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The goal of this first paper is to formalise the use of certain diagrams for 
a wide variety of situations in pure and applied mathematics. The main 
examples are the Feynman diagrams describing patterns of particle inter- 
actions in space-time. Other examples are given by circuit diagrams, 
networks, Petri nets, flow charts, and planar diagrams of knots or links. 

Penrose [30, 311 was the first to use the graphical notation for calcu- 
lating with tensors. It is now currently used by theoretical physicists as a 
private device for quickly verifying complicated tensor formulas. A striking 
aspect of the notation is that it is pictorial rather than sequential or 
alphabetical. This made it difficult to print, which partly explains why no 
rigorous theory was developed. We believe that a notation which is useful 
in private must be given a public value and that it should be provided with 
a firm theoretical foundation. Furthermore, printing techniques have 
improved drastically in recent years. 

The non-linearity of the notation makes it better adapted to express 
parallel processing than the usual sequential notation. It is already a part 
of computer science at the hardware level (circuit diagrams) and the 
software level (flow charts). There is also some connection with the concept 
of pile [41] which gives a pictorial description of the elements of commuta- 
tion monoids [S]. Other relevant areas where similar notations are 
developing are in proof theory [ 131 and rewriting systems [ 141. 

The abstract concept of tensor category represents a reasonably general 
setting in which the notation is meaningful. It is not entirely new in 
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category theory where it should not be confused with the usual diagrams. 
It was partly used by Eilenberg and Kelly [9], and further by Kelly [22] 
(implicitly in [24]), where it coincides with the diagrams used by 
Brauer [4] in his description of the Brauer algebra. Dubuc, in preparing 
his thesis [S], developed and “elevator calculus” for calculating in tensor 
categories, but this was not included in the written version. More recently, 
in a related context [25, 37, 381, Power [32] has used planar diagrams 
which are Poincare dual to ours, while Aitchison [ 1] has indeed used 
string diagrams. 

The recent developments in knot theory [15, 12, 39,401 and quantum 
groups, [7,29] have provided strong motivation for our work. Freyd and 
Yetter [42, 11, 431 have succeeded in giving a categorical description of 
knots and graphs embedded in 3-space. Their theory is a categorical 
formulation of the theory of Reidemeister moves [33]. Reshetikhin and 
Turaev [34] use representations of quantum groups to derive invariants of 
ribbon graphs. In a sense, our goal is opposite since we mainly want to 
show that diagrams can be used with profit in a wide variety of situations: 
in fact, in almost any context where a category equipped with a tensor 
product reveals itself. 

The paper is made up of four chapters. In the first, we recall the basic 
algebraic structure, namely, tensor category (also called “monoidal 
category”) which is simply a category with an associative (up to coherent 
isomorphism) tensor product operation. We introduce the concept of graph 
appropriate for both this paper and the next. We define the concept of 
valuation which labels the nodes of a graph with arrows from a tensor 
category V“ and labels the edges with objects of Î‘. A plane graph r 
equipped with a valuation o is called a plane diagram in +“. We then 
proceed to define an arrow u(T) in $-, called the value of the diagram. The 
main result of this chapter is that the value is invariant under continuous 
deformation of plane diagrams. In Section 4, which can be skipped at a first 
reading, we check that free tensor categories can be described in terms of 
isotopy classes of plane diagrams. 

In the second chapter we consider the case of symmetric tensor categories 
for which the tensor product is equipped with an extra structure of sym- 
metry. In this situation we show that the value t)(f) of a diagram can be 
defined even when r is abstract (no planarity is needed). In the second 
section of this chapter we construct free symmetric tensor categories using 
isomorphism classes of abstract diagrams. 

In Chapter 3 we consider the case of braided tensor categories [ 181. In 
this situation the diagram r is embedded in 3-space. We prove that the 
value of a diagram is invariant under deformation. We then proceed to 
describe free braided tensor categories using isotopy classes of embedded 
diagrams in 3-space. 
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In Chapter 4 we introduce the concept of balanced tensor category. In 
this case the embedded graphs I- are framed, or made of ribbons. Again we 
prove the invariance of the value of a ribbon diagram under continuous 
deformation and construct the free balanced tensor category from isotopy 
classes of ribbon diagrams. 

Our second paper will deal with tensor categories in which the object 
have duals. In this situation more general diagrams can be used in which 
backtracking and looping can occur (see [ 191 for an example); the present 
paper deals with progressive diagrams only. 

All the results proved here have a rather strong intuitive content which 
makes them look obvious. However, not unlike the Jordan Curve 
Theorem, many sketchy proofs turned out incorrect, and many easily 
formulated concepts turned out to be wrong. We had no choice but to 
perform a sharp analysis of all aspects, thereby increasing the length of the 
paper. We challenge the reader to devise shorter proofs. 

CHAPTER 1. TENSOR CATEGORIES AND THEIR DIAGRAMS 

1. Tensor Categories 

Recall the concept of tensor categor)! %‘ = ($“, 0, a, 1, r), also called 
“monoidal category” [26, 21, 10, 27, 34, 61. This consists of a category I ‘, 
a functor 0: Y - x Y - -+ Y - (called the tensor product), an object ZE Y. 
(called the unit object), and natural isomorphisms 

a=a,,~B,.:(AOB)@C+A@(B@C), 

I=/,,: I@A+ A, r=r,q: A@I-+A 

(called the constraints of associativity, left unit, right unit, respectively) such 
that the following diagrams commute: 

(a) the pentagon for associativity 

(AOB)O(COD) 
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(b) the triangle for the unit 

(AQZ)QBA AQ(IQB) 

Commutativity of the two triangles 

(I@A)@BL Z@(A@B) (A@ B)@Z* A@(B@Z) 

,\ / \ /L 

A@B A@B 

and the equality r = I: Z@ Z-r Z are (not so obvious) consequences of these 
axioms [20]. The coherence theorem of MacLane [26] states that all 
diagrams built up from a, I, r by tensoring, substituting, and composing, 
commute. It follows that all the objects obtained by computing the tensor 
product of a sequence A, 0 ... @A,, by bracketing it differently, and by 
cancelling units are coherently identified with each other. More precisely, 
the different ways of computing the tensor product A, @ ... @A, produce 
a clique; that is a non-empty family (Ci 1 i E I) of objects together with a 
family (+ : Ci + C, 1 (i, j) E Z x I) of maps such that uii = 1 and uk, = uk,zljj 
(so that ud = ~4~;‘). The cliques in -t’- are the objects of a category clq 9’ in 
which a map f: (C, j ie I) -+ (Dk (k E K) is a family of maps fki: Ci -+ D, 
such that 

/iit Ci- Dk 
I I 

commutes for every (i, j) EZ’, (k, III) E K2. It is sometimes convenient to 
think of the n-fold tensor product as a functor 

$“” + clq V”. 

The functor Y’ + clq 9-, which associates to each A E 1” the singleton 
clique (A) E clq W”, is full and faithful. Since any clique is isomorphic to the 
singleton clique of any one of its members, this functor is an equivalence. 
This equivalence between V and clq 9’ shows that the ambiguity which 
exists in computing the n-fold tensor product is not a real one. 

Furthermore, any tensor category is equivalent to a strict one st(“l’) 
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[28]; that is, one in which each constraint is an identity arrow. The object 
of st(^L”) are words M’=A,A, . . A,, in objects of Y -. An arrow f: w  -+ 1~’ is 
an arrow f: [MI] --f [M”] in ‘/ ^, where 

Clzrl =L [Al = A, and [A,...A,+,]=[AI...Ai]OA,+,. 

The tensor @ for st( %‘) is given by I‘ @ w  = PW and 

[u’] 0 [w’] 

[ uw] fc3,a ) [ 1:‘11.‘]. 

In principle, most results obtained with the hypothesis that a tensor 
category is strict can be reformulated and proved without this condition. 
Since, in this paper, we wish to focus on aspects other than associativity of 
tensor product, we avoid putting brackets on n-fold tensor products when 
clarity is gained and rigor preserved. 

EXAMPLE 1. Let k be a commutative ring. A bialgebra A over k is 
an associative algebra with unit equipped with a pair of algebra 
homomorphisms 

A: A+A@A, &:A+k, 

(called the diagonal and the co-unit) such that the diagrams 

commute. Let Mod(A) denote the category of left A-modules. For any 
V, WE Mod(A), the tensor product V@ W is an (A@ A)-module which 
becomes an A-module if we restrict the action of A @ A along the diagonal 
A: A -+ A @A. This defines a tensor product on Mod(A) yielding a tensor 
category for which the unit object is k equipped with the A-module struc- 
ture given by A -+ k. 

In a tensor category there are two operations for constructing new 
arrows from old ones: composition f~ g and tensor product f@ g. Using 
ordinary algebraic notation, we are immediately faced with expressions like 
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B C D B C D 

d 
c d 

D 
C ,M,I.I:, D 

B 
b c 

B C 

a a b 

A C A B C 

w1 w2 

FIGURE 1.1 

and 

In this form it is sometimes unclear when two words like w,, w2 are 
equivalent; that is, when they can be proved to be equal from the tensor 
category axioms alone. The graphical notation we shall develop in this 
chapter will make it easier to detect such equalities, and hence will provide 
a convenient technique for computation in a tensor category. 

To motivate the precise topological details of the graphical notation, we 
remark that the two words, ull, ut2 given above will be respectively 
represented by the two diagrams in Fig. 1.1 In these diagrams the inner 
nodes represent the maps 

a:A+B@B, b: B-COD, c: BBC+ C, d:D@C+D, 

whereas the edges represent objects. It is obvious that the diagrams are 
deformations of one another; this will, after results below, enable us to 
deduce the equality w, = ~1~. 

FIG. 1.2. A generalized graph. 
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2. Graphs 

A generalized (topological) graph G = (G, G,) consists of a Hausdorff 
space G and a discrete closed subset G, c G such that the complement 
G - G, is a l-dimensional manifold without boundary. That is, G - Go is 
the topological sum of open intervals and circles. (See Fig. 1.2.) 

An element of G, is called a vertex or node. A connected component of 
G - G, homeomorphic to an open interval is called an open edge; the other 
components are called circles. Each open edge e can be compactitied to a 
closed edge g by adjoining two end-points. An edge e is called pinned when 
the inclusion e + G can be extended to a continuous map E -+ G (called the 
structure map). When the inclusion e + G extends only to C minus one 
end-point, we call e halfloose. An edge is loose when it is neither pinned 
nor half-loose. (See Fig. 1.3.) 

A graph is a generalised graph in which all the edges are pinned. It is 
called an ordinary graph when it has no circles. 

A generalised graph G can be completed to a graph G u { yc,) by 
attaching at co all the loose ends. Conversely, given a pointed graph, the 
complement of the basepoint is a generalised graph whose loose edges are 
the loops at the basepoint. 

In what follows we shall consider only finite generalised graphs: that is, 
G, and the set rrr,(G - G,) of connected components of G - G, are finite. 
Obviously a finite generalised graph is a graph if and only if it is compact. 

Write G for the compactification of the generalised graph adjoining one 
end-point to each half-pinned edge and two end-points to each loose edge. 
These extra points, along with G,, are the nodes of a graph G = (G, G,]: 
the elements of G, - G, are called the outer nodes of G. The graph G, 
together with the set of outer nodes of G, is a “graph with boundary.” 

