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1. INTRODUCTION 

The importance of knot theory as a mathematical discipline is due 
primarily to its intersection with other branches of mathematics. Notable 
among these are the subject of infinite discrete non-Abelian groups, 
topics in the homology of groups and the theory of Noetherian modules, 
and the study of covering spaces. One construction, which is basic to 
knot theory and which is discussed at length in Ref. [4], is that of the 
Alexander matrix. This matrix has led to the definition of a corresponding 
module, sometimes called the Alexander module, and thence to the link 
module sequence studied in Refs. [3] and [5]. 

In spite of references in the literature, neither the connection between 
the Alexander matrix and the module sequence nor the fundamental 
geometric significance of these ideas is readily available or familiar to 
beginning students of knot theory. The purpose of this paper is to provide 
a good foundation. In this approach the basic definition, that of the 
derived module of a homomorphism, is simple and elegant. It is compu- 
tationally useful, as we show in the last section, since it is conceptually 
very close to the definition by Fox of the Alexander matrix of a group 
presentation based on his free differential calculus [7]. It leads nicely 
to the algebraic treatments of group and module sequences in Refs. [2] 
and [9]. Moreover, it quickly implies the important geometric descrip- 
tion in terms of the homology of covering spaces, as discussed, for 
example, by Milnor in Ref. [ll]. 

2. THE DERIVED MODULE 

If 6 is any multiplicative group (generally non-Abelian), we denote 
its integral group ring by Z(G). By a left G module we mean a left 

* This work was supported by the National Science Foundation (GP-16820). 
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Z(G) module, and a morphism f : A -+ A’ of left G modules will be 
called simply a G morphism. If A is any left G module, then a mapping 
a : G + A is a crossed homomorphism if, for all g, , g, E G, 

aa,) = w + g,ak,). 

In the remainder of this section we consider an arbitrary homomor- 
phism of multiplicative groups 

There exists a unique extension of v to a ring homomorphism of the 
integral group rings, which we shall denote by the same letter, 9) : Z(G) -+ 
Z(H). Every left H module A is also a left G module relative to v, since, 
for each u E Z(G) and a E A, we define 

ua = v(u)a. 

A crossed homomorphism 8 : G -+ A into a left H module is therefore 
a mapping which satisfies the equation 

a(g,g,) = ah) + dgl) aw for all g, , g, E G. (1) 

It follows easily that 

(2.1) If A is a left H module and a : G -+ A a crossed homomorphism, 
then 

(i) a(l) = 0; 

(ii) a(p) = -F(g)-la(g), for any g E G. 

Proof. We have 

a(i) = a(1 . 1) = a(i) + ~(1) a(l) = a(i) + a(i), 

which implies (i). Hence, 

0 = wd = ak-1) + dg-7 a(g) = a-1) + dg)-1 a(g), 

which yields (ii). 1 
A derived module of the group homomorphism CP : G --+ H consists 

of a left H module A, and a crossed homomorphism a : G + A, such 
that, for any left H module A and crossed homomorphism a’ : G -+ A, 
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there exists a unique H morphism h : A, + A such that ha = a’, i.e., 
the following diagram is consistent: 

G&A, 

A? 

A 
a' 

A 

(2.2) A derived module A, and crossed homomorphism 3 : G + A, 
exist, and A, is unique up to H isomorphism. 

Proof. Uniqueness up to isomorphism is obtained by the standard 
argument. The proof of existence follows MacLane, Ref. [lo, p. 1201. 
Let X be a free left H module having a basis in one-one correspondence 
with the group G. That is, there exists an injection i : G + X whose 
image is a basis for X. Let Y be the submodule of X generated by all 
elements of the form 

ik1g2) - Ql) - dfl) ik2) for all gl, g, E G- 

Set X/Y = A,, and denote the quotient morphism by y : X + A, . 
We define 

to be the composition a = yi. For any g, , g, E G, 

%w2) = &x2) = y[W + dgd i( 

= &I) + dgd YQ2) = %l) + dg1) %). 

Hence, 8 is a crossed homomorphism. 
Next, consider an arbitrary left H module A and crossed homo- 

morphism 3’ : G + A. Since i(G) is a basis for X, there exists a unique 
H morphism p : X + A such that 8’ = pi. Moreover, 
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Hence, there exists a unique H morphism X : A, -+ A such that Xy = CL; 

Clearly, 

Aa = qyi) = (A+ = Pi = a'. 

Finally, suppose that X’ : A, -+ A is also an H morphism such that 
X’a = a’. If we set t~’ = h’y, then 

p’i = (h’y)i = X(yi) = xa = a'. 

From the uniqueness of ~1 it follows that ,u = p’. Hence, X’y = p’ = 
,u = hy, and, since y is an epimorphism, we conclude that h = X’. This 
completes the proof of (2.2). 1 

Following common practice concerning objects defined by universal 
properties, we shall henceforth speak of the derived module A, of a group 
homomorphism v : G -+ H. In the.speciaI case that His the commutator 
quotient group of G and y is the canonical Abelianizing homomorphism, 
A, will be called the Alexander module of the group G. 

