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INTRODUCTION 

What are (semi-)simplicial complexes, and what are they good for? 
A simplicial set is a combinatorial affair, i.e., a family of sets and maps 
between them, from which may be deduced the homotopy properties 
of a topological space. 

The singular simplicial set S(X) of a topological space X is defined 
as follows: For each integer 12 3 0, 

qna = if : w -+ m, 
where f varies over all continuous maps of 6[n] (= the standard 
Euclidean simplex of dimension n) to X. For each integer 0 < i < n, 
there are natural maps 

4 : S(X), + WQs-, , the i-th face operator, 

si : S(X), + w%+, > the i-th degeneracy operator, 
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108 CURTIS 

which satisfy the simplicial identities. S(X) can be used to define some 
of the usual invariants (e.g., the homotopy and homology groups of X) 
and to prove some of the usual theorems (e.g., the Hurewicz theorem). 

If X is the topological space of a polyhedron (sometimes called a 
simplicial complex), there is a simplicial set K determined by X as 
follows. Order the vertices of X, and for each integer n > 0, let 

where the vj are vertices (repetitions allowed) of a simplex of X with 
v. < v1 < **a < VT, . Again there are face and degeneracy operators 

di : K, - K,-, , 

Si : Kn + Kn+, 3 

obtained by deleting or repeating the i-th vertex, respectively. 
We shall be concerned with describing the homotopy groups of a 

simplicial set (equivalently, of the underlying topological space) by its 
combinatorial structure, especially by bringing in some algebra. For 
example, Kan’s construction assigns to each simplicial set K, a simplicial 
group GK (i.e., a family of groups, with face and degeneracy operators 
which are homomorphisms), which is the simplicial analogue of the 
loop space. T ec mques of group theory applied to GK sometimes h 
permit calculations of homotopy groups of K. 

Broad Outline 

Each section will have its own outline, together with some relevant 
references. Some additional comments: Sections l-3 describe basic 
algebraic topology treated simplicially. Included are: The relation 
between simplicial sets and topological spaces; homotopy groups, 
homology groups, and the Hurewicz theorem; fibrations, minimal 
fibrations, and the Moore-Postnikov system. Also included is the G(.) 
construction, and the closely related w(e) construction, which is the 
classifying complex for fibre bundles. Section 4 describes Milnor’s F(.) 
construction, which is the “loops on the suspension.” Some group- 
theoretic techniques are used to prove the Hilton-Milnor theorem, as 
well as theorems of James and Hopf. Section 5 is the standard relation 
between simplicial Abelian groups and Abelian chain complexes. Sec- 
tion 6 gives the simplicial fibre-bundle theory of Barratt, Guggenheim, 
and Moore; the main result is the classification of fibre bundles. 
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Sections 7-8 give the approach to the homotopy of a simplicial set 
by taking GK, filtering by its lower central series, and examining the 
quotients. In this way there arises a form of the Adams spectral sequence 
which works unstably as well. Section 9 describes a more general 
construction of Bousfield and Kan leading directly to an “unstable 
Adams spectral sequence.” Section 10 is Bousfield’s version (using GK) 
of Adams’ cobar construction, which is useful in studying the differentials 
which occur in Sections 7-8. In Section 11 we give some applications 
to the J-homomorphism, the EHP-sequence, the Hopf-invariant, and 
Samelson and Whitehead products. Especially see the tables pertaining 
to the homotopy groups of spheres, unitary groups, etc. Section 12 
is the simplicial extension theorem, which is used to establish the 
relation between simplicial homotopy and topological homotopy. 

These notes are a slightly modified version of lectures given at 
the Matematisk Institut, Aarhus, Denmark, 1967-1968. I have been 
most strongly influenced by previous lecture notes of Barratt, Kan, and 
Moore. Covering simplicial theory in different ways are [L], [Ml, 

and 181. 
I have tried to show aspects of homotopy theory from the simplicial 

point of view. The topology underlying this is well represented in the 
literature in the papers of Adams, Barratt (unpublished), James, 
Mahowald, Toda, Whitehead, and others. 

The proofs, where not indicated, are supposed to be straightforward. 

1. SIMPLICIAL SETS 

We begin by defining simplicial sets (older terms: semisimplicial 
complexes, c.s.s. complexes, S.S. complexes), or more generally, simplicial 
objects in a category %, in case all the objects and maps are in V. 

The homotopy relation (-) is defined for simplicial maps. Homotopy 
becomes an equivalence relation if the range is a Kan complex, i.e., 
a simplicial set satisfying the extension condition. More generally, 
homotopy in a category V is defined for simplicial objects in g. It is 
an elementary but important principle that functors preserve homotopy. 

We define minimal complexes, and show that any Kan complex has 
a minimal complex which is unique to within isomorphism, a useful 
property. 

The singular and geometrical realization functors relate spaces to 
simplicial sets. To know that we are really getting anywhere with the 
latter, we need to know that these induce a one-one correspondence 
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between homotopy types of CW spaces and Kan complexes, and also 
induce a one-one correspondence between homotopy classes of maps 
in the two categories. This can be deduced from the simplicial extension 
theorem, whose proof is deferred until Section 12. 

The references for Section 1 are [El, [E, 21, [Mol], [MOM], [Mill. 

DEFINITION (1.1). A simplicial set K is a sequence of sets, 
K = (17, , K, ,..., K, ,... }, together with functions 

for each 0 < i < n. These functions are required to satisfy the 
simplicial identities 

did, = d,-,di for i < j, 

disi = 
i 

sj-ldi for i <j, 
identity for i =j,j + 1, 
Sjdi-1 for i>j+ 1, 

spj = Sj+& for i <j. 

Remark. Let 0 be the category of finite ordered sets and order- 
preserving maps. The above definition of a simplicial set is equivalent 
to asserting that K is a contravariant functor from 6 to the category 
of sets, where 

K, = K((0, 1,. . . , n}), 

di = K(the map which skips number i), 

si = K(the map which repeats number i). 

One need not try to remember the simplicial identities-they may be 
recalled easily from the properties of the maps in 0. 

A simplicial map f : K --+L is a family of functions fn : K, + L, 
commuting with the di and the si . 

Elements x E K, are called n-dimensional simplices; elements of K, 
are called vertices. A simplex x is called degenerate if x = siy for some y, 
some i. Every simplex can be uniquely expressed in the form 
x = s. ... sily, where y is 
each imeger n 3 0, let K 

nondegenerate and i, > *.a > i, > 0. For 
fn) be the n skeleton of K, that is, the smallest 
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subsimplicial set of K which contains all the nondegenerate simplices 
of K of dimension < n. Arguments sometimes go by induction on the 
nondegenerate simplices, or by induction on the skeletons, in analogy 
with CW spaces. 

If each of the K, , and each of the di and si, are in a category %?, 
then K is called a simplicial object over V; frequently the words “object 
over V’ are replaced by the generic name for objects in 59. Equivalently, 
by the remark above, a simplicial object over V is to be considered as a 
contravariant functor from B to ‘%. If f : K -+ L is a simplicial map with 
each f, in V, then f is called a simplicial map over 59. 

TERMINOLOGY (1.2). What is usually called a simplicial complex is 
defined as follows. In Euclidean space RN, any 4 + 1 points p, ,..., p, in 
general position determine a (closed) simplex, say u[p,, ,..., p,], by 

4Po ,‘.., P,] = {z’a,PA 

where ai > 0, Zui = 1. The corresponding open simplex u( p, ,..., p,) 
is the interior of o[ p, ,..., p,] in the hyperplane. A simplicial complex X 
is to be a collection of open simplices such that (1) Every face of any 
simplex of X is again in X; (2) two distinct open simplices are disjoint. 

As will be seen, such a simplicial complex X determines a simplicial 
set K by adding degenerate simplices to the collection, but not every 
simplicial set K is of this form. We shall call such special simplicial 
sets (arising from a simplicial complex) polyhedral (see Section 12). 

Following the usual terminology, we make other uses of the word 
complex, not necessarily as simplicial complexes, and keep the terms 
simplicial complex or polyhedral simplicial set where appropriate. TO 
anticipate: A simplicial set L which is a subsimplicial set of a simplicial 
set K (i.e., for each n, L, C K, , and L is closed under the di and si) 
is called a subcomplex of K. A simplicial set satisfying the extension 
condition (1.12) is called a Kan complex; a minimal complex (1.20) 
is a special sort of Kan complex, etc. Another, different use of the 
word complex occurs in Section 3 as chain complex. 

EXAMPLES (1.3). Let X be a simplicial complex, and let the vertices 
of X be ordered. Let K be the simplicial set 

%a = K% ,**., v,) : the oi are vertices of a simplex of X with ~1~ < **- < v,}, 

di<vo ,..., 72,) = (?I0 ,...) Bi ,..., v,), 

Si(VO ,..., v,} = (v. )..., vi ) vi )..., v,). 
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MORE EXAMPLES (1.4). The standard n simplex o[n] is the simplicial 
set with vertices 0, 1, 2 ,..., n, where 

(Ll[n]), = {(vu ,..., a,) : 0 < no ,( *** < vq < n}. 

Let i, = (0, i,..., n) E (d[n]), . The “boundary of o[n]” is d[n] = 
d[n]‘“-l) = the n - 1 skeleton. The n sphere Sn is the quotient simplicial 
set o[n]/d[n]. Thus Sn has two nondegenerate simplices, a vertex which 
we call *, and u, in dimension n, which is the image of i, . In dimensions 
n + Q, S” has the iterated degeneracy of *, and simplices si, *.. si,u, , 
where n + p > i, > *.- > i1 3 0. 

PROPOSITION (1.5). Let K be a simplicial set, and x E K,t . Then there 
is a unique simplicial map 

fz : d[n] +K 

such that f,(i,,) = x. Call fz the representing map for x. If x E K, , with 
all dix = *, then f, passes to the quotient 

fz : S” + K. 

withfJcrJ = x. 

PROLONGATION (1.6). An important construction is the following, 
which is called by Dold the “prolongation of T.” If T is a covariant 
functor from ?C to 9, and K is a simplicial object over %, let TK be 
the simplicial object over C3 obtained by applying T to each K, and 
to each di and Si . Equivalently, regarding K as a functor from (0 to 9?, 
TK is the composed functor T 0 K from 0 to 9. If f : K + L is a 
simplicial map over W, then Tf : TK + TL will be a simplicial map 
over 9. 

EXAMPLE. Let Z(e) be the free Abelian group functor. Then the 
simplicial Abelian group Z(P)/Z( ) * will be an Eilenberg-MacLane 
complex K(Z, n). 

PROPOSITION (1.7). Let A be a simplicial Abelian group and let 
aEA,. Then there is a unique simplicial homomorphism 

fa : wc4 -+ A 
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such that f,(i,) = a. If a E A, , with all dia = 0, then fa passes to the 
quotient simplicial group 

ja : K(Z, n) + A 

withf,(o,) = a. 

SOME CONSTRUCTIONS (1.8). Let K and L be simplicial sets. The 
Cartesian product K x L is to be the simplicial set 

(KxL),=K,xL,, 

4(x, Y> = (4% 4Yh 

4% Y) = (v, %Y). 

A base point in K is a vertex * and all of its degeneracies, also denoted 
by J. A map of simplicial sets with base points means * goes to *. 
A simplicial set is called reduced if there is only one vertex. 

The wedge K v L is the subcomplex of K x L consisting of all (x, *) 
and all (*, y). The edge (or smash) is K A L = K x L/K v L. 

The cone CK is defined by 

(CK), = {(x, q) : x E KS-, , 0 d R < n} with (*, 4) all identined to *, 

%(X3 q> = I 
for 0 <i <q, 
for q <i <n. 

The reduced suspension SK = CKIK, the quotient simplicial set. 
Let I be the simplicial set d[l]. In 1, let 0 stand for the vertex (0) 

and for any of its degeneracies (O,..., 0); similarly for the vertex 1. 

DEFINITION (1.9). If f,g : K + L are simplicial maps of simplicial 
sets, we call f homotopic to g if there is a simplicial map 

F:KxI-+L 

with F(x, 0) = f(~), F(x> 1) = g(4, 

in which case write f ~g. If M C K is a subcomplex, write f N g 
(rel 4.4) if F is constant on M. Note that a homotopy F can be regarded 
as a family of functions (not simplicial maps) 

P’t> : Kn +Ln 
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for each integer n > 0 and each t E 1, , where F,(x) = F(x, t). The F, 
satisfy some conditions: For each t E 1, , 

di o F, = FdSt o di , 

si 0 Ft = FSi, 0 si , 

If all of the F, are in a category ??, we say that F is a homotopy in V. 

PRINCIPLE (1.10). Functors preserve homotopy: Let T be a functor 
from QZ to 9, and suppose 

Then 

(TF,) : Tf N Tg : TK - TL is a homotopy in 9. 

Note that even if F : K x I + L is itself a map in some category, 
TF : T(K x 1) -+ TL is not, in general, another homotopy. 

Let /l”[n] be the subcomplex of o[n] generated by all d,(i,) for i f K. 

DEFINITION ( 1.12). W e say that a simplicial set K satisfies the 
extension condition if every map f : A”[n] --) K has an extension 
g: A[n] + K. 

Simplicial sets satisfying the extension condition are Kan complexes. 
As we see later, the singular simplicial set of a space is a Kan complex; 
a simplicial group is a Kan complex. But simplicial sets arising from 
geometrical simplicial complexes are not Kan complexes, and neither 
are o[n], d[n], S”, and other simple simplicial sets. 

PROPOSITION (1.13). Let K be a simplicial set. Then K satisj?es the 
extension condition o for every collection y,, ,..., ik ,..., yn of simplices in 
K n-1 9 with diyi = djPlyi for i < j, i # k, j # k, and there is a simplex 
y  E K, with diy = yi , i # k. 

This matching face property is sometimes taken as the definition of 
the extension condition. 

LEMMA (1.14). Let A C B denote any of the following pairs: 

o[n] X AL[m] Cd[n] X O[m], 

(d[n] X Ak [ml) U (d[n] X o[m]) Co[n] X o[m]. 
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Then for any Kan complex K and simplicial map f : A + K, f can be 
extended to a map g : B -+ K. 

Proof. For each such pair, A can be obtained from B by successively 
adjoining a simplex and one of its faces, all other faces already lying 
in a subcomplex. Iterated application of the extension condition gives 
the lemma. 

Remark. Of course this lemma is a special case of the simplicial 
extension theorem and could better be deduced from it. 

LEMMA (1.15). Let K be a Kan complex, L any simplicial set. Then 
any map f : L X Ak[ m + Kcanbeextendedtoamapg: L x A[m] -+ K. ] 

Proof. By skeletons of L; the step from L(+l) to Ltn) is shown by 
the preceding lemma applied to each nondegenerate simplex of L, . 

COROLLARY (1.16). IfK is a Kan complex, the homotopy relation (Y) 
is an equivalence relation on the set of maps from L to K. 

The “inclusion as i-th face” map zi : A[n - l] --f A[n] and “i-th 
projection” qi : A[n] + A[n - l] are the simplicial maps defined on 
the vertices by 

Q(q) = I qY 4 -c i, 
q+l, 43i, 

rli(4) = I qy 
4 < i, 

q- 1, q > i. 

Thus if x E K, is represented by f, : A[n] -+ K, dix E K,-, is represented 
by f, o ci and six is represented by fz 0 Q . 

DEFINITION (1.16). Let L and K be simplicial sets. Then the 
function complex KL is defined by 

where 

(KL)n = {simplicial maps f : L X A[n] -+ K} 

dif =fo (1~ x 4, 

sif =f”U, x 76) 

Remark. Careful scrutiny would reveal that this is very analogous 
to the function space definition for spaces. 
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PROPOSITION (1.17). If K is a Kan complex, so is KL. 

Proof. Let f0 ,... y-6. ,...,f, E (KL),-l h ave matching faces, i.e., each 
fi : L x O[n ~ I] + K, and if we consider each such O[n - l] as the 
i-th face of o[n], the fi agree on (d[n])(“p2) to give a simplicial map 
f:LxA”[n]+K. By (1.15)fextends tog:Lxd[n]+K. Then 
g E (KL), is the required simplex with dig = fi , i # k. 

As usual, a simplicial map f : L + K is called a homotopy equivalence 
if there is a simplicial map g : K +L withfog~l,andgof~l,, 
in which case write L P K. Also there are the usual definitions of 
retract, deformation retract, strong deformation retract, etc. 

DEFINITION (1.18). Let K be a Kan complex. Then for x, y E K,, , 
call x my if the representing maps f, and f, are homotopic (rel d[n]). 

PROPOSITION (1.19). Let K be a Kan complex, x, y E K, . Then 
x E y u dix = diy for all i, and for some 0 < k < n there is w E K,,, 
with dkw = x, d,,,w = y, and diw = diskx = disl,y, k f i # k + 1. 

DEFINITION (1.20). A Kan complex iVl is called minimal if 
x ‘v y 3 x = y. If K is a Kan complex, then a subsimplicial set 
MC K is called a minimal subcomplex of K if M is minimal and if A4 
is a strong deformation retract of K. 

PROPOSITION (1.21). If M is minimal - whenever v, w E K,+1 with 
div = diw, i # k, then d,v = d,w. 

LEMMA (1.22). Let K be a Kan complex. 

(1) Suppose x E K, , v E K,-, with dkx ‘v v. Then there exists 
z E K, with diz = dix for i # k and dkz = v. 

(2) Let F : A[n] x I + K and let x = F(i, , 1). Suppose x ‘v y. 
Then there exists G : o[n] x I 4 K with G(i, , 1) = y and F = G on 
the subcomplex (d[n] x 0) u (d[n] x I). 

THEOREM (1.23). Any Kan complex K contains a minimal subcomplex 
M; any two such minimal subcomplexes of K are isomorphic. 

Proof. Let M0 consist of a choice of one vertex in each homotopy 
class in K,, . Suppose Mj is defined for all 0 < j < n - 1. Let M, 
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consist of a choice of one simplex from each homotopy class in K, of 
simplices all of whose faces are in M,-, , choosing always a degenerate 
one if possible. 

To show that .M is a Kan complex, let y0 ,..., gk ,..., yn E M,-, have 
matching faces. Then there exists y E K, , d,y = yi , i $ k. As dky has 
all of its faces in M,-, , it is homotopic in K to (a unique) w E M,-, . 
Then let z E K, with diz = diy, i # k, and suppose d,z = w. Then 
x N x (homotopy in K) where x E M, satisfies dix = yi for i # k. 

To show that M is a deformation retract of K, we construct 
F : K x I -+ K. To define F on K(O) x I choose for each vertex z, E K, 
a simplex x E K1 with d,x = v and dlx = w, where v N w, w E M. 
Let F(v, ii) = X. Suppose F is defined on (K(“-l) x I) u (K x 0). For 
each nondegenerate y E K, , F defines a map 

G,:(d[n] xI)u(d[n] xO)+K 

Extend G, to o[n] x I. Then G,(in x 1) has all of its faces in M,-, , 
and so is homotopic to a simplex z in M, . Now construct 
G, : d[n] x I --t K with G,‘(in x 1) = z, G,’ = G, elsewhere. Putting 
these Gyf together gives F on K@) x I, and thence F on K x I. 

LEMMA (1.24). Let f N g : K -+ M where M is minimal. Then if f is 
an isomorphism, so is g. 

Proof (sketch). The homotopy F : K x I + M yields a family 
{F,} : K, + M, for each n > 0, each t E I, , as in (1.9). Then F, is 
an isomorphism, and so is F, for each t E I, . This latter can also be 
shown by induction on t, as t “crosses” I, , using the minimality of M. 

Remark. If it is only assumed that f is one-one, then so will g be 
one-one. But if f is only assumed to be onto, then g may not be onto. 

COROLLARY (1.25). Let f : M + M be a homotopy equivalence of 
minimal complexes. Then f is an isomorphism onto. 

COROLLARY (1.26). Let f : K -+ L be a homotopy equivalence. Then 
any minimal complex M of K is isomorphic to any minimal complex N of L. 

Proof. The composite M + K --f L -+ N is a homotopy equivalence, 
and hence is an isomorphism. 
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EUCLIDEAN SIMPLICES (1.27). Let S[n] C Rn+l be the topological 
space (as a subset of Rn+l) 

S[n] = {(x0 ) . . ,x,):zxi=l,xi~o}. 

Let ci : S[n - l] --f S[n] and Q : S[n + l] + S[n] be defined by 

&l ,*a*, X,-l) = (50 )...) 0 )...) X,-l), 

?7i(Xo ,.*., x,+1) = (‘Q ,.a*> xi + xi+1 >..‘> x,+1). 

SINGULAR SIMPLICIAL SET (1.28). F or each topological space X, let 
S(X) be the simplicial set 

S(X), = -[all continuous f : S[n] + X}, 

4(f) = fo Ei , 

Q(f) =.fovi. 

Then S is a functor from ,F, the category of topological spaces, to ,40, 
the category of simplicial sets. 

GEOMETRICAL REALIZATION (1.29). Let K be a simplicial set. and let 
RK be the topological space (as the disjoint union) 

RK = u (S[dim x], x). 
XEK 

Denote an equivalence relation on RK by (p, x) N (y, 4) if either 

(1) &x=y and 4Q) = Pi 
(2) six = y and %M = P. 