A graph with boundary r= (r, 8L’) is a compact graph r together with 
a distinguished set aL of nodes of r such that each x E aI- is of degree one. 
(The degree of a node is the number of connected components of I’- {x) 
where V is a sufficiently small connected neighbourhood of x.) Taking out 

bi 2-i: 
L 

pinned edge pinned edge half-loose loose edge circle 
(loop) edge 

FIGURE 1.3 
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the boundary i?T of r produces a generalised graph G = r- iiT whose 
compactilication G is r and the set of outer nodes of G is ar. The elements 
of dT are sometimes called the outer nodes of (r, ar), and the nodes 01 
r- ar are called the inner nodes of (F', al-). 

An isomorphism f: (r, i?r) -+ (52, X?) of graphs udth boundary is a 
homeomorphism f: T-t L? inducing bijections on the inner nodes and on 
the outer nodes. 

An oriented edge of r is an edge e equipped with an orientation; or 
equivalently, with a linear order on at? The source e(0) of an oriented edge 
e is the image of the first element of 86 under the structure map P --t r; the 
target e( 1) is the image of the last element; the opposite edge e” is obtained 
by taking the opposite orientation of e. 

An oriented graph is a graph together with a choice of orientation for 
each of its edges and circles. For an oriented graph r, the input in(x) of an 
inner node x E r. is defined to be the set of oriented edges with target x; 
the output out(x) of x is the set of those with source x. 

A polarised graph is an oriented graph together with a choice of linear 
order on each in(x) and out(x). 

A progressive graph is an oriented ordinary graph with no circuits. The 
domain dom r of a progressive graph r consists of the edges which have 
outer nodes as sources; the codomain cod r consists of the edges which 
have outer nodes as targets. In many situations we shall identify dom r 
and cod r with their corresponding sets of outer nodes. 

A parametrization of an oriented edge e is the choice of an orientation- 
preserving homeomorphism [0, 11%;. Composing it with the structure 
map 6 -+ r, we obtain a function y: [0, l] + I’. We call y a parametrised 
edge with source y(O) and target y(1). The opposite parametrisation 
y”(t) = y( 1 - t) is a parametrisation of the opposite edge. A parametrisation 
of a circle is of course a homeomorphism with the unit circle 5’ c C. 

A parametrised graph is a graph together with a choice of parametrisa- 
tion for each oriented edge and each oriented circle such that opposite 
edges and circles have the opposite parametrisations. 

Except for Chapters 1 and 2, we shall assume that our graphs are 
smooth. All the results could be obtained with weaker assumptions, but 
would be the same in substance. 

A graph is called smooth when each closed edge and each circle is 
equipped with a smooth (meaning C”) structure. Of course, parametrisa- 
tions of smooth graphs will always be taken as smooth. 

3. Progressive Plane Diagrams 

The purpose of this section is to describe the diagrams appropriate for 
calculations in an arbitrary tensor category, to ascribe values to these 
diagrams, and to prove the value invariant under deformation. 
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DEFINITION 1.1. Let a < b be real numbers. A progressive plane graph 
(between the levels a and b) is a graph r (with boundary) embedded in 
R x [a, b] such that 

(i) dr=rn(Rx {u, b)), and 

(ii) the second projection pr,: R x [a, b] ---f [a, b] is injective on each 
connected component of f - r,. 

Each progressive plane graph f is both progressive and polarised in the 
sence of Section 2. Each edge e is given the orientation with 
pr, e(0) < pr2 e( 1). Condition (ii) certainly excludes circles and circuits. 
Also, in(.u) and out(?c) can be linearly ordered as follows. Choose u E [a, b] 
smaller than but close enough to prz(.u). Then each edge e E in(x) intersects 
the line R x {u) in one point which is different for different edges. This 
defines a bijection between in(.y) and a subset of R x {II). (z R), and so 
induces a linear order on in(.u). The order on out(x) is defined similarly by 
intersecting with R x {zii. for u larger than but close to pr,(x). 

Notice that dom r and cod r are naturally linearly ordered as subsets of 
IR x (a} and R x {b), respectively. 

A number u E [a, h] is called a regular level for r when the line R x (u) 
contains no inner nodes. If c < d are regular levels of r, we write f [c, d] 
for the graph Z-n (R x [c, (11) whose set of inner nodes is (r,, - iir) n 

(R x [c, d]) and whose set of outer nodes is f n (R x {c*, d).). The graph 
f [c, d] is a progressive plane graph between the levels c and d; it is called 
a layer of IY 

Suppose r is the disjoint union of two subgraphs I-’ and I-‘. We shall 
say that the pair (r’, f *) is a terzsor decomposition of I-, and write 
r= r’ 0 T*, when there exists a number i’ such that 

I-‘G(-q~)x[a,b] and f’c((, m)x [a, b]. 

This notion extends in the obvious way to n-fold tensor decompositions 

I-=/-‘@ ... @I-“. 

DEFINITION 1.2. Let (r, 2f) denote a graph with boundary. A deforma- 
tion of progressive plane graphs (between levels a and b) is a continuous 
function 

h:Tx[O,l]+lRx[a,b] 

such that, for all t E [0, 11, the function 

h( -, t): l-+ [w x [a, b] 
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is an embedding whose image is a progressive plane graph (r(t), 2r(t) 
between the levels a and 6. 

In view of the isomorphism r~ r(t), it is possible to define many strut 
tures on r by transporting the structures defined on the r(t) for some 
t E [O, 11. Some of these structures on r are independent of the choice 01 
t E [0, 11. For example, our definition of deformation forces the inner and 
outer nodes to keep their natures independent of t. 

For any inner node x E r, we can define in(x) and out(x) as the ordered 
sets of edges corresponding to in(h(x, t)) and out(h(x, t)) via the isomor- 
phism rz r(r). It is easy to see that these ordered sets do not depend on 
the choice of t E [0, 11. 

DEFINITION 1.3. A valuation u: r+ V of a progressive plane graph r in 
a tensor category ‘I“ is a pair of functions 

uo: r, + obj 3”, v,:r,-ar+arr y‘, 

where r, is the set of edges of r and r, - 8r is the set of inner nodes, such 
that, for all inner nodes x of r. 

u,(-x): QdY, 10 ... ohAy,)+h(6,)0 .‘. Ou,(6,) 

where y1 < ... <yrn, 6, < . . . < 6, are the ordered lists of elements of in(x), 
out(s), respectively. The pair (r, u) is called a (progressive plane) diagram 
in “Y, and is denoted merely by r when the context is clear. 

The domain and codomain of a diagram (r, u) are the families of objects 

dom(r, V) = (Us 1 z E dom r), cod(& u) = (VJZ) 1,’ E cod r) 

indexed by the linearly ordered sets dom r, cod K 
If c < d are regular levels for a diagram r= (r, v) the valuation u 

“restricts” in an obvious way to a valuation on the layer r[c, d] and we 
also denote this by v. Similarly, if r= I-’ Or*, the valuation v restricts to 
valuations on r’ and T2 again denoted by v. 

If h: TX [0, l] + R x [a, b] is a deformation of progressive plane graphs 
then a valuation defined on one r( to) for some r,, E [0, l] can be trans- 
ported along the isomorphisms r(t,) r rz r(t) to a valuation on r(t) for 
all t E [0, 11. In this way h becomes a deformation of diagrams. Our inten- 
tion now is to assign a value o(T) E arr 3” to each progressive plane 
diagram (r, u) in +- and prove it invariant under deformation of diagrams. 
To do this we must subdivide the diagram into simpler parts and 
“integrate” the result by composing and tensoring. 
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A diagram I- is called prime when it is connected and has precisely one 
inner node x. In this case, we define the value of f by the equality 

v(T) = ul(x). 

A diagram r is called invertible when it has no inner nodes. In such a 
diagram we have bijections 

dom r z n{,(r) z cod r 

between the domain, connected components, and codomain of the graph r 
such that the composite is order-preserving. Thus we obtain a linear order 
e, < e, < . . < e, on the set rcO(ZJ. In this case, the value r(T) of f is 
defined to be the identity arrow of vO(e,) @ . . 0 v,(e,). 

A diagram r is called elementarJt when it has a tensor decomposition 
r= f1 @ ... 0 r” with each r’ (1 < i< n) either prime or invertible. In 
this case, we define 

u(r)=u(r’)@ ‘.. @v(P). 

That this is independent of the choice of tensor decomposition follows from 
the facts that 

- prime diagrams are tensor indecomposable, and 

- if 52’ @R” is invertible then n&Q’ 0 Q2) is the ordered sum of 
rc,(Q’) and zn,(Qz). 

Remark. The reader may feel that a more restrictive notion of 
“elementary diagram” should have been used, namely, those diagrams 
which admit a tensor decomposition into primes and connected invertibles. 
It is true that every diagram decomposes into layers of this kind. However, 
the restricted notion is not inherited by taking further layers (see Fig. 1.4). 

FIG. 1.4. Top layer not elementary in restricted sense. 
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PROPOSITION 1.1. If u is a regular level for an elementary diagram r 
between levels a and b then T[a, u], r[u, b] are elementary, and 

v(T) = u(T[u, b])o u(T[a, u]). 

Proof: We use induction on the number of factors needed to tensor 
decompose r into primes and invertibles. If r= r’ Or’ is a proper 
decomposition, put fi = u(T’[a, u]), g; = v(r’[u, b]) for i= 1, 2, and we 
have 

v(r) = v(P)0 @) by definition; 

=(sl~fi)o(g2~fz) by induction; 

=(g1og,)~(f~ofJ by functoriality of 0, 

= Wb, bl)o WCs, ~11 by definition. 1 

For any progressive plane diagram r between levels a and b, we now 
define the value by 

where a = u0 < U, < . < U, = b are regular levels for r such that each 
layer r[u,- , , u,] is elementary for 1 6 id n. The existence of such regular 
levels can be seen by choosing u1 , . . . . U, ~, to be numbers close enough to, 
and on both sides of, each critical (= non-regular) level. The independence 
of the definition under different choices amounts to independence under a 
refinement, which follows from Proposition 1.1. 

THEOREM 1.2. Zf h: TX [0, I] -+ Rx [a, b] is a deformation oj 
progressive plane diagrams then 

ww = w(1)). 

ProoJ: Since [0, l] is connected, it suffices to show that v(r(t)) is a 
locally constant function of t. Take 0 <to Q 1. We shall prove that 
v(r(t)) = v(r(t,)) for t close enough to to. Choose regular levels 
a=u,<u,< = ..+ <u,=b for r(t,) such that each r(t,)[u,-,,u,] is 
elementary. Then, for t close enough to t,, these levels are regular for r(t), 
and each r(t)[u,_ r, ui] is elementary. It remains to be proven that, for t 
close enough to t,, we have 

a-m, 4) = owk dl), 

where c=uipl, d=ui. Choose to< 5, < . . . < 5, such that T(t,)[c, d] = 
T’(t,)@ . ..@T’(t.), where each ri(t,)=r(t,)n((~j~,,~j)x[c,d]) is 
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either prime or invertible. For t close enough to t,, we also have 
T(t)[c, d] = P(t)@ . . . @r’(t), where each P(t)=r(t)n((l,pl,<,)x 
[c, d]) is either prime or invertible depending on the nature of r’(t,). It 
remains to be shown that ~(rj(f) = ~(Tj(r,)). If r’(t,) is invertible then 
the deformation h gives an order isomorphism no(r’( t )) s no( ri( to)) 
compatible with u 0; so the result follows. If ri(t,) is prime with inner node 
x0 and ri( t) has inner node x, we have 

u(rl(f)) = U’(S) = U,(.Y()) = o(T’(t,)). 1 

4. Free Tensor Categories 

Let ‘/“, #‘ denote tensor categories. A tensor ,functor [ 10, 351 

F= (F, q&, 4,): Y. + I‘ 

(also called “strong monoidal functor”) consists of a functor F: $’ -+ ÎI”, 
a natural isomorphism 

d2 = 162.4, B :FA@FB+F(A@B), 

and an isomorphism &: I-+ FZ, such that the following diagrams com- 
mute: 

FA@FB@FC ‘201+ F(A@B)@FC 

I omz 
I I 

42 

FAOF(B@C) 4z * F(A@B@C) 

Call F strict when $?, d,, are identities. 
We can define natural isomorphisms 

d,:FA,O...OFA,,~F(A,O...OA,) 

inductively as follows: & is given, 4, is the identity, q& is given, and 4, + , 
is the composite 

FA,0...0FA,,+,~FA,OF(A,O...OA.+,) 

A F(A,o @A.+,). 
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The following triangle then commutes. 

