
 

 

©Copyright 2019 

 

Ryan A Rasanen 

  



 

 

Liquefaction-Targeted Ground Motions and Lateral Spreading Driving Stresses 
 

 

 

Ryan A Rasanen 

 

 

 

A thesis 

 

submitted in partial fulfillment of the 

 

requirements for the degree of 

 

 

 

Master of Science in Civil Engineering 

 

 

 

University of Washington 

 

2019 

 

 

 

Reading Committee: 

 

Steve Kramer, Chair 

 

Pedro Arduino 

 

Brett Maurer 

 

 

 

 

 

Program Authorized to Offer Degree:  

 

Civil and Environmental Engineering 

  



 

University of Washington 

 

Abstract 

 

 Liquefaction-Targeted Ground Motions and Lateral Spreading Driving Stresses 

 

Ryan A Rasanen 

 

Chair of the Supervisory Committee: 

Steve Kramer 

Civil and Environmental Engineering 

 

Earthquake induced soil liquefaction has been one of the most studied topics in geotechnical engineering 

over the past 60 years due to its severe impacts on natural and man-made structures. Improving the 

prediction of liquefaction triggering has already been undertaken for many years, however, in ways that 

can produce inconsistent, and inaccurate, results in different seismic environments. The first focal point of 

this thesis is the introduction of a liquefaction-targeted intensity measure that would allow practicing 

engineers to obtain the benefits of a full probabilistic liquefaction hazard analysis with the same, or less, 

effort than required by current conventional liquefaction hazard analyses. 

 

Lateral spreading is one of the most common, and most severe, effects of liquefaction. Up to three 

mechanisms are believed to drive lateral spreading. Each of these potential deformation mechanisms is 

influenced by static shear stresses yet both empirical and semi-empirical procedures for prediction of 

lateral spreading displacements currently characterize static shear stresses in a crude and incomplete 

manner. The second focal point of this research was directed toward developing an improved framework 

for characterizing the initial static shear stresses over a continuous range of site conditions commonly 

encountered at lateral spreading sites. This framework is intended to lay the foundation for an improved 

lateral spreading displacement procedure. To accomplish this, numerical analyses were performed to 

develop a function that can predict the initial static shear stress at depths of lateral spreading interest.
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Chapter 1. INTRODUCTION 

Soil liquefaction has become one of the most studied topics in geotechnical engineering 

due to its severe impacts on natural and man-made structures which have been thrust to light over 

the past 60 years. Soil liquefaction typically occurs in loose granular materials and/or coarse silts 

that are saturated and subjected to strong ground motions that typically originate from large 

earthquake events. The cyclic shear stresses imposed by the ground motions applied to an 

undrained soil cause the loose soil particles to have the tendency to contract, thus, causing pore 

pressure to build up. If the ground motions are strong enough, and last for a long enough period of 

time, the soil can undergo large amount of shear strain as the soil fabric is degraded. Because the 

three general components of soil liquefaction: (1) loose granular material and/or coarse silts, (2) 

shallow ground water, and (3) strong ground motions, are typically encountered along coastlines, 

and because a major portion of the world’s population lives in such areas, soil liquefaction is a 

severe threat to the welfare of human life. 

The first focus of this thesis is the introduction of a new mapped liquefaction-targeted 

ground motion parameter that a practicing engineer in the future will be able to obtain by entering 

the latitude and longitude coordinates of their site of interest on a website. The engineer could then 

input the mapped parameter into their conventional liquefaction hazard analysis and obtain the 

liquefaction triggering results that would have been obtained from a full probabilistic liquefaction 

hazard analysis. This would allow practicing engineers to evaluate liquefaction potential in a more 

accurate and consistent manner while requiring the same, or less, work than currently needed to 

perform conventional liquefaction hazard analysis procedures. This thesis will describe the process 

of obtaining this conventional liquefaction-targeted ground motion parameter value that 
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corresponds to an event with a return period of a full probabilistic liquefaction hazard analysis and 

will discuss how the liquefaction-targeted ground motion parameter values obtained by two 

common liquefaction triggering procedures are influenced by various site conditions. 

 The second focus of this thesis is the development of a unified approach to characterizing 

the initial static shear stress for any geometry (free-face or ground slope) anywhere within lateral 

spreading regions of interest. The initial static shear stress is a key component in predicting the 

lateral deformations that occur when a soil liquefies. Current commonly used procedures for the 

prediction of lateral spread displacement, however, characterize the initial static shear stress 

crudely and incompletely, which contributes to uncertainty in current procedures for prediction of 

lateral spreading displacements. A more complete characterization of the initial static shear stress 

has the potential to improve agreement between the predicted and observed lateral displacements 

and, therefore, reduce uncertainty in lateral spreading hazard evaluation. 

1.1 OBJECTIVES 

The research described in this thesis is oriented towards improving existing procedures for 

evaluation of liquefaction hazards, specifically triggering of liquefaction and prediction of lateral 

spreading displacement. The primary objectives of the work included: 

• Discussion of the current state of probabilistic liquefaction hazard analysis, the tools for it, 

and its current role in design. 

• Introduction of a liquefaction-targeted ground motion parameter, 𝑃𝐺𝐴𝑀, and discuss the 

influences of various site conditions on the 𝑃𝐺𝐴𝑀 for two common liquefaction triggering 

procedures. 
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• Discussion of the current state of lateral spreading procedures today including empirical, 

semi-empirical, and numerical analysis. 

• Development of a unified framework to characterizing the static stress state for any slope 

geometry (free-face or ground slope) using numerical analysis to develop a function that can 

predict the initial static shear stress at any point within the slope. 

1.2 ORGANIZATION OF THESIS 

This thesis is partitioned into six chapters to facilitate the review of background 

information and research presented herein. Chapter 2 provides an in-depth literature review of 

liquefaction susceptibility, initiation, and effects. Chapter 3 discusses the current state of 

probabilistic liquefaction hazard analysis to quantify liquefaction hazards, the current tools 

available for probabilistic liquefaction hazard analysis, the relatively new method of mapped 

parameters, introduces a new liquefaction-targeted intensity measure that can be mapped, and the 

current role of probabilistic liquefaction hazard analysis in design. Chapter 4 then discusses the 

effects of various site conditions on two commonly used liquefaction triggering procedures for the 

proposed liquefaction-targeted ground motion parameter. Chapter 5 reviews the current state of 

lateral spreading procedures today and then introduces a framework to characterize the initial static 

shear stress for a wide array of lateral spreading geometries within lateral spreading regions of 

interest. During the process of developing this framework, a transformed coordinate system is 

introduced, the slope geometries investigated are shown, the numerical results discussed and then 

mapped to a regular grid, and the stress function and then the calibration process of it discussed. 

