⊕ (⊕φgφ(E)) where gφ is the root space of φ ∈ Φ(T0, G, E). 
Upon fixing a pinning, g(E)x,r is the OE-span of gφ(pnE) with φ(x) + n/eE/k ≥ r where 
eE/k is the ramification index of E over k. Likewise, G(E)x,r is generated by T0(E)r and 
Uφ(pnE) where Uφ is the root subgroup of φ. Then, expr takes gφ(pnE) onto Uφ(pnE), and 
the proof of assertion (4) on p.258 of [72, App.B] shows that t0(E)r is exponentiated onto 
T0(E)r. Now, if p satisfies (∗∗), then exp(g(E)x,r) is a group and hence equals G(E)x,r. 
In sum, Hypothesis (E ) holds when p satisfies (∗∗) and p > dim(G)eRMRordk(p) + 1.

The assertion that (T ) holds for p sufficiently large goes back to [4, §5], which treated 
the Lie algebra version. A recent treatment of the existence of good elements for the group 
case is [33, Thm 3.6], with the sharp result that Hypothesis (T ) holds when G splits 
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over a tamely ramified extension and p does not divide the order of the Weyl group of 
G. �
Remark 3.9.

• By definition, a finite extension E of k is tame if the residue characteristic p is 
coprime to the ramification index of E over k. Thus, Hypothesis (E ).(ii) implies p
is coprime to the order of every x contained in a generic datum. As we have seen in 
the proof, this is satisfied if p > h, the Coxeter number of G, and G splits over a 
tamely ramified extension of k.

• In Hypothesis (E ).(iii), if G is a classical group and p 	= 2, one can use a Cayley 
map instead of the exponential map. When p is very good ([13, (8.9)]), and G is 
semisimple and simply connected, a quasi-logarithmic map satisfying (E ).(iii) is 
constructed in [13, Lem C.4]. In general the mock exponential map introduced by 
Adler could be used, compare also with [27, Hyp. 3.2.1].

For convenience, we shall work under Hypotheses (T ) and (E ) in Section 4 below, 
which is devoted to prove Proposition 3.13. However, inspecting the recursive argument 
in Proposition 4.4, it is sufficient to have Hypothesis (E ).(iii) for large enough r, and this 
is always satisfied by the same argument. Also we shall need in Lemma 4.8 below that 
the isomorphisms in (E ).(iii) be G-equivariant, which is also satisfied for large enough 
r. Hypothesis (E ).(ii) is automatically satisfied for an extension of large enough degree. 
Hence a natural assumption for our setting is:

(T ′) Every k-torus T in G is tame, and for every large enough r, every nontrivial coset 
in Tr/Tr+ contains a G-good element.

More precisely, the preceding paragraph explains that the arguments in Section 4
prove Proposition 3.13 under Hypothesis (T ′), instead of Hypotheses (T ) and (E ). 
This in turn implies Theorems 3.11 and 3.16 under Hypothesis (T ′).

Remark 3.10. To reach an optimal assumption, one could also factor out the center ZG, 
which shouldn’t play a role in estimating orbital integrals, and therefore it shouldn’t be 
necessary to assume that ZG is tame.

3.4. A uniform bound on orbital integrals of supercuspidal coefficients

For a semisimple element γ ∈ Gss let gγ denote the Lie algebra of the connected 
centralizer of γ in G. Define

D(γ) = DG(γ) :=
∣∣det(1 − Ad(γ)|g/gγ

)
∣∣ ∈ R>0.

Note that it is unnecessary to assume γ to be regular. Given a generic G-datum Σ, 
Lemma 3.3 provides us with the pseudocoefficient fπΣ ∈ H(G) coming from JΣ and ρΣ.
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The following is a key local result of this paper.

Theorem 3.11. Assume Hypothesis (T ′). There exist constants C, ν > 0 depending only 
on G such that for every generic G-datum Σ,

D(γ)1/2|Oγ(fπΣ)| ≤ C · deg(πΣ)1−ν , ∀γ ∈ Gss\Z.

In fact we can take any ν < (dimG)−1.

In particular the theorem implies that if γ /∈ Z then

lim
deg(π)→∞

Oγ(fπ)
O1(fπ) = lim

deg(π)→∞

Oγ(fπ)
deg(π) = 0,

where π = πΣ varies in IrrYu(G). If, on the contrary γ ∈ Z then clearly Oγ(fπ)/O1(fπ) =
ω−1
π (γ), where ωπ is the central character of π. So the above limit is never zero.

Remark 3.12. An interesting question is whether the above Theorem 3.11 remains valid 
if π is allowed more generally to run over Irr2(G). We are inclined to believe that it is 
at least true for every sequence in Irrsc(G), possibly with a different value of ν ∈ R>0.

Proof of Theorem 3.11. The orbital integral vanishes unless γ is elliptic, so we assume 
that γ is noncentral and elliptic semisimple from now on. Let Gγ := Z(γ) and O(γ) the 
G-orbit of γ in G.

For Σ = (�G, x, �r, �φ, ρ) as in Definition 2.1, we let

G′ := Gd−1, G′ := Gd−1, and Ls := Gx,sG
′
x for s ∈ R≥0.

Since LsΣ is an open compact subgroup of G containing JΣ, where we recall that sΣ =
rd−1/2, it follows from Lemma 3.3 that we have the inequalities

|Oγ(fπΣ)|
deg(πΣ) ≤ volO(γ)(JΣ ∩ O(γ)) ≤ volO(γ)(LsΣ ∩ O(γ)) = Oγ(1LsΣ

). (3.2)

Our strategy is to study a power-saving upper bound for Oγ(1Ls
) as γ runs over 

semisimple elements of G and as s → ∞. Indeed as Σ moves along a sequence of generic 
G-data such that deg(πΣ) → ∞, up to conjugacy, there are only a finite number of 
choices for (G′, x) appearing in Σ with x ∈ B(G0). The crucial estimate is the following, 
whose proof is postponed to Section 4. (Regarding the hypothesis, see the discussion 
above Remark 3.10.)

Proposition 3.13. Assume Hypothesis (T ′). There exists a constant C1 > 0 depending 
only on G such that for all generic G-datum Σ, s ∈ R>0 and all noncentral semisimple 
γ ∈ G,
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Oγ(1Ls
) ≤ C1 · (s + 1) · q−s ·D(γ)−1/2.

To relate deg(πΣ) and sΣ, we deduce the following from (2.1) and the fact that JΣ ⊃
Gx,sΣ :

deg(πΣ) ≤ qdimGvol(JΣ)−1 ≤ qdimGvol(Gx,sΣ)−1.

Since Gx,r/Gx,r+1 is in bijection with gx,r/gx,r+1 for r > 0 by hypothesis (E ) and 
�gx,r = gx,r+1, we have [Gx,r : Gx,r+1] = qdimG. Thus for s ∈ R≥0,

vol(Gx,s) ≥ q−�s� dimGvol(Gx,1).

Hence vol(Gx,1) deg(πΣ) ≤ q(sΣ+2) dimG.
We deduce from this, the inequality (3.2), and Proposition 3.13 above that

|Oγ(fπΣ)|
deg(πΣ) ≤ q2C1 · (sΣ + 1) · (vol(Gx,1) deg(πΣ))−

1
dim G D(γ)−1/2.

The proof of Theorem 3.11 is complete. �
Remark 3.14. Let us explain what can be done when the center Z is not compact. 
Theorem 3.11 and Proposition 3.13 remain valid as stated. The only modification to the 
proof in Section 4 is that we need to use the subgroups Ls := Gx,sG

′
[x] which are only 

compact-mod-center, in place of Gx,sG
′
x.

Lemma 3.3 is still true in this case, if vol(J) is replaced with the volume of J/Z in 
G/Z, and verified by the same argument. It may be troubling at first that the support 
of fπ is compact only modulo center but equality (3.1) remains valid.5

Conjecture 3.15 below remains the same, even when the center Z is not compact. One 
only needs to remember that in our convention Irrsc(G) consist of unitary supercuspidal 
representations, so the central character of π is also unitary.

Finally, in the global application we appeal to the simple trace formula with fixed 
character on a closed central subgroup so as to allow fπ as the local component of a 
test function. Alternatively one could work with a truncated (pseudo-)coefficient (cf. 
[40, 1.9]), which is compactly supported, in place of fπ.

3.5. Asymptotic behavior of supercuspidal characters

The main result, Theorem 3.16, of this section may be rephrased as a uniform upper 
bound for the characters of supercuspidal representations constructed by Yu on elliptic 
regular elements via Proposition 3.2.

5 We recall that (3.1) follows from [10, Thm 5.1], based on Arthur’s local trace formula [10, Thm 4.2]. 
In the case Z is not compact, [11, Prop 6.1] gives the local trace formula with fixed central character and 
similarly implies the analogue of (3.1).
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Let us recall the context of the problem. Even though the precise character formulas 
for supercuspidal (and discrete series) representations of a p-adic group remain largely 
mysterious, we conjectured in [46, Conjecture 4.1] that the character values behave in 
a controlled manner as the formal degree tends to infinity. Recall that Irrsc(G) denote 
the set of isomorphism classes of supercuspidal representations. Write Gell (resp. Grs) 
for the set of elliptic (resp. regular semisimple) elements in G.

Conjecture 3.15. (i) For every γ ∈ Grs,

lim
π∈Irrsc(G)
deg(π)→∞

Θπ(γ)
deg(π) = 0.

In other words, for every γ ∈ Grs and every ε > 0 there exists dγ,ε > 0 such that 
|Θπ(γ)| < ε deg(π) for every π ∈ Irrsc(G) with deg(π) > dγ,ε.

(ii) Let B ⊂ G be a bounded subset. Then there exist constants ν > 0 depending only 
on G and CB > 0 depending only on G and B such that

D(γ)1/2|Θπ(γ)| ≤ CB · deg(π)1−ν , ∀π ∈ Irrsc(G), ∀γ ∈ Grs ∩ B.

(iii) There exist constants ν > 0 and Cell > 0 depending only on G such that

D(γ)1/2|Θπ(γ)| ≤ Cell · deg(π)1−ν , ∀π ∈ Irrsc(G), ∀γ ∈ Grs ∩Gell.

Note that (ii) implies (i). Since G has finitely many (elliptic) maximal tori up to 
conjugacy ([56, p.320, Cor 3]), (ii) also implies (iii). In [46, Thm 4.2], we have proved a 
result for (ii), provided that the residue characteristic of k is sufficiently large and that 
γ runs over the set G0+ of topologically unipotent elements (which are not necessarily 
elliptic). The argument of that paper is based on an estimate of the number of fixed 
points of γ acting on certain coset spaces (without estimating orbital integrals).

Theorem 3.11 restricted to regular elements may be interpreted in terms of character 
values to establish (iii) of the conjecture provided that the residue characteristic of k is 
large enough. Note that the proof of Theorem 3.11 is independent of what is done in [46]
and relies on quite a different method.

Theorem 3.16. Under Hypothesis (T ′), part (iii) of Conjecture 3.15 holds true if π ∈
IrrYu(G). In particular, part (iii) of the conjecture is true if the hypotheses of [45, 3.4]
are also met (cf. the last paragraph of §2.3).

Proof. The first assertion follows from equality (3.1) and Theorem 3.11. The second is 
deduced from the first assertion and the exhaustion theorem of [45]. �

It is natural to wonder whether the method of this paper may be pushed further to 
cover non-elliptic elements. Proposition 3.2 is only a special case of Arthur’s formula 
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[7] relating supercuspidal character values on non-elliptic regular elements to weighted 
orbital integrals of supercuspidal coefficients. (This extends to cover general discrete 
series via the local trace formula [10].) So the problem is to bound such weighted orbital 
integrals.

A different question concerning trace characters is whether the constant ν > 0 can 
be found independent of the field k and the residue characteristic p. In this direction 
we observe that there exist analogues for finite groups, notably a general estimate by 
Gluck [35].

It is natural to ask for a common generalization of the families in the depth aspect 
and in the “level aspect”. Here, level aspect means that qS → ∞. We would consider 
the multi-set F(ξ, σ, KS0) where both the finite set of places S and the discrete series 
representation σ of G(FS) are varying. In any non-trivial sequence, the formal degree 
deg(σ) with respect to the canonical measure (see [36] or [70, §6.6] for definition) goes to 
infinity, either because the depth of σ goes to infinity or because the residue characteristic 
qS goes to infinity. Theorem 1.2 above corresponds to families in the depth aspect for 
which S is fixed. Theorem 6.4 below corresponds to a refinement of the families in the 
level aspect where σ = StS . To establish such a common generalization one would need 
to address the above question of uniformity of the constant ν > 0, and one also would 
need to keep track of the polynomial dependence in the constants Cell in Conjecture 3.15.

4. Proof of Proposition 3.13

In this section we work with a pair (G, G′) where G′ is a tamely ramified twisted 
Levi subgroup with G′ 	= G. We shall also fix x ∈ B(G′) = B(G′, k) and recall that 
Ls = Gx,sG

′
x.