Then let RK = RK/(-) with the identification topology. It is easy 
to see that R defines a functor from Y to F. 

In fact, each geometrical realization is a CW space; “CW complex” 
is Whitehead’s term, but “complex” has too many other meanings to be 
usable here. If X is a geometrical simplicial complex, and K is con- 
structed from X as in (1.3), then RK is homeomorphic to the topological 
space of X. 

If K and L are simplicial sets, then there is a natural map 

m:R(KxL)+RKxRL 
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which is continuous, one-one, and onto, but not a homeomorphism in 
general. However, m will be a homeomorphism if either 

(i) Both K and L are countable; 

(ii) One of the two spaces RK or RL is locally finite. 
For details, see Ref. [Mill. In particular, since R(d[l]) = S[l] (= the 
unit interval), which is a finite CW space, 

R(K x d[l])r RK x 6[1]. 

This geometrical realization is related to the following construction. 
For a simplicial set K, let K be the simplicial set which is the disjoint 
union 

R = u (d[dim ~1, x) 
5EK 

and for (u, x) E &, i.e., for u l d[dim ~1,) &(u, x) = (diu, x) and 
~(u, z) = (siu, x). Let an equivalence relation on K be defined by 
(u, x) N (v, y) if either 

(1) dix=y and ‘i(V) = 24; 

(2) SIX = y and 7ji(zl) = u. 

Then there is a natural equivalence K m K(w). 
This construction is useful, for example, in the following way. To 

subdivide K, first subdivide each d[n] C R, put on an equivalence, 
and pass to the quotient set. See (12.4). 

ADJOINT MAPS (1.30). Suppose K is a simplicial set, X is a 
topological space, and f : K -+ SX is a simplicial map. Let f : RK -+ X 
be the function 

f(P, 4 = f(x)(P) 

for each x E K, , p E S[n]. It is easily verified that J is well-defined and 
continuous. 

On the other hand, suppose g : RK ---f X is a continuous map. Let 
g” : K -+ SX be the function 

am> = ldP, 4 

for x E K, , p E S[n]. Then g” is easily seen to be a simplicial map. 
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PROPOSITION (1.3 1). There is a one-one correspondence 

(simplicial maps K -+ SX} + {continuous maps RK + Xl 

which is natural in K and X, and preserves homotopy. 

DEFINITION (1.32). If L is a Kan complex and K any simplicial 
set, let [K + L] stand for the set of homotopy classes of maps of K 
to L. Also, for topological spaces X and Y, let [X + Y] stand for the 
set of homotopy classes of maps of X to Y. 

PROPOSITION (1.33). (1) The functor R : 9 + ypreserves homotopy, 
and defines a function 

[K-tL] + [RK+ RL]. 

(2) The functor S : .F + Y takes topological spaces to Kan com- 
plexes, preserves homotopy, and defines a function 

[S-t Y]+ [SX+ SY]. 

Proof. (1) Suppose 

F: K x A[l]+L 

is a simplicial homotopy. Then 

RF : R(K x O[l]) + RL 

will be the continuous homotopy, since R(K x O[l]) is homeomorphic 
to RK x 6[1] by (1.29). 

(2) Suppose 

H : Y x 6[1] + X 

is a continuous homotopy. Then the required simplicial homotopy 
will be the composite 

SY x A[11 4 SY x S(S[l]) + S(Y x S[l]) S(H)_ sx. 

EQUIVALENCE OF SIMPLICIAL AND TOPOLOGICAL HOMOTOPY (1.34). 
Proposition (1.33) is not good enough. To establish the connection 
between simplicial homotopy and topological homotopy, we need the 
following. 
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THEOREM (1.35). (1) For K a simplicial set and L a Kan simplicial 
set, R induces a one-one correspondence 

[K-L] -+ [RK+ RL]. 

(2) For Y t p 1 g a o o o ica s 1 p ace, and X a CW space, S induces a one-one 
correspondence 

[X+ Y]+ [SX+ SY]. 

(3) R and S induce a one-one correspondence between homotopy types 
of Kan complexes and homotopy types of C W spaces. 

THEOREM (1.36) (Simplicial extension theorem). Let K be a simplicial 
set and L a Kan complex. Suppose there is a continuous map p : RK -+ RL. 
Then there is a simplicial map g : K + L with Rg p p : RK -+ RL. 

Proof (In Section 12). It takes some subdivision and a semi- 
simplicial approximation theorem-a little complicated, but basically 
elementary. (1.35) then follows easily from (1.36). 

2. HOMOTOPY GROUPS 

For each Kan complex K, with base point *, the n-th homotopy 
set n,(K, *) is defined, becomes a group for n > 1, and becomes an 
Abelian group for n > 2. It is elementary to prove the homotopy 
addition theorem for Kan complexes. 

Fibre maps of simplicial sets are defined by a fill-in property similar 
to the extension condition. Fibre maps have the usual properties, 
like the long exact sequence in homotopy, existence of induced fibre 
maps, etc. 

Following the treatment of Moore [MOM], we introduce the Moore- 
Postnikov system of a simplicial set. For a minimal complex K, the 
maps in the Postnikov system for K are minimal fibre maps. This can 
be used to show that a weak homotopy equivalence between minimal 
complexes is an isomorphism; thus, a weak homotopy equivalence 
between Kan complexes is a homotopy equivalence. 

The reference for Section 2 is [MOM]. 

DEFINITION (2.1). For each Kan complex K with base point JF, 
the n-th homotopy set z-,(K, *) is to be the set of ‘v equivalence classes 
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of simplices of K, all of whose faces are at the base point *. Write [x] 
for the equivalence class in rr,(K, *) containing x. 

For each n > 1, define an operation + in rr,(K, *) as follows. For 
4 b E r,(K *), put 

where w E K,+1 satisfies [C&W] = b, [d,w] = a, and diw = * for all 
3<i<n+l. 

PROPOSITION (2.2). Under this operation, z-,(K, *) becomes a group 
for n > 1; rTT,(K, *) is an Abelian group for n 3 2. 

As usual, if G is a simplicial group (with identity e as base point), 
then the two group structures in r,(G, e) agree, and are both Abelian 
even for n = 1. 

Henceforth simplicial sets mean with basepoint, maps are to preserve 
*, and write n,,(K) for Z-~(K) *). Iff : K + L is a map of Kan complexes, 
let f.+ be the function f* : r,(K) + r,(L) defined by 

f*[4 = W)l* 

PROPOSITION (2.3). Let f : K -+ L be a map of Kan complexes. Then 

f* : Z-,(K) -+ Z-,(L) is well-dejined, and f.+ is a homomorphism for n 3 1. 
Furthermore, ;f f ~g : K --f L (rel *), then f.+ = g, . 

THEOREM (2.4) (H omotopy addition theorem). Let K be a Kan 
complex, and yi E K, for 0 < i < n + 1, with all djy, = *. Then in 

n,(K), 

[Yol - [Yll + [Y,l - ... + (-1)7L+1[Ya+ll = 0 

e there is y E K,+l withdiy=yiforO<i<n+f. 

Proof (c). For n = 2, the statement is the definition of + in nz(K). 
For n > 2, first consider the special case where yi = I for i # q, 
p + 1, q + 2. If also q = 0, the statement is the definition of + in r,(K). 
For q > 0, use the extension condition on K to move the relation one 
step to the left. That is, take w E K7L+2 with d,-,w = s~+~Y~+~ , d,w = y, 
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dg+lW = %Ycl * 4+3w = 4plY,,2 9 and all other faces of w  except d,+,w 
are to be *. The faces match, as seen from the following table: 

--- d,-, d, d,,, d,,, ... 

A-lw = su+lyu+a -.- * * yu+2 ~a+2 -.a 

d,w = y . . . * YQ Y*+1 Y*+z *** 

d,+,w = sqyq ... * ye yq 3c ... 

du+aw *.. _ - _ _ **. 

dQ+3w = sQ-lYQ+2 "' Y@+Z yQ+2 * * '*' 

Then the only non-Jr: faces of z = d,+,w are d,-,z = yq+2 , dc,z = yp+l , 
d,+,x = y*. It now follows by repeating this move q times that the 
formula holds for such special case. 

For the general case, make use of the following: 

SUBLEMMA. Let K be a Kan complex, and let x E K,,, with dp = x3 
for0 <i<n+ l.Letqbeanyinteger <n- l,andletwEK,+,have 
faces diw = xi for i # q, q + 1, and dqw = *, dq+lw = z. Then in r&K) 

t-l)* [x*1 + (-I)@+1 [XQi+l] + (-1yJ [z] = 0. 

Proof. Use the extension condition on K to find v E Kn+2 whose 
faces are div = s~+~x~ for i < q - 1, dp = SEXY , d,+,v = X, dq+3v = W, 
and dp = s~+~x~-~ for i > q + 4. The faces match, as seen from the 
following table: 

vs. 4-1 4 du+, du+z da+3 --. 

d,-,o = sq+lxq--l ... * * xppl xqwl * ... 

dp = s,x, ... * x, x, * * ... 

dQ,lV 
. . . _ - _ _ _ . . . 

d,,av = x -.. x0-l x, xqql x*+2 x*+3 e-s 

d,+p = w ... xQeI * z xQ+a xQ+3 "- 

d,,v = s~+~x~+~ a.. * * * 4+3 X*+3 -** 

Then the only non-c faces of d,+,v = u are dp = xq , d,+,u = x,+~ , 
d,+,u = z, so the asserted relation follows by using the special case 
of the theorem. 

6071612-2 
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To conclude the general case, let y E K,,, , with diy = yi , for 
0 < i < n + l.ForeachO < Q < n - l,letw,EK,+,satisfyd,w* = * 
for i < q, diwp == yi for i 3 q + 2, and suppose dq+lw = .zq . 

Then the sublemma applied to We and w~+~ shows that 

(-1)” L%I + (-l)*+l [y4+11 + (-1)q+2 [%+I] = 0. 

Summing these gives the result. 

Proof of ( 5). Suppose y0 , yr ,..., ynfl are in K, with all dir, = *, 
and that 

[Yol - [YII + ... + (-l)n+l [Yn+J = 0. 

By the extension condition applied to y,, , yi ,..., yn+r , there is x E K,,, 
with dix = yi for i # 0. By the previous steps, 

[4?1 - [YII + *** + (-ly+l [Yn+11 = 0. 

Then d,x ‘v y. , so there is w E K,+l with d,w = dox, d,w = y0 , and 
diw = * for i 3 2. Another use of the extension condition shows 
that there is x E K n+2 with d,,z = W, d,x = X, and diz = sie2yipl for 
3 < i < n + 2. Then y = d,x satisfies diy = yi as required. 

DEFINITION (2.5). A simplicial map p : E -+ B is called a jibre map 
if wheneverf : fl”[n] + E and g : d [n] -+ B with p of = g 1 /lk[n], then 
there is an extension off to a map f’ : O[a] --+ E, with p of’ = g. 

The picture for this is the diagram 

A”[n] f+ E 

Call f’ an extension off which covers g. There is also a matching face 
definition of a fibre map, analogous to the one for the extension condition. 
Notice that the map K + * is a fibre map o K satisfies the extension 
condition. 

Remark. It is easy to show that if f : X -+ Y is a Serre fibre map 
of topological spaces, then Sf : SX -+ SY is a simplicial fibre map. 
The other way is also valid, as shown by Barratt (unpublished) and 
Quillen [Q2] : If p : E 4 B is a simplicial fibre map, then Rp : RE + RB 
is a Serre fibre map. 
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THEOREM (2.6) (Covering homotopy theorem). Let p : E + B be a 
Jibre map and let K be any simplicial set. Suppose there is a map f : K --f E 
and a homotopy F : K x I -+ B with F(x, 0) = pf (x) for all x E K. 
Then there is a (covering homotopy) G : K x IA E with p o G = F and 
G(x, 0) = f(x). 

Proof. This is not hard using some earlier prismatic techniques. 

DEFINITION (2.7). A sequence of simplicial maps 

F”-E&B 

is called a jibration if p is a fibre map onto, and i maps F one-one and 
onto p-‘( *). 

Let F -+ E -+ B be a fibration, where B is a Kan complex. For each 
integer n > 1, define a : r,(B) ---t ?r,-,(F) by ab = [d,,w] for b E n,(B), 
where w E E, satisfies diw = * for i > 0 and [p(w)] = b. 

THEOREM (2.8). a is well-defined, independent of the choice of w. 
For n > 1, a is a homomorphism. The sequence 

.-. + r,(F) i* a,(E) 2 r,(B) 5 T,-~(F) -+ a*. + m,,(E) + r,(B) -+ * 

is exact; that is, the counter-image of J of each map is the image of the 
previous map. 

The proof is straightforward. Call this the long exact sequence in 
homotopy (LES in 7~) of the fibration. 

PATHS AND LOOPS (2.9). F or each Kan complex K, with base 
point *, the path complex PK is to be the simplicial set 

(PK), = {x E K,,, : dl *** d,+,x = *>, 

and for each 0 < i < n, di on (PK), is to be the restriction of d,+l 

on Km+, , and similarly for each s2 . Let p : PK -+ K be the simplicial 
map which sends x E (PK), to d,,x E K, . The loop complex SZK is to be 
the subcomplex p-l( *) C PK. That is, 

Then 

(SZK), = {X E K,,, : dI .*. d,+,x = * and d,x = *}. 

QKi-PKAK 
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is a fibration with contractible total complex. In this case, of course, 

a : 7&(K) -+ 77,~@I-q 

is an isomorphism for each n 3 1, but possibly not onto for n = 1. 
A map (f, g) from one fibre map p’ : E’ -+ B’ to another p : E + B 

is a commutative diagram: 

E’ f,  E 

A homotopy (0, $) : (f, g) cli (h, k) is a commutative diagram: 

E’ x I-‘-+E 

1 P’Xl 
1 

P 

B’xI”-B 

where 8 : f E h and # : g ‘v k. The term strong homotopy is used if 4 is 
constant, i.e., if #(b’, t) = #(b’, S) for all b’ E B,‘, and all t, s E I, . 

INDUCED FIBRE MAPS (2.10). Let p : E + B be a fibre map, and 
let f : A + B be a simplicial map. Then as usual there is an induced 
fibre map p’ : E’ + A, where 

(E’)n = 1(x, 4 E E,, x A, : P(.$ = f(u)> 

with the evident face and degeneracy operators. There is a map 
(f, f) of fibre maps 

Et-L-t 

For a special case, an inclusion i : A ---t B of a subsimplicial set induces 
a fibre map E’ 4 A, where E’ = p-l(A). If ~1 is any vertex of B, the 
simplicial set p-‘(u), called the fibre over ZI, is a Kan complex. 

PROPOSITION (2.11). Let p : E -+ B be a Jibre map, and let 
f N g : A + B. Then the Jibre maps induced by f and g have the same 
homotopy type, by strong homotopies. 
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Proof. Let F : A x I + B be the homotopy between f and g. Let 
p” : Eo + A, f l: E= --f A, and $: E--+A x I be the fibre maps 
induced by f, g, and F, respectively. Thus p” is the part of 5 over A x 0. 
There is a homotopy F O : E” x I --f E with a commutative diagram 

E”xI p +E 

1 pox1 
1 

P 

AxI >AxI 

so that the composite 

FO E”~E”xl+E”~I--+E 

can be considered as a map u : E” -+ El. Similarly, there is a map 
F1 : El x I --t i? which produces a map v : El -+ E”. By considering 
the diagram 

E” x A1[2]--% E 

1 if 1p 

E”x4[2]--tAxI 

where 0 on E” x (do&) is FO, and 6 on E” x (d&J is the composite 
F1 0 (u x l), there results a map #, which when restricted to E” x (dli2) 
gives v -24 N lEO . Similarly 24 * v N 1,~ . 

MOORE-POSTNIKOV SYSTEMS (2.12). Let K be a simplicial set. For 
each integer n > 0 let an equivalence relation R, on K, be defined 
by xR,y for x, y E Kq if each face of x of dimension < n agrees with the 
corresponding face of y. Equivalently, xR,y o the representing maps 
fi ,fg : OkI - K agree on dlid cn). Let P,K be the simplicial set where 

with face and degeneracy operators induced from those in K. The 
natural sequence of maps 

is called the Moore-Postnikov system for K. 
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LEMMA (2.13). If K is a Kan complex, then 

(1) Each K + P,K is a jibre map onto; 

(2) Each P,K is a Kan complex; 
(3) For each n > m, p : P,K -+ P,7,K is a Jibre map onto. 

Proof. (1) For dimensions q ,( n, K* = (P,K)* . For dimensions 
q > n, use the extension condition on K. 

(2) Since p is a fibre map onto by (l), and K is a Kan complex, 
so is P,K. 

(3) Similar to (l), using (2). 

Let E,K be the subcomplex of K consisting of all simplices x, each 
face of x of dimension < n being at the base point *. Thus 

E,K ---f K--f P,-,K 

is a fibration. 

THEOREM (2.14). Let K be a Kan complex. Then 

(1) TD’JG = 4PmW for q<wz,n; 

(2) n,JP,K) = 0 for q>O; 

(3) T?vLL+1(PnKN = 
i 

4f’nK) for q > m; 

0 for 4 G m, 

0 for q > n. 

Proof. E,TI+l(P,K) = * for q < m. This and the LES in homotopy 
shows (1). If x E (P,,K), with all dix = *, then x = * in P,,,K for 
q > m, proving (2). The LES in homotopy shows (3). 

Let F,K = E,(P,K), so that there are fibrations 

F,K ---f P,K + P,-,K. 

LEMMA (2.15). r,JF,K) = 0 for n # q, and T,(F,~K) = x,(K). 
Thus F,K is an Eilenberg-MacLane complex K(r,(K), n). 

MINIMAL FIBRE MAPS (2.16). Let p : E --+ B be a fibre map, and 
suppose we have a commutative diagram 

&[n] f, E 

1 

$7 
i / 1 P 

O[n] ‘L- B 
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DEFINITION (2.17). The fibre map p : E + B is called minimal if 
whenever there is such a diagram, the extension f’ is uniquely deter- 
mined on the missing face. That is, if f’, f I) are two such extensions, 
f ‘(dkin) = f n(dkin). 

PROPOSITION (2.18). (1) If p : E + B is a jibre map and E is a 
minimal complex, then p is minimal; if also p is onto, then B is a minimal 
complex. 

(2) If p is a minimal jibre map, then each Jibre is a minimal complex. 

This is straightforward from the definitions. Note that even if 
p : E -+ B is a minimal fibre map, and B is a minimal complex, then 
E might not be a minimal complex. 

WEAK HOMOTOPY EQUIVALENCE (2.19). We say that a simplicial 
map f : K -+ L of connected simplicial sets is a weak homotopy equiva- 
lence if f .+ : r,(K) + r,(L) is an isomorphism for all Q. 

THEOREM (2.20). If f : K -+ L is a map of connected Kan complexes, 
then f is a weak homotopy equivalence o f is a homotopy equivalence. 
A weak homotopy equivalence of two minimal complexes is an isomorphism. 

Proof. It is sufficient to prove the latter statement, so assume that 
f : K --t L is a weak homotopy equivalence, where K and L are minimal 
complexes. Consider the Moore-Postnikov systems 

F+ P,K- Pnf P,L cF 

I 1 
P f 

P,,vlK n--l P,+L 

By (2.13) and (2.18), each of the complexes in the diagram is a minimal 
complex, and each of the vertical maps is a minimal fibre map onto. 
As the map f induces f* : r,(K) m r,(L), the fibres F = K(r,K, n) 
and F’ = K(r,L, n) must be isomorphic. Anticipating Section 6, we 
find that P,K M F x ,P,-,K and P,L M F’ x tP,-lL, the twisted 
Cartesian products. It follows by induction that P, f is an isomorphism 
for all n. 
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3. GROUP COMPLEXES 

There are two basic properties of simplicial groups, both due to 
Moore. First, each simplicial group satisfies the extension condition. 
Second, its homotopy groups n,(G) can be obtained as the homology, 
i.e., ker a/image a of a certain chain complex (NG, a). 

For a simplicial Abelian group A, there are two other chain complexes, 
the “total complex” with 8 = zl(- l)i di , and the “normalized chain 
complex,” also with 8 = Z( - l)i di . All three chain complexes obtained 
from A have isomorphic homology groups, which by the preceding 
statements are isomorphic to the homotopy groups of A. 

For each (reduced) simplicial set Kan [Kl] constructs a simplicial 
group GK which has the properties for a “loop complex” for K; the 
proof of this is facilitated by introducing twisting functions and 
principal fibrations. 

There is another construction, adjoint to the G(e) construction, which 
assigns to each simplicial group G a simplicial complex WG, which 
is a “classifying complex” for G. 

We write e for the identity of a multiplicative group, 0 for the identity 
of an additive group. The identity of a simplicial group will be taken 
as the base point. Recall that a simplicial set K is called a simplicial 
group if each K, is a group and all di , si are homomorphisms. 

The reference for Section 3 is [Kl]. 

LEMMA (3.1). If G is a simplicial group, then G satisfies the extension 
conditions. 

Proof. Let y0 ,..., gk ,..., yn E G,-, have matching faces. Then put 

wo = SOY0 9 
wi = wi&-l(sidiwi--l)-~ siyi for 0 <i < K, 

W - wk--l(h&P-l)-l Sn-1Yn 9 n- 
wi = wi+&-ldiwi+l)-l siyi for K <i < n. 