A summary of the findings of the proposed research, and the future research that can built upon 

these findings, are discussed in Chapter 6. 
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Chapter 2. LIQUEFACTION 

2.1 INTRODUCTION 

Soil liquefaction is among one of the most critical phenomena pertaining to geotechnical 

engineering and the hazards that arise from earthquake shaking. Knowledge of the principle 

concepts of soil liquefaction is key to understanding the effects of this ground failure mechanism. 

The effects of soil liquefaction on natural and man-made structures became prevalent to 

geotechnical engineers following the 1964 Good Friday earthquake (Mw = 9.2) in Alaska and the 

1964 Niigata, Japan earthquake (Ms = 7.5) occurring a few months later. “Liquefaction” typically 

occurs in loosely packed sand and/or coarse silts that are located beneath the water table (saturated) 

and subjected to earthquake loading. More broadly, liquefaction can occur in cohesionless soils 

that are undrained and subjected to monotonic or transient loading. Although there are two primary 

categories of liquefaction, flow liquefaction and cyclic liquefaction, the general term 

“liquefaction” has typically been used to refer to both even though both have clear differences in 

the initiation of liquefaction. It should also be noted a liquefaction related phenomena termed 

“cyclic softening” can also take place in fine-grained plastic soils. 

2.1.1 Flow Liquefaction 

Flow liquefaction, the more severe of the two liquefaction categories, can cause 

tremendous amounts of destruction upon initiation. Flow liquefaction occurs when the shear 

strength of the soil drops below the static shear stresses present in the soil due to the reduction of 

shear strength from loading (seismic or non-seismic) that causes pore pressure generation to reduce 

the effective stress of the soil. The shear stresses acting on the soil (typically increased on a slope 

or near/beneath a building) immediately prior to loading are what drive the failure of the soil upon 

the reduction of the shear strength. Soil deformations caused by flow liquefaction occur quickly 



 

 

30 

and the deformed soil can travel large distances. Figure 2.1 shows the dramatic effects of flow 

liquefaction causing a bearing capacity failure of the Kawagishi-cho apartments buildings during 

the 1964 Niigata, Japan earthquake. 

 

Figure 2.1. Bearing capacity failure of the Kawagishi-cho apartment buildings due to flow 

liquefaction (USGS). 

2.1.2 Cyclic Liquefaction 

Cyclic liquefaction occurs when the in-situ static shear stress of the soil is less than the 

shear strength of the liquefied soil due to cyclic loading. Prior to shaking, the ground is in an at 

rest state where the shear strength of the soil counteracts the static shear stresses acting on it. 

During earthquake shaking, the cyclic nature of the ground motion causes deformations to develop 

incrementally and cause lateral spreading when the combination of the initial static stresses and 

the cyclic stress exceed the shear strength of the soil for a brief period of time. These brief 

occurrences of exceeding the shear strength of the soil can continually take place over the duration 

of earthquake shaking, and in some cases can lead to several meters of permanent displacement. 

These permanent displacements due to cyclic liquefaction are markedly less than those of flow 

liquefaction, however, are significantly more common and can also cause severe damage to natural 
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and man-made structures. Lateral spreading caused by cyclic liquefaction can occur on sloped and 

level ground with deformations ranging from a few centimeters (cm) to several meters (m). Figure 

2.2 shows the severe effects of liquefaction induced lateral spreading of artificial fill during the 

January 12th, 2010 Haiti earthquake (Mw = 7.0) causing damage to the pile-supported North Wharf 

at the Port de Port-au-Prince (Green et al. 2011).  

 

Figure 2.2. Liquefaction-induced lateral spreading at the North Wharf of the Port de Port-au-

Prince (photo from DesRoches et al., 2011). 

2.1.3 Cyclic Softening 

Cyclic softening occurs in saturated, fine grained plastic soils subjected to vibrations (e.g., 

earthquake ground motions). Unlike flow liquefaction and cyclic liquefaction, cyclic softening is 

considered separately because the effective stress does not reach a value of zero as the ability to 

generate pore pressure in fine-grained plastic soils lacks behind that of non-plastic soils (i.e., the 

pore pressure generation in plastic soils tends to stall out prior to an effective stress of zero). 
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Although liquefaction is not reached, the clayey (plastic) soil does soften as the soil is subjected 

to cyclic loading because the loading induces pore pressure generation, reducing the effective 

stress, which causes a drop in the soils shear modulus, ultimately resulting in increasing shear 

strains. Although not as severe as liquefaction, cyclic softening can still result in slope instabilities 

and damage to building foundations.  

2.2 PROCEDURE FOR EVALUATING LIQUEFACTION HAZARDS 

In order for a geotechnical earthquake engineer to evaluate liquefaction hazards today, one 

needs to address the susceptibility, initiation, and effects of liquefaction. The latter elements of 

liquefaction should be evaluated by addressing each of these elements individually. The first step 

in any liquefaction evaluation is whether the soil is susceptible to liquefaction. Second, if the soil 

is susceptible, is the anticipated earthquake shaking strong enough to initiate liquefaction? Third, 

if the anticipated earthquake shaking is strong enough to initiate liquefaction, will damage occur 

(Kramer, 1996). Liquefaction susceptibility, initiation, and effects are thoroughly explained in the 

following sections. 

2.3 LIQUEFACTION SUSCEPTIBILITY 

The first part of assessing the potential for liquefaction is susceptibility. A soil is 

susceptible to liquefaction if it can exist in a state where liquefaction can occur. Susceptibility does 

not require that liquefaction take place, however, does require that the soil has the potential to 

liquefy. Multiple factors can be considered in order to evaluate the susceptibility of a soil to 

liquefaction including a soils historical, geological, and compositional characteristics (Kramer, 

1996). 
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Historical 

Historical factors are evidence that liquefaction has occurred in a given soil at some time 

in the past. The basis of historical factors is that if a soil liquefied in the past, it is susceptible to 

liquefaction in the future. Evidence that liquefaction has occurred in the past may be ejecta present 

from sand boils, sand ejecta that did not reach the ground surface forming sand dikes, or the 

remnants of lateral spreading. In other words, if there is evidence of paleoliquefaction, this is a 

historical indicator that the soil is susceptible to liquefaction. Figure 2.3 shows paleoliquefaction 

where the remnants of a sand boil remain between two layers of silt. The liquefied sand penetrated 

through the non-liquefiable lower silt and formed a sand boil at the surface which was then covered 

by the deposition of the upper silt.   