We start by recalling some basic definitions. For a maximal k-torus T and γ ∈ T \Z, 
the singular depth of γ is defined as

sd(γ) := max{ord(α(γ) − 1) | α ∈ Φ, α(γ) 	= 1},

where Φ is the set of T-roots (see [3]). We also define the minimal depth of γ as

md(γ) := min{ord(α(γ) − 1) | α ∈ Φ, α(γ) 	= 1}.

Both sd(γ) and md(γ) are independent of the choice of T containing γ, thus are well-
defined for every semisimple γ ∈ G \ Z. Moreover, we have md(γ) = md(gγg−1) and 
sd(γ) = sd(gγg−1) for any g ∈ G.

The following is a special case of the decomposition theorem in [5]. Compared to [5], 
our situation is simpler and hypothesis (C) in [5] is not needed because we do not keep 
track of centralizers of good elements here. We include a proof for completeness.
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Lemma 4.1. Suppose Hypothesis (T ) holds. Let T be a tame maximal k-torus, γ ∈ T0\Z0
a compact element, and r = md(γ). There exist elements z, γ′, γ+, such that γ = zγ′γ+, 
and

(i) either z ∈ Z0 \ Zr, or z = 1;
(ii) γ′ ∈ Tr \ ZrTr+ is G-good of depth r;
(iii) γ+ ∈ Tr+ .

Proof. We first consider the case r > 0. Let b1 = dT(γ) so that γ ∈ Tb1 \ Tb+1
. By 

Hypothesis (T ), there is a good element γb1 ∈ Tb1 with γb1Tb+1
= γTb+1

, thus γ = γb1γ+
for some γ+ ∈ Tb+1

. If b1 = md(γ), take z = 1, γ′ = γb1 .
Otherwise γb1 ∈ Z, and we then let b2 = dT(γγ−1

b1
) so that b2 > b1 and γγ−1

b1
∈ Tb2 \

Tb+2
. By Hypothesis (T ), there is a good element γb2 such that γγ−1

b1
γ−1
b2

∈ Tb+2
, thus γ =

γb1γb2γ+ for some γ+ ∈ Tb+2
. Repeating the process, one can write γ = γb1γb2 · · · γbkγ+

where b1 < b2 < · · · < bk = md(γ), γbi ∈ Z, i = 1, · · · , k − 1 and γ+ ∈ Tb+k
. Then, set 

z = γb1γb2 · · · γbk−1 , γ′ = γbk .
Now suppose r = 0. By [71, Prop 2.36], there is an absolutely semisimple element 

γas ∈ T0 such that γ = γasγtu where γtu ∈ T0+ . If γas /∈ Z, take z = 1, γ′ = γas and 
γ+ = γtu. If γas ∈ Z, one proceeds as in the first case for γtu to reach the conclusion. �
Corollary 4.2. Suppose Hypothesis (T ) holds. Let T be a tame maximal k-torus and 
γ ∈ T0 \ Z0. Then there exists z ∈ Z0 and γ1 ∈ T0 \ Z0 such that γ = zγ1 and

dT(γ1) = md(γ).

Proof. If md(γ) = 0, then we can choose z = 1 and γ1 = γ. Suppose md(γ) > 0. The 
assertion follows from Lemma 4.1 by setting γ1 = γ′γ+: Indeed γ′ ∈ T \ Z is G-good of 
positive depth dT(γ′) = md(γ′) = md(γ). Moreover dT(γ′) = dT(γ1), which concludes 
the proof. �

We will prove Proposition 3.13 at the end of this section by induction based on 
the following two propositions. The first, Proposition 4.3, which is at the base of the 
induction, is concerned with orbital integrals of a fixed test function and proved by 
means of Shalika germ expansions. The second, Proposition 4.4, allows us to proceed 
inductively in the parameter s ∈ R≥0.

Proposition 4.3. For each test function f ∈ H(G) there exists a constant c(f) > 0 such 
that for every semisimple γ ∈ G, |Oγ(f)| ≤ c(f)D(γ)−1/2.

Proof. [70, Thm A.1]. �
Recall that Ls = Gx,sG

′
x. The following power-saving bounds are essential ingredients 

in the proof of Proposition 3.13. Proposition 4.4 can be understood in comparison with 
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its analogue Corollary 4.9 below, which is easier to grasp and gives a bound for the 
function 1Gx,s

in place of 1Ls
.

Proposition 4.4. Suppose Hypotheses (T ) and (E ) hold. Let γ ∈ G \ Z be semisimple, 
and s ∈ Z≥2.

(i) If md(γ) ≤ s − 2, then Oγ(1Ls
) ≤ 1

q Oγ(1Ls−1).
(ii) If md(γ) ≥ s + 1, then Oγ(1Ls

) ≤ 1
q Oγ(1Ls−1) + Oγ(1G′

x,s−2Gx,s
).

The proof of Proposition 4.4 is postponed until we establish a handful of technical 
lemmas. Lemma 4.5 is used in the proof of Lemma 4.7.

Lemma 4.5. Let G be a connected reductive group over a perfect field F . Suppose M is a 
twisted Levi subgroup of G. Let g and m be the Lie algebras of G(F) and M(F) respectively.

(i) For X ∈ m, let gX := {Y ∈ g | [X, Y ] = 0}. If X /∈ Zg, then m + gX is a proper 
F-subspace of g.

(ii) For δ ∈ M, let gδ := {Y ∈ g | Ad(δ)(Y ) = Y }. If δ /∈ ZG, then m + gδ is a proper 
F-subspace of g.

Proof. (i) Let X = Xss +Xn be the Jordan decomposition of X with [Xss, Xn] = 0 and 
Xss (resp. Xn) semisimple (resp. Xn nilpotent). Since the lemma may be proved after 
taking a finite extension of F , we may assume that M (thus also G) and Xss split over F
and that M is a maximal proper Levi subgroup of G. Thus m is a maximal proper Levi 
subalgebra of g. Without loss of generality, we may assume that the Dynkin diagram of 
G is connected.

Let T be a maximal F -split torus in M whose Lie algebra contains Xss. Let Φ be 
the set of T-roots. Let Δ (resp. Φ+) be the set of simple roots (resp. the set of positive 
roots) associated with T such that Xn ∈

∑
α∈Φ+ gα, where gα is the root space of α in 

g. Let ΔM (resp. Φ+
M) be the subset of Δ (resp. Φ+) associated with M. Let U and U−

be the unipotent and the opposite unipotent subgroup respectively. Let β ∈ Δ such that 
Δ = ΔM ∪ {β}.

We will prove assertion (i) by showing its contrapositive that g = m +gX implies that 
X ∈ Zg. Assuming g = m + gX , we have that gβ ⊂ u ⊂ gX . We proceed in two steps, 
first showing that Xss is central, and then that Xn = 0.

We have u ⊂ gXss
since [Xss, Xn] = 0 and Xn is nilpotent. In particular, β(Xss) = 0. 

Let α1 ∈ ΔM adjacent to β in the Dynkin diagram. Then, β + α1 ∈ Φ+ \ Φ+
M by [41, 

Prop 8.4] (this follows from the results about root strings) and 0 	= gα1+β ⊂ u. Then, 
(β + α1)(Xss) = 0, hence α1(Xss) = 0 and gα1 ⊂ gXss

. Similarly if α2 	= β is adjacent 
to α1, β + α1 + α2 ∈ Φ+ \ Φ+

M and gα2 ⊂ gXss
. Since the Dynkin diagram is connected, 

inductively, we conclude gα ⊂ gXss
for all α ∈ Δ. Thus, m ⊂ gXss

and gXss
= g, therefore 

Xss is central.
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Without loss of generality, we may assume that Xss = 0, thus X = Xn. Write X =∑
α∈Φ+ Xα with Xα ∈ gα. Fix α′ ∈ Φ. Let Δ be a simple root system with α′ ∈ Δ. Let 

ΔM , β, U and U− be as in the previous case.
Let α1, · · · , αj = α′ be distinct simple roots in ΔM such that β and α1 (resp. αi and 

αi+1) are adjacent to each other in the Dynkin diagram. Then, we have the following:
(a) β+α1 + · · ·+αi ∈ Φ+ \Φ+

M for i ≤ j. This follows from β /∈ ΔM and by inductively 
applying [41, Prop 8.4] to the root string.

(b) [gβ+α1+···+αi
, X] = 0 for i ≤ j. This follows from gβ+α1+···+αi

⊂ u ⊂ gX .
(c) [gβ+α1+···+αi−1 , X] = 0 implies that [gβ+α1+···+αi−1 , Xαi

] = 0. Then, Xαi
= 0

since β+α1 + · · ·+αi 	= 0. Note that we are using the assumption that p is large enough 
(e.g. p is large enough so that it does not divide any structural constants of g, which is 
necessary for (E )-(iii)).

By (a), (b) and (c), Xα′ = 0 since the Dynkin diagram is connected. As α′ runs over 
Φ, we have X = 0, which is what we wanted, completing the proof of (i).

Assertion (ii) can be proved similarly as in (i) using the Jordan decomposition δ =
δssδn in M. �

We recall the notation [g, h] := ghg−1h−1 for g, h ∈ G. We will frequently use the fact 
[55, (2.6)] that for a, b ∈ R≥0,

if g ∈ Gx,a, h ∈ Gx,b then [g, h] ∈ Gx,a+b. (4.1)

It is also useful for us to introduce functions dx : Gx,0 \ {1} → R≥0 and dZx : Gx,0 \Z0 →
R≥0 as follows:

dx(g) := max{r ∈ R≥0 | g ∈ Gx,r},

dZx (g) := max{r ∈ R≥0 | g ∈ ZGx,r}.

Clearly dx(g) ≤ dZx (g). For s ∈ R≥0 and δ ∈ Ls, define

dx,s(δ) := max{t ∈ [0, s] | δ ∈ ZG′
x,tGx,s}.

Clearly dx(g) = dx(g−1), dZx (g) = dZx (g−1), and dx,s(δ) = dx,s(δ−1). It is also clear that 
dx,s(δ) ≤ dZx (δ), since G′

x,t ⊂ Gx,t.

Lemma 4.6. Suppose Hypotheses (T ) and (E ) hold. For every s ∈ R>0 and semisimple 
element δ ∈ Ls ∩G0 \ Z0,

min(dZx (δ), s) ≤ dx,s(δ) ≤ md(δ).

In particular, for a semisimple element δ ∈ Ls ∩G0 \Z0Gx,s+ , we have dZx (δ) = dx,s(δ).
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Proof. Let r ≤ s. Since G′
x ∩ Gx,r = G′

x,r (see e.g., [5, §4]), we have G′
xGx,s ∩ Gx,r =

G′
x,rGx,s. The condition δ ∈ Gx,r thus implies δ ∈ G′

x,rGx,s. Then δ ∈ ZGx,r implies 
δ ∈ ZG′

x,rGx,s. In other words min(dZx (δ), s) ≤ dx,s(δ), which is the first inequality.
By Hypothesis (E ), there exists a tame maximal k-torus T containing δ. It follows 

from Corollary 4.2 that

max{r ∈ R≥0 | γ ∈ ZTr} = md(δ).

The second inequality then follows from the definitions since G′
x,tGx,s ⊂ Gx,t, and Gx,t∩

T ⊂ Tt.
The last assertion is a corollary of the first inequality because δ /∈ Z0Gx,s+ is equivalent 

to dZx (δ) ≤ s. �
Lemma 4.7. Suppose Hypotheses (T ) and (E ) hold. Let s ∈ Z≥2 and δ ∈ Ls be such that 
d := dx,s(δ) < s − 1. Define the map

Cδ : Gx,s−d−1 /Gx,s−d → Gx,s−1
/
(G′

x,s−1Gx,s)

by Cδ(g) := [δ−1, g] (mod G′
x,s−1Gx,s). Then the cardinality of the image of Cδ is at 

least q.

Proof. The last assertion of Lemma 4.6 implies that dZx (δ) = d. Thus the map Cδ is well-
defined in view of (4.1). Since Cδ is unchanged if δ is multiplied by a central element, 
we may assume without loss of generality that δ ∈ Gx,d.

Let E be a tamely ramified finite extension of k that satisfies Hypothesis (E ), and fix a 
uniformizer �E of E. Let m be the ramification index of E over k. Hence ord(�E) = 1/m, 
in view of our normalization of valuation and filtration index in §2.1. Since the order of 
x divides m by (E ).(ii), we have g(E)x,t/m = �t

Eg(E)x,0 for t ∈ Z and there is no break 
for non-integral values of t. Moreover, d ∈ 1

mZ. Let i ∈ Z>0 be such that

i

m
= s− d − 1.

We now divide the proof into the following four steps (1-4):
(1) Write

G(E)x,i/m := G(E)x,i/m
/
G(E)x,(i+1)/m ; g(E)x,i/m := g(E)x,i/m

/
g(E)x,(i+1)/m .