Then wk+r E G, is the desired simplex satisfying diwkfl = yi for i # k. 

LEMMA (3.2). If f: G + H is a homomorphism onto of simplicial 
groups, then f is a Jibration. 

Proof. Suppose y. ,..., j& ,..., yn E G,-, have matching faces, and 
x E H, with dix = f (yi) for i # k. Take z, EP-l(x), and zi = u-lyi . 
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Then the faces of x( match, and the construction of (3.1) applied to 
the zi yields w E G, withf(w) = e (= identity in H,) and dtw = z, for 
i # K. Then the simplex v * w E G, has the desired properties. 

DEFINITION (3.3). A chain complex (C, a) is a sequence of groups 
and homomorphisms 

*a* -+ c, - a93 c,-,4 a.. 

with image a,,, a normal subgroup of ker a,. For each integer 7t, 
the homology group H,(C, a) is defined to be the quotient group 
ker an/image a,,, . 

EXAMPLE (3.4). If A is a simplicial Abelian group, then (A, a) where 

i=n 
a, = c (-l>i di ) 

i=O 

becomes a chain complex (of Abelian groups). It is an easy consequence 
of the simplicial identities that a, 0 anfl = 0. 

DEFINITION (3.5). F or each simplicial set K, let Z(K) be the 
simplicial free Abelian group generated by K, and let C,(K) be the 
chain complex (Z(K), a). The homology groups H,(K) for each n > 0 
are defined by 

fL(W = 4dc*m 8) 

DEFINITION (3.6). F or each simplicial group g, let (NG, a) be the 
chain complex 

(NC), = n ker di, 
if0 

8, = do (restricted to (NG),). 

THEOREM (3.7). For a simpkial group G, r&G) M H,(NG, a). 

Proof. Let w : ker an + r,(G) be the function w(x) = [x]. Then 
it can easily be checked that w is a homomorphism. Also, x E ker w o 
z E image a,,, , so induces an isomorphism. 

COROLLARY (3.8). A simplicial group considered as a simplicial set 
satisfring the extension condition wiZZ be a minimal complex o the chain 
complex (NG, a) is minimal, i.e., each a, is the null homomorphism. 
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For any simplicial Abelian group A, let DA be the subgroup generated 
by all degenerate simplices. Then it is easily checked that 

a?dwn c (Mn-1 

and (A/DA, a) also becomes a chain complex. The following is a 
standard exercise [Mac]. 

STANDARD EXERCISE (3.9). For a simplicial Abelian group A, the 
natural maps 

H,(NA, a) + H&4, a) -+ H,(A/DA, a) 

are isomorphisms. 

Remark (3.10). C ombined with (3.8), we have H,(K) = r,(Z(K)); 
that is, the homology groups of K are isomorphic to the homotopy groups 
of Z(K), both being isomorphic to the homology groups of the chain 
complex (C,(K), a). 

If f,g: K-+L, with f E g, then also Z(f) N Z( g) as maps 
Z(K) + Z(L). In this case, f.+ = g, : H,(K) + H,(L). In particular, 
if K and L have the same homotopy type, then H,(K) - H,(L). 

HUREWICZ HOMOMORPHISM (3.11). For any Kan complex K, the 
natural inclusion K -+ Z(K) induces homomorphisms for n 3 1, 

h 12 : in - ~?LW~)) = Km. 

THEOREM (3.12) (Hurewicz). If K is a connected Kan complex with 
r((K) = 0 for i < n (n > 2), then h,, : r,(K) + H,(K) is an isomorphism. 

Proof. It is sufficient to prove the theorem for a minimal complex M. 
In this case, r,,Jh4) = il4%, and consider 

h, : M, - H,(M). 

(1) Iz, is onto: The elements of 44, generate H,(M) and if X, y 
are in 44, , then the formal sum h,(x) + h,n(y) in H,(M) is homologous 
to h,(z), where x in iW, is constructed using the extension condition 
in M. 

(2) h, is one-one: For if h,(x) = 0, there must be c = 
zbjcj E C,+,(M), with 8c = x in C,,,(M). By the homotopy addition 
theorem, acj = 0 in m,(M); hence 8.LXjci , and therefore also x must 
be 0 in x,,(M). 
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Remark. For n = 1, this method shows that if h,(x) = 0, then x is a 
commutator. Thus the result for n = 1 becomes n,(K)/[r,(K), n,(K)] = 

H,(K)- 

COROLLARY (3.13). If K is a connected Kan complex with T,(K) = 0 
and H,(K) = 0 f or all i > 2, then K is contractible. 

DEFINITION (3.14). A p rinciple bundle is a triple (G, t, K), where G is 
a simplicial group, K is a reduced simplicial set, and t : K -+ G is a 
function (called twisting function) decreasing dimension by one, 
satisfying 

d&x) = t(d,+& for i > 0, 

dot(x) = t(d,x) * t(d,x)-1, 

Q(x) = t(s,+1x) for i > 0, 

* = t(s,x). 

The bundle complex G x tK is to be the simplicial set (G x ,K), = 
G, x K, with face and degeneracy operators 

do(a, 4 = (doa . $4, 4,(.4), 

(3.14a) d&z, x) = (d&z, diX) for i > 0, 

s&z, x) = (s,a, S$) ror i > 0. 

It is then straightforward to verify that G x tK becomes a simplicial 
set and that 

G-G x ,K+K 

is a fibration. On the other hand, if we try to make a fibration 
G -+ G x tK + K, with face and degeneracy operators as in (3.14a), 
the function t which occurs will have to satisfy (3.14). 

If G x tK is contractible, then we call G a loop group for K, and 
K a classifying complex for G. In this case, T,(K) w T+,(G) for n > 1. 

DEFINITION (3.15). F or a reduced simplicial set K, let GK be the 
simplicial group defined by 

(1) (GK), is the group which has one generator ff for every x E Kn+i 
and one relation s> = e for every x E K, ; 
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(2) The face and degeneracy operators are given by 
__ 

d,X = (d,x) . (dox)-1, 

d$ = di+lx 
- six = +1x. 

for i > 0, 

Thus G(-) is a functor from reduced simplicial sets to simplicial 
groups. In Ref. [Kl], G(e) is defined for arbitrary simplicial sets with 
base point by means of a maximal tree. 

Observe that t : K + GK by t(x) = x is a twisting function, which 
defines a simplicial set EK = GK x ,K. 

THEOREM (3.16). F or a (reduced) Kan complex K, GK is a loop group 
for K; that is, EK is contractible. 

Proof. The proof which closely follows Ref. [Kl], consists in showing 
(1) EK is connected; (2) n,(EK) = 0; (3) H,(K) = 0 for each n > 1. 
Then (3.13) shows that EK is contractible. 

We need a slightly different description of GK and EK. A “closed 
n-loop of length 2k” is to be a sequence (x1 ,..., xZk), xj E K,,, , for 
which dOxzi--l = d,,xzi for each 0 < i < k. An “n-path of length 2k + 1” 
is to be a sequence (x1 ,..., xZk+i), xj E K,,, , also satisfying d,,xzi--l = doxzi 
for each 0 < i < k. (Notice: This is for reduced K, i.e., with only one 
vertex.) Among the closed n-loops of K, introduce an equivalence 
relation by 

(Xl ,..‘Y %kc) -(x1 ,***, xj-1 3 xj+z ,..., %c) 

whenever xj = xj+r . Let (xi ,..., xzk) be the class of (x1 ,..., xzk) under 
the equivalence relation generated by N. For a closed n-loop (x1 ,..., xzk), 
and for 0 < i < n, let 

4(x, ,..., XZ~C) = di+lxl I***> di+lXZk), 

si(xl >‘**t xa) = (si+~,..., 4+,x,,). 

The di and the si respect the equivalence relation and G’K becomes 
a simplicial set where (G’K), is the set of equivalence classes of closed 
n-loops. It can easily be verified that the function f : G’K + GK, 
defined by 

f <Xl ,*.a, x2& = ~&$l Gqx,)-1 *-a z2k&21c)-l 

is a simplicial isomorphism, and thus by transport of structure, G’K 
becomes a simplicial group. 
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Similarly define E’K by equivalence classes of paths, and 
f : E’K -+ GK x ,K is an isomorphism, where 

f <Xl a***, xZk+l) = (f<Xl >***9 X2Kh dOX27c+1). 
We shall need to use the following, the proof of which is a standard 

exercise. 

PROPOSITION (3.17). Let X be Q connected Kun complex, and T C X 
a maximal tree; that is, T is a connected subcomplex of X containing all 
the vertices of X, but no reduced n-loops. Then rrl(X) M FIR, where F is 
the free group generated by the set X, , and R is the normal subgroup 
of F generated by all t E TI , and all (d,,w)(dIw)-l (d,w) for w  E X2 
nondegenerate. 

We can now complete the proof of (3.16). 

(1) EK is connected, since n,(EK) -j n,(GK) is onto. 
(2) We calculate rr,(EK) by (3.17). Let T be the subcomplex of EK 

consisting of 

To = W),, = Ng, *> : g E (GYM, 

Tl = hg, 4 : g E (GQ, , x E 4>, 

Tn = 1 W s,T,-11 for all n > 2. 

The T is a maximal tree in EK and hence rr,(EK) is isomorphic to F/R 
as in (3.17), where F is the free group generated by (EK), , and R is 
the normal subgroup containing all (sOg, x) and all (d,u)(d,u)-l (d2u), 
where u E (EK), is nondegenerate. First take u = (sIh, s,,x) to obtain 
(s,d&, x)(h, 4-l (h, *) E 4 whence also (h, x)-l (h, *) G R. Next take 
u = (s&, y) to obtain (KY, d, y)(k, dI y)-l (s,,d&, d2 y) E R, whence also 
(KY, d,y)(k, d,y) E R. Thus all (g, y) E R, so rr,(EK) = 0. 

(3) There is contracting homotopy D for (CJE’K), i3). For each 
= = (x1 ,'"f x2?c+1 ) let for 0 < i < n, 1 < j < 2Iz + 1, t 

qj = (Q+~x~ ,..., si+l~j-l , si --. s,d, *-- d,x,) for j odd, 

IQ = <sitlxl ,..., s~+~x~ , si I.. s,,d, e-s d,,x,) for j even. 

Let D,u = & (- 1) i+i+1u i,j . Then a straightforward calculation 
shows that 

a,+,D, f D,-,a, = identity on C,(E’K). 

Thus H,(EK) = 0 for all n, and EK is contractible. 
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HUREWICZ HOMOMORPHISM (3.18). For a simplicial group G, let 
r,G = [G, G] be the commutator subgroup of G (in every dimension). 
Then the fibration 

r,G -% G -% G/r,G 

yields a long exact sequence in homotopy. Take G = GK, where K 
is a reduced Kan complex. Then it is not difficult to verify that there 
is a commutative diagram 

ho %W) ~ - H,(K) 

1 1 
... -- +,(f’,G) i* n,ml(G) 2 rr,-,(G/T,G) d+ ... 

Kan [Kl], gives the following reformulation of the Hurewicz Theorem, 
which we state without proof. 

PROPOSITION (3.19). Let F be a simplicial group with each F,, free. 
Then 

(1) --o(F) - ~o(FIr,F) is onto and has fog kernel the commutator 

subgroup [-rr,(F), r,(F)1 ; 
(2) U vi(F) = 0 f OY all i < n (n > l), then xi(r,F) = 0 for all 

i < n. 

If we take F = GK, where K is a reduced Kan complex, and the 
LES in r of the fibration r,F + F + F/r,F, then (3.19) produces the 
usual form of the Hurewicz theorem. For simply connected K, the 
groups rr,(F,F) are isomorphic to J. H. C. Whitehead’s f groups, and 
the LES in 7~ becomes the “certain exact sequence.” 

DEFINITION (3.20). If G is a simplicial group, then define a simplicial 
set EG by 

(~Qz = {(gn-1 ,..., go) : gi E GS, 

&(g,-1 ,..., ao) = (gn-2 ,...? go), 

d&T,-, Y---9 8,) = (L&-l >-**> 4g,-i * g,-i-l , g7z-i-2 ,*A*> go), 

%hz-1 >..., go) = (Si-l&-l ,..., sogn i , gn-i-1 ,..., go). 

Then it is not hard to verify the following statements: 

(1) W is a Kan complex; 

(2) t : m* Ggiven by t( g,-, ,..., g,) = g,-, is a twisting function; 
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(3) The complex G x ,WG is contractible; 

(4) Let (G, 6 K) b e a p rinciple fibration. Then there is a simplicial 
map f : K + WG where 

and the fibration over K with fibre G, induced from p : G x ,wG ---f 
W(G), is just G x ,K. 

(5) For a reduced Kan complex K, the simplicial map f : K-+ FGK 
defined by 

f(x) = (x, *,*.., *> 

is a homotopy equivalence K N WGK. 

Remark (3.21). If A is any simplicial Abelian group, then m/l 
will also be a simplicial Abelian group. This is related to the cone and 
suspension functors in the category of simplicial Abelian groups as 
follows. Let CA be defined by 

with face and degeneracy operators as in (1.8); then SA = CA/A 
becomes 

It can be seen easily that V/l w SA. 
For example, if 7r is any group, let K(r, 0) be the simplicial group 

which is rr in every dimension,‘aIl face and degeneracy operators being 
the identity. Then m(K(n-, 0)) is a minimal complex for K(n, 1). If r 
is an Abelian group, then the n-fold iterate Wtn)(K(r, 0)) is a minimal 
complex for K(T, n). The fact that any other potential minimal complex 
for K(T, n) must be isomorphic to this one follows from (3.09). 

4. FREE SIMPLICIAL GROUPS 

A free simplicial group is one which is free in each dimension and 
the bases can be chosen stable under the degeneracy operators. Just 
as free groups have some special properties, so do free simplicial groups. 
Kan’s construction gives a free simplicial group GK, as does Milnor’s 
FK which is isomorphic to GSK. 
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We shall use (special cases of) three purely group-theoretical devices, 
viz., the Nielsen-Schreier-Reidemeister method for describing genera- 
tors of subgroups of free groups, the Tietze transformations, which 
replace one set of free generators by another, and the collection process 
of P. Hall. 

These are technically useful in working with free simplicial groups; 
as an easy example we prove a theorem of Hopf which describes for 
any complex K, the quotient of H,(K) by the subgroup of spherical 
cycles. Other examples can be found in Kan’s papers, e.g., in computing 
na(S2). These group-theoretic devices are used especially in the Hilton- 
Milnor theorem; we give a proof closely following Ref. [Mi2]. 

We write e for the identity of a (multiplicative) group, and (x, y) 
for the commutator x-ly-lxy. 

The references for Section 4 are [C2], [HI, [K2], [Mi2]. 

DEFINITION (4.1). A simplicial group F is called a free simplicial 
group if 

(1) For each n > 0, F, is a free group with a given basis; 

(2) The bases are stable under all degeneracy operators; that is, 
if x E F, is a basis element, then six E F,,, is also a basis element for 
each 0 < i < n. 

Remark. GK is a free simplicial group. 

GROUP HOMOTOPIES (4.2). If f, g : G -+ H are simplicial homomor- 
phisms of simplicial groups G, H, then we call f group homotopic to g 
if there is a homotopy F = {F,) : G + H between f and g, and for 
which each F, is a homomorphism. It is not in general true that group 
homotopy is an equivalence relation, but it is an equivalence relation 
if the domain G is a free simplicial group. Thus if f, g, h : G + H 
with f N g and g E h by group homotopies, then a group homotopy 
f N h can be constructed by a suitable choice for each nondegenerate 
generator. We leave the details to the reader. 

SCHREIER SYSTEMS (4.3). We interpolate here the Nielsen-Schreier- 
Reidemeister technique for describing subgroups of free groups; also 
see, for example, Ref. [HI. To begin with, consider just groups, not 
simplicial groups. Let X = (xi> b e a set, let F = FX be the free 
(non-Abelian) group generated by X, and let H be a normal subgroup 
of F. 
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DEFINITION (4.4). A Schreier system S for the cosets of H in F 
is a set of elements in F with the following three properties: 

(1) Each coset of F/H contains exactly one element of S; 

(2) The identity e E S; 

(3) If the reduced word x2 ... xz E S then so is every shorter word 
xTh...x?ESfor 1 <h <j< k. %I 

Remark (4.5). We have defined what is usually called a two-sided 
Schreier system for the cosets of H in F. If H is only a subgroup of F, 
not necessarily normal, then there is a similar definition of a Schreier 
system for the right cosets of H in F, except that (3) is changed to 
readh = 1. 

If S is a Schreier system for the normal subgroup H in F, let 4 be 
the function from F to S which takes each coset to its representative 
in S. The fundamental result is the following. 

THEOREM (4.6). H is freely generated by those reduced words 

Y4+(YxY9 

where y E S, x E X, and yx(#( yx))-l f e. 

We shall frequently be concerned with a simpler situation. Let Z 
and Y be sets, let f : FZ --t FY be a homomorphism of the free groups, 
and suppose there is a function s : Y + Z, extended homomorphically 
tos:FY-tFZsuchthatfos= l,,. Then the following is immediate 
from (4.6). 

COROLLARY (4.7). In this situation, kerf is freely generated by those 

s(w) zsf(z)-1 s(w)-l, 

wheresEFY,xeZ-s(Y). 

TIETZE TRANSFORMATIONS (4.8). Let F = FW be the free group 
generated by a set IV and let a E IV. Then F is also freely generated 
by the set 

w’ = (W - {u}) u {u-l}. 

If a, b E IV, then F is also freely generated by the set 

W” = (W-{a})U(b*a?. 

W/6/2-3 
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These are the (elementary) Tietze transformations which replace one 
set of free generators by another. We denote them by T(a -+ a-‘) 
and T(a + ba), respectively. 

More generally, let u, z, EF( W - {u}) and let T(a + ua*lv) be the 
Tietze transformation which replaces the generator a by ua*iv. Such 
a T can be obtained by a finite sequence of elementary ones. Under 
some conditions, an infinite sequence of transformations can still be 
applied to obtain a free generating set; see, for example, Ref. [C2]. 

COLLECTION PROCESS (4.9). Let X be a set, and let w EF’X be a 
reduced word. Suppose the symbol x occurs in w, and that the element 
standing next to the left of x is y. Then use the identity yx = xy(y, x) 
to change the expression for w = ... yx **a to 

w = ... xy(y, x) *-., 

and the occurence of x has been shifted one place to the left. Also 
yx-i, y-lx, and y-lx-l are handled by similar identities, but with slight 
complications; see, for example, Ref. [HI, p. 165. 

We look for the leftmost occurence of x, and “collect” it all the way 
to the left by repeated applications of this process. In this way, the 
expression for w will become 

w = xqv, 

where v is an expression in the remaining symbols of X and some 
new ones of the form (y, x), ((y, x), x), etc., created in the collecting 
process. 

We next choose another symbol, collect it to the left, and repeat. 
Eventually the expression for w becomes 

where we have collected xi ,..., x, (in this order), and Y, is expression 
involving symbols created in the collecting process. 

BASIC COMMUTATORS (4.10). Let X = {x1 ,..., xr} be a set, and call 
the xi the basic commutators of weight one, ordered by the indexing 
set. Inductively suppose defined the basic commutators of weight 
< n - 1; let them be xi ,..., xj(+i) , ordered by the indexing set. Then 
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let the basic commutators of weight n be all expressions (xi , xi) such 
that 

(1) weight xi + weight xi = n; 

(2) i > j; 

(3) If xi = (xh , xk), then k < j. 

Let the basic commutators of weight < n be xi ,..., xfclz) , ordered by 
the already chosen order on those of weight < n, and taking those of 
weight n (in any order) after those of weight < n. 

Remark. Let g be the integer-valued function on basic commutators 
by g(x,) = 0 for 1 < i < r, and g(x, , xi) = j. Then the conditions 
above read that (xi , xj) is to be counted as a basic commutator if (I), 
(2), and (3’): g(x,) < j. 

Remark (4.11). It is unnecessarily restrictive to collect the elements 
singly. Let A C X be any subset, and collect the part of w in FA to 
obtain w = wiv, where wi E FA and v is obtained in the collecting 
process. For example, in F(A v B), we can collect first all a E A, then 
all b E B, then all (b, a) E B A A, then all (b, a, a) E ((B A A) A A), etc., 
to obtain 

Here each wi E F(C) w h ere C is a “basic smash product” of the sets 
A, B, and r, is some remainder term. This is the process underlying 
the Hilton-Milnor theorem. 

EXAMPLE (4.12). Let G = GK be the free simplicial group where 
K is a reduced simplicial set. The above techniques can be used to 
describe n,(K) M r,(G) in the form F/R, where F is free on Ki , and 
R is the normal subgroup generated by all (d,,x)(d,x)-i (d,x) for x E K, 
nondegenerate. 

Let us do even more. Let r,G be the commutator subgroup of G 
(in every dimension). We describe a,(r,G) and r,(G), and thereby 
deduce a theorem of Hopf. 

We do this in three steps. 

(1) First apply corollary (4.7) to 
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and find that NG, = ker dl is freely generated by those 

u%~(~,dl~)-l (wo)-’ 

where g, E GO and x is a nondegenerate generator of G, . Let sO g, = g-r, 
and x(s,dlz)pl = y. Thus NG, is freely generated by 

{YY PYL?). 

