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1. INTRODUCTION 

The importance of the Gauss-Green theorem in mathematics and its 
applications is well recognized and requires no discussion. As the 
divergence of a noncontinuously differentiable vector field need not be 
Lebesgue integrable, it is clear that formulating the Gauss-Green theorem 
by means of the Lebesgue integral creates an artificial restriction. An early 
recognition of this fact led to the development of the Denjoy-Perron 
integral for which the unrestricted fundamental theorem of calculus (i.e., 
the one-dimensional Gauss-Green theorem) holds. In spite of many efforts, 
no substantial progress was made in the higher-dimensional case for nearly 
seventy years. Only in the eighties were several extensions of the multi- 
dimensional Lebesgue integral shown to integrate the divergence of any dif- 
ferentiable vector field (see [23, 22, 14, 16, 17, 15, 30, 26, 28, 27, 29, 311, 
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and others). Unfortunately, the averaging processes employed have serious 
deficiencies varying only in degree of severity. Some lack certain basic 
properties expected of any integral, others either are coordinate bound or 
cannot be applied to vector fields with many singularities, and all place 
unnatural restrictions on the domains of integration. 

In the present paper, elaborating on the ideas of Henstock [ 10, Sect. 51 
and Besicovitch [ 11, we define a variational type averaging process on the 
family BV of all bounded subsets of R” of bounded variation. Since this 
averaging process is not additive in the usual sense, we use it only as an 
intermediate gadget to which the extension method of Maiik (see [19, 12, 
18, 21, 311) is applied. As a result we obtain a well-behaved coordinate free 
integral which integrates the divergence of any bounded vector field con- 
tinuous outside a set of (m - 1)-dimensional Hausdorff measure zero and 
almost differentiable outside a set of o-finite (m - 1 )-dimensional Hausdorff 
measure. For such vector fields the Gauss-Green formula holds. 

The approach described above reaches the limits of generality. The 
family BV contains the most general bounded subsets of R” for which the 
surface area and exterior normal can still be profitably defined. Moreover, 
BV has a compactness property which has been utilized for solving varia- 
tional problems of geometric measure theory (cf. [S]), as well as for finding 
weak solutions of conservation laws (cf. [35]). As this important property 
is usually lost when restrictions are placed on boundaries of sets, it is criti- 
cal to have the integral defined on all members of BV. While we restricted 
our attention to bounded sets and bounded vector fields, the inclusion of 
arbitrary Caccioppoli sets and unbounded vector fields in our framework 
appears possible under appropriate growth conditions balancing the 
perimeters of sets against the magnitude of vector fields. No topological 
restrictions are placed on the exceptional sets for differentiability and con- 
tinuity, and in terms of the (m - 1)-dimensional Hausdorff measure, these 
sets are as large as one may hope for (cf. Remarks 5.20,2 and 10.10,2). We 
note that in the Lebesgue integral setting, our exceptional sets for differen- 
tiability were used in [34]. Since the integral is invariant with respect to 
lipeomorphisms (i.e., bilipschitzian maps) it can be applied to more general 
geometric objects than differentiable manifolds. 

Two important topics, integration by parts and interpretation of 
integrable functions as currents, are not included. They wil be addressed in 
a separate paper. 

Our paper is organized as follows. After some general preliminaries, we 
discuss sets of bounded variation in Section 3. Section 4 deals with con- 
tinuous additive functions of sets of bounded variation. It contains a proof 
of the fundamental result (Proposition 4.6), akin to Cousin’s lemma 
(see [22]), on which the further exposition is based. The variational 
integral is introduced in Section 5, and its Perron and Riemann type defini- 
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tions are given in Sections 6 and 7. Convergence among sets of bounded 
variation, defined in Section 8, is applied in Section 9 where the variational 
integral is extended to the continous integral. The final extension of the 
continuous integral is made in Section 10. 

2. PRELIMINARIES 

Throughout this paper, m 3 1 is a fixed integer. The set of all real num- 
bers is denoted by R, and the m-fold Cartesian product of R is denoted by 
R’“. For x= (t,, . . . . <,,) and y= (q,, . . . . q,,,) in R”‘, we let .u.y=~~=, <,qi, 
I/s// =fi, and 1x1 = max(lt/, . . . . I{,1 1. In R”, we use exclusively the 
metric induced by the norm 1.~1. If E c R”‘, then cl E, int E, bd E, and d(E) 
denote, respectively, the closure, interior, boundary, and diameter of E. For 
XER”’ and s>O, we set U(x,r)= {J’ER~: lx--~~I <E). 

A cube is the product of m bounded one-dimensinal invervals of equal 
positive length. A cube is called a square if m = 2. A dyadic cube is the 
product ny! l [ki2-“, (k; + 1)2-‘I) where k,, . . . . k,,, and n are integers with 
n 3 0. 

As is customary in geometric measure theory, a measure in a metric 
space X means always an outer measure in X (see [6, Sect. 1, p. 61). If k 3 1 
is an integer, we denote by &. the k-dimensional Lebesgue measure in Rk. 
We write i instead of lb,, and JEj instead of i,(E) for each E c R”‘. Unless 
specified otherwise, the words “measure” and “measurable,” as well as the 
expressions “almost all” and “almost everywhere,” refer to the measure &,. 

Let E c R” be measurable and let x E R’“. We say that x is, respectively, 
a density or dispersion point of E whenever 

lim inf IEn V-x, ~11 = l 
(2E)“’ 

or 
t-O+ 

lim sup IEn W-x, ~11 = o 
c-O+ (2&y* . 

The set of all density points of E is called the essential interior of E, 
denoted by int, E; the complement of the set of all dispersion points of E 
is called the essential closure of E, denoted by cl, E, The essential boundary 
of E is the set bd, E = cl, E - int, E. It is easy to verify that int E c int, E c 
cl, E c cl E, bd, E c bd E, and R’” - cl, E = int,(R’” - E). By 133, 
Chap. IV, Theorem (6. I ), p. 1171, the sets E, int, E, and cl, E differ only by 
sets of measure zero; in particular, 1 bd, El = 0. We call the set E dispersed 
whenever cl, E is a proper subset of cl E. 

EXAMPLE 2.1. Let m = 1, and let C be the Cantor set obtained from the 
interval [0, 1 ] by successively removing the open middle intervals of length 
2--2k-2, k=O, 1, . . . . The famiiy of 2k intervals, each of length 2 PZkP ‘, 
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removed at the kth step is denoted by ek. If A,, k> 1, is any connected 
component of [0, 11-u::; (uVj), then jAkl =2-‘-1+2-2k-1 and 
ICnA,l =2Pk-‘. Thus lim(JCnA,l/(A,l)=l. Now let XEC, and for 
k = 1, 2, . . . . let Ed be the least positive number such that the closure of 
Uk = U(x, sk) contains the component Ak containing x. Then / U,I < 2 lAkl, 
and we see that lim ,zk = 0 and 

liminflCnUk’>!. 
2Ek ‘2’ 

Thus C, being closed, is nondispersed. Moreover, int, C# fa because 
ICI > 0. As C is nowhere dense, the set [0, l] - C is dispersed. 

Later we shall need the following simple lemma. 

LEMMA 2.2. Let A c R” be measurable, let x E int, A, and let {Ed} be a 
sequence of positive numbers with lim E, = 0. If {A,) is a sequence of 
measurable sets such that A,, c U(x, E,) and lAnl > CI I U(x, en)1 for n = 1, 2, . . . 
and a fixed TV > 0, then 

lim IAn& 1 -= 
I4 ’ 

Proof Assume that lim inf( IA n A,l/ A,/ ) < p < 1, and find a y < 1 
such that 1 - y < ~(1 -p). For n = 1,2, . . . . let U, = U(x, 8,). Since 
lim(IA n U,J/l U,l) = 1, there is an integer p 3 1 such that (A n A,1 d /? lApl 
and ) A n U,l 3 y I U,l. A contradiction follows: 

IA n(UP-AP)l 2~ lU,l -P lApI 

=I~,l-I~pl-~~-~~l~,l+~~-P~I~,I 

~IAn(U,-A,)l+Ca(l-B)-(l-y)l lU,l 

> IA n (Up-Ap)l. 

COROLLARY 2.3. Let A c R” be measurable, let x E int, A, and let {B,} 
be a sequence of cubes such that x E cl B,, n = 1,2, . . . . and lim d(B,) = 0. 
Then x E cl,(A n B,), n = 1, 2, . . . . and lim( IA n B,l//B,l) = 1. 

ProoJ: Given an integer n > 1, there is an q >O such that for 
U,= U(x, n/k), k= 1,2, ,,., we have IB,nUU,I>,2-” IUkl. Thus by 
Lemma 2.2, 

lim inf IO n BJ n UA = lim inf IA n (4 n UJI I4 n UA 
k-m IUkl k-m I&nUA . IUkl > 

>2-” 



THEGAUSS-GREEN THEOREM 97 

and we see that .‘c E cl,(A n B,). Now if E,, = 2d(B,,), then B, c V(X, c,,) and 
1 B,,I = 4-“’ 1 U(x, sn)l. Hence the rest of the corollary follows directly from 
Lemma 2.2. 

By $9 we denote the (WZ- l)-dimensional Hausdorff measure in R” 
defined so that P(E) is the counting measure of E if m = 1, and 
#‘(E)=A,,-i(E) whenever ~82 and EcR”‘-.-’ (cf. [7, Sect.2.10.2, 
p. 1711). A subset of R” is called thirz if its X measure is a-finite. Thus the 
thin sets in this paper are appreciably Iurger than those considered in [28, 
311; in particular, they need not be compact. If T is a thin set, then I TI = 0 
by [6, Sect. 1.2, p. 71. A set E c R”’ is called, respectively, solid or opaque 
whenever cl E - cl, E or int, E - int E is thin. Clearly, a set is solid if and 
only if its complement is opaque. Each nondispersed set is solid but not 
vice versa (see Example 2.4 below). 

EXAMPLE 2.4. Let m = 2, let C and qk be as in Example 2.1, and set 

D= u u [Ux(O,2-‘“-‘)I. 
k=O C’t%i 

Since Y(bd D) = 5/2, we see that D is solid. On the other hand, 
C x {O} ccl D and it is easy to see that (x, 0) is a dispersion point of D for 
each x E int, C. It follows that D is a dispersed set. 

The next lemma follows from 16, Theorem 5.1, p. 651. 

LEMMA 2.5. There is a constant K > 0 depending only on m and having 
the follou*ing property: if E c R’” and Z(E) < a, then ,for each 6 > 0 \z’e can 
find a sequence {B,, 3 of &adic cubes of diameters less than 6 such that 

Unless stated differently, a “function” always means a real-valued 
function. If f is a function on a set A and B c A, we denote by f r B the 
restriction off to B; when no confusion can arise we write f instead off r B. 
The algebraic operations, order, and convergence among functions on the 
same set are defined pointwise. 

3. BV SETS 

A set of bounded variation (abbreviated as BV set) is a bounded 
measurable set A c R” such that the distributional gradient of its charac- 
teristic function is a vector-valued measure in R”’ whose variation oA, 
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called the surface measure of A, is finite. By [7, Sect. 2.10.6, p. 173, and 
Theorem 4.511, p. 5061, a bounded set A c R” is a BV set if and only if 
*(bd, A) < + co. For the rich theory of BV sets, which has evolved over 
the past thirty years, we refer to [S, 4, 20, 35, 7, 8, and 24, Chap. 61. In 
this section we merely summarize the basics and establish a few facts for 
future use. 

Let A be a BV set. Then a,(E) = X(En bd, A) for each E c R”. The 
number IIAI) = a,(R”) is called the perimeter of A. An XE R” is called a 
surface dispersion point of A whenever 

OACW, &)I =o 
,“Y+ (2&y- 

The critical boundary of A, denoted by bd, A, is the set of all x E R” which 
are not surface dispersion points of A. By [35, Sect. 2, Subsect. 43, 
bd, A c bd, A c bd A and #(bd, A - bd, A) = 0. The sets int, A = 
int, A - bd, A and cl, A = (cl, A) u (bd, A) are called the critical interior 
and critical closure of A, respectively. Finally, there is a Bore1 vector field 
nA on R”, called the Federer exterior normal of A, such that 

a,(@=[ IbAll d% and s 
div v dE,, = v.nA d;x 

B A 

for every X-measurable set B c R” and every vector field v continuously 
differentiable in a neighborhood of cl A (see [7, Chap. 41). 

The family of all BV sets, denoted by Sk’, is a ring (cf. [9, Sect. 4, p. 19)) 
and 

max( IIA u Bll, IIA n Bll, IIA - BII ) d IIA II + IIBII 

for all A, B in BV. Since cl,(A u B) = (cl, A) u (cl, B) for all A, B c R”, the 
families of all solid and all nondispersed sets are closed with respect to 
finite unions. Example 3.1 below shows, however, that neither family is a 
ring. There is a subring J$ of BV consisting of all BV sets whose boundaries 
are thin, or alternately, which are simultaneously solid and opaque. If 
EC R” is any set, we let BV,= {A E BV: A c E}. 

EXAMPLE 3.1. Assume that wz = 2. Let P= P,,, = [-l/2, 1/212, and 
denote by Q,,, the open square of diameter 3 Pi concentric with P,l. 
Divide P,, 1 - Q,, I into ,ronoverlapping closed squares P,,i, i = 1, . . . . 8, each 
of diameter 3 -l, and denote by Ql,i the open square of diameter 3 -’ con- 
centric with P,,i. Now divide lJF=, (P,,i- Ql,;) into nonoverlapping closed 
squares P,,i, i= 1, . . . . 82, each of diameter 3 -2, and denote by Q2,i the open 
square of diameter 3 -’ concentric with P2.j. Proceeding inductively, at the 
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nth step we construct closed nonoverlapping squares P,.,, i = 1. . . . . 8”, each 
of diameter 33”. and open squares Q,,,i of diameter 33”- ’ concentric with 
pn.i. 