(2.3) If G is generated by {gj}, then the derived module A, is generated 

bY Pkj)l* 

Proof. Let A be the submodule of A, generated by ia( Since (gj) 
generates G, it is a consequence of the definition of a crossed homo- 
morphism (1) and of (2.1) that a(g) E A for every g E G. Hence, there 
exists a mapping a' : G + A defined by a’(g) = a(g) for all g E G. 
It is obvious that a' is a crossed homomorphism. Thus there exists a 
unique H morphism h : A, --P A such that ha = a’. Denote the inclusion 
monomorphism by 0 : A -F A, . For every g E G, we have 

datg) = oayg) = aa = a(g). 

It follows by the uniqueness part of the universal property in the defini- 
tion of A, that the composition ah is the identity. Hence, o is an 
epimorphism, which implies that A = A, . u 
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The mapping E : Z(G) --t 2 defined by setting c(g) = 1 for all g E G 
is a ring homomorphism called the augmentation mapping. Its kernel, 
denoted by I(G), is the augmentation ideal of G. The structure of the 
ring Z(G) as an additive group is extremely simple: Z(G) is a free 
Abelian group with G a basis. This fact implies that 

(2.4) The augmentation ideal I(G) is a free Z module which has the set 
{g- 1 IgEGandg # 1)asabasis. 

Proof. Consider an arbitrary u E 1(G). Then 

u = 1 n,g, ng E 2, 
LEG 

with ng = 0 except for at most finitely many elements g E G. Set G, = 
G - (1). Since 

0 = c(u) = c ng , 
SC 

we have 

Thus, {g 

Then 

24 = c n,(g - 1) = c n,(g - 1). 
QPG QEG* 

1 / g E G andg # l} is a set of generators. Suppose that 

0 = C n,(g - 1). 
WC* 

0 = c n,g - c 11,. 

SEC* G-G* 

Since Z(G) is a free Z module with G a basis, it follows that n, = 0 
for all g E G, . This completes the proof. 1 

The ideal I(G) is, of course, also a G module. We define the mapping 
K : G -+ I(G) by setting K(g) = g - 1 for all g E G. 

(2.5) The mapping K is a crossed homomorphism, and, for any left 
G module A and crossed homomorphism 8 : G + A, there exists a unique 
G morphism p : I(G) -+ A such that I1.K = a. 

Proof. For any g, , g, E G, we have 

‘d!U’,) = &5&z - 1 = & - 1 + &‘, - 1) 

= ‘b’l> + glKkd 
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Thus, K is a crossed homomorphism. Using (2.4), we define a 2 mor- 
phism p : I(G) + A by setting 

Pk - 1) = %?) for all g E G - (1) 

Observe that this equation also holds for g = 1, see (2.1). To verify 
that p is also a G morphism, it suffices to check that p(g,(g, - 1)) = 
gip(gs - 1) for all g, , g, E G. We have 

PM& - 1)) = CLbuP - 1 - kl - 1)) 

= i&G?, - 1) -I& - 1) 

= %%a) - w 

= W.(& - 1). 

Since {g - 1 1 g E G} generates I(G), the uniqueness of TV follows 
immediately. This completes the proof. 1 

An equivalent formulation of (2.5) is the statement that 1(G) is the 
derived module of the identity homomorphism 1, : G --+ G and 
K : G + I(G) is the accompanying crossed homomorphism. This fact 
also follows from the module sequence developed in Section 4. 

3. PRESENTATION OF THE DERIVED MODULE 

Let v : G + H be a homomorphism of multiplicative groups. Consider 
a group presentation 

G = (x : r)( , (2) 

and let M be the Jacobian matrix of the presentation at v, as defined by 
Fox in Ref. [7] and also in Ref. [8, p. 1251. In this section we shall show 
that M is a relation matrix for the derived module A, . The discussion 
provides, incidentally, an alternative construction of the derived module. 
If we take the special case in which H is the commutator quotient group 
of G and F is the canonical Abelianizing homomorphism, then M is the 
Alexander matrix of (2), and our conclusion is that the Alexander matrix 
is a relation matrix for the Alexander module of G. Although this material 
is basic to knot theory, especially for purposes of computation, it is not 
required for an understanding of Sections 4 and 5 of the paper. 
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We shall assume familiarity with group presentations and the free 
differential calculus of Fox. Since the notion of a presentation of a module 
may be less common, we give a resume. Let R be a commutative ring 
with 1. A presentation of an R module A consists of an exact sequence 
of R morphisms 

x,d,-X+4+0 

in which X, and X, are free R modules with distinguished bases (bj) and 
(ci), respectively. The matrix (mij) of elements of R defined by 

for each ci , is the matrix of the presentation, and is also called a relation 
matrix for A. 

Returning to the group presentation (2), we denote by F the free 
group with basis x = (xj). Then 5 : F + G is an epimorphism whose 
kernel is the normal subgroup of F generated by r = (ri), i.e., the kernel 
of 5 is the consequence of r. The Jacobian matrix at y of the presentation 
is the matrix M = (mii) of elements of the integral group ring Z(H) 
defined by 

(3) 

Thus, there is one row for each relator ri E r, and one column for each 
generator xi E x. Let XI be a free H module with basis (bj) in one-one 
correspondence with x = (xi), and X, a free H module with basis (ci) 
in one-one correspondence with r = (Yi), i.e., we have bj tf xj and 
ci +P ri . The H morphism d2 : X, + XI is defined by 

d,(q) = C rndjb, . 