 

Figure 2.3 Paleoliquefaction. Remnants of sand ejecta from a sand boil along the Duwamish River 

in Seattle, Washington. Liquefied sand penetrated the non-liquefiable lower silt followed by deposition 

of the upper silt. 
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Geological 

Youd and Hoose (1977) found that a soil’s age along with its hydrogeological and 

depositional environment can play a role in determining a soils susceptibility to liquefaction. 

Liquefaction most often occurs in saturated poorly graded loose soils, therefore, it should be 

expected that geological processes that create this type of environment are more likely to be 

susceptible to liquefaction. Examples of geological processes that deposit soil in a loose state may 

include fluvial (rivers) or aeolian (wind blown) deposits. Youd and Hoose (1977) also noted that 

alluvial-fan, alluvial-plain, beach, terra, and playa deposits are susceptible, however, less 

susceptible than the former depositional environments. Geologic processes are not the only way a 

soil can be placed in a loose state. Human related processes such as hydraulic filling (similar to a 

fluvial process) also can leave soil in a loose, poorly graded state that is susceptible to liquefaction.  

Along with depositional and hydrological processes, age can be an important factor to the 

susceptibility of a soil. As a soils age increases, the susceptibility of the soil typically decreases. 

Generally, older soils are less susceptible to liquefaction compared to younger soils. For example, 

Holocene age soils are more susceptible than Pleistocene age soils. (Kramer, 1996).  

Compositional 

Soil susceptibility to liquefaction is also analyzed on the basis of compositional factors. 

Perhaps the most important compositional factors are grain size, fines content, and the plasticity 

of these fines. High plasticity soils are not able to generate enough pore pressure to cause the 

effective stress to reduce to zero, whereas, coarse grained soils such as gravel are typically not 

susceptible to liquefaction due to the inability of gravels to generate enough pore pressure due to 

their inherently high permeability. It should be noted however, that a saturated gravel layer can be 

susceptible to liquefaction if it is between two impermeable layers (e.g., clay) because if the pore 
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water has nowhere to go, then pore pressures may be large enough to cause the soil to liquefy. 

Therefore, gravels with a low fines content (clean gravels) should be considered susceptible to 

liquefaction (Kramer, 1996). 

 In order to address the plasticity of the fines that result in a soil not being susceptible to 

liquefaction, researchers have relied on the plasticity index. Boulanger and Idriss (2006) developed 

guidelines for determining whether a soil is susceptible to liquefaction based on the whether the 

soil is considered “sand-like” or “clay-like.” Whether a soil is considered “sand-like” or “clay-

like” is determined based on the plasticity index (PI) of the soil. Boulanger and Idriss determined 

that soils with a PI ≥ 8 have “clay-like” behavior, whereas, soils with a PI ≤ 3 have “sand-like” 

behavior. Soils with a plasticity index between the range of 3 and 8 are considered a transition 

zone from sand to clay like behavior where soils can exhibit both sand and clay like behavior. 

Boulanger and Idriss recommended that a PI ≥ 7 be used as a guideline to determine whether a soil 

is susceptible to liquefaction or not. Figure 2.4 shows an illustration of “sand-like” and “clay-like” 

behavior based on the plasticity index. 

 Bray and Sancio (2006) also developed a procedure to evaluate whether a soil is susceptible 

to liquefaction based on the plasticity index (PI) and ratio of water content (wc) to the liquid limit 

of the soil. The guidelines developed by Bray and Sancio were that if a soil has a PI > 18 or a wc 

< 80% then the soil is not susceptible to liquefaction. If the soil has a PI < 12 and wc > 85% then 

the soil is susceptible to liquefaction. Soils falling between this range with 12 < PI < 20 and 80% 

< wc < 85% are considered potentially susceptible to liquefaction. It can be noted that by using 

water content, which is linked to density and therefore to liquefaction resistance, as one of the 

factors in their assessment of liquefaction susceptibility, that it appears the latter procedure mixes 

liquefaction susceptibility and triggering (Kramer and Stewart, unpublished manuscript). 
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Although soil liquefaction susceptibility is slightly different between the Boulanger and 

Idriss (2006) and Bray and Sancio (2006), one can see both procedures have transition zones 

between soils considered susceptible and not susceptible to liquefaction. However, both transition 

zones occur at a high enough plasticity index that may allow for sampling and lab testing in order 

to better determine the susceptibility of the soil to liquefaction. 

 

 

Figure 2.4. Illustration showing the boundaries of “sand-like” and “clay-like” soil based on the 

plasticity index (Boulanger and Idriss, 2006) 

2.4 LIQUEFACTION INITIATION 

Liquefaction is the incremental build-up of pore pressure due to static or transient loading 

of undrained sands/coarse silts that leads to the collapse of the soil skeleton (effective stress 

reduces to zero). Liquefaction is considered to be initiated at the moment the effective stress 

reduces to zero (Seed and Lee, 1966). For one to grasp the phenomenon of liquefaction, one must 

understand when, and how, pore pressure is generated. In order to do so, one must recognize the 

importance of soil behavior and the mechanics of liquefaction. Whether pore pressure builds up, 
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and in turn reduces the effective stress, depends on the state of the soil. For undrained conditions, 

positive pore pressure develops when a soil contracts (decreasing effective stress), and negative 

pore pressure occurs when a soil dilates (increasing effective stress). Therefore, the state of the 

soil is important in the consideration of liquefaction initiation. 

2.4.1 Soil Behavior 

The behavior of a soil to loading depends on the initial state that a soil is at prior to loading, 

i.e. the initial void ratio (density) and initial effective stress. How a soil behaves is related to its 

initial position relative to the critical state line of the soil. How a soil behaves in the process of 

approaching the critical state line depends on whether a soil is drained or undrained and whether 

it is loaded monotonically or cyclically. The latter is important for design considerations and can 

determine whether short term or long is the critical condition for design.  

