The Derived Module of a Homomorphism*

R. H. Crowell
Department of Mathematics, Dartmouth College, IIanover, New Hampshire 03755

1. Introduction

The importance of knot theory as a mathematical discipline is due primarily to its intersection with other branches of mathematics. Notable among these are the subject of infinite discrete non-Abelian groups, topics in the homology of groups and the theory of Noetherian modules, and the study of covering spaces. One construction, which is basic to knot theory and which is discussed at length in Ref. [4], is that of the Alexander matrix. This matrix has led to the definition of a corresponding module, sometimes called the Alexander module, and thence to the link module sequence studied in Refs. [3] and [5].

In spite of references in the literature, neither the connection between the Alexander matrix and the module sequence nor the fundamental geometric significance of these ideas is readily available or familiar to beginning students of knot theory. The purpose of this paper is to provide a good foundation. In this approach the basic definition, that of the derived module of a homomorphism, is simple and elegant. It is computationally useful, as we show in the last section, since it is conceptually very close to the definition by Fox of the Alexander matrix of a group presentation based on his free differential calculus [7]. It leads nicely to the algebraic treatments of group and module sequences in Refs. [2] and [9]. Moreover, it quickly implies the important geometric description in terms of the homology of covering spaces, as discussed, for example, by Milnor in Ref. [11].

2. The Derived Module

If G is any multiplicative group (generally non-Abelian), we denote its integral group ring by $Z(G)$. By a left G module we mean a left

[^0]$Z(G)$ module, and a morphism $f: A \rightarrow A^{\prime}$ of left G modules will be called simply a G morphism. If A is any left G module, then a mapping $\partial: G \rightarrow A$ is a crossed homomorphism if, for all $g_{1}, g_{2} \in G$,
$$
\partial\left(g_{1} g_{2}\right)=\partial\left(g_{1}\right)+g_{1} \partial\left(g_{2}\right)
$$

In the remainder of this section we consider an arbitrary homomorphism of multiplicative groups

$$
\varphi: G \rightarrow H .
$$

There exists a unique extension of φ to a ring homomorphism of the integral group rings, which we shall denote by the same letter, $\varphi: Z(G) \rightarrow$ $Z(H)$. Every left H module A is also a left G module relative to φ, since, for each $u \in Z(G)$ and $a \in A$, we define

$$
u a=\varphi(u) a .
$$

A crossed homomorphism $\partial: G \rightarrow A$ into a left H module is therefore a mapping which satisfies the equation

$$
\begin{equation*}
\partial\left(g_{1} g_{2}\right)=\partial\left(g_{1}\right)+\varphi\left(g_{1}\right) \partial\left(g_{2}\right) \quad \text { for all } \quad g_{1}, g_{2} \in G . \tag{1}
\end{equation*}
$$

It follows easily that
(2.1) If A is a left H module and $\partial: G \rightarrow A$ a crossed homomorphism, then
(i) $\partial(1)=0$;
(ii) $\partial\left(g^{-1}\right)=-q(g)^{-1} \partial(g), \quad$ for any $g \in G$.

Proof. We have

$$
\partial(1)=\partial(1 \cdot 1)=\partial(1)+\varphi(1) \partial(1)=\partial(1)+\partial(1),
$$

which implies (i). Hence,

$$
0=\partial\left(g^{-1} g\right)=\partial\left(g^{-1}\right)+\varphi\left(g^{-1}\right) \partial(g)=\partial\left(g^{-1}\right)+\varphi(g)^{-1} \partial(g),
$$

which yields (ii).
A derived module of the group homomorphism $\varphi: G \rightarrow H$ consists of a left H module A_{φ} and a crossed homomorphism $\partial: G \rightarrow A_{\varphi}$ such that, for any left H module A and crossed homomorphism $\partial^{\prime}: G \rightarrow A$,
there exists a unique H morphism $\lambda: A_{\varphi} \rightarrow A$ such that $\lambda \partial=\partial^{\prime}$, i.e., the following diagram is consistent:

(2.2) A derived module A_{\oplus} and crossed homomorphism $\partial: G \rightarrow A_{\Phi}$ exist, and A_{\oplus} is unique up to H isomorphism.

Proof. Uniqueness up to isomorphism is obtained by the standard argument. The proof of existence follows MacLane, Ref. [10, p. 120]. Let X be a free left H module having a basis in one-one correspondence with the group G. That is, there exists an injection $i: G \rightarrow X$ whose image is a basis for X. Let Y be the submodule of X generated by all elements of the form

$$
i\left(g_{1} g_{2}\right)-i\left(g_{1}\right)-\varphi\left(g_{1}\right) i\left(g_{2}\right) \quad \text { for all } g_{1}, g_{2} \in G
$$

Set $X / Y=A_{\varphi}$, and denote the quotient morphism by $\gamma: X \rightarrow A_{\varphi}$. We define

$$
\partial: G \rightarrow A_{\oplus}
$$

to be the composition $\partial=\gamma i$. For any $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
\partial\left(g_{1} g_{2}\right) & =\gamma i\left(g_{1} g_{2}\right)=\gamma\left[i\left(g_{1}\right)+\varphi\left(g_{1}\right) i\left(g_{2}\right)\right] \\
& =\gamma i\left(g_{1}\right)+\varphi\left(g_{1}\right) \gamma i\left(g_{2}\right)=\partial\left(g_{1}\right)+\varphi\left(g_{1}\right) \partial\left(g_{2}\right)
\end{aligned}
$$

Hence, ∂ is a crossed homomorphism.
Next, consider an arbitrary left H module A and crossed homomorphism $\partial^{\prime}: G \rightarrow A$. Since $i(G)$ is a basis for X, there exists a unique H morphism $\mu: X \rightarrow A$ such that $\partial^{\prime}=\mu i$. Moreover,

$$
\mu\left[i\left(g_{1} g_{2}\right)-i\left(g_{1}\right)-\varphi\left(g_{1}\right) i\left(g_{2}\right)\right]=\partial^{\prime}\left(g_{1} g_{2}\right)-\partial^{\prime}\left(g_{1}\right)-\varphi\left(g_{1}\right) \partial^{\prime}\left(g_{2}\right)=0
$$

Hence, there exists a unique H morphism $\lambda: A_{\varphi} \rightarrow A$ such that $\lambda \gamma=\mu$;

Clearly,

$$
\lambda \partial=\lambda(\gamma i)=(\lambda \gamma) i=\mu i=\partial^{\prime} .
$$

Finally, suppose that $\lambda^{\prime}: A_{\Phi} \rightarrow A$ is also an H morphism such that $\lambda^{\prime} \partial=\partial^{\prime}$. If we set $\mu^{\prime}=\lambda^{\prime} \gamma$, then

$$
\mu^{\prime} i=\left(\lambda^{\prime} \gamma\right) i=\lambda^{\prime}(\gamma i)=\lambda^{\prime} \partial=\partial^{\prime} .
$$

From the uniqueness of μ it follows that $\mu=\mu^{\prime}$. Hence, $\lambda^{\prime} \gamma=\mu^{\prime}=$ $\mu=\lambda \gamma$, and, since γ is an epimorphism, we conclude that $\lambda=\lambda^{\prime}$. This completes the proof of (2.2).

Following common practice concerning objects defined by universal properties, we shall henceforth speak of the derived module A_{φ} of a group homomorphism $\varphi: G \rightarrow H$. In the special case that H is the commutator quotient group of G and φ is the canonical Abelianizing homomorphism, A_{ω} will be called the Alexander module of the group G.
(2.3) If G is generated by $\left\{g_{j}\right\}$, then the derived module A_{\odot} is generated by $\left\{\partial\left(g_{j}\right)\right\}$.

Proof. Let A be the submodule of A_{φ} generated by $\left\{\hat{0}\left(g_{j}\right)\right\}$. Since $\left\{g_{j}\right\}$ generates G, it is a consequence of the definition of a crossed homomorphism (1) and of (2.1) that $\partial(g) \in A$ for every $g \in G$. Hence, there exists a mapping $\partial^{\prime}: G \rightarrow A$ defined by $\partial^{\prime}(g)=\partial(g)$ for all $g \in G$. It is obvious that ∂^{\prime} is a crossed homomorphism. Thus there exists a unique H morphism $\lambda: A_{\Phi} \rightarrow A$ such that $\lambda \partial=\partial^{\prime}$. Denote the inclusion monomorphism by $\sigma: A \rightarrow A_{\varphi}$. For every $g \in G$, we have

$$
\sigma \lambda \partial(g)=\sigma \partial^{\prime}(g)=\sigma \partial(g)=\partial(g) .
$$

It follows by the uniqueness part of the universal property in the definition of A_{φ} that the composition $\sigma \lambda$ is the identity. Hence, σ is an epimorphism, which implies that $A=A_{\odot}$.