Denote the quotient module X,/image(d,) by A,, and the canonical 
quotient epimorphism by dl : XI --f A, . Hence, we have constructed 
the following exact sequence of H-morphisms: 

X,dl-tXl~A~-+O. (4) 

We shall show that A, is the derived module A, . 
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Consider the mapping 6 : F --t X1 defined by setting 

S(u) = C (~4 (--$-) b, for every u E F. 
i 

(3.1) S is a crossed homomorphism and S(xj) = bi for every xi E x. 

Proof. The properties of the free differential calculus [4, pp. 96,981 
imply at once that 6(xi) = bj and also that 

Hence, 

for all u1 , u2 E F. 

WV,) = C d (*) bj 
I 

It follows immediately that the composition d,S is also a crossed 
homomorphism. 

(3.2) If C(u) = 1, then d,S(u) = 0. 

Proof. Consider an arbitrary relator rt E r. 

S(rJ = C tp,5 (g) bi = c miibj = d2(ci). 
j 3 

Thus, d$(r,) = d,d,(c,) = 0. Next, consider a conjugate urp-I, where 
u E F. It is a consequence of the preceding, as well as of (1) and (2. l), that 

S(ur,u-l) = S(u) + vt(t.4) S(rJ - vc(uriu-l) S(u) 

= S(u) + PW W-J - S(u) 

= d(u) S(rJ. 

Hence, d,S(ur,u-l) = vc(u) d,S(r,) = 0. Finally, it is clear that any 
product of elements ur@ and their inverses will also be mapped onto 0 
by d&j. This completes the proof. 1 
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Suppose that t;(uI) = [(~a). Then <(u,I.A-~) = 1. From (3.2) and the 
fact that d,6 is a crossed homomorphism, we obtain 

0 = d,s(u,u,l) = d$(u,) - qqUl$) @(u,) 

= d,S(u,) - d,S(u,). 

Thus, @(ul) = dIB(u2). W e conclude that a mapping 8 : G -+ A, is 
well-defined by the equation 

a+) = 4w for every u E F. 

(3.3) a is a crossed homomorphism. 

Proof. Consider g, , g, E G, and choose u1 , ua E F such that <(u,) = 
g, and c(u,) = g, . By the definition of 8 and the fact that d,6 is a crossed 
homomorphism, we have 

a(g,g,) = a5h4 = 4w~4 

= 4%) + d(%) 4%%) 

= al;04 + do4 x(4 

= a(h) + dgl) ak2). I 

Thus, we have constructed the following consistent diagram in which 
the bottom row is the exact sequence (4) and in which the vertical 
mappings are crossed homomorphisms: 

F L-G 

1 
6 

1 a dl(bj) = wj) (5) 

(3.4) The module A,, is the derived module A, , and 8 is the accompanying 
crossed homomorphism. 

Proof. Let A be an arbitrary left H module and 8 : G + A a crossed 
homomorphism. We define the H morphism p : XI -+ A by setting 
p(bj) = a’gx,). The k ernel of dl is generated by the elements d,(cJ. 
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Thus, to show that kernel(d,) C kernel(p), it suffices to prove that 
P&(Q) = 0. To begin with, we have 

The H module A is also a left G module relative to the homomorphism 
q : G --+ H. Hence, by (2.5), there exists a G morphism p such that 
pi = a’. Recalling the definition of the action of Z(G) on A, we obtain 

According to the fundamental formula of the free differential calculus 
14, P- 1w, 

aY. y,--q: 
j axj 

(Xj - 1). 

Hence, 

p&(4 = P&i - 1) = E”(O) = 0, 

and it follows that kernel(&) C kernel(p). This implies that there exist 
an H morphism h : A, -+ A such that hd, = p. In order to verify that 
8’ = M, it is sufficient to check the equation on the generators <(xi). 
We obtain 

AiqXj) = Xd,(bj) = fJ(bj) = a’[(Xj). 

Finally, the uniqueness of h follows from the fact that, since A, is gener- 
ated by the elements d,(bj) = at;(xj), it is generated by image(a). This 
completes the proof. 1 

It is a direct consequence of Theorem (3.4) that the Jacobian matrix 
at F of the group presentation (2) is a relation matrix for the derived 
A, = A,. 

An an application of these ideas, let us take for v the identity homo- 
morphism 1, : G -+ G. In this case, as noted at the end of the preceding 
section, the augmentation ideal I(G) is the derived module, and the 

607/6/z-8 
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accompanying crossed homomorphism is the mapping K : G --+ I(G) 
defined by K(g) = g - 1. Hence, the sequence (4) becomes the exact 
sequence of G morphisms 

where 
X,&X, *I(G) - 0, (6) 

d,(b,) = &q) - 1. 

The final morphism I(G) + 0 in (6) may be replaced by the sequence 
Z(G) 5 2 + 0, where E is the augmentation mapping. The result is 
the exact sequence 

X,“tX,d’tZ(G)AZ-+O, 

which is an extremely useful free (and hence projective) G resolution 
of 2. Alternatively, we may consider the homomorphism 9 again and 
form the tensor product of (6) with Z(H) BG on the left. The exact 
sequence thus obtained is equivalent to (4), and it follows that 

A, = Z(H) &I(G). 

Actually, this result together with the fact that a(g) = 1 @ (g - l), 
for all g E G, is more easily proved directly from the universal definition 
of A, . The tensor product form of the derived module has been studied 
in both Refs. [2] and [9]. 