FA,Q . . . QFA,QFB,@ .‘. @FB,- 4m+n F(A,@ ... @A,@Bl@ ... ml?,,) 

&@rn” 

\ / 

92 

F(AIQ .‘. OA,)OF(B,@ . . . @B,) 

Tensor functors %! + 1’ , 9” + u’ can be composed in the obvious 
manner [lo, 353. Suppose F, G: ?* -+ w  are tensor functors. A tensor 
transformation CI: F-+ G is a natural transformation c? such that the 
following diagrams commute: 

FI 

We write Ten(V, PV) for the category of tensor functors V, -W‘ and tensor 
transformations between them. 

The following concept has appeared with a variety of terminology and in 
varying generality [3, 28, 133. 

DEFINITION 1.4. A tensor scheme 9 consists of two sets obj 9 and 
mor 9 together with a function which assigns to each element de mor 9 a 
pair (d(O), d(1)) of words in the elements of obj 9. Write 

d: X, . . .X,,, + Y, ... Y, 

for dEmor9 with d(O)=X,...X,, d(l)= Y,...Y,. 

Each tensor scheme 9 and tensor category ?Q  ̂determine a category 
[9, 9-1 described as follows. An object K is a pair of functions 

K: obj 9 --t obj 3^, K:mor9-+mor7+ 

such that, for all d: X, . . .X, + Y, . . Y,, we have 

Kd:KX,@ . ..@KX.,,+KY,@ ... @KY,,. 

A morphism K: K -+ L is a family of arrows 

icx: KX-t LX, XE Obj 9, 
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in Y‘ such that, for all d (as before), the following square commutes: 

KX, @ ... @ KX, Kd KY,@ . . . @KY,. 

q,o ‘.’ @“Y”, 
I I 

K., , 0 0 .K I‘“, 

LX,@ ... @LX, &/ + LY,@ ..-LY,,. 

There is a “composition” functor 

Ten( % -, YY) x [9, Y] --t [9, w] 

(F, K) H Fo K, (a, K)HCX@K, 

where (F c K) X = FKX, ( FO K) d is the composite 

FKX, @ . . 0 FKX, )m F(KX,@ ... @KX,) 

* F(KY, @ ... @ FY,,) 

4, ’ - FKY, @ ... @ FKY,,, 

DEFINITION 1.5. A tensor category F is said to be free on the tensor 
scheme 9 when there exists an object N of [P, S] such that the functor 

- 0 N: Ten(9, +“) + [LB, $“] 

is an equivalence of categories for all tensor categories V. 

If 9’ is also a free tensor category on 9 then there exists an equivalence 
of tensor categories 9 r 9’. The existence of free tensor categories can be 
proved algebraically, but our purpose here is to provide a topological 
construction in terms of plane graphs. 

A plane graph r will be called boxed when it is between levels - 1 and 
+l, and is contained in (-1, 1)x c-1, l]. Write ITm+n when m, n are 
the cardinalities of dom f, cod r, respectively. 

In defining operations on boxed graphs we shall use the functions 
y, T: I&?’ --f R2 given by 

y(x, I) = (A g,, t(x, t) = (ix, t) 

and the points e, = (1, 0), ez = (0, 1) E R’. Notation such as y(Sf e2), for 
S c R2, denotes the set 

((x, $(t+ l))EkF\(.Y, t)cS). 
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FIGURE 1.5 

The tensor product r’ 0 T2 of two boxed plane graphs r’, r’ is the 
space z((ri-e,)u(T’+e,)) with t((r~-ei)u(r~+e,)) as the set of 
nodes. (Ignoring translations, we depict this as in Fig. 1.5). 

Suppose r: m + n, Q: n + p are boxed plane graphs. Let a, < a, < . ‘. < 
a, be the elements of the codomain, and let I be the set of inner nodes of 
the graph y(T- 2e2). Let 6, < 6, < . . < b, be the elements of the domain, 
and let J be the set of inner nodes of the graph y(Q f 2e2). The composite 
Q 0 r: m -+ p is the plane graph consisting of the space 

Qor=y((T-2e,)u[a,,b,]u . . . u[a,,b,,]u(Q+2e2)) 

with lu J as the set of inner nodes, as in Fig. 1.6. 
The concept of valuation in a tensor category V (Definition 1.3) needs 

neither composition nor tensor products of morphisms in 3“ (these are 
needed in calculating the value). We therefore define a valuation v: r--+ 9 
of a progressive plane graph r in a tensor scheme 9 just as in Y except 
that the tensor products in the domain and codomain of v,(x) must be 
replaced by words in the elements of obj 9. This gives the notion of a 
progressive plane diagram (r, v) in a tensor scheme. The domain [codomain] 
of such a diagram is defined to be the word v,,(zl) ... v,(z,), where 
z, < . . . < z, are the elements of dom r [cod r]. 

The tensor product and composite of boxed progressive plane diagrams 
in a tensor scheme can now be defined in the obvious way. A tensor 
product r’ @ r’ has a tensor decomposition into subgraphs isomorphic 
to r’, T2; so valuations on r’, r’ transport to the subgraphs and these 
together give a valuation on r’, r’. If the codomain of (r, v) agrees with 
the domain of (52, w) then there is a unique valuation on 00 r whose 
restriction to (Sz o r)[ - 1, - 41 transports to o under the canonical 

FIGURE 1.6 
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isomorphism with r, and whose restriction to (Q 0 r)[ f, l] transports to 
w  under the canonical isomorphism with Q (note that the layer 
(Q o r)[ - i, f] has no inner nodes). 

For each tensor scheme 9, there is a strict tensor category F(a) defined 
as follows. The objects are words in elements of obj 9. The morphisms are 
deformation classes of boxed progressive plane diagrams in 9. The 
domain, codomain and composition of morphisms are induced on defor- 
mation classes by the corresponding operations for the diagrams. Identity 
morphisms are deformation classes of diagrams with invertible graph. The 
tensor product on objects is given by juxtaposition of words, and on 
morphisms is induced by the tensor product of boxed diagrams. We shall 
now see, not only that it is a tensor category, but that [F(P) is free. 

THEOREM 1.2. F(B) is the ,free tensor category on the tensor scheme 9. 

Proof. For boxed plane graphs, we have: 

(a) If r’ is a deformation of T2 (written r’ -v r’) then 
dom r’ = dom r2 and cod I-’ = cod I-‘; 

(b) Tfr1-r”and~‘-n’thenr10SZ’-r’052’; 

(c) If r’ w  r’ and 52’ N 0’ then Q’ 0 r’ m Q’ or2 (where it is under- 
stood that the composites are defined); 

(d) (r’ @ P) @ r3 - f’ 0 (r’ 0 r’) (Fig 1.7); 

(e) (A~l2)~~r-A~(L?~r) (Fig. 1.8); 

(f) w2U’) 0 (s2WQ)=(sz 0 sz$(r’ 0 r)’ (Fig. 1.9). 

It follows from (a)-(f) that [F(B) is a strict tensor category. 
Define N to be the object of [9, F(g)] described as follows. For 

XE obj $3, let NJ’= X as a one-letter word. For d: X, . . X, + Y, . . Y, in 
mor D, take Nd: A’, . . X, -+ Y, .. Y,, to be the class of the diagram (r, u), 
where r is the union of the line segments 

2h - I 
-l+M> -1),(0,011, ((o,o)~j-l+=J)l 

I1 

: 

I-’ I-’ I-’ r’ 

FIGURE 1.7 
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FIGURE 1.8 

for 1 ,< h dm, 1 d k d n, in the plane R2 with the origin (0,O) as the only 
inner node, where u0 takes the line segments to A’,, Y,, respectively, and 
where v,(O, 0) = d. 

Without loss of generality we may suppose ‘L  ̂ to be a strict tensor 
category and prove that 

is an equivalence of categories. For such a V” we shall show that --o N is 
surjective on objects and fully faithful. Take any object K of [Q, w-1. In 
fact we shall produce the unique strict tensor functor T: E(9) 4 V with 
To N= K. Since obj IF(g) is the free monoid on obj 9, certainly T is 
uniquely determined on objects if it is to preserve tensor. Let (r, u) be a 
boxed progressive plane diagram in 9. Then (r, Ku) is a boxed progressive 
plane diagram in V. Define T to take the deformation class of (r, u) to the 
value (Ku)(T) of (r, KU). This is well defined by Theorem 1.2. It clearly 
preserves domain and codomain, and has T 0 N = K. That T preserves com- 
position and tensor product, and is unique, follows from the definition of 
the value of a diagram which builds up from the values of diagrams with 
at most one inner node. 

FIGURE 1.9 
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Suppose F, G: F(9) --f Y“ are arbitrary tensor functors and suppose 
K FnN-+ GO N is a morphism of [9, Y’]. If we are to have CI: F-+ G with 
CI 0 N = K, we are forced to define c(.~, .u,: F(X, . . X,) + G(X, . . . X,) to 
be 

Compatibility of CY with 4, is automatic. Naturality reduces to the case of 
morphisms represented by diagrams with at most one inner node, and for 
this we invoke the conditions satisfied by K as a morphism of [9, $“I. This 
proves -c N is fully faithful. 1 

Remark. The above shows that - ‘3 N gives an isomorphism of categories 
between the full subcategory of Ten( 5(g), F’) consisting of the strict tensor 
functors (that is, those with do, & identities) and the category [9, Y]. 
This is consistent with the “flexibility” of the structure of tensor category. 

CHAPTER 2. SYMMETRIC TENSOR CATEGORIES 
AND PROGRESSIVE POLARISED DIAGRAMS 

1. The Value of a Progressive Polarised Diagram 

Recall [lo, 27, 351 that a symmetry for a tensor category Fe is a natural 
family of isomorphisms 

c,,,:A@B+B@A 

such that the following two diagrams commute: 

(S) A@BA BOA 

(B) AOBOC “.4@B,C + C@A@B 

(We continue to assume 9‘ is strict, for simplicity of exposition.) A sym- 
metric tensor category is a tensor category with a distinguished symmetry. 

EXAMPLE 2. A k-bialgebra A (see Example 1) is commutative when 
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A=aoA,whereo:AOA~AOAistheswitchmapcr(aOb)=hOa.Then 
the switch map 

c: V@ w-t W@ v, c(u@M’)=U’@u, 

is a symmetry for Mod(A). 