The mapping $\epsilon: Z(G) \rightarrow Z$ defined by setting $\epsilon(g)=1$ for all $g \in G$ is a ring homomorphism called the augmentation mapping. Its kernel, denoted by $I(G)$, is the augmentation ideal of G. The structure of the ring $Z(G)$ as an additive group is extremely simple: $Z(G)$ is a free Abelian group with G a basis. This fact implies that
(2.4) The augmentation ideal $I(G)$ is a free Z module which has the set $\{g-1 \mid g \in G$ and $g \neq 1\}$ as a basis.
Proof. Consider an arbitrary $u \in I(G)$. Then

$$
u=\sum_{g \in G} n_{g} g, \quad n_{g} \in Z
$$

with $n_{g}=0$ except for at most finitely many elements $g \in G$. Set $G_{*}=$ $G-\{1\}$. Since

$$
0=\epsilon(u)=\sum_{g \in G} n_{g},
$$

we have

$$
u=\sum_{g \in G} n_{g}(g-1)=\sum_{g \in G_{*}} n_{g}(g-1) .
$$

Thus, $\{g-1 \mid g \in G$ and $g \neq 1\}$ is a set of generators. Suppose that

$$
0=\sum_{g \in G_{*}} n_{g}(g-1) .
$$

Then

$$
0=\sum_{g \in G_{*}} n_{g} g-\sum_{g \in G_{*}} n_{g} .
$$

Since $Z(G)$ is a free Z module with G a basis, it follows that $n_{g}=0$ for all $g \in G_{*}$. This completes the proof.

The ideal $I(G)$ is, of course, also a G module. We define the mapping $\kappa: G \rightarrow I(G)$ by setting $\kappa(g)=g-1$ for all $g \in G$.
(2.5) The mapping κ is a crossed homomorphism, and, for any left G module A and crossed homomorphism $\partial: G \rightarrow A$, there exists a unique G morphism $\mu: I(G) \rightarrow A$ such that $\mu \kappa=0$.

Proof. For any $g_{1}, g_{2} \in G$, we have

$$
\begin{aligned}
\kappa\left(g_{1} g_{2}\right) & =g_{1} g_{2}-1=g_{1}-1+g_{1}\left(g_{2}-1\right) \\
& =\kappa\left(g_{1}\right)+g_{1} \kappa\left(g_{2}\right)
\end{aligned}
$$

Thus, κ is a crossed homomorphism. Using (2.4), we define a Z morphism $\mu: I(G) \rightarrow A$ by setting

$$
\mu(g-1)=\partial(g) \quad \text { for all } g \in G-\{1\}
$$

Observe that this equation also holds for $g=1$, see (2.1). To verify that μ is also a G morphism, it suffices to check that $\mu\left(g_{1}\left(g_{2}-1\right)\right)=$ $g_{1} \mu\left(g_{2}-1\right)$ for all $g_{1}, g_{2} \in G$. We have

$$
\begin{aligned}
\mu\left(g_{1}\left(g_{2}-1\right)\right) & =\mu\left(g_{1} g_{2}-1-\left(g_{1}-1\right)\right) \\
& =\mu\left(g_{1} g_{2}-1\right)-\mu\left(g_{1}-1\right) \\
& =\partial\left(g_{1} g_{2}\right)-\partial\left(g_{1}\right) \\
& =\partial\left(g_{1}\right)+g_{1} \partial\left(g_{2}\right)-\partial\left(g_{1}\right)=g_{1} \partial\left(g_{2}\right) \\
& =g_{1} \mu\left(g_{2}-1\right)
\end{aligned}
$$

Since $\{g-1 \mid g \in G\}$ generates $I(G)$, the uniqueness of μ follows immediately. This completes the proof.

An equivalent formulation of (2.5) is the statement that $I(G)$ is the derived module of the identity homomorphism $1_{G}: G \rightarrow G$ and $\kappa: G \rightarrow I(G)$ is the accompanying crossed homomorphism. This fact also follows from the module sequence developed in Section 4.

3. Presentation of the Derived Module

Let $\varphi: G \rightarrow H$ be a homomorphism of multiplicative groups. Consider a group presentation

$$
\begin{equation*}
G=(\mathbf{x}: \mathbf{r})_{\zeta}, \tag{2}
\end{equation*}
$$

and let M be the Jacobian matrix of the presentation at φ, as defined by Fox in Ref. [7] and also in Ref. [8, p. 125]. In this section we shall show that M is a relation matrix for the derived module A_{φ}. The discussion provides, incidentally, an alternative construction of the derived module. If we take the special case in which H is the commutator quotient group of G and φ is the canonical Abelianizing homomorphism, then M is the Alexander matrix of (2), and our conclusion is that the Alexander matrix is a relation matrix for the Alexander module of G. Although this material is basic to knot theory, especially for purposes of computation, it is not required for an understanding of Sections 4 and 5 of the paper.

We shall assume familiarity with group presentations and the free differential calculus of Fox. Since the notion of a presentation of a module may be less common, we give a résumé. Let R be a commutative ring with 1. A presentation of an R module A consists of an exact sequence of R morphisms

$$
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} A->0
$$

in which X_{1} and X_{2} are free R modules with distinguished bases $\left(b_{j}\right)$ and $\left(c_{i}\right)$, respectively. The matrix $\left(m_{i j}\right)$ of elements of R defined by

$$
d_{2}\left(c_{i}\right)=\sum_{j} m_{i j} b_{j}
$$

for each c_{i}, is the matrix of the presentation, and is also called a relation matrix for A.

Returning to the group presentation (2), we denote by F the free group with basis $\mathbf{x}=\left(x_{j}\right)$. Then $\zeta: F \rightarrow G$ is an epimorphism whose kernel is the normal subgroup of F generated by $\mathbf{r}=\left(r_{i}\right)$, i.e., the kernel of ζ is the consequence of \mathbf{r}. The Jacobian matrix at φ of the presentation is the matrix $M=\left(m_{i j}\right)$ of elements of the integral group ring $Z(H)$ defined by

$$
\begin{equation*}
m_{i j}=\varphi \zeta\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \tag{3}
\end{equation*}
$$

Thus, there is one row for each relator $r_{i} \in \mathbf{r}$, and one column for each generator $x_{j} \in \mathbf{x}$. Let X_{1} be a free H module with basis $\left(b_{j}\right)$ in one-one correspondence with $\mathbf{x}=\left(x_{j}\right)$, and X_{2} a free H module with basis $\left(c_{i}\right)$ in one-one correspondence with $\mathbf{r}=\left(r_{i}\right)$, i.e., we have $b_{j} \leftrightarrow x_{j}$ and $c_{i} \leftrightarrow r_{i}$. The H morphism $d_{2}: X_{2} \rightarrow X_{1}$ is defined by

$$
d_{2}\left(c_{i}\right)=\sum_{j} m_{i j} b_{j}
$$

Denote the quotient module $X_{1} / \operatorname{image}\left(d_{2}\right)$ by A_{0}, and the canonical quotient epimorphism by $d_{1}: X_{1} \rightarrow A_{0}$. Hence, we have constructed the following exact sequence of H-morphisms:

$$
\begin{equation*}
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} A_{0} \longrightarrow 0 \tag{4}
\end{equation*}
$$

We shall show that A_{0} is the derived module A_{Φ}.

Consider the mapping $\delta: F \rightarrow X_{1}$ defined by setting

$$
\delta(u)=\sum_{j} \varphi \zeta\left(\frac{\partial u}{\partial x_{j}}\right) b_{j} \quad \text { for every } \quad u \in F .
$$

(3.1) δ is a crossed homomorphism and $\delta\left(x_{j}\right)=b_{j}$ for every $x_{j} \in \mathbf{x}$.

Proof. The properties of the free differential calculus [4, pp. 96, 98] imply at once that $\delta\left(x_{j}\right)=b_{j}$ and also that

$$
\frac{\partial\left(u_{1} u_{2}\right)}{\partial x_{j}}=\frac{\partial u_{1}}{\partial x_{j}}+u_{1} \frac{\partial u_{2}}{\partial x_{j}} \quad \text { for all } \quad u_{1}, u_{2} \in F .
$$

Hence,

$$
\begin{aligned}
\delta\left(u_{1} u_{2}\right) & =\sum_{j} \varphi \zeta\left(\frac{\partial u_{1} u_{2}}{\partial x_{j}}\right) b_{j} \\
& =\sum_{j} \varphi \zeta\left(\frac{\partial u_{1}}{\partial x_{j}}\right) b_{j}+\varphi \zeta\left(u_{1}\right) \sum_{j} \varphi \zeta\left(\frac{\partial u_{2}}{\partial x_{j}}\right) b_{j} \\
& =\delta\left(u_{1}\right)+\varphi \zeta\left(u_{1}\right) \delta\left(u_{2}\right) .
\end{aligned}
$$

It follows immediately that the composition $d_{1} \delta$ is also a crossed homomorphism.
(3.2) If $\zeta(u)=1$, then $d_{1} \delta(u)=0$.