4. THE MODULE SEQUENCE 

Consider an arbitrary short exact sequence of homomorphisms of 
multiplicative groups 

I-+K B’GAH-1. (7) 

In this section we shall construct from (7) an exact sequence of morphisms 
of left H modules 

e* O-+B--+A,~I(H)--+O (8) 

called the module sequence of (7). The middle term A, is the derived 
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module of v, and I(H) is the augmentation ideal of H. This sequence 
is equivalent to the one described in Ref. [2] and in Ref. [lo, p. 1201. 
The principal application of this construction in knot theory occurs 
where G = rl(Ss - L) is the group of a link, K is the commutator 
subgroup of G, and His the commutator quotient group. In this case (8) 
is the link module sequence studied in Refs. [3] and [5], and A, is the 
Alexander module. 

The unique extension of v : G + H to a ring homomorphism of the 
respective integral group rings has been denoted also by F. Where both 
augmentation mappings are denoted by c, it is clear that the following 
diagram is consistent: 

Z(G) --% -w4 

Hence v(l(G)) C I(H), and we use the letter v again for the obvious 
mapping F : I(G) -+ I(H). We proved in (2.5) that the mapping 
K : G --t I(G) defined by K(g) = g - 1, for all g E G, is a crossed homo- 
morphism. It follows immediately that the composition FK is also a 
crossed homomorphism. By the universal property of the derived 
module, there exists a unique H morphism q~.+ : A, + I(H) such that 
y*i3 = FK. Thus, the following diagram is consistent: 

a 1 1 ‘p 

A, c* I(H) 

(4.1) q~* is an epimorphism. 

Proof. Consider an arbitrary element u E I(H). As a result of (2.4) 
we can write 

24 = 1 n,(h - l), nh E 2, 
heH 

with nh = 0 except for at most a finite number of elements h E H. Since 
9 : G -+ H is surjective, there exists a mapping Y : H + G such that 
or = lx (identity). Let 

0 = c n&(h). 
h.SI 



222 

Then 

CROWELL 

v*(v) = *pnhP)*q4 = c nhdfw - 1) 
hsH 

= c n,(h - 1) = u. 
hsH 

This completes the proof. 1 
The module B will be defined by first considering its structure as an 

additive Abelian group. Let K’ be the commutator subgroup of K. 
The group B is then simply the quotient group K/K’ written additively. 
Leta: K + B be the canonical Abelianizing homomorphism. Then 

(4.2) There exists a unique group homomorphism 8, : B -+ A, such 
that tl*a: = 80, i.e., such that the following diagram is consistent: 

KB’G 

Proof. Consider arbitrary elements k, , k, E K. Then 

sew,) = ww ew = awl) + ~e(kd w,) 

= aep,) + aqk,). 

Thus, the composition 80 : K + A, is a group homomorphism (multi- 
plicative-to-additive). To complete the proof, one must therefore show 
that ae(K’) = 0. Since K’ is generated by the set of all commutators of 
elements of K, it suffices to show that ae([k, , k,]) = 0, for any K, , k, E K. 
Since 80 is a homomorphism, we obtain 

ae([k, , A,]) = a6yk,k,k;1k;1) 

= aqk,) + aep,) - aqk,) - aqk,) = 0. B 

To define the module structure on B, it is sufficient to describe the 
action of H. Specifically, let f' : G + aut(K) be the homomorphism 
defined by 

W’kP)) = dw g-l 

for all g E G and k E K. The Abelianizing mapping (Y induces a homo- 
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morphism CD : aut(K) -+ aut(B) in a natural way: For every f E aut(K), 
there exists a unique Q(c) E aut(B) such that the diagram 

K ‘+K 

a 
1 1 

a 

is consistent. It is straightforward to check that @f’O(K) = 1, (identity). 
As a result, there exists a unique homomorphismfsuch that the following 
diagram is consistent: 

G f’ t aut(K) 

H f + aut(B) 

Thus, B is a left H module with the action of H defined by hb = f(h)(b) 
for all h E H and b E B. To compute hb, choose g E G and k E K such 
that v(g) = h and al(k) = b. Then 

gw g-l = w 

for some k, E K, and 

hb = a@,). 

(4.3) The mapping 13* : B + A, is an H morphism. 

Proof. Using the preceding two equations and the definition of 0, , 
we have 

O,(hb) = fI*c&) = M(k,) = a(gO(k)g-l). 

From Eq. (1) and also (2.1), we obtain 

QW) g-9 = W + dg> W) - d&V) g-‘1 W 
= w + d&9 w4 - w 
= cp(g) se(k) = ke,a(k) = he,(b). 

.Hence, 8,(hb) = he,(b), and the proof is complete. 1 
The module sequence (8) has now been constructed. It remains, 

607/6/2-g* 
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of course, to prove that it is exact. We have shown that F* is an epi- 
morphism. Moreover, 

(4.4) cp*e* = 0. 

Proof. Consider an arbitrary element b E B, and choose k E K such 
that U(K) = 6. Then 

= pee(k) = q@(k) - 1) = 0. 1 

The rest of the proof of exactness is motivated by the outline in 
Ref. [lo, p. 1201. As in the proof of (4.1), consider a mapping r : H -+ G 
such that g?r = 1,. In addition, we define r(J) = 1. A convenient 
notation, which we shall adopt, is to write r(h) = [h] for every h E H. 
Observe that 

for all h E H and g E G. Hence, since the original sequence (7) of group 
homomorphisms is exact, there exists in K an element, which we denote 
by h x g, uniquely determined by the equation 

B(h x g) = PI ‘d~P(d-l. 