Let R,,., be an open square of diameter 12 ‘I- 1 concentric with Q,,,i, and 
let 

R = i, fi R,,,, and S=P-R. 
,r=o I-1 

An easy calculation shows that /P,I.il =3 m2n and (Sn P,,,il = 
3 --‘I( 1 - 4 “I- l/34). Thus lim,, _ % (ISn P,J/lP,,, J) = 1. If .Y belongs to 

-L 8” 
Sn u i.) Q,e= ir (j (Q,,.i-R,,.ih 

rr=O i=l ,,=o ,=I 

then clearly x E cl, S. If s E S - U:= o lJ:l, Q,l,i, let E,, be the least positive 
number such that U,, = U(x, E,,) contains a P,,, containing ,v, Then 
I U,, d 4 I P,J, and we see that lim a,, = 0 and 

lim inf ISn U,,l 1 
(2&,,)’ 2- 4’ 

Thus again x E cl, S, and we conclude that S is nondispersed. 
Since C,“=, XyL, IIR,,JJ < + m, we see that R is a BV set, and hence 

Y(bd, R) < + cc. On the other hand, the set C= P- u:l,‘=, Ufl, Q,,,; is a 
subset of bd R, and it follows from [6, Theorem 8.6, p. 1221 that C is not 
thin. As R is open, it is not solid. 

The next proposition, suggested in part by the author, is due to 
G. Congedo and I. Tamanini (see [3,36]). It shows that any BV set can 
be approximated from inside by solid BV sets (cf. [S, Remark 1.27, p. 241). 

PROPOSITION 3.2. For euch BV set A there are nondispersed BV sets 
A,, CA such that lJA,,II < IIAj/ and IA-A,,1 d IlAll/n, n= 1, 2, . . . . 

Proof. Fix an integer n 3 1. Using the usual compactness argument in 
BV, (cf. [X, Proof of Theorem 1.20, p. IS]), it is easy to find an EE BV,, 
such that 

lIEI1 -n IEI G IIBII - 12 IBI 

for each BE BV,. Since B=A yields liEI < IIAll and II IA-El < IIAII, it 
suffices to show that E is not dispersed. 

Subtracting from E a set of measure zero, we may assume that 
IEn U(x, E)I > 0 for every I E cl E and every E > 0 (cf. [8, Proof of Proposi- 
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tion 3.1, p. 421). Select an x~cl E, and for t > 0 let U, = U(x, t). The 
inequalities and equations which follow hold for A-almost all t > 0; some 
hold for all t > 0, but this is irrelevant. The isoperimetric inequality (see [8, 
Theorem 1.29, p. 2.51) provides a positive constant CC, depending only on m, 
such that 

a6 IlEn U,/I . IEn ITI,~(‘~~)~‘. 

The minimality of E gives 

lIEI --n IEI < IV- U,II --n IE- Utl, 

and hence using the equations 

IlEn u,II = 4UJ + %&% 

HE-- U,II = IIEII - a,(U,) + o,,(E) 

established in [4] (see also [24, Section 6.2.3, Lemma 4, p. 306]), we 
obtain 

aB2c~,,(E) IEn U,li“m)p’+~ IEnU,I”“. 

If x = (51) . ..) t,), then applying Fubini’s theorem to the sets 

ur 1, -., ~,)eEn U,: l~,-tjl G l~li--til,j= 1, . . ..m} 

for i = 1, . . . . m, it is easy to verify that 

IEn U,I = 1: aus(E) 4s) or equivalently Q,(E) =$ IEn Kl. 

Thus 

a62m-$lEo UIJ1’m)+. /En U,ll/m. 

Dividing the last inequality by an E > 0 and integrating over the interval 
(0, E) yields 

from which we conclude that x E cl, E. 
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Note. It is possible to show that the sequence {A,) constructed accord- 
ing to the previous proof is increasing, but we shall not need this. 

Remark 3.3. It would be interesting to know whether each BV set A 
contains a sequence (A,,} of nondispersed BV subsets of A such that 
lim \]A - A,,11 =0 (cf. Remark lO.lO,l and Note added in proof). 

Following [28, Sect. 21, we define the regularity of a BV set A as the 
number 

if d(A) IIAII >O, 

otherwise, 

which controls simultaneously the shape and perimeter of A 

LEMMA 3.4. Let A E BV, let .K E int, A, and let .( B,) be a sequence of 
cubes such that x~cl B,, k = 1, 2, . . . . and lim d( Bk) = 0. Therz 
x E cl,( A A Bk), k = 1, 2, . . . . and 

liminfr(AnB,)>$ 

Proo! Set Ed = d( B,) and Uk = U(x, Q), and observe that 

IIA n B,Il 6 ~.4tUk) + IlBx-II, k = 1, 2, . . . 

Since I is a surface dispersion point of A, 

lim sup ‘IA n Bk’I < 2m. ill ~ 1 
EL 

As x is also a density point of A, by Lemma 2.3, x E cl,(A A B,), k = 1, 2, . . . . 
and 

I?, -I 
lim inf r(A n B, ) = lim inf IAn& Ek ___. 

> 

1 

IBkI lIAnBkll ‘%z. 

Note. The estimate of Lemma 3.4 cannot be improved because the 
regularity of any cube is 1/(2m). 

4. CONTINUOUS ADDITIVE FUNCTIONS 

A division of a BV set A is a finite disjoint family of BV sets whose union 
is A. 
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DEFINITION 4.1. Let A E BV and let F be a function on BV, . We say 
that the function F is 

1. superadditive if F(B) 3 CD E 9 F(D) for each B E BV, and each 
division $9 of B; 

2. lower continuous if given E > 0, there is a 6 > 0 such that F(B) > --E 
for each BE BV, with IBI < 6 and llBl\ < I/E; 

3. additive or continuous if both F and -F are superadditive or lower 
continuous, respectively. 

EXAMPLE 4.2. Let A be a BV set. 

1. If f is a measurable function on A with JA IfI d&,, < + co and 
F(B) = Se f d&n f or each BE BV, , then F is a continuous additive function 
on BV, by the absolute continuity of the Lebesgue integral. 

2. If v is a continuous vector field on cl A and F(B) = JbdS v . nB dX 
for each BE BV,, then F is a continuous additive function on BV,. To see 
this, choose an E > 0, and find a vector field u’ with polynomial coordinates 
so that [Iv(x) - w(x)11 < .s*/2 for all XE cl A. If c = SUP,~,,,~ ldiv w(x)] and 
BE BV,, then 

IFWI Gjb, B lb-4 d~+l~bdBw+J~~ 
e 

<g IIBII +Jb ldiv WI d&,,<g IIBII +c IBI. 

Thus IF(B)/ <E whenever llBl[ < l/s and 2c IBI < E. 

Let A E BV and let T be a thin set. A collection (possibly empty) 
P= {(K,, x,), . . . . (K,, x,)> where K,, ..,, K, are disjoint dyadic subcubes of 
A and X,E cl K, - T, i = 1, . . . . p, is called a dyadic partition in A mod T. 
Given a positive function 6 on cl, A - T, we say that the dyadic partition 
P is &fine whenever d(Ki) < 6(xj), i= 1, . . . . p. 

The following existence result is sometimes referred to as Cousin’s 
lemma. For its proof, which is a simple compactness argument, we refer to 
[25, Chap. IV, Theorem 3-1, p. 2581. 

LEMMA 4.3. Let L be a dyadic cube, and let 6 be a positive function on 
cl L. Then there is a &fine dyadic partition ((L, , x, ), . . . . (L,, x,)} in 
Lmod(25 with UT=, Lj=L. 

The next lemma is due to E. J. Howard (see [13]). 
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LEMMA 4.4. Let L be a dyadic cube, and let F be a superadditive lower 
continuous,function on BV,. Given an E > 0, a thin set T, and a positive func- 
tion 6 on cl L - T, there is a b-fine dyadic partition {(L, , I, ), . . . . (L,, xy) ). 
in L mod T such that F(L - lJy=, L;) > -E. 

Proof According to [6, Theorem 1.6(a), p. 81, there is a sequence .( Tij 
of sets such that T= ui T, and X( Tj) < 2 for all i. For i = 1, 2, . . . . set 
si=min{1/(4mrc), 2-‘~), where ti is a positive constant from Lemma 2.5. 
and find an vi> 0 so that F(B) > -Ed for each BE BV, with 1 BI < ‘1; and 
IlBll < lb,. 

Fix an integer i3 1, and use Lemma 2.5 to find a countable family %, of 
dyadic cubes of diameters less than y,ci so that 

and c [d(C)]“‘mm ’ < 2~. 
C‘F ‘c, 

If d is a finite disjoint subfamily of G$ and E = IJ B, then 

lIEI < 1 IICII 62~ c [d(C)]“‘%4mr+ 
CGA Ct%, I 

IEI = 1 ICI G<‘l,“i c IICII <vi, 
c-66 CEA 

and hence F(E) > -ci. 
Let 9? be a disjoint subfamily of Ui %t. with U %= Uj (IJ gi), and extend 

6 to a positive function on cl L by setting 

&x)=min{d(C) : CE’#XEC~ C} 

for each x E Tn cl L. By Lemma 4.3, there is a &fine dyadic partition 
p= (W,, s,), ---1 (L,, . yP ). in L mod @ with UT=, Li = L. Let 9 consist of 1 
all C E %7 such that Cc L and L, c C for some j = 1, . . . . p. Thus D is a finite 
family, and as Tc int(U %), our definition of 6 on Tn cl L implies that 
L, c U 9 whenever .Y~E T. If L, meets a DE 9 and Li $ D, then D c Li 
because both D and L, are dyadic cubes. This leads to a contradiction, 
since by the definition of 9, there is an L, c D for a k #,j and L, n L, = 0. 
We conclude that for each j = 1, . . . . p, either L, c U D or L, n (U 9) = 0. 
Thus after a suitable reordering, U Y = L - UY=, L, for an integer q with 
0 < q <p, and we see that {(L, , X, ), . . . . (L,, .yy) 1 is a S-fine dyadic partition 
in L mod T. 

Let 9, = 9 n %Y,, and for i = 1, 2, . . . . set $9, = B n %, - lJ;.:i gj. Then 9 is 
the disjoint union of the 9,‘s and, as 9 is finite, there is an integer s> 1 
such that g’=U:=,g,. If D,=lJS,, then F(D,)>-E;, and Ug is the 
disjoint union of D, , . . . . D,%. Thus 
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LEMMA 4.5. Let L be a dyadic cube, and let F be a superadditive lower 
continuous function on BV, with F(L) < 0. If T is a thin set, then there is an 
x E cl L - T and a sequence { Bk} of dyadic subcubes of L such that x E cl B,, 
F( Bk) < 0, k = 1, 2, . . . . and lim d( Bk) = 0. 

Proof If the lemma is false, we can find a positive function 6 on 
cl L - T such that F(B) 3 0 for each dyadic cube B c L with x E cl B 
and d(B) < 6(x). By Lemma 4.4, there is a &fine dyadic partition 
{L x,)3 ...Y CL,, x,)} in L mod T such that F(L - uy= I Lt) > F(L). This is 
a contradiction since 

PROPOSITION 4.6. Let A E BV, let T be a thin set, and let F be a superad- 
ditive lower continuous function on BV,. If F(A) < 0 and E < 1/(2m), then 
there is an x E cl, A - T, and a sequence { C,} in BV, such that x E cl, Ck, 
r( C,) > E, F( C,) < 0, k = 1, 2, . . . . and lim d( C,) = 0. 

Proof: It follows from Proposition 3.2 that F(B) < 0 for some non- 
dispersed set B E BV, , so we may assume that A is solid (in fact, non- 
dispersed, but we do not need this). Consequently, we may also assume 
that cl A - int, Ec T. Let K= ny= i [p,, pi+ q) be such that q> 3 and 
PI 3 **.3 Pm are integers, and cl A c n;= 1 (pi + 1, pi + q - 1). Setting 
G(B) = F( A n B) for each B E B V, extends F to a superadditive lower con- 
tinuous function G on BV,. Since K is a finite union of dyadic cubes, it is 
easy to verify that Lemma 4.5 holds for K. Thus there are an x E cl K- T 
and a sequence { Bk} of dyadic subcubes of K such that XE cl B,, 
G(B,)<O, k= 1,2, . . . . and lim d(B,) = 0; in particular, x E cl A. By the 
choice of T, we have XE int, A, and it follows from Lemma 3.4 that the 
sequence {A A Bk} has a subsequence {C,} with r(C,) > E for all k. 
Observing that F(C,) = G(B,,) for an integer n/, > 1 completes the argu- 
ment. 

5. THE VARIATIONAL INTEGRAL 

Let A E BV, and let f and F be functions defined on cl, A and BV,, 
respectively. Given E > 0 and a thin set T, an &-majorant of the pair (f, F) 
in A mod T is a nonnegative superadditive function M on BV, satisfying 
the following conditions: M(A) < E, and for each x E cl, A - T there is a 
6 > 0 such that 

1 .+I PI - F(B)1 GM(B) 

for every BE BV, with x E cl B, d(B) < 6, and r(B) > E. 
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DEFINITION 5.1. Let A E BV and let f be a function on cl, A. We say 
that f is uariationally integrable (abbreviated as v-integrable) in A if there 
is a continuous additive function F on BV, which satisfies the following 
condition: for each F > 0 there is a thin set T such that the pair (f, F) has 
an s-majorant in A mod T. 

Let A be a BV set. The family of all v-integrable functions in A is 
denoted by &(A). Iffe &(A), then each continuous additive function F on 
BV,A which satisfies the condition of Definition 5.1 is called an indefinite 
v-integral of ,f in A. 

Remark 5.2. A few comments on the definition of the variational 
interal are in order. 

1. Since a countable union of thin sets is again thin, it is easy to see 
that the thin set T of Definition 5.1 can be selected independently of E. 

2. The ambiguity concerning an indefinite v-integral is only tem- 
porary, as we show in Corollary 5.5 that each integrable function has only 
one indefinite v-integral. We also show that definingf on cl, A rather than 
on A is inconsequential (cf. Remark 5.10). 

3. It will be shown in Section 7 that the value of an indefinite integral 
is approximated by the usual Riemann sums (see Proposition 7.8). Thus 
the v-integral is a genuine averaging process. 

4. The definition of an .s-majorant can be modified in two distinct 
ways (cf. Remark 6.4): 

(a) The condition x E cl B may be replaced by x E cl, B. We shall 
see in Section 7 (Propositions 7.7 and 7.10) that this modification has no 
effect on the v-integral as long as m 3 2. We do not know if the same is true 
for m = 1 (cf. Remark 6.10). 

(b) We may require that M is additive rather than superadditive. 
With the exception of Section 7, all results of this paper hold for the 
v-integral defined by means of additive .s-majorants, called the va-integral. 
Obviously, the v-integral extends the va-integral; however, it is unclear 
whether this extension is proper (cf. [ 111). 