Proof. Consider an arbitrary relator $\boldsymbol{r}_{i} \in \mathbf{r}$.

$$
\delta\left(r_{i}\right)=\sum_{j} \varphi \zeta\left(\frac{\partial r_{i}}{\partial x_{j}}\right) b_{j}=\sum_{j} m_{i j} b_{j}=d_{2}\left(c_{i}\right) .
$$

Thus, $d_{1} \delta\left(r_{i}\right)=d_{1} d_{2}\left(c_{i}\right)=0$. Next, consider a conjugate $u r_{i} u^{-1}$, where $u \in F$. It is a consequence of the preceding, as well as of (1) and (2.1), that

$$
\begin{aligned}
\delta\left(u r_{i} u^{-1}\right) & =\delta(u)+\varphi \zeta(u) \delta\left(r_{i}\right)-\varphi \zeta\left(u r_{i} u^{-1}\right) \delta(u) \\
& =\delta(u)+\varphi \zeta(u) \delta\left(r_{i}\right)-\delta(u) \\
& =\varphi \zeta(u) \delta\left(r_{i}\right) .
\end{aligned}
$$

Hence, $d_{1} \delta\left(u r_{i} u^{-1}\right)=\varphi \zeta(u) d_{1} \delta\left(r_{i}\right)=0$. Finally, it is clear that any product of elements $u r_{i} u^{-1}$ and their inverses will also be mapped onto 0 by $d_{1} \delta$. This completes the proof.

Suppose that $\zeta\left(u_{1}\right)=\zeta\left(u_{2}\right)$. Then $\zeta\left(u_{1} u_{2}{ }^{-1}\right)=1$. From (3.2) and the fact that $d_{1} \delta$ is a crossed homomorphism, we obtain

$$
\begin{aligned}
0=d_{1} \delta\left(u_{1} u_{2}^{-1}\right) & =d_{1} \delta\left(u_{1}\right)-\varphi \zeta\left(u_{1} u_{2}^{-1}\right) d_{1} \delta\left(u_{2}\right) \\
& =d_{1} \delta\left(u_{1}\right)-d_{1} \delta\left(u_{2}\right) .
\end{aligned}
$$

Thus, $d_{1} \delta\left(u_{1}\right)=d_{1} \delta\left(u_{2}\right)$. We conclude that a mapping $\partial: G \rightarrow A_{0}$ is well-defined by the equation

$$
\partial \zeta(u)=d_{1} \delta(u) \quad \text { for every } \quad u \in F .
$$

(3.3) ∂ is a crossed homomorphism.

Proof. Consider $g_{1}, g_{2} \in G$, and choose $u_{1}, u_{2} \in F$ such that $\zeta\left(u_{1}\right)=$ g_{1} and $\zeta\left(u_{2}\right)=g_{2}$. By the definition of ∂ and the fact that $d_{1} \delta$ is a crossed homomorphism, we have

$$
\begin{aligned}
\partial\left(g_{1} g_{2}\right) & =\partial \zeta\left(u_{1} u_{2}\right)=d_{1} \delta\left(u_{1} u_{2}\right) \\
& =d_{1} \delta\left(u_{1}\right)+\varphi \zeta\left(u_{1}\right) d_{1} \delta\left(u_{2}\right) \\
& =\partial \zeta\left(u_{1}\right)+\varphi \zeta\left(u_{1}\right) \partial \zeta\left(u_{2}\right) \\
& =\partial\left(g_{1}\right)+\varphi\left(g_{1}\right) \partial\left(g_{2}\right) .
\end{aligned}
$$

Thus, we have constructed the following consistent diagram in which the bottom row is the exact sequence (4) and in which the vertical mappings are crossed homomorphisms:

$$
\begin{array}{cc}
F \xrightarrow{\xi} G \tag{5}\\
\downarrow^{\delta} \quad \downarrow^{\circ} \\
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} A_{0} \longrightarrow 0
\end{array} \quad d_{1}\left(b_{j}\right)=\partial \zeta\left(x_{j}\right)
$$

(3.4) The module A_{0} is the derived module A_{\odot}, and ∂ is the accompanying crossed homomorphism.

Proof. Let A be an arbitrary left H module and $\partial^{\prime}: G \rightarrow A$ a crossed homomorphism. We define the H morphism $\rho: X_{1} \rightarrow A$ by setting $\rho\left(b_{j}\right)=\partial^{\prime} \zeta\left(x_{j}\right)$. The kernel of d_{1} is generated by the elements $d_{2}\left(c_{i}\right)$.

Thus, to show that $\operatorname{kernel}\left(d_{1}\right) \subset \operatorname{kernel}(\rho)$, it suffices to prove that $\rho d_{2}\left(c_{i}\right)=0$. To begin with, we have

$$
\rho d_{2}\left(c_{i}\right)=\rho\left(\sum_{j} m_{i j} b_{j}\right)=\sum_{j} m_{i j} \dot{\partial}^{\prime} \zeta\left(x_{j}\right) .
$$

The H module A is also a left G module relative to the homomorphism $\varphi: G \rightarrow H$. Hence, by (2.5), there exists a G morphism μ such that $\mu \kappa=\partial^{\prime}$. Recalling the definition of the action of $Z(G)$ on A, we obtain

$$
\begin{aligned}
\rho d_{\mathbf{2}}\left(c_{i}\right) & =\sum_{j} m_{i j} \mu \kappa \zeta\left(x_{j}\right)=\sum_{j} \varphi \zeta\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \mu\left(\zeta\left(x_{j}\right)-1\right) \\
& =\mu\left(\sum_{j} \zeta\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\left(\zeta\left(x_{j}\right)-1\right)\right) \\
& =\mu \zeta\left(\sum_{j} \frac{\partial r_{i}}{\partial x_{j}}\left(x_{j}-1\right)\right)
\end{aligned}
$$

According to the fundamental formula of the free differential calculus [4, p. 100],

$$
r_{i}-1=\sum_{j} \frac{\partial r_{i}}{\partial x_{j}}\left(x_{j}-1\right) .
$$

Hence,

$$
\rho d_{2}\left(c_{i}\right)=\mu \zeta\left(r_{i}-1\right)=\mu(0)=0,
$$

and it follows that $\operatorname{kernel}\left(d_{1}\right) \subset \operatorname{kernel}(\rho)$. This implies that there exist an H morphism $\lambda: A_{0} \rightarrow A$ such that $\lambda d_{1}=\rho$. In order to verify that $\partial^{\prime}=\lambda \partial$, it is sufficient to check the equation on the generators $\zeta\left(x_{j}\right)$. We obtain

$$
\lambda \partial \zeta\left(x_{j}\right)=\lambda d_{1}\left(b_{j}\right)=\rho\left(b_{j}\right)=\partial^{\prime} \zeta\left(x_{j}\right) .
$$

Finally, the uniqueness of λ follows from the fact that, since A_{0} is generated by the elements $d_{1}\left(b_{j}\right)=\partial \zeta\left(x_{j}\right)$, it is generated by image (∂). This completes the proof.

It is a direct consequence of Theorem (3.4) that the Jacobian matrix at φ of the group presentation (2) is a relation matrix for the derived $A_{\varphi}=A_{0}$.

An an application of these ideas, let us take for φ the identity homomorphism $1_{G}: G \rightarrow G$. In this case, as noted at the end of the preceding section, the augmentation ideal $I(G)$ is the derived module, and the
accompanying crossed homomorphism is the mapping $\kappa: G \rightarrow I(G)$ defined by $\kappa(g)=g-1$. Hence, the sequence (4) becomes the exact sequence of G morphisms

$$
\begin{equation*}
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} I(G) \longrightarrow 0, \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{2}\left(c_{i}\right)=\sum_{j} \zeta\left(\frac{\partial r_{i}}{\partial x_{j}}\right) b_{j} \\
& d_{1}\left(b_{j}\right)=\zeta\left(x_{j}\right)-1 .
\end{aligned}
$$

The final morphism $I(G) \rightarrow 0$ in (6) may be replaced by the sequence $Z(G) \xrightarrow{\leftrightarrows} Z \rightarrow 0$, where ϵ is the augmentation mapping. The result is the exact sequence

$$
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} Z(G) \xrightarrow{\epsilon} Z \longrightarrow 0,
$$

which is an extremely useful free (and hence projective) G resolution of Z. Alternatively, we may consider the homomorphism φ again and form the tensor product of (6) with $Z(H) \otimes_{G}$ on the left. The exact sequence thus obtained is equivalent to (4), and it follows that

$$
A_{\varphi}=Z(H) \otimes_{G} I(G) .
$$

Actually, this result together with the fact that $\partial(g)=1 \otimes(g-1)$, for all $g \in G$, is more easily proved directly from the universal definition of A_{φ}. The tensor product form of the derived module has been studied in both Refs. [2] and [9].