A useful lemma is 

(4.5) h x gig, = (h x gdhdgd x gz>. 

Proof. It suffices to show that both sides of the equation have the 
same image under the monomorphism 0, 

w x .Mb(g1) x g2N = PI ~1bP(&r1P?4g1>1 g2P?w dg2)Y 

= PI kuG?Gw2)l-1 = v x g& I 

We next recall the construction in (2.2) of the derived module A, 
as the quotient of the free H module X with basis i(G), in which the 
crossed homomorphism a is the composition of the mappings 

As an additive Abelian group, X is free with a basis equal to the set of 
all elements hi(g) such that h E H and g E G. Hence, where 01 : K + B 
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is the Abelianizing homomorphism, we may define the 2 morphism 
r : X -+ B by setting 

T(hi(g)) = a(h x g). 

(4.6) There exists a unique Z morphism q : A, + B such that my = r. 

Proof. The kernel of y, regarded as a 2 module, is generated by all 
elements 

Wlg2) - Wd - Wgd i(gJ 

for any h E H and g, , g, E G. Hence, it suffices to show that 

~(hi(glgd = +4gl)) + +dgJ W). 

Using (4.5), the definition of T, and recalling the multiplicative-to- 
additive property of 01, we obtain 

T(hik,&)) = a@ x g,&‘,) = a(h x 6’1) + a(hd&) x gz) 

= +kl)) + +f(gd ikd. I 

(4.7) O* is a monomorphism, since 70, = 1, . 

Proof. Consider an arbitrary b E B and element k E K such that 
al(k) = b. Then 

,0,(b) = 7Q(k) = @O(k) = &3(k) 

= d(k) = a(1 x B(k)). 

Since [l] = 1, the defining equation of 1 x 8(k) yields 

e(i x e(k)) = [I] e(k)[iqe(k)]-1 
= [l] e(k)[l]-1 = B(k). 

Hence, 1 x B(k) = 12, and so 

7e*(b) = a(k) = b. 1 

It follows from (2.4) that the ideal I(H) is a free 2 module which 
has the set (h - 1 1 h E H and h # l> as a basis. Hence, a 2 morphism 
c : I(H) -+ A, is defined by setting 

o(h - 1). = a([h]) for every h E H - (1). 
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Notice that this equation also holds if h = 1, since [l] = 1 and a(l) = 0. 
The final lemma in the proof of exactness is the identity 

(4.8) Lq = e*rl + a?* . 

Proof. It is a consequence of (2.3) that, as a 2 module, the derived 
module A, is generated by the set of all elements ha(g), where h E H and 
g E G. It suffices therefore to verify the identity on these generators. 
We have 

e*17v%9) = ~*rlvvW = ~*w@W) 

= 8*+zi(g)) = B*cu(h x g) 

= Wh x $9 = wzl &whwl) 

= a@l) + fwg) - wv(m 
= ha(g) + u(h - 1) - a(hp(g) - 1). 

However, 

Since h(q(g) - 1) = (by(g) - 1) - (h - l), we get 

Combining the results, we conclude that 

or equivalently, 

This completes the proof. 1 
The exactness of the module sequence (8) is now established. The 

only detail not yet proved explicitly is the inequality 

kernel(9,) C image(B,), 

and this is a direct corollary of (4.8). 
It is easy to prove in addition that y.+o = lIcH) and that ~a = 0, 
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since both equations are readily seen to hold for the generators h - 1 
of I(H). Thus, we have 

p*e* = 0, TO* = lB, 
?)a = 0, v*u = l,(H) 3 

lam = e*17 + UT* * 

It follows, see Ref. [12, p. 1 I], that these mappings constitute a complete 
representation, as 2 modules, of A, as the direct sum of B and I(H). 
However, it is essential to realize that the exact Z(H) module sequence 

is generally not split exact. For example, it is shown in Ref. [3] that 
if this sequence is the link module sequence of an m-component link L, 
then it splits if and only if either m = 1 or m = 2 and the linking 
number of the two components is f 1. 

5. COVERING SPACES 

We shall now show that the module sequence developed in the last 
section is part of the homology sequence of a pair (X, F) consisting of 
a covering space and its fiber. This fact provides the basic geometric 
interpretation of the sequence. Moreover, in this context formula (1) 
for the crossed homomorphism into the derived module appears as an 
application of the path-lifting property of covering spaces to a product 
of elements of the fundamental group of the base space. Consider the 
short exact sequence of group homomorphisms 

1-K&G&H-+1. 

The corresponding exact sequence of morphisms of left H modules may 
be written as in (8), or equivalently, as 

Ii is this longer form which we consider here. 
\-‘Let X be a connected and locally pathwise connected (lpc) covering 
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space relative to a covering map p : X + B, and suppose that there 
exist points b, E B and x0 ~p-l(&,) such that 

G = n-1(& bo), 

K = +k-, x0>, 

and 6’ : K + G is the monomorphism induced by p. We denote the 
fiber over b, by F, i.e., F = p-l(b,). Th ere is a well-known right action 
of G on F (the definition of which is reviewed in the proof of (5.2) below). 
The result of the action of a group element g on a point x of the fiber 
will be denoted by xg, and we have the characteristic properties 

xl = x, 

xk1g2) = 6%) g2 I 1 
for all xeF and g,,g,EG. 