Similarly, we define Gx,i/m, gx,i/m, G′(E)x,i/m, g′(E)x,i/m, G′
x,i/m and g′x,i/m. Since 

i > 0, we have abelian group isomorphisms

G(E)x,i/m � g(E)x,i/m and G′(E)x,i/m � g′(E)x,i/m
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(2) g(E)x,i/m and g′(E)x,i/m are vector spaces over the residue field E of the maximal 
unramified extension Eu of k in E. Let F = Fq be the residue field of k. Let G (resp. G′) 
be a reductive group defined over F which is the reductive quotient at the building point 
x of G (resp. G′) given by Bruhat-Tits theory. Write g and g′ for the Lie algebras of G(F)
and G′(F) respectively. We have g(E)x,0 � g(E). We claim dimE g(E) = dimE g(E). This 
equality can be established from [26, §4.2]. More precisely, we have the isomorphisms of 
E-vector spaces

g(E)x := ⊕r∈R/ 1
mZg(E)x,r/g(E)x,r+ = g(E)x,0,

where the first equality is a definition given in [26]. Note that the range r ∈ R/ 1
mZ comes 

from our normalization which is such that ord(�E) = 1/m, and hence �Eg(E)x,r =
g(E)x,r+ 1

m
as recalled above, so the second equality is clear since all breaks occur when 

r ∈ 1
mZ. Then, by the result in [26], we have dimE g(E) = dimE g(E)x, which establishes 

the claim.

(3) If d = 0, then i
m = s − 1, and the map g �→ [δ−1, g] induces G(E)x,i/m →

G(E)x,i/m thus a linear map g(E) → g(E). Moreover, it maps Gx,i/m ⊂ G(E)x,i/m
into itself since δ−1 lies in Gx (rather than G(E)x). Its composition with the projection 
g(E) → g(E) /g′(E) is seen to be equal to the map

Cδ : g(E) → g(E) /g′(E) � g(E)x,i/m/(g′(E)x,i/m + g(E)x,(i+1)/m)

induced by the map Y �→ Ad(δ−1)(Y ) − Y from g(E)x,i/m to g(E)x,i/m. Equivalently, 
Cδ is induced by the map Y �→ Ad(δ−1)(Y ) − Y from g(E) to itself, where

δ ∈ Gx,0/Gx,0+ ⊂ G(E)x,0 � G(E)

is the image of δ.

(4) If d > 0, then i
m < s − 1. Write X ∈ gx,d for the element whose exponential is δ. 

Then the map g �→ δ−1gδg−1 induces a map G(E)x,i/m → G(E)x,s−1 and thus a linear 
map g(E) → g(E) via (2). Composed with the projection g(E) → g(E) /g′(E) , this map 
is equal to the map

Cδ : g(E) → g(E) /g′(E) � g(E)x,i/m
/

(g′(E)x,s−1 + g(E)x,s−1)

induced by the map Y �→ [Y, X] from g(E)x,i/m to g(E)x,s−1 (a proof of this assertion is 
similar to that of Proposition 3.8). Let X denote the image of X under the isomorphism 
g(E)x,d � g(E) in (2). Then X ∈ g(E). We see that Cδ is given by Cδ(Y ) = [Y , X]
modulo g′(E) for each Y ∈ g(E).
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In summary, we have a series of maps such that the following diagram commutes:

G′(E)x, i
m

∼
g′(E)x, i

m

∼ g′(E)

G(E)x, i
m

∼

[δ−1, ]

g(E)x, i
m

∼

ad(X)−1

g(E)

G(E)x,s−1
∼

g(E)x,s−1
∼ g(E)

(†)

Here the three horizontal isomorphisms on the right are chosen to make the diagram 
commute.

Consider the map Cδ : g(E) → g(E)/g′(E). Since δ /∈ ZGx,d+ (because dZx (δ) = d), 
we see that δ is not in the center of G(E) when d = 0 and similarly X is not in the 
center of g(E) when d > 0. (Indeed δ /∈ Z(E)G(E)x,d+ , hence X /∈ z(E) + g(E)x,d+

in view of Hypothesis (E ).(iii), therefore the image of X in g(E)x,d is noncentral). We 
apply Lemma 4.5 with M = G′, which yields dimE

(
Im(Cδ)

)
≥ 1.

In both cases (either d = 0 or d > 0), the map Cδ sends the rational subspace g into 
the rational subspace g/g′. Via identification given in the diagram (†), after taking Galois 
invariants of E-vector spaces, we see that the dimension of Im(Cδ) ∩ g (mod g′(E)) over 
F is at least one. Indeed for each component in the above diagram, we have H(k)x,r ↪→
H(E)x,r where H = G, G′ and r = i

m , s − 1, and observe also that the horizontal 
isomorphisms on the right can be also chosen such that H(k)x,r ↪→ H(E)x,r induces 
h ↪→ h(E) where h = g, g′. Lifting this fact to Cδ, we have � (Im(Cδ)) ≥ q. �
Proof of Proposition 4.4. Without loss of generality, we may assume that γ ∈ Ls. Let 
ψγ : G → G be given by ψγ(g) := gγg−1. Then, ψγ(G) = O(γ). Moreover g ∈ ψ−1

γ (Ls)
(resp. g ∈ ψ−1

γ (Ls−1)) if and only if [γ−1, g] ∈ Ls (resp. [γ−1, g] ∈ Ls−1).
We consider the disjoint decomposition

Ls ∩ O(γ) =
n�

i=1
δiG

′
x,s−1Gx,s ∩ O(γ)

for some δ1, · · · , δn ∈ Ls ∩ O(γ). Set di := dx,s(δi) = dx,s(δ−1
i ).

Case (i). md(γ) ≤ s − 2. Then di ≤ s − 2 by the second inequality of Lemma 4.6. 
Furthermore, by the first inequality of Lemma 4.6, δi, δ−1

i ∈ ZGx,di
.

Put Vi,s := ψ−1
γ (δiG′

x,s−1Gx,s). We have that Vi,s ⊂ ψ−1
γ (Ls) ⊂ ψ−1

γ (Ls−1). We claim 
that for any u ∈ Gx,s−di−1,

uVi,s ⊂ ψ−1
γ (Ls−1).
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Indeed for v ∈ Vi,s we have

ṽ := ψγ(v) = vγv−1 ∈ δiG
′
x,s−1Gx,s,

so in particular ṽ ∈ Ls ∩ ZGx,di
. Hence [ṽ−1, u] ∈ Gx,s−1 by (4.1), and therefore

ψγ(uv) = uvγv−1u−1 = ṽ[ṽ−1, u] ∈ Ls−1,

verifying the claim.
Next we want to show that the sets Gx,s−di−1Vi,s are disjoint for 1 ≤ i ≤ n. Indeed 

suppose that there exist u ∈ Gx,s−di−1, u′ ∈ Gx,s−di′−1, v ∈ Vi,s and v′ ∈ Vi′,s such 
that uv = u′v′. As before ṽ := vγv−1 ∈ δiG

′
x,s−1Gx,s so we may write ṽ = δig for 

g ∈ G′
x,s−1Gx,s ⊂ Gx,s−1. Then

uvγ(uv)−1 = (uδiu−1)(ugu−1) = (δi[δ−1
i , u])(g[g−1, u]).

Again [δ−1
i , u], [g−1, u] ∈ Gx,s−1. Hence

ψγ(uv) = uvγ(uv)−1 ∈ δiGx,s−1.

The same reasoning shows that u′v′γ(u′v′)−1 ∈ δi′Gx,s−1. Since uv = u′v′, it implies 
that δi ≡ δi′ (mod Gx,s−1). This is promoted to δi ≡ δi′ (mod G′

x,s−1Gx,s) thanks to 
the fact that δi, δi′ ∈ Ls, thus i = i′, verifying the disjointness.

Define a map Cδi as follows:

Cδi : Gx,s−di−1 /Gx,s−di
→ Gx,s−1

/
(G′

x,s−1Gx,s)

given by Cδi(g) := [δ−1
i , g] (mod G′

x,s−1Gx,s). By Lemma 4.7, for each i there exist q
elements ui1, ui2, · · · , uiq ∈ Gx,s−di−1 such that Cδi(uij) are distinct, j = 1, · · · , q.

As consequence of the above claim we have

ψ−1
γ (Ls−1) ⊃

n⋃
i=1

q⋃
j=1

uijVi,s.

To finish the proof of (i) it is enough to prove that the terms on the right hand side are 
mutually disjoint. Indeed, if for each open compact subset U ⊂ G we write volG/Gγ

(U)
to denote the volume of the image of U in G/Gγ then we will have

Oγ(1Ls−1) = volG/Gγ
(ψ−1

γ (Ls−1)) ≥
n∑

i=1

q∑
j=1

volG/Gγ
(uijVi,s)

= q

n∑
volG/Gγ

(Vi,s) = qOγ(1Ls
).
i=1
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Since the sets Gx,s−di−1Vi,s are disjoint, it only remains to show that uijVi,s and 
uij′Vi,s are disjoint for j 	= j′ and 1 ≤ i ≤ n. Suppose uijVi,s ∩ uij′Vi,s 	= ∅ for some 
i, j, j′. There are v, v′ ∈ Vi,s such that uijv = uij′v

′. As before, vγv−1 = δig for some 
g ∈ G′

x,s−1Gx,s. Hence,

uijvγ(uijv)−1 = (uijδiu
−1
ij )(uijgu

−1
ij ) = (δi[δ−1

i , uij ])(g[g−1, uij ]).

Since di ≤ s − 2, we apply (4.1) to obtain [g−1, uij ] ∈ Gx,2s−di−2 ⊂ Gx,s. Thus the term 
uijvγ(uijv)−1 above belongs to δiCδi(uij)G′

x,s−1Gx,s. Since uijv = uij′v
′, we deduce 

similarly that it also belongs to δiCδi(uij′)G′
x,s−1Gx,s. This implies Cδi(uij) = Cδi(uij′), 

hence j = j′.

Case (ii). md(γ) ≥ s + 1.
Observe that O(γ) ∩ ZGx,s 	= ∅. This follows from combining Corollary 4.2 and the 

fact that for any torus T, there exists g ∈ G with ZTs+1 ⊂ ZGgx,s. Hence, one can 
assume γ ∈ ZGx,s. Without loss of generality, we assume that γ ∈ Gx,s.

Write γ = zγ1 with z ∈ Z and γ1 ∈ T0 \Z0 with dT(γ1) = md(γ) as in Corollary 4.2. 
Then, since

min(dT(z),md(γ1)) = dT(γ) ≥ dx(γ) ≥ s,

we have dT(z) ≥ s, hence z ∈ Zs ⊂ Gx,s.
If di = dx,s(δi) ≥ s − 2, we have δi ∈ ZG′

x,s−2Gx,s. We claim that δi ∈ G′
x,s−2Gx,s. 

To prove this claim, write δi = z hγ1 for some h ∈ G. Since z ∈ Gx,s, it is enough to 
show that hγ1 ∈ G′

x,s−2Gx,s. Suppose hγ1 /∈ G′
x,s−2Gx,s, that is, dx( hγ1) < s − 2. Then, 

since dx,s( hγ1) ≥ s − 2, there is z′ ∈ Z of depth dx( hγ1) such that z′ hγ1 ∈ G′
x,s−2Gx,s. 

However, dhT(z′ hγ1) = dhT(z′) = dx( hγ1) < s − 2, hence z′ hγ1 /∈ Gx,s−2, which is a 
contradiction. Hence, the claim follows.

Now we can arrange the decomposition such that di < s − 2 for 1 ≤ i ≤ n′ and 
δi ∈ G′

x,s−2Gx,s for n′ + 1 ≤ i ≤ n:

Ls ∩ O(γ) =
n′

�
i=1

(
δiG

′
x,s−1Gx,s ∩ O(γ)

)⋃(
G′

x,s−2Gx,s ∩ O(γ)
)
.

For 1 ≤ i ≤ n′, choose ui and define Vi,s as in Case (i). Then, ψ−1
γ (Ls−1) contains

n′⋃
i=1

q⋃
j=1

uijVi,s

and the summands are mutually disjoint by a similar argument to Case (i). Arguing as 
in Case (i) but keeping in mind that G′

x,s−2Gx,s ∩ O(γ) accounts for Oγ(1G′
x,s−2Gx,s

), 
we complete the proof of Case (ii) as follows.
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Oγ(1Ls−1) ≥ q

n′∑
i=1

volG/Gγ
(Vi,s) ≥ q

(
Oγ(1Ls

) −Oγ(1G′
x,s−2Gx,s

)
)
. �

In preparation for the end of the proof of Proposition 3.13 we shall need a final bound 
from Corollary 4.9 below.

Lemma 4.8. Assume that the isomorphisms of Hypothesis (E ).(iii) are G-equivariant. Let 
s ∈ R≥1, and γ ∈ Gx,s. Write X := exp−1(γ). Then

OG
γ (1Gx,s

) = Og

X(1gx,s
).