2.4.1.1 The Critical State 

In order to define the critical state of a soil one must know the shearing characteristics of 

that soil. Carrying out tests on a rubber bag filled with buckshot and sand, while attached to a water 

filled graduated cylinder to measure volume change, Reynolds (1885) discovered that the volume 

of a soil changes when being sheared. More specifically, Reynolds found that when sheared, 

granular materials in a dense state would increase in volume (i.e., the height of water in the 

graduated cylinder would fall). Reynolds coined this increase in volume due to the shearing of 

dense granular material as dilatancy (Castro, 1969). More than 50 years later in 1936 Casagrande 

performed several drained (shear stresses applied slowly allowing water to move in or out of the 

voids), strain-controlled triaxial tests on both initially loose and initially dense sands (Kramer, 

1996). Ultimately, this led Casagrande to discover what he called the critical state line. 
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2.4.1.1.1 Monotonic Loading Behavior of Sands – Drained 

Casagrande’s series of drained triaxial tests were monumental in understanding the 

shearing behavior of sands. Kramer (1996) developed Figure 2.5 in order to illustrate the product 

of these drained triaxial tests where dense sand behaves like a brittle material undergoing strain 

softening behavior, while the loose sand exhibits strain hardening behavior. The dense sand 

undergoes a relatively small initial contraction followed by dilation, whereas the loose sand is 

purely contractive. The main takeaway from Figure 2.5 is that at large strains a soil approaches the 

same void ratio (the critical void ratio) whether the soil was initially loose or initially dense, and 

at this critical void ratio the sample will no longer change in volume upon additional loading. 

Casagrande (1936) realized that the critical void ratio was unique to the effective confining stress 

the sand specimen was subjected to. By carrying out drained tests at several different effective 

confining stresses, Casagrande was able to create what he termed as the critical state line (CSL), 

also known as the critical void ratio line (CVR), which is shown in Figure 2.6 from Kramer (1996). 

Figure 2.6 shows a clear visualization of how a soil will behave based upon its initial state (initial 

void ratio and initial effective confining stress). Soil specimens plotting below the CVR line 

representing a dense state (point 1) will undergo an initial contraction (slightly moves down along 

the void ratio axis) followed by dilation (moves up the void ratio axis) until reaching the CVR line. 

Soil specimens plotting above the CVR line representing a loose state (point 2) will behave purely 

contractive in nature moving down the void ratio axis until reaching the CVR line. It should be 

noted that in this case, points 1 and 2 represent sand specimens at different effective confining 

pressures, however, if each sample had the same effective confining pressure the specimens would 

approach the same critical void ratio at large strains. 
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Figure 2.5. Representation from Kramer (1996) depicting the drained triaxial (strain-controlled) 

behavior of loose and dense sands. (a) Shows the stress-strain behavior of the sands. (b) Illustrates the 

stress-void ratio curves from the initial state to the critical void ratio at large strains. 

 

 

Figure 2.6. Representation of the critical void ratio line modified from Kramer (1996) illustrating 

how the critical void ratio changes dependent upon the effective confining stress for drained loading. 

 

 At the time Casagrande performed the drained triaxial stress, the means were not yet 

available to perform undrained strain-controlled triaxial tests. Although limited by equipment in 

1936, Casagrande was able to qualitatively analyze what would happen for undrained soils based 

upon his knowledge of soil behavior and the CSL. He predicted that undrained monotonic loading 

would cause changes in pore pressure based on a soils initial state with respect to the CSL. In other 

words, Casagrande predicted that soils would remain at a constant volume (void ratio) and the soils 

effective confining pressure would move to the CSL based upon whether the soil was contractive 

(positive excess pore pressures) causing a decrease in effective confining stress, or dilative 
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(negative excess pore pressure) resulting in an increase in effective confining pressure. This 

prediction was not verified experimentally until Seed and Lee (1967) performed monotonic 

undrained strain-controlled tests (Kramer, 1996). 

2.4.1.1.2 Monotonic Loading Behavior of Sands – Undrained 

For many cases in nature, saturated sandy soils can be considered to be in drained 

conditions because loading is typically applied slowly compared to the rate at which the pore water 

drains from the voids due to the relatively high permeability of sandy soils. For example, consider 

a building being constructed on a sandy soil with a water table at the base of the foundation. The 

rate at which the load is applied (the construction of the building) is much slower than the rate the 

pore water leaves the voids. Now consider the latter situation, but with the sand trapped between 

two low permeability confining clay layers. The clay has such a low permeability the pore water 

cannot escape during the loading of the building. In order to evaluate this type of loading in the 

laboratory, the engineer would require the need to perform an undrained triaxial test in which the 

volume of the soil is considered constant due to pore water unable to escape prior to the rapid 

loading. The characteristics of sandy soils subjected to undrained loading is also important for 

earthquakes which apply a load rapid enough that most or all of the pore water cannot escape.  

In order to study the behavior of sandy soils subjected to undrained loading, Seed and Lee 

(1967) performed several monotonic undrained strain-controlled triaxial tests and verified 

Casagrande’s predictions experimentally. Undrained tests have the characteristic of a shear stress 

being applied rapidly prior to the pore water escaping the voids (no volume change). Therefore, 

because the volume of the soil is constant, undrained loading causes positive or negative pore 

pressures to develop due to the tendency of the soil to contract or dilate when being sheared. An 

undrained soil in a loose state (plotting above the CVR line in Figure 2.6) would have the tendency 
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to contract when subjected to loading thus causing positive excess pore pressure which in turn 

cause a reduction in effective confining stress. The same sandy soil subjected to undrained loading 

conditions in a dense state (plotting below the CVR line) would have the tendency to dilate thus 

causing negative excess pore pressure which in turn leads to the increase in effective confining 

stress. 