4. The Module Sequence

Consider an arbitrary short exact sequence of homomorphisms of multiplicative groups

$$
\begin{equation*}
1 \longrightarrow K \xrightarrow{\theta} G \xrightarrow{\Phi} H \longrightarrow 1 . \tag{7}
\end{equation*}
$$

In this scction we shall construct from (7) an exact sequence of morphisms of left H modules

$$
\begin{equation*}
0 \longrightarrow B \xrightarrow{\theta_{*}} A_{\varphi} \xrightarrow{\varphi_{*}} I(H) \longrightarrow 0 \tag{8}
\end{equation*}
$$

called the module sequence of (7). The middle term A_{Φ} is the derived
module of φ, and $I(H)$ is the augmentation ideal of H. This sequence is equivalent to the one described in Ref. [2] and in Ref. [10, p. 120]. The principal application of this construction in knot theory occurs where $G=\pi_{1}\left(S^{3}-L\right)$ is the group of a link, K is the commutator subgroup of G, and H is the commutator quotient group. In this case (8) is the link module sequence studied in Refs. [3] and [5], and A_{φ} is the Alexander module.

The unique extension of $\varphi: G \rightarrow H$ to a ring homomorphism of the respective integral group rings has been denoted also by φ. Where both augmentation mappings are denoted by ϵ, it is clear that the following diagram is consistent:

Hence $\varphi(I(G)) \subset I(H)$, and we use the letter φ again for the obvious mapping $\varphi: I(G) \rightarrow I(H)$. We proved in (2.5) that the mapping $\kappa: G \rightarrow I(G)$ defined by $\kappa(g)=g-1$, for all $g \in G$, is a crossed homomorphism. It follows immediately that the composition $\varphi \kappa$ is also a crossed homomorphism. By the universal property of the derived module, there exists a unique H morphism $\varphi_{*}: A_{\varphi} \rightarrow I(H)$ such that $\varphi_{*} \partial=\varphi \kappa$. Thus, the following diagram is consistent:

(4.1) φ_{*} is an epimorphism.

Proof. Consider an arbitrary element $u \in I(H)$. As a result of (2.4) we can write

$$
u=\sum_{h \in H} n_{h}(h-1), \quad n_{h} \in Z,
$$

with $n_{h}=0$ except for at most a finite number of elements $h \in H$. Since $\varphi: G \rightarrow H$ is surjective, there exists a mapping $r: H \rightarrow G$ such that $\varphi r=1_{H}$ (identity). Let

$$
v=\sum_{n \in H} n_{h} \partial r(h) .
$$

Then

$$
\begin{aligned}
\varphi_{*}(v) & =\sum_{h \in H} n_{h} \varphi_{*} \partial r(h)=\sum_{h \in H} n_{l} \varphi(r(h)-1) \\
& =\sum_{h \in H} n_{h}(h-1)=u .
\end{aligned}
$$

This completes the proof.
The module B will be defined by first considering its structure as an additive Abelian group. Let K^{\prime} be the commutator subgroup of K. The group B is then simply the quotient group K / K^{\prime} written additively. Let $\alpha: K \rightarrow B$ be the canonical Abelianizing homomorphism. Then
(4.2) There exists a unique group homomorphism $\theta_{*}: B \rightarrow A_{\Phi}$ such that $\theta_{*} \alpha=\partial \theta$, i.e., such that the following diagram is consistent:

Proof. Consider arbitrary elements $k_{1}, k_{2} \in K$. Then

$$
\begin{aligned}
\partial \theta\left(k_{1} k_{2}\right) & \left.=\partial \theta \theta\left(k_{1}\right) \theta\left(k_{2}\right)\right)=\partial \theta\left(k_{1}\right)+\varphi \theta\left(k_{1}\right) \partial \theta\left(k_{2}\right) \\
& =\partial \theta\left(k_{1}\right)+\partial \theta\left(k_{2}\right) .
\end{aligned}
$$

Thus, the composition $\partial \theta: K \rightarrow A_{\varphi}$ is a group homomorphism (multi-plicative-to-additive). To complete the proof, one must therefore show that $\partial \theta\left(K^{\prime}\right)=0$. Since K^{\prime} is generated by the set of all commutators of elements of K, it suffices to show that $\partial \theta\left(\left[k_{1}, k_{2}\right]\right)=0$, for any $k_{1}, k_{2} \in K$. Since $\partial \theta$ is a homomorphism, we obtain

$$
\begin{aligned}
\partial \theta\left(\left[k_{1}, k_{2}\right]\right) & =\partial \theta\left(k_{1} k_{2} k_{1}^{-1} k_{2}^{-1}\right) \\
& =\partial \theta\left(k_{1}\right)+\partial \theta\left(k_{2}\right)-\partial \theta\left(k_{1}\right)-\partial \theta\left(k_{2}\right)=0 .
\end{aligned}
$$

To define the module structure on B, it is sufficient to describe the action of H. Specifically, let $f^{\prime}: G \rightarrow \operatorname{aut}(K)$ be the homomorphism defined by

$$
\theta\left(f^{\prime}(g)(k)\right)-g \theta(k) g^{-1}
$$

for all $g \in G$ and $k \in K$. The Abelianizing mapping α induces a homo-
$\operatorname{morphism} \Phi: \operatorname{aut}(K) \rightarrow \operatorname{aut}(B)$ in a natural way: For every $\xi \in \operatorname{aut}(K)$, there exists a unique $\Phi(\xi) \in \operatorname{aut}(B)$ such that the diagram

is consistent. It is straightforward to check that $\Phi f^{\prime} \theta(K)=1_{B}$ (identity). As a result, there exists a unique homomorphism f such that the following diagram is consistent:

Thus, B is a left H module with the action of H defined by $h b=f(h)(b)$ for all $h \in H$ and $b \in B$. To compute $h b$, choose $g \in G$ and $k \in K$ such that $\varphi(g)=h$ and $\alpha(k)=b$. Then

$$
g \theta(k) g^{-1}=\theta\left(k_{1}\right)
$$

for some $k_{1} \in K$, and

$$
h b=\alpha\left(k_{1}\right) .
$$

(4.3) The mapping $\theta_{*}: B \rightarrow A_{\sigma}$ is an H morphism.

Proof. Using the preceding two equations and the definition of θ_{*}, we have

$$
\theta_{*}(h b)=\theta_{*} \alpha\left(k_{1}\right)=\partial \theta\left(k_{1}\right)=\partial\left(g \theta(k) g^{-1}\right) .
$$

From Eq. (1) and also (2.1), we obtain

$$
\begin{aligned}
\partial\left(g \theta(k) g^{-1}\right) & =\partial(g)+\varphi(g) \partial \theta(k)-\varphi\left(g \theta(k) g^{-1}\right) \partial(g) \\
& =\partial(g)+\varphi(g) \partial \theta(k)-\partial(g) \\
& =\varphi(g) \partial \theta(k)=h \theta_{*} \alpha(k)=h \theta_{*}(b) .
\end{aligned}
$$

Hence, $\theta_{*}(h b)=h \theta_{*}(b)$, and the proof is complete.
The module sequence (8) has now been constructed. It remains,
of course, to prove that it is exact. We have shown that φ_{*} is an epimorphism. Moreover,
(4.4) $\varphi_{*} \theta_{*}=0$.

Proof. Consider an arbitrary element $b \in B$, and choose $k \in K$ such that $\alpha(k)=b$. Then

$$
\begin{aligned}
\varphi_{*} \theta_{*}(b) & =\varphi_{*} \theta_{*} \alpha(k)=\varphi_{*} \partial \theta(k) \\
& =\varphi \kappa \theta(k)=\varphi(\theta(k)-1)=0 .
\end{aligned}
$$

The rest of the proof of exactness is motivated by the outline in Ref. [10, p. 120]. As in the proof of (4.1), consider a mapping $r: H \rightarrow G$ such that $\varphi r=1_{H}$. In addition, we define $r(1)=1$. A convenient notation, which we shall adopt, is to write $r(h)=[h]$ for every $h \in H$. Observe that

$$
\varphi\left([h] g[h \varphi(g)]^{-1}\right)=h \varphi(g)(h \varphi(g))^{-1}=1,
$$

for all $h \in H$ and $g \in G$. Hence, since the original sequence (7) of group homomorphisms is exact, there exists in K an element, which we denote by $h \times g$, uniquely determined by the equation

$$
\theta(h \times g)=[h] g[h \varphi(g)]^{-1} .
$$

A useful lemma is

$$
\begin{equation*}
h \times g_{1} g_{2}=\left(h \times g_{1}\right)\left(h \varphi\left(g_{1}\right) \times g_{2}\right) . \tag{4.5}
\end{equation*}
$$