5. Superficially, the v-integrability given by Definition 5.1 looks very 
similar to that presented in [31, Definition 3.11. However, a closer 
examination reveals two significant differences: 

(a) The thin sets are larger, and they are used in a less restrictive 
manner. 

(b) There are no restrictions on boundaries of integration 
domains. 
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The inclusion of a rather complicated Proposition 4.6 is necessitated by (a), 
and noticeable complications arise from (b). In particular, (b) is respon- 
sible for a deficiency in the additivity of the u-integral defined here (see 
Propositions 5.7 and 9.5,3, and Example 5.21). Of course, the above dif- 
ferences also bring substantial gains already discussed in the introduction. 

PROPOSITION 5.3. Let A E BV, f E $;(A), and let F be an indefinite 
v-integral off in A. Zf BE BV,, then f r cl, B belongs to Y”(B) and F 1 BV, 
is an indefinite v-integral off r cl, B in B. 

This proposition is an obvious consequence of Definition 5.1. 

LEMMA 5.4. Let A E BV, and for i = 1, 2 let F, be an indefinite v-integral 
offiE.YJA). Zff, <fi then F, < F2. 

Proof: It suffices to show that the assumption F,(A) <F,(A) leads to a 
contradiction. Choose a positive E < 1/(2m) such that F,(A) + 2~ < F,(A). 
For i= 1, 2 we can find thin sets Ti and s-majorants Mi of the pairs (fi, Fi) 
in A mod T;. Then T = T, u T2 is a thin set, and 

F=FZ-FI+M,+MZ 

is a superadditive lower continuous function on BV,., with F(A) ~0. By 
Proposition 4.6, there is an x E cl, A - T, and a sequence {C,} in BV, such 
that x E cl Ck, r(C,) > E, F( C,) < 0, k = 1, 2, . . . . and lim d(C,) = 0. Thus 

IL(X) Icpl -Fi(Cp)I G Mi(Cp) 

for i = 1,2 and some integer p 2 1. This implies that 

F;l(C,) - M,(C,) <f,(x) IC,l Gfz(x) IC,l6 FdCJ + MAC,) 

and consequently F(C,) 2 0, contrary to our assumption. 

COROLLARY 5.5. Zf A E BV and f E #“(A), then all indefinite v-integrals 
off in A are equal. 

In view of the previous corollary, if A E BV and f E Y”(A), we can talk 
about the indefinite v-integral off in A, denoted by ZJf, .); the number 
Z,(f, A) is called the v-integral off over A. Observe that ZJf 1 cl, B, .) = 
Z,(f, .) r BV, for each BE BV,. 

PROPOSITION 5.6. Zf A E BV, then .$,(A) is a linear space and the map 
f H Z,(f, A) is a nonnegative linear functional on $(A). 

Proof. If f E&(A) is a nonnegative function, then Z,(f, A) Z 0 by 
Lemma 5.4. The rest of the proposition follows directly from Definition 5.1. 



THEGAUSS-GREEN THEOREM 107 

PROPOSITION 5.7. Let 9 he a division of a BV set A, and let f be afunc- 
tion on cl, A which is v-integrable in each DE $2. If 9 consists of solid sets, 
then ,f is v-integrable in A. 

ProoJ For each D E S, let fD =f r cl, D and F, = I,,( fD, . ). If 

F(B)= c F,(BnD) 
DEY 

for every B E BV, , then F is a continuous additive function on BV,, and 
we show that F= I,(f, .). Let n be the number of elements in 2 and let 
E > 0. Given D E 9, there is a thin set T, such that the pair (fD, F,) has 
an (c/n)-majorant MD in D mod T,. Setting 

M(B)= 1 M,(BnD) 
D.55, 

for each B E BV, , we see that A4 is a nonnegative superadditive function on 
BV, and M(A) < E. If 2 consists of solid sets, then the set 

T= u [T,u(clD-int,D)] 
DEV 

is thin. To show that A4 is an s-majorant of the pair (A F) in A mod T, 
select an XE cl, A - T. By the choice of T, we have x~int, D, for some 
D., E 9, and .r C$ cl D for every D E 9 different from D,. Thus we can find 
an y > 0 so that D n U(x, q) = @ whenever DE 2 and D #D,,. Now there 
is a positive d < v] such that 

M(B)=MD,(B)> Ifo,(x) IBI -FDy;(B)I = If(-u) IBI -F(B)1 

for each BE BVA with x E cl B, r(B) > E, and d(B) < 6. Indeed e 2 c/n, and 
x E cl B together with d(B) < 6 imply that B c D,. 

Note. The set A from the previous proposition, having a solid division, 
is solid. Example 5.21 shows that assuming A alone is solid is not sufficient 
for the validity of Proposition 5.7 (cf. Proposition 9.5,3). 

For a measurable set EC R”, we denote by Yi(E) the family of all 
measurable functions f on E for which the Lebesgue integral SE /f ( dI,, is 
finite. 

PROPOSITION 5.8. Zf A E BV, then Yi(cl, A) c.YJA) and Z,(f, A) = 
JA J‘ di,, for each fg Yi(c1, A). 

Proqf: Let fEY,(cl,A) and F(B)=j,fdj*, for every BEBV,,. By 
Example 4.2,1, F is a continuous additive function on BV, and we show 

607 87.1-X 



108 WASHEK F. PFEFFER 

that F= Z,(f, .). Given E > 0, we can find extended real-valued functions g 
and h on cl, A which are, respectively, upper and lower semicontinuous, 
and such that 

g<f<h and 
s A 

(h-g)dl.,<; 

(see [32, Theorem 2.25, p. 561). Setting 

M(B) = E IBI 
a1 +VI) + (h-g)dL f B 

for each BE BV,, we see that A4 is a nonnegative additive function on 
BV,, and M(A) <a. To show that M is an s-majorant of the pair (f, F) in 
A mod 0, select an x E cl, A and find a 6 > 0 so that 

g(u) <f(x) + & 
2(1+ IAl) 

and w>fw2(1 JIAl) 

for all y E U(x, 6) n cl, A. Now let BE BV,, x E cl B, and d(B) < 6. Then 

I ’ IB’ <f(x) IBI 6 j h di2, + 
E IBI 

B gd+2(1 + ,A,)\ B 2(1+ [AI)’ 

j- 
B 

@L,G’(WS~ hd/Z,, 
B 

and consequently 

If(x) I4 - F(B)1 GM(B). 

COROLLARY 5.9. Let A E BV and let f and g be functions on cl, A which 
are equal almost everywhere. Then f E J$( A) $and on/y ifg E &( A), in which 
case ZU A) = Z,(g, A). 

Remark 5.10. By means of Corollary 5.9, in the obvious way we can 
and will extend the definitions of v-integrability and the v-integral to func- 
tions defined almost everywhere in their integration domains. In particular, 
we shall always view a v-integrable function in a BV set A as being defined 
on A, or almost everywhere in A, and only when needed, we extend it 
arbitrarily to cl, A (cf. Remark 5.5,2). 

We say that a function F defined on BV is derivable at x E R” if there 
exists a finite 

lim F(Bn ) 
l&l 
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for each sequence (B,,] of closed cubes such that .Y E B,,, n = 1, 2, . . . . and 
lim d(B,) = 0. When all these limits exist they have the same value, denoted 
by F’(x). 

PROPOSITION 5.11. Let A EBV,~E&(A), andlet F(B)=f,(f, An B)for 
euch BE BV. Then ,fov almost cl11 .Y E A the jimction F is deriwble at x und 
F’(s) =.f’(x). 

Proqf: In view of Remark 5.2,1, there is a thin set T such that given 
E > 0, the pair (A F) has an .s-majorant in A mod T. Let E be the set of all 
stint, A - T for which either F is not derivable at x or F’(x) #,f(x). If 
.Y E E and {B,} is a sequence of closed cubes such that s E B,,, n = 1,2, . . . . 
and iim d(B,,) = 0, then by Corollary 2.3, the limits 

lim F(B,,) 
1% 

and lim FM n B,,) 
IA n &I 

either both do not exist, or both exist and have the same value. Thus given 
s E E, we can find an U(X) > 0 such that for each S > 0 there is a closed cube 
B with x E B, d(B) < 6, and 

Fix an integer n 3 1 and let E,, = {X E E : a(x) 2 l/n}. Choose a positive 
8 < 1/(2m) and find an (E/n)-majorant A4 of the pair (f, F) in A mod T. It 
follows from Lemma 3.4 that for each .X E E,, there is a 6(x) > 0 such that 

If(x) IA n BI - F(A n B)l < M(A n B) 

for every closed cube B with x E B and d(B) < 6(x). Now let I,‘ be the 
family of all closed cubes B such that d(B) < 6(x,) for some yB E B n E, 
and 

It is easy to see that Y^ covers E,, in the sense of Vitali, and so by [33, 
Chap. IV, Theorem (3.1) p. 1091, there is a disjoint sequence {Bk} in $’ 
such that IE,-U;'=, B,I =O. Since IE,,-Al =O and 

f IAnB,Ibn i (F(AnB,)-J'(x,,) lAnB,(( 
k=l 
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for p = 1, 2, . . . . we have 

lE,J< c (AnB,) = z IAnB,IdE, 
k=l k=l 

and the arbitrariness of E implies that I& = 0. Observing that E = U,“= , E,, 
and I (A - int, A) u TI = 0 completes the proof. 

Note. By improving on Lemma 3.4, we can obtain a stronger 
derivability result similar to that of [28, Proposition 4.21 (cf. the beginning 
of Section 6). 

COROLLARY 5.12. If A E BV, then each f E $(A) is measurable. 

The corollary follows from Proposition 5.11 by standard arguments (see 
[33, Chap. IV, Theorem (4.2), p. 1121). 

LEMMA 5.13. Let E be a bounded measurable subset of R”, let B be a 
linear space of measurable functions on E containing d%;(E), and let J be a 
nonnegative linear functional on 9 such that J(f) = SE f dE., for each 
f E 9,(E). Then a function f on E belongs to dz;( E) whenever f and 1 f ( belong 
to 8. Moreover, if (fn} . IS a sequence in 9 and lim f, =f, then f E 9’ and 
J(f) = lim J(fn) whenever either of the following conditions holds: 

(a) fnGfn+ly n=l,2,..., andlimJ(f,)<+co; 

(b) g 6 fn < h for some g, h E F and n = 1,2, . . . . 

Proof If f and /f) belong to 9, then for n = 1,2, . . . . the function 
k, = min{ If 1, n } belongs to gl(E), and hence to 9”. Since 

s IfI dll, = lim 
s 

k, dil, = lim J(k,) 6 J( Ifl) < + 00, 
E E 

we have f~ Y!(E). The rest of the lemma follows from the monotone and 
dominated convergence theorems applied to the sequences (f, - fi } and 
{ fn -g }, respectively. 

Note. The assumptions of Lemma 5.13 are unnecessarily restrictive (cf. 
[31, Proposition 3.91) but we do not need a larger generality. 

COROLLARY 5.14. For a fuction f defined on a BV set A the following 
statements are true. 

1. f belongs to Y,(A) if and only if both f and If 1 belong to X”(A). 

2. f = 0 almost everywhere if and only iff E &(A) and I,(J; .) = 0. 

3. Zf {f,] is a sequence in &(A) and limf,=f, then fe9v(A) and 
I,(f; A) = Iim Z,(f,, A) whenever either of the following conditions holds: 
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(a) fndfn+i, n=1,2 ,..., andlimI,(f,,,A)< +co; 

(b) g~f,dhforsonzeg,hE~“(A)andn=1,2 ,.... 

The next proposition is a useful necessary condition for v-integrability 
(cf. Examples 5.21 and 6.9). 

PROPOSITION 5.15. If f is a v-integrable function in a BV set A, then 
there is a thin set T with the @lowing property: given E > 0, we can find a 
positive function 6 on cl, A - T such that 

,>z, b-k,) /B,,I -zv(.L B,,)I <E 

for each sequence {xn} in cl, A - T and each sequence {B,} of disjoint sets 
from BV, with d(B,u {xH})<6(xn) and r(B,u ix,})>&, n= 1,2, . . . . 

Proof Let F= Z,(A ). In view of Remark 5.2,1, there is a thin set T 
such that given E > 0, the pair (f, F) has an &-majorant A4 in A mod T. For 
each x E cl, A - T there is a 6(x) > 0 such that 

IfWBl-F(B)\ GM(B) 

for every BE BV, with x E cl B, d(B) < 6(x), and r(B) > E. Let 6 be the 
function x H 6(x), and choose sequences {x,} and { B,z} as in the proposi- 
tion. Since each x, is a cluster point of A, the set A contains disjoint count- 
able sets C, with x, E cl C,,, n = 1, 2, . . . . If D, = (B, - lJF=, C,) u C,, then 
the sets D, are disjoint, and F(D,) = F(B,) by the additivity and continuity 
of F. By making the sets C, sufficiently small, we may assume that 
d(D,) < 6(x,) and r(D,) > E. Thus 

d f WD,,)<M d M(A) 
n=l 

for each integer p > 1, and as M(A) < E, the proposition follows. 

If f is a function defined on an open set U c R”‘, we define the differen- 
tiability off at x E U in the usual way (see [32, Definition 7.22, p. 1501). 
Thus differentiability implies continuity and the existence of partial 
derivatives, which need not be continuous. For i= 1, . . . . m the ith partial 
derivative off is denoted by a,A and if u = (f,, . . . . f,) is a differentiable 
vector field, we set div v = X7= i a,f,. 

Now let S be a function defined on an arbitrary set A c R”‘, and let E be 
a measurable subset of A. We say that f is differentiable on E whenever f 
can be extended to a function g such that the domain of g is a 
neighborhood of E and g is differentiable at each x E E. Given such an 
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extension g and XE E, we set a,f(x) = a,g(x) for i= 1, . . . . m, and show that, 
up to a set of measure zero, thus defined functions aj f on E do not depend 
on the choice ofg. 

LEMMA 5.16. Let E be a measurable subset of an open set U c R”, and 
let g and h be functions on U which have partial derivatives at each x E E. If 
g(x) = h(x) for all x E E, then dig(x) = a,h(x) for i= 1, . . . . m and almost all 
x E E. 