Suppose r is a progressive polarised graph (as defined in Chapter 1, 
Section 2) and suppose V is a symmetric tensor category. A oaluation 
u: I’-+ V of r in 9’ is defined precisely as in Definition 1.3 (all that is used 
is the order on each in(x) and out(x), and the tensor product in Y-). The 
pair r= (r, o) is called a (progressive polarised) diagram in the symmetric 
tensor category I ^. 

To define the value u(T) of a diagram as an arrow in Y-, we need the 
domain dom r and codomain cod r to be linearly ordered. These linear 
orders are not part of the definition of diagram because we need to con- 
sider “layers” which do not have natural linear orders on their domains 
and codomains. Our strategy is to define the value V(T) in an extension 4 
of the category “I‘; this will not require artificial choices of linear orders. 

The category $> has object families (A, ( s E S) of objects of Y’ indexed by 
finite sets S. Each such object gives rise to a clique (see Chapter 1, 
Section 1) 

( 

m 
0 A4(k,14: CLml~S 

k=l ) 

in 3’ indexed by bijections $: [ 1, m] + S, where [ 1, m] = ( 1, 2, . . . . m >; the 
maps for the clique are 

m  m  

(‘I-‘$>: @ &k,-* @ AIL,+ 
k= I k=l 

where (a) for a permutation rr will now be described. If r~ is the simple 
transposition interchanging i and i + 1 then (6) = 10 ... 0 c@ ... @ 1 
((m - 1) terms with c in the ith position). For a general permutation 7, 

decompose it as a product of simple transpositions rr, and obtain (T) as 
the composite of the corresponding (a). That this is well-defined and yields 
a clique follows from MacLane’s coherence theorem [26] for symmetry. 

The arrows f: (A, 1 s E S) + (B, 1 t E T) in 4 are precisely maps between 
the associated cliques. Another description of the arrows of P will be use- 
ful. In general, for cliques ( Ci 1 i E I), (O,I j E J) in any category A, the set of 
clique maps from the first to the second is isomorphic to the quotient set 
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where (f: ci + D,) - (g: Ck + D,,,) when g -’ zlki = u,, 05 Thus, an arrow 

in f is an equivalence class of triples (4, f, $) consisting of linear orderings 
&[l,nz]-,S, $:[l,n]+T of S, T and an arrow ,f:@r=,A, ,,,, -+ 
ai=, B,,,, in Y ., where (4, f, $) is equivalent to (4’, ,f’, $‘) if and only if 
the following square commutes: 

The functor ?” -+ r‘, obtained by regarding objects of 3. as a singleton 
families, is an equivalence of categories. 

For any valuation ti: Z+ ^t^, we put u(s) = uO(S)E obj Y^ for 
s E dom TV cod f. The intended value V(f) of Z will be an arrow 

V(f): (~(~)I.~~dornr)~(u(t)lt~ccodr) 

in ST. Obviously, if dom Z and cod f are linearly ordered, we obtain an 
arrow u(T) in 9‘. 

As in Chapter 1, our definition of value will involve some choices. To 
show the independence of these choices we need some formal properties of 
iterated tensor products. For these we introduce a category sp(Z, Y) for 
each finite set I. 

Objects of sp(Z, ^t-) have the form (A,71s~ SA I), where (A,/.sE S) is 
a family of objects of $. indexed by the finite set S, and 4: S+ I is a 
function equipped with a linear order on each fibre d-‘(i). A map 
(A,Is~S~Z)+(B,It~T~Z)insp(Z,~~)isafamily 

of maps u, in 9” indexed by I. 
We now define a functor 
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which is given on objects by 

0 (A,lSES~ Z)=(A,I.YES). 
iEl 

Suppose(u,IiEZ):(A,)sES~Z)-r(B,ItET~Z)isamapinsp(Z,-tr). 
Choose a linear order on Z; this together with the linear orders on the fibres 
of 4, II/, determines linear orders on S, T (ordinal sums of the libres). The 
arrow 

in F is the map of cliques determined by these orders on S and T, and the 
map 

@ ui: @ @ A,v-+ @ @ B, 
iel iI?1 (Is)=1 it/ *(I)=; 

in I+-. Different choices of linear order on Z lead to the same map of cliques. 
Given a function K: I-, J equipped with a linear order on each tibre 

~-l(j), there is a functor 

K.+: sp(Z, ,P-) -+ sp(J, Y”) 

given on objects by 

ic,(A,ls~S~ Z)=(A,JsS~ J), 

where the linear order on the fibres of ~4 is such that sds’ in (red))‘(j) 
when either b(s) < d(s’) in k--l(j), or d(s) = #(s’) = i and s 6s’ in d-‘(i). 
One maps, K* is given by K*(u, ( i E I) = ( @ k,,j =i ui I j E J). 

The required associativity of iterated tensor product can be expressed as 
a commutative triangle of functors: 

sp(Z, ^I”) 

OlEl 
\, 

x* $7 

*/ OiEJ 

sp(J, Y) 

This is trivial on objects, while on maps it amounts to the equality 
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which is proved by choosing a linear order on J, and then obtaining linear 
orders on S, T as before. 

The value of a diagram will be defined by cutting into layers just as in 
the plane case. Since in this case we do not have the aid of the embedding 
in the plane to give us levels, here we need a different approach to layers. 

Suppose r is a progressive graph with boundary. Let I’ denote the set of 
inner nodes of r as a partially ordered set (x d y when there is a directed 
path from .Y to y in f ). Define a level a of r to be an initial segment of f 
(that is, .Y d y E a implies x E a). The smallest level is Qr and the largest level 
is 4: 

An edge e is said to be cut by level a when e(0) E audom r and 
Ed (f-a) u cod II Let cut(a) denote the set of edges cut by a. Note 
that we have bijections 

cut(@) 2: dom f, cut( P-) z cod I-. 

An inter& in r is a pair of levels a G b. Define the layer f [a, b] (see 
Fig. 2.1) to be the generalised oriented graph whose nodes are the elements 
of b - a, whose pinned edges are those edges e of r with source and target 
in b-a, and whose loose and half-loose edges are the elements of 
cut(u) u cut(b). We have bijections 

cut(u) e dom r[a, b], cut(b) 2: cod T[a, b]. 

We now proceed to define the value V(f) E arr YY of a progressive 
polarised diagram ZY 

Call r elementary when the inner nodes are incomparable; that is, when 
the order on f is discrete. Put Z = n,(T), the set of connected components 
of IY For each i E Z, define an arrow ui of Î - by 

u,(x) when i contains a single inner node s, 

ui= lro,i) { when i is a single edge. 

The functions dom r+ I, cod I--+ 1 (taking the outer nodes to the com- 

f 

I, 

FIG. 2.1. T[u. h] 
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ponents in which they lie) have fibre over i either a singleton or in natural 
bijection with in(x), out(x), respectively; so the fibres are linearly ordered. 
Thus we have a map 

(UiliEI):(u(S)ISEdomr~Z)j(u(t)ltEcodr~I) 

in sp(Z, “t-). Define 

C(r)=@ u,:(~~(.s)(~~dom~)-+(v(t)It~codIJ 
iG/ 

in C. 

PROPOSITION 2.1. If a is a level for an elementary diagram r then 
r[@, a], I’[a, f’] are elementary, and 

V(T) = C(r[a, P])o E(r[@, a]). 

Proof: Let Z=rcor[@, a]), J=x,r[a,f’], K=rcOf so that we have a 
diagram of functions 

dom cod I- 

/ 

whose fibres are linearly ordered and the diamond commutes with 
(KP)-‘(k) = (Av)-‘(k) as ordered sets. We have 

t?(r[@, a])= @ fi: (u(~)I~~dorn r)-+ (v,(e)leEcut(a)) 
icl 

fi(T[a,f])= @ gi: (v,(e)leEcut(a))-+ (v(t)1 tEcod r) 
jEJ 

5(T)= @ h,: (u(~)Js~dom r) --f (u(t)1 t ~cod r). 
keK 

For each k E K, either k.-‘(k) is a singleton and g, is an identity for all 
SEA-l(k), or I-‘(k) is a singleton and f, is an identity for all iE k--‘(k); 
so we see that 

h/c= @ S/O @ fi. 
n(j)=k K(i) = k 
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Hence 

V(T) = 0 h, 
ktlC 

CC ( @ @ g,) Q( @ @ f,) by functoriality of @ 
kc,? ,(/)=A A t K k-/,, = k kEK 

=@ g;o@f, by associativity of @ 
jtJ re, 

=v(r[a,~])~v(T[~,a]). 1 

For any progressive polarised diagram I-, choose a maximal chain 

@Ca,ca?C ... Ca,,=P 

of levels of ZY Then each layer T[a,, a,+ ,] has precisely one inner node 
and so is elementary, Define 

V(T) = LS(T[a+ ,, a,,])‘> ... 5 V(T[@, al]). 

We must see that this definition is independent of the choice of maximal 
chain. It is possible to move from any maximal chain to any other by a 
finite sequence of steps each of which involves replacement of a single ai by 
another level. To see this, note that a maximal chain amounts to a linear 
order on f which relines the partial order, and observe that we can pass 
from one such linear order to any given new one by interchanging 
consecutive pairs of elements to move them into the new order. To see that 
V(f) is well defined now comes to showing that, for levels a c b c c and 
acb’cc where b-a={brJ=c-b’, c-b= {y)=b’-a, we have 

V(T[b, c])~zT[r[a, b])=C(T[b’, c])cV(T[a, b’]). 

Since X, y are incomparable, the diagram r[a, c] is elementary and 
Proposition 2.1 applies to show that both sides of the last equation are 
equal to C(r[a, c] ). 

An isomorphism f: I--+ Q of progressive polarised diagrams I-, $2 is an 
isomorphism of graphs with boundary which preserves orientation and the 
orders on each input and output, and is compatible with the valuations. 

THEOREM 2.2. If f :  I-+ $2 is an isomorphism of progressive polarised 
diagrams in a symmetric tensor category $‘- then the square 

(v(s)IsEdom r)A (v(s’)(s’~dom Q) 

O(f) 
I I 

o(n) 

(v(t)ItEcodf) N\ (v(t’)lt’EcodQ) 
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commutes in +> where the horizontal isomorphisms are determined by the 
bijections dom r N dom Q, cod r = cod 52 induced by f: 

A progressive graph I- is called anchored when it is equipped with linear 
orders on dom r and cod I7 In this case, V(T) determines a map 

0(r): 0 u(s) + 0 zq) 
Jtdomr rGcodl- 

in Y^. An isomorphism f: r+ Q of progressive graphs is anchored when 
the bijections dom I- = dom Sz, cod r= cod Q induced by f are order 
preserving. 

COROLLARY 2.3. If f: r -+ Q is an anchored isomorphism of progressive 
polarised diagrams then v(T) = v(Q). 

2. Free Symmetric Tensor Categories 

Suppose I’, YV* are symmetric tensor categories. A tensor functor 
I? 9- --, w- is called symmetric [lo] when, for all A, BE obj V, the 
following square commutes: 

F(A)Of’tB) )z F(AOB) 

c 
I I 

F‘ 

F(B)@ FA 4z + 4BOA) 

Write STen( V, w) for the category of symmetric tensor functors Y- + I’V 
and tensor transformations between them. 