Proof. It suffices to show that both sides of the equation have the same image under the monomorphism θ,

$$
\begin{aligned}
\theta\left(\left(h \times g_{1}\right)\left(h \varphi\left(g_{1}\right) \times g_{2}\right)\right) & =[h] g_{1}\left[h \varphi\left(g_{1}\right)\right]^{-1}\left[h \varphi\left(g_{1}\right)\right] g_{2}\left[h \varphi\left(g_{1}\right) \varphi\left(g_{2}\right)\right]^{-1} \\
& =[h] g_{1} g_{2}\left[h \varphi\left(g_{1} g_{2}\right)\right]^{-1}=\theta\left(h \times g_{1} g_{2}\right) .
\end{aligned}
$$

We next recall the construction in (2.2) of the derived module A_{Φ} as the quotient of the free H module X with basis $i(G)$, in which the crossed homomorphism ∂ is the composition of the mappings

$$
G \xrightarrow{i} X \xrightarrow{\nu} A_{\varphi} .
$$

As an additive Abelian group, X is free with a basis equal to the set of all elements $h i(g)$ such that $h \in H$ and $g \in G$. Hence, where $\alpha: K \rightarrow B$
is the Abelianizing homomorphism, we may define the Z morphism $\tau: X \rightarrow B$ by setting

$$
\tau(h i(g))=\alpha(h \times g) .
$$

(4.6) There exists a unique Z morphism $\eta: A_{\infty} \rightarrow B$ such that $\eta \gamma=\tau$.

Proof. The kernel of γ, regarded as a Z module, is generated by all elements

$$
h i\left(g_{1} g_{2}\right)-h i\left(g_{1}\right)-h \varphi\left(g_{1}\right) i\left(g_{2}\right)
$$

for any $h \in H$ and $g_{1}, g_{2} \in G$. Hence, it suffices to show that

$$
\tau\left(h i\left(g_{1} g_{2}\right)\right)=\tau\left(h i\left(g_{1}\right)\right)+\tau\left(h \varphi\left(g_{1}\right) i\left(g_{2}\right)\right) .
$$

Using (4.5), the definition of τ, and recalling the multiplicative-toadditive property of α, we obtain

$$
\begin{aligned}
\tau\left(h i\left(g_{1} g_{2}\right)\right) & =\alpha\left(h \times g_{1} g_{2}\right)=\alpha\left(h \times g_{1}\right)+\alpha\left(h \varphi\left(g_{1}\right) \times g_{2}\right) \\
& =\tau\left(h i\left(g_{1}\right)\right)+\tau\left(h \varphi\left(g_{1}\right) i\left(g_{2}\right)\right) .
\end{aligned}
$$

(4.7) θ_{*} is a monomorphism, since $\eta \theta_{*}=1_{B}$.

Proof. Consider an arbitrary $b \in B$ and element $k \in K$ such that $\alpha(k)=b$. Then

$$
\begin{aligned}
\eta \theta_{*}(b) & =\eta \theta_{*} \alpha(k)=\eta \partial \theta(k)=\eta \gamma i \theta(k) \\
& =\tau i \theta(k)=\alpha(1 \times \theta(k)) .
\end{aligned}
$$

Since $[1]=1$, the defining equation of $1 \times \theta(k)$ yields

$$
\begin{aligned}
\theta(1 \times \theta(k)) & =[1] \theta(k)[1 \varphi \theta(k)]^{-1} \\
& =[1] \theta(k)[1]^{-1}=\theta(k) .
\end{aligned}
$$

Hence, $1 \times \theta(k)=k$, and so

$$
\eta \theta_{*}(b)=\alpha(k)=b .
$$

It follows from (2.4) that the ideal $I(H)$ is a free Z module which has the set $\{h-1 \mid h \in H$ and $h \neq 1\}$ as a basis. Hence, a Z morphism $\sigma: I(H) \rightarrow A_{\varphi}$ is defined by setting

$$
\sigma(h-1)=\partial([h]) \quad \text { for every } \quad h \in H-\{1\} .
$$

Notice that this equation also holds if $h=1$, since $[1]=1$ and $\partial(1)=0$. The final lemma in the proof of exactness is the identity
(4.8) $1_{A_{\varphi}}=\theta_{*} \eta+\sigma \varphi_{*}$.

Proof. It is a consequence of (2.3) that, as a Z module, the derived module A_{m} is generated by the set of all elements $h \partial(g)$, where $h \in H$ and $g \in G$. It suffices therefore to verify the identity on these generators. We have

$$
\begin{aligned}
\theta_{*} \eta(h \partial(g)) & =\theta_{*} \eta(h \gamma i(g))=\theta_{\star} \eta \gamma(h i(g)) \\
& =\theta_{*} \tau(h i(g))=\theta_{*} \alpha(h \times g) \\
& =\partial \theta(h \times g)=\partial\left([h] g[h \varphi(g)]^{-1}\right) \\
& =\partial([h])+h \partial(g)-\partial([h \varphi(g)]) \\
& =h \partial(g)+\sigma(h-1)-\sigma(h \varphi(g)-1)
\end{aligned}
$$

However,

$$
\begin{aligned}
\sigma \varphi_{*}(h \partial(g)) & =\sigma\left(h \varphi_{*} \partial(g)\right)=\sigma(h \varphi \kappa(g)) \\
& =\sigma(h(\varphi(g)-1)) .
\end{aligned}
$$

Since $h(\varphi(g)-1)=(h \varphi(g)-1)-(h-1)$, we get

$$
\sigma \varphi_{*}(h \partial(g))=\sigma(h \varphi(g)-1)-\sigma(h-1)
$$

Combining the results, we conclude that

$$
\theta_{*} \eta(h \partial(g))=h \partial(g)-\sigma \varphi_{*}(h \partial(g))
$$

or equivalently,

$$
h \partial(g)=\theta_{*} \eta(h \partial(g))+\sigma \varphi_{*}(h \partial(g)) .
$$

This completes the proof.
The exactness of the module sequence (8) is now established. The only detail not yet proved explicitly is the inequality

$$
\operatorname{kernel}\left(\varphi_{*}\right) \subset \operatorname{image}\left(\theta_{*}\right),
$$

and this is a direct corollary of (4.8).
It is easy to prove in addition that $\varphi_{*} \sigma=1_{I(H)}$ and that $\eta \sigma=0$,
since both equations arc radily seen to hold for the generators $h-1$ of $I(H)$. Thus, we have

$$
\begin{gathered}
\varphi_{*} \theta_{*}=0, \quad \eta \theta_{*}=1_{B}, \\
\eta \sigma=0, \quad \varphi_{*} \sigma=1_{I(H)}, \\
1_{A_{\varphi}}=\theta_{*} \eta+\sigma \varphi_{*} .
\end{gathered}
$$

It follows, see Ref. [12, p. 11], that these mappings constitute a complete representation, as Z modules, of A_{\hookleftarrow} as the direct sum of B and $I(H)$. However, it is essential to realize that the exact $Z(H)$ module sequence

$$
0 \longrightarrow B \xrightarrow{\theta_{*}} A_{\varphi} \xrightarrow{\varphi_{*}} I(H) \longrightarrow 0
$$

is generally not split exact. For example, it is shown in Ref. [3] that if this sequence is the link module sequence of an m-component link L, then it splits if and only if either $m=1$ or $m=2$ and the linking number of the two components is ± 1.

5. Covering Spaces

We shall now show that the module sequence developed in the last section is part of the homology sequence of a pair (X, F) consisting of a covering space and its fiber. This fact provides the basic geometric interpretation of the sequence. Moreover, in this context formula (1) for the crossed homomorphism into the derived module appears as an application of the path-lifting property of covering spaces to a product of elements of the fundamental group of the base space. Consider the short exact sequence of group homomorphisms

$$
1 \longrightarrow K \xrightarrow{\theta} G \xrightarrow{\oplus} H \longrightarrow 1 .
$$

The corresponding exact sequence of morphisms of left H modules may be written as in (8), or equivalently, as

$$
\begin{equation*}
0 \longrightarrow B \xrightarrow{\theta_{*}} A_{\Phi} \xrightarrow{\varphi_{*}} Z(H) \xrightarrow{\epsilon} Z \longrightarrow 0 . \tag{9}
\end{equation*}
$$

It is this longer form which we consider here.