Proof: Suppose that 1 {x E E : d, g(x) # d, h(x)} I> 0. By Fubini’s 
theorem, there is a 5 E R”- ’ such that the set S c R of those s for which 
(s, t) E E and a, g(s, 5) #a, h(s, 5) has a positive measure A. In particular, 
there is a t E S and a sequence (t, > in S - { t > with lim t, = t. From this we 
obtain that a, g(t, 5) = a, h(t, 0, a contradiction. The lemma follows by 
symmetry. 

LEMMA 5.17. Let v be a bounded vector field on a set U c R” which is 
differentiable at x E int U. Then given E > 0, there is a 6 > 0 such that 

divv(x),B,-j~~~v.n,d~l<EJB, 

for each BE BV, for which x E cl B, d(B) < 6, r(B) > E, and v is 
X-measurable on bd, B. 

Proof: For y E R”, let w(y) = Dv(x) . (y - x) where Do(x) is the Jacobi 
matrix at x of the map v : U + R”. Then div w(y) = div v(x) for each 
YER~, and there is a nonnegative function h on U such that 
lim, + x h(y)=0 and [Iv(y)-v(x)-w(y)11 <h(y) l-y-xl for each YE U. 
Given E > 0, choose 6 > 0 so that U(x, 6) c U and h(y) < s2 whenever 
y E U(x, 6). Now if BE BV, is such that x E cl B, d(B) < 6, r(B) > 8, and v 
is X-measurable on bd, B, then 

= div W(Y) &AY) - 6,, [V(Y) - @)I -nAyI d%(y) 1 

= 11 [W(Y) - V(Y) + +)I -nAyI dy(y) 
bdLi 

< 
s 

II@) - v(x)- w(Y)II d=Wy) 
bd.B 

6 s h(y) I y - XI d%(y) G e’d(B) IIBII <E IBl. 
bd,B 
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LEMMA 5.18. If A E BV and C c A has measure zero, then given E > 0, 
there is a nonnegative additive function H having the following properties: 
H(A) < E, and for each x E C and each positive integer n we can find a 6 > 0 
so that H(B) 2 n 1 BI whenever BE BV,, , x E cl B and d(B) < 6. 

Proof: Find a decreasing sequence { U,, 1 of open sets containing C so 
that 1 U,I <E/Z”, n = 1, 2, . . . . and for BEBV, set H(B)=C;=, IBnU,I. 
Clearly, 0 < H < E and H is additive. Given s E C and an integer n 2 1, there 
is a S>O such that U(x,d)cU,,. Now if BEBV,~, x~clB, and d(B)<6, 
then H(B) 3 n I BI and the lemma is proved. 

A vector field u on an open set U c R”’ is called almost differentiable at 
XE U if 

lim sup IV(Y) - 4x11 < + a, 
.v - .Y II-xl 

Now let v be a vector field defined on an arbitrary set A c R”, and let E 
be a measurable subset of A. We say that u is almost differentiable on E 
whenever v can be extended to a vector field MI such that the domain of w 
is a neighborhood of E and w is almost differentiable at each x E E. By the 
Stepanoff theorem (see [7, Theorem 3.1.9, p. 218]), M’ is differentiable 
almost everywhere in E, and by Lemma 5.16, almost everywhere in E, div M 
is determined uniquely by v. Thus in E we set div D = div ~1. 

THEOREM 5.19. Let AE BV, and let T be a thin set. Suppose that v is a 
continuous vector field on cl A which is almost differentiable on cl, A - T. 
Then div v is v-integrable in A and 

Z,(div v, A) = lb,, v .nA dX. 

ProoJ By our assumption, ZI is extendable to a vector field w such that 
M’ is defined on a set U whose interior contains cl, A - T, and w is almost 
differentiable at every x E cl, A - T. Since u’ r cl A = o is continuous on cl A, 
the function F on BV, defined by 

F(B)=J v.n,dX= w.n,dX 
hdB 

is additive and continuous according to Example 4.2,2. We show that 
F= Z,(div v, .). By Stepanoff’s theorem (see [7, Theorem 3.1.9, p. 218]), 
there is a set Cc cl, A - T such that ICI = 0 and us is differentiable on 
cl, A - (T u C). With no loss of generality, we extend div w to cl, A by zero 
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(see Remark 5.10). Given E > 0, let H be a function on SV, associated with 
C and e/2 according to Lemma 5.18, and set 

M(B) = 
2(;$)+H(B) 

for each BE BV,. Clearly, M is a nonnegative additive function on BV, 
and M(A) < E. 

Let x E C. There is an integer k 3 1 and a 6 > 0 such that 

IIw(Y)-w(x)11 Gk IY-xl and H(B) a$ PI 

for each y E U with 1 y - XI < 6 and each BE BV, with x E cl B and d(B) < 6. 
If B E BV, , x E cl B, d(B) < S, and r(B) > E, then 

ldiv w(x) IBI -W)I = (i,, CW(Y)-WW +dy) dWy)i 

<k s bd B IY --I @(y) 
e 

Gkd(B) IlBll <$ IBl <H(B)<M(B). 

Let xEcl,A-(TuC). By Lemma5.17, we can find a 6>0 so that 

ldiv w(x) IBI -F(B)1 <2(:zLl)<M(B) 

for each BE BV, for which x E cl B, d(B) < 6, and r(B) > E. 
It follows that A4 is an s-majorant of the pair (div w, F) in A mod T. In 

view of Lemma 5.16 and Remark 5.10, we conclude that 

Z,(div u, .) = Z,(div w, .) = F. 

Remark 5.20. The following points concerning Theorem 5.19 are 
noteworthy. 

1. Neither side of the Gauss-Green formula depends on values of u 
outside cl(c1, A), and it can be readily verified that the continuity of u on 
cl A can be relaxed to that on cl(c1, A). 

2. In terms of the measure A?, the exceptional set Tn cl, A is as large 
as possible. This is easily seen by considering the Cantor fuction on the 
Cantor ternary set (see [9, Sect. 19, Problem (3), p. 831). 
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The next example is a modification of an example due to Z. Buczolich 
(cf. C21). 

EXAMPLE 5.21. Let m = 2, and let K= (a, a + h) x (b, b + 11) be a square 
where a, b, and h are real numbers with h > 0. For (4, q) E R’ and 
12 = 0, 1, . . . . set 

I-cosy(<-II) sini(q-b).O 1 if (5, V)EK 
otherwise. 

If K’ = (a + (j - 1)/z/2”, a + j/z/2”) x (b, b + II), j = 1, . . . . 2”, then 
Z,(div u:, K’) = ( - 1 )-I- I. 

Now adhering to the notation of Example 3.1, we let v,,,, = 2 p4” + ‘~:,R,I for 
i= 1 , . . . . 8” and n = 0, 1, . . . . and set 

v= f  ; D,,,;. 
rr=O i=l 

The vector field v is clearly differentiable in R, and since 

8” 
,;l Iu,,il d 6nW)” n = 0, 1, . . . . 

v is continuous in R’. We let f(x) =div u(x) if XE R, and f(x) =0 if 
x E R* - R. By Theorem 5.19 where T= bd,R, we see that f is v-integrable 
in R and I,(J R) = 0. It is also clear that f is v-integrable in S and 
1,(f, S) = 0. In contrast, we shall see that f is not v-integrable in P. 

Proceeding towards a contradiction, suppose that f is v-integrable in P, 
and find a thin set T and a positive function 6 on P- T such that the 
conclusion of Proposition 5.15 holds for E = 3 p4. Let 

c = fi ij P,,,, 
n=l r=l 

For n = 1,2, . . . . denote by cx, the set of all integers i with 1 d id 8” 
for which there is an x,~.(E Cn P,,,;- T such that d(P,,i) < S(.X,,~). Set 
A= (1, . . . . 8’7 -c~,,, and denote the cardinalities of CI, and fin by a,, and b,,, 
respectively. Now consider the closed sets 

Dk=n 0Pn.i and D= f-j DkcC. 
n=l Ito” k= I 

If x E D - T, then S(X) > 0 and there is an integer n > 0 and ie /?, with 
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x E P,,i and d(P,,,) < 6(x). However, this is impossible since i $01,. Thus 
D c T, and we obtain a contradiction by showing that D is not a thin set. 

Set yr = fl,, and for k = 2, 3, . . . let yk be the set of all i E Pk for which 
Pk,iCDk-l. Clearly, Dk = U ie Yk P,,i. If ck is the cardinality of yk, then 

k-l 

C,abk- c Sk-“a,,=8k I- 
n=l 

( i 8p”a.); 
n=l 

for each P,,,i, 1 d n < k, covers precisely Sk --n squares P,,/. To calculate 
X(D), we obtain a lower estimate for the numbers ck by estimating the 
sum C,“= r 8-“a,. 

For each i E c(, and n = 1,2, . . . . there is a closed square J!,,,~ c Q,,i - cl R,,i 
of diameter 3 e-n- *. The sets B,,i= L,,iu lJy:i R$, where ieu,, and 
n = 1, 2, . . . . are disjoint and a simple calculation reveals that 

d(Bn,iu Ixn,i> I< 6(xn,i) and r(Bn,iu {xn,i})>3p4. 

Since f= 0 on L,. i u { x,.~), our choice of T and 6 yields 

n=l ita. 

= f 1 *ii IZ,(f, Rzi)l = f 8-“a,, 
n=l iea, j=l 

and consequently, ck 3 8 k/2, 

lZ=l 

Let s = log S/log 3, and let ~4’” be the s-dimensional Hausdorff measure 
in R*. Using covers by triadic squares, we show that X”(D) >O. Since 
s> 1, it follows from [6, Sect. 1.2, p. 71 that the set D is not thin. 

A triadic square is the product [i3-k, (i+ 1)3Pk)~ [j3Vk, (j+ 1)3-k) 
where i, j, and k are integers with k > 0. Cover D by a sequence {U,} of 
triadic squares. For Y = 1, 2, . . . . let 4& be the collection of all triadic squares 
U with d(U) = d( U,) and (cl U) n (cl U,) # 0, and set I’, = U 9&. As the 
interiors of the V,.‘s cover the compact set D, there is an integer p > 1 such 
that 

DC fi int V’,cint 
r=l 

It follows that Dk c Up= r V, for all sufficiently large indices k. If Up= r 4& 
consists of triadic squares W,, . . . . W, and d( W,) = 3 pdf, we select a fixed 
integer k > max{ d, : t = 1, . . . . q> so that 

D,c fi V,= ,j W,. 
r=l r=1 
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Each W, contains at most Sk-4 squares P,.i, and the number of the 
squares P,+ contained in Uy=, W, is not less than the number of those 
contained in Dk. Hence 

and so Cy= I 8 ‘13 l/2. Since 3” = 8, we have 

and our assertion follows from [6, Theorem 5.1, p. 651. 

6. A PERRON DEFINITION OF THE VARIATIONAL INTEGRAL 

We say that a sequence , (A,] of BV sets shrinks to a point .Y E R” when- 
ever .Y E cl A,, II = 1, 2, . . . . lim d(A,,) = 0, and inf r(A,) > 0. If A is a BV set, 
M is a function on BV,, and x E cl, A, we let 

M,(x) = inf “,“_$f WB,,) , B,, 

where the intimum is taken over all sequences {B,) in BV, which shrink 
to x. 

Let A E BV and let f be a function on cl, A. We say that a lower con- 
tinuous superadditive function A4 on BV, is a mujorant off in A if there 
is a thin set T such that M,(x) >:f(x) for each XE cl, A - T. The extended 
real number 

U(x A) = inf M(A), 

where the infimum is taken over all majorants offin A, is called the upper 
integral off over A. The extended real valued function BH U(f r cl, B, B) 
on BV, is called the indefinite upper integral offin A, denoted by U(L ). 
Observe that U( f rcl, B, . ) = U(f, . ) r BVB for each B E BV, . We say that 
fis Perron integrable (abbreviated as P-integrable) in A if 

-U(-f,A)=U(f,A)Zfa. 

The family of all P-integrable functions in A is denoted by 9(A). 
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Note. The reader should carefully distinguish between s-majorants and 
majorants, remembering that the former are applied to a pair of functions, 
while the latter are applied to a single function. Also the upper integral 
U(f, A) and the neighborhood U(x, E) have nothing in common. We trust 
that when taken in the context, these superficial similarities will cause no 
confusion. 

LEMMA 6.1. If A E BV and f is a function defined on cl, A, then 
-UC-f,A)<Uf,A). 

Proof: Suppose that U(f, A) < - U( -f, A). Then in A there are 
majorants M and N off and -f, respectively, such that M(A) < -N(A). 
Let T be the union of the thin sets associated with A4 and N, and choose 
an &>O so that M(A)+& IA\ < -N(A). Since the function 
F= A4 + N + &A,,, is superadditive and lower continuous and F(A) < 0, it 
follows from Proposition 4.6 that there is an x E cl, A - T and a sequence 
(C,} in BV, shrinking to x such that F(C,) < 0, k = 1,2, ..,. Thus 

a contradiction. 

0 2 F,(x) 3 M,(x) + N,(x) + E 3 E, 

LEMMA 6.2. Let A E BV and f e S(A). Then f r cl, BE 9(B) for each 
BE BV,, and the indefinite upper integral U(L .) is a continuous additive 
function on B V, . 

ProoJ Observe first that if M is a majorant off in A, then for each 
BE BV, the restriction M r BV, is a majorant off r cl, B in B. Given 
E > 0, in A there are majorants M and N off and -f, respectively, such 
that 

M(WUA)+; and N(A)< U(-f, A)+;. 

In view of Lemma 6.1 and the observation above, 

-N(B) < - U( -f, B) < U(f, B) G M(B) 

and we see that U(f, .) and U( -f, .) are real-valued functions on BV,. 
Since A4 + N is a nonnegative superadditive function on BV, and 

M(A)+N(A)< U(f,A)+ U(-h A)+&=&, 

it is easy to see that A4 + N < E. 
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If 9 is a division of A, then by Lemma 6.1, 

--EC -[M(A)+N(A)]< -M(A)- c N(D) DE!? 
d -U.LA)- c U(-.f; D) DE!2 
GU(-f,A)+ c u(.LD)<N(A)+ c M(D) 

DtV DE9 

aN(A)+M(A)<&. 

By our assumption, U( -J A) = - U(f, A) and thus 

From the arbitrariness of E we obtain the additivity of U(ft .); the 
additivity of U( -f, .) follows by symmetry. 

This in conjunction with Lemma 6.1 implies that - U( -f, . ) = U(A .), or 
alternatively that f r cl, BE 9(B) for each BE BV,. 