 Figure 2.7 (after Kramer and Stewart, unpublished manuscript) shows the idealized 

behavior of sands subjected to an undrained triaxial test at a constant void ratio (density), but 

different initial effective stresses. Specimen 1 is above the CVR line and has a high initial effective 

confining pressure (thus is considered loose) and has an inherent tendency to contract when 

sheared. Because undrained tests are constant volume tests this tendency for the soil specimen to 

contract induces a positive pore pressure as shown in (c). This positive pore pressure causes 

specimen 1 to move left on the e – p’ plot shown in (d) as the effective stress is reduced. Soils 

considered loose (above the CVR line) exhibit strain softening behavior when undrained shearing 

takes place where the soil specimen reaches a maximum strength at a relatively low shear strain 

and then undergoes softening behavior as the shear strain increases quickly once passing the peak 

shear strength of the soil until reaching a constant state. Therefore, the stress path for specimen 1 

in (b) reaches a peak deviator stress and then quickly decreases to the steady state point. In other 

words specimen 1 exhibits flow liquefaction behavior (Section 2.1.1). Specimen 3 has a low 

confining pressure and because it lies below the CVR line in (d) it is considered to be dense. Dense 

soils subjected to undrained shearing undergo an initial contraction followed by dilation until 

reaching the CVR line. Therefore, specimen 3 in (c) initially has a small positive excess pore 

pressure followed by negative pore pressure as the soil continuously dilates as the shear strain 

increases until reaching a steady state. The negative excess pore pressure causes the effective 
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confining stress to increase and thus specimen 3 moves to the right in (d) until reaching the CVR 

line. Soils considered dense (specimen 3) subjected to undrained shearing exhibit strain hardening 

behavior where the strength of the soil increases as the shear strain increases. Specimen 2 is slightly 

above the CVR line and thus is considered loose although here (since it is so close to the CVR 

line) can be considered to be at an intermediate density. Initially, specimen 2 behaves similar to 

that of specimen 1 as they both are above the CVR line and will have a tendency to contract. 

Specimen 2 has an initial increase in positive pore pressure, however, it is lower in magnitude than 

that of specimen 1 because specimen 1 is more contractive than specimen 2. Specimen 2 behaves 

similar to specimen 1 initially undergoing strain softening behavior until reaching a point of phase 

transformation where the soil changes from being contractive to dilative and thus transitions from 

strain softening to strain hardening behavior until reaching the steady state point. This point of 

phase transformation is the transition point between contractive and dilative tendency where the 

soil for an instant in time is neither contractive nor dilative. The phase transformation point was 

first characterized by Ishihara, Tatsuoka, and Yasuda (1975) and Ishihara (1993). It should be 

noted that because specimens 1, 2, and 3 in Figure 2.7 are undrained and at the same initial void 

ratio, the samples will all have the same strength and effective confining pressure at large strains 

as can be seen from the overlapping paths of each specimen at large strains in (a) and the single 

black dot shown in (d). It is important to note that samples initially at the same effective confining 

pressure that undergo undrained shearing will not end at the same void ratio as can be viewed in 

Figure 2.8. On the other hand, if initial sample locations shown in Figure 2.8 (d) were to go undergo 

drained shearing, then the samples would move vertically in e – p’ space similar to Figure 2.6 and 

would therefore would approach the same final void ratio reaching the CVR line at the same point. 
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Figure 2.9 developed by Kramer (1996) is an excellent representation of soil behavior due to 

drained and undrained shearing. 

 

Figure 2.7. Representation of ideal soil behavior for three specimens undergoing undrained 

triaxial testing at the same initial void ratio (after Kramer and Stewart, unpublished manuscript). 

 

 

Figure 2.8. Representation of ideal soil behavior for three specimens undergoing undrained 

triaxial testing at the same initial effective confining pressure (after Kramer and Stewart, unpublished 

manuscript). 
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Figure 2.9. Representation of drained and undrained soil behavior based on the initial state of the 

soil with respect to the CVR line for (a) arithmetic and (b) logarithmic effective confining pressure 

abscissas from Kramer (1996). 

 

After performing undrained triaxial tests on the Toyoura sand prepared by the moist 

deposition method, Ishihara (1993) emphasized that a phase transformation point occurs typically 

in loose sands with a high effective confining stress similar to the position of specimen 2 in Figure 

2.7 (d). Ishihara also found that soils that were not at an intermediate density, considerably loose 

(specimen 1) or considerably dense (specimen 3), did not undergo a phase transformation point at 

intermediate strains and instead the state of phase transformation does not occur until reaching the 

steady state point. The steady state that all of the latter specimens reach at large shear strain levels 

represents the point where the specimens are at a constant shearing resistance, constant effective 

stress, constant void ratio (volume), and constant strain rate which was described as the steady 

state of deformation by Poulos (1981).  

Upon examining several case histories of liquefaction induced by earthquake shaking or 

monotonic loading, Castro and Poulos (1977) emphasized that, for loose sands such as specimen 

1 in Figure 2.7, the loss in shear strength is not accompanied by regaining that strength, but instead 

by a permanent loss in shear strength. One of the case histories Castro and Poulos examined was 
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the failure of Fort Peck dam in Montana in 1938 which exhibited a static liquefaction flow failure 

during the placement of rip-rap along the upstream face of the dam.  

Fort Peck dam was created via hydraulic filling. Hydraulic filling placement of the dam 

material led to the core of the dam consisting of fine-grained particles that transition to larger 

particles at the extent of the dam due to the nature of hydraulic filling. On September 22, 1938 the 

upstream face of Fort Peck dam underwent a static liquefaction flow failure during the placement 

of rip rap. A two-dimensional schematic illustration of the dam is shown in Figure 2.10. The static 

liquefaction flow failure was not accounted for in the design of the dam because there were only 

drained triaxial tests available to perform at the time and based on these drained tests the soil states 

relative to the CVR line exhibit dilative behavior as the sample specimens were considered dense 

(below the CVR line in Figure 2.11). The latter was detrimental because soil initial states plotting 

above the CVR line were considered to be susceptible to liquefaction and soil initial states plotting 

below the CVR line were considered to not be susceptible to liquefaction. Therefore, because 

drained triaxial tests were performed, designers prior to the construction of Fort Peck dam likely 

thought the soil would exhibit dilative behavior as a result to loading. The conditions at the site 

were actually undrained during the filling of the dam and thus the undrained CVR line would have 

been below the drained CVR line as shown in Figure 2.11. Based on the hypothetical sample 

specimen locations on the e – logσ’3c plot shown in Figure 2.11, one can see the soil would actually 

exhibit contractive behavior because the soils initial states were loose (above the undrained CVR 

line). The weight from the upstream slope caused a large enough shear stress on the soil in the dam 

and thus when the static shear stress on the upstream face of the dam surpassed the shearing 

resistance of the soil the dam exhibited a static liquefaction flow failure. The equipment/resources 

necessary to perform undrained tests had not been developed at the time of the construction of Fort 
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Peck dam. Had the resources been available, the engineers may have recognized this problem and 

designed the dam with flatter slopes (thus reducing the static shear stress). Therefore, 

distinguishing between drained and undrained behavior is essential in design.  