- Let X be a connected and locally pathwise connected (lpc) covering
space relative to a covering map $p: X \rightarrow B$, and suppose that there exist points $b_{0} \in B$ and $x_{0} \in p^{-1}\left(b_{0}\right)$ such that

$$
\begin{aligned}
& G=\pi_{1}\left(B, b_{0}\right), \\
& K=\pi_{1}\left(X, x_{0}\right),
\end{aligned}
$$

and $\theta: K \rightarrow G$ is the monomorphism induced by p. We denote the fiber over b_{0} by F, i.e., $F=p^{-1}\left(b_{0}\right)$. There is a well-known right action of G on F (the definition of which is reviewed in the proof of (5.2) below). The result of the action of a group element g on a point x of the fiber will be denoted by $x g$, and we have the characteristic properties

$$
\left.\begin{array}{c}
x 1=x, \\
x\left(g_{1} g_{2}\right)=\left(x g_{1}\right) g_{2},
\end{array}\right\} \quad \text { for all } \quad x \in F \quad \text { and } \quad g_{1}, g_{2} \in G .
$$

The group H is canonically isomorphic to the group T of covering translations. It is convenient in this section to assume that $H=T$ and that $\varphi: G \rightarrow H$ is the epimorphism defined by the equation

$$
\varphi(g)\left(x_{0}\right)=x_{0} g \quad \text { for all } \quad g \in G .
$$

Using singular homology with integer coefficients, consider the following part of the homology sequence of the pair ($X, F)$:

$$
H_{1}(F) \rightarrow H_{1}(X) \rightarrow H_{1}(X, F) \rightarrow H_{0}(F) \rightarrow H_{0}(X) \rightarrow H_{0}(X, F) .
$$

Since X is connected and lpc, it is also pathwise connected. The fiber F is nonempty and we therefore conclude that $H_{0}(X, F)=0$. From the well-known fact that F is a discrete subset of X it follows that $H_{1}(F)=0$. Thus, we obtain the exact homology sequence

$$
\begin{equation*}
0 \longrightarrow H_{1}(X) \xrightarrow{j_{*}} H_{1}(X, F) \xrightarrow{\beta} H_{0}(F) \xrightarrow{i_{*}} H_{0}(X) \longrightarrow 0 . \tag{10}
\end{equation*}
$$

The connecting homomorphism has been denoted by β because the commonly used symbol ∂ is reserved for crossed homomorphisms in this paper.

Each element $h \in H$ is a homeomorphism $h: X \rightarrow X$ such that $p h=p$. Since $h(F)=F$, there are induced homeomorphisms $h: F \rightarrow F$ and
$h:(X, F) \rightarrow(X, F)$. From the Eilenberg-Steenrod axioms we obtain the consistent diagram

Let A be any one of the homology groups in the sequence (10). There exists a mapping $H \rightarrow \operatorname{aut}(A)$ defined by $h \rightarrow h_{*}$. Since $\left(h_{1} h_{2}\right)_{*}=$ $h_{1} * h_{2 *}$ for all $h_{1}, h_{2} \in H$, this mapping is a homomorphism. Hence, A is a left H module with the action of H defined by

$$
h a=h_{*}(a) \quad \text { for all } h \in H \quad \text { and } a \in A .
$$

With this definition of the module structure, the fact that the diagram (11) is consistent is equivalent to the statement that the additive group homomorphisms represented by the horizontal arrows are H morphisms. Thus, we have shown that
(5.1) The homology sequence (10) is an exact sequence of morphisms of left H modules.

The remainder of the section is devoted to the construction of an isomorphism ψ from the module sequence (9) onto the homology sequence (10). We shall adopt the notation of systematically denoting the homology class containing a give cycle c by [c]. We also propose to work from right to left, thus disposing of the simpler and less interesting end of the sequences first.

Let the infinite cyclic group $H_{0}(X)$ be generated by the homology class $\left[x_{0}\right]$ containing the point x_{0}. For every $h \in H$, we have $h\left(x_{0}\right) \sim x_{0}$, and so the induced isomorphism $h_{*}: H_{0}(X) \rightarrow H_{0}(X)$ is the identity. Thus, $H_{0}(X)$ is a trivial H module, and there exists an isomorphism $\psi_{0}: Z \rightarrow H_{0}(X)$ with $\psi_{0}(1)=\left[x_{0}\right]$.

The group $H_{0}(F)$ is the direct sum $\oplus_{x \in F} H_{0}(x)$, in which each group $H_{0}(x)$ is infinite cyclic and generated by [x]. There exists a one-one correspondence $H \rightarrow F$ defined by $h \rightarrow h\left(x_{0}\right)$. Hence, there exists a Z isomorphism $\psi_{1}: Z(H) \rightarrow H_{0}(F)$ defined by $\psi_{1}(h)=\left[h\left(x_{0}\right)\right]$ for every $h \in H$. Since

$$
\begin{aligned}
\psi_{1}\left(h_{1} h_{2}\right) & =\left[h_{1} h_{2}\left(x_{0}\right)\right]=h_{1^{*}}\left(\left[h_{2}\left(x_{0}\right)\right]\right) \\
& =h_{1} \psi_{1}\left(h_{2}\right),
\end{aligned}
$$

it follows that ψ_{1} is an H isomorphism. The morphism $i_{*}: H_{0}(F) \rightarrow H_{0}(X)$ maps each class $[x]$ onto $\left[x_{0}\right]$, and we therefore obtain the consistent diagram of H morphisms

The mapping $\partial^{\prime}: G \rightarrow H_{1}(X, F)$ is defined as follows: Let $g \in G$ be an arbitrary element and select a representative b_{0}-based loop $a \in g$. By the path-lifting property of covering spaces, there exists a unique path $a^{\prime}: I \rightarrow X$ such that $p a^{\prime}=a$ and $a^{\prime}(0)=x_{0}$. Obviously a^{\prime} is a relative 1-cycle, and its homology class in $H_{1}(X, F)$ is denoted by [a^{\prime}]. We define

$$
\begin{equation*}
\partial^{\prime}(g)=\left[a^{\prime}\right] . \tag{12}
\end{equation*}
$$

Since covering spaces have the covering homotopy property, it follows at once that the mapping $\partial^{\prime}: G \rightarrow H_{1}(X, F)$ is well-defined by (12).
(5.2) ∂^{\prime} is a crossed homomorphism.

Proof. Consider arbitrary elements $g_{1}, g_{2} \in G$ and representative b_{0}-based loops $a_{1} \in g_{1}$ and $a_{2} \in g_{2}$. Let $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}: I \rightarrow X$ be the unique paths such that $p a_{i}{ }^{\prime}=a_{i}$ and $a_{i}{ }^{\prime}(0)=x_{0}$ for $i=1$ and 2. The definition of the right action of the group G on the fiber F yields

$$
x_{0} g_{1}=a_{1}^{\prime}(1) .
$$

The covering translation $\varphi\left(g_{1}\right)$ is defined by the equation $\varphi\left(g_{1}\right)\left(x_{0}\right)=$ $x_{0} g_{1}$, and so we have $\varphi\left(g_{1}\right)\left(x_{0}\right)=a_{1}{ }^{\prime}(1)$. Thus, the composition $\varphi\left(g_{1}\right) a_{2}{ }^{\prime}$ is a path which covers a_{2} and has initial point

$$
\varphi\left(g_{1}\right) a_{2}^{\prime}(0)=\varphi\left(g_{1}\right)\left(x_{0}\right)=a_{1}^{\prime}(1) .
$$

Hence, the product path $a_{1}{ }^{\prime}\left(\varphi\left(g_{1}\right) a_{2}{ }^{\prime}\right)$ is defined. It covers the product $a_{1} a_{2}$ and has initial point x_{0}. It therefore follows from the definition of ∂^{\prime} in (12) that $\partial^{\prime}\left(g_{1} g_{2}\right)=\left[a_{1}{ }^{\prime}\left(\varphi\left(g_{1}\right) a_{2}{ }^{\prime}\right)\right]$. Since the product of two paths is homologous to their sum, we obtain

$$
\partial^{\prime}\left(g_{1} g_{2}\right)=\left[a_{1}^{\prime}\left(\varphi\left(g_{1}\right) a_{2}^{\prime}\right)\right]=\left[a_{1}^{\prime}\right]+\left[\varphi\left(g_{1}\right) a_{2}^{\prime}\right] .
$$

The definition of the action of H on the homology groups then implies that

$$
\begin{aligned}
\partial^{\prime}\left(g_{1} g_{2}\right) & =\left[a_{1}{ }^{\prime}\right]+\varphi\left(g_{1}\right)\left[a_{2}{ }^{\prime}\right] \\
& =\partial^{\prime}\left(g_{1}\right)+\varphi\left(g_{1}\right) \partial^{\prime}\left(g_{2}\right),
\end{aligned}
$$

and the proof is complete.
It is a corollary of (5.2) and the universal property of the derived module A_{φ} that there exists a unique H morphism $\psi_{2}: A_{\varphi} \rightarrow H_{1}(X, F)$ such that the following diagram is consistent:

(5.3) $\quad \psi_{1} \varphi_{*}=\beta \psi_{2}$.