Proof. We are going to follow the idea as in the proof of Theorem 3.2.3 of [32]. Let Gγ

(resp. GX) denote the connected centralizer of γ (resp. X) in G. Write K := Gx,s and 
k := gx,s. By the definition of orbital integrals,

OG
γ (1K) =

∑
g∈Gγ\G/K

vol(Gγ\GγgK)1K(g−1γg),

Og

X(1k) =
∑

g∈GX\G/K

vol(GX\GXgK)1k(g−1Xg).

Since Gγ = GX and 1K(g−1γg) = 1k(g−1Xg), the equality in the lemma holds. �
Corollary 4.9. Assume that the isomorphisms of Hypothesis (E ).(iii) are G-equivariant. 
There is a constant C > 0 depending only on G such that the following holds: for every 
s ∈ R≥0, and every semisimple γ ∈ G \ Z,

|Oγ(1Gx,s
)| ≤ C · q−s ·D(γ)−1/2.

Proof. In view of Proposition 4.3, we may assume without loss of generality that s ∈ R≥2. 
It is enough to prove the bound for s ∈ Z≥2. Indeed, if the corollary is known for s ∈ Z≥2
then the corollary holds for s ≤ t < s + 1 at the expense of increasing the constant:

|Oγ(1Gx,t
)| ≤ |Oγ(1Gx,s

)| ≤ C · q−sD(γ)−1/2 ≤ (C · q)q−tD(γ)−1/2.

For the rest of this proof, s ∈ Z≥2 and γ = exp(X) ∈ Gx,s. Then

OG
γ (1Gx,s

) = Og

X(1gx,s
) = Og

�1−sX(1gx,1) = OG
exp(�1−sX)(1Gx,1).

Here the first and third equalities are from Lemma 4.8 and the second follows from a 
direct computation. Applying Proposition 4.3 to f = 1Gx,1 we obtain

OG
exp(�1−sX)(1Gx,1) ≤ C ·D(exp(�1−sX))−1/2

= C · q s−1
2 (dimGγ−dimG)D(γ)− 1

2 ≤ C · q1−sD(γ)− 1
2 ,
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where the constant C = c(1Gx,1) ∈ R>0 depends only on G and x which had been fixed 
since the beginning of this section.

We can arrange that c(1Gx,1) depend only on the G-orbit of the facet containing x: 
If x′ = gx with g ∈ G then Gx′,1 = gGx,1g

−1 so 1Gx,1 and 1Gx′,1 have the same orbital 
integral on each conjugacy class. There are only finitely many G-orbits of facets, so the 
lemma holds true for a constant C > 0 depending only on G. �
Proof of Proposition 3.13. As in the proof of Corollary 4.9, once we prove the proposition 
for a fixed x, the proposition also holds when x varies by a similar finiteness argument. 
So we may and will keep x fixed in this proof.

Let as := D(γ) 1
2Oγ(1Ls

), which is a decreasing function of s ∈ R≥0. We want to show 
that as ≤ C1 · q−s. It is sufficient to verify the inequality for s ∈ Z≥0 at the expense of 
replacing C1 by qC1. Applying Proposition 4.3 to f = 1L0 we have that a1 ≤ a0 ≤ c(1L0).

Set m to be the largest integer such that m ≤ md(γ). Proposition 4.4.(ii) combined 
with Corollary 4.9 provides us with the recursive inequality (replacing C by q2C)

as ≤
1
q
as−1 + Cq−s, 2 ≤ s ≤ m− 1.

This implies that for any 2 ≤ s ≤ m − 1,

as ≤ q1−sa1 + C

(
q−s + q1−s

q
+ · · · + q−1

qs−1

)
≤ q1−sc(1L0) + Csq−s.

We have in particular

am+1 ≤ am ≤ am−1 ≤ (c(1L0)q + Cm) q1−m.

Next, Proposition 4.4.(i) shows that for s ≥ m + 2, we have the inequality as ≤ 1
qas−1. 

Hence

as ≤ qm+1−sam+1 ≤ (c(1L0)q + Cm) q2−s.

Proposition 3.13 is verified with C1 := (c(1L0)q + C)q2, which is indeed a constant 
depending only on G. �
5. Automorphic Plancherel equidistribution with error terms

In this section our asymptotic formula for supercuspidal characters and orbital in-
tegrals is applied to produce an equidistribution theorem for a family of automorphic 
representations. The theorem can be informally summarized as follows: Consider the set 
of L2-discrete automorphic representations with supercuspidals at a fixed finite place 
(suitably weighted). As the formal degree of the supercuspidal at the fixed place moves 
toward infinity, the local components (away from the fixed place) of the automorphic 
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representations are equidistributed with respect to the Plancherel measure. We prove 
the theorem in the case where a suitable condition at infinite places simplifies the trace 
formula so that the technical difficulties with general terms in the trace formula do not 
blur the close relationship between the asymptotic formula for supercuspidal characters 
and the equidistribution.

5.1. Preliminaries

In the rest of the article the following global setup will be in effect. Let G be a 
connected reductive group over a totally real number field F . (We used the symbol 
G differently in the preceding sections.) Put F∞ := F ⊗Q R. Write Adisc(G) for the 
set of discrete automorphic representations of G(AF ) up to isomorphism (i.e. without 
multiplicity). The automorphic multiplicity of π ∈ Adisc(G) is denoted mdisc(π). Let S be 
a nonempty finite set of finite places of F . Fix a Haar measure μS on G(FS). Recall that 
the unitary dual G(FS)∧ is equipped with a positive Borel measure μ̂pl

S , the Plancherel 
measure.

Write Ram(G) for the set of finite places v of F such that G is ramified over Fv. 
For each finite place v /∈ Ram(G) let Khs

v be a hyperspecial subgroup of G(Fv). We 
choose Khs

v such that at all but finitely many v /∈ Ram(G), the group Khs
v consists of the 

OFv
-points of some reductive integral model of G over OF [1/N ] for a sufficiently large 

integer N .
Let v be a place of F . Write μcan

v for the canonical measure on G(Fv) (denoted by 
L(M∨(1)) · |ωG| in [36]), and if G(Fv) has compact center, denote by μEP

v the Euler-
Poincaré measure on G(Fv), cf. [36, §5, §7]. Assuming G(F∞) has compact center, put 
μEP
∞ :=

∏
v|∞ μEP

v . Similarly μEP
S :=

∏
v∈S μEP

v and μcan,Σ :=
∏

v/∈Σ μcan
v . When G is 

unramified over Fv it is known that μcan
v assigns volume 1 to hyperspecial subgroups. 

From §5.3 on we will fix a finite set of places S and consider the (possibly negative) 
measure

μcan,EP :=

⎛⎝ ∏
v/∈S∪S∞

μcan
v

⎞⎠μEP
S μEP

∞ .

(This is different from the convention of [70]; there we used μcan
v at all finite places. Also 

note that μcan,EP depends on the set S.) Define the volume of the adelic quotient

τ ′(G,S) := μcan,EP(G(F )\G(AF )),

relative to the counting measure on the discrete subgroup G(F ). This volume is finite if 
G(F∞) has compact center, which will always be the case by part (iii) of the assumptions 
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made in the next subsection.6 The Tamagawa volume of G(F )\G(AF ) is denoted by 
τ(G).

5.2. The simple trace formula

As the trace formula is going to play a central role in the proof, we recall some basic 
facts. Let Tell, Tdisc : H(G(AF )) → C designate the invariant distributions consisting of 
contributions from the elliptic conjugacy classes and the discrete automorphic spectrum, 
respectively. Arthur’s trace formula is the equality of the two invariant distributions 
Igeom and Ispec on the geometric and spectral sides. In general Igeom (resp. Ispec) is the 
sum of Tell (resp. Tdisc) and other very complicated terms, but we will always be in the 
situation where the simple trace formula applies, i.e. Tell = Igeom = Ispec = Tdisc.

Suppose that φ ∈ H(G(AF )) admits a decomposition φ = φS∪S∞φSφ∞ according 
to G(AF ) = G(AS∪S∞

F )G(FS)G(F∞) such that φ∞ is an Euler-Poincaré function on 
G(F∞) as in [20, Thm 3.(ii)] up to a nonzero scalar. For the rest of the paper we make 
the following overarching assumptions.

(i) G(FS) has compact center,
(ii) the function φS is cuspidal in the sense that orbital integrals vanish on non-elliptic 

regular semisimple conjugacy classes of G(FS), and
(iii) G(F∞) contains a compact maximal torus.

By (iii), the real group G(F∞) admits discrete series spectrum and the function φ∞
is nonzero. Condition (ii) is equivalent to the condition that the trace of any (fully) 
induced representation from any proper parabolic subgroups vanishes against φS. Typical 
examples of such φS are matrix coefficients of supercuspidal representations (§3) and 
Kottwitz’s Euler-Poincaré functions, cf. §6 below.

For a semisimple γ ∈ G(F ) write Gγ for its centralizer and Iγ for the neutral com-
ponent of Gγ . Put ι(γ) := [Gγ(F ) : Iγ(F )] ∈ Z≥1. Let μG(AF ) (resp. μIγ(AF )) denote a 
Haar measure on G(AF ) and Iγ(AF ), respectively. The elliptic part of the trace formula 
is the expansion

Tell(φ, μG(AF )) :=
∑

γ∈G(F )/∼
elliptic

ι(γ)−1μIγ (Iγ)Oγ(φ, μG(AF )/μIγ(AF )), (5.1)

where the sum runs over the set of F -elliptic conjugacy classes in G(F ), and μIγ (Iγ) is 
the volume of Iγ(F )\Iγ(AF ) for the quotient measure of μIγ(AF ). (Note that Iγ(F∞) has 
compact center by ellipticity of γ and assumption (iii) above.) The discrete part of the 
trace formula is

6 To have finite volume in general, one has to take a further quotient of G(F )\G(AF ) by the R-split part 
of the center of G(F∞).
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Tdisc(φ, μG(AF )) :=
∑

π∈Adisc(G)

mdisc(π)trπ(φ, μG(AF )), (5.2)

where mdisc(π) denotes the multiplicity of π in the discrete automorphic spectrum. Under 
the above hypotheses Arthur [8, Cor 7.3, Cor 7.4] provides us with the simple trace 
formula

Tell(φ, μG(AF )) = Tdisc(φ, μG(AF )). (5.3)

Indeed the assumption at v1 (resp. at v1 and v2) in Corollary 7.3 (resp. 7.4) of that paper 
is satisfied by any v1 ∈ S (resp. any v1 ∈ S and any v2 ∈ S∞) by (ii) and (iii) above. 
Here we use the property of Euler-Poincaré functions [9, p.270, p.281] that their orbital 
integrals vanish outside elliptic conjugacy classes.

5.3. Counting measures for automorphic representations

Let G be a connected reductive group over a totally real field F as in the preceding 
subsection. Let S0, S, S, ξ, Π∞(ξ), KS0 , and KS be as in the introduction. (We allow 
S0 to be empty.) Throughout this section G is assumed to be unramified away from the 
finite set of places S. This is always ensured by increasing the set S0 if necessary. We 
make the following additional hypothesis, which is technically helpful as it was in [70].

• The highest weight of ξ is regular.

Write IrrYu(G(FS)) for the set of σS = ⊗v∈Sσv such that σv ∈ IrrYu(G(Fv)). Given 
σS ∈ IrrYu(G(FS)), define

F = F(ξ, σS ,KS0)

to be the multi-set of π ∈ Adisc(G) whose multiplicity is zero unless πS is unramified, 
πS � σS , and π∞ ∈ Π∞(ξ), in which case the multiplicity of π is

aF (π) := mdisc(π) dim(πS0)KS0 .

By Harish-Chandra’s finiteness theorem, aF(π) 	= 0 only for finitely many π. We may 
replace mdisc(π) by the multiplicity in the cuspidal spectrum since every automorphic 
representation with a supercuspidal component (or with π∞ in discrete series) is cuspidal. 
For each σ∞ ∈ Π∞(ξ) let fσ∞ be a pseudo-coefficient for σ∞. Set

fξ :=
∑

σ∞∈Π∞(ξ)

fσ∞ .

Then trπ∞(fξ) 	= 0 if and only if π∞ ∈ Π∞(ξ), in which case the trace equals 1. (The 
only if part follows from the results of Vogan–Zuckerman on Lie algebra cohomology.) 
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Moreover fξ is an Euler-Poincaré function up to a nonzero constant, cf. [50, Lem 3.2]. 
Write fσS

∈ C∞
c (G(FS)) for the product of explicit supercuspidal coefficients fσv

(see 
§3.2).

Lemma 5.1. Let φS ∈ Hur(G(AS
F )). Put φ := φSfσS

1KS0
fξ. Then

∑
π∈F(ξ,σS ,KS0 )

trπS
(
φS, μcan,S)

= μcan
S0

(KS0)−1Tell(φ, μcan,EP).