Some Tietze transformations, T( g-‘yg -+ y-lg-lyg), show that NG, is 
freely generated by 

{Y, (g, Y)l. 

(2) Next observe that 

N(I’,G), = r,G, n NG, = Gl 0 NG, , 

where for A, B subgroups of a group, A 0 B is the smallest subgroup 
containing all (a, b) for a E A, b E V. To see this, first note that 

Gl 0 NG, C r,G, n NG, . 

Next, suppose w E NG, . Then by (l), w must be a word in y, (g, y), 
where the y are in one-one correspondence with nondegenerate gener- 
ators z of G, . An easy collecting process argument shows that if w 
is also to be in r,G, w must be a product of elements of the form (x, y) 
and (g, y), where the x E G, are obtained in the collecting process. 
Thus w E G, 0 NG, so (2) holds. 

(3) Let F = G, , and d,(NG,) = H C F, so that r,(G) m F/R. 
Then 

d,,(G, 0 NG,) = F 0 R C T,(F). 

Thus v,(r,G) w I’,(F)/F 0 R. The fibration 

r,G + G + G/r,G 

yields a long exact sequence in homotopy, 

n&c) 2% K(K) a il -y’ -- 77’(K) -hL H’(K) 

II Z? 

M’&) -- T,(F) 
a a 

I’,(F)/F 0 R -+ F/R 
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From the exactness, coker h, m ker ir , and we have proven the 
following: 

THEOREM (Hopf). 1j K is a complex with r,(K) M F/R, then 

ff@)/&4~)) = r,(F) n R/F 0 R. 

EXAMPLE (4.13). It is illuminating to see how Kan (Ref. [Kl], 
p. 308) computes niTg(Sz) from the free simplicial group G = GS2. 
First find free generators for each of the groups of the sequence 

VW, - a8 (NG) 2 a, (NG), . 

Then rr& S2) M ker a,/image aa is seen to be infinite-cyclic on one 
generator 27 = (siu, sau). 

THE FK CONSTRUCTION (4.14) (Milnor [Mi2]). For each simplicial 
set K with base point *, let FK be the result of applying the free group 
functor to K, with the single relation * = identity e. The free product 
of two group complexes G * H is defined by (G J H)n = G, * H, . 
Then F(K v L) M FK *FL. 

PROPOSITION (4.15). There is a canonical isomorphism FK w GSK, 
where GSK is the result of applying Kan’s construction G to the reduced 
suspension SK of K. 

Proof. For each x E K, , there is (x, 1) E (SK),+, , and (x, 1) a 
generator of (GSK), . The map x -+ (x, 1) is easily seen to give an 
isomorphism of the simplicial groups. 

Let A and B be simplicial sets with base point. The idea is to 
decompose F(A v B) into a Cartesian product 

FA x FB x F(B A A) x .-- 

by a collecting process. 

PROPOSITION (4.16). F or simplicial sets A and B, the simplicial set 
F(A v B) is isomorphic to the simplicial set FA x F(B v (B A FA)); 
that is, ignoring the group structure. 

Proof. The collapsing map A v B -+ A induces a homomorphism 
f : F(A v B) + FA. Then (4.7) and (4.8) show that ker f is freely 
generated by the set {b, (b, w)) for b E B, w E FA. Identify (b, w) with 



144 CURTIS 

(b A W)EB AFA, and the kernel becomes isomorphic with 
F(B v (B A FA)). Th ere is short exact sequence 

e +F(B v (B v FA)) -+F(A v B) +FA + e 

which is split by i : FA -+ F(A v B), i.e., f 0 i = ZFA . All this is natural 
in maps in A and B, which thus commute with the face and degeneracy 
operators, and the proposition follows. 

PROPOSITION (4.17). The simplicial group F(B A FA) is isomorphic to 
F((B A A) v (B A A A FA)). 

Proof. The inclusion A --f FA induces a homomorphism 

F(B A A) -+F(B A PA). 

A homomorphism 

F(B A A A FA) + F(B A FA) 

is defined by (b A a A W) + (b A a)-’ (b A w)-1 (b A aw); note the group 
identity ((b, a), w) = (b, a)-’ (b, w)-l (b, aw). Combining these, we 
obtain a homomorphism 

F(B A A)* F(B A A A FA) +F(B A BA) 

which is an isomorphism. For this, use Tietze transformations (4.8) 
to see that in F(A v B), the subgroup freely generated by {(b, w)} is also 
freely generated by {(b, a), ((b, a), w)}, for b E B, a E A, w E FA. 

Let Am = A A A A ... A A, m copies. Then an induction on m, using 
(4.17), shows the following: 

PROPOSITION (4.18). For each m 2 1, the group complex F(B A FA) 
is isomorphic to 

F(BAA)*F(BAA~)* ... * F(B A A”‘) * F(B A A” A FA). 

THEOREM (4.19). If A and B are simplicial sets with A connected, 
then there is an inclusion 

G:F(iBnAZ)+F(BnFA) 

which is an homotopy equivalence. 
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Proof. Each element of F( Vy=r B A Ai) is already contained in 
F(VyY”=, B A Ai) f or some m. This provides a homomorphism G com- 
pleting the diagram 

The “remainder” terms F(B A Am A FA) and F(B A Ai) for i > m 
have trivial homology in dimensions less than m. Thus G induces 
isomorphism of all homotopy groups, so in a homotopy equivalence. 

Combining (4.16) and (4.19) gives the following: 

COROLLARY (4.20). If A and B are simplicial sets with A connected, 
there is a homotopy equivalence 

FAxF(gBnA”)-F(AvB). 

Let A, ,..., A, be simplicial sets. Construct a family of basic complexes 
(each is a simplicial set) in strict analogy with the basic commutators 
(4.10), by the substitutions basic complex A, for basic commutator xi , 
and (Ai A Aj) for (xi , xj). 

THEOREM (4.21) (Hilton-Milnor). Let A, ,..., A, be connected sim- 
plicial sets. Then F(A, v a.. v A,) has the same homotopy type as the 
weak injinite Cartesian product nT=, FA, , where the Ai are the basic 
complexes. 

Proof. This results by iterating the previous decomposition. For 
each m > 1, let R, = F(V Ak), where the wedge is taken over all 
k >, m, with g(A,) < m. Then (4.20), applied to F(A, v B) where 
B = V A, , the wedge taken for k < m, gives a homotopy equivalence 

Wm) x Rn+l -+ Rm - 

By induction there follows a homotopy equivalence 

x R,,, ,” R, = F(A, v a-- v A,). 
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This defines an inclusion of the weak infinite Cartesian product 

fj FA --f F(A, v ... v A,). 
i=l 

As the A, ,..., A, are connected, the “remainder” terms R,, are n- 
connected, where n + CO as m --f co. The above inclusion map induces 
isomorphisms in all homotopy groups, and so it is a homotopy equiva- 
lence. 

Another consequence of (4.19) is the following theorem of James. 

THEOREM (4.22). If A is a connected simplicial set, the complex SFA 
has the same homotopy type as vy=“=, SAi. 

Proof. Observe that So A K g K. Take B = So in (4.19), and thus 

is a homotopy equivalence. Apply F( -) to both sides, and as SK + mFK 
is a homotopy equivalence, the theorem follows. 

5. SIMPLICIAL ABELIAN GROUPS 

A simplicial Abelian group is the analogue of a generalized Eilenberg- 
MacLane space (GEM), i.e., a product of K(n, n)‘s. Let S, be the 
category of simplicial Abelian groups, and C, be the category of Abelian 
chain complexes. It is a result of Dold and Kan that there are functors 
N : YA --+ VA and K : VA -+ Y” which are inverses and thus provide 
an isomorphism of categories 9’ w %A . 

Under this isomorphism, group homotopies in YA (i.e., (F1}, where 
each F, is a homomorphism) are in one-one correspondence with chain 
homotopies in VA . 

Tensor products are defined in each of the categories YA , VA , and 
a simple form of the Eilenberg-Zilber theorem is proven. 

It is a standard fact that an Abelian chain complex of free Abelian 
groups is determined to within chain homotopy equivalence by its 
homology groups. The above correspondences show that a simplicial 
free Abelian group is determined to within group homotopy equivalence 
by its homotopy groups. Using the principle that functors preserve 
homotopy, we conclude that if A and B are simplicial free Abelian 
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groups with m,(A) M n,(B), and T is a functor from the category of 
Abelian groups to another category, then r,(TA) w n*(TB). 

The references for Section 5 are [D], [D, P], [Mac]. 

THE FUNCTORS NAND K (5.1). For each simplicial Abelian group A, 
recall the chain complex (NA, a), where 

(NA), = n ker di , 
i#O 

a9 = du (restricted to (NJ,). 

There is a functor K which is inverse to N, provided by the following: 

DEFINITION (5.2). For each Abelian (and nonnegatively graded) 
chain complex (C, a), let KC be the simplicial Abelian group 

where fa ranges over all iterated p-fold degeneracies (0 < p < n), 

s, = sip *** si, , 

where n > i, > *.. > il > 0. That is, the direct sum includes as many 
copies of C,, as there are different p-fold degeneracies; the summand 
C, is included, corresponding to the empty degeneracy. The face and 
degeneracy operators in KC are given by the rules 

(1) If disa = sb , then di is to map (C,, , sa) ---t (C,, , sb) isomor- 
phically, and be 0 into the other factors. 

(2) If dis, = sbdo , then di is to map (C,, , sa) --+ (C,,-, , sb) as 
the homomorphism 8n--p , and be 0 into the other factors. 

(3) If dis, = sbdi , j > 0, then di( C,, , s,) = 0. 

(4) If sisa = sb , then si is to map (C,, , sa) + (C,, , Sb) isomor- 
phically, and be 0 into the other factors. 

THEOREM (5.3). The functors N and K provide natural isomorphisms 
between the categories YA and VA . 

Proof. For each C E %‘A , let 

@,:C+NKC 

be the map of C, to the summand C, C (NKC), . 
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For each A E 9” , let 

be defined on the summand ((NA),-I, , SJ as the composite 

((NA),_, , so) inc1”sion- A,-, ” -j A, . 

It is not difficult to verify that Qc and lu, are natural isomorphisms. 
We also leave to the reader the verification that under N and K, 

homs,( , ) = homc,( , ). 

TENSOR PRODUCTS (5.4). If A and 3 are in 9” , the tensor product 
A @ B in YA is described as follows: 

(A@% =A,OB,, 

4(x BY) = (4% 0 4Y), O<i<n, 

Si(X 0 y) = (six 0 SiY), O<i<n. 

If (C, a) and (C’, a) are in VA , their tensor product (C @ C’, a) in %A 
is as follows: 

(CO C) = @ c, 0 Cg” 
p+q=n 

qx Oy) = ax @y + (-l)dim= x @ ay. 

HOMOTOPIES (5.5). A homotopy (F,} : A + B of simplicial (Abelian) 
groups is called a group homotopy if each F, is a homomorphism. The 
simplicial map F : A x I + B is not very enlightening; more useful is 
the simplicial homomorphism 

0: A@Z(l)+B, 

where Z( 1) = Z(d[l]); 6’ is defined by 

qx @ t) = F,(x). 

A chain homotopy D between two chain maps f, g : C + C’ is a 
homomorphism raising dimension by one and satisfying 

hd4a + Dn-,a, = f - g. 
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Such a D provides a chain map 

B : c @ N(1) -+ C’, 

where N(1) = NZ(d [l]); thus N( 1) has for basis q, , q E N(l),, and 
w E N(l), , and 3, = r~,, - a, . Then for each x E C, 

0(x, pu) = D(x), 

&Xl %> = f(X), 

Rx, 4 = gw 

It is convenient to work with such maps 0 and 8, coming from F 
and D; we call 8 and 8 tensor simplicial homotopy and tensor chain 
homotopy, respectively. 

Let A and B be simplicial Abelian groups. Then the shuffle (V) and 
Alexander-Witney (f) maps 

(4 8) 0 (B, a> -5 (A 0 B, 8) f, (A, 3) 0 (8 a> 

are defined by 

where for x E A, , y E B, the sum ranges over all “(p, p) shuffles” 

(a; b) = (al ,..., a, ; b, )..., b*) 

whose p + q integers (ai ,..., aP , b, ,..., bp) are a permutation of 
(O,..., (p + q - 1)) satisfying a, < *.* < uP and b, < *** < b, , f is 
the sign of the permutation, and s, = sap *a* s,~ , s,, = sb . 

Forx@yEA,@B, = (A@B),, 
Q *** So 1 

PROPOSITION (5.6). The maps V and f each induce isomorphisms of 
the homology groups. The maps V and f are also dejked on the normalized 
chain complexes 

NA@NBLN(A@B)--L,NA@NB 

and induce isomorphisms of the homology groups. 
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The proof is a standard exercise, not too difficult; see also Ref. [Mac], 
p. 238. 

Let 0 : A @ Z(1) + B be a tensor simplicial homotopy. Then the 
composite 

will be a chain homotopy. 
Let 0 : NA @ N(l) + NB be a tensor chain homotopy. Then the 

composite 
A@Z(l)------- -_-----___ +B 

1 
a 

1 
w 

KN(A @Z(l))~LK(NA @N(l)+&NB 

will be a tensor simplicial homotopy. From this we can conclude the 
following: 

THEOREM (5.7). There is a one-one correspondence between simplicial 
group homotopies in ya and chain homotopies in VA . 

It is easy to see that if C and C’ are chain complexes of free Abelian 
groups with H,(C) = H,(C) then there are chain maps f : C + C’ 
and g : C’ --+ C such that the composites g 0 f and f 0 g are chain 
homotopic to 1, and 1,’ , respectively. 

THEOREM (5.8). If A and B are simplicial free Abelian groups with 
r,(A) m rr ,(B), then there are simplicial homomorphisms f : A + B and 
g : B + A such that the composites g 0 f and f Q g are simplicial group 
homotopic to 1 A and 1, , respectively. 

THEOREM (5.9). Let A and B be simplicial free Abelian groups with 
n,(A) m n *(B) and T f t f a uric or ram Abelian groups to another category. 
Then n,(TA) w rr*(TB). 

The category of Abelian groups can be replaced by modules over 
P.I.D., or other Abelian category where the above is valid. 

EXAMPLE (5.10). Let SP” be the n-fold symmetric product functor. 
If X and Y are simplicial sets with H,(X) w H,(Y), then also 
H*( SPnX) w H,(SPnY). For the simplicial free Abelian groups C,(X), 
C,(Y) have isomorphic homotopy, and H,(SPW,(X)) w H,(SPn(X)), 
etc. This is the example Dold has in mind [D]. 
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SUSPENSION (5.11). F or each simplicial Abelian group A, let V/l 
be as in (3.20) and WA = A,WA. Then WA and WA are again 
simplicial Abelian groups, and the principal fibration 

Ai- WAL WA 

is a short exact sequence of simplicial Abelian groups which splits 
dimension-wise. 

Let T be a functor from Abelian groups to another Abelian category. 
Then TP is onto, and there is a fibration 

ker Tp - TWA -=+ TWA. 

Since WA is contractible, so is TWA (functors preserve homotopy), 
and from the LES in n, 

a: %,l(TWA) -% r,(ker Tp). 

Then the composite u = a-l 0 (Ti) * , 

mG( TA) of q( ker Tp) 2 n,+& T PA), 

is called the suspension homomorphism. For more details, see Refs. 
[D, P], where WA is called CA, and WA is called SA. 

SIMPLICIAL VECTOR SPACES (5.12). The functors N and K also give 
isomorphisms between the categories of simplicial vector spaces and 
differential vector spaces. Let F be a field, and for each integer n > 0, 
let C(F, n) be the differential vector space concentrated in dimension n; 
that is, C(F, n), w F and C(F, n), = 0 for 4 # n. Then any differential 
vector space C is a chain homotopy equivalent to a direct sum of such 
simple ones, 

c E@ C(F, n,). 

By (5.3), a simplicial vector space V will be equally simple; that is, 

VmKNV 

= K (0 WC 4) 

CIY+ @ i(F, ni) 
i 

where K(F, n) = K(C(F, n)). 
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The suspension (T in the category of simplicial vector spaces takes 
Jw, n> to ww, a>) w K(F, n + l), with ui, = i,+r . 

For a simple example, let T2(*) be the two-fold tensor power; then 

u: n,Tyv)+7Tn+1T2(WV) 

is the 0 homomorphism. Later, we shall need the following, slightly more 
general fact. Let in, @ i, be the generator of x,+,(K(m) @ K(n)) 
given by 

i,, 0 i, = 2 i (SbL 0 GA 
t&b) 

where (a; b) varies over all (m, n) shuffles. Under suspension, i,,, @ i, 
goes to 0; that is, there must be a (universal) formulaf,,,,( , ) with- 

This is related to the homology suspension in the following way. For 
any simplicial set X, let Z,(X) be the simplicial vector space generated 
by X over the field of p elements. Then r,(Z,(X)) w H,,(X; Z,). 
The diagonal d : X + X x X, where d(x) = (x, x), induces a homo- 
morphism d : Z,(X) @ Z,(X), and thence a coproduct 

d* ~nG(X>) ~ --f 7rn(Z,(X) @ Z,(X)) 

B R 

H,(X; Z,) 2 @ H&c : Z,) @ H,(X : Z,) 
p+rl=n 

Via suspension, ‘ir,( WZJX)) w H,(SX; Z,). Thus, for suspended 
spaces, the coproduct in homology is 0; dually, in cohomology, the 
cup-product is 0. 

6. FIBRE BUNDLES 

How can we classify fibration ? The answer is given by Refs. [Mo2] 
and [B, G, M]. The first step is to replace a given fibration by a deforma- 
tion retract of it which is a minimal fibration, and then to show that 
a minimal fibration is a fibre bundle. Next, each fibre bundle can be 
considered as a regular twisted Cartesian product (RTCP) of its base B 
and fibre Y. Each RTCP is determined by a twisting function t : B --+ G, 
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where G is a subgroup of the automorphism group of Y. Finally, the 
equivalence class of such RTCP’s is in one-one correspondence with 
homotopy classes of maps of B into W(G), the classifying complex of G. 

For convenience, we postpone until the last the retraction of a fibration 
to a minimal one, and take up fibre bundles first. 

The reference for Section 6 is [B, G, M]. 

DEFINITION (6.1). A fibre map p : E + B is called a jibre bundle 
map if p is onto, and if for each b E B, , the representing map for 
b, fb : O[ti] + B induces a fibration p’ : E’ -+ d[n] which is isomorphic 
to the fibration F x d[n] + d[n], where F is some fixed simplicial set 
called the fibre. 

Fibre bundles occur plentifully, as shown by the following, which 
will be proven later. 

PROPOSITION (6.2). Let p : E -+ B be a fibre map onto, where B is 
connected and p is minimal. Then p is a $bre bundle map with jibre 
F = p-l(*). 

Thus the fibrations in the Postnikov system of a minimal complex 
are all fibre bundles. If p : E -+ B is any fibre map onto a connected 
base B, then we will also show later that there is a “retraction” of p 
onto a minimal fibre map, which is thus a fibre bundle. 

Fibre bundles also occur as twisted Cartesian products. Suppose we 
have two simplicial sets, B and Y, and want to make a twisted Cartesian 
product with base B ,and fibre Y. To do this, we need to consider 
simplicial groups acting on Y, in particular the automorphism group 
of Y, or a subgroup of it. 

SIMPLICIAL AUTOMORPHISMS (6.3). Let X and Y be simplicial sets, 
and recall the function complex Yx where 

( Yx), = {f : X X d[n] ---f Y}. 

Each f E (YJ), gives a commutative diagram 

XxA[n] c7 l Y x A[n] 
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where g(x, t) = (f(~, t), t). It will sometimes be convenient to regard 
(Y”), as the set of such commutative diagrams. 

For X, Y, and W simplicial sets, there is a simplicial map 

xwx YX+YW, 

where (f, g) -+ g 0 f. Thus Yy acts on the right of Yw and on the left 
of Zr. Also Yy becomes a simplicial monoid (i.e., has an associate 
multiplication). Let 

aut( Y) C Yy 

be the subset of invertible elements, (i.e., in every dimension); aut(Y) 
is a simplicial group. 

If G is a simplicial group, and Y is a simplicial set, a (right) action 
of G on Y is to be a simplicial map 

d:YxG-tY 

with the usual properties. Such an action 4 determines a simplicial 
homomorphism 

4 : G+ aut(Y) 

by $( g)(y, t) = +(y, fg(t)), where f, : o[n] -+ G is the representing map 
for g E G, . That is, for each g E G, , & g) is the composite 

y x O[n] -3 Y x Gd--+Y. 

On the other hand, such a map 6 : G + aut(Y) determines an action 
of G on Y by reversing the above. We call the action 4 effective if 
4 is one-one, and from now on we restrict to this case (by factoring G 
by ker 6 if necessary). We will use 4 and 6 interchangeably. Also, 
write y 0 g for $(y, g). 

For example, aut(Y) acts on Y by 

c#: Yxaut(Y)+Y, 

where +(y,f) = f(y, in) for y E Y, and f: Y x A[n] + Y. The 
corresponding 6 : aut( Y) -+ aut( Y) is the identity isomorphism. 