Proof. The derived module A_{φ} is generated by the set of all elements $\partial(g)$ such that $g \in G$, see (2.2). Hence, it suffices to verify the above equation on an arbitrary such generator. Recalling the fact that $\varphi_{*} \partial=$ $\varphi \kappa$, as indicated in the mapping diagram which precedes (4.1), we have

$$
\begin{aligned}
\psi_{1} \varphi_{*} \partial(g) & =\psi_{1} \varphi \kappa(g)=\psi_{1}(\varphi(g)-1) \\
& =\psi_{1}(\varphi(g))-\psi_{1}(1) \\
& =\left[\varphi(g)\left(x_{0}\right)\right]-\left[x_{0}\right]=\left[x_{0} g\right]-\left[x_{0}\right] .
\end{aligned}
$$

Choose a representative loop $a \in g$, and let $a^{\prime}: I \rightarrow X$ be the unique path such that $p a^{\prime}=a$ and $a^{\prime}(0)=x_{0}$. Then $a^{\prime}(1)=x_{0} g$, and a^{\prime} is a relative 1 -cycle. Using the crossed homomorphism ∂^{\prime} and the definition of the connecting homomorphism β, we obtain

$$
\beta \psi_{2} \partial(g)=\beta \partial^{\prime}(g)=\beta\left(\left[a^{\prime}\right]\right)=\left[x_{0} g\right]-\left[x_{0}\right] .
$$

Thus, $\psi_{1} \varphi_{*} \partial(g)=\beta \psi_{2} \partial(g)$, and the proof is complete.
Since X is pathwise connected, there exists a (multiplicative-toadditive) group epimorphism

$$
\alpha^{\prime}: K=\pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)
$$

with $\operatorname{kernel}\left(\alpha^{\prime}\right)=K^{\prime}$ and defincd, for any $k \in K$, by

$$
\alpha^{\prime}(k)=[c],
$$

where $[c]$ is the homology class of any representative loop $c \in k$. Since $\alpha: K \rightarrow B$ has been defined to be the canonical Abelianizing epimorphism, it follows that there exists a unique group isomorphism ψ_{3} : $B \rightarrow H_{1}(X)$ such that $\psi_{3} \alpha=\alpha^{\prime}$.
(5.4) ψ_{3} is an H isomorphism.

Proof. Consider arbitrary elements $h \in H$ and $b \in B$, and choose $g \in G$ and $k \in K$ such that $\varphi(g)=h$ and $\alpha(k)=b$. Referring to the two equations preceding (4.3), we have $g \theta(k) g^{-1}=\theta\left(k_{1}\right)$ for some $k_{1} \in K$, and $h b=a\left(k_{1}\right)$. Hence,

$$
\begin{aligned}
& \psi_{3}(h b)=\psi_{3} \alpha\left(k_{1}\right)=\alpha^{\prime}\left(k_{1}\right) \\
& h \psi_{3}(b)=h \psi_{3} \alpha(k)=h \alpha^{\prime}(k)=h_{*}\left(\alpha^{\prime}(k)\right) .
\end{aligned}
$$

Let $c \in k$ be an x_{0}-based representative loop, and let a be a b_{0}-based representative loop such that $a \in g$. Denote by $a^{\prime}: I \rightarrow X$ the unique path such that $p a^{\prime}=a$ and $a^{\prime}(0)=x_{0}$. Then

$$
h\left(x_{0}\right)=\varphi(g)\left(x_{0}\right)=x_{0} g=a^{\prime}(1) .
$$

Thus, the product $a^{\prime}(h c)\left(a^{\prime}\right)^{-1}$ is defined and is an x_{0}-based loop. It represents the group element k_{1} since $\theta=p_{*}$ and

$$
\begin{aligned}
p\left(a^{\prime}(h c)\left(a^{\prime}\right)^{-1}\right) & =a(p h c) a^{-1} \\
& =a(p c) a^{-1} \in g \theta(k) g^{-1}
\end{aligned}
$$

The loop $a^{\prime}(h c)\left(a^{\prime}\right)^{-1}$ is homologous to $h c$. Hence,

$$
\psi_{3}(h b)=\alpha^{\prime}\left(k_{1}\right)=[h c] .
$$

Since c represents k, we have $\alpha^{\prime}(k)=[c]$ and

$$
h \psi_{3}(b)=h_{*}\left(\alpha^{\prime}(k)\right)=h_{*}([c])=[h c] .
$$

We conclude that $\psi_{3}(h b)=h \psi_{3}(b)$.

The layout of the mappings under present consideration is shown in the following diagram:

(5.5) $\psi_{2} \theta_{*}=j_{*} \psi_{3}$.

Proof. Consider an arbitrary element $b \in B$, and select $k \in K$ such that $\alpha(k)=b$. Then

$$
\psi_{2} \theta_{*}(b)=\psi_{2} \theta_{*} \alpha(k)=\psi_{2} \partial \theta(k)=\partial^{\prime} \theta(k)
$$

and

$$
j_{*} \psi_{3}(b)=j_{*} \psi_{3} \alpha(k)=j_{*} \alpha^{\prime}(k) .
$$

Let $c \in k$ be a representative x_{0}-based loop in the covering space X. The composition $p c$ is a b_{0}-based loop which represents the group element $p_{*}(k)=\theta(k)$. It follows from the definition of ∂^{\prime} given in (12) that

$$
\partial^{\prime} \theta(k)=[c],
$$

where [c] is the homology class of c in $H_{1}(X, F)$. According to the definition of α^{\prime}, we have $\alpha^{\prime}(k)=[c]$, where this time $[c]$ is the homology class of c in $H_{1}(X)$. Since the morphism j_{*} is induced by inclusion,

$$
\left.j_{*} \alpha^{\prime}(k)=[c] \quad \text { (in } H_{1}(X, F)\right)=\partial^{\prime} \theta(k) .
$$

Hence, $\psi_{2} \theta_{*}(b)=j_{*} \psi_{3}(b)$ for all $b \in B$.
Combining the results of this section, we have established the following consistent diagram of morphisms of left H modules in which the rows are exact and in which ψ_{0}, ψ_{1}, and ψ_{3} are isomorphisms:

It is a consequence of the algebraic theorem known as the Five Lemma, see Ref. [6, p. 16], that the H morphism ψ_{2} is also an isomorphism. (The necessary fifth morphism in this case is, of course, the trivial mapping $\psi_{4}: 0 \rightarrow 0$.) Thus, the equivalence between the module sequence of Section 4 and the homology sequence is proved.

The derived module A_{φ} is defined only up to H isomorphism. Since ψ_{2} is now known to be an H isomorphism, we may write $A_{\varphi}=H_{1}(X, F)$ and one should recognize that the mapping $\partial^{\prime}: G \rightarrow H_{1}(X, F)$, defined in (12) by lifting paths into the covering space, is the accompanying crossed homomorphism $\partial: G \rightarrow A_{w}$. This fact is the geometric explanation of the formula for a crossed homomorphism given in (1).

6. Application to Knot Theory

The crossed homomorphism $\partial: G \rightarrow A_{\Phi}$ into the Alexander module can be used effectively in conjunction with the Alexander matrix and the link module sequence to show that certain links are not boundary links. The definition, due to R. H. Fox (see Refs. [13] and [14]), asserts that an m-component link L in S^{3} is a boundary link if there exist m pairwise-disjoint, connected, orientable, nonsingular surfaces S_{1}, \ldots, S_{m} in S^{3} such that $\partial\left(S_{1}\right), \ldots, \partial\left(S_{m}\right)$ are the components of L. In particular, every knot, i.e., one-component link, is a boundary link, since it is wellknown that a knot always possesses such a spanning surface. A theorem of Fox states that if L is a boundary link and if $G=\pi_{1}\left(S^{3}-L\right)$, then every longitude of L lies in the second commutator subgroup of G.

Consider an instance of the exact sequence (7) of group homomorphisms

$$
1 \longrightarrow K \xrightarrow{\theta} G \xrightarrow{\varphi} H \longrightarrow 1
$$

in which $G=\pi_{1}\left(S^{3}-L\right)$ is the group of a link, K is the commutator subgroup of G, the mapping θ is the inclusion, and φ is the canonical epimorphism onto the commutator quotient group H. In this case the derived module A_{φ} is the Alexander module. The second commutator subgroup of G is the group K^{\prime}, i.e., the commutator subgroup of K. It is a consequence of (4.2) that if $k \in K^{\prime}$, then

$$
\partial(k)=\partial \theta(k)=\theta_{*} \alpha(k)=0
$$

Combining this result with Fox's theorem, we have
(6.1) If lis a longitude of L and if $\partial(l) \neq 0$, then L is not a boundary link.