Proof. It follows from the definition that the left hand side equals

∑
π∈Adisc(G)

mdisc(π)trπS(φS)trπS(fσS
)
trπS0(1KS0

)
μcan
S0

(KS0)
trπ∞(fξ),

which is none other than μcan
S0

(KS0)−1Tdisc(φ). We conclude by (5.3). �
5.4. Bounds on the geometric side

Here we recollect various bounds on the terms appearing on the geometric side, mostly 
from [70]. Given each semisimple element γ ∈ G(F ), fix a maximal torus Tγ in G over F
containing γ and write Φγ for the set of roots of Tγ in G outside Iγ , namely the set of 
roots α in G such that α(γ) 	= 1. Thus Φγ is nonempty if and only if γ /∈ Z(F ). Define 
Sγ for the following set of finite places of F :

Sγ := {v : |1 − α(γ)| 	= 1 for some α ∈ Φγ}.

Evidently Sγ is independent of the choice of Tγ . In the same way we defined Ram(G), 
we have the set Ram(Iγ). For each v /∈ Ram(G), we have a maximal split torus Av in 
G ⊗F Fv such that Khs

v is in a good relative position to Av.
Let Σ ⊃ Ram(G) ∪ S∞ be a finite set of places of F . Choose κ = (κv)v/∈Σ with 

κv ∈ Z≥0 such that κv 	= 0 for only finitely many v. Define

Q :=
∏
v

qmin(1,κv)
v , Qκ :=

∏
v

qκv
v ,

where v runs over places of F outside Σ. For simplicity we will write Qa+bκ to mean 
Qa(Qκ)b. Put U≤κv

v := ∪‖λ‖≤κv
Khs

v λ(�v)Khs
v , where v /∈ Σ and λ ∈ X∗(Av). Here || · || is 

an ΩG-invariant norm on X∗(Av), which depends on the choice of an R-basis of X∗(Av)R.
Write d(G∞) for the cardinality of Π∞(ξ), which is independent of ξ. Let q(G∞)

denote the real dimension of G(F∞) modulo (any) maximal compact subgroup. Given a 
constant C ≥ 1 and � ∈ {alg, reg}, we define a set

Irr�C(G(F∞)) := {ξ ∈ Irr�(G(F∞)) : max(ξ)/min(ξ) ≤ C},
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where max(ξ) and min(ξ) are given as follows. Let T be a maximal torus in G over C
and choose a Borel subgroup B containing T . Let λξ ∈ X∗(T ) denote the B-dominant 
weight of ξ. Write Φ+ for the set of B-positive roots of T in G, and ρ for the half sum of 
roots in Φ+. Then max(ξ) (resp. min(ξ)) is the maximum (resp. minimum) value of the 
natural pairing 〈α, λξ + ρ〉 as α runs over Φ+. The value is independent of the choice of 
T and B. (We introduce Irr�C(G(F∞)) so that we can vary ξ in a controlled manner in 
that set.)

Proposition 5.2.

(i) There exists A1 > 0 depending only on G such that the following holds for any Σ
and κ = (κv) as above: Choose UΣ to be a compact subset of G(FΣ). Write Y(κ)
for the set of G(AF )-conjugacy classes of γ ∈ G(F )ss which meet 

∏
v/∈Σ U≤κv

v ×UΣ. 
Then |Y(κ)| = O(QA1κ).

(ii) Let ξ ∈ Irralg(G(F∞)). If γ /∈ G(F∞)ell then OG(F∞)
γ (fξ) = 0. Moreover,

OG(F∞)
z (fξ, μEP

∞ ) = (−1)q(G∞)ωξ(z)d(G∞) dim ξ, if z ∈ Z(F∞).

For every C ≥ 1, ξ ∈ IrralgC (G(F∞)) and γ ∈ G(F∞)ss with γ /∈ Z(F∞), we have

D∞(γ)1/2|OG(F∞)
γ (fξ, μEP

∞ )| = OC(dim(ξ)1−ν∞),

where ν∞ ∈ R>0 depends only on G(F∞) and the implicit constant is indepen-
dent of γ and ξ. One can choose ν∞ to be the minimum of 1 − (dimR Iγ −
rkRIγ)/(dimRG∞ − rkRG∞) as γ runs over noncentral elements in G(F∞)ss.

(iii) Let v /∈ Sγ ∪Ram(G). Suppose that γ ∈ G(Fv)ss is conjugate to an element of Khs
v . 

Then Iγ is unramified over Fv, and Oγ(1Khs
v
, μcan

v ) = 1.
(iv) There exists a lower bound p0 > 0 and A3, B3 > 0 depending only on G such that 

for every finite place v whose residue characteristic is greater than p0, for every 
γ ∈ G(Fv)ss, and for every λ ∈ X∗(Av) with ‖λ‖ ≤ κv,

D(γ)1/2Oγ(1Khs
v λ(�v)Khs

v
, μcan

v ) ≤ qA3+B3κv
v .

Proof. Part (i) follows from [70, Prop 8.7]. (Take S0 and S1 there to be our Σ\S∞ and 
{v /∈ Σ : κv 	= 0}, respectively. The proposition there assumes that the nonzero values of 
κv are all equal, but the same proof works when κv are different. Finally observe that 
A3 can be absorbed into B3 in that proposition.)

Let us prove (ii). It is a standard fact ([50, p.659]) for a discrete series representation 
π∞ that Oγ(fπ∞) vanishes unless γ is elliptic semisimple, in which case

Oγ(fπ∞) = (−1)q(G∞)tr ξ(γ)

if the Euler-Poincaré measures are used on G(F∞) and Iγ(F∞). This implies everything 
but the last bound in (ii) as fξ is the sum of fσ∞ over σ∞ ∈ Π∞(ξ). It remains to bound 
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DG
∞(γ)1/2|tr ξ(γ)| = O(dim(ξ)1−ν∞) with ν∞ described as in the proposition. We get the 

bound from [70, Lem 6.10.(ii)], observing that m(ξ) there is equal to min(ξ) and that 
dim(ξ)/ min(ξ)|Φ+| is bounded both above and below (in terms of C).

We get (iii) from [48, Prop 7.1, Cor 7.3]. Finally (iv) is proved by motivic integration 
in [70, Thm 14.1]. �

Write MotIγ for the Artin-Tate motive associated to Iγ by Gross [36]. We have the 
decomposition MotIγ = ⊕d∈Z≥1MotIγ ,d(1 − d), where MotIγ ,d is an Artin motive, and 
(1 −d) denotes the Tate twist. For any Artin-Tate motive M over F , denote by L(MotIγ )
(resp. Lv(MotIγ )) the global (resp. local) L-function evaluated at s = 0. Write ΩIγ for the 
absolute Weyl group of Iγ . There is a certain local cohomological invariant cv(Iγ) ∈ Q>0
defined in [36, (8.1)]. We do not need the definition but only the property that

cv(Iγ) = |H1(Fv, Iγ)| ≥ 1 if v � ∞, cv(Iγ) ≥ |ΩIγ |−1, if v|∞. (5.4)

Let γ ∈ G(F )ell so that Iγ has F -anisotropic center. (This ensures that μcan,EP
Iγ

(Iγ) is 
finite, cf. [36, Prop 9.4].) We have the identity [36, Thm 9.9]

|μcan,EP
Iγ

(Iγ)| =
|L(MotIγ )|∏

v∈S |Lv(MotIγ )|
τ(Iγ) · |ΩIγ |∏
v∈S∪S∞

cv(Iγ) . (5.5)

Lemma 5.3. Let γ vary over the set G(F )ell and retain the above notation. Let Siso
denote the set of finite places v of F such that Z contains a nontrivial Fv-split torus. 
(So S ∩ Siso = ∅.)

(i) There exist constants 0 < c1 < c2 such that for all γ ∈ G(F )ss,

|Lv(MotIγ )|−1 ≤ c2q
1
2 (dim Iγ−rkIγ)
v ∀v /∈ Siso ∪ S∞,

|Lv(MotIγ )|−1 ≥ c1q
1
2 (dim Iγ−rkIγ)
v ∀v /∈ Siso ∪ S∞ such that Iγ is unramified at v.

(ii) There exist constants c0, c3, A2 > 0 depending only on G such that the following 
holds: for all S such that G is unramified at all places in S, we have

|μcan,EP
Iγ

(Iγ)|
|μcan,EP

G (G)|
≤ c0c

|S|
3 · q

1
2 (dim Iγ−rkIγ)− 1

2 (dimG−rkG)
S

∏
v∈Ram(Iγ)

qA2
v , ∀γ ∈ G(F )ss.

Proof. (i) Observe that

|Lv(MotIγ )|−1 =
∏
d≥1

|Lv(MotIγ ,d(1 − d))|−1 =
∏
d≥1

∏
i∈Id

|1 − ad,i|,

where Id is a finite index set, and ad,i ∈ C has absolute value qd−1 for all i. (Since v /∈ Siso
we always have ad,i 	= 1.) For each d and i we have the obvious bounds qd−1 − 1 ≤
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|1 − ad,i| ≤ qd−1 + 1. Part (i) is now easily deduced from the following facts [36, §1], cf. 
[70, Prop 6.3]:

• |Id| ≤ dim MotIγ ,d with equality when Iγ is unramified at v,
•

∑
d≥1 |Id| ≤ dim MotIγ = rkIγ ,

•
∑

d≥1(d − 1) dim MotIγ ,d = 1
2 (dim Iγ − rkIγ).

(ii) From (5.5) (applied one more time with γ = 1) we have the bound

|μcan,EP
Iγ

(Iγ)|
|μcan,EP

G (G)|
= O

(
|L(MotIγ )|

∏
v∈S

cv(G)|Lv(MotG)|
|Lv(MotIγ )|

)
.

Using (i) we bound

|Lv(MotG)|/|Lv(MotIγ )| = O
(
c2q

1
2 (dim Iγ−rkIγ)− 1

2 (dimG−rkG)
v

)
.

Note that the implicit constants in both O(·) depend only on G, not on γ or S. (This 
is obvious in the latter. For the former, it is enough to observe that |ΩIγ | and τ(Iγ)
are uniformly bounded as γ varies. The Weyl group is bounded by |ΩIγ | ≤ |ΩG|. The 
Tamagawa measure formula [49] tells us that τ(Iγ) ≤ |Z(Îγ)Gal(F/F )|, and the latter is 
uniformly bounded by [70, Cor 8.12].) From (5.4) and [48, Thm 1.2], we have

cv(G) = |H1(Fv, G)| = |π0(Z(Ĝ)Gal(Fv/Fv))|, v � ∞.

Since Gal(F/F ) acts on Z(Ĝ) through a finite quotient, say Gal(F ′/F ), if we take 
c′2 ∈ Z≥1 be the maximum of |π0(Z(Ĝ)H)| as H runs over all subgroups of Gal(F ′/F ), 
then clearly cv(G) ≤ c′2. Note that c′2 is independent of v. Finally we have

|L(MotIγ )| = O

⎛⎝ ∏
v∈Ram(Iγ)

qA2
v

⎞⎠
for a uniform constant A2 > 0, with an implicit constant of O(·) which is uniform for all 
γ, by [70, Cor 6.16]. Now the bound of (ii) follows by putting c3 := c2c

′
2. �

5.5. Equidistribution results

Fix S, S0, and KS0 . We keep the notation from the previous subsection with S =
S∞ ∪ S0 ∪ S. Throughout this subsection we suppose that

• the residue characteristic of every v ∈ S is sufficiently large such that Theorem 3.11
applies to G(Fv) at each v ∈ S,
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• S ∪ S0 contains the places of F with small residue characteristics such that the 
result by Cluckers–Gordon–Halupczok on uniform bound on orbital integrals [70, 
Thm 14.1] applies to places outside S ∪ S0.

Note that the lower bound on the residue characteristic for Theorem 3.11 can be made 
effective, whereas the lower bound for [70, Thm 14.1] to hold is ineffective by the nature 
of its proof.

Our interest lies in statistics of the family F = F(ξ, σS , KS0) as ξ and σS vary. 
Write KS :=

∏
v/∈S

Khs
v . Since we are assuming Z(FS) and Z(F∞) are compact, the 

intersection Z(F ) ∩ KS0K
S (taken in G(AF )) is finite. (The same is true with any 

compact KS-bi-invariant subset of G(AS
F ) in place of KS.) As in [70, §2.3], define the 

truncated Hecke algebra Hur,≤κ(G(AS
F )) as the space of locally constant bi-KS-invariant 

functions on G(AS
F ) whose support is inside the compact subset 

∏
v/∈S

U≤κv
v .

Theorem 5.4. There exist constants νS , ν∞ > 0 and A > 0 such that for every ξ ∈
IrrregC (G(F∞)), for every σS ∈ IrrYu(G(FS)), for every κ = (κv)v/∈S, and for every 
φS ∈ Hur,≤κ(G(AS

F )) which is the characteristic function of a bi-KS-invariant compact 
subset,

∑
π∈F

trπS(φS) = (−1)q(G∞)d(G∞) dim(ξ) deg(σS) τ ′(G,S)
μcan
S0

(KS0)
∑

z∈Z(F )∩KS0

ωξ(z)
ωσS

(z)φ
S(z)

+ O(dim(ξ)1−ν∞ deg(σS)1−νSQAκ). (5.6)

The implicit constant in O(·) depends on G, S, S0, KS0 , and C (but is independent of 
ξ, σS, κ, and φS).