DEFINITION 2.1. A symmetric tensor category F is said to be free, on the 
tensor scheme 9, when there exists an object N of [9, F] such that the 
functor 

--o N: STen(9, P”) + [9, F”] 

is an equivalence of categories for all symmetric tensor categories V. 

The notion of valuation v: r-+ 9 of a progressive polarised graph r in 
a tensor scheme 9 is defined just as for a progressive plane graph (Chap- 
ter 1, Section 4). Call (r, v) a progressive polarised diagram in 9. When r 
is anchored, the domain [codomain] of (r, v) is defined to be the word 
v,(z,)~~~v,(z,) where z, < ... <z” are the elements of dom r[cod r]. 

The tensor product r’ @ T2 of two progressive polarised diagrams r’, 
r’ is the diagram whose graph is the disjoint union r’ + r2 (with inner 
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nodes those of f1 and of Z-“) and whose valuation restricts to rl, T2 to 
give their valuations. 

Suppose r, Q are anchored progressive polarised diagrams in 9 with 
cod(r, u) = dom(Q, a) (as words in the elements of obj 9). This produces 
an order-preserving bijection cod Tz dom 52. The composite I2 0 I- is the 
diagram defined as follows. The graph is obtained from the disjoint union 
.Q + I- by identifying the outer nodes which correspond under 
cod r 1 dom 52. The inner nodes and edges are those of r and of 52, except 
for the edges of r which have target an outer node and the edges of 52 
which have source an outer node; these edges pair up via corresponding 
outer nodes, each pair contributing an edge to QU K As paired edges have 
equal values, we obtain a valuation on C2 0 K 

For each tensor scheme 9, there is a symmetric strict tensor category 
F,(9) defined as follows. The objects are words in elements of obj $8. The 
morphisms are anchored isomorphism classes of anchored progressive 
polarised diagrams in 9. The domain, codomain, composition, and tensor 
product are induced on anchored isomorphism classes by the corre- 
sponding operations on diagrams. The symmetry c,,,,,: VW+ WV, where 
V, W are the words X, . X,, Y, . . Y,, , respectively, is the anchored 
isomorphism class of the achored diagram (r, u) described as follows. The 
graph r is the union of m + n disjoint closed intervals [a;, hi], [c,, d,] 
(i= 1, .,., m; j= 1, . . . . n) with their natural orientation and with no inner 
nodes. The anchoring of r is given by 

domr={a,< . . . <u,,,<c,< . . . CC,) 

codr=(d,< ... <d,<b,< ... <b,]. 

The valuation is given by 

~,(a,, bi) = Xi, UC,, d,) = Y,. 

THEOREM 2.3. F,(9) is the free symmetric tensor category on the tensor 
scheme 99. 

Proof: The fact that [F,(9) is a symmetric strict category is 
straightforward. Each progressive plane diagram is an anchored 
progressive polarised diagram (yielding ff(9) + 5,(g)), so we have an 
object N of [9,lF,(B)] defined as in Theorem 1.3. As in the proof of 
Theorem 1.3, we take V to be strict tensor category, this time, with a sym- 
metry. The proof then follows closely that of Theorem 1.3. If (r, u) is the 
diagram in the definition of the symmetry on IF,(a) then the value (Ku)(T): 
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TVQ TW-, TWQ TV can be seen, from the definition, to be (cc), where 
CI is the permutation 

i m+l 1 m+2 2 . ... . m+n n n+l 1 n+2 2 ... . m+n n > ’ 

It follows that T is symmetric. The remaining details are left to the 
reader. 1 

CHAPTER 3. BRAIDED TENSOR CATEGORIES AND 3D-DIAGRAMS 

1. Braided tensor categories 

Suppose V is a tensor category. We suppose for simplicity that V is 
strict. 

Recall [17, IS] that a braiding for 9“ consists of a natural family of 
isomorphisms 

c=c,,.:AQB+BQA 

in %’ such that the following two diagrams commute: 

The pair (“I/, c) is called a braided tensor category. Recall [ 17, 181 that 
commutativity of the following Yang-Baxter hexagon is a consequence of 
(B) and naturality: 

AQCQB “@‘rCQAQB 

(YB) AQBQC CQBQA 

c@l 
\ / 

cc91 

BQAQC ,Bc+ BQCQA 
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EXAMPLE 3. A brniding for a k-algebra A is an invertible element 
;I E A 0 A such that 

y.d2)=A .I 

where, for example, (?I!. is the image of r E A @A @A under A @A 0 A -+ 
A @ A 0, a, 0 a2 0 a, H a, @ a, 0 u3. (Braided bialgebras are called 
“quasitriangular” by Drinfel’d [7].) Braidings e: V@ W-, W@ V for 
Mod(A) are in bijection with braidings for A via the formula 

A tensor functor F: Y - + X  ̂ (Chapter 2, Section 2) between braided 
tensor categories Y”, #. is called braided when the following diagram 
commutes: 

FA@FB” F(A 0 B) 

4 1 

F‘ 

FB@FA i * F(BOA) 

Let us recall the notion offimdamentaf group&d TC,(X) of a space X. This 
is the groupoid whose objects are the points s of the space X and whose 
arrows [IO]: x + J’ are homotopy classes of paths of paths o: [IO, l] +X 
with o(O) = -Y, o(l) = .v, where the homotopies are constant at the end- 
points. If n is any set and p: A --P X is a function, we write x,(X, p) for the 
groupoid whose objects are elements of /1 and whose arrows ,J + p are just 
the arrows p(i&) + p(p) in n,(X). The obvious functor 

is an equivalence of groupoids provided z,(p): A -+ n,(X) is surjective 
(where no(X) is the set of path components of X). 

Let C, denote the space of subsets of the Euclidean plane R2 of 
cardinality precisely n. The configuration space C qf distinct poitits in 58’ is 
the disjoint union 

c= 2 c,,. 
II z 0 

A path o from S to T in C can be depicted by a diagram as in Fig. 3.1, 
where w(t) is obtained from the intersection of the curves with the horizon- 
tal plane R’ x { t). 
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FIGURE 3.1 

Define a function p: N -+ C by 

p(n) = (1, 2, . . . . n}, 

where 1, 2, 3, . . . denote integer points on the x-axis of IL!‘. 
The braid category B is defined to be the groupoid IZ, (C, p). For WI # n, 

the homset B(m, n) is empty. The group B(n, n) of automorphisms of n in 
B is precisely the braid group B, on n strings in the sense of Artin [2]. For 
1 < id n - 1, let sip OS,, be the homotopy class of the path depicted in 
Fig. 3.2. A presentation for the group B, is given by the generators sj for 
1 < i Q n - 1 and the relations 

(Al) S~Si+lS~=S~+ISiSi+I for 1 <idn-2 

(A21 s;s, = sjsi for /i-j1 > 1. 

A presentation for the symmetric group SE on n symbols is obtained by 
imposing the extra relation 

sisi = 1. 

It follows that we have a canonical surjective homomorphism 

1 2 i i+ 1 n 

FIGURE 3.2 
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The braid category 5 becomes a strict tensor category by means of the 
operation of addition qf braids 

depicted by juxtaposition of diagrams. The unit object I is 0. A braiding for 
B is given by the arrows 

C=C ))l.), : 112 + n --f n + nz 

illustrated by Fig. 3.3. 

THEOREM 3.1. B is the free braided strict tensor category on one 
generating object. 

Proof: The statement means that, for each object A of a strict tensor 
category -t“, there is a unique braided strict tensor functor F: iEB --t $“ with 
Fl = A. On objects F is defined by 

FH = A @J ” = A @ . @ A (II terms). 

On arrows F is given by the monoid homomorphism 

F: B,,-t Y‘(A@‘“, A@“) 

determined by putting 

Fs;= l,+ ,, OC~.,~O~~(~~~~,~:AO”~AO”. 

,I W1 
-̂ - -- 

1 2 3 4 5 6 I 

1 

n- 

I 2 3 4 5 6 I 

-.- 

n, ,I 

FIGURE 3.3 
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That this homomorphism is well defined follows from the Yang-Baxter 
hexagon (YB) and the functoriality of tensor which show that relations 
(Al), (A2) are respected. That F is braided follows inductively from the 
conditions (B) on a brading. 1 

We shall have need for a version of B which is “labelled” by the 
morphisms of some category ,oZ. 

First we describe the category El,, ( d of braids on n labelled strings. The 
objects of 5,s G! are n-tuples of objects of d. The arrows 

(a; f,, fi, . . . . .L): (A,, A,, . ..T A,,) -+ (B, > B?, ...> B,) 

consist of c1 E B,, and f,: A i -+ BSci, in d for 1 < i d n (illustrated in Fig. 3.4). 
Composition of labelled braids is performed by composing the labels on 
each string of the composed braid. The operation of addition of braids 
extends obviously to labelled braids 

Now we define the braided strict tensor category IEK 5 .d of braids having 
their strings labelled by arrows of d to be the disjoint union 

with addition as the tensor product, and with braiding given by c,,, E IB 
labelled with identity arrows. Each arrow of d can be seen as a braid on 
one string d = B, (&‘, so we have an inclusion ,oZ 4 B Id. Theorem 3.1 
generalizes to the next result which can be proved similarly. 

THEOREM 3.2. B 5 d is the free braided strict tensor category generated 
by d. 

FIGURE 3.4 
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This result should be compared with the consequence [23], of 
MacLane’s coherence result that 

is the free symmetric tensor category generated by .d. The meaning of our 
result is that each functor T: d -+ I into a braided strict tensor category 
1.. has a unique braided strict tensor functor F: IL% I& -+ 1^ extending it. 
For each functor S: .d + A?, we thus have a braided strict tensor functor 

whose restriction to SI is the composite 

Extending the identity functor of any braided strict tensor category Y -, 
we have a braided strict tensor functor 

which assigns to each (c(: fi , . . . . ,f,,): (A,, . . . . A,,) + (B, , . . . . B,) in B, 5 Î ̂  and 
arrow CI [fr , . . . . f,]: A,@ ... OA.-+B,O ... @II, in Y*. In particular, we 
have an operation of substitution qf braids 

@:5$5-*5 

as illustrated in Fig. 3.5, and also of d-labelled braids 

@:515$d+5[EBI.d 

The following commutative square expresses the associativity of 
@:lBjV+$‘: 

FIGURE 3.5 
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2. Progressive Polarised 30 Diagrams 

This section concerns the diagrams appropriate for braided tensor 
categories. An explained at the end of Chapter 1, Section 2, we shall use 
smooth graphs henceforth. 

Let a <b be real numbers. We shall often make use of the front projec- 
tion 

fr: R2 x [a, b] + 52 x [a, b] 

given by fr(x, 2: t) = (x, t). 

DEFINITION 3.1. A progressive polarized (smooth) 30 graph (between the 

levels a and 6) is a smooth embedded graph r (with boundary) in 
iw’ x [a, b] such that 

(i) ar=(R8’x {a,b})nrand the edges meet R’x {a,bj transver- 
sally, 

(ii) the second projection 

pr,: R’x [a, b] + [a, b] 

is a smooth embedding on each connected component of f - Z-,, 

(iii) for any pair of distinct edges yl(s), y?(s) with y,(O) = y>(O) 
[yl( 1) = y2( l)], the unit tangent vectors at s = 0 [s = l] of the projected 
curves fr y,(s) and fr yz(s) are distinct. 