The group H is canonically isomorphic to the group T of covering 
translations. It is convenient in this section to assume that H = T and 
that y : G ---t H is the epimorphism defined by the equation 

9&9(x0) = xog for all g E G. 

Using singular homology with integer coefficients, consider the follow- 
ing part of the homology sequence of the pair (X, F): 

H,(F) -+ H,(X) - f&(X, F) - H,(F) - Ho(X) - Ho(x, F). 

Since X is connected and lpc, it is also pathwise connected. The fiber F 
is nonempty and we therefore conclude that H,(X, F) = 0. From the 
well-known fact that F is a discrete subset of X it follows that H,(F) = 0. 
Thus, we obtain the exact homology sequence 

0 - H,(X) 2 E&(X, F) * H,(F) i, H,(X) - 0. (10) 

The connecting homomorphism has been denoted by p because the 
commonly used symbol a is reserved for crossed homomorphisms in 
this paper. 

Each element h E H is a homeomorphism h : X -+ X such that ph = p. 
Since h(F) = F, there are induced homeomorphisms h : F 4 F and 
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h:(X,F)+(X,F). F rom the Eilenberg-Steenrod axioms we obtain 
the consistent diagram 

0 --j H,(X) d H&K F) - f4lm - f&f) - 0 

1 h* 1 % 1 h* 1 h* (11) 
0 - H,(X) - W-F F) - fw) - %W) - 0 

Let A be any one of the homology groups in the sequence (IO). There 
exists a mapping H ---f aut(A) defined by h -+ h, . Since (hrh,), = 
h,,h,, for all h, , h, E H, this mapping is a homomorphism. Hence, 
A is a left H module with the action of H defined by 

ha = h*(a) for all h E H and a E A. 

With this definition of the module structure, the fact that the diagram (11) 
is consistent is equivalent to the statement that the additive group 
homomorphisms represented by the horizontal arrows are H morphisms. 
Thus, we have shown that 

(5.1) The homology sequence (10) is an exact sequence of morphisms of 
left H modules. a 

The remainder of the section is devoted to the construction of an 
isomorphism 4 from the module sequence (9) onto the homology 
sequence (10). We shall adopt the notation of systematically denoting 
the homology class containing a give cycle c by [cl. We also propose to 
work from right to left, thus disposing of the simpler and less interesting 
end of the sequences first. 

Let the infinite cyclic group H,,(X) be generated by the homology 
class [x0] containing the point x0 . For every h E H, we have h(x,) - x0 , 
and so the induced isomorphism h, : H,,(X) + H,,(X) is the identity. 
Thus, H,,(X) is a trivial H module, and there exists an isomorphism 
$,, : 2 -+ H,(X) with &(l) = [x,,]. 

The group H,(F) is the direct sum @jzeF H,,(x), in which each group 
H,,(x) is infinite cyclic and generated by [xl. There exists a one-one 
correspondence H *F defined by h -+ h(x,). Hence, there exists a 
2 isomorphism #r : Z(H) + H,(F) defined by $,(h) = [h(x,)] for every 
h E H. Since 
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it follows that #i is an H isomorphism. The morphism i,: H,,(F) + H,(X) 
maps each class [x] onto [x0], and we therefore obtain the consistent 
diagram of H morphisms 

Z(H) LZ -+o 

-1 *1 i % 

H,(F) --f*+ H,(X) -+ 0 

The mapping 8’ : G + H,(X, F) is defined as follows: Let g E G be an 
arbitrary element and select a representative b,-based loop a E g. By the 
path-lifting property of covering spaces, there exists a unique path 
a’ : I + X such that pa’ = a and a’(O) = x0 . Obviously a’ is a relative 
l-cycle, and its homology class in H,(X, F) is denoted by [a’]. We define 

8(g) = [a’]. WI 

Since covering spaces have the covering homotopy property, it follows 
at once that the mapping 8’ : G + H,(X, F) is well-defined by (12). 

(5.2) 8 is a crossed homomorphism. 

Proof. Consider arbitrary elements g, , g, E G and representative 
b,-based loops a, ~g, and a2 ~g, . Let a,‘, ua’ : I -+ X be the unique 
paths such thatpai’ = ai and ai’(O) = x,, for i = 1 and 2. The definition 
of the right action of the group G on the fiber F yields 

X0& = %'(1)* 

The covering translation v(gJ is defined by the equation y(gi)(x,) = 
xog, , and so we have F(gi)(x,) = ai’(l). Thus, the composition y(gi) aa’ 
is a path which covers a2 and has initial point 

dgJ e’(O) = &5)(x0) = al’(l). 