Remark 5.5. The proof shows that ν∞ can be chosen to be as in Proposition 5.2. We 
have restricted to the set ξ ∈ IrrregC (G(F∞)) to underline the analogy between the finite 
places S and the infinite places S∞. Without the restriction the error bound could be 
stated in terms of min(ξ) as in [70, Thm 9.19]. The same remark applies to Theorem 6.4
below.

Remark 5.6. If we fix κ and φS (while allowing ξ and σS to vary) then the same proof 
shows the asymptotic formula with error bound O(dim(ξ)1−ν∞ deg(σS)1−νS ). This holds 
under a weaker assumption on S, namely that the residue characteristic of each v ∈ S

has to be large enough so that only Theorem 3.11, but not [70, Thm 14.1], applies. Hence 
the lower bound for the residue characteristic can be explicitly given. Thus an explicit 
lower bound is possible for Corollaries 5.8, 5.11, and 6.5.
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Proof. By Lemma 5.1 the left hand side is equal to

μcan
S0

(KS0)−1
∑

γ∈G(F )/∼
elliptic

ι(γ)−1μcan,EP
Iγ

(Iγ)OG(AF )
γ (φSfσS

1KS0
fξ).

For each v ∈ S, write Uv for the (finite) union of a set of representatives for G(Fv)-
conjugacy classes of elliptic maximal tori in G(Fv). Take Uv to be an elliptic maximal 
torus in G(Fv) for infinite places v ∈ S∞. Thus Uv is compact in both cases. Clearly 
the summand in the preceding formula vanishes unless γ ∈ Y(κ), where Y(κ) is as in 
Proposition 5.2 taking Σ = S and UΣ = KS0 ×

∏
v∈S∪S∞

Uv.
The contribution from central elements z ∈ Z(F ) is computed as in the first line on 

the right hand side of (5.6). For this it is enough to observe that μcan,EP
G (G) = τ ′(G, S)

by definition, fσS
(z) = ω−1

σS
(z) deg(σS) by Harish-Chandra’s Plancherel theorem, and 

fξ(z) = (−1)q(G∞)ωξ(z) dim ξ by Proposition 5.2. This implies that the contribution of 
γ ∈ Z(F ) in the above sum equals the main term in the right hand side of (5.6). Hence 
it suffices to show that for some uniform constants νS, ν∞, A > 0,∑

γ∈Y(κ)
s.t. γ /∈Z(F )

∣∣∣μcan,EP
Iγ

(Iγ)OG(AF )
γ (φSfσS

1KS0
fξ)

∣∣∣ = O(dim ξ1−ν∞ deg(σS)1−νSQAκ).

(5.7)
We will bound the summand for each γ ∈ Y(κ). Without loss of generality we assume 

that γ belongs to 
∏

v/∈S
U≤κv
v × KS0 ×

∏
v∈S∪S∞

Uv. Define Φγ and Sγ as in the last 
subsection (with S = S0 ∪ S ∪ S∞). Write S′

γ for the set of v ∈ Sγ with v /∈ Σ. The 
subset of v ∈ S′

γ with κv = 0 is written by S′
γ,0.

According to Lemma 5.3 (iii), the group Iγ is unramified at v if v /∈ Ram(G), v /∈ Sγ , 
and κv = 0. (The last condition ensures that the v-component of φS is supported on 
Khs

v so that γ is conjugate to Khs
v .) Hence

Ram(Iγ) ⊂ Ram(G) ∪ Sγ ∪ {v /∈ Σ : κv 	= 0} ⊂ S ∪ S0 ∪ S′
γ ∪ {v /∈ Σ : κv 	= 0}.

Now Lemma 5.3, Proposition 5.2, Theorem 3.11 and Proposition 4.3 tell us that there 
exist positive constants c0, cS , cS0 , c∞, A2, A3, B3, νS , ν∞ such that

|μcan,EP
Iγ

(Iγ)| ≤ c0c
|S|
3

∏
v∈Ram(G)∪Sγ∪{v/∈Σ:κv �=0}

qA2
v ≤ c0q

A2
S qA2

S0
qA2
S′
γ
QA2 ,

(5.8)

DS(γ)1/2|Oγ(φS)| ≤ qA3
S′
γ ,0

QA3+B3κ,

DS(γ)1/2|Oγ(fσS
)| ≤ cS deg(σS)1−νS , (5.9)

DS0(γ)1/2|Oγ(1KS0
)| ≤ cS0 ,

D∞(γ)1/2|Oγ(fξ)| ≤ c∞ dim(ξ)1−ν∞ .
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At this point, the main remaining task is to bound qS′
γ

and qS′
γ,0

independently of γ.
We introduce some invariants of the group G over F . Write dG for the dimension of 

G, wG for the order of the absolute Weyl group, and sG for the minimal degree over F
of an extension field over which G splits.

Define δ∞ to be the supremum of 
∏

v∈S∞
|1 − α(γ∞)|v as γ∞ runs over 

∏
v∈S∞

Uv, 
and as α runs over the set of absolute roots for the compact maximal torus 

∏
v∈S∞

Uv

in G(F∞). (It makes no difference if we impose α(γ∞) 	= 1.) Then δ∞ < ∞ as the 
supremum of a continuous function on a compact set is finite. Likewise define

δv := sup
γv, α

|1 − α(γv)|v, v ∈ S ∪ S0, (5.10)

as γv runs over the v-component of KS0 if v ∈ S0, and as γv runs over elliptic semisimple 
elements of G(Fv) if v ∈ S, and α runs over the set of absolute roots of a maximal torus 
containing γv in G. By definition δv with v ∈ S ∪S0 depends only on G, S, S0, and KS0 . 
We see that δv < ∞ for v ∈ S∪S0 by continuity and compactness as for δ∞. (For instance 
when v ∈ S0, there are only finitely many G(Fv)-conjugacy classes of elliptic maximal
tori, which are compact as G(Fv) has compact center. For each compact maximal torus, 
the value |1 − α(γ)|v is bounded as α varies over the set of absolute roots and γ on the 
maximal torus.) For our purpose below, we may and will arrange that δv, δ∞ ≥ 1 by 
redefining each of them to be 1 if smaller than 1.

Noting that |1 −α(γ)|v = 1 at v /∈ Sγ ∪S∞ with α ∈ Φγ , we deduce from the product 
formula that

1 =
∏
v

|1 − α(γ)|v ≤ δ∞
∏
v∈Sγ

|1 − α(γ)|v, ∀α ∈ Φγ . (5.11)

By [70, Lem 2.18], for some B1 > 0 which is independent of γ and κ,

∏
v∈S′

γ\S′
γ,0

|1 − α(γ)|v ≤ QB1κ, ∀α ∈ Φγ . (5.12)

For each v ∈ S′
γ,0, we have |1 − α(γ)|v ≤ 1 for every α ∈ Φγ . By the definition of S′

γ,0, 
there exists α ∈ Φγ such that |1 −α(γ)|v < 1. The argument as in the proof of [70, Prop 

8.7] (also see the proof of Theorem 9.19 there) shows that a fortiori |1 −α(γ)|v ≤ q
− 1

wGsG
v . 

Hence

∏
α∈Φγ

|1 − α(γ)|v ≤ q
− 1

wGsG
v , v ∈ S′

γ,0. (5.13)

Taking the product of (5.11) over α ∈ Φγ and applying the estimates (5.10) at v ∈ Sγ\S′
γ

(which is contained in S ∪S0), (5.12) at v ∈ S′
γ\S′

γ,0, and (5.13) at v ∈ S′
γ,0, we see that
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1 ≤ q
− 1

wGsG

S′
γ,0

⎛⎝QB1κδ∞
∏

v∈Sγ\S′
γ

δv

⎞⎠|Φγ |

≤ q
− 1

wGsG

S′
γ,0

(
QB1κδ∞

∏
v∈S∪S0

δv

)dG

.

Therefore qS′
γ,0

= O(QwGsGdGB1κ), implying that

qS′
γ
≤ Q · qS′

γ ,0 = O(Q1+wGsGdGB1κ).

To summarize so far, the absolute value of each summand in (5.7) is bounded by, if we 
set C := c0c

|S|
3 cScS0c∞(qSqS0)A2 , the following:

CqA2
S′
γ
qA3
S′
γ ,0

QA2+A3+B3κ deg(σS)1−νS dim(ξ)1−ν∞ .

Applying the above bounds on qS′
γ

and qS′
γ ,0, the summand admits a bound of the form 

O(QA4+B4κ deg(σS)1−νS dim(ξ)1−ν∞). The number of nonzero summands is bounded as 
O(QA1κ) by Proposition 5.2. All in all, the absolute value of the left hand side of (5.7) is

O(QA4+(A1+B4)κ deg(σS)1−νS dim(ξ)1−ν∞).

The proof is complete by taking A = A4 + A1 + B4. (Observe that Q ≤ Qκ.) �
Remark 5.7. An affirmative answer to the question in Remark 3.12 would immediately 
improve Theorem 5.4 with the hypotheses relaxed accordingly, by exactly the same 
argument.

Consider the set of pairs (ξ, σS) ∈ IrrregC (G(F∞)) × IrrYu(G(FS)). We partition the set 
into P= and P�= according as whether ωξ = ωσS

or not on Z(F ) ∩KS0K
S. Recall that 

Z(F ) ∩KS0K
S is finite.

Corollary 5.8. We have the limit multiplicity formulas

lim
(ξ,σS)∈P �=

dim(ξ)| deg(σS)|→∞

m(ξ, σS ,KS0)
d(G∞) dim(ξ) deg(σS) = 0,

lim
(ξ,σS)∈P=

dim(ξ)| deg(σS)|→∞

m(ξ, σS ,KS0)
d(G∞) dim(ξ) deg(σS) = (−1)q(G∞) τ ′(G,S)

μcan
S0

(KS0)
|Z(F ) ∩KS0K

S|.

Remark 5.9. It is clear from the definition that m(ξ, σS , KS0) ≥ 0. This is consistent 
with the signs in the second formula above. Indeed the sign of the measure μEP

∞ μEP
S is 

the same as that of τ ′(G, S) since the canonical measure μcan
v is a positive measure for 

v /∈ S ∪S∞. The signs of μEP
∞ and μEP

S are the same as those of (−1)q(G∞) and deg(σS), 
respectively.
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Proof. We start by claiming that dim(ξ) deg(σS) → ∞ if and only if dim(ξ)ν∞ deg(σS)νS

tends to infinity. To see this, we partition the set of all σS into two sets where | deg(σS)| ≥
1 and | deg(σS)| < 1. The claim is obvious in the first set. (Recall that ν∞, νS > 0 and 
note that dim(ξ) ≥ 1.) In the second set, the claim follows from the fact [39, Thm 7] that 
deg(σS) is bounded below by a positive constant. (More precisely deg(σS) is an integral 
multiple of a constant depending only on a Haar measure on G(FS).)

Now the corollary readily follows from the preceding theorem by plugging in κv = 0
for all v /∈ S and φS = 1KS . �

We can restate Theorem 5.4 in terms of m(ξ, σS , KS0), assuming G is split and 
semisimple for simplicity. The L1-norm of φS ∈ Hur(G(AS

F )) is given by ‖φS‖1 :=∫
G(AS

F )

∣∣φS(g)
∣∣ dμcan,S.

Corollary 5.10. Suppose that G is a split semisimple group over F . There exist constants 
ε, A > 0 such that for every (ξ, σS) ∈ P= and for every φS = 1KSgKS ∈ Hur(G(AS

F ))
with some g ∈ G(AS

F ),

∑
π∈F(ξ,σS ,KS0 )

trπS(φS) = m(ξ, σS ,KS0)
|Z(F ) ∩KS0K

S|
∑

z∈Z(F )∩KS0

φS(z)

+ O(m(ξ, σS ,KS0)1−ν‖φS‖A1 ).

The implicit constant in O(·) depends on G, S, S0, KS0 , and C (but is independent of 
ξ, σS, and φS).

Proof. Since G has finite center, the center is contained in every maximal compact 
subgroup. So Z(F ) ∩KS0 = Z(F ) ∩KS0K

S and ωσS
= ωξ on Z(F ) ∩KS0 for (ξ, σS) ∈ P=. 

Our task is to turn the right hand side of (5.6) to the right hand side as in the corollary. 
Let κ = (κv)v/∈S be chosen such that φS ∈ Hur,≤κ(G(AS

F )). We know that

∣∣∣∣m(ξ, σS ,KS0) − (−1)q(G∞)d(G∞) dim(ξ) deg(σS)τ
′(G,S)|Z(F ) ∩KS0K

S|
μcan
S0

(KS0)

∣∣∣∣
= O(dim(ξ)1−ν∞ deg(σS)1−νS )

from Theorem 5.4, cf. the proof of Corollary 5.8. So it is enough to show that for some 
constants A′, B′ > 0 (whose independence is as in the corollary),

(i)
∑

z∈Z(F )∩KS0
φS(z) = O(QB′κ),

(ii) QAκ ≤ ‖φS‖A′
1 .