Each progressive polarised 3D-graph is both progressive and polarised in 
the sense of Chapter 1, Section 2. Each edge e will be given the orientation 
with pr, e(0) < pr, e( 1). Condition (ii) excludes circles and circuits. The sets 
in(x) and out(x) are linearly ordered as follows. If u E [a, b] is chosen 
smaller than but close enough to pr,(x), each edge y E in(x) meets the plane 
R’ x (~3 in a single point which is different for different edges. So the front 
projection defines a bijection between in(.u) and a subset of R x {u}, and so 
induces a linear order on in(x). Similarly for out(s). 

A number u E [a, b] is called a Regular level for r when the plane 
R2 x (u} contains no inner nodes. If u < o are regular levels of f, we write 
r[u, v] for the graph l-n ( R3 x [u, U] ) whose set of inner nodes is 
r,n (R’x (u, v)) and whose set of outer nodes is Tn (R’x (u, v}). The 
graph f [u, v] is a progressive polarised 3D-graph between the levels u and 
v; it is called a layer of I7 

There is also a concept of tensor decomposition for a 3D-graph f which 
we shall now describe. By a standard rectangle R G R’ we mean a product 
(a, p) x (y, 6) of two open intervals. A tensor decomposition of I- is a family 
(TR I R E 9) of subgraphs TR of r indexed by a set W of pairwise disjoint 
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standard rectangles R E R* such that TR G R x 52 for each R E 45’ and I- is 
the union of the TR. We denote this by 

r= 0 P. 
RE.8 

DEFINITION 3.2. A deformation of progressive polarised (smooth) 30 
graphs (betwleen levels a and 6) is a continuous function 

h:Tx[O,l]+IW’x[a,b] 

such that, for all t E [0, 11, the function 

h( -? t): r-+ IR* x [a, b] 

is a smooth embedding of (r, ?Ir) whose image (r(t), ar( t)) is a 
progressive polarised 3D-graph between levels a and b (Definition 3.1), and 

$4Y(SL t) 

is a continuous function on [0, 1 ] x [0, 1 ] for each edge y of r. 

For each inner node x of r, we can define in(.u) and out(?c) as ordered 
sets just as in the plane case (Chapter 1, Section 3). 

A valuation r --f V, ̂ of a progressive polarised 3D-graph r in a braided 
tensor category 3’ is defined precisely as in the plane case (Definition 1.3). 
The pair (r, tl) is called a progressive polarised 30 diagram. The domain 
and codomain of a diagram (r, v) are families 

dom(r, D) = ( v,~(z) 1: E dom r), cod(I-, o)= (u,,(z)(cEcod r) 

of objects of Y - indexed by finite subsets dom r, cod r of the planes 
R’x {a}, R’x jb} (here an edge in dom r [cod r] is identified with its 
source [target] in ar). 

Valuations restrict to layers and to components of tensor decompositions 
just as in the plane case. Also deformations of diagrams are defined in the 
obvious way. 

Just as in the symmetric case, to define the value v(T) of a diagram, we 
need the domain and codomain of r to be linearly ordered. Because we 
first need to define the value of layers which do not have such linear orders, 
we again define the value fi(r) in an extension ‘I> of the braided tensor 
category Y ̂ . We are able to define $” and t?(r) for prime and invertible 
diagrams r without further preparation. In order to define V(T) for all r 
and to prove it deformation invariant, we shall develop some topological 
constructions. 

For finite subsets S, T of the plane R’, each arrow CI: S + T in the 
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fundamental groupoid z,(C) determined a bijection cc: S + T. If A,, . . . . A, 
are objects of 7“ and LY: p(n) -+ p(n) is a braid we write 

for the value of @ : B 5 ̂ L“ -+ %- at the braid c( labelled by identity arrows 
(this uses the braiding on Y). 

The objects of the category Y’ are families (A,ls~ S) of objects A, of I’ 
indexed by finite subsets SE C of Iw’. To each such object there corresponds 
a clique 

& A,,,,la:p(n)-,Sinn,(C) 
k=l 

in Y where the required maps u%,~ for the clique are given by 
u,,~ = (b-b). A n arrow in $7 is a map of the corresponding cliques. 
Regarding each object of 3” as a family indexed by p( 1) E C, we obtain an 
inclusion 3’ -+ P which is an equivalence of categories. 

A diagram r is called invertible when it has no inner nodes. Such a r 
determines an arrow y: dom r+ cod r in z,(C) for which the following 
triangle of functions commutes: 

dom r i’ + cod r 

The identity arrows v&(i)) + v,(y(cc(i))), where a: p(n) -+ dom r and 
i E p(n), determine an arrow 

G(r): (II&) I s E dom r) + (u,(t) I t E cod r) 

in 4. This defines the value of an invertible diagram. 
A diagram r is called frontal when the restriction of the front projection 

fr: lR2 x [a, b] -+ iw x [a, b J to r is injective. In this case, the front projec- 
tion fr(T) of r is a progressive polarised plane diagram and we can define 
the value of r by 

v(r) = v(fr(r)) 

(see Chapter 1, Section 3) which is an arrow of I“, and hence can be 
regarded as an arrow V(T) of Q. 

A diagram r is called prime when it is frontal, connected, and has 
precisely one inner node. In fact, we shall not need the above value of a 
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general frontal diagram, only of prime ones, in which case o(f) is just 
II,( where ,Y is the inner node of f. 

A subset of R2 is called frontal when the first projection pr, : R x R -+ R 
is injective on it. Frontal subsets are naturally linearly ordered since pr, 
establishes a bijection with a subset of R. If I- is frontal then so are dom I- 
and cod IY 

A diagram r is called elementary when it has a tensor decomposition 

in which each component TR is either invertible or prime. We would like 
to define 

C(f)= 0 V(fR), 
R E .M 

and so must develop the precise meaning an properties of @ Rc ,#. This 
leads us to the following topological considerations. 

Let C[n] denote the space of injective functions [ 1, n] + R’ as a 
subspace of I??‘)‘. The symmetric group $5, acts on C[n] by restriction of 
the action on the n-fold power of R’. Then 

c,, = anw,, 

Let U[n] denote the universal covering space of C, with basepoint 
p(n) = (1, 2, . . . . n> E C,. The points of U[n] are arrows IY: p(n) * S in the 
groupoid n,(C). Also iEb,,= n,(C,,, p(n)), which can be regarded as the 
group of deck transformations, acts on U[n] and we have 

C, = WnlP,, 

Furthermore, U[n] is the universal covering space of C[n], and the group 
of deck transformations here is the pure braid group P,, (which is the kernel 
of B, -+ S,); so 

CCnl = WfilP,,. 

For any space X, we put 

C(X) = C C[n] x X”/S’, 
n 2 0 

which is the space of finite sets of points in the plane labelled by X. Note 
that we also have 

C(X) = C U[n] x X”/B,,. 
n 3 0 
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(because the action of P, on X” is trivial). 
Using these constructions, we now enrich 9> which the structure of 

topological category; that is, we equip the sets Y< of objects and $7 of 
arrows of -r’; with topologies such that the source and target functions 
d,, d, : $$ -+ qI;, the function Fi + qr taking each object to its identity, and 
the composition function, are all continuous. 

Define the set H[m, n] to be the pullback 

where d,, d, : 9; + K are the source and target functions for the category 
Y- and 

0 (A,, . . . . A,)=A,@ ... @A,. 

Elements of H[m, n] will be denoted by expressions 

m  ” 

f: @ Ai+ @ Bj. 
i=I /=I 

The group B, x B, acts on H[m, n] by means of the formula 

The space %<,, 9; are defined by the equations 

-i; = C(Vh) = c zqn] x vgl3, 
” 

and 

$7 = c U[m] x U[n] x H[m, n]/B, x 8,. 

Source and target maps d,,, d, : F; -+ V;f are induced by the equivariant 
projections 
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and provide the covering projection for 97 as a covering space of %< x $:. 
(This implies that the horns of $7 are discrete spaces since covering projec- 
tions have discrete libres,) the composition map 

is induced by the B,,, x B,, x B,-equivariant function 

HCW nl x I ;, ffC4 PI + ww PI 

defined using composition in %“. 
Tensor decompositions involve families of pairwise disjoint rectangles in 

the plane. To deal with this we introduce the space D of configurations of 
“little rectangles” in R’ which has the same homotopy type as the space C 
of configurations of points in R’. 

More explicitly, let D[n] denote the space of ordered n-tuples 
(R, , . . . . R,) of nonempty pairwise-disjoint (open) standard rectangles 
R,c R’. Put 

D=D[n]/S, and D= c D,,. 
?I20 

The map D[n] + C[n] taking each n-tuple of rectangles to the n-tuple 
of centres is a homotopy equivalence which induces a homotopy equiv- 
alence D --f C. For any space X, define 

D(X)= c D[n]xX"/Sn, 
X20 

the space of configurations of “little rectangles” labelled by points of X. 
In particular, we have the space D(C) of little rectangles labelled by finite 

sets of points in R*. Let [C] c D(C) be the subspace where the labelling 
sets of points are contained in the labelled rectangle; that is 

[cl= (S,~)ISEC,~EE,SC u R 
R E d 

Then we have the isomorphisms of groupoids 

Note that each covering projection X -+ Y induces covering projections 
C(X) -+ C( Y) and D(X) -+ D( Y). 
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Each covering space X of C determines a covering space [A’] of [C] via 
the pullback 

1 p.b- 1 
cc1 - D(C) 

The fibre over p = (S, .!%‘) E [C] is given by 

where X, is denoting the fiber of X over A E C. 
We also have need of the space 

[a = {(S, R,, B2)/ (S, L#~)E [C] and 9, is a refinement of B2}. 

(92, is a refinement of B2 when each rectangle in ~2~ is contained in some 
rectangle in B?.) We have a diagram of projection maps 

given by P(S, .@I = S p,(S, %, %) = (S, %I, and PAS, %, 9%) = (S, 9%). 
Each covering space X of C yields a covering space [XJ of [CJ whose 

fibre over q = (S, %‘I) B2) is given by 

uxDq= n XSnR. 
REYP, 

Thus we have a diagram of spaces and maps 

ucn pI cc1 - D(C) C 

Suppose @ : [X] + X is any map over [C] + C. For each (S, 2) E [C] 
and each (zRl RE%?)E [Xl, where zR~XRnS for REL%?, we obtain an 
element 



GEOMETRYTENSORCALCULUS.1 95 

We say that @ : [X] +X is associative when it satisfies the axioms 

(i) @ zR=zR, and 
RE (RI) 

Axiom (ii) amounts to commutativity of the square 

where, for y = (S, 9, , 8,) E [Ia and (c, 1 R E 9, ) E [TXq y, the left side of the 
square is given by 

[@](z,lR~a,)= @ =,/R’E&‘, . 
Rc_R’ > 

In this case we call @ a multiplicative structure on the covering space X 
of c. 

A covering space X of C corresponds to a functor F: B --f Set where 
FCnl = xp,n, and the action of B, is from path lifting. Conversely, X can 
be entirely reconstructed from F via the formula 

x= 1 U[n] xF[n]/B,. 
n30 

A multiplicative structure on a functor F: B + Set is a natural family of 
functions 

F[m] x F[n] + F[m + n], (u, v) ct u 0 v, 

which is associative with a unit element iE F[O] and satisfies 

F[c,,,](uOv)=vOu. 