As M- U(f, .) is a nonnegative superadditive function on BV, and 
M(A)- U(J A)<42, we have hf - U(J .) < 42, and similarly 
N - U(--f; .) < s/2. By the lower continuity of M and N, we can find a 
6 > 0 so that 

--E<M(B)-;<U(,f; B)= -U(-,f, B)<;-N(B)<e 

for each BE BVA with IBI < 6 and libel/ < I/E < 2/e. This establishes the 
continuity of U(,f, .). 

PROPOSITION 6.3. If A E BV, then Y(A)=.&(A) and U(J .) = I,(J .)for 
each f~ 9(A). 

ProoJ Choose an E > 0 and suppose first that f~.?(Aj. In A there 
are majorants M and N of f and -f, respectively, such that 
M(A) + N(A) < s/2. Let T be the union of the thin sets associated with M 
and N, and let 

v(B) = E IBI 
2(1 + IAI) 

for each BE BV,. Clearly, H = M+ N + q is a nonnegative superadditive 
function on BV, and H(A) < 6. Fix an x E cl, A - T. Since 

(M+ cp)*(-xl >.f(x) and (N+ cp)&) > -f(x). 
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we can find a 6 > 0 so that 

foreachBEBVAwithxEc1B,d(B)<6,andr(B)>s.As -NbU(f,‘)<M, 
given such a set B we also have 

If(x) If4 - U(f, B)I d H(B). 

Thus H is an s-majorant of the pair (f, U(f, .)) in A mod T, and it follows 
from Lemma 6.2 that f~ Y”(A) and Z,(f, .) = U(f, .). 

Conversely, suppose that f~ $(A), and for n = 1,2, . . . find a thin set T, 
so that the pair (f, Z,(f, .)) has an (e/2”)-majorant H, in A mod Tn. Let 

T= c T,, and H= f H,. 
n=l n=l 

Now fix an x E cl, A - T and choose a sequence ( Bk} in BV, shrinking to 
x. As r(Bk) > s/2” for some integer p > 1 and k = 1,2, . . . . we have 

Zv(f, Bk) - H(B,) G Zv(f, B/c) - HP@,) G-(x) IBicl 

G Z,(f, BJ + HP(&) G ZJL B,c) + fW,) 

for all sufficiently large k. Consequently 

CL(f, .I + HI Ax) auf(x) and [IH-Zv(f, N&d2 -f(x) 

from which we see that in A, the functions Z,(A . ) + H and H - Z,(f, .) are 
majorants off and -f, respectively. Thus by Lemma 6.1 

and it follows from the arbitrariness of E that U(f, A) = - U( -f, A) # + co. 

Remark 6.4. The following comments are related to those made in 
Remark 5.2,4: 

(a) The definition of a sequence {A,} shrinking to a point x can be 
modified so that x E cl A,, is replaced by x E cl, A,, . The resulting P-integral 
coincides with the v-integral modified according to Remark 5.2,4(a). 

(b) We may require that majorants are additive rather than super- 
additive. It is easy to see that the P-integral defined by means of additive 
majorants, called the Pa-integral, coincides with the va-integral defined in 
Remark 5.2,4(b). 
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Let E c R” be a measurable set. For a Lipschitzian map @: E + R” (see 
[7, Sect. 2.2.7, p. 63]), we denote by det Cp the determinant of the Jacobi 
matrix D@ of @. By the Kirszbraun and Rademacher theorems (see [7, 
Theorems 2.10.43 and 3.1.6, pp. 201 and 216]), the function det @ is 
defined almost everywhere in E, and by Lemma 5.16, it is determined 
uniquely up to a set of measure zero. A Lipschitzian map @: E -+ R”’ 
is called a lipeomorphism if it is injective and the inverse map 
a-‘: Q(E) -+ R”’ is also Lipschitzian. If @ is a lipeomorphism, then 
det Q(x) # 0 for almost all x E E. 

LEMMA 6.5. Let CD be a lipeomorphism qf a measurable set E c R”‘. 
Then @ extends unique&l to a lipeomorphism of cl E into R”‘, also denoted bJ> 
CD, and @(cl, E) = cl, G(E). 

Proqf: There are positive constants a and b such that 
a 1.~ - ~‘1 < I@(X) - @(x’)i < b 1.~ - ~‘1 for all .x, x’ E E. By the completeness 
of R’“, the map @ extends uniquely to cl E. As the extended map, still 
denoted by @, satisfies the above inequalities for all X, X’E cl E, it is a 
lipeomorphism. Let SE cl E be a dispersion point of E, and let y = Q(X). 
Since 

@(E)n U(J~, E) c @(En U(x, &/a)), 

/@(En U(x, &/a))1 6b” IEn U(.Y, c/a)1 

for each E > 0 (cf. [6, Lemma 1.8, p. lo] ), we obtain 

lim sup I@(E) n U.v, &)I < h 
c-o+ & 171 

0 ’ a 
‘)1 lim sup IEn W, da)/ = o 

E-O+ (da)* ’ 

Thus y is a dispersion point of Q(E), and the lemma follows by symmetry. 

LEMMA 6.6. Let A E BV and let @: A + R”’ be a lipeomorphism u?th a 
Lipschitz constant a. Then B= @(A) is a BV set with (BI 6 ct”’ IAl and 

IlBll <CC-’ IIAII. 

Proof Since our argument relies on interpreting BV sets as integral 
currents, we shall employ the notation of [7, Chapter 41. As X= E” L A is 
an integral current, so is @#(X) (see [7, Sects. 4.5.1 and 4.1.14, pp. 474 and 
3703). It follows from [7, Corollary 4.1.26, p. 3831 that @#(X) = E” L h, 
where h is a function on R”’ defined as follows: 

if j’ = Q(s) and the fraction is defined, 

otherwise. 
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Since @ is a lipeomorphism, IhJ is equal to the characteristic function of B 
almost everywhere. Thus letting Y = E” L B, we have 

IBI =M(Y)=M(@~(X))<a”M(X)=d” [A(, 

IlBll =M(aY)~M(B~P.(X))=M(~.(ax)) 

du m-lM(dX)=a’n-’ [IAIl. 

THEOREM 6.7. Let A E BV, let @: A + R” be a lipeomorphism, and let 
fE XJ@(A)). Then f 0 @. ldet @I belongs to ,&(A) and 

Proof In accordance with Lemma 6.5, view @ as a lipeomorphism of 
cl A. By Lemma 6.6, there are positive constants a, c(, b, fi, and y such that 
the following inequalities hold: 

(1) a lx-~‘16 I@(x)--@(x’)j <cc Ix-x’/ for each x, X’EC~ A; 

(2) b IBI < I@(B)1 G/J IBI for each BE BVA; 

(3) ll@(B)ll <y l[Bll for each BE BV,. 

The isoperimetric inequality shows that IBI/[d(B)]” 2 c[r(B)]“’ for each 
BV set B and a positive constant c depending only on m. Since I@(B)1 = 
JB ldet @I d&,, f or every measurable set B c A (see [7, Theorem 3.2.3,( 1 ), 
p. 243]), it follows from [33, Chap. IV, Theorem (6.3), p. 1181 that for 
almost all x E A, 

lim l@(AM)’ ldet @(x)1 -= 
IAnI 

for every sequence (A,} in BV, shrinking to x. We denote by C the set of 
all x E cl, A for which either det @(.x) is not defined, or there is a sequence 
{A,} in BV, h k’ s rm mg to x such that the above equation does, not hold. 
Clearly, 1 Cl = 0. 

Choose an E >O, and find a majorant A4 of f in @(A) so that 
M(@(A)) < U(f, @(A)) + E. Select a function H on BV, associated with C 
and E according to Lemma 5.18, and let 

N(B) = M(@(B)) + H(B) 

for each B E BV,. In view of Lemma 6.6, N is a well defined superadditive 
function on BV,, and the lower continuity of A4 together with (2) and (3) 
imply that it is lower continuous. There is a thin set T such that M,(y) > 
f(y) for each y~cl, @(A) - T. By (1) and [6, Lemma 1.8, p. lo], the set 
S=@-‘(@(cl A)n T) is thin. Let x~cl, A-S, y=@(x), let {A,) be a 
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sequence in BV, shrinking to x, and for n = 1,2,..., let B, = @(A,,). Accord- 
ing to Lemmas 6.5 and 6.6, ye cl, @(A) - T and {B,} is a sequence in 
BV,(, , shrinking to y. If x 4 C, then 

IN( 
IA,1 

> M,(y) jdet @(x)1 

>f(u) ldet @(-~)I, 

and hence N,(x) >f(@(x)) jdet @(x)1. Now if XE C, then it follows from 
Lemma 5.18 that lim(H(A,)/JA,,J) = + co. Since 

(cf. P)), we see that N,(x)= +GJ, and hence again N,(x) >, 
f(@(x)) ldet Q(x)\. Consequently, N is a majorant of fo @J. ldet @I in A, 
and so 

U(fo @. ldet @I, A) < N(A) 

= M(@(A)) + H(A) < U(<f, @(A)) + 2~. 

The arbitrariness of E implies that U(fo @. ldet @I, A) < U(f, @(A)). 
Applying this result to the function -f and using Lemma 6.1 yields 

-U(-f,@(A))<-U(-f~@.ldet@/,A) 

d U(fo @. ldet @I, A) d U(f, @(A)), 

and the theorem follows from Proposition 6.3. 

Our next proposition compares the variational and Denjoy-Perron 
integrals in dimension one. For the definition and properties of the 
Denjoy-Perron integral (abbreviated as DP-integral) we refer to [33, 
Chap. VI,\ Sect. 6 and Chap. VIII, Sect. 51. 

PROPOSITION 6.8. Let m = 1, and let A = [a, b] where a, b E R and a < b. 

1. If fE$(A), then f is DP-integrable in A and Z,(f, A) is the value 
of the DP-integral off over A. 

2. There is a function f on A which is DP-integrable but not 
v-integrable in A. 

Proof: We only prove the first statement. The function f of the second 
statement is constructed in Example 6.9 below. 

Let f~ &(A) and E > 0. By Proposition 6.3, in A there are majorants M 
and N off and -f, respectively, such that M(A) + N(A) < 42. Enumerate 

607/87.‘1-9 
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as {ti, tZ, . ..} h t e union of the thin sets associated with M and N. Let 
[c, d] be a subinterval of A = [a, 61 with c cd. For n = 1, 2, . . . set 

1 

1 if t, E (c, d), 

cpn(Cc, dl)= l/2 if t, = c or t,, = d, 

0 if 1, # [c, 4, 

and let cp = C, 2-‘-*scp,. Moreover, set 

1 
M( [a, 4) - W [a, ~1) 

M”(Cc’ d’)= M([a, d])-M([a, c)) 

if d<b, 

if d=b, 

and define N, analogously. Since M and N are lower continuous super- 
additive functions on SF,, it is easy to verify that in A the functions 
M, + cp and -N, - cp are, respectively, a majorant and a minorant off in 
the sense of [33, Chap. VI, Sect. 6, p. 2011. As 

CMo(A)+cpP)l- C-No(A)-cp(A)l<&, 

it follows from [33, Chap. VIII, Sect. 31 that f is DP-integrable in A, and 
we denote by Z the value of the DP-integral of f over A. From the 
inequalities 

-N(A)+ -N,(A)-q@)<Z<M,(A)+q(A)<M(A)+;, 

we obtain )Z- U(f, A)1 GE, and by the arbitrariness of E and Proposi- 
tion 6.3, 

EXAMPLE 6.9. For m = 1, we define first the DP-integrable function 
introduced in [28, Example 8.61. 

If K= (a, b) is a subinterval of R with h = b -a > 0 and it = 1,2, . . . . let 

K,,, = (a+2-Z”h, ~7+2-~“+‘h), 

K,- =(a+2-*“+‘h,a+2-*“+*I$ 

and for x E R set 

2 2”/n if XEK,+, 

fK(x) = -22n-‘/n if xeK,-, 

0 otherwise. 
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Now let C be any Cantor set in A = [0, 11 (e.g., take C of Example 2.1) 
let % be the family of all connected components of A - C, and let 
f=CKEwfK. Since 

it is easy to see from [33, Chap. VIII, Theorem (5.1), p. 2571 that f is 
DP-integrable in A and that the value of the DP-integral off over A is 
zero. However, f is not v-integrable in A. 

Proceeding towards a contradiction, suppose that f is v-integrable in A, 
and choose a thin set T and a positive function 6 on A - T. As T is a coun- 
table set, C- T is a G, set and hence it is completely metrizable. Using the 
Baire category theorem in C- T, there is an open interval L with 
Ln(C-T)#@, and an q>O such that the set E={xELn(C-T): 
6(x) B r} is dense in L n (C - T). Since C is perfect and T is countable, E 
is dense in L n C. Select a K= (a, b) in %’ with a EL n C, and construct a 
sequence {xn} in Eso that a-2-‘“I~:I<x,<x,,+,<a, n=l,2,.... Then 
d(K,- u {xn})< 3 .2-2” IKI, Y(K,+ u {xn))>, l/6, and 

5 If(x,)I~~,I-Z,(f,K,+)I= f Z,(jtK,+)= 2 y=+o3. 
n=l n=l n=l n 

Since d(K,+ u {xn 1) < ye d 6(x,) for all sufficiently large n, this contradicts 
Proposition 5.15. 

Remark 6.10. Assuming that the function f of Example 6.9 is integrable 
with respect to the v-integral modified according to Remark 5.2,4(a), we 
still obtain a contradiction. Indeed, if suffices to select J’,, so that 
x,,<y,<x,+, and 

$l, (If( . I c&r, Y,?ll + I~,yI cxm .v,l)l) < + 00, 

and observe that x,~cl,(K,,+ u [x,, v,]) and 

f If hz) IK+ ” cxm rnll -I&f, K?+ u cx,,, Ynl)j = + Cc. 
n=l 

7. A. RIEMANN DEFINITION OF THE VARIATIONAL INTEGRAL 

We begin by generalizing the concept of dyadic partition introduced in 
Section 4. 
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DEFINITION 7.1. Let A E SV, let T be a thin set, and let E > 0. Further- 
more, let 6 be a positive function on cl, A - T, and let H be a lower 
continuous superadditive function on BV,. A partition in A mod T is a 
collection (possibly empty) P = {(A 1, x, ), . . . . (A,, xr) 1, where A 1, . . . . A, are 
disjoint BV subsets of A and X~E (cl Ai) n (cl, A - T), i= 1, . . . . p. We let 
lJ P = lJ r= i Ar and say that the partition P is 

1. tight if x ~cl, Aj, i= 1, . . . . p; 

2. an E-partition if r(Ai) > E, i = 1, . . . . p; 

3. o-fine if d(A;) <6(x,), i= 1, . . . . p; 

4. H-approximating if H(A - U P) > - 1. 

The family of all b-line H-approximating e-partitions in A mod T is 
denoted by ZZ(A, T; E, 6, H). 