Hereafter, assume that the (potential) fibres Y are Kan complexes; 
better yet for the applications, assume Y a minimal complex. 
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TWISTED CARTESIAN PRODUCTS (6.4). We continue with our attempt 
to make a fibration with fibre Y, base B. We try for total complex E, 
where 

E, = Y, x B, , 

and suppose that the face and degeneracy operators in E satisfy 

%(Y, 4 = (SiY, 4) for all i > 0, 

4Y, 4 = (AY, 0) for all i > 0, 

4(g, b) = (4Y o t(b), 44, 

where t : B, -+ aut( Y),-i is some function. It is an easy consequence 
of the simplicial identities that Y + E -+ B will be a fibration S- t 
satisfies the following: 

d&(b) = t(di+,b) for i 3 0, 

dot(b) = t(d,b) 0 t&b)-1, 

sit(b) = t(s,+,b) for i >, 0, 

* = t(s,b). 

A function t satisfying (6.4a) is called a twisting function, and the 
simplicial set E = F x tB is called a regular twisted Cartesian product 
(RTCP). It looks somewhat special to suppose t “twists” only the face d,, , 
but we are going to show that any fibre bundle is such an RTCP, so 
allowing “twists” of all faces and degeneracies would be unnecessary. 

ATLAS OF A FIBRE BUNDLE (6.5). Let p : E --t B be a fibre bundle 
with fibre f. Thus for each b E B, , there is a commutative diagram 

o(b) 

F x d[n] &E’E’ /a E 

1 1 

41 - ” B 

where cu(b) is some isomorphism. A choice {a(b)} of this isomorphism 
for each b E B is called an atlas for the bundle. 

We investigate the possibility of changing, and simplifying, an atlas 
by different choices of these isomorphisms. Note that we do not change 

607/6/z-4 
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bundle, i.e., the quadruple (F, E, p, B), in any way. If {a(b)}, 
two atlases for the fibre bundle, then for each b E B, , 

(4Y o Iv) = ma 

where y(b) E aut(F), . Conversely, given such an atlas (a(b)}, and for 
each b E B, an element y(b) E aut(F), , the collection 

,‘W = 44 0 r(b) 

determines a new atlas. 
Let b E B, , and consider a degeneracy si . Let vi : il[n + I] + A[n] 

be the corresponding map, and there is a commutative diagram 

Regarding a(b) E ((E’)“)n , we have +x(b) = a(b) 0 (1 x Q), and it may 
not in general be true that 

s&b) = fji 0 c+b). 

By redefining a(sib) on degenerate elements sib E B, we can replace an 
atlas by a normalized one, i.e., one for which this is true. From now 
on assume all atlases normalized. 

What about the face operators ? Let di be a face operator, and let 
ci : O[n - I] -+ d[n] be the corresponding map. For b E B, , we have 
a commutative diagram 

1 xc1 a(b) f 
FxACn-11 - F xACn1 =-+%E 

F x A Ln-11 

Then d&b) = a(b) 0 (1 x Q) and g a ain it may not in general happen 
that 

d&b) = & 0 or(d&. 
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We will disregard the monomorphism 4 since the two maps in question 
have the same image in E’. Then let 

p(6) = (a(dJ))-l 0 d&b), 

where e(b) E aut(F),-, for b E B, . The p(b) are called the transformation 
elements of the atlas. If all e(b) E G C aut(F) we call a(b) a G atlas 
and the bundle a G bundle. Two G atlases are said to be G-equivalent if 

/w = 4) Y(4, 

where r(b) E G, all b E B. 

THEOREM (6.6). I n every G-equivalence class of atlases, there is 
(at least) one atlas for which 

p(b) = e (= identity) for i > 0. 

Proof. Let (a(b)} be an atlas with transformation elements 
p(b) E G C aut(F). W e can specify a new atlas on the nondegenerate 
elements, and the normalizing process will take care of the degenerate 
ones. 

First, let b E B, be nondegenerate. Since G is a simplicial group, 
G satisfies the extension condition, so let y E G, with dry = [l(b). Put 
/3(b) = al(b) o y-l; then 

= a(d,b) 0 f’-(b) 0 (P(b))-l 

= ol(d,b). 

Next, suppose inductively that (a(b)} satisfies p(b) = e for i > 0, 
and dimension b < n - 1, and let b E B, be nondegenerate. Then from 
the induction hypothesis, 

d,[i(b) = d,-#(b) for O<i<j. 

Hence, using the extension condition on G, there is y E G, with 
dir = p(b) for all i > 0. Put /3(b) = a(b) 0 y-l; then for i > 0, 

d&l(b) = d&(b)) 0 dir-l 

= ar(d&) 0 p(b) 0 (&!I))-~ 

= ol(d&). 
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Thus if we replace m(b) by P(b) for each nondegenerate b E B, , the new 
transformation elements satisfy p(b) = e for i > 0. 

An atlas {m(b)} is called regular if e(b) = e for i > 0. The above 
shows that in every G-equivalence class of atlases, there is at least one 
regular one. 

THEOREM (6.7). Let p : E + B be a fibre bundle with a regular atlas. 
Then the transformation elements [O(b) determine a twisting function 

to = t : B, + aut(F),-, 

and thereby F x tB becomes an RTCP. Furthermore, there is an isomorphism 
of jibre bundles, 

v:Fx,B a l E 

Proof. The map is given by ~(x, b) = fb 0 a(b)(x, in). 

PRINCIPAL BUNDLES (6.8). Let G be a simplicial group. A G bundle 
p : E + B with fibre G is called a principal G bundle. This does not 
conflict with the previous definition of principal G bundles via twisting 
functions (3.14) b ecause any fibre bundle can be considered an RTCP 
by (6.7). Conversely, it is not hard to show that an RTCP is a fibre 
bundle, in particular, a fibration. Observe that G acts on the left of 
G x ,Bby 

g 0 (4 6) = (gh, 4. 

Equivalently, if E is a principal G bundle with regular atlas (a(b)}, 
G acts on the left of E by 

.L? o x = fb a 44(gh, in>, 

where g E G, , x E E, , b = p(x) E B, , and 

a(b) Ojb(h, i,) = x. 

This action is independent of the choice of atlas in its G-equivalence 
class. In a similar way, G acts on the right of E. 
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Any bundle induced from a principal G bundle is another principal 
G bundle. If G x J3 is the total complex and f : A -+ B, then the 
composite u = t 0 f is a twisting function, and the bundle over A 
induced by f is G x %A. For example, the bundles GK x rK and 
G x ,W(G) are principal bundles, and so are any bundles induced 
from them. 

EXAMPLE (6.9). Another example of principal bundles is that of 
covering complexes. Let X be a reduced Kan complex, ST = ni(X), 
and let K(T, 0) be the simplicial group which is rr in every dimension 
and all face and degeneracy operators are the identity. Then let the 
twisting function 

t : x, + 7T = I+, O),-, 

be given by t(x) = [da *-* &xl err. Let 

B = I+, 0) x tx 

and p : X -+ X is called the universal cover of X. 

EXAMPLE (6.9a). More appealing and sometimes useful is the 
following construction. There is a natural homomorphism f : GX -+ 
K(sT, O), and let GX = ker( f ). Then GX is a free simplicial group 
representing the “loops on X,” and there is a fibration 

GX d GX A-.-+ K(T, 0). 

Hence also X = WGX, and H,(X) M =+i(GXjr,GX). 

ASSOCIATED BUNDLE (6.10). Let G be a simplicial group acting on 
the right of a simplicial set Y, and define the associated bundle 
(E*, p*, B) by E* = Y x .E, obtained from Y x E by identifying 
all ( yg, x) with (y, gx) for y E Y, , g E G, , x E E, . It is easily verified 
that (E*,p*, B) is a G bundle with fibre Y. 

On the other hand, if p : D ---t B is a G bundle with fibre Y, where 
F is a subgroup complex of aut(Y), we can construct a principal G 
bundle over B by using the same twisting function t : B, -+ G,-, . 
Thus we have the following. 

PROPOSITION (6.11). Given a principal G bundle and an action of G 
on Y, i.e., G C aut( Y), there is a unique associated G bundle with j&e Y. 
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Given a G bundle with jibre Y, it is associated to a unique principal G 
bundle. 

G EQUIVALENCE (6.12). Let p : E + B and p1 : El + B be two fibre 
bundles with the same base and fibre, and suppose {a(b)} and {al(b)} 
are atlases for p, p1 whose transformation elements are in G. Then 
a map u, 

is called a G equivalence if the atlases are related, for each b E B, by 

u ojb o a(b) = fb o al(b) o y(b) 

for some r(b) E G. 
Equivalently, if E and El are expressed as RTCP’s F x tB and 

F x t,B, respectively, then a map U, 

Fx,B u -+F x ,lB 

is called a G equivalence if 

f(x, b) = (x 0 r(b), b) 

where r(b) E G. 

THEOREM (6.13). Letp : E ABbeaGbundle,andletf pg: A+B. 
Then the G bundles over A induced by f and g are G equivalent. 

Proof. It is sufficient to consider p : E -+ B, a principal G bundle, 
Let F: A x I+B be the homotopy F:f-g. Let p”: EO+A, 
pi: El-+ A, and* : ,!? + A x I be the bundles induced by f, g, and F, 
respectively. Slightly modify the proof of (2.11) to construct an 
equivariant homotopy F O : E” x I -+ E; F” is constructed by skeletons 
of E”, and having chosen FO(x) for one simplex of ( p” x 1)’ (a, t), 
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F” is then defined on the G orbit by equivariance. From F” we obtain 
a map u : E” -+ El which is a G equivalence of the two bundles. 

CLASSIFYING BUNDLE (6.14). For each simplicial group G, the 
construction of (3.20) p rovides a classifying space V(G). The total 
complex W(G) is defined by 

(WG), = G, x G,-, x *.- x Go , 

d&n ,..., go) = (dig, >..., dog,-i * gn-i-1, gn-i-2 ,...> go), 

&a ,**-9 go) = (%&I ,*a., sogn-i , e,g,-i-l ,...,go>, 

and G acts (freely) on the left of W(G) by 

g - (&I ,-**s go) = (g ‘gn Y*go) 

for g E G, , (g, ,..., go) E W(G), . Then (WG) = G x cl+‘(G), i.e., 

W4n M (e) x G,-l x *se x Go 

M G,-, x 1.. x Go. 

We call p : W(G) +- m(G) the classifying G bundle, which as an 
RTCP is W(G) M G x ,W(G), with twisting function 

tk?z-1 ,-,go> = gn-1 * 

Note the following (cf. (3.20)): 

(1) W = W(G) is a Kan complex: use the methods of (3.1). 

(2) W is contractible: 

(i) In the LES in n of the fibration g + W + m, 8 : rl( w) * 
r,(G) is onto; 

(ii) nl(w) = (e); 
(iii) There is a contracting homotopy D for (C(W), a) where 

D(g, ,..., go) = (6 gtz 3.*-r go>* 

(3) If p : E + B is a principal ‘G bundle, express E = G X fB, 
andiletf, : B -+ W(G) be 

f,(b) = (t(b), t(doQ..., WT-14). 
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Then the bundle over B induced from the classifying bundle by f has 
twisting function t. 

THEOREM (6.15). The assignment t + fl sets up a one-one corre- 
spondence between G-equivalence classes of principal G bundles with base B, 
and [B --t W(G)]. 

Proof. We have shown (6.13) that homotopic maps induce G- 
equivalent bundles. Conversely, let f, g : B -+ W(G) induce the principal 
bundles p” : E” -+ B and pi : El 4 B which are G-equivalent by a 
u : E” --+ El. Then consider the two maps 

f,gou: E”-t W(G). 

We want to define F” : E” x I -+ W(G), an equivariant homotopy 
FO : f P g o U. FO is defined by skeletons of E”, using the contractibility. 
Suppose FO has been defined for (EO)“pl x I, and take e, E ET:. Then 
our hand is forced on e, x 0 by f, on e, x 1 by g 0 U, and on e, x I 
by F”, and by the contractibility of W(G), F” can be “filled-in” on 
e, x I. Then extend F” to the G orbit equivariantly. 

Now let a homotopy F : f 11 g be defined by 

F(b, 9 = FO((pO)Y (4 t), 

which is independent of the choice of ( PO)-i (b) by equivariance. 

COROLLARY (6.16). Let Y be a complex on which G operates. Then 
there is a one-one correspondence between [B -+ W(G)] and G-equivalence 
classes of G bundles with base B and jbre Y. 

The special case where G = aut( Y) is the simplicial analogue of a 
theorem of Stasheff. Note especially that if Y is (a minimal complex 
for) the stable sphere, w aut( Y) = B, is a classifying space for sphere 
bundles. 

MINIMAL FIBRATIONS (6.17). I n order that these results apply more 
generally, i.e., to fibrations, we sketch the retraction of any fibration 
onto a minimal fibration, which is unique to within isomorphism. 
Since this minimal fibration is a fibre bundle, the previous theorems 
apply to it. 

First we reformulate the minimality condition. 
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PROPOSITION (6.18). Let p : E -+ B be a fibre map and suppose there 
is a commutative diagram 

A@] x (0) ud[n] x1-E 

Then p is a minimal fibre map o the Jill-in f' is uniquely determined 
on d[n] X (1). 

Proof. This can be proven by the usual prismatic arguments. 
If p : E + B is a fibre map, two simplices x, y E E, are called 

p-compatible if px = py, and two p-compatible simplices x, y are called 
p-homotopic if there is a homotopy between the representing maps 

O:fz-f,:d[n]+E be1 &I) 

so that p o 8 is a constant homotopy in B. 

PROPOSITION (6.19). A jibre map p : E ---f B is minimal o whenever 
x is p-homotopic to y, then x = y. 

PROPOSITION (6.20). Let p : E --t B and 
with p minimal. Let f, g be maps of p to p’, 

ID’ p 

lB B-B 

p’ : E’ -+ B be jibre maps 

and suppose f =g by a strong homotopy. Then af f is an isomorphism, 
so is g (but g may be a different isomorphism). 

Proof. Not too dificult. 

THEOREM (6.21). Let p : E -F B be a fibre map. Then there is a 
minimal fibration p’ : E’ + B which is a strong deformation retract of 
p : E -+ B, and any two such are isomorphic. 
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Proof. Similar to (1.23), as follows. E,’ is chosen by induction on 
dimension n. If E,L-, has been chosen, let E,’ consist of one representative 
from each equivalence class of p-compatible, p-homotopic simplices of 
E, all of whose faces lie in EA-, , choosing a degenerate one if possible. 

More generally, if p : E 4 B is a fibre map onto a Kan complex B, 
we can find a minimal fibre map p’ : E’ -+ B’ where B’ is also minimal, 
and p’ is a strong deformation retract of p. Start by choosing a minimal 
subcomplex B’ C B, etc. 

PROPOSITION (6.22). Let p : E -+ B be a minimal jibre map, and let 
f : A + B be a simplicial map. Then the induced fibration is minimal. 
If f Y g : A + B then the two jibrations induced by f and g are isomorphic. 

The first part is immediate from the definitions. The second part 
is not too difficult (cf. (2.11) and (6.20)). 

PROPOSITION (6.23). Let p : E + B be a minimal jibre map onto 
with Jibre F = p-l(*), and suppose B is contractible. Then F x B w E 
and there is a commutative diagram 

FxB “-E 

1 PB 
1 

P 

lB B-B 

where p, is the natural projection and f is an isomorphism. 

Proof. The identity map 1, and the constant map c : B + * C B 
are homotopic. 

COROLLARY (6.24). If p : E + B is a minimal fibration onto a 
connected base, then p is a $bre bundle. 

This concludes the demonstration that if p : E + B is a fibre map 
onto, then it can be retracted to a fibre bundle. Then the previous 
RTCP structure and the classifying theorems apply. 

7. THE LOWER CENTRAL SERIES 

To study a group G, it is useful to filter G in such a way that the 
quotients are Abelian, e.g., the filtration on G by its lower central 
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series (LCS). Furthermore, if G is a free group, the quotients of the 
LCS form the free Lie algebra generated by the free Abelian group 
G/r,G. The same considerations apply when G is a free simplicial 
group, e.g., when G = GK. In this way there arises a spectral sequence 
ZP(K), whose El terms are homology invariants of K and which con- 
verges to r,(K). 

A similar situation occurs when the filtration is by the mod-p 
restricted lower central series (mod-p RLCS); now the quotients form 
the free restricted Lie algebra over Z, generated by (G/I’,G) Q ZP . 
Apply this filtration to GK and there arises a spectral sequence which 
(suitably speeded up and reindexed) becomes a sort of Adams spectra1 
sequence for K. We describe (E1(Sffl), dl), calling it n(n), and 
/l = iJ, cl(n), which b ecomes a ring under composition. 

The references for Section 7 are [6A], [C2], [RI. 

THE LOWER CENTRAL SERIES (7.1). Let G be a simplicial group. 
The lower central series (LCS) filtration of G is obtained by taking 
(in every dimension of G) 

l-‘,G = {(x1 ,..., xn) : xi E G}, 

where (x, y) = x-ly-ix~~ and (xi ,..., x,) is the iterated commutator 
(..., (Xl , x2),..., x,); here ( } d enotes the subgroup generated by. 

THEOREM (7.2). If G is a connected free simplicial group with 
r$(G) = 0 for i < n, then T~(T,G) = 0 for i < {n + log, r}, where {a> 
denotes the least integer > a. 

Comments. We will not prove (7.2) here; see Ref. [C2]. What is 
important is that connectivity r,.G -+ co as r --f co. The proof is 
complicated and involves the following steps. 

(1) It is sufficient to consider the special case G = GX where X is 
a finite wedge of S2, for some general arguments then show that r,( ) 
raises the connectivity of an arbitrary free G by as much as it does 
for this one. 

(2) For G = GX, the techniques of Section 4 give a free basis 
for r,GX, which in the case of X = wedge of S2, becomes a product 
of simplicial sets involving inductively calculable connectivity. The 
techniques here are similar to, and greatly influenced by, those of 
Milnor [Mi2] and Kan [Kl]. 
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Now let G = GK be the free simplicial group resulting from Kan’s 
construction applied to a connected and simply connected simplicial 
set K. Let GK be filtered (in every dimension) by its LCS, and let 
the homotopy exact couple give rise to a spectral sequence whose terms 
we call P(K). 

THEOREM (7.3). (1) The Ei(K) converge to E”(K), and 0, E,qh(K) is 
the graded group associated with the jiltration on n,(GK) = T~+~(K). 

(2) The groups El(K), 

-$,(K) = TS~,‘W~,+,W, 

are homology invariants of K. 

Proof. (1) The spectral sequence converges by (7.2). 

(2) We will shortly show that 

r,GK/r,,,GK m L,(GK/I’,GK) 

where L, is the r-th component of the free Lie ring functor. Thus by 
(5.9) its homotopy depends only on Z-,(GK/r,GK), which is H,(K) 
with a dimension shift. 

FREE LIE RING (7.4). Let A be an Abelian group. Let T(A) be the 
tensor ring of A, made into a Lie ring by [x, y] = x @ y - y @ x. 
Let L”(A) C T(A) be the sub-Lie ring of T(A) generated by A. L”(A) is 
called the free (unrestricted) Lie ring generated by A. L”(A) is universal, 
viz., if A + R is any homomorphism of A into (the underlying Abelian 
group of) a Lie ring R, then there is a unique factorisation 
A + L”(A) + R. 

Let G be a group; then the LCS filtration of G, 

. . . ~r,,,G~r,G~...-tr,G~r,G = G, 

yields quotients r,G/r,+,G which are Abelian. Furthermore, 

0 r,G/rr+,G = g(G) 

becomes a Lie ring, where for u E r,/r,+, , represented by pi E I’, , 
v E r,jI’,+, , represented by v E r, , 

[u, v] = (ii, v) mod rr+s+l . 
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THEOREM (7.5) (Witt). There is a natural homomorphism 

19 : L”(G/I’,G) M 2(G) 

which is an isomorphism if G is a free group. 

The homomorphism 8 comes from the universality of LU( ). For the 
isomorphism, see, for example, Ref. [H, p. 1751. 

Since 8 is natural with respect to homomorphisms (of G), the same 
constructions, applied in every dimension and to the face and degeneracy 
operators, work for free simplicial groups. Taking the r-th component 
L,‘-‘( ) as a functor from Abelian groups to Abelian groups proves (7.3 (2)). 

In order to get Adams-type spectral sequences, and unstable versions 
thereof, we modify the filtration of G to make the quotients vector 
spaces, rather than free Abelian groups. This leads us to the mod-p 
restricted lower central series (RLCS). 

THE MOD-P RLCS (7.5). Let p be a fixed prime number, and let G 
be a group (or work in each dimension of a simplicial group). Then 
the mod-p RLCS filtration on G is defined by 

Ty)G = {(x1 ,..., x8)“? spt > r, xi E G}. 

The quotients rip).p’G/r,!$G are vector spaces, and their direct sum 
becomes a restricted Lie algebra 

where the bracket is as before, and the p-th power map is x -+ x*. 
When a prime p has been fixed, we drop the superscript ( p); hereafter 
r, refers to the mod-p RLCS, and rru is the usual (i.e., integral) LCS. 