(That is, F is a “braided monoidal functor” or “braided lax tensor 
functor”.) 

PROPOSITION 3.3. The multiplicative structures on X are in hijection ulith 
those on F. 



96 JOYAL AND STREET 

Proof: Let cl(F) denote the category of elements of F. Using the multi- 
plicative structure on F, we can define a unique structure of braided tensor 
category on cl(F) such that the functor cl(F) -+ B is a braided strict tensor 
functor. By Theorem 3.2 we obtain a braided strict tensor functor 
@ : B Iel(F) + cl(F) whose restriction to cl(F) is the identity functor. 
Furthermore, we have the associativity property 

Also F: El + Set extends to a unique braided strict tensor functor 
l? [EB 5 B + Set, which, in turn, extends to a unique braided strict tensor 
functor l? B $8 5 E8 + Set. Note that 

cl(g) = B 5 cl(F) and el E= B I B 5 cl(F). 

Thus we have a commutative diagram of functors 

el(?) : cl(p) @ ) cl(F) 

(the top and bottom parts of the forks are producing two commutative 
squares). Given the equivalences 

Zl(C) = B, n,[Cl N B I B, and ~,nca=~I BSb 

it is routine to check that the diagram transforms into a commutative 
diagram 

The reader will have no difficulty in modifying the above constructions 
and Proposition 3.3 to the case where X is a covering space of Cx C with 
associated covering space [XJ of 

[CxC]= (S,T,R)IS,TEC,~~D,S,T~ u R 
R E .99 

and F is the corresponding functor B x B -+ Set. 
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In particular, we wish to apply Proposition 3.3 to the covering space $-i 
of C x C with covering projection the composite 

- ~;~c(~,)xc(~~)+cxc, 

(where C( Y 0) -+ C is induced by the projection f 0 -+ 1). The corresponding 
functor 

H: B x El + Set, 

has a canonical multiplicative structure 

H[nz, n] x H[nz’, n’] -+ H[m’ + m’, n + n’] 

(AL B, CA D)H(A@C- B@D). 

Thus we obtain a corresponding multiplicative structure 

on Y<. The advantage of this construction is that we now have the 
continuity and associativity of 0. However, an explicit description will be 
given below. 

First note that arrows (A,$1 s E S) -+ (B, 1 t E T) in r are determined 
uniquely by triples (a, J b), where CI: A4 + S, /I: N -+ T are arrows in rrc,(C) 
with M, N frontal, and 

f: 0 A,,;, + 0 B 
ie M 

,EN Y(J) 

is an arrow of Y . . This is because each frontal Mc R’ has a canonical path 
A4 -+ p(m) obtained by projecting M onto the x-axis and sliding the points 
along the x-axis. 

Elements 4 of [g;] are families [4R] RE d of arrows 

in Y? indexed by RED, where S=U..,SnR, T=U.c,MTnR~C. The 
arrow 

@ q4= @ dR: (A,lsES)+(B,IteT) 
R E .# 

can be described as follows. Choose any arrow (a, /I, y): (M, N, &,) -+ 
(S, T, 9) in rc,( [ C x C] ), where M, N are subsets of the x-axis and LJ& is 
a set of pairwise disjoint rectangles with centres on the x-axis (so that ~2&, 
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is naturally linearly ordered). The arrows c(: M + S, /?: N + T in 7c,( C) 
restrict to arrows c(~: A4, + S n R, bR: N, -+ Tn R, with M, E M, 
NR c N. So dR is represented by a triple (cx,, fR, PR) where 

fR: 0 A.,qti, + 0 BB,q(j) 
iEMR itNR 

is in Y“. Then @ 4 is represented by the triple 

( 
& 0 &i&,3 P). 

PC% 

From the above description it is easy to deduce the following 
jiinctoriality of 0 : 

0 lClRO 63 dR= 0 tiRO4R. 
RGd R E d RtB 

Let us return to the definition of U(T). For elementary r = @ RE Jp TR, 
we have an element 

(C(TR)I RE&?)E [<I 

and we define 

U(T) = 0 E(TR). 
REl 

That this definition is independent of the tensor decomposition follows 
from the associativity of 0. Furthermore, using functoriality, we can prove 
the analogue of Propositions 1.1 and 2.1. 

PROPOSITION 3.4. If u is a regular level for an elementary diagram r 
between levels a and b then r[a, u], r[u, b] are elementary, and 

V(r) = o[r[u, b]) n v(T[a, u]). 

For any progressive polarized 30 diagram r between levels a and b, we 
now define 

iqr)=v(r[u,~,,2d,l)o . . . ov(r[u,,ul]) 

where a= uO< u1 < . . . <u, = b are regular levels for r such that each 
layer r[u,-l, ui] is elementary for 1 Q i< n. (The existence and inde- 
pendence of the regular levels is just as for the plane case in Chapter 1.) 

Before presenting the main result of this chapter, we shall point out that 
arrows y: S -+ T in the groupoid n,(C) induce canonical isomorphisms in 
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+?. Suppose (,4,Js~ S), (I?,/ t E T) are objects of F such that B+) = A,. 
There is an isomorphism 

in F determined by the triple (a, f, y 0 a), where a: M -+ S is any arrow of 
n,(C) with M frontal and f is the identity arrow of GiE,,, A,,;,. 

THEOREM 3.5. For any d<formation 

h:Tx[0,1]+R2x[a,b] 

of progressive polarised 30 diagrams in a braided tensor category 3”, the 
square 

(u(S)I.sEdom r(O))- (u(S)ISEdomr(l)) 

txno)) 
I I 

ocr(l)) 

(u(t)ltEcod Z-(O)) ly ) (v(t)ltEcodf(l)) 

in 4 commutes, where the horizontal isomorphisms are induced by the paths 
rt-+dom~(T), zHcodI-(T) in C. 

Proof By compactness and connectedness of [0, l], it suffices to show 
that, for all r. E [0, 11, the square 

(v(s) Is E dom r(t,)) -z-+ (u(s) 1 s E dom T(T)) 

LYF-lro)) 
i i 

a( 

(u(t)lt~codT(~~)) A (/I(f)ItEcod r(r)) 

commutes whenever T is close enough to TV. As in the proof of 
Theorem 1.2, by choosing appropriate regular levels for T(z,) and 
restricting attention to the layers, we can assume f(r,) iS elementary. so 
f(z,) = @ RE d Lo where each I-(T~)~ is either prime or invertible. For 
r near z. it foiiows that T(r) = @JRE,# f(~)~, where f(z)" is of the same 
nature as TV. The deformation h provides a path 

in [<I. By continuity of @ : [ <] -+ YT, it follows that, for T near TV, we 
have V(T(r)) near V(~(T,)). So the two legs of the square are dose in 7;. 
But (do, d, ): $7 + g x %70 is a covering projection and so has discrete fibres. 
Since the two legs of the square have the same source and target in Pi, 
their closeness implies their equality. 1 
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A diagram r is called anchored when dom r and cod r are frontal. In 
this case, 6(r) determines a map 

in Y^. A deformation of diagrams is anchored when r(t) is anchored for all 
fE [O, 11. 

COROLLARY 3.6. Zf h: TX [0, l] --f R2 x [a, b] is an anchored deforma- 
tion or progressive polarised 30 diagrams in a braided tensor category V 
then 

4ww = vu-( 1)). 

3. Free Braided Tensor Categories 

Suppose I,“, 9” are braided tensor categories. A tensor functor 
I;: V“ + %“ is called braided [ 17, 181 when it respects the braiding (in the 
same way that a symmetric tensor functor respects the symmetry; see 
Chapter 2, Section 2). Write BTen(Y, W-) for the category of braided 
tensor functors V- -+ 9’ and tensor transformations between them. (In fact, 
BTen(V”, %“) = STen( P”, w) when V, 9” are both symmetric.) 

DEFINITION 3.3. A braided tensor category 9 is said to be free, on the 
tensor scheme 9, when there exists an object N of [LP, S] such that the 
functor 

--o N: BTen(S, V) + [&9, II“] 

is an equivalence of categories for all braided tensor categories I,‘. 

A 30 graph I- will be called boxed when it is between levels - 1 and + 1, 
and it is contained in the cube (- 1, 1)2 x [ - 1, 11. Write r: m -+ n when r 
is anchored and m, n are the cardinalities of dom r, cod r. 

We shall use the functions y, T: R3 -P R3 given by 

y(x, y, t) = c-x, y, +t,, T(X, .I’, t) = (ix, y. t) 

and the points e, = (1, 0, 0), e3 = (0, 0, 1)~ R3. 
The tensor product r’ @ T2 of two boxed 30 graphs r’, T2 is defined 

to be z((T’ -e,) u (r2 + e,)) (as in the plane case of Chapter 1, Section 4). 
Suppose E m + n, 0: n -+ p are boxed anchored 20 graphs. The 

composite Qo L’: m + p is defined just as in the plane case (Chapter 1, 
Section 4) with e2 replaced by e,; however, the meetings across t = 4 and 
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t = 4 of the edges and line segments must be systematically made smooth. 
The order on the domains and codomains is given here by front projection. 

The notion of a progressive polarised 30 diagram (r, v) in a tensor 
scheme should now be clear. The domain and codomain are defined as 
words just as before, provided (r, u) is anchored. Tensor product and 
composition are extended from graphs to diagrams just as before. 

For each tensor category 9, there is a strict tensor category [F,(g) 
defined in the same way as E(9) except that “boxed progressive plane 
diagrams” are replaced by “boxed anchored progressive polarised 30 
diagrams”, and “deformation classes” are replaced by “anchored deforma- 
tion classes”. 

We now describe a braiding on E,(g). For this we use the canonical 
functor 

which is an isomorphism onto the subcategory of IF,(g) consisting of all 
the objects and arrows which are anchored deformation classes of inver- 
tible 30 diagrams. The braiding for B 5 obj 9 (Section 1) carries over via 
the functor to a candidate for a braiding for ff,(9). All that remains to 
check is the naturality with respect to all the arrows of E,(9). Every arrow 
is a composite of tensor products of classes of invertible diagrams and 
prime diagrams. So all that remains is the prime case, and this is indicated 
in Fig. 3.6. 

The pattern of proof established for Theorems 1.3 and 2.3 can be 
followed to yield 

THEOREM 3.7. F,(9) is the free braided tensor category on the tensor 
scheme 2. 

FIGURE 3.6 
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CHAPTER 4. BALANCED TENSOR CATEGORIES AND RIBBONS 

1. Balanced Tensor Categories 

Suppose I’ is a braided tensor category, 
Recall [ 16, 361 that a twist for $’ consists of a natural family of 

automorphisms 

t3=8,:A+A 

in ?“I“ such that 8, = 1, and the following square commutes: 

A tensor category together with a distinguished braiding and a 
distinguished twist is called balanced. 

EXAMPLE 4. A twist for the braided bialgebra (A, y) is a central element 
t E A such that the following two equations hold: 

E(Z)= 1 EK and d(r)=y.(zO~).y,,~AOA. 

Twists for (A, y) are in bijection with twists for the braided tensor category 
Mod(A). 

A tensor functor F: V” + W between balanced tensor categories “c’, W is 
called balanced when it is braided (Chapter 3, Section 1) and 

FO, = 0,. 