The following lemma generalizes Lemma 4.4. 

LEMMA 7.2. Let A E BV, let T be a thin set, and let 6 be a positive func- 
tion on cl, A - T. Zf 0 < E < 1/(2m) and H is a superadditive lower continuous 
function on BV,, then for each n > 0 there is a &fine tight E-partition P in 
A mod T such that H(A - u P) > -n. In particular, ZZ(A, T; E, 6, H) # a. 

Proof: Say that BE BVA is vile if there is an q > 0 such that for each 
&fine tight E-partition P in B mod T we have H(B- lJ P) 6 -q, and 
observe that there is a largest q with this property, denoted by rlrr. For 
BE BV, set 

if B is vile, 
otherwise. 

Since H(B) <F(B) for each vile set BE BV,, the lower continuity of H 
implies that of F. 

Let B and C be disjoint BV subsets of A and suppose that 
F(B u C) < F(B) + F(C). By the definition of F, there are b-tine tight 
a-partitions P, in B mod T and P, in C mod T such that 

<H BuC-U(P,uP,) . 
1 

As P, u P, is a &tine tight c-partition in B v C mod T, this is a contradic- 
tion. It follows that F is superadditive. 
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If F(A) < 0, then by Proposition 4.6 there are an x ECI, A - T and a 
sequence {C,} in BV, such that ,x~cl,C~,, v(C,)>s, F(C,)<O, 
k = 1, 2, . . . . and lim d( C,) = 0. Observe that ((C,, x)} is a S-fine tight 
c-partition in C, mod T whenever d(C,) <6(x). By the lower continuity of 
H we have 0 < H((a) = H(C, - C,,), so the sets C, are not vile for all suf- 
ficiently large n. This contradiction shows that F(A) = 0, and the lemma is 
proved. 

If A E BV and f is a function on cl, A, then for each partition 
P= {(A,, x,), . . . . (A,,, x,)) in A mod 0, let 

df, PI = i f(-xi) IA,l. 
i= 1 

DEFINITION 7.3. Let A E BV and let f be a function on cl, A. We say 
that f is Riemann integrable (abbreviated as R-integrable) in A if there is a 
real number R which satisfies the following condition: given E > 0 there is 
a thin set T, a positive function 6 on cl, A - T, and a lower continuous 
superadditive function H on BV, such that 

l4f; PI - RI < E 

for each P E lI(A, T; E, S, H). 

Let A be a BV set. The family of all R-integrable functions in A is 
denoted by a( A). Suppose that f E 2(A) and that the numbers R, and R, 
satisfy the condition of Definition 7.3. Choose a positive E < 1/(2m), and if 
T,, di, and Hi, i= 1, 2, are associated with R, and E according to Defini- 
tion7.3, set T=T,uT?, 6=min{6,,d2) and H=min(H,,H,]. As His 
lower continuous and superadditive, there is a PE Z7(A, T; E, 6, H) by 
Lemma 7.2. Since 

IR, - R,I < JR, - o(L P)I + IG f’) - R?I < 26, 

the arbitrariness of E implies that R, = R,. Thus the number R from Defmi- 
tion 7.3 is uniquely determined by f and we denote it by R(f, A). 

LEMMA 7.4. Let A E BV and let ,f be a function on cl, A. Then f c &‘( A) 
whenever for each E > 0 there is a thin set T, a positive function S on 
cl, A - T, and a lower continuous superadditive function H on BV,., such that 

IdA f’-df, Q,l <E 

for each P and Q in IT(A, F, e, 6, H). 
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Proof For E, = 1/(3mn), n= 1, 2, . . . . find T,, 6,, and H,, so that 
the condition of the lemma is satisfied. We may assume that T,c 

By Lemma 7.2 there is a 
~~‘k(A~~~~; z,“s:, Hydand”a;‘o:r ?sumptions the sequence {a(f, P,)> 
is Cauchy; for ja(f, P,) - ~(f; PJ < E, whenever r < s. Let R = lim o(f, P,), 
choose E > 0, and find an integer s > 1 with E, < ~12 and ja(f, P,) - RI < ~12. 
Now if PE 17(A, T,; E, 6,, H,) then 

and the lemma is proved. 

PROPOSITION 7.5. Let AE BV and ~-E&?(A). Then f /‘cl, B belongs to 
93(B) for each B E BV,, and the function R(f; .) on BV, defined by 
R(f, B) = R(f 1 cl, B, B) is additive and continuous. 

ProoJ: Choose a positive E < 1/(2m), and find a thin set T, a positive 
function 6 on cl, A - T, and a lower continuous superadditive function H 
on BV, such that la(A P) - R(f, A)/ -C 42 for each PE Z7(A, T; E, 6, H). 

For a set B E BV, select Qj E Z7( B, T; E, 6,2H), i = 1, 2, and use 
Lemma 7.2 to find a Q E 17(A -B, T; E, 6,2H). Since 

H A-0 (QiuQ) )>H(B-U Qi)+H(cA-B)-IJ Q)>-ly 

the partition Pi = Qi u Q belongs to Z7(A, T; E, 6, H), and clearly a(f, Pi) = 
a(f, Qi, + df, Q). Thus 

ldf, Ql) - df, QA = IG P,) -4f, Pz)l 
G ldf, P,) - W A)l 

+INf,A)-df,f’dI<& 

and f /‘cl, B belongs to W(B) by Lemma 7.4. 
Let 9 be a division of A consisting of II sets. For each D E 9 there is a 

thin set T,, a positive function do on cl, D - T,, and a lower continuous 
superadditive function H, on BV/, such that Icr(f, P,) - R(f, D)j < &/(2n) 
for each P,eII(D, T,; E, a,, HD). We may assume that Tc T,, 6,< 
6 1 (cl, D - T,), and H, < (nH) r BV,. Now if P, E l7(D, TD; E, 6,, H,), 
then P=UDED P, is in 17(A, T; E, 6, H) since 

,(,,.),~~H(D-,P,),~~~H,(D-,P.)>-l 
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+ c a(.f, pD)- 1 R(f,D) 
Dt9 DE9 

and the additivity of R(f, . ) follows from the arbitrariness of E. 
As H is lower continuous, there is an q > 0 such that H(B) > - l/2 for 

each BEBV, with (BI <q and /B/l < l/s. Choose such a set BE BV, and 
let C = A -B. Since SE g(C), there are a thin set T,, a positive function 
6, on C- T,, and a lower continuous superadditive function H, on BV, 
such that Ia(f, Q) - R(f, C)l < 42 for each Q E IZ( C, T,; E, 6,, H,). We 
may assume that Tc T,, S, < 6 f (cl, C- T,), and H, d 2(H r BVV,). By 
Lemma 7.2 there is a Q E II(C, Tc; E, 6,, H,) and, as 

the partition Q belongs also to Z7(A, r, E, 6, H). Thus 

l&f, WI = IW A) - Nf, C)l G IW A) - df, Q,l 

+ ldf, Q) - Nf, C)l< 6, 

and the continuity of R(f; .) is established. 

LEMMA 7.6. Let A E BV and f E B(A). For every E > 0 there is a thin set 
T and a positive function 6 on cl, A - T such that 

i=l 

for each S-fine &-partition ((A,, x, ), . . . . (A,, x,)} in A mod T. 

ProoJ: Choose a positive E < 1/(2m) and find a thin set T, a positive 
function 6 on cl, A - T, and a lower continuous superadditive function H 
on BV, so that /o(f, P) - R(f, A)\ < 43 for each P E ZZ(A, T; E, 6, H). By 
Lemma 7.2, each b-fine s-partition P in A mod T can be extended to a 
partition in ZI(A, T; E, 6, 2H), so it suffices to consider a partition 
{(A,, x,), . ..T (A,, x,)] in ZI(A, T; E, 6, 2H). Lemma 7.2 and Proposition 7.5 
imply that for i = 1, . . . . p, there is a Pie ZI(Ai, T; E, 6, 2pH) such that 
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l0(L P,)-R(f, Ai)l <&/C3P). w e may assume that f(xi) [Ai1 3 R(f, Ai) 
when i=l,..., k, and f(x,)lAil<R(f,Ai) when i=k+l,..., p, where 
O<k<p. Now 

p+ = (CA13 xl), ...9 CAk3 xk)) u (J pi, 
i=k+l 

k 

p- = {(Ak+1, x k+lh *..Y CAj79 xp)> u U pi 

i=l 

belong to Z7(A, T; E, 6, H) since 

> -;-(p-k)&l, 
2P 

and similarly H(A - IJ P- ) > - 1. Hence 

i>c(f;P+)-R(f,A)= i If(Xi) IAil -R(f,Ai)( 
i=l 

+ i [o(J; Pi)-R(f, Ai)1 
i=k+l 

2 t If(Xi) IAil -R(f, AJl -v 
i=l 

and analogously 

i>, 2 (f(xi) IAil -R(f,Ai)l-$. 
r=k+l 

Adding these inequalities yields 

2 (f(xi) IAil -R(f, Ai)l <E 
i=l 

and the proof is completed. 
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PROPOSITION 7.7. Let A E BV and let f be a function on cl, A. Then 
f E W(A) if and onlv if there is a continuous additive function F on BV,4 which 
satisfies the following condition: given F > 0 there is a thin set T and a 
positive function 6 on cl, A - T such that 

i If(xi) IAil -F(A,)I <E 
i= I 

for each &fine E-partition ((A,, x,), . . . . (A,, x,)} in A mod T. In particular, 
Nf; A)=W). 

Proof: If f ES?(A) then, in view of Proposition 7.5 and Lemma 7.6, it 
suffices to let F = R(f, . ). Conversely, let F be a continuous additive func- 
tion on BV, which satisfies the condition of the proposition, and let E > 0. 
There is a thin set T and a positive function 6 on cl, A - T such that 

for each &fine s-partition P= {(A,, x,), . . . . (A,, x,)] in A mod T. Now 
H= -2 IFI/& is a continuous superadditive function on BV,, and if 
P E IT(A, T; E, 6, H) then 

lb(AP)-F(A)1 d i If(xj) IA,1 -F(AJ + F A-UP <E. 
r=l I( )I 

It follows that f E S?(A) and R(f, A) = F(A). 

Note. The previous proposition relates the R-integral to that defined in 
[28, Definition 3.11. The differences between these integrals are analogous 
to those mentioned in Remark 5.2,5. 

PROPOSITION 7.8. Z~AEBV, then S(A)=&(A) andR(f, .)=I,(f .)for 
each f~ W(A). 

Proof Choose an E > 0, and suppose first that f E &(A). If F= Z,(A .), 
there is a thin set T such that the pair (A F) has an s-majorant A4 in 
A mod T. Consequently, we can find a positive function 6 on cl, A - T such 
that 

If t-u) IBI -FM 6 M(B) 

for each SE cl, A - T and each BE BV/, with IE cl B, d(B) <6(x), and 
r(B)>&. Now if {(A,, x,), . . . . (A,,.Y,,)} is a &line s-partition in A mod T, 
then 

i If(xi) IAil -Fl’(Ai)l < i M(A,)<MA)<G 
i= 1 r=l 

and it follows from Proposition 7.7 that f~ d(A). 
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Conversely, let YES?(A) and let F= R(f, .). By Lemma 7.6 there are a 
thin set T and a positive function 6 on cl, A - T such that 

for each b-tine e-partition {(A,, x,), . . . . (A,, x,)} in A mod T. For BE BV, 
let 

M(B)=suP i (f(xi) IBil -F(Bi)I, 
i=l 

where the supremum is taken over all b-fine s-partitions 
{(B,, xl), . . . . (BP, x,)} in B mod T. Clearly 0 < A4 < ~12 < E, and 

for each x E cl, A - T and BE BV, with x E cl B, d(B) < 6(x) and r(B) > E; 
for {(B, x)} is a &fine s-partition in B mod T. Thus if M is superadditive, 
it is an &-majorant of the pair (f, F), and we conclude that f EY”(A) and 
F= L(f, .I. 

To establish the superadditivity of M, let B and C be disjoint BV subsets 
of A, and suppose that M(B u C) < M(B) + M(C). Then there are &fine 
s-partitions P, = ((B,, x,), . . . . (4, x,1> and PC= (Ccl, ~~1, . . . . (C,, Y,)> in 
B mod T and C mod T, respectively, such that 

M(BuC) < i lAXi) IBil -fIBill + i If (Yj) ICjI -F(Cj)(* 
i=l j= 1 

This is a contradiction since P, v P, is a &fine s-partition in B v C mod T. 

By allowing only tight partitions in Definition 7.3, we produce an 
R-integral which coincides with the v-integral modified according to 
Remark 5.2,4(a). We shall prove next (cf. Proposition 7.10 in conjunction 
with Proposition 7.7) that if m >, 2, this modification leads to no new 
integral. 

LEMMA 7.9. Let AE BV, XE cl, A, q > 0, and let p 2 1 be an integer. Zf 
m > 2, then there are disjoint sets Cl, . . . . C, in BV, such that for i = 1, . . . . p 
we have x E cl, Ci and 

max(d(CA ICJ, IICill) <V 
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Proof: Let 

limsupiAnu(x3E)1=C(,~ 
c-o+ I U(4 &)I 

Using linear submanifolds passing through x, divide R” into disjoint 
segments Sr, . . . . Sk so that 

O< lim 
ISi n v-x, E)i 

E’O+ IU(x, &)I 
<CL 

P 

for i= 1, . . . . k. Since 

k IAnS,nU(x,E)I k 
a=limsup C 6 1 lim sup 

IA n Sin U(x, &)I 

e-o+ i= I IU(x, &)I i= I e+O+ lwc &)I ’ 

there are at least p segments, say S,, . . . . S,, such that 
x E cl,(A n Sin U(x, E)) for each E > 0 and i = 1, . . . . p. Now it suffices to let 
Ci = A n Sj n U(x, E) for a sufficiently small E > 0 and i = 1, . . . . p. 