Hence, the product path al’(q(gl)az’) is defined. It covers the product 
ala2 and has initial point x0 . It therefore follows from the definition of 8 

in (12) that a’klgz) = [al’(dgl> a,‘>l. S ince the product of two paths is 
homologous to their sum, we obtain 

~‘(g1gJ = bl’h&d %?I = [%‘I + b(g1) %7. 
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The definition of the action of H on the homology groups then implies 
that 

%hgJ = [%‘I + d&)[%‘l 

= %I) + dgd %J, 

and the proof is complete. 1 
It is a corollary of (5.2) and the universal property of the derived 

module A, that there exists a unique H morphism $a : A, + H,(X, F) 
such that the following diagram is consistent: 

G&A, 

a’ 
lJ *z 

f&(X, F) 

Proof. The derived module A, is generated by the set of all elements 
a(g) such that g E G, see (2.2). Hence, it suffices to verify the above 
equation on an arbitrary such generator. Recalling the fact that ~,a = 
T’K, as indicated in the mapping diagram which precedes (4.1), we have 

Choose a representative loop a ~g, and let a’ : I + X be the unique 
path such that pa’ = a and u’(O) = x0 . Then u’(l) = xOg, and a’ is 
a relative 1 -cycle. Using the crossed homomorphism 8’ and the definition 
of the connecting homomorphism /3, we obtain 

BWk) = Bw?) = BU4) = hgl - bO1~ 

Thus, #,v,8(g) = p++?(g), and the proof is complete. 1 
Since X is pathwise connected, there exists a (multiplicative-to- 

additive) group epimorphism 

a’ : K = nl(X, x,,) --+ H,(X) 
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with kernel(ol’) = K’ and defined, for any K E K, by 

where [c] is the homology class of any representative loop c E K. Since 
Cl!: K + B has been defined to be the canonical Abelianizing epimor- 
phism, it follows that there exists a unique group isomorphism #a : 
B + H,(X) such that #a01 = 01’. 

(5.4) #3 is an H isomorphism. 

Proof. Consider arbitrary elements h E H and b E B, and choose 
g E G and k E K such that q(g) = h and a(K) = b. Referring to the two 
equations preceding (4.3), we have gO(k)g-l = 19(/z,) for some k, E K, 
and hb = a(k,). Hence, 

w4 = ?bw = w4, 
h+,(b) = h&a(R) = hd(k) = h,(d(k)). 

Let c E R be an x,-based representative loop, and let a be a b,-based 
representative loop such that a ~g. Denote by a’ : I + X the unique 
path such that pa’ = a and a’(0) = x,, . Then 

4x0) = do = xog = 41). 

Thus, the product a’(hc)(a’)pl is defined and is an x,-based loop. It 
represents the group element iz, since 0 = p, and 

p(u’(hc)(a’)-l) = a(phc) a-l 

= u(pc) a-l E go(k) g-l. 

The loop a’(hc)(u’)- l is homologous to hc. Hence, 

#,(hb) = or’&) = [hc]. 

Since c represents K, we have a’(k) = [c] and 

W,(b) = h*(@)) = h*(kl) = WI. 

We conclude that #,(hb) = h&(b). 1 
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The layout of the mappings under present consideration is shown 
in the following diagram: 

Proof. Consider an arbitrary element b E B, and select 12 E K such 
that a(K) = b. Then 

and 

&B*(b) = $hze*oI(k) = $@3(k) = a’qk) 

Let c E k be a representative x,-based loop in the covering space X. The 
composition pc is a &-based loop which represents the group element 
p,(k) = 8(k). It follows from the definition of a’ given in (12) that 

L@(k) = [cl, 

where [c] is the homology class of c in H,(X,F). According to the 
definition of 01’) we have a’(k) = [ 1, c w h ere this time [c] is the homology 
class of c in H,(X). Since the morphism j, is induced by inclusion, 

j.&(k) = [c] (in H,(X,F)) = 80(k). 

Hence, $#*(b) = j.+&(b) for all b E B. 1 
Combining the results of this section, we have established the following 

consistent diagram of morphisms of left H modules in which the rows 
are exact and in which I,& , $i , and #a are isomorphisms: 

@* o-B------+ A,ir,Z(H) ’ l z-----+o 

1 *s 1 *a 1 *I 1 % 

0 - H,(X) - j* f&(X, F) 8, H,(F) -L H,(X) - 0 



234 CROWELL 

It is a consequence of the algebraic theorem known as the Five Lemma, 
see Ref. [6, p. 161, that the H morphism #.a is also an isomorphism. (The 
necessary fifth morphism in this case is, of course, the trivial mapping 
#4 : 0 + 0.) Thus, the equivalence between the module sequence of 
Section 4 and the homology sequence is proved. 

The derived module A, is defined only up to H isomorphism. Since #a 
is now known to be an H isomorphism, we may write A, = H,(X, F) 
and one should recognize that the mapping 8 : G + H,(X, F), defined 
in (12) by lifting paths into the covering space, is the accompanying 
crossed homomorphism 8 : G + A, . This fact is the geometric explana- 
tion of the formula for a crossed homomorphism given in (1). 

6. APPLICATION TO KNOT THEORY 

The crossed homomorphism 8 : G -+ A, into the Alexander module 
can be used effectively in conjunction with the Alexander matrix and 
the link module sequence to show that certain links are not boundary 
links. The definition, due to R. H. Fox (see Refs. [13] and [14]), asserts 
that an m-component link L in S3 is a boundary link if there exist m 
pairwise-disjoint, connected, orientable, nonsingular surfaces S, ,..., S, 
in S3 such that a(&),..., a(&,,) are the components of L. In particular, 
every knot, i.e., one-component link, is a boundary link, since it is well- 
known that a knot always possesses such a spanning surface. A theorem 
of Fox states that z. L is a boundary link and if G = r,(S3 - L), then 
every longitude of L lies in the second commutator subgroup of G. 