Let V be a vector space and let T(Y) be the tensor algebra of V. 
Then under the bracket [ , ] and p-th tensor power map x 4 x*, 
T(V) becomes a restricted Lie algebra; let L(V) C T(V) be the sub- 
restricted Lie algebra in T(V) generated by I’; L”(V) will denote the 
free unrestricted Lie algebra. The analogue of (7.5) is the following. 

THEOREM (7.6). Let G be a group and V = G/r,G. Then there is a 
homomorphisqz 0 : L(V) --t B(G) which is an isomorphism if G is a free 
group. 

From here on, let E(K) be the terms of the spectral sequence arising 
from GK filtered by its mod-p RLCS. 
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The following was proven by Rector, Ref [R] 

THEOREM (7.7). Let K be a connected and simply connected simplicial 
set. Then 

(1) The Ei(K) converge to E”(K), which is the graded group associated 
to the jiltration on n-,(K) mod&o the subgroup of elements of finite order 
prime to p; 

(2) The groups E1( K), where 

EF-,,W) = drAWr,+,GK), 

are invariants of H,(K; 2,). 

We proceed to describe El(K); take p = 2 (for simplicity) and let 
H,(K) stand for H,(K; 2,). Also let K(n) stand for the Eilenberg- 
MacLane complex K(Z, , n). 

First consider the special case K = P, the n sphere. Then 

GS”/T’,GS” m K(n - I), 

so also 

El(P) R5 Tr*L(K(n - 1)). 

To handle this, we need two operations, composition and suspension. 

COMPOSITION (7.8). Let x E rr,+q L (K(n)). r Then there is a (unique 
to within homotopy) simplicial homomorphism 

fz : K(n + 4 -UK(n)) 

with [fz(in+J] = x. If also y E nn+p+q,Lt(K(n + q)), represented by f, , 
then the composite 

K(n + q + 4’) --f’,r.,(K(n + 1)) *W@(n)) --L,,(W)) 

determines an element x 0 y E n,+q+,,L,l(K(n)). 

SUSPENSION (7.9). Recall that the suspension u is a homomorphism 

(3 : ~,LVW) - ~*+UK(n + 1)). 

Here we consider A = K(n), WA = K(n + 1) in the category of 
simplicial vector spaces, and LT( ) is the functor (cf. Section 5 or Ref. 

PA PI)* 
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Suspension and composition are related by a commutative diagram: 

SHUFFLES (7.10). Let V be a simplicial vector space, and let y E VP , 
x~V~.Thenlety~z~(V@O),+,begivenby - 

Y  @ z = c sbY 8 %zz, 
f&b) 

where (a; b) vary over all (p, q) shuffles; recall (5.6). For later use, 
define 

THE RING II. We now describe P(P), which is v,L(K(~ - l)), 
and which we also call cl(n). There will be monomorphisms /l(n) --t 
Jn + l), and the union (1 = U, /l(n) becomes a ring. For each m > 0, 
let 

La E %nwe)) 

be the homotopy class of & @I i, ; also h, will stand for any of its - 
suspensions. 

A sequence of compositions &, o *a* 0 hi8 will be abbreviated by AI , 
where I = (i1 ,..., i,). A sequence I = (i1 ,..., is) of nonnegative integers 
will be called allowable if 2ij > ii+I for all 1 < j < s - 1, or allowable 
with respect to n if also iI < n. 

THEOREM (7.11). The compositions A, , for I = (iI ,..., i,) allowable 
with respect to n, form an additive basis of A(n); the empty composition, 
denoted by 1, is to be included. 

The proof will be given in the next section. 
Thus we have that r&,(K(n - 1)) = 0 for r ~# 2”, while for r = 2”, 

it has for basis all compositions XI of length s and allowable with respect 
to YZ. For this reason, speed up the filtration of GS” by 
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The new spectral sequence has isomorphic El groups, but reindexed, 
and with faster-acting differentials. 

THEOREM (7.12). (1) On E1(S7L) = /l(n), d1 is the derivation for 
which 

(2) The suspension A(n - 1) + A(n) is a monomorphism. The union 
A = (J,, A(n) is a ring (under composition) with 1, and with generators 
Xi for each integer i > 0. The relations in A are generated by 

This will be proven in Section 8. 

8. SIMPLICIAL LIE ALGEBRAS 

We want to describe the homotopy of simplicial Lie algebras. In 
particular, if L(V) is the simplicial free restricted Lie algebra generated 
by the simplicial vector space V, then G-&(V) is given by the formula 
(8.9). This requires some preliminary techniques, especially: (1) A 
Whitehead lemma for simplicial Lie algebras; (2) a decomposition 
formula for ~,L(K(Z, , n - 1)) = /l(n); (3) the operations of A(n) on 
n,L( V). We then describe the El term of the mod-2 RLCS spectral 
sequence, and obtain the proof of (7.12). 

The reference for Section 8 is [B, C]. 
We consider simplicial Lie algebras R; that is, each R, is a Lie algebra, 

and all the di , si are homomorphisms. R is called a free simplicial Lie 
algebra if each R, is the free Lie algebra L”(MJ, and the M, are stable 
under degeneracies, i.e., siMm C M,,, . Similar considerations hold for 
simplicial restricted Lie algebras. 

FREE LIE ALGEBRAS (8.1). Recall the definition (7.4) of the free Lie 
algebra L”(V), generated by a vector space V. Let V and W be two 
vector spaces, and V @ W --f W be the homomorphism which maps 
V to 0 and W isomorphically. Then LU( V @ W) +L”( W) has for 
kernel L”(U), where U is the vector space 

u= wO(WOTr)O...O(WO~‘n)O.... 
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V’z = V@ se* Q V, n copies, and LU( U) --f LU( V @ w> is defined by 

w  @ 01 @ .*. @ 0, --+ [ . . . . [w, w,] )..., DJ. 

If V, , Va ,...) V, are vector spaces, let the basic tensor products V, 
for 1 < i < co be obtained from VI ,..., Vr , just as the basic commuta- 
tors in (4.10). The analogous result is 

L” & vi w g L”(Vi). 
i > i=l id 

The lower central series of a (simplicial) Lie algebra R is defined 
by r,R = R, and I’,.R = [r,-,R, R]. The Abelianization of R is 
Ab R = R/l-,R. 

LEMMA (8.2). Let f : R --t R’ be a homomorphism of connected free 
simplicial Lie algebras. Then if (Ab f )* is an isomorphism (in homotopy), 
so is f* . 

This is the analogue of the Whitehead lemma for simplicial Lie 
algebras. The proof uses two sublemmas. 

SUBLEMMA (8.3). If R is a connected free simplicial Lie algebra, then 
T’J is log, r connected, i.e., 7rq(rTR) = 0 for q < log, r. 

A proof can be found in Ref. [Cl]. What is important here is that 
as r -+ co, connectivity r,(R) + CXI. 

SUBLEMMA (8.4). Let f: R --t R’ be a homomorphism of free simplicial 
Lie algebras. Then if (Ab f )* is an isomorphism, so is 

This follows from the isomorphism 

r,RIl-,,,R M LPU(Ab R) 

and the results of Section 5. 
The proof of (8.2) now follows from (8.3) and (8.4) by iterated 

application of the five-lemma. 

Proof of (7.11). W e use the following two reductions. 

(1) For any vector space V, the inclusion L”(V) -+ L( V) and the 

W/b/2-s 
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squaring map L(V) + L(V) by a -+ a @ a induce a decomposition as 
sets, 

L”(V) x L(V) ML(V). 

This composition is natural with respect to maps, so holds for a simplicial 
vector space V. Thus 

where the squaring map induces ( ) 0 A,, , i.e., composition on the right 
with h, . 

(2) The suspension (T and composition on the left with h, induce 

?T*L,~K(n) w 77 *-lJ%“q - 11, Y odd, 

~*LUq4 m ~*-&,“qn - 1) 0 57*Jq,,(K(2n)), for r even. 

Here is an outline of a proof of (2); cf. Ref. [6A]. Let W be the 
simplicial Lie algebra freely generated by x in dimension n - 1, y in 
dimension n, and z in dimension 2n, with d,y = x, all other dix = 0, 
diy = 0, dp = 0. Thus, dimension-wise, 

w R5 L”(K(n - 1) @ K(n) @ K(2n)). 

Let 
f : w -+ L”(K(n)) 

by the homomorphism defined byf(x) = O,f(y) = i, ,f(z) = i, @ i, . 
Then by (Kl), k er is f d imension-wise isomorphic to the free Lie aFg;bra 
generated by 

J7- (~ox@+(cpo”) 

where Z’ w K(Z, 2~) with generator y @ y - z. Then by a straight- 
forward calculation 

- 

di(X @y @ ... @y) = 0 for all i, 

d&z’ @y 0 .*a @y) = 0 for i # m, 

47h’ @Y @ *.* @Y) = (x @Y 0 **- or,. 

Thus 

ni(Ab P( V)) = /$j ’ 
i=n-1, 
ifn-1. 
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Consider the diagram 

L”(K(n - 1)) 8, kerf- W -5 L”K(2n) 

1 f 

L”K(n) 

where g(i,-r) = x; h(x) = 0, h(y) = 0, h(z) = ian . Then g, and f* 
are isomorphisms by (8.2). The decomposition formula of (2) follows, 
with a little perseverence to see that 

r,LUK(n) --% T,-~L”K(Tz - 1) 

is onto and has for inverse (on one side) the suspension 0. 
The proof of (7.11) noti follows by two inductions, using (1) and (2). 

SIMPLICIAL RESTRICTED LIE ALGEBRAS (8.5). Let R be a simplicial 
RLA (over Z,), and let II be the algebra of (7.11). Then r,(R) becomes 
a restricted Lie algebra, and elements of A operate on the right of R 
as follows. 

(1) The bracket [x, y] f or x, y E T,(R) is defined as the composite 

m*(R) 0 n*(R) -A 7r*(R @ R) = p*(R), 

where V is the “shuffle” and m is the Lie multiplication in R. 

(2) For x E r,(R), Xi E (1 with 0 < i < n, define (x)& as the 
composite 

Ai K(n + i) - L,K(n) 2 L,(R) A R 

where f, : K(n) -+ R represents x. 

PROPOSITION (8.6). For R a simplicial RLA over 2, , the operations 
[-, -1 and (-)A; in r,(R) satisfy 

(1) [x, xl = 0; ._ ., 

x, x] + [x, x, y] = 0; (2) [X,Y> 4 + [YP 

(3) For x, y E m(R), 

(X + y) hi = (x) Xi + (y) Xi for i < % 

(x + Y) ha = (Y) AZ + (Y) kz + Ex, rl; 
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(4) If'fx En,(R)> Y E I,> 

[x, (y) Xi] = 0 for i < n, 

[XT (Y) b&l = Lx, YY YIP 

(5) The squaring map in r,(R) is given by x + (x)&for x E r,(R); 

(6) r*(R) is a RLA. 

The proofs of these statements are exercises in simplicial formulas. 
If x E n,(R), y E z-&R), represented by x E R, , 7 E R, , then 

where (a; b) vary over all (p, q) shuffles. For example, to show (2), let 
x E n#), y E $9, z E rr(R) be represented by X, 7, X. Then 

where the (c; c’; c”) vary over subsets whose complements (E; c^‘; c”“) 
form a partition of (0, l,...,p + q + r - l}. Similar expressions obtain 
for [y, x, X] and [x, x, y], and the Jacobi law (2) follows by summing 
and using the Jacobi law in R. 

For (3): The expression for (x)& is 

(x) Ai = c [Sbi?, SaX] 
la;b) 

where (a; b) vary over (i, i) shuffles with bi = 2i - 1. Thus 

cx + Y) xi = 1 kb@ + y’), da + Y)] 

(a;b) 

= (x) & + (y) b + 1 [sbx, %3)] + c [Sbj? @] 
(a:b) t&b) 

= (4 Ai + (Y) xi + c bdf, %rl, 
(cm 
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where (c; d) vary over all (i, i) shuffles, and formula (3) follows. The 
verification of the other formulas is left as an exercise. 

For each integer n > 0, let there be given a vector space W, , and 
let W = 0, W, ; consider n as dimension. Then the tensor algebra 
T(W) inherits a dimension by 

dim(w, @ -*- @ wk) = c dim(w,), 

and so L”(W) and L(W) also inherit a dimension. 
Let V be a simplicial vector space over the field 2, ; then n(V) = 

0, rW( V) is such a vector space with dimension. Form the direct sum 

with relations (generated by), for u E L(r( V)), , 

u @ A, = u(2), 

and call this L(+ V)) @ (1. For this, and for later use, we define, for 
each graded vector space M, 

M&l =@M,@A(n-1), 
12 

Notice that additively, 

L(7r( V)) @ fl M @ L(Tr( V)), @ A(n + 1)/u 0 A, = U(2). 
n 

Let 9~ : L(7r( V)) --f n&(V) be the restricted Lie algebra map which 
extends 

and let also 

c/l : L(?r( V)) @ n + “*L(V) 

be defined by y(u) @ AI = (u)h, . 

THEOREM (8.8). Th is construction yields a natural isomorphism 

9, : L(T( V)) gJ n + ?r*L( V). 
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Proof. Let A+ C A be generated by all allowable AI = hiI 0 **. 0 Ais 
with i, > 0 (as 2ij 3 ij+l , so also all ij > 0). Then by means of the 
decomposition of 8.4 (proof of 7.1 I) it will be sufficient to show that 
the analogous 

fpf : L”(?T( V)) @ A+ + n-*Ly V) 

is an isomorphism. We may as well assume V = 0, V(u), where each 
V(a) is a K(n,). Then (8.1) shows that 

where the V(b) vary over the basic tensor products of the V(a) according 
to (4.10), and each V(l(b) N K(qJ. Thus 

and as 7r,L”(K(n,)) R+ A+(n, + l), 

Construct also a basis ub for LU(n( V)) in a similar way (i.e., by basic 
products) from a basis u, for n(V). Then F(U& = in, , and the isomor- 
phism follows. 

PROPOSITION (8.9). For the decomposition of (8.8) for T&(V) and 
5-r.& WV), we have 

where q-l 0 0 0 y = 6 sutisjies 

(1) G : Z-J V) B A --f n,+,( WV) is a monomorphism; 

(2) For u = [x1 ,..., x7] EL,(T( V)), with r > 2, 

qu @A,) = 0; 

(3) For w = cuf2’) E L,,(T( V)), with v E ‘rr,( V), 

qw @ A,) = 6(v) AnABs -** X2*-& . 
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Proof (sketch). For (I), we take first the special case V = K(n); 
then 8 is a monomorphism by (7.1 l), considered as the suspension 
u : A(n) + A(n + 1). For the general case, use V II 0, K(n,). 

For (2), the methods of (5.12) show that 

4x1 ,***, x7] = 0. 

For example, if x E 7rP(w) and y E r*(w) are represented by K and 7, 
respectively, then 

4% 71 = afD.,(% 9, 

etc. The details are left to the reader. 

THEOREM (8.10). Let K be a connected and simply connected simplicial 
set. Then in the (unreindexed) mod-2 RLCSSS for GK, 

E’(K) M L(H(K)) @ A, 

and the darerential satisjies 

(i) For x E R%(K) C L(n(K)) C El 

rn121 
d’x = a“(x) + c (x) Sqi @ hi, ; 

i=l 

(ii) For x E L,(n(K)), k > 2, 

dlx = P(x). 

Proof. (i) The map 

a,(GK/I’,GK) dl ~,(r,GKIr,GK) 
n n 

f7*w - VW 0 4 0 ww)) 

is natural in K. It follows that 

dlx = C (x) Ti @hi 1 + ad(x), 
C-0 

where Ti are elements of degree i in the mod-2 Steenrod algebra A, , 
considered as acting on the n’ght of R,(K; Za); the term P(x) EL~(H*(K)) 
will be described in Section 10, and it turns out that aA is the dual of 
the cup product. We want to show that Ti = Sqi, for which we need 
the following facts. 
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FACTS (8.11). The dual (A,), of the Steenrod algebra is the 
polynomial algebra Z,[&, ,..., ei ,...I with &, = 1. Let Sq = C Sqn; then 

(5i) $2 = 5i + L1 , 

(EP) s!f = m-) W(5’) 87). 

Also, Sqi E A, is the only nonzero element of degree i which vanishes 
on H,(K(I’ - 1)). Finally, H,(K(N)) GZ (A,), for a stable range. 

Continuation of proof. Take x E Hai-,(K(i - 1)). Then (x)Ti = 0 
since expressions of the form y @ X,-r, where y E H,-,(K), do not 
occur on the right side. It remains to show Ti # 0. Take N large. 
If T1 were 0, then 1 @ X, would persist to E”(K(N)), contradicting the 
convergence of the spectral sequence. Similarly, if T2 were 0, either 
1 @ h, or 1 @ X, + [r @ h, would persist to Em. Thus T1 = Sql, 
T2 = Sq2. 

Assume inductively that Ti = Sqi for i < 2k, and suppose T2”+l = 0; 
then an easy calculation using (8.11) shows that dW( fr,$,k) is a polynomial 
in the ti with constant term h,Jak-i # 0. But as dW = 0, it must be 
that Ts+l = Sqzk+l. Similarly, ti2t2k can be used to show that 
T2k+2 = Sq2k+2. Part (ii) will be proven in Section 10. 

Proofof(7.12). The identity dW = 0 shows that for any x E H,(K), 

0 = c xSqiSqj @ hj-,hi-, + c xSqi @ d&w1 . 
i,j>O i>O 

The Adem relations in A, for 0 < a < 2b, 

SqaSqb = ‘zol (” ;J ; ‘) Sqa+b-cSqc, 

when substituted into the above identity, quickly imply the differential 
and the relations for the h’s. 

REFERENCE (8.12). More can be said about the differentials in E’(K). 
In particular, Ref. [B, C] shows that 

(iii) If x @ A1 E H,(K) 8 As, with s > 0, then 

dr(x @ AI) = 0 for i < r < 2”, 

d2”(x 0 A,) = x 0 dh, + (3’~) A, + 2 xSqi @ hi-,X,, 
i=l 

where m = [deg x/2]. 
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(iv) If x @ A, EL,(~*(K)) 8 A”, with K > 1 and s > 0, then 

d”(x @ A,) = 0 for 1 < I < 2”, 
dZ’(X @ A,) = (2%) @ A,. 

If we assume that the coalgebra H,K (= H,(K; Z,)) is nice in the 
sense of Ref. [B], then the effect of the differentials in the speeded-up 
and reindexed mod-2 RLCSSS for GK is to cancel out so many of the 
cycles (i.e., they become boundaries), that E%(K) becomes accessible. 
This happens when H*K is isomorphic to a polynomial algebra modulo 
a Bore1 ideal; in particular, when K is a sphere or a loop space. 

For reference, we describe a chain complex W(H,K, 6) which 
serves as an El term for the spectral sequence when K is nice. 

The diagonal K ---t K x K induces 

A: H,K-+H,K@H*K 

and hence also, 

A*K% l&K @ I&K % E?,K~A,K@A,KA~~~, 

where A, = A, A, = 1 @A + A @ 1, etc. 
Define Y(H,K) as the kernel of the composition 

L,(Z?,K) + f&K @ I?,K + I&K @ i&K @ l&K. 

The right action of A, on H,(K x K) M H,K @ H,K induces an 
action of A, on Y(H,K), and the map 

A : A*K+Y(H,K) 

is a right A, map of degree -1. Let 

CT : Y(H,K) + l=if,K 

be the restriction of the homomorphism which sends [x, y] -+ 0 and 
x @ x -+ x for x and y in R,K. Finally, define, for each s > 0, 

W(H,K) = (I&K 8 A”) 0 Y(H,K) g As-l, 

then the differential 6 : IV” + W s+i has the following components: 

(i) Forx@hrEH,KBAs 

6(x 0 A,> = (x 0 4) + f (x&f 0 L~J 0 (Ax 0 V, 
i=l 

where m = [(n - 1)/2]; 
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(ii) For x @ A1 E Y((H,K) @ As-l, 

8(x 0 A,) = (0) + (x @ dh, + c xSqi 0 &i,) 
ial 

where degree x = 2m + 1, and 

where degree x = 2m + 2. 
The main result of Ref. [B, C] is that for nice space K, 

E”(K) m H*( w*(H(K)), S). 

For the indexing, an element x @ hi1 *a* his E f?%(K) @ (1” will have 
filtration s and dimension 

will have filtration s and dimension n - 2 + C ii . Thus 6 raises 
filtration by one and decreases dimension by one. The dimension refers 
to dimension q in 7~JGK). For a more homological indexing, see 
Section 9. 

9. THE UNSTABLE ADAMS SPECTRAL SEQUENCE 

The previous sections indicate that the E2 term of the RLCSSS for 
suitably nice spaces is a sort of ext group. In this section we present a 
construction of Bousfield and Kan [B, K], which leads directly to a 
spectral sequence for each space K, converging to the homotopy groups 
of K, and for which E2 is identifiable as the derived functors of 
hom(., *), as defined by Andre [An]. 

Throughout this section, assume nl(K) = 0 and K has finite type 
(i.e., n*(K) is finitely generated for all q). Also assume that a prime p 
has been chosen, and H,K will mean H,(K; 2,). 
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THEOREM (9.1). To each simplicial set K, there is associated a spectral 
sequence E,(K), for 2 < r < 00, which is natural in K, and for which 

(1) J%(K) dep en s only on H,K as a coalgebra over the Steenrod d 
algebra A, ; 

(2) The E,(K) converge to E,(K), which is a graded group associated 
with VT,(K) module non-p-torsion. 