Using (6.1), D. S. Cochran has shown as an example in Ref. [1] that the two-component link L pictured in Fig. 1 is not a boundary link. In the remainder of this section we give a modified version of his proof. The group $G=\pi_{1}\left(S^{3}-L\right)$ of this link has a presentation
$G=\left(a, b, c, d: c^{-1} a c=d^{-1} a c a^{-1} d, c^{-1} b c=d^{-1} b c b^{-1} d, a c a c^{-1} a^{-1}=b c b c^{-1} b^{-1}\right)_{\zeta}$.

Figure 1
From this presentation of G we construct a presentation of A_{w},

$$
X_{2} \xrightarrow{d_{2}} X_{1} \xrightarrow{d_{1}} A_{\Phi} \longrightarrow 0,
$$

as described in Section 2, whose matrix is the Alexander matrix. The correspondences between the generators and relations of the group presentation and the basis elements b_{j} and c_{i} of the free modules X_{1} and X_{2} will be given by

\[

\]

By Alexander duality, the commutator quotient group $H=H_{1}\left(S^{3}-L\right)$ is free Abelian of rank two, and we write it multiplicatively. There exists a basis for H consisting of the two elements s and t such that

$$
\begin{aligned}
& \zeta_{\varphi}(a)=\zeta_{\varphi}(b)=\zeta \varphi(c)=s \\
& \zeta \varphi(d)=t
\end{aligned}
$$

The Alexander matrix of the presentation (13) is directly computed to be

$$
M=\begin{array}{c|cccc}
& b_{1} & b_{2} & b_{3} & b_{4} \\
\hline c_{1} & s^{-1}-t^{-1}+s t^{-1} & 0 & -s^{-1}+1-s t^{-1} & t^{-1}-s t^{-1} \\
c_{2} & 0 & s^{-1}-t^{-1}+s t^{-1} & -s^{-1}+1-s t^{-1} & t^{-1}-s t^{-1} \\
c_{3} & 1+s^{2}-s & -1-s^{2}+s & 0 & 0
\end{array}
$$

Reduction of M by standard methods [4] leads to an equivalent matrix

$$
M^{\prime}=\begin{array}{c|ccc}
& \left.\begin{array}{ccc}
b_{2}-b_{1} & b_{3} & b_{4}-b_{1} \\
\hline c_{1}^{\prime} & t-1 & 0 \\
c_{2}^{\prime} & \begin{array}{c}
t-s+1 \\
s^{2}-s+1
\end{array} & 0
\end{array}\right)
\end{array}
$$

The columns of M^{\prime} are labeled so as to show the relation between the basis $\left(b_{1}, \ldots, b_{4}\right)$ of X_{1} and the basis $\left(b_{2}-b_{1}, b_{3}, b_{4}-b_{1}\right)$ of the free submodule $X_{1}{ }^{\prime} \subset X_{1}$ of the equivalent presentation of A_{φ} associated with the matrix M^{\prime}. Let us set

$$
a_{j}=d_{1}\left(b_{j}\right), \quad j=1, \ldots, 4
$$

It follows that the Alexander module A_{φ} is generated by the three elements $a_{2}-a_{1}, a_{3}$, and $a_{4}-a_{1}$. The cyclic submodule generated by $a_{2}-a_{1}$ is isomorphic to $Z(H) / I$, where I is the ideal generated by $s^{2}-s+1$ and $t-1$. Each of a_{3} and $a_{4}-a_{1}$ generates a free submodule, and we have

$$
A_{\varphi}=(Z(H) / I) \oplus Z(H) \oplus Z(H)
$$

A longitude l of the link L shown in Fig. 1, which is a parallel of the unknotted component, is the element

$$
l=\zeta\left(a c a^{-1} b c^{-1} b^{-1}\right)
$$

This expression for l is easily read from the picture. Using the mapping diagram (5), which appears before (3.4), and the definition of δ, we obtain

$$
\begin{aligned}
\partial(l) & =\partial \zeta\left(a c a^{-1} b c^{-1} b^{-1}\right)=d_{1} \delta\left(a c a^{-1} b c^{-1} b^{-1}\right) \\
& =d_{1}\left[(1-s) b_{1}+(s-1) b_{2}+(s-s) b_{3}+0 b_{4}\right] \\
& =(1-s) a_{1}+(s-1) a_{2}=(s-1)\left(a_{2}-a_{1}\right)
\end{aligned}
$$

This result and the next-to-last sentence of the preceding paragraph imply that $\partial(l)=0$ if and only if $s-1$ belongs to the ideal I generated by $s^{2}-s+1$ and $t-1$. To prove that $(s-1) \notin I$, consider the ring epimorphism $\omega: Z(H) \rightarrow Z$ defined by setting $\omega(s)=-1$ and $\omega(t)=1$. Since $\omega\left(s^{2}-s+1\right)=3$ and $\omega(t-1)=0$, we know that $\omega(I)=3 Z$, i.e., the set of all integer multiples of three. On the other hand, $\omega(s-1)=-2$, which is certainly not a multiple of three. It follows that $(s-1) \notin I$ and, consequently, that $\partial(l) \neq 0$. We conclude from (6.1) that the link L shown in Fig. 1 is not a boundary link.
N. Smythe has observed that the group G of this $\operatorname{link} L$ can be mapped homomorphically onto a free group of rank two. A simple way to verify this assertion is to adjoin the relation $a=b$ to the presentation of G given in (13) above. The result yields a group G_{0}, which is certainly a homomorphic image of G and which is presented by

$$
G_{0}=\left(a, c, d: c^{-1} a c=d^{-1} a c a^{-1} d\right)
$$

If both sides of the relation $c^{-1} a c=d^{-1} a c a^{-1} d$ are multiplied on the left by $a^{-1} d$ and on the right by $d^{-1} a$, one obtains the equivalent relation

$$
a^{-1} d c^{-1} a c d^{-1} a=c
$$

and the latter may be written as $c=\left(a^{-1} d c^{-1}\right) a\left(a^{-1} d c^{-1}\right)^{-1}$. Hence, if we let $a^{-1} d c^{-1}=x$, which is equivalent to $d-a x c$, we have the equivalent presentation

$$
G_{0}=\left(a, c, d, x: c=x a x^{-1}, d=a x c\right)
$$

Using Tietze operations [4], we get successively the presentations

$$
\begin{aligned}
& G_{0}=\left(a, c, x: c=x a x^{-1}\right) \\
& G_{0}=(a, x,:)
\end{aligned}
$$

Thus, G_{0} is a free group of rank two. The fact that there exists a homomorphism of G onto a free group of rank two means that the link L of Fig. 1 is a member of a class of links, introduced by Smythe in Refs. [13] and [14] and called homology boundary links. This class includes boundary links. Hence, L is an homology boundary link, but not a boundary link.

References

1. D. S. Cochran, "Links with Zero Alexander Polynomial," Chapter V, Ph.D. Thesis, Dartmouth College, Hanover, N. H., 1970.
2. R. H. Crowell, Corresponding group and module sequences, Nagoya Math. J. 19 (1961), 27-40.
3. R. H. Crowell, Torsion in link modules, J. Math. Mech. 14 (1965), 289-298.
4. R. H. Crowell and K. H. Fox, "Introduction to Knot Theory," Ginn-Blaisdell, New York, 1963.
5. R. H. Crowell and D. Strauss, On the elementary ideals of link modules, Trans. Amer. Math. Soc. 142 (1969), 93-109.
6. S. Eilenberg and N. Steenrod, "Foundations of Algebraic Topology," Princeton University Press, Princeton, N. J., 1952.
7. R. H. Fox, Free differential calculus II, Ann. Math. 59 (1954), 196-210.
8. R. H. Fox, A quick trip through knot theory, in "Topology of 3-Manifolds," Proc. Univ. of Georgia Inst. 1961 (M. K. Fort, Ed.), pp. 120-167, Prentice-Hall, Englewood Cliffs, N. J., 1962.
9. J. Gamst, Linearisierung von. Gruppendaten mit Anwendungen auf Knotengruppen, Math. Z. 97 (1967), 291-302.
10. S. MacLane, "Homology," Springer-Verlag, New York/Berlin, 1963.
11. J. W. Milnor, Infinite cyclic coverings, in "Conference on the Topology of Manifolds" (J. G. Hocking, Ed.), Vol. 13, pp. 115-133, Prindle, Weber, and Schmidt, Boston, Mass., 1968.
12. D. G. Northсоtt, "An Introduction to Homological Algebra," Cambridge University Press, Cambridge, 1960.
13. N. Smythe, Boundary links, in "Topology Seminar Wisconsin, 1965" (R. H. Bing and R. J. Bean, Eds.), pp. 69-72, Princeton University Press, Princeton, N. J., 1966.
14. N. Smythe, Isotopy invariants of links, Chap. 4, Ph.D. Thesis, Princeton University, Princeton, N. J., 1965.

[^0]: * This work was supported by the National Science Foundation (GP-16820).