Consider an instance of the exact sequence (7) of group homo- 
morphisms 

l-K&G&H-l, 

in which G = x1(S3 - L) is the group of a link, K is the commutator 
subgroup of G, the mapping e is the inclusion, and 9) is the canonical 
epimorphism onto the commutator quotient group H. In this case the 
derived module A, is the Alexander module. The second commutator 
subgroup of G is the group K’, i.e., the commutator subgroup of K. 
It is a consequence of (4.2) that if k E K’, then 

a(k) = aqk) = e,+) = 0. 

Combining this result with Fox’s theorem, we have 

(6.1) If 1 is a longitude of L and z. a(Z) # 0, then L is not a boundary link. 
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Using (6.1), D. S. Cochran has shown as an example in Ref. [I] that 
the two-component link L pictured in Fig. 1 is not a boundary link. In 
the remainder of this section we give a modified version of his proof. 
The group G = rr,(S3 - L) of this link has a presentation 

G = (a, b, c, d : c-%x = d-laca-ld, CC% = d-Wr-ld, UCUC--~~-~ = b~bc-%-~)< . 

(13) 

FIGURE 1 

From this presentation of G we construct a presentation of A, , 

as described in Section 2, whose matrix is the Alexander matrix. The 
correspondences between the generators and relations of the group 
presentation and the basis elements b, and ci of the free modules X1 and 
X, will be given by 

X2 
cl t) c-lac = d-lam-ld 
c2 t) c-lbc = d-‘Mrld,’ 
c3 f--t ucac-la-1 = bcbc-lb-l. 

By Alexander duality, the commutator quotient group H = H1(S3 - L) 
is free Abelian of rank two, and we write it multiplicatively. There exists 
a basis for H consisting of the two elements s and t such that 

k(a) = 5db) = k(c) = s> 

5dd) = t. 
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The Alexander matrix of the presentation (13) is directly computed to be 

I bl b, 6, b, 

Cl 
s-1 - t-1 + St-1 0 -s-l + 1 - st-1 t-1 - St-1 

M = c2 0 s-1 - t-1 + St-1 -s-l + 1 - St-1 t-1 - St-1 

c3 1 +s2-- -1 -s2+s 0 0 

Reduction of M by standard methods [4] leads to an equivalent matrix 

1 b, - b, 4 b, - 6 

&f' = Cl) t-1 0 0 
c2' s2-s++ 0 0 

The columns of M’ are labeled so as to show the relation between 
the basis (b, ,..., b4) of X, and the basis (b, - b, , b, , b, - b,) of the 
free submodule X,’ C X, of the equivalent presentation of A, associated 
with the matrix M’. Let us set 

aj = dl(bj), j = l,..., 4. 

It follows that the Alexander module A, is generated by the three 
elements a2 - a, , u3, and a4 - a, . The cyclic submodule generated 
by a2 - a, is isomorphic to Z(H)/1, where I is the ideal generated by 
s2 - s + 1 and t - 1. Each of a3 and a4 - a, generates a free submodule, 
and we have 

A, = (-WYI) 0 Wf) 0 Z(H). 

A longitude 1 of the link L shown in Fig. 1, which is a parallel of the 
unknotted component, is the element 

I = <(aca-‘bc-lb-l). 

This expression for I is easily read from the picture. Using the mapping 
diagram (5), which appears before (3.4), and the definition of 6, we obtain 

a(l) = &$mz-lbc-lb-l) = d&m-%-lb-l) 

= dl[(l - s) b, + (s - 1) b, + (S - S) b, + Ob,] 

= (1 - s) a, + (s - 1) a2 = (S - 1)(u2 - UJ. 
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This result and the next-to-last sentence of the preceding paragraph 
imply that a(Z) = 0 if and only if s - 1 belongs to the ideal I generated 
by s2 - s + 1 and t - 1. To prove that (s - 1) 4 I, consider the ring 
epimorphism w : Z(H) --+ 2 defined by setting w(s) = - 1 and w(t) = 1. 
Since w(s2 - s + 1) = 3 and w(t - 1) = 0, we know that w(1) = 32, 
i.e., the set of all integer multiples of three. On the other hand, 
w(s - 1) = -2, which is certainly not a multiple of three. It follows 
that (s- 1)$1 and, consequently, that a(Z) # 0. We conclude from 
(6.1) that the link L shown in Fig. 1 is not a boundary link. 

N. Smythe has observed that the group G of this link L can be mapped 
homomorphically onto a free group of rank two. A simple way to verify 
this assertion is to adjoin the relation a = b to the presentation of G 
given in (13) above. The result yields a group G, , which is certainly 
a homomorphic image of G and which is presented by 

Go = (a, c, d : c+zc = d+m+d). 

If both sides of the relation c-%zc = d-%mrld are multiplied on the left 
by a-ld and on the right by d-la, one obtains the equivalent relation 

u-ldc-lacd-lu = c, 

and the latter may be written as c = (a-ldc-l) u(u-ldc-l)-l. Hence, if 
we let u-U-l = X, which is equivalent to d = axe, we have the equiva- 
lent presentation 

Go = (a, c, d, x : c = xux-l, d = uxc). 

Using Tietze operations [4], we get successively the presentations 

Go = (a, c, x : c = xax-l), 

G, = (a, x, :). 

Thus, G, is a free group of rank two. The fact that there exists a 
homomorphism of G onto a free group of rank two means that the link 
L of Fig. 1 is a member of a class of links, introduced by Smythe in 
Refs. [ 131 and [ 141 and called homology boundary links. This class includes 
boundary links. Hence, L is an homology boundary link, but not a 
boundary link. 
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