Remark (9.2). The proof of (2) will not be given here; it is proven 
by homological methods in Ref. [B, K], to which we refer the reader. 
By a roundabout way, it is equivalent to the convergence statements 
of (7.2) and Refs. [Cu2] and [RI. 

Remark (9.3). Of course corresponding statements hold (via the 
functors S and R) for each topological space X. In fact the techniques 
here used are not essentially simplicial. The interested reader can 
supply a topological proof of (1) by letting Z,(X) be the vector space 
generated by the points of X, with the topology which makes the vector 
space operations continuous, and the natural map X ---f Z,(X) con- 
tinuous and open. Then Z,(X) is a generalized Eilenberg-MacLane 
space, and 

%vLW) = fbw; ZD>, 

which is the Dold-Thorn theorem. 
Before beginning the proof of (9. l), part (I), we make some observa- 

tions which follow from Section 5. 

Observation (9.4). Any simplicial Abelian group is a generalized 
Eilenberg-MacLane complex (GEM), i.e., a product of K(r, n)‘s. If all 
of the 7~‘s which occur in a space which is a GEM are 2, , we call the 
space (or any homotopy equivalent one) a GEM(p). Thus any simplicial 
vector space over 2, is a GEM(p). In particular, each Z,(K) is a 
GEM(p). Also, as in the topological case, 

~*K@N - H*(K Z,>> 

this time by (3.10). The functor we really want to use is not Z,(e) itself, 
but 

V,K = 4#)/z,(*)~ 

which is also a GEM(p). Notice that for a connected K, 

?a( V@)) fw a&(K; Z,), 

the reduced homology groups of K. 
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THE CONSTRUCTION (9.5). For each simplicial set K, let i : K 
be the natural inclusion. Let 

E( V,K) + V,K 

be the path space fibration, as in (3.16). Then take qr : D,K 
the induced fibre map, so that there is a map of fibrations 

D,(K) - E( VPK) 

K i- V,(K) 

Notice that Or(-) is a functor from simplicial sets to simplicial sets. 
Inductively define qS : D,(K) -+ D,-,(K) as the fibre map induced 

from the path fibration E(D,_,( V&-C)) -+ D,-r( V&T) by the map 

D,-,(z) : D,-,(K) - OS-d vJ9 so that there is a map of fibrations 

K as 

D,(K) - EP-l( VD/‘,krN 
1 Q8 1 

D,-,(K) 3 D,J V,K) 

In this way there occurs a sequence of fibre maps 

.-. - D,(K) AL D,-,(K) - ... - D,(K) -% K. 

Consider the homotopy exact couple which arises, and label the terms 
of the ensuing spectral sequence E,(K); more specifically, 

E?(K) = x,(D,( V,W, 

E;*t(K) = H,(E,-, , d’-l). 

We proceed with the proof of (9.1), which is to identify E$j*(K). 

LEMMA (9.6). Each D,( V&I) is a GEM(p). 

Proof. By induction on s. The maps i and j, 

V,KL V,(VJq~+ VJC, 

where i is the inclusion (not the homomorphism), and j adds linear 



SIMPLICIAL HOMOTOPY THEORY 183 

combinations of linear combinations, satisfy j o i = identity. Since 
D,( V,K) is constructed as the induced fibre map 

DdVzm - EP,-,( V, V&N 

it follows (from D,Jj) o D,-1(;) = identity) that 

D,J V’,V’,K) II Dael( V&Y) x (another factor) 

and this other factor must also be a GEM(p). As 

D,& V9K) N Q (this other factor), 

so Dsml( VpK) is also a GEM(p). 

LEMMA (9.7). If M is a GEM(p), the spectral sequence collapses; 
that is, 

EiJ(M) = 0, s > 0, 

E;‘*(M) w r,(M). 

Proof. We may assume M = V,K. Then the sequence of maps 

Ds(V,K) 

1 Pa 
D,ml( VpK) - D,-I( VJ,K) 

yields a LES in homotopy (part of the homotopy exact couple). Since 
D,-l(i)x is one-one, (q9)* must be 0, which shows 

E;2”‘t(VpK) = 0, s > 0, 

@“(V,K) m r*(V&). 

We shall use the notation 
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Consider next that while there is one map i : K + VnK, there are two 
maps V,K 3 VpVpK, which are V,(i), and the natural inclusion, 
which we may still call i. There are n + 1 maps 

which are f0 = i, fr = V,(i) ,..., fn. = VP’(i). 

Remark. The family 

{K, V,K, @‘K ,..., Ip’K )... 1 

is a cosimplicial object (where the objects are themselves simplicial sets). 
That is, the family can be regarded as a covariant functor from 0 to the 
category of simplicial sets. The use we make of this is that 6 0 6 = 0 
in the following. 

LEMMA (9.8). For any K, 

E,(K) - ker 6/im 6 

of the sequence 

(*I r&K)* n.+( V,V,K) “, T*( Vf’K) s”, .a., 

where 8” = zF=, (- l)i (fJ.+ . 

Proof. Consider the double chain complex 

t d’ 

E;**( V,K) -% Ef*( V,I/‘,K) & --s 

t d' 
t 

d’ 

E;,*( V,K) 2 E,O,*( V’,V,K) 22 ... 

First take vertical homology, when all that remains is ker d1 C lowest 
row; then the horizontal homology must yield 

H.+ (total complex) m ker S/im 6 of (*). 
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Next take homology in the other order. The sequence 

fcl fcufl fo.f1,f* K-----+ V,K----+ V,V,K---+ -.a 

yields, after application of the functor V,(m), a sequence of homomor- 
phisms 

which is canonically acyclic. Now apply the functor n,,D,(-) which 
produces the double complex above. Since rt,D,(-) preserves the 
acyclicity, taking homology of the double complex horizontally first, 
produces 0, except for the left column; there we are left with 

t 
d’ 

E:**(K) w ker 6’ 

t 
d’ 

g**(K) M ker P 

Thus also, E,(K) M H, (total complex), and the lemma (3) follows. 
Finally, to identify E,(K) as a derived functor, consider 

resol. * \ . . . 

H*(K) - H*(V,K) ---+HH,(VpV,K)- .-- 

8 a 8 

~dT/aK) - ~*(VzJzm - T& Vf ‘K) - - - - 

We consider H,(K), H,(V,K),..., etc., to be in the category %?A of 
unstable coalgebras over the Steenrod algebra A, . That is, each C E VA 
is simultaneously a connected cocommutative coalgebra over 2, , and 
a right module over A, , where the structures are compatible concerning 
the Cartan formula and the (dual of the) p-th power map. Even though 
VA is not an Abelian category, we may still take derived functors 
(of hom(*, *) for example), as in Andre [An]. The part of the sequence 
indicated by resol. forms a resolution of H,(K) by H,(GEM(p))‘s, 
i.e., by models. Next apply the functor 

@ homdHd9, -1 
t 
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to the sequence, with the observation that, for each s > 1, 

homvA(H,(St), H,( VF)K)) w PT*( Vt)K). 

Thus 

E;.t m ext&z, , H*(K)) 

considered as derived functors of hom,,(*, 0) in the category %?A, 
which concludes part (1) of (9.1). 

10. THE COBAR CONSTRUCTION 

Let X be a simplicial set, and take GX. Recall from (3.18) that 

(lO.la) ~,(GX/r,GX) = H*+,(X). 

On the other hand Z(GX) is a simplicial free Abelian group with 

(lO.lb) a,(Z(GX) w H,(GX). 

The cobar construction of Adams [A21 provides a spectral sequence 
relating these, but the approach here is that of Ref. [B, C]. The results 
are more conveniently stated for homology with 2, coefficients where p 
is a prime; from now on let H,( ) stand for H,( ; 2,). Thus 

G/r,‘“‘G e (G/r,G) @ Z, 

and the analogues of (9.1) are 

(10.2a) n*(GX@‘)GX) m H,+,(X), 

(10.2b) I&-,) - ff,(GX). 

For any group G, let Z,(G) be filtered by powers of the augmentation 
ideal I 

where I = (2 ai gi : C ai = 0} C Z,(G). Then Ona0 (P/P+l) becomes 
an associative algebra. 
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PROPOSITION (10.3). There is a natural homomorphism 

$ : T(G/@)G) -+ @ (P/I”“) 
V3a.o 

where T( ) is the tensor algebra. If G is free, # is an isomorphism. 

Proof. Let 9 : G -+ I be the function e(g) = g - e for all g E G. 
Then 0 defines a homomorphism, 

0 : G/i$“G + I/12. 

Let + be the unique extension of 0 to the tensor algebra. The fact 
that if G is a free group, II, is an isomorphism follows from the remarks 
in Ref. [Mac, p. 1221. 

THEOREM (10.4). Let X be a connected and simply connected simplicial 
set. Let a(X) be the spectral sequence arising from ZJGX) filtered by 
the powers of I. Then 

(1) Each (iz;i(X), di) is an associative d@rential algebra, with di a 
derivation; 

(2) The I?(X) converge to E”(X), which is the graded group associated 
with a filtration on H,(GX); 

(3) El(X) = T(Hzd-9; 
(4) Let A : X -+ X x X be the diagonal and suppose 

fl* : H*(X) + ff*(-w 0 H*(X) 

is given by A*(x) = C xk’ @ xz . 
Then 

dl(x) = c + 8’ @ 3;) 

where y E H,(X) and p E ~TQ-~( GX/riP’( GX)) denote classes corresponding 
under the isomorphism (10.2a). 

There is not much difficulty here; for details see Ref. [B, C]. (2) uses 
a technique of Ref. [C2], but simpler; (4) is a straightforward calculation. 

We make more use of the function 8 : G + I. 

PROPOSITION (10.5). (1) 8(F,G) C I* for each n > 1. 

(2) 8 : (I’,G/I’,+,G) --t In/P+l is a homomorphism. 

6071612-6 
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(3) There is a natural commutative diagram 

L(G/I’,G) i l T(G/r,G) 

1 1 

Bl (rnG/rn+,G) L nFo (wrn+l) 

/ 

where i : L(v) -+ T(*) is the inclusion of the free RLA in the TA; the 
vertical maps are the natural extensions, which are isomorphisms ;f G is 
a free group. 

We again consider the mod-p RLCS spectral sequence E’(X), not 
speeded-up, not reindexed. 

PROPOSITION (10.6). The function 8 : G -+ Z,(G) induces maps of 
spectral sequences 

ei : l.?(X) + B(X) 

with 

(3) 8” : E”(X) --f Em(X) is induced by the Hurewicz homomorphism 
h : r,(GX) --+ H,(GX); 

(4) For x @ AI E El(X), 

11. SOME APPLICATIONS 

We describe the mod-2 RLCS spectral sequence for some X, e.g., 
X = sphere, unitary group, etc. Also, there are homomorphisms 
between the various spectral sequences, like the J homomorphism and 
the maps of the EHP sequence. For H there is a simplicial formula 
like James’ combinatorial map. Using the description of E2(S) as 
H,(A), we give a proof of Adams’ result on the nonexistence of elements 
of Hopf invariant one. We conclude with Kan’s simplicial formula for 
the Whitehead product. 

The references for Section 11 are [B], [B, K], and [C3]. 
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E2(S”) (11.1). Th ere is a short exact sequence of differential groups, 

0 - A(n) 4 A(n + 1) --G A(2n + 1)-O, 

where i is the inclusion and h is the map, given on the allowable basis by 

h(h,X,) = 1; for i = n, 
for i < n. 

Deriving this, we obtain the LES in homology, 

- E2( P) 4 E2( s”+l) -5 ,r32(s2”+1) -J?+ . . . . 

Later we will show that h is induced by the Hopf invariant H. 
From this sequence, it is straightforward to calculate E2(P) induc- 

tively. Table I describes E2(Sn) to dimension n + 16. The basis of 
allowable monomials A, is ordered lexicographically from the left, and 
hence also becomes ordered. Homology classes in A are listed by the 
leading term of a minimal representative. E2(Sn) has for basis those 
ir **. 1 j for which ir < n < j (or no j, meaning in E2(S)). The notation 
il *.* / j means that there is a cycle created in E2(Silf1) which becomes 
homologous to something smaller (or to 0) in E2(Si+r). For example, 
71 1 9 is created on Ss, and becomes homologous to 53 on P’, and 
this class then persists to the stable sphere. The higher differentials 
which affect this part of the table are d2(15) = 653, d3(14, 1) = 51233, 
d3(13, 1, 1) = 344111, and 124333 = d2(8333). 

E2(SU(n)) (11.2). Th e results of Section 8 can be used to calculate 
E2(SU(n)), where (SU(n)) is the special unitary group. Recall that 
H,(SU(n)) is an exterior algebra generated by classes e2i--1 E H2,-1(SU(n)) 
for 2 < i < n. The speeded-up RLCS spectral sequence, simplzjied by 
cancelling some cycles that are obviously boundaries, shows that E2(SU(n)) 
will be the homology of 

i=n 
2 e,i-l@42i - 119 

d1(e2i-l 0 A,) = -Ze2i-,Sqj @ &i, + e2i-l @ d9,. 

We still call this simplified differential group El(SU(n)). 
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TABLE I 

2 fl4 tl6 tl8 t I 10 124111 

t I 10 34111 14 

?I8 
2 fl4 fl6 4111 

t/4 21114 tlf-5 18 
2 111 12112 31115 32114 511 

30 [ 4 70 I 8 
2 11 21 31 15 50 I6 33 61 

3 7 

24111 

I 10 
6111 18 

5111 16 12333 

611 18 t110 
521 / 6 711 19 
233 333 

71 19 
53 9Oi 10 

11233 1 8 

7111 18 
3511 14 
22333 1 4 

721 I 8 
433 I 10 
361 I 4 

73 Ill 

t112 

fl12 11124111 12 

fl12 
1124111 

TlJ2 
224111 
111233 12 

?I 13 
441 II 
21233 I4 
12233 I2 

t112 
3611 14 
3233 ] 6 
2333 I 4 

2124111 14 
1224111 12 

324111 16 
211233 / 4 
121233 12 

54111 16 
36111 I4 
31233 I5 
12333 / 2 

9111 110 
5511 16 
3333 1 5 

VI2 
533 j 9 
353 1 5 

ll,o I 12 

10,ll I 12 t114 11,21 / 12 
921 1 10 11,ll / 13 761 18 
561 16 733 Ill 653 

11,l I 13 

t I 14 

t114 
21124111 15 
12124111 12 

f  I 14 
3124111 15 
1211233 I 2 

ti14 
311233 I 4 

?I 14 
32233 j 4 

t114 
10,111 112 
4333 ; 8 
3433 1 4 

13,0 1 14 

121124111 I2 t I 16 

31124111 14 

3224111 I4 

344111 

74111 18 
51233 
23333 14 

7511 18 
6233 
5333 / 9 
3533 i 5 
11,111 112 

77 

t I 16 
41124111 

fl 16 
5124111 

t I 16 
624111 
123333 12 

fl 16 
84111 
61233 I 8 
24333 

tl 16 
12,111 
7233 1 10 
6333 / 8 

tl 16 
13,1,1 
753 j 9 

15,0 I 16 
14,l 

15 

51124111 I( 

6124111 18 
5224111 16 
2344111 

724111 I10 
544111 / 8 
124333 

94111 I10 
71233 19 
34333 I 4 

13,111 I14 
9511 I 10 
7333 I 9 

14,ll 1 16 
13,2,1 I 14 
961 I 10 

15,l I 17 
13,3 
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SU(n - 1) --+ SU(n) --+ s2n--1 

The fibration 

gives a short exact sequence of simplified El terms, 

0 + El(SU(n - 1)) -+ E(SU(n)) -+ J!Pp+l) -+ 0, 

which in turn give a long exact sequence 

*** -+ P(SU(n - 1)) -+ EySU(n)) + ZPp-1) -+ ‘se. 

This provides also a straightforward inductive method for computing 
E2(SU(n)). In Table II we give some results of this computation (by 
hand). Similar calculations can also be made for other classical groups, 
Stiefel manifolds, etc. E2(SU(n)) has for basis those ek @ A, = ki, *a* 1 j 
for which K < 2n < j, or no j, meaning in E2(SU). The relevant 
differentials are d2e, = es21, d2e,3 = e,211, d2e,31 = ea2111, d2e,,0 = 
e,ll 1, d2e,,00 = e,4111, and d2e,,000 = es241 11. 

TABLE II 

t t t t t 324111 

54111 
t t t 32111 1 9 90000 t 31233 15 

t 7111 19 ll,ooo 
t t 3211 5111 19 5311 Ill 3233 19 9111 

1 
t 311 15 321 t 521 j 9 531 721 I 11 533 I 1 

71 I 9 
30 31 I5 50 70 53 73 I11 11,l I13 

% e7 

J HOMOMORPHISM (11.3). The J homomorphism of G. W. 
Whitehead, 

is the composite (in the homotopy groups of) 

SU(n) 2 SU(n) A 6.P f LP, 

where a2n is the 2n-fold suspension, and f is the action of SU(n) on S2n. 
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We define Ji : Ei(S U) -+ Ei(S2n) induced by J as follows. Since J 
induces 0 in homology, there is a lifting f 

F 
rf 

/ i 

where F - 

Then also 

SU(2n) A P-L&P 

S2n -+ K(Z, , 2n) is the natural fibration. Thus we have 

I',GP' ee QF 
? 

/A 1 
G(SU(n) A Szn) f GSzn rv QS2” 

1 1 
GPlr,GP’ N L’K(Z, ,2n) 

r,G(SU(n) A Szn) 2 rrI’2GS2n -+ r2,GS2n 

and define Ji : Ei(SU(n)) -+ Ei( S2”) by Ji = g, 0 f.+ 0 u2n, where g, is 
induced from 

(r,i/r,i + i)(r,wy _s, (r,i + i/r,i + 2)(w9. 

Thus Ji raises filtration by one, and takes homotopy dimension in 
SU(n) to stem dimension in S2n. 

CLAIM. J’ : -@(SU(n)) -+ l?l(Szn) is the map 

J%-1 0 &> = Lh * 

To see this, use induction on i, first skipping the integers 2i - 1 
which are = 2power - 1. 

It is not hard to show that 

(1) E2(SU(n))q=*k-l,s=4k-.l contains a single nonzero element, say x, 
which persists to E”. 

(2) E2(S2”)~=2n+812--1.s=4k contains a single nonzero element, say y. 
(3) For dimensions q = 8K - 1 = 2power - 1, J”(x) = y. 
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Hence the clement in r,(S) corresponding to y is in the image of J. 
By Adams’ J(X) - IV, in particular the e-invariant arguments, this is 
sufficient to settle the image of J in these dimensions (i.e., order 
im J = Adams-Kervaire-Milnor number). 

For dimensions q # 2 Power - 1, this method does not work; for 
example, q = 23. This technique (using the map of Adams spectral 
sequence) is similar to Ref. [Mah], and can be similarly extended to 
more complicated numbers q. But as the number of l’s in the dyadic 
expansion of q + 1 increases, the filtration change between E(SU) 
and E (sphere) becomes too great to handle computationally. 

THE HOPF INVARIANT (11.4). Let K be a simplicial set, and define 

h :FK+F(K A K) 

as follows. First, let w : FK --+ F(K v K) be the homomorphism 
w(x) = x’ * x” for each generator x in FK, where x’ and x” are the 
corresponding generators in F(K v K). From (4.21) there is a decom- 
position 

flF& --sF(K v K), 
i 

where the Ki vary over all basic complexes in two variables, each a 
copy of K. Let p be the projection (not a homomorphism) of a word 
in F(K v K) onto the part of it in F(K A Ii;), as in Section 4. Then 
h is to be the composition h = p o w. The map h can be taken (via 
a choice of basic complexes) to have the form: If 

x = X” . . . pn 
1 VI&' El = fl, 

h(x) = l-J (Xi’ A x;)-, 
(id 

where the product is taken over those (i, j) such that 

(1) If 
Et = +1 forall j> 1, 

Et = -1 forall j> 1, 

(2) The order is (i, j) < (i’, j’) if i < i’; or i = i’, q = +I, 
j > j’; or i = i’, E$ = -1, j <j’. 

The map h is the simplicial analogue of James’ combinatorial map [J]. 
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Even though h is not a homomorphism-and the resolutions of FK 
and F(K A K) involve the group structures-we can still see that h 
induces maps of the spectral sequences as follows (observation of 
S. Priddy). For each basic complex Ki , there is a homomorphism 

fi : FK,+F(K v K) 

which defines maps of the spectral sequences (for each Y > 1) 

fir : E’(SKJ + E’(S(K v K)). 

Then there are maps 

(11.5) @ E’(SK,) = E’(S(K v K)). 

Using Section 8, it is easiIy seen that for r = 1, the map in (11.5) is 
an isomorphism, and hence it is an isomorphism for all r > 1. To 
each fir, there is a projection back onto the corresponding factor. The 
maps 

h : E2(SK) + E2(S(K A K)) 

we seek are the composition of the maps induced from the homomor- 
phism w : FK + F(K v K), and the projection onto the factor F(K A K). 

For K = Sn, we have FK M GS”+l and F(K A K) cv GS2n+1. In 
this case, a little computation shows that 

for i = n, 
for i < n. 