Part (i) is equivalent to |Z(F ) ∩ KS0(KSgKS)K∞| = O(QA′κ) for any maximal 
compact subgroup K∞ ⊂ G(F∞). This immediately follows from [70, Prop 8.7].
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It remains to check (ii). We adopt the notation about truncated Hecke algebras from 
[70, §2.3]. By Cartan decomposition we may write g = (gv)v/∈S ∈ G(AS

F ) with gv =
μv(�v) for the cocharacter Tv of a maximal Fv-split torus Tv of G and a uniformizer �v

of Fv. We take κ = (κv)v/∈S such that κv = ‖μv‖B for a suitable R-basis B = {e1, ..., er}
of X∗(T ) ⊗Z R, where X∗(T ) is the cocharacter group of a maximal torus T over F . 
(Thus r = dimT = rkG.) Of course κv = 0 for all but finitely many v. Choose a Borel 
subgroup containing T so that we have a set of positive coroots Φ∨,+ for T . We take B
to consist of simple coroots in Φ∨,+. Similarly we choose a Borel subgroup Bv ⊃ Tv and 
a set of positive coroots Φ∨,+

v for Tv. Without loss of generality we assume that μv is Bv-
dominant. Set ρ∨v :=

∑
α∨∈Φ∨,+

v
α∨. The equality κv = ‖μv‖B means that κv = 〈μv, iα∨〉

for some α∨ ∈ Φ∨,+, where i is an inner automorphism of G sending T to Tv. Hence for 
each v /∈ S, we see that 〈μv, β∨

v 〉 = κv for some coroot βv ∈ Φ∨,+
v .

We claim that there exists a constant c > 1 such that for every v /∈ S we have

‖1KvgvKv
‖1 ≥ c−1q〈μv,ρ

∨〉.

Indeed [37, Prop 7.4] tells us that ‖1KvgvKv
‖1/q

〈μv,ρ
∨〉 is equal to |(G/Pμv

)(Fqv )|/
q
dim(G/Pμv )
v for a suitable parabolic subgroup Pμv

of G. Of course there are finitely 
many parabolic subgroups (up to conjugation). We see that the quotient (which is a 
quotient of two polynomials in qv) tends to one as qv → ∞. The claim follows.

For each v such that μv 	= 0 (so KvgvKv 	= Kv) we have ‖1KvgvKv
‖1 ≥ 2 = clog 2/ log c. 

Setting c′ := log c/ log 2 ∈ R>0, we have (whether μv = 0 or not)

‖1KvgvKv
‖1+c′

1 ≥ q〈μv,ρ
∨〉, ∀v /∈ S.

Since μv is Bv-dominant, it is clear that 〈μv, ρ∨〉 ≥ 〈μv, β∨
v 〉 = κv. In conclusion

‖φS‖1+c′

1 ≥ Qκ.

The proof of (ii) is complete. �
Let us record a sample application to the existence of certain automorphic repre-

sentations. For simplicity we assume that G is split over F . We fix a reductive model 
over the ring of integers OF , giving rise to hyperspecial subgroups Khs

v at each finite 
place v.

Corollary 5.11. Suppose that G is a split reductive group over F . Fix ξ ∈ Irrreg(G(F∞))
and S a nonempty finite set of finite places. Suppose that the residue characteristic of 
each v ∈ S is sufficiently large in the sense at the start of §5.5. Then there exists d0 > 0
with the following property: For every π0

S ∈ IrrYu(G(FS)) with | deg(π0
S)| ≥ d0 and 

ωπ0
S

= ωξ on Z(F ) ∩ KS0K
S, there exists a cuspidal automorphic representation π of 

G(AF ) such that
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• πS � π0
S,

• π∞ ∈ Π∞(ξ),
• πS,∞ is unramified.

Proof. In the preceding corollary, it is enough to take S0 to be sufficiently large and 
contain all places of small residue characteristics, and set KS0 :=

∏
v∈S0

Khs
v . Then fix 

ξ and let deg(σS) go to infinity. �

According to Corollary 5.8, it is reasonable to restrict our attention to (ξ, σS) ∈ P=

when studying equidistribution problems on the following counting measure for the multi-
set F = F(ξ, σS , KS0), where δπS denotes the Dirac delta measure supported at πS on 
the unramified unitary dual G(AS

F )∧,ur :=
∏

v/∈S
G(Fv)∧,ur:

μ̂count
F := 1

|F|
∑
π∈F

δπS .

Of course this makes sense if |F| 	= 0. To obtain a clean formula we will further assume 
that Z(F ) ∩KS0 = Z(F ) ∩KS0K

S. (Alternatively we may instead restrict to the pairs 
(ξ, σS) ∈ P= such that ωξ = ωσS

on Z(F ) ∩KS0 .)
Given z ∈ Z(F ) let ωz denote the function on G(AS

F )∧,ur whose value on each repre-
sentation is its central character evaluated at z. Define a measure μ̂pl,ur,S

z on G(AS
F )∧,ur

to be ωz · μ̂pl,ur,S, where μ̂pl,ur,S :=
∏

v/∈S
μ̂pl,ur
v is the product of the Plancherel mea-

sure μ̂pl,ur
v on the unramified unitary dual of G(Fv).7 Recall that φS defines a function 

φ̂S : π �→ trπ(φS) on 
∏

v/∈S
G(Fv)∧,ur. Note that we can integrate φ̂S against the (pos-

sibly infinite) sum measure μ̂pl,ur,S
Z(F )∩KS0

:=
∑

z∈Z(F )∩KS0
μ̂pl,ur,S
z . Indeed μ̂pl,ur,S

z (φ̂S) is 
nonzero for only finitely many z ∈ Z(F ) ∩KS0 since Z(F ) intersects an open compact 
subset of Z(AF ) at only finitely many points.

Corollary 5.12. Assume that Z(F ) ∩KS0 = Z(F ) ∩KS0K
S. For every φS ∈ Hur(G(AS

F )),

lim
dim(ξ) deg(σS)→∞

(ξ,σS)∈P=

μ̂count
F(ξ,σS ,KS0 )(φ̂S) =

μ̂pl,ur,S
Z(F )∩KS0

(φ̂S)
|Z(F ) ∩KS0K

S| .

(The counting measure is defined when dim(ξ)| deg(σS)| � 1 by Corollary 5.8.)

7 Since we consider only those φ̂S coming from Hur(G(AS
F )), the formulas remain valid if we use the 

Plancherel measure on the whole unitary dual.
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Proof. Choose κ ≥ 0 such that φS ∈ Hur,≤κ(G(AS
F )). By (5.6), μ̂count

F(ξ,σS ,KS0 )(φ̂S) equals

(−1)q(G∞) τ
′(G,S)d(G∞) dim(ξ) deg(σS)
μcan
S0

(KS0)|F(ξ, σS ,KS0)|
∑

z∈Z(F )∩KS0

φS(z)

+ O

(
deg(σS)1−νS dim ξ1−ν∞

|F(ξ, σS ,KS0)|
QAκ

)
.

By Plancherel theorem, 
∑

z∈Z(F )∩KS0
φS(z) = μ̂pl,ur,S

Z(F )∩KS0
(φ̂S). We apply Corollary 5.8

to finish the proof. �
Remark 5.13. In particular if Z(F ) ∩KS0 = {1} (e.g. if Z(F ) is trivial) then we have

lim
dim(ξ)+deg(σS)→∞

(ξ,σS)∈P=

μ̂count
F(ξ,σS ,KS0 )(φ̂S) = μ̂pl,ur,S(φ̂S).

This confirms Conjecture 1 in [62], or more precisely its analogue as explained in the 
remark below it. In our case the limiting measure is the product of the unramified 
Plancherel measures so (i) and (ii) of the conjecture are true. Part (iii) is essentially [70, 
Prop 5.3], from which (iv) follows immediately.

Remark 5.14. The results above should carry over to the case where neither G(FS) nor 
G(F∞) has compact center, at least if G is a cuspidal group in the sense that the center of 
ResF/QG has the same split Q-rank and split R-rank. This requires some modification in 
the statements (e.g. pseudo-coefficients of a supercuspidal representation have compact 
support only modulo center) but would not lead to any significant change in the proof. 
Alternatively one could work with the trace formula with fixed central character (one 
could use [23, §6] for instance), in which case representations and test functions also 
have fixed central characters which are inverses of each other.

5.6. Possible generalizations

It is sensible to ask whether the method of this paper applies to non-supercuspidal 
discrete series representations π but there are difficulties. In that case we still have a 
somewhat explicit construction of pseudo-coefficients for π, cf. [64, §3.4] but they are not 
as simple as in §3.2 to be useful. In the trace formula, if we impose a pseudo-coefficient 
of π at a local place v then one still has the simple trace formula, but the spectral side 
picks up automorphic representations whose v-components are not only π but possibly 
nontempered representations in a finite list. This means that one has to control these 
spectral error terms. Alternatively one could allow more general test functions at v but 
then the trace formula will have more terms to be dealt with (unless the global reductive 
group is anisotropic modulo center).
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6. Steinberg representations and horizontal families

The results in this section do not rely on Sections 2 through 4. However the reader 
will see a strong analogy both in the statements and proofs between the vertical families 
in the last section and the horizontal families in this one.

Let ξ, S, S0, S∞, and S be as in §5.3, cf. §1.2. In particular the finite sets S, S0, and 
S∞ are mutually disjoint, and G is unramified outside S. We will fix S0 and assume that

• S ∩ Ram(G) = ∅ (so that Ram(G) ⊂ S0),
• the residue characteristic of every v ∈ S is sufficiently large.

Throughout this section we keep a large residue characteristic assumption as in §5.5:

• S ∪ S0 contains the places of F with small residue characteristics such that the 
result by Cluckers–Gordon–Halupczok on uniform bound on orbital integrals [70, 
Thm 14.1] applies to places outside S ∪ S0.

We also assume that (to use Lemma 6.2 relying on strong approximation)

• the simply connected cover of Gder has no F -simple factor that is Fv-anisotropic for 
every v ∈ S.

Let F(ξ, StS , KS0) denote the multi-set of π ∈ Adisc(G), with mdisc(π) dim(πS0)KS0 as 
the multiplicity of π, which satisfies the following conditions: first, π∞ ∈ Π∞(ξ); second, 
πv is isomorphic to the Steinberg representation for all v ∈ S; third, πv is unramified for 
all finite places v /∈ S ∪ S0. In this section we study F(ξ, StS , KS0) as we vary the set S. 
The situation is somewhat complementary to that in the previous section. We refer to 
F(ξ, StS , KS0) as a horizontal family.8

Kottwitz [49] constructed Euler-Poincaré functions for p-adic groups. For any place 
v ∈ S, we denote it by φEP

v ∈ C∞
c (G(Fv)). We have that [49, Thm 2]

Oγ(φEP
v ) =

{
1, γ ∈ G(Fv)ell,
0, γ ∈ G(Fv)ss\G(Fv)ell.

(6.1)

We will assume that

• G is a simple9 algebraic group, i.e. every proper normal subgroup of G over an 
algebraic closure of F is finite.

8 Even though ξ is allowed to vary “vertically” (as in the last section), the main novel feature is to allow 
S to vary, so the family deserves the name.
9 Such a group is often said to be absolutely almost simple, e.g. in [38].
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In that case Casselman’s theorem, cf. [16, Thm 2] and [49, Thm 2’], tells us that an 
irreducible unitary representation πv with trπv(φEP

v ) 	= 0 can occur only in the following 
two cases (which may not be mutually exclusive):

(i) πv is the trivial representation and trπv(φEP
v ) = 1, or

(ii) πv � Stv and trπv(φEP
v ) = (−1)q(Gv), where q(Gv) is the semisimple rank of GFv

. 
In particular fStv := (−1)q(Gv)φEP

v is a pseudo-coefficient for Stv.

Set fStS :=
∏

v∈S fStv , qS :=
∏

v∈S qv, and q(GS) :=
∑

v∈S q(Gv).

Remark 6.1. The formal degree of Stv is equal to (−1)q(Gv) for the Euler-Poincaré mea-
sure by the Plancherel theorem, (ii) above, and φEP

v (1) = 1 recalled above. See also [14].

We will state the analogue of Lemma 5.1 for F(ξ, StS , KS0) after recalling the following 
well-known result on one-dimensional automorphic representations.

Lemma 6.2. Let H be a connected reductive group over a number field E. Let v be a 
place of E, and assume that the simply connected cover of Hder has no E-simple factor 
that is Ev-anisotropic (in particular, H(Ev) is not compact modulo center). If π is an 
automorphic representation of H(AE) with dim πv = 1 then π is one-dimensional.