PROPOSITION 7.10. Let A E BV, let T be a thin set, and let 6 be a positive 
function on cl, A - T. Furthermore, let E > 0, let f be a function on cl, A, and 
let F be a continuous additive function on BV,. If m > 2 and the inequality 

i jf(xi) Mil - W;)I d E 
I=1 

holds for each b-fine tight E-partition P= {(A,, x1), . . . . (A,, x,)} in 
A mod T, then the same inequality holds for any o-fine s-partition P in 
A mod T. 

Proof Assume that there is a &fine a-partition {(B,, x,), . . . . (B,, x,)} 
in A mod T such that 

i If (xi) IBil - Wi)l > E. 
i=l 

In view of Lemma 7.9 and the continuity of F, we can find disjoint 
sets C,, . . . . C, in BV, such that if Ai= (Bi- lJ$‘= r Cj) u Ci, then 
{(A,, x,), . ..> (A,, x,)} is a &fine tight s-partition in A mod T, and 

t (If(xi)I.ICiI+IF(Ci)I)+ i (If(xi)l~IB,nCil+lF(BinCj)I) 
i= 1 i./= 1 

< 5 (f(xi) lB;l -F(Bi)( -c. 
i= 1 
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The last inequality together with the equalities 

IAil = lBil + lcil - i IBin (Ql, 
j=l 

F(Ai)=F(Bj)+F(Ci)- i F(BinCj), 
j=l 

where i= 1, . . . . p, imply that 

5 lftxi> IAil --FtAi)( >&, 

i=l 

and the proposition follows. 

8. CONVERGENCE OF BV SETS 

In this section we discuss a convergence in BF’ introduced by J. Mafik 
and developed in [ 19, 12, 18, 211. The results will be applied in Section 7 
to extending the variational integral (cf. [31, Sect. 41). 

We say that a sequence (A,} of BV sets converges to a BV set A, and 
write {A,} -+ A, whenever A,c A, n= 1,2, . . . . sup ilA,/l< +oo, and 
lim /A-A,1 =0 (cf. [18, Sect. 11). If (A,} and {B,} are sequences of BV 
sets converging, respectively, to BV sets A and B, then 

{A,uB,)-,AuB and {A,nBB,}+AnB. 

A family %’ c BV is called cfosed whenever for each sequence (C, > in % 
converging to a BV set C we have C E %‘. The closure of a family d c BV, 
denoted by Cl d, is the intersection of all closed subfamilies of BV contain- 
ing d; clearly Cl d is closed. 

Note. In the definition of {A,} + A one may assume that A is any 
bounded subset of R” and deduce from [8, Theorem 1.19, p. 173 that A is, 
in fact, a BV set. 

Remark 8.1. It will be convenient to describe the closure operation in 
BV translinitely. 

1. Given an 9 c BV, let Cl,(F) be the collection of all BE BV for 
which there is a sequence (B, > in 9 with {B,} + B. 

2. Given an 6’ c BV, set Cl,, 6” = d, and assuming that Cl, &’ has been 
defined for all ordinals c( < p where 1 < j3 d or, let Cl, d = IJ,, p Cl, 6 if /? 
is a limit ordinal, and Cl, d = Cl,(Cl, d) if /? = CI + 1. 
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Now for each dc BV it is easy to verify that Cl, d c Cl, d whenever 
0 6 a 6 /? < o, and that Cl F = Cl,, d (cf. [31, Proposition 4.31). 

If 6 and 6” are subfamilies of SV, we let 

$v CT= fEuE’:EE&E’Efq: 

$Ab’={EnE’:EE~,E’E~‘3. 

LEMMA 8.2. If d and 8’ are subfamilies of BV, then 

Cl 6 v Cl b’ c cl(a v 6’) and Cl& A Clb’cCl(b A 6’). 

ProoJ It is easy to check that Cl, d v Cl, b’ c Cl,(B v 8’). From this 
it follows inductively that Cl, 6 v Cl, 8’ c Cl,(a v 8”) for each c( d wl. 
The other inclusion is proved similarly. 

Let A be a BV set. A kernel of A is any family X c BV, with A E Cl X. 
A kernel X of A is called nondispersed, solid, or opaque if each KE X is 
nondispersed, solid, or opaque, respectively. 

LEMMA 8.3. Let 1‘ and Xx’ be kernels of BV sets A and A’, respectively. 
Then the following are true: 

1. X v X’ and X A X’ are kernels qf A u A’ and A n A’, respec- 
tivel-y. 

2. IA-U X/ =O. 

3. X contains a countable kernel of A. 

4. .X is refined by a nondispersed kernel of A. 

Proof. 1. This follows directly from Lemma 8.2. 

2. Let B= A - U ~7 have a positive measure. Then the family 
V= {CEBV: IBnCj =O> is closed, Xc %, and A $%‘. This is a con- 
tradiction because Cl X c %. 

3. Let { 3, : y E r} be the collection of all countable subfamilies of 
X. As each sequence {K,) in V = UYE r Cl 3, is, in fact, a sequence in 
Cl $, for some y E r, we see that V is a closed family containing X. Thus 
Cl .X c %, and any q, with A E Cl <, is the desired countable kernel of A. 

4. By Proposition 3.2, for each KE X there is a sequence (K,, j 
of nondispersed BV subsets of K such that {K,} -+ K. Thus 
{K, : KE X, iz = 1, 2, . ..> is the desired refinement of X. 

LEMMA 8.4. Let .X be a kernel of a BV set A, and for each KE X let 
%K be a kernel of K. Then +I? = U K E ,%. 5~7~ is a kernel of A. 

Pro@ Indeed X c UK E .R Cl gK c Cl %?‘, and hence Cl X c Cl %‘. 
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LEMMA 8.5. Let A E BV and let F be an additive function on BV,. Then 
F is lower continuous if and only if lim sup F(B,) < F(B) for each sequence 
{B, } in BV, converging to B E BV, . In particular, F is continuous tf and 
only if lim F(B,) = F(B) for each sequence (B,} in BV, converging to 
BE BV,. 

Proof Let F be lower continuous, and let (B,) be a sequence in BV, 
converging to BE BV,. Choose an E > 0 with 11Bj1 + sup 11 B,JI < l/s, and 
find 6 > 0 such that F(C) > --E for each C E BV, with ICI < 6 and 
IlCll < l/s. As F is additive and 

IP-411 G IIBII + IIBAI <f> n = 1, 2, . . . . 

we have 

F(B,)=F(B)-F(B-B,)<F(B)+& 

whenever 1 B - B,I < 6. Since the last condition is satisfied for all sufficiently 
large n, we see that lim sup F(B,) < F(B). If F is continuous, then also 
lim inf F( B,) B F(B) and consequently lim F( B,) = F(B). 

Conversely, if F is not lower continuous, then there is an E > 0 and a 
sequence {B,} in BV, with IB,( < l/n, JIB,,)I < l/s, and 

-&>F(B,)=F(A)-F(A-B,), n = 1, 2, . . . 

Thus {A-B,}+A, and yet limsupF(A-B,)>F(A). 

COROLLARY 8.6. Let A E BV and let F be an additive lower continuous 
function on BV, . If X is a kernel of A and F(K) > 0 for each KE X, then 
F(A)>O. 

Proof The family {BE BV, : F(B) 2 0} contains X and is closed by 
Lemma 8.5. 

PROPOSITION 8.7. Zf X is a kernel of a BV set A, then the set 
cl, A - UKE x cl, K is thin. 

The proof of this proposition, outlined by P. Mattila, requires two 
lemmas. 

LEMMA 8.8. Zf B is a BV set, then int, B can be covered by a countable 
family { V,} of open cubes such that 

~IV,lG4BI and 
k 

G II Vkll GP 11~11, 

where c( and p are positive constants depending only on m. 
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Proof: We proceed as in [7, Proof of Corollary 4.5.8, p. 4773. If 
x E int, B, then 

IB c-7 w, &)I 
EH I~(x, &)I 

is a continuous function of E > 0 which approaches 1 and 0 as E tends to 
0 and + co, respectively. Thus for each XE int, B there is a U, = U(x, E,) 
such that 

F= ,U,nB, = IU,-Bl. 

It follows from [8, Corollary 1.29, p. 251 that 

where y is a positive constant depending only on m. By [6, Lemma 1.9, 
p. lo], there is a countable set Cc int, B such that {U, : XE C} is a 
disjoint family and int, Bc lJxeC V, where V, = U(x, 5.~~). Hence 

.r.& IV,, =2.5” c IBn U,( =2.5 B 
1; E c 

m 1 n(,li, &)I G2.5” 1% 

-x;c lIv.xll 65”-‘Y 1 0,(&)=5”-$7, 
I 6 c 

and the lemma is established. 

LEMMA 8.9. Let (B,) be a sequence of BV sets. If lim 1 B,( = 0, then 

where y is a positive constant depending only on m. 

ProoJ Assume that a = lim inf I/ B,I/ is finite and choose an E > 0. If x 
and B are the constants from Lemma 8.8, let y = /?/(2m) and find an integer 
p 2 1 such that ]B,,,1 < E”‘/CI and 11BJ <a + E/Y. Let {V,} be a countable 
family of open cubes associated with B, according to Lemma 8.8. Then 

fVk1 covers n;=, int, B,, 

d(V,)=IV,I”“~(ccIB,I)““<&, k=l,2,..., 

T C4V,)Ym ‘6~ llB,ll <?a+&, 

and the lemma follows. 
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COROLLARY 8.10. If {A,} is a sequence of BV sets converging to a BV 
set A, then 

cl, A - c cl, A,, < +a. 
II=1 

ProoJ: Since 

cl, A - G cl, A, c (bd, A) u int, A - G cl, A, 
?I=1 n=l 

= (bd, A) u fi int,(A -A,), 
II=1 

the corollary follows from Lemma 8.9. 

Proof of Proposition 8.7. Suppose that B = cl, A - UKE x cl, K is not a 
thin set, and let %’ consist of all BV sets which meet B in a thin set. Then 
X c %?, A # %, and by Corollary 8.10, GF: is closed. This is a contradiction 
as Cl X c %?. 

9. THE CONTINUOUS INTEGRAL 

Let A E BV, and let f and F be functions defined on A and BV,, respec- 
tively. We denote by &(f, F; A) the family of all BE BV, such that 
frB~&a,(B) and I,(frB,.)=FrBV,. 

DEFINITION 9.1. We say that a function f on a BV set A is continuously 
integrable (abbreviated as c-integrable) in A if there is a continuous 
additive function F on BV, such that Le’,(f, F; A) is a kernel of A. 

Let A be a BV set. The family of all c-integrable functions in A is 
denoted by &(A). IffE YJA), then each continuous function F on BV, for 
which &(f, F, A) is a kernel of A is called an indefinite c-integral offin A. 

PROPOSITION 9.2. Let A E BV, f~ YC(A), and let F be an indefinite 
c-integral off in A. If B E BV,, then f r B’belongs to .$(B) and F r BV, is 
an indefinite c-integral off 1 B in B. 

Proof: By Proposition 5.3, &(f, F; B) = {B} A La;(f, E A) and so it 
s&ices to apply Lemma 8.3,1. 

LEMMA 9.3. Let A E BP’, and for i = 1, 2 let Fi be an indefinite c-integral 
OffiEyc(A). Iffi <fz then F, <Fz. 
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Proof By Lemma 8.3,1 the family X = Y,,(f,, F, ; A) A $(fi, Fz; A) is 
a kernel of A. If F= F, - F,, then Lemma 5.4 implies that F(K) > 0 for 
each KE Xx. According to Corollary 8.6, F(A) > 0 and the lemma follows 
from Proposition 9.2. 

COROLLARY 9.4. If A E B V and f E $(A), then all indefinite c-integrals of 
f in A are equal, 

In view of the previous corollary, if A E BV and f EYC(A), we can talk 
about the indefinite c-integral off in A, denoted by Z,(f, .); the number 
Z,(.f, A) is called the c-integral off over A. For each BE BV,, we have 
L(f r 4 .)=Uf, .) r BJ',. 

The next proposition summarizes the properties of the c-integral. 

PROPOSITION 9.5. For a function f defined on a BV set A the ,following 
statements are true. 

1. Iffe.&(A), then feYC(A) and Z,(f, A)=I,(f, A). 

2. $(A) is a linear space and the map ,f+-+ I,(f A) is a nonnegative 
linear functional on &( A ). 

3. rf 9 is a division of A, then ,f is c-integrable in A if and only if it 
is c-integrable in each D E Y. 

4. If f E &.( A ) then f is measurable. 

5. f belongs to Y,(A) if and only if both f and 1 f / belong to &(A). 

6. f = 0 almost ever,ywhere if and only iff E &(A) and I,(f, . ) = 0. 

7. Zf { fn] is a sequence in YC(A) and lim f, =.f, then f E YC(A) and 
I,(A A) = lim Z,(f,,, A) whenever either of the following conditions holds: 

(a) .f, <f,+ ,, n = 1, 2, . . . . and lim Z,.(f,,, A) < + a; 

(b) g Gf,, 6 h ,for some g, h E .&(A) and n = 1, 2, . . . . 

Proof 1. This is obvious since {A ] is a kernel of A. 

2. Here it suffices to use Propositions 5.3 and 5.6 in conjunction with 
Lemma 8.3,1. 

3. As the converse follows from Proposition 9.2, suppose that f r D 
belongs to YC(D) for each D E 9, and let F, = IJf r D, . ). If 

F(B)= c F,(BnD) 
DC9 

for every BE BV,, then F is a continuous additive function on BV, and we 
show that F= ZJf, . ). By Lemma 8.3,4 and Proposition 5.3, each D E 9 has 
a solid kernel XD c &( f, F, A); in fact, we can assume that SD is a non- 
dispersed kernel but we do not need this. According to Lemma 8.3,1, the 

607.'87;1-LO 
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family X = VDED XD is a kernel of A, and Xc &(f, F, A) by Proposi- 
tion 5.7. 

4. This is a consequence of Corollary 5.12 and Lemma 8.3,2. 

The remaining statements follow easily from Lemma 5.13. 

Remark 9.6. By Proposition 9.5,1 we have &(A) c Xc(A) for each BV 
set A. It follows from Proposition 9.5,3 and Example 5.21 that the previous 
inclusion is generally proper (cf. Remark 9.11 and Corollary 9.12). 