 

Figure 2.10. Two-Dimensional schematic representation of Fort Peck dam showing finer material 

at the center of the dam and getting progressively coarser towards the slopes (hydraulic filling) along 

with the rip rap on the slopes of the dam and an example of the failure surface. 

 

 

Figure 2.11. Semi-log plot of CVR line for drained and undrained triaxial testing modified from 

Kramer (1996). The black dots represent soils specimens tested. 
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2.4.1.1.3 State Parameter 

Upon going through the monotonic drained and undrained behavior of sands, one can see 

that the soil behavior depends not only on the density (void ratio) of the soil, but also the effective 

confining pressure the soil specimen is subjected to. Therefore, the state of a soil depends on both 

the void ratio and the effective confining pressure. Been and Jefferies (1985) created the state 

parameter attempting to better characterize soil behavior. Where the state parameter represents the 

distance a certain state of soil is vertically from the steady-state line as shown in Equation 2.1 

 ψ = 𝑒 − 𝑒𝑠𝑠  (2.1) 

where ψ is the state parameter, 𝑒 is the void ratio of the soil, and 𝑒𝑠𝑠 is the void ratio at the steady 

state. Therefore, when the value of the state parameter is positive the soil is in a loose state 

(contractive) and when negative the soil is in a dense state (dilative) as shown in Figure 2.12. 

 

Figure 2.12. e – log σ’ plot describing state parameter values with respect to the steady state line 

(after Kramer, unpublished manuscript). 

 

Been and Jefferies predicted that soils with the same state parameter value would have similar 

behavior. Due to the steady-state not occurring until large strains (which may not be attainable or 

feasible) the state parameter is difficult to measure in practice. As an alternative to the state 

parameter that is easier to calculate, Boulanger (2003) developed the relative state parameter index 

based primarily on the work of Been and Jefferies (1985), Bolton (1986) and Konrad (1998). The 
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relative state parameter index conforms with the steady state and state parameter concepts and can 

be used to determine the potential volume change of soils. The relative state parameter index is 

shown in Equation 2.2 

 ξ𝑅 =
𝑅

𝑄−ln(
100𝑝′

𝑝𝑎
)
− 𝐷𝑅  (2.2) 

where ξ𝑅 is the relative state parameter index, 𝑄 and 𝑅 are empirical constants, 𝑝′ is the mean 

effective stress in kPa, 𝑝𝑎 is the atmospheric pressure in kPa, and 𝐷𝑅 is the relative density of the 

soil. 𝑄 and 𝑅 can be found from laboratory testing, however, Bolton (1986) performed a series of 

laboratory tests and found values of 𝑄 = 10 and 𝑅 = 1 represent the data well for different types of 

clean silica sands (Salgado, 2008). Table 2.1 from Salgado (2008) shows values of 𝑄 and 𝑅 for 

Ottawa sand with differing percent of fines content. Because 𝐷𝑅 is related to the void ratio, and 𝑝′ 

changes based on pore pressure generation, the relative state parameter index can provide insight 

into soil behavior for both drained and undrained conditions. Therefore, one could conduct 

laboratory tests on soil specimens in order to measure potential volume changes and pore pressure 

generation that a soil specimen would undergo when subjected to drained and undrained loading 

respectively.  

Table 2.1. Values of empirical constants Q and R for Ottawa sand with differing fines contents and 

soil type (after Salgado, 2008). 

 

 

 

Q R coefficient of correlation (r
2
)

0 9.9 0.86 0.95

5 (silt) 9.1 -0.33 0.99

10 (silt) 9.3 -0.30 0.98

2 (clay) 12.1 2.78 0.96

5 (clay) 11.7 3.17 0.95

10 (clay) 10.9 3.43 0.80

Best fit
Fines (%)
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2.4.1.1.4 Cyclic Loading Behavior of Sands 

Cyclic loading typically occurs at a rate that does not allow pore pressure to dissipate when 

soils are subjected to it. For the remainder of this thesis, cyclic loading (such as the nature of 

earthquake loading) will be assumed to be applied at a rate that does not allow a saturated soil to 

dissipate water during loading. In order to understand the nature of cyclic loading, one can first 

consider the case of harmonic loading using a cyclic simple shear test. Figure 2.13 (Kramer and 

Stewart, unpublished manuscript) shows the shear stress-shear strain and shear stress-vertical 

effective stress plots obtained when using a cyclic simple shear device to subject a sand specimen 

to a harmonic horizontal shear stress (to idealize harmonic cyclic loading) where the soil is dry 

(therefore no change in effective stress) and assumed to not undergo degradation during each 

loading cycle. The loading reaches a constant maximum shear stress at each ¼ and ¾ cycle 

represented by points A through H. At small strains the soil can be considered to have linear 

behavior (where the shear modulus is at its maximum), however, soils behave non-linear as the 

shear stress increases causing the tangent shear modulus to decrease as the shear strain increases 

at a faster rate than the shear stress. Figure 2.13 (a) shows the latter behavior of the soil during the 

first ¼ cycle of loading. Upon reaching the maximum shear stress at point A, the loading is 

reversed in the other direction. At this point of stress reversal, the shear strain also reverses 

direction (from positive towards negative). Because the soil is behaving non-linear the soil does 

not follow the same path as initially and once again as the shear stress reaches point B the rate of 

shear strain to shear stress increases (the shear modulus reduces up until the point of stress 

reversal). Because the soil in this idealized case does not degrade, point C will be in the same 

location as point A. The soil will continue to follow this path so points A, C, E, and G will 

correspond to the same positive maximum shear strain, and points B, D, F, and H will correspond 
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to the same negative maximum shear strain. The latter points of maximum positive/negative shear 

strain will also occur at the same vertical effective stress for a dry soil. 

 

Figure 2.13. Non-degrading soil behavior to a harmonically applied horizontal shear stress using a 

cyclic simple shear device where (a) is at ¼ cycle, (b) ¾ cycle, and (c) 1 and ¼ cycle (Kramer and 

Stewart, unpublished manuscript). 