Let f~? denote the space C(S’) (see Chapter 3, Section 2) of finite sets of 
distinct points in the plane [w* labelled by points of the unit circle s’. 
Points S of ? are framed subsets of [w* depicted as in Fig. 4.1 (where the 

FIGURE 4.1 
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FIGURE 4.2 

magnitude of the directed line segment is irrelevant, and made small 
enough so that it does not meet any of the others). A path w  from S to T 
in c can be depicted as in Fig. 4.2. 

Let @: N -+ 2: be the function for which p(n) is the set of points 1,2, . . . . n 
on the x-axis all labeled by 1 E S’ = (z E C ) 12) = 1 1 (Fig. 4.3). 

The category B of braids on ribbons is defined to be the groupoid 
rr,(c, j?). Let si E 8, = @n, n) be the homotopy class of the path depicted 
in Fig. 4.4 for 1 < i < n - 1, and in Fig. 4.5 for i = n. A presentation for the 
group @, is given by the generators si for 1 6 i 6 n and the relations (Al), 
(A2) of Chapter 3, Section 1 together with the relation 

s ,, ~ 1 StP,, I Sri = s,,sn IS,S,- I’ 

The group lj%,, is the wreath product 

B,, = Z” x B,, 

obtained from the canonical homomorphisms B, + SX, since a braid on 
ribbons is completely described by a braid on strings labelled by integers 
n E Z indicating how many complete turns are performed on each ribbon of 
the braid. This leads us to the identification 

FIGURE 4.3 
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2 i i+l n 

FIGURE 4.4 

where 077 is the additive group of integers (as a one-object category). Hence 
@ is equipped with a braided strict tensor category structure: it is the free 
such structure generated by a single object with a single automorphism 
(Theorem 3.2). 

The tensor category B is balanced. The twist 6,: n + y1 can be viewed by 
taking the diagram for the identity arrow n -+ n in 8 consisting of n straight 
vertical ribbons, fixing the horizontal ends of the ribbons to two horizontal 
rods, and rotating the top rod through an angle of 271 in the right-hand 
screw direction with thumb pointing up (Fig. 4.6). In other words, 
8,=s,~D, and 

0 n+1= Cl.A~lO~,)c,,I. 

THEOREM 4.1. n is the free balanced strict tensor category on one 
generating object. 

Proof: We must modify the proof of Theorem 3.1 for s in place of El, 
and for V” balanced. To define a balanced F: III + 5 ̂  we require the extra 
equation 

For each category d, there is the category B (d of braids on ribbons 
labelled by arrows of d. In fact 

FIGURE 4.5 
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FIGURE 4.6 

THEOREM 4.2. k 5 d is the free balanced strict tensor category generated 
by x2. 

2. Progressive Polarised Framed 30 Diagrams 

This section concerns the diagrams for balanced tensor categories. 
For each point jV of the unit circle S’ c R’, we shall use the J.-projection 

e,: !R’ 4 R2, rH (L <>A; 

its image is the line joining 2 and the origin. The function 

ej. x 1: R2 x [a, b] -+ R2 x [a, b], (t, t)~ (e,(t), t) 

will also be the A-projection. 
A framing for a graph r is a continuous function fm: r+ S’. A graph 

equipped with a framing is called a framed graph. 

DEFINITION 4.1. A progressive polarised (smooth) framed 30 graph 
(between the Ievels a and b) is a smooth embedded graph E’ (with 
boundary) in W x [a, b], equipped with a framing, such that 

(i) aI’= f n (R’x (a, b)) and loose edges meet IF!’ x (a, b} trans- 
versally, 

(ii) the second projection 

pr,: I&!’ x [a, b] -+ [a, b] 

is a smooth embedding on each connected component of r- f,,, 

(iii) for any pair of distinct edges y,(s), yz(s) with r,(O)= ~~(0) =.Y 
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[y,( 1) = y2( 1) =x] and fm(x) = I*, the unit tangent vectors at s = 0 [s = 1 ] 
of the A-projected curves (ej. x 1) l’,(s) and (e; x 1) yJs) are distinct. 

The above Definition 4.1 differs from Definition 3.1 only in the presence 
of the framing and in condition (iii). Each 30 graph can be given the 
framing which is constant at (1,0) E s’: in that case the two conditions (iii) 
coincide. 

The comments which follow Definition 3.1 can be made here with minor 
obvious changes. 

A deformation of progressive polarised framed 30 graphs 

h: TX [0, l] --) R’x [a, h] 

is defined as in Definition 3.2 except that r should now be framed and each 
r(t), with the induced framing, should be a progressive polarised framed 
30 graph. 

Valuations are defined just as in Chapter 3, Section 2. This gives the 
notion of progressive polarised framed 30 diagram. The domain and 
codomain of such a diagram are families of objects Î  indexed by framed 
subsets of the plane. 

Henceforth, P’- will denote a balanced tensor category. We write g: S + T 
for the bijection determined by an arrow ct: S + T in the fundamental 
groupoid rcl( 2;). We write 

(Co: A,t,,O ‘.. OA,,,,+A,O ... @A, 

for the value of 0 : B ( ?’ 4 V‘ at a E n, labelled by identity arrows of the 
objects A, of V. 

There is a framed version of the category F of Chapter 3 which we 
denote by $‘“. Objects of 4 are families (A,s 1s~ S) of objects A, of Y’” 
indexed by framed subsets SE 2; of [w’. Each such object has an associated 
clique 

& A+., 1 cc P(n) + Sin n,(c) 
k=l > 

in T. An arrow in +7 is a map of the associated cliques. The inclusion 
3” --f Q is an equivalence of categories. 

The topological considerations of Chapter 3, Section 2 will now be 
modified to account for the framings. 

Let c[n] denote the space of partial maps from R* to the unit circle s1 
with domain of cardinality n. Putting C[n] x (S*)’ = c[n], we have 
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Let a[n] denote the universal covering space of ?,, at the basepoint P(n). 
We have 

c,, = O[n]/B,, and e[n] = B[n]/P,,, 

where P,, is the kernel of @,, + S,,. For any space X. put 

C(X)= c z’[tz] xX)1/s,,= c O[n] x Y/B,,. 
n20 II 2 0 

In fact, c= C(s’) and c(X) = C(s’ xX) (see Section 3). 
We write fi[m, n] for H[m, n] acted on by B,,, x @, (now that -I^ is 

balanced). We obtain spaces 

and 

F; = c O[m] x 6[n] x Fiqm, n]/B,, x B,, 
m. n 

which constitute a topological category Y? with 

(do, d,): 7y + 7; x ig 

a covering projection. 
The discussion of multiplicative structures (Proposition 3.3) will now be 

modified for the purposes of this Chapter. 
Let r,: R* 4 lR* denote the linear map represented by the rotation matrix 

( 

cos $4 -sin q5 

sin q5 cos q5 ) ’ 

where q5 = 27~. Each SE ?,, can be regarded as a subset S n R’ x s ’ c 
R* x IX*. The image (Y, x r,)(S) of S under the map 

is again in c,,. This gives a path 

yn: p-4 II+ c;,, t t-+ (y, x r,)(iQ)) 

in ?,, which is, in fact, a loop at P(n). The homotopy class of y,, is 
e.$r,(&-qn))=f3,. 
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A covering space X of 2; is called special when each path yn in ? lifts to 
a closed path (a loop) in A’. Multiplicative structures on such an X are 
defined, with the obvious changes, as in Chapter 3 and as indicated by the 
following diagram: 

We point out the equivalences of groupoids 

7c,(Z;) ‘v 5, n.l(Csil)~~I~, nl([z’n)2:515~ 8. 

A multiplicative structure on a functor F 0 + Set is defined just as for 
a functor B + Set (Chapter 3, Section 2) except that we now add the 
condition 

nen1 = 1 F[M, : F[n] -+ F[n]. 

PROPOSITION 4.3. The multiplicative structures on a special covering 
space X of ? are in hijection with those on the corresponding functor 
F: B + Set. 

The functor 

R: B x B -+ Set, Cm, n) t-b Rm, nl 

is multiplicative since tire,, Q,,] is the identity map. By Proposition 4.3, 
we obtain a corresponding multiplicative structure 

A framed subset M of R’ is called frontal when it is frontal as a mere 
subset and the framing is constant at (1,0) E S’. Arrows in p can be 
represented by triples (a, f, /3) where cr: M + S, 8: N + T are arrows in 
rrr(?) with M, N frontal and f is an arrow in %^ with appropriate source 
and targzt (compare Chapter 3, Section 2). With this, an explicit descrip- 
tion of @ : [$] + $ can be given and the functoria& proved. 

The value v”(T) E F; of a progressive polarised framed 30 diagram I- can 
now be constructed as in the unframed case (Chapter 3). 

Call f invertible when it has no inner nodes. Such a r determines 
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an arrow y: dom r-+ cod r in z,(c) with V,,O 1’ = oO. Using this (as in 
Chapter 3, Section 2) we obtain the value of r as an arrow 

Call f prime when it is connected, has precisely one inner node e, the 
A-projection e, x 1 is injective on r where i = fm(e) and moreover 
(I, p) > 0 for all values ~1 E s’ of the framing of r. In the particular case 
where i = (1,O) the diagram f is in a frontal position and its value 
17(r) E p, can be defined as in Chapter 3, Section 2. In the general case, let 
r be a rotation of the plane such that r2 = (1,O). The value i7( I-) can be 
defined by the formula 

L?(f) = r ‘v”( rT). 

Note that this formula is meaningful since the rotation group of the plane 
is acting on any special covering of 5; or ? x e. 

Call r elementary when it has a tensor decomposition 

r= @ rR 
R E .H 

in which each r R is either invertible or prime. Define 

G(f)= 6 lT(f”). 
R t d 

This is independent of the choices of 9 by associativity of 6. Proposi- 
tion 3.4 holds with ti replaced by 17. 

For an arbitrary r, define 

o”(r)=qr[unp,, U,])~ ... oa(r[u@ u,]) 

where a=u,<u,< . . . < u,, = h are regular levels for r such that each 
layer r[u,- , , u,] is elementary for 1 < i 6 n. The existence of such regular 
levels uses the continuity of the framing at the inner nodes. 

THEOREM 4.4. Theorem 3.5 holds with r framed, Y - balanced, and 5, f ^, 
C replaced by 27, ?, ?‘, respective!,). 

We also have the obvious modification of Corollary 3.6. 

3. Free Balanced Tensor Categories 

Suppose V‘, Y#- are balanced tensor categories. A tensor functor 
F: +- + dl- is called balanced when it is braided and has F(8,) = 0,, for all 
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objects A of V. Write BTen(Y-, YV) for the category of balanced tensor 
functors I‘ + %“ and tensor transformations between them. 

DEFINITION 4.2. A balanced tensor category 9 is free, on the tensor 
scheme 9, when there exists an object N of [9, S] such that the functor 

0 N: BTen(B, Y “) -+ [9, $“I 

is an equivalence of categories for all balanced tensor categories 9”. 

We now proceed as in Chapter 3 Section 3 introducing framing in the 
obvious way. This leads to the strict tensor category F,(9) whose arrows 
are deformation classes of boxed anchored progressive polarised framed 30 
diagrams. 

There is a canonical functor 

onto the classes of invertible diagrams. Using this, we carry the twist of 
B 5 obj 9 to obtain a twist for lF,(B). (The only point to check is the 
naturality with respect to classes of prime diagrams, and this is clear; we 
omit the picture.) 

THEOREM 4.5. [FE(~) is the free balanced category on the tensor 
scheme 9%. 
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