EXAMPLE (11.6). If the element h, E E2(Sn+r) survives to E”, it 
represents an element of Hopf invariant one; that is, H (this element) 
would be an odd multiple of the generator of 7~~~+r(Y~+l). Adams 
shows that this happens only for n = 1, 3, 7. As a variant of Adams’ 
proof, we offer a proof using the J homorphism. 

First, it is evident from the differential in (1 that X, can survive to 
E2(S) only if n = 2< - 1. We shall show that 

d2&i = h21--1-1&--1-ZX1 + lower terms 

= (~2,-1-1)2 A, in C(S) 

#O in E2(S) for i > 4. 
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The lower two lines are straightforward algebraic properties of A. For 
the upper line, it would suffice to show in E2(SU) that 

Consider the spectral sequence for BU = QSU. In El(BU), 

dib 
2 (-2 

= b2i-,h, + lower terms, 

where the b,, E H,,(BU) are dual to the Chern classes cak E Hzk(BU). 
Then under the homology suspension, o(b+,) = e2im1 and u(b& = 0 
in filtration 0, but “reappears” in filtration 1, with 

5(b,+) = e2+-lml h 2~--1-2 + lower terms. 

Note that b2Je4 = (b2+1-2)2 + lower terms in H,(BU). In SZG(SU), 
there is a simplex, say z (given by a universal simplicial formula which 
is a product over shuffles), where 

P DTo5* l (b2<-,-2)2 E n.&-2G(SU)/I’&G(SU)) M H&W), 

Then , since d% = od2 > 

d2(e2i-l) = e2~-1-1h2f-1-2Ai + lower terms. 

THE EHP SEQUENCE (11.7). Here is the EHP sequence of G. W. 
Whitehead, formulated more like James [J] or Barratt [B]. 

Make the map h : FX + F(X A X) into a fibration with fibre Y. 
Then the LES in n, 

- . .  __3 T*(Y) -+ n*(FX) A-+ T*(F(X A X)) --- p*-l(Y) --+ *.* 

E 

ii 

w*(X) 

P 
\I 

r*-l(X) 

is called the EHP sequence, especially when P exists; for example, in 
the stable range, where VT*(X) + n*(Y) is an isomorphism. 

For example, if X = S”, ?T,(S~) + 7rIT*( Y) is an isomorphism always 
on the two-component. In a stable range, P is the Whitehead product 

P( ) = [in , I. 
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PROPOSITION (11.8). The EHP sequence for X = 5’” is induced at 
the E2 level by the LES of (10.1). 

COROLLARY (11.9). Considering the maps E, H, and P of (10.7) 

AF c!‘f 1~ E n,(Sn+l) has AF > s, then H(X) E T*(S~~+~) has 
I 

(2) IfY L T*(S 2n+l) has AF > s, then P(y) E r,(S”) has AF 3 s + 2; 

(3) If x E 7-r,(P) has AF > s, then E(z) E z-.+(Sn+l) has AF > s. 

Comments. Here AF means Adams filtration: x E r*(GX) has 
AF > s says that x E im n,(r,,) + n,(G). Then (1) follows from the 
computation for h above. (3) is an evident property of suspension. 
(2) can be shown, for a stable range at least, by a formula for the 
Whitehead product, given in the next section. 

This corollary can be stated more specifically in the following manner. 
Suppose x E r,(GX) is nonzero, and that x can be pulled back to r,, 
but no further, and projects to c # 0, as in the diagram 

x E x,(r,,GX) -+ a-- - r,(GX) 

1 1 
c E n-*(r2GX/r2s+GX) 

Let us say that x is detected by c. (Warning * different x may be 
detected by the same c). Then for the elements in ,,(Sn), detected by 
elements in E2(S”) = H,(A(n - l)), we have 

(1’) If x E ,,(Sn+l) is detected by c = h,h, + lower terms, then 
H(x) is detected by h, if i = n and X, persists to E”; otherwise H(x) 
has AF > length I. 

(2’) and (3’) similar. 

Put in yet another form, if y E n*(S2n+1) with AF(y) = s, and 
P(y) = 0, th en there is an x E v,(Sn+l) with H(x) = y, and 
AF(x) > s + 1. If y is detected by X1 + lower terms, then x is detected 
by h,h, + lower terms, or by a cycle of AF < s. 

We are thus led to the following. 

METHOD (11.10). Let y ET&S 2n+1) be detected by c = A, + lower 
terms in E”(S2n+1). Suppose A, ’ c - 0 and that for filtration < s, dimen- 
sion q, Em(Sm+l) = 0. Then P(y) # 0. 
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Many of the known cases of nonzero Whitehead products are obtained 
by this method. 

WHITEHEAD AND SAMELSON PRODUCTS (11.11). First suppose G is a 
simplicial group, and we want to describe the Samelson product 
(x, r) E nP+,(G) for x E nP(G), y E n&G). We will need to take a product 
over some shuffles, and the order matters. 

Let the set of all {(ur ,..., a,)} : a, < *** < up be ordered (antilexi- 
cographically) as follows. Inductively in p, put (ui ,..., a,) < (a,‘,..., a,‘) 
if 

(1) up < up’ 

or 

(2) up = up’ and 

(a1 ,a*-, %3-l) < (a,‘,... , a;-1, if a, odd, 

(a1 ,*a*, a,-1) > (a,‘,..., &l> if a, even. 

($9 Y> = n (Sb% &zY)*, 
C&b) 

where the product is taken over all (p, q) shuffles (a; b). The sign f is 
the sign of the shuffle; the order is antilexicographical in a = (ur ,..., u,). 

In the verification that ( , ) gives (to within +) the Samelson 
product, the simplicial identities enter in the form 

dp, = 
I 

sa,di, if neither i nor i + 1 E a, 
S,” , if i or i + 1 E a. 

Thus if all C&X = e, d,y = e, then all d,(x, y) = e, and ( , > becomes 
well-defined on homotopy classes. 

The Whitehead product of u E 7rP+r(X), v E .rrp+r(X) is the element 

in %+*+1(X) 

[u, CJ] = (-1p a-yau, acv), 

where a : r*(X) + v,-,(GX) is the isomorphism of (3.18). 
The connection between (potential) elements A, of Hopf invariant 
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one and the Whitehead product [i, , in] is the following. Let X, be 
lifted to 1, E r,FSn by 

L = n (SbL , GA 
(a:b) 

where the product is taken over all (n, n) shuffles (a; b) = (al ,..., a, ; 
b r ,..., b,) with b, = 272 - 1, and the order is antilexicographic in a. 
Then 

diXn = rt [in , 41 for i=2n-1, 
e for i#2n-1. 

Thus h, is a permanent cycle o [i, , i,] = 0. 

12. THE SIMPLICIAL EXTENSION THEOREM 

The purpose of this section is to prove the following, relative form 
of the simplicial extension theorem. 

THEOREM (12.1). Let K be a simplicial set, with simplicial subset 
A C K, and let L be a Kan simplicial set. Suppose p : RK -+ RL is a 
continuous map and f : A -+ L is a simplicial map with Rf = p on RA. 
Then there is a simplicial map g : K -+ L with g = f on A and 
Rg ‘up : RK --f RL (rel RA). 

We will follow a proof of Barratt [B] and Kan (lecture notes). The 
method is to use a simplicial approximation theorem, and for this, some 
careful subdividing. This theorem, although common knowledge, is not 
well-represented in the literature. 

POLYHEDRA (12.2). A simplicial set K is called polyhedral if there 
is a partially ordered set (V, <), with 

K, C ((q, ,..., u,) : o, < -.. < un}, 

dih ,.a., w,) = (w. ,...) 6, ,..., wn), 

&I ,..., %> = (ql ,a.*, oi , ai ,..., Q), 

i.e., K is a subsimplicial set of the simplicial set determined by (V, <). 
Observe that if K is polyhedral, then each simplex x E K, is uniquely 
determined by its vertices vi(x) = d,, -** di **a d,x. Conversely, if K is a 
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simplicial set with the property that each simplex is determined by its 
vertices, then K is polyhedral. If K is polyhedral and x E K, is non- 
degenerate, then the vertices of x are all distinct, and each face dix 
must also be nondegenerate. 

TERMINOLOGY. The geometrical realization of a polyhedral simplicial 
set is called a polyhedron; the old-fashioned term was “simplicial 
complex,” or “geometrical simplicial complex” in Section 1. A triangula- 
tion of topological space X means a homeomorphism of a polyhedron 
with X. We show later, following Barratt [B], that the geometrical 
realization of any simplicial set may be triangulated, though it takes 
two subdivisions to do so. 

BARYCENTRIC COMPLEX (12.3). For each simplicial set K, let B(K) 
be the polyhedral simplicial set obtained by taking for vertex set (V, <) 
the set of all nondegenerate simplices of K, partially ordered by x < y 
if x is a face of y, i.e., if x = di *** di,y. Then 

B(K)n = ((x0 ,...I xn) : x0 < 7-v < x3. 

If f : K -+ L is a simplicial map, then B(f) : B(K) -+ B(L) is the 
simplicial map determined on the vertices of B(K) by B(f)(x) = y, 
where for each nondegenerate x E K, f(x) = si, *** si,y with y non- 
degenerate in L. 

Warning *. For an arbitrary simplicial set K, B(K) might not help 
much; consider, for example, K = P, with only two nondegenerate 
simplices * and ult . 

In the case where K is itself a polyhedral simplicial set, B(K) corre- 
sponds to the usual barycentric subdivision, and there is a homeomor- 
phism h : RI?(K) g RK. Furthermore, there is a simplicial map 
v : B(K) --t K determined on the vertices of B(K) by v(x) = last vertex 
of x, and there is a homotopy 

R(v) N h : RB(K) --+ RK. 

SUBDIVISION (12.4). For any simplicial set K, let K be the simplicial 
set which is the (disjoint) union 

Kn = u (d[dim x], x), 

d& 4 = w, 4 for each 
s& x) = (Sit, x) ! 

t E d[dim x], . 
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Let (-) be the equivalence relation on K with (t, X) - (u, y) if either 

dix = y  and <&4) = t 

or 

six = y and 7&J) = t. 

Then there is an equivalence K = K/(w). 
To obtain the subdivision of K, first take 

SdK = u (B(d[dim x]), x), 
xck 

44 4 = (At, 4) for 

s,(t, x) = (fi , x)i 
t E (B(d[dim XI)), . 

Let (-) be the equivalence relation on SdK by (t, X) - (u, y) if either 

dix = y  and B(Ei)(U) = t 

or 

six = y and B(do4 = t* 

Finally, the subdivision of K is SdK = SdK/(-). 
This construction SdK is a functor from simplicial sets to simplicial 

sets, with the following properties: 

(1) There is a homeomorphism 

h : R(SdK) --f RK 

obtained as follows. For each x E K, , let 

R(BA [tz]) 2% R(d [E]) 

be the continuous map such that 

(i) Let x = si, *a* si,y, where y E Km is nondegenerate. For each 
vertex j of A[n], let N(j) be the number of vertices of O[n] which have 
the same image as j under the map 

Then let 

Wn , x) = (i (m + :, N(O) ‘***’ (m + :, N(n) I9 xl* 
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That is, the “barycenter” of the simplex in R(SX) represented by x 
goes to an appropriately weighted point in the corresponding simplex 
of RK. 

(ii) For all 0 < i < rz, there is to be a commutative diagram 

wmlN hz - w M) 
R(W,)) t t R(q) 

wwn - 11)) - hdiz I?(& - 11) 

(iii) For each t E B(d[n]), , let ft : d[n] -+ B(d[n]) be the 
representing map. Then the map 

R(Ll [n]) 3 R(B(d [n])) h, R(Ll [n]) 

is to be linear. 

It is straightforward to verify that the map h : R(SdK) + RK 
determined by (i), (ii), (“‘) 111 is a homeomorphism. Observe also that h is 
natural with respect to inclusions of subsimplicial sets; la may not be 
assumed to be natural with respect to all simplicial maps. For a detailed 
treatment, see Ref. [F, P]. 

(2) There is a simplicial map q~ : SdK + K which is obtained by 
first defining cjj : SdK + R using ‘p : B(d[n]) --f d[st], and passing to the 
quotient sets. 

(3) There is a homotopy 

R(y) N h : R(SdK) + RK. 

Also, there is a simplicial map Q! : SdK + B(K), but it might not be 
possible to factor the map y : SdK --+ K through 01 (consider again Sn). 

To get around this difficulty, make an Sd*K oppositely to SdK as 
follows. First, let (V*, <) be the partially ordered set where V* = V, 
but with the opposite order. Then obtain functors B*, Sd*, a homeomor- 
phism h* : R(Sd*K) E RR, and a simplicial map q* : Sd*K + K, 
with properties similar to (l), (2), (3) above. 

By composing the two, we obtain the double subdivision of K. 

DEFINITION (12.5). For a’ simplicial set K, its double simpliciul 
subdivision is defined .by SD(K) = Sd Sd*K. 
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As before, SD is a functor from simplicial sets to simplicial sets with 
the following properties: 

(1) There is a homeomorphism 

H : R(SD(K)) E RK; 

(2) There is a simplicial map 

@ : SD(K) --f K; 

(3) There is a homotopy 

R(G) = H : R(SD(K)) + RK; 

(4) Furthermore, for this double subdivision, there are simplicial 
maps 

SW) & BSd*K -Y, K 

with 0 = y 0 /I. The map /I( ) = ~(Sd*( )). The map y is defined as 
follows. Let x E (Bd Sd*K), ; that is, x = ( yO ,..., y,) where y,, < *** < yn 
are nondegenerate simplices of Sd*K. For each yi , there are representing 
maps 

fyi : d[dimyJ. 

Let ai be the largest integer for which 

fu,(4 = fvd(dim rA 

and then let 

It is straightforward to check that y is a simplicial map with 0 = /3 0 y. 
Because of this factorization of CD through a polyhedral simplicial set, 
the (semi-) simplicial approximation can be deduced from the usual 
simplicial approximation theorem (which will be assumed; see, for 
example, Ref. [Sp]). 

Remark (12.6). The geometrical realization R(B(Sd*K)) is a poly- 
hedron, which is homeomorphic to R(Sd*K), hence also to RK. This 
is a theorem of Barratt [B], which asserts that the geometrical realization 
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of a simplicial set can be triangulated. Observe that Sd*K has the 
following two properties: 

(i) Any two simplices have at most a single face in common; 

(ii) For each nondegenerate simplex x E Sd*K, there is a vertex 
(the first one) such that any face of x containing this vertex is also 
nondegenerate. 

THEOREM (12.7) (S emisimplicial approximation). Let K be a simplicial 
set, A C K a subsimplicial set, such that there are only finitely many 
nondegenerate simplices in K - A. Let f : A + L be a simplicial map 
(to another simplicial set L), and suppose there is a continuous map 
p : RA += RL, with R(f) = p on RA. Then there is a nonnegative 
integer n, and a simplicial map f' : SD”(K) + L with f 0 Qi” = f’ on 
SD*(A) and 

R(f’) “p : RK-+ RL (rel RA). 

Consider the diagram 

BSd*SD(A) A SD(A) 

1 1 
SDz(K) B, BSd*SD(K) y, SD(K) 

SD(L) --% BSd*L Y L 

and the diagram for the realizations 

R(BSd*SD(A)) R(v) R(SD(A)) 

R(SD2(K)) = R(BSd*SD(K)) --@k R(SD(K)) 

1 
D 

R(SD(L)) R(B) R(BSd*L) R(v), R(L) 

Apply the ordinary simplicial approximation to the continuous map 
R(p) op D R(y), which yields an integer n - 2 > 0 and a simplicial map 

SD@(BSd*SD(K)) f”, BSd*(L), 

607161 Z-7 
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so that the composite 

SD”-2(&w(K)) SDn-zkJ) )r SDyBSd*SD(K)) -2 BSd*(L) Y, L 

is the desired map f’ proving (12.7). 

PROPOSITION (12.8). Let K be a simplicial set with A C K a simplicial 
subset, and let L be a Kan simplicial set. Suppose there are simplicial 
maps f:A+L and=f’:SD”-+L with f’=fo@” on SDnA. Then 
there is a simplicial map g filling in the commutative diagram 

SD”A --+ SD”K 

an 1 f’ 
SfJn A 

A-K 9 ZL 

and Rf’ N R(g o 0”) : &SD”(K)) + RL (rel R(SD”(A))). 

Proof. By induction; it is sufficient to take n = 1, and to consider 
Sd instead of SD. Consider first the case where K has only one non- 
degenerate simplex not in A, say x of dimension m. 

Let B C SdK x I be the subcomplex 

B = (SdA x I) u (SdK x (1)) u (v-l(A) x (0)), 

and let J : B + L be the map given by 

(1) J<a, 4 = fXa) for (a, t) E SdA x I, 

(2) f(YY 1) =f’(r> for (y, 1) E SdK x (l), 

(3) f<YY 0) = fF(Y) for (y, 0) E @(A) x (0). 

We use a prism-type argument to extend 3: B --t L to a map 

F:SdKxI+L 

as follows. For each nondegenerate (m + 1) simplex w in SdK x I 
but not in B, let 

where K = K(w), and let v = (Bf,)(x) for z E d[m] and fz : d[m] -+ K 
be the representing map for x. Then z = (b, ,..., b,), and there is a 
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permutation (a, ,..., a,) of the integers (0, l,..., m) so that b, is the 
simplex spanned by (a0 ,.,., ai). Order such w by w < w’ if either 

(1) p(w) > p(w’) in the lexicographic order 

or 

(2) p(w) = p(w’) and k(w) < k(w’). 

Using the extension property in L, and induction on these w, the 
mapp:B+LcanbeextendedtoF:SdKxI+L. 

Finally, let g : K --+ L be the simplicial ‘map defined by 

g(y) =f(r) for y EA, 

g(x) = FMn+P)> 

where a is the “last” w; that is, p(w) = (O,..., m) and k(w) = m. Then 

R(F) : R(f) ‘v R(g) 0 ql : R(SdK) -+ RL (rel R(SdA)). 

This concludes the argument for such special case; the general case 
follows by induction on the nondegenerate simplices of K - A. 

The proof of the simplicial extension theorem (12.1) now follows 
from (12.7) and (12.8). 

THE EQUIVALENCES + AND # (12.10). For each simplicial set K, let 

+K: K+SRK 

be defined by & = fdRK, where idRK : RK + RK is the identity and 
fdRK is defined by (1.30). Thus for x E K, , &(x) : t[n] -+ RK is the 
realization of f, , the representing map for x. Similarly, for each 
topological space X, let 

tfr,:RSX-+X 

be defined by #x = Zdsx . For a point in RSX, represented by (p, f ), 
where f E (SX), , p E t[n], #J~( p, f) = f(p). It follows immediately from 
the definitions that 

(#RK) o (R&) = idRK : RK -+ RK 

(S1clx) o (&x) = idsx : SX --t SX. 
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THEOREM (12.11). (1) If K is a Kan complex, then & : K -+ SRK 
is a homotopy equivalence. 

(2) If X is a realized space (i.e., X = RL for some L), then 
+x : RSX -+ X is a homotopy equivalence. 

Proof (1). Th e simplicial extension theorem applied to #RK produces 
a simplicial map g : SRK + K with Rg N I/J~~. Then the composites 

SRK s-+ K *- SRK, 

satisfy 

SRK __ “‘,- SRSRK SR, SRK, 

SRK __ ‘sRK- SRSRK % SRK, 

- i&K . 
Also, the composites 

RK -f% RSRK R, RK 

RK % RSRK * RK 

satisfy (Rg) 0 (R$K) E (~,4~~) o (R&) = idRK . That is, R( g 0 c$~) E idRg , 
and another application of the simplicial extension theorem shows that 
g o $K N idK . This completes the proof of (1). 

For (2), first make use of (l), which shows that RdL : RL --t RSRL 
is a homotopy equivalence, and has RS#,, for homotopy inverse. Then 
the composites 

*RL R+L 
RSRL - RL - RSRL, 

RSRdL 
RSRL - RSRSRL % RSRL, 

RSR6, 
RSRL - RSRSRL - RS*RL RSRL 

-1 R~SL 

RSRL +*L RSRSRL 

satisfy 

(R+L) o(#RL> = ($RSRL) o (RSWd 

'v (~RSRL) 0 Ws,) 0 Wh,) 0 (RSW,) 

= idRSRL . 
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Hence (Wd 0 hL N idRsRL , and as (Ad 0 (&L) = idRsRL , (2) is 

proven. 

hoof of Equivalence (12.12). For each simplicial set K, Kan complex 
L, 

[K+L] M [K- SRL] 

M [RK+ RL], 

which shows part (1) of (1.35). On the other hand, for X a realized 
space, Y any space, 

[X-t Y] w  [RSX+X] 

M [SX+ SY], 

which shows part (2) of (1.35) f or realized spaces X. For an arbitrary 
CW space X, it remains only to show that 

a,bx: RSX+X 

is a homotopy equivalence. For this, (12.12), part (1) shows that 

Sr& : SRSX+ SX 

is a homotopy equivalence, hence 

w* : r,(RSX) + m*(X) 

are isomorphisms. Then the Whitehead lemma for CW spaces [Sp, 
p. 405], shows that #x is a homotopy equivalence. 
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