 

If the soil were to degrade during each cycle of loading points A, C, E, and G would not 

correspond to the same positive maximum shear strain, point C would be at a higher shear strain 

than point C, point E at a higher shear strain than point C, and point G at a higher shear strain than 

point E. The same would be true for points B, D, F, and H where point B would have the lowest 

shear strain and point H would have the highest shear strain. The latter is shown in Figure 2.14 

(Kramer and Stewart, unpublished manuscript) where (a) shows the response of a dry soil (no 

change in effective stress) and (b) shows the response of an undrained soil developing pore 

pressure thus reducing the vertical effective stress. 
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Figure 2.14. Degradation soil behavior to a harmonically applied horizontal shear stress using a 

cyclic simple shear device where the soil is drained and at a constant effective stress in (a) and (b) is 

undrained and therefore pore pressure generation takes places and reduced the vertical effective stress 

(Kramer and Stewart, unpublished manuscript). 

2.4.1.1.4.1 Cyclic Loading Behavior of Sands – Drained 

Drained cyclic loading of sands will not alter the effective stress because there is no pore 

pressure generation, however, there is volume change. Similar to drained monotonic loading of 

sands, whether a soil is loose or dense it will undergo initial contraction as depicted in Figure 2.6. 

Figure 2.15 (after Gao and Zhao, 2015) shows the drained cyclic loading behavior of Toyoura sand 

initially in a loose state subjected to constant amplitude and stress controlled cyclic shear loading. 

First, one can note that the contractiveness of the sand during each quarter cycle of loading 

progressively decreases as the load nears stress reversal. The latter is similar to pulling a rubber 

band, when you initially stretch the rubber band it’s relatively easy, but progressively becomes 

harder to pull and requires more force to move the same distance (assuming the rubber band does 

not rupture) as it is stretched. Much like the rubber band, the soil becomes progressively less 

contractive from the start to the end of each quarter cycle of loading. The contraction of the soil 

causes the volume to decrease (void space to reduce) as the sand particles re-align as they are 

sheared. The rate the sand particles re-align and fill void space during shearing decreases during 

each loading cycle (as shown by the large changes in volumetric strain during the early loading 

cycles followed by smaller changes in volumetric strain in the subsequent cycles). One will also 

(a) 

(b) 
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notice as contraction continues, and the sand particles fill more of the available void space, the 

shear strain decreases with each subsequent cycle. The latter makes sense conceptually because 

“there is less room” for shear strains to develop (i.e., the resisting forces of the surrounding 

particles prevent further shear strain). Upon approaching the critical state of the sand, the soil 

begins to experience phase transformation behavior and undergoes episodes of dilation (as the 

resisting forces surrounding particles start to give way). Dilation begins to occur after 

approximately three cycles of loading, where the soil now begins to increase in volume when 

nearing stress reversal, however the soil specimen continues to have an increase in volumetric 

strain per cycle. Volumetric strain increases with each cycle until reaching a limiting point where 

the soil will follow the same path of contraction and dilation continuously for each cycle. Although 

unsaturated sands cannot liquefy, the highly contractive nature of loose sands (depending on their 

position relative to the steady state line) can cause severe damage to structures via settlement of 

the ground surface.  

 

Figure 2.15. Drained cyclic loading behavior of the Toyoura sand initially in a loose state 

subjected to constant amplitude and stress controlled cyclic shear loading (after Gao and Zhao, 2015). 
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2.4.1.1.4.2 Cyclic Loading Behavior of Sands – Undrained 

Similar to drained cyclic loading, undrained cyclic loading causes the sand to contract or 

dilate, however, because the soil is undrained (pore water cannot escape during loading) the 

volume of the soil does not change. Because the volume of the soil does not change stress applied 

is taken by the pore water instead of the soil grains, therefore, the pore pressure increases and 

applies a pressure to the surrounding soil skeleton thus causing the effective stress to reduce. Idriss 

and Boulanger (2008) created Figure 2.16 which explains this concept well. Before describing this 

figure, one should note that the curve shown is the compression curve and not the critical state 

line. Drained loading allows for volume change as indicated from points A to B in Figure 2.16, 

however, this volume change cannot occur when the void space is completely filled with water. 

Therefore, instead of changing in volume, the tendency of this idealized loose sand to contract 

instead applies the load to the pore water causing the generation of pore pressure, and thus, the 

reduction in effective stress as is shown from point A to C. Idriss and Boulanger (2008) describe 

this process as the cyclic loading causing plastic volumetric contraction of the sand from point A 

to B if the soil were drained, although it’s undrained, therefore, they show the dashed line from 

point B to C to represent the plastic volumetric strain being countered by expansion due to elastic 

rebound of the sand skeleton from the pore pressure causing the reduction in effective stress. It 

should be noted that if the cyclic loading were to bring the soil to point C, liquefaction would not 

occur as the effective stress has not been reduced to zero (the origin on this plot). 
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Figure 2.16. Illustration of pore pressure generation occurring during undrained cyclic loading of 

an idealized loose sand (Idriss and Boulanger, 2008). 

 

In order to clearly show the behavior of a saturated sand to undrained loading throughout 

each cycle of loading, Kramer and Stewart (unpublished manuscript) created Figure 2.17 

illustrating undrained constant-amplitude stress controlled simple cyclic shear loading on a sand. 

Figure 2.17 shows (a) the shear stress versus shear strain, (b) the shear stress versus the normalized 

vertical effective stress, (c) the number of cycles versus shear strain, and (d) the number of cycles 

versus normalized vertical effective stress. Note (a) through (d) all show the number of cycles with 

the black dots and associated number. First, one should note that the first 20 cycles of loading 

cause minimal shear strain as shown in (a) and (c). Although the shear strain for the first 20 cycles 

stays relatively small, the increments of pore pressure generated each cycle add up to a large 

change in the normalized vertical effective stress which is 40% of the value prior to loading as 

shown in (b) and (d). Because the strength of the soil is directly related to the vertical effective 

stress, one can note that the strength of the soil continually decreases at a rate much different than 
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the soil stiffness. The soil is relatively stiff during the first 20 cycles of loading as given by the 

shear strain in (a) and (c), however, after the 20th cycle the soil begins to lose its stiffness relatively 

quickly (as the shear strain increases the soil stiffness decreases) as the soil approaches the phase 

transformation line during the 21st cycle. Upon reaching the phase transformation line as shown in 

(b), the soil dilates as the stress path moves up along the phase transformation line followed by 

rather large contractions until reaching the phase transformation line after another ½ cycle of 

loading. After the 22nd cycle of loading, the soil appears to reach zero vertical effective stress and 

then continually follows the same stress path where the soil strongly contracts and then dilates 

reaching zero vertical effective stress twice during each loading cycle. Seed and Lee (1966) 

referred to this point of zero effective stress as initial liquefaction. It should be noted once reaching 

initial liquefaction the soil stress path as shown in (b) continues to repeat, however, (a) and (c) 

clearly shows the shear strain of the soil continuing to increase during each cycle of loading. 