Proof. Using a z-extension of H ([47, §1]) we can reduce to the case when the derived 
subgroup Hder of H is simply connected. Now the groups Hder(E) and Hder(Ev) are 
subgroups of H(AE) so they act on π viewed as a subspace of the regular representa-
tion of H(AE) on automorphic forms of H(AE) (with a fixed central character). The 
one-dimensionality of πv implies that Hder(Ev) acts trivially on π. Then any smooth 
vector of π, as a function φ : H(AE) → C, has the property that φ(h0hhv) = φ(h)
for h0 ∈ Hder(E), h ∈ H(AE), and hv ∈ Hder(Ev). Hence φ(hh′) = φ(h) for 
h′ ∈ h−1Hder(E)hHder(Ev) = h−1Hder(E)Hder(Ev)h. By the strong approximation the-
orem, h′ runs over a dense subset of Hder(AE). Therefore φ is constant on left Hder(AE)-
cosets, i.e. H(AE) acts through an abelian quotient. Hence π is one-dimensional. �
Lemma 6.3. Let S := S∞ ∪ S0 ∪ S and φS ∈ Hur(G(AS

F )). Put φ := φSfStS1KS0
fξ. 

Then ∑
π∈F(ξ,StS ,KS0 )

trπS
(
φS, μcan,S)

= μcan
S0

(KS0)−1Tell(φ, μcan,EP).

Proof. We have the simple trace formula (5.3) for φ. Indeed fStS enjoys property (ii) 
in §5.2. It suffices to show that the left hand side equals μcan

S0
(KS0)−1Tdisc(φ, μcan,EP), 

which expands as

∑
mdisc(π)trπS(φS)trπS(fStS )

trπS0(1KS0
)

μcan
S0

(KS0)
trπ∞(fξ). (6.2)
π∈Adisc(G)
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Suppose that the summand for π is nonzero. Then π∞ cannot be one-dimensional by 
regularity of ξ. Let v ∈ S so that trπv(fStv ) 	= 0. If G(Fv) is compact modulo center then 
Stv is the trivial representation, so πv � Stv by Casselman’s theorem above. If G(Fv) is 
not compact modulo center then Lemma 6.2 tells us that πv cannot be one-dimensional 
so πv � Stv by the same theorem. In either case trπv(fStv ) = 1. We see that (6.2) equals 
the left hand side of the lemma. �
Theorem 6.4. There exist real constants ν∞, A > 0 and an integer B ∈ Z≥1 such that 
for every ξ ∈ IrrregC (G(F∞)), for every κ = (κv)v/∈S, and for every φS ∈ Hur,≤κ(G(AS

F ))
which is the characteristic function of a bi-KS-invariant compact subset,

1
τ ′(G,S)

∑
π∈F(ξ,StS ,KS0 )

trπS(φS) = (−1)q(GS)+q(G∞)d(G∞) dim ξ

μcan
S0

(KS0)
∑

z∈Z(F )∩KS0

ωξ(z)φS(z)

+ O(q−B
S dim(ξ)1−ν∞QAκ).

The implicit constant in O(·) depends on G, S0, KS0 , and C (but is independent of ξ, 
S, κ, and φS).

Proof. The proof proceeds exactly as for Theorem 5.4. The main term coming from γ ∈
Z(F ) is computed similarly. (Note that fStS (z) = (−1)q(GS) = deg(StS) for z ∈ Z(FS). 
So deg(σS) in (5.6) is replaced by (−1)q(GS) here.) The issue is to bound the contribution 
from noncentral elements. To explain the mild modifications in the argument we freely 
use the notation from the proof there. It suffices to show the following analogue of (5.7)
for uniform constants ν∞, A > 0 and B ∈ Z≥1:

1
τ ′(G,S)

∑
γ∈Y(κ)
γ /∈Z(F )

∣∣∣μcan,EP
Iγ

(Iγ)OG(AF )
γ (φSfStS1KS0

fξ)
∣∣∣ = O(q−B

S dim(ξ)1−ν∞QAκ). (6.3)

The only nontrivial change is to replace (5.8) and (5.9) with the following inequalities 
for noncentral elements γ ∈ Y(κ) for suitable uniform constants c0, A5 > 0:

|μcan,EP
Iγ

(Iγ)|
τ ′(G,S) ≤ c0q

−B
S QA5κ, (6.4)

DS(γ)1/2|Oγ(fStS )| ≤ 1. (6.5)

The bounds for orbital integrals away from S as well as the rest of the proof are exactly 
the same as in the proof of Theorem 5.4. So we content ourselves with justifying the two 
inequalities, beginning with (6.5). (Along the way we obtain a bound on qSγ

. Evidently 
the same bound works for qS′

γ,0
. Together with (5.9), this is used to bound the orbital 

integral away from S.)
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As we recalled in (6.1), |Oγ(fStS )| is bounded by 1 and nonzero only on γ that is 
elliptic in G(Fv) for all v ∈ S. Then γ is contained in an Fv-anisotropic maximal torus 
Tv of G(Fv) so |α(γ)|v = 1 for all absolute roots α of Tv in G by compactness, implying 
that |1 − α(γ)|v ≤ 1. Therefore DS(γ) ≤ 1 and (6.5) holds.

It remains to check the uniform bound (6.4) for noncentral elements γ. If γ is not in 
the center of G, we have that 1

2(dim Iγ − rkIγ) − 1
2 (dimG − rkG) is a negative integer. 

Take B to be the maximum of such integers as γ varies. Our initial assumption tells us 
that Ram(G) ⊂ S0. At each v ∈ S0 we define δv < ∞ as in (5.10) or δv = 1, whichever 
is bigger. We define dG, sG, wG ∈ Z>0 as in the proof of Theorem 5.4.

From Lemma 5.3 and the fact that

Ram(Iγ) ⊂ Ram(G) ∪ Sγ ∪ {v /∈ S : κv 	= 0} ⊂ S0 ∪ Sγ ∪ {v /∈ S : κv 	= 0},

it follows that

|μcan,EP
Iγ

(Iγ)|
τ ′(G,S) ≤ c0q

1
2 (dim Iγ−rkIγ)− 1

2 (dimG−rkG)
S

∏
v∈Ram(Iγ)

qA2
v .

≤ c0q
−B
S qA2

S0
qA2
Sγ

QA2 = O(q−B
S qA2

Sγ
QA2). (6.6)

We will bound qSγ
independently of γ, by considering the partition

Sγ = (Sγ ∩ S)
∐

(Sγ ∩ S0)
∐

(S′
γ\S′

γ,0)
∐

S′
γ,0.

When v ∈ Sγ ∩S, we have |1 −α(γ)|v ≤ 1 as explained above, and the inequality is strict 
for some α ∈ Φγ , thus as in (5.13), we have

∏
α∈Φγ

|1 − α(γ)|v ≤ q
− 1

wGsG
v , v ∈ Sγ ∩ S.

At v ∈ Sγ ∩ S0 we have |1 − α(γ)|v ≤ δv. For v ∈ S′
γ\S′

γ,0 and v ∈ S′
γ,0 the bounds of 

(5.12) and (5.13) remain valid without change. Applying these bounds to the product 
formula for 1 − α(γ) with α ∈ Φγ (compare with (5.11))

1 =
∏

α∈Φγ

∏
v

|1 − α(γ)|v ≤ δ|Φγ |
∞

∏
α∈Φγ

∏
v∈Sγ

|1 − α(γ)|v

≤ (δ∞
∏
v∈S0

δv)dGq
− 1

wGsG

Sγ

⎛⎝ ∏
v∈S′

γ\S′
γ,0

q
1

wGsG
v

⎞⎠QdGB1κ.

Increasing B1 if necessary, we can disregard the second bracketed term (the product 
over v ∈ S′

γ\S′
γ,0). We deduce that qSγ

= O(QdGwGsGB1κ). Using this bound in (6.6) we 
conclude:
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|μcan,EP
Iγ

(Iγ)|
τ ′(G,S) = O

(
q−B
S qA2

Sγ
QA2

)
= O

(
q−B
S Q(dGwGsGA2B1+A2)κ

)
. �

Denote by Ξ1 (resp. Ξ�=1) the subset of ξ ∈ IrralgC (G(F∞)) whose central character is 
trivial (resp. non-trivial).

Corollary 6.5. We have the limit multiplicity formulas

lim
qS dim(ξ)→∞

ξ∈Ξ�=1

m(ξ,StS ,KS0)
d(G∞) dim(ξ)τ ′(G,S) = 0,

lim
qS dim(ξ)→∞

ξ∈Ξ1

(−1)q(GS)m(ξ,StS ,KS0)
d(G∞) dim(ξ)τ ′(G,S) = (−1)q(G∞)|Z(F ) ∩KS0K

S|
μcan
S0

(KS0)
. (6.7)

More precisely, for each ε > 0, there exists δε > 0 with the following property: for every 
finite set of finite places S such that S ∩ Ram(G) = ∅ and for every ξ ∈ Ξ�=1 such that 
qS dim(ξ) > δε (while S0 is fixed), we have |m(ξ, StS , KS0)| < ε · d(G∞) dim(ξ)τ ′(G, S). 
The second limit formula is interpreted in a similar way.

Proof. This follows from the preceding theorem exactly as Corollary 5.8 does from The-
orem 5.4. �
Example 6.6. Consider the case when G = PGL(2) over a totally real field F and S0 = ∅. 
Then d(G∞) = 1, q(G∞) = (−1)[F :Q], and the right hand side of (6.7) is (−1)[F :Q]. 
(When F = Q, corresponding to classical holomorphic modular forms of even weight 
k ∈ Z≥2

10 with trivial Nebentypus character is the representation ξk = Symk−2 of 
PGL(2) so that dim(ξk) = k − 1. Similarly dim(ξ) is computed for general F .) Gross’s 
motive for PGL(2) is Q(−1). We can easily compute τ(G) = 2 and

τ ′(G,S) = ζF (−1)21−[F :Q]
∏
v∈S

1 − qv
2 ,

where ζF is the Dedekind zeta function (in particular ζQ(−1) = −1/12). Since dimG −
rkG = 2, we can take B = 1 in Theorem 6.4 by its proof and ν∞ = 1 by Remark 5.5. So 
we have the asymptotic formula

m(ξ,StS , ∅) = |ζF (−1)|21−[F :Q]−|S|
∏
v∈S

(qv − 1) + O(1). (6.8)

Here the bound O(1) comes from q−1
S

∏
v∈S(qv − 1) = O(1). In the special case when 

F = Q and ξk = Symk−2 is fixed, we have

10 The regularity condition on ξ excludes k = 2 but we can easily work out the case k = 2. The simple trace 
formula is still valid for the same test function φ. The only extra work is to bound the extra spectral terms 
from one-dimensional automorphic representations, cf. Lemma 6.2, which do not show up when k > 2.
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m(ξk,StS , ∅) ∼
(k − 1)φ(qS)

12 · 2|S| as qS → ∞,

where φ(·) is Euler’s phi-function. The difference from [42, Cor 2.14] by the factor 2|S|

is explained as follows. At each v ∈ S there is another square-integrable representation 
St′v such that Stv and St′v differ as representations of GL2(Qv) by the unique non-
trivial unramified quadratic character of Q×

v . The result in [42] can be interpreted as ∑
σS

m(ξk, σS , ∅), where the sum runs over σS such that σv ∈ {Stv, St′v}. Thus their 
count is 2|S| times ours. In this special case, observe that our O(1) in (6.8) improves on 
the error bound O((kqS)2/3) obtained in [42].

Corollary 6.7. Suppose that G is a split simple reductive group over F . There exist con-
stants ε, A, B > 0 such that for every ξ ∈ IrrregC (G(F∞)) and for every φS = 1KSgKS ∈
Hur,≤κ(G(AS

F )) with some g ∈ G(AS
F ),

∑
π∈F(ξ,StS ,KS0 )

trπS(φS) = m(ξ,StS ,KS0)
∑

z∈Z(F )∩KS0

φS(z)

+ O(m(ξ,StS ,KS0)1−νq−B
S ‖φS‖A1 ).

The implicit constant in O(·) depends on G, S, S0, KS0 , and C (but is independent of 
ξ and φS).

Proof. This is proved in the same way as Corollary 5.10. �
As an immediate consequence of Theorem 6.4, we deduce the existence of represen-

tations with very mild ramification (e.g. one can take S to be a singleton) and fixed 
weight.

Corollary 6.8. Let G be a split simple reductive group over F . Fix ξ ∈ Irrreg(G(F∞)). 
There exists a constant q0 > 0 with the following property: for every finite set of places 
S such that G is unramified away from S, if qS > q0 then there exists a cuspidal auto-
morphic representation π such that

• π∞ ∈ Π∞(ξ) (in particular it is a discrete series representation),
• πv is the Steinberg representation at each v ∈ S,
• π is unramified at every finite place v /∈ S.

Proof. We take S0 = ∅. Theorem 6.4 implies that F(ξ, StS , ∅) is nonempty if qS is 
sufficiently large since the main term in the right hand side of the theorem is nonzero. Any 
π ∈ F(ξ, StS , ∅) is (not only discrete but) cuspidal since it has a Steinberg component, 
cf. [51, Prop 4.5.4]. �
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