Let A E BV, and let f and F be functions defined on A and BV,, respec- 
tively. We denote by JQS, F; A) the family of all BE BV, such that 
f r BE .$(B) and Z,(f r B, .) = F r BV,. It is a direct consequence of 
Lemma 8.4 that Definition 9.1 produces no new integral when $(fi F; A) is 
replaced by Y=(f, F; A). We state this as a proposition. 

PROPOSITION 9.7. Let f be a function on a BV set A. Zf there is a con- 
tinuous additive function F on BV, such that Y=(f, E;; A) is a kernel of A, 
then A E Yc(,(f, F; A). 

PROPOSITION 9.8. A function f on a BV set A is c-integrable in A when- 
ever the following conditions hold: 

1. there is a sequence {A,, } in BV, converging to A and such that f is 
c-integrable in A,,, n = 1, 2, . . . . 

2. if {B,} is a sequence in BV, converging to A and such that f is 
c-integrable in B,, n = 1, 2, . . . . then a finite lim Z,(J B,) exists. 

Proof. Let -0, be the family of all BV subsets of A on which f is 
c-integrable, and set F(B) = Z,(f, B) f or each B E &. Note that ,aC is an ideal 
in the ring BV,. If {B,} and {C,} are two sequences in Yc converging to 
A, then so is the sequence {E,} where E,,- 1 = B,, E,, = C,, n = 1,2, . . . . It 
follows from condition 2 that lim F(B,) = lim F(C,), and we denote this 
common value by a. 

Let B E BV,, C = A - B, and let {E, } be a sequence in $ converging 
to A. If lim sup F(B n E,) = + co, then for k= 1,2, . . . . there is an 
integer nk > 1 such that F( B n E,,) > k - F( C n Ek). Thus letting 
Dk=(BnE,,)u(CnEk), we have {D,)+A and limF(D,)=+co, a 
contradiction. By symmetry, we conclude that the sequences {F(B n E,)} 
and (F( C n E,,)} are bounded. 

Now choose subsequences {B,_+ > and (C,, } of {Bn E,,} and { Cn E,}, 
respectively, so that lim F(B,* ) = b, and lim F(C,, ) = c+ exist. With no 
loss of generality, we may assume that b- < b + and c _ d c+ . Since 
(B,_+uD,*}-+A, we have a=b_+c~<b,+c+=a and consequently, 
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b- = b + and c- = c + . In particular, a finite lim F(B n E,) = b exists, and 
an argument analogous to the first part of the proof shows that b does not 
depend on the choice of a sequence {E, ). in .a, converging to A. In view 
of this, we can extend F to BV, by letting F(B) = lim F(B n A,), where 
{An} is the sequence from condition 1. 

The function F is clearly additive. To show that F is also continuous, 
choose a sequence (B,} in BV, which converges to a set BE BV,, and 
let C= A -B. For h- = 1, 2, . . ..there is an integer rzl- > 1 such that 
JF(B,)-F(B,nA,,,)J < l/k. The sets E,=(B,nA,,,)u(CnA,,,) belong to 
9, and (Ek} + A. By the previous part of the proof and our choice of nk, 
we have 

F(B)=limF(BnE,)=limF(B,nA,,)=limF(B,). 

This establishes the continuity of F. 
Finally, $“(A F; A,) is a kernel of A,, and hence the c-integrability off 

in A follows from Lemma 8.4. 

Remark 9.9. It follows from Proposition 9.8 and Remark 8.1 that the 
c-integral is produced by forming “improper” v-integrals with respect to the 
convergence in BV defined in Section 7, and iterating this process trans- 
finitely. By Propositions 9.8, no further extension of the c-integral is 
possible in this manner. However, we shall see in Section 10 that the 
c-integral is still extendable by means of a stronger convergence in BV. 

PROPOSITION 9.10. Let f be a c-integrable function in a BV set A, and let 
F=Z,(f, .). Zf the family &(f, F; A) contains an opaque kernel of A, then f 
is v-integrable in A and Z,(A .) = F. 

Proof By Lemma 8.3, $(f, F, A) contains a countable collection 
{K, , K2, . ..} of opaque sets which is a kernel of A. In view of Remark 5.2,1, 
for n = 1, 2, . . we can find a thin set T,, such that the pair (A F) has 
an s-majorant in K,, mod T,, for every E > 0. Since each K,, is opaque, 
Proposition 8.7 implies that the set 

T= cl,A- fi intK,, 
,,= 1 

is thin. Given E > 0 and n = 1, 2, . . . . the pair (f, F) has an (s/2n)-majorant 
M, in K,, mod T. If 

M(B)= 5 M,(Bn K,,) 
n=l 
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for each BE BV,, then A4 is a nonnegative additive function on BV, with 
M(A) < E. Select an x~cl, A - T and find an integer p > 1 so that 
x E int Kp. There is a 6 > 0 such that 

BcK, and If(x) I BI - F(B)( <M,(B) <M(B) 

for each BE BV, with x E cl B, d(B) < 6, and r(B) > E > ~/2~. It follows that 
M is an s-majorant of the pair (f, F) in A mod T, and the proposition is 
proved. 

Remark 9.11. At the beginning of Section 3 we mentioned that BV 
contains a subring d consisting of all BV sets whose boundary is thin. If 
we had used d rather than BV to define the variational and continuous 
integrals, then both integrals would coincide. Indeed, since all sets from d 
are opaque, this follows from Proposition 9.10. 

COROLLARY 9.12. Zf m = 1, the variational and continuous integrals 
coincide. 

Proof If m = 1, then up to a set of measure zero, each BV set is a finite 
union of nonempty open intervals whose closures are disjoint (see [35, 
Sect. 61 or [20, Theorem 331). In particular, up to a set of measure zero, 
all BV sets are opaque, and the corollary follows from Proposition 9.10. 

THEOREM 9.13. Let T be a thin set and let X be a kernel of a BV set 
A. Suppose that v is a continuous vector field on cl(c1, A) such that v r K is 
almost differentiable on cl, K - T for each K E X. Then div v is c-integrable 
in A and 

Z,(divv,A)=j v.n,d%. 
bdA 

The theorem is a direct consequence of Theorem 5.19 and Remark 5.20,1. 
Example 5.21 shows that the assumptions of Theorem 9.13 are weaker than 
those of Theorem 5.19. 

THEOREM 9.14. Let A E BV, let CD: A + R” be a lipeomorphism, and let 
f~ $=(@(A)). Then fo @. ldet @I belongs to &(A) and 

Z,(fo CD. ldet @I, A) = Z,(f, @(A)). 

Proof It follows from Lemma 6.6 that {W’(B,)} + C’(B) whenever 
(B,} is a sequence in BV,,,, converging to BE BV,(,,. Thus if X is a 
kernel of @(A), a simple transfinite induction shows that (G-‘(K): KE X } 
is a kernel of A (cf. Remark 8.1). Now it suffices to apply Theorem 6.7. 
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10. THE INTEGRAL 

We say that a sequence {A, 3 of BV sets converges strongly to a BV 
set A, and write (A,} & A, whenever A,,c A, n = 1,2, . . . . and 
lim IIA-A,ll =0 (cf. [21, Section 11 and [31, Section51). By the 
isoperimetric inequality (see [S, Theorem 1.29, p. 25]), a sequence (A,, ) in 
BV which converges strongly to a BV set A also converges to A. If (AnI 
and (B,} are sequences in BV converging strongly to BV sets A and B, 
respectively, then it follows from [Zl, Section 131 that 

{AnuB,,) --LAuB and :A, n 4,; &A~B. 

A detailed proof of this fact can be found in [31, Lemma 5.61. 

DEFINITION 10.1. Let A E BV and let F be a function defined on BV, . 
We say that F is bounded if given E > 0, there is a S > 0 such that IF( B)I < E 
for each BE BP’,, with I/ BIl < S. 

EXAMPLE 10.2. Let A be a BV set. 

1. If F is a continuous function on BV,, then F is bounded. 

2. If v is a bounded X-measurable vector field on cl, A, and 
F(B) = j,,u 11 .n, dX for each BE BV,4, then F is additive and bounded. 

LEMMA 10.3. Let A E BV and let F be an additive function on BV,. Then 
F is bounded if and only if lim F( B,,) = F(B) for each sequence {B, > in B V, 
converging strongly to B E BP’, 

For the proof, which is analogous to that of Lemma 8.5, we refer to [31, 
Lemma 5.31. 

The next definition uses the family &(A F; A) which has been defined in 
the paragraph preceding Proposition 9.7. 

DEFINITION 10.4. We say that a function f on a BV set A is integrable 
in A if there is a bounded additive function F on BV,4 and a sequence (A,) 
in YC(f, F; A) converging strongly to A. 

The family of all integrable functions in a BV set A is denoted by Y(A). 
Quite similarly to Section 7, we can show that the function F from Defini- 
tion 10.4 is determined uniquely by J: We call it the indefinite integral off 
in A, denoted by Z(f, . ); the number Z(f, A) is called the integral off over 
A. We have Z(f r B, .) = Z(J .) r BV, for each BE BV,. It is easy to verify 
that statements analogous to 9.2-9.5 hold for the integral. Moreover, the 
next example shows that the inclusion YC(A)c Y(A) is generally proper 
(cf. Proposition 10.8). 
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EXAMPLE 10.5. Let m = 2. If K is a closed square of diameter h and 
center z, the affme map QK(x) = (x - z)/h maps K onto [-l/2, l/2]‘. For 
n = 1, 2, . . . and i = 1, . . . . 2”, let K(n, i)= [2-“, 2-““I x [(i- 1)2-“, i2-“1, 
and let k, be the unique integer for which 2”/n <k, < (2”/n) + 1. It is easy 
to check that the sets 

I k. 02 

Aj= Ij ij K(n, i), j= 1, 2, . . . . and A=UAj 
n=l i=l j=l 

belong to BV, and that {Aj} A A. If u is the vector field from 
Example 5.21 and f= div u, set 

w= f 3 vo@K,n,i) and g=div w= F 2” 2 f~@~(~,~,. 
n=l i=l n=l i= 1 

As w  is a bounded vector field in R* with a single discontinuity at the 
origin, we can define a bounded additive function G on BV, by letting 
G(B) = SMB w  .rzg d% for every BE BV, (cf. Example 10.2,2). It follows 
that gEX(A), since by Example 5.21 and Proposition 9.5,3, each Aj, 
j = 1, 2, . ..) belongs to J$(g, G; A). 

Now suppose that g E YC(A), and for s = 1,2, . . . . let 

where R,,, is the square defined in Example 3.1. By Theorem 9.14, 

‘c(g, &I= c 2 Zc(g, @itfi,i)(RO,l))= 5 2 2-“‘c(.L Ro.1) 
n=s i=l n=s i=l 

= 5 k,(2-“.2)>2 5 !>2ln2. 
n=s n = .\ 

Since 

lB,j = ; k, (2-n324 f (;+2-“) 2-“$%2’, 
n=s n=s 

it is obvious that Z,(g, .) is not continuous on BV,, a contradiction. 

PROPOSITION 10.6. A function f on a BV set A is integrable in A when- 
ever the following conditions hold: 
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1. there is a sequence {A,,) in BV, converging strongly to A and such 
that f is integrable in A,,, n = 1, 2, . . . . 

2. tf {B, )- is a sequence in BV, converging strongly to A and such that 
f is integrable in B,,, n = 1, 2, . . . . then a-finite lim I(f, B,,) exists. 

Proof Proceeding as in the proof of Proposition 9.8 and using 
Lemma 10.3, we can define a bounded additive function F on BV, by set- 
ting F(B) = lim Z(J B n A,,) for each BE BV,; here {A,,} is the sequence 
from condition 1. Now for each A,, there is a sequence {Bk,n)k in 
$=(A F; A,,) converging strongly to A,,. Given n = 1, 2, . . . . find an integer k,, 
so that //A, - Bx,,,,jl < l/n. It is easy to see that { Bk,,,n} converges strongly 
to A, and the proposition follows from Proposition 9.2. 

Remark 10.7. It follows from Proposition 10.6 that the integral is an 
“improper” c-integral, and that there are no “improper” integrals. 

PROPOSITION 10.8. Zf m = 1, the integral coincides with the continuous 
and variational integrals. 

Indeed when m = 1, a sequence (A,,} of BV sets converges strongly to a 
BV set A if and only if IA - A,1 = 0 for all sufficiently large n, and the 
proposition follows from Corollary 9.12. 

We say that a set SC R” is slight whenever J?(S) =O. Note that, in 
contrast with [28] and [31], no topological condition is imposed on 
slight sets. 

THEOREM 10.9. Let A be a BV set, and let S and T be slight and thin 
sets, respectively. Suppose that v is a bounded vector field on cl A which is 
continuous on cl(cl, A) - S and almost dtfferentiable on cl, A - T. Then div v 
is integrable in A and 

Z(div /I, A)=! v.nA dX. 
bdA 

Proof: Clearly, the vector field o is X-measurable. Hence setting 
F(B) = .fbdB v.n,dZ for each BE BV,, we define a bounded additive 
function F on BV, (cf. Example 10.2,2). It follows from Lemma 2.5 that 
there are sets C, E BV, n = 1, 2, . . . . such that S c int C, and IIC,Il 6 l/n. If 
A,, = A - C,,, then S n cl A, = @, and {A, 1.2 A. Thus according to 
Theorem 5.19 and Remark 5.20,1, (A,,} is a sequence in &(div v, F; A), and 
the proof is completed. 

Remark 10.10. We make two comments about Theorem 10.9. 

1. If there is a sequence {A, > of nondispersed BV subsets of A such 
that A, A A, then it suffices to assume that ~1 is continuous on cl, A - S 
(cf. Remark 3.3 and Note added in proof). 
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2. By considering the characteristic function of the interval [0, + co) 
in R, it is easy to see that in terms of the measure .H, the exceptional set 
S n cl(cl, A) is as large as possible (cf. Remark 5.20,2). 

THEOREM 10.11. Let A E BV, let @: A + R” be a lipeomorphism, and let 
fEY(@(A)). Then fo@. ldet @I belongs to Y(A) and 

I(f 0 CD . ldet @I, A) = Z(f, @(A)). 

ProoJ By Lemma 6.6, {@)-‘(A,)} & A whenever {A,} is a sequence 
m BV,,,, converging strongly to @(A). The theorem follows from 
Theorem 9.14. 
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