Therefore, the soil reaches a state of initial liquefaction twice during each loading cycle which 

causes continuous increases in the shear strain. In other words, the cyclic shear stress (loading) 

exceeds the steady-state strength of the soil momentarily causing deformation, hence this is termed 

cyclic liquefaction. 

Initial liquefaction is also often determined via the pore pressure ratio given in Equation 

2.3 as 

 𝑟𝑢 =
∆𝑢

𝜎′𝑣𝑜
  (2.3) 

where 𝑟𝑢 is the pore pressure ratio, ∆𝑢 the change in pore pressure, and 𝜎′𝑣𝑜 the initial effective 

vertical stress. As can be noted in (d) of Figure 2.17 the normalized vertical effective stress is equal 

to one minus the value of the pore pressure ratio. Therefore, initial liquefaction occurs when 𝑟𝑢 is 

equal to one, which is shown where the normalized vertical effective stress is zero in (d). Because 
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understanding the soil mechanics point of view is critical to understanding liquefaction, it will be 

noted again that the stiffness of the soil behaves differently than the strength. Figure 2.17 (b) shows 

that the strength of the soil decreases fairly consistently, whereas, the stiffness degrades relatively 

little until approaching initial liquefaction (𝑟𝑢 is equal to one) where the stiffness rapidly decreases 

as shown in (a) with the large increases in shear strain and the elongated (flattening) of the stress 

strain curve. For example, the soil beneath a building may undergo a large loss in shear strength 

during an earthquake, however, have little to no displacement (thus little damage) because the 

stiffness of the soil does not decrease quickly until nearing initial liquefaction. Therefore, assuming 

the soil was subjected to the conditions shown in Figure 2.17, but with a loading only lasting 19 

cycles, the soil beneath the building would have lost a good portion of its shear strength, but only 

little displacement would have occurred. Once the cyclic loading stopped after 19 cycles, the pore 

pressure would then start to dissipate and the soil would begin to regain its strength.  

 

Figure 2.17. Undrained behavior of a saturated sand undergoing constant-amplitude cyclic simple 

shear testing (after Kramer, unpublished manuscript). 



 

 

57 

2.4.2 Analysis of Liquefaction Potential 

After considering the undrained monotonic and cyclic behavior of sands, the potential of 

the development of liquefaction should be considered for flow liquefaction and cyclic liquefaction. 

Although there are key differences between the two, both can cause severe damage to natural and 

man-made structures. The development of a soil undergoing flow liquefaction and cyclic 

liquefaction will be discussed followed by the factors affecting liquefaction potential. 

2.4.2.1 Flow Liquefaction 

Flow liquefaction occurs when the initial shear stress on a soil exceeds the steady state 

shear strength. Flow liquefaction can occur due to monotonic or cyclic loading and the initiation 

of flow liquefaction can be defined by the three-dimensional flow liquefaction surface (FLS). 

Figure 2.18 from Kramer (1996) shows examples of stress path behavior for stress controlled 

triaxial tests of anisotropically consolidated loose saturated sand specimens reaching the FLS by 

monotonic and cyclic loading. Both loading regimes start at point A, however, the stress path taken 

to the FLS differs. Monotonic loading behaves as a strain-softening material where the soil 

contracts (causing pore pressure generation and the reduction in effective stress), reaches a peak 

shear strength (point B), and then undergoes a large amount of strain as the soil quickly fails to the 

steady state point C. Similarly, cyclic loading causes pore pressure generation reducing the 

effective stress, however, the stress path moves in a more horizontal overall fashion towards the 

FLS until reaching point D where the soil begins to undergo a large amount of strain at a fast rate 

to the steady state. Therefore, the same soil with different loading behavior may reach the FLS 

surface at different locations along this surface depending on the soils initial state and the stress 

path induced by undrained loading. One should also keep in mind that soils under different initial 

conditions (e.g. soils subjected to different initial shear stresses), would require different 
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magnitude undrained loading to reach the FLS (Kramer and Seed, 1988). Therefore, if two soils 

were subjected to the same loading, but one had a higher initial shear stress, one may encounter 

only one of the soils reaching the FLS and failing, whereas, the other soil subjected to the same 

loading may have only experienced a relatively small strain compared to the soil at a high initial 

shear stress. 

 

 

Figure 2.18. Monotonic and cyclic loading stress path behavior of anisotropically saturated loose 

sand specimens subjected to stress controlled triaxial tests (Kramer, 1996). 

 

The FLS was first called the “CSR plane” by Vaid, Chern, & Tumi (1985) which was 

defined as the intersection of the critical consolidation stress in a 3-dimensional sand behavior 

diagram (e-σ’-τ space) with the “CSR line,” where the CSR line was the line (q’-p’ stress space) 

where CSR values above the CSR line would cause flow liquefaction to occur and CSR values 

below this line would not cause flow liquefaction to occur (unless an undrained response brought 

the state of the soil to the CSR line). Vaid et al. further discussed that the lower bound of the CSR 

plane, which they termed the “critical consolidation stress” marks the surface where if the state of 

a soil lies below this surface, cyclic loading cannot cause flow liquefaction. Current terminology 

generally represents the latter description by Vaid et al. as the FLS where initial soil states below 
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the steady state point will not undergo flow liquefaction due to monotonic or cyclic loading. If the 

state of a soil reaches the FLS (the state of soil in which the shear strength is less than the static 

shear stress applied to the soil) the soil will have reached the “point of no return” where flow 

liquefaction will occur. Figure 2.19, modified from Kramer (1996), shows the flow liquefaction 

surface in (q’-p’ stress space) with the area of soils susceptible to flow liquefaction shaded. Below 

the stress at the steady state the soil is susceptible to cyclic liquefaction. 

 

Figure 2.19. Liquefaction susceptibility for flow liquefaction and cyclic liquefaction (Modified 

from Kramer, 1996). 

2.4.2.2 Cyclic Liquefaction 

Cyclic liquefaction occurs when a soils steady state strength (shear strength of the liquefied 

soil) is greater than the initial static shear stress. Therefore, a soil is susceptible to flow liquefaction 

below the steady state point shown in Figure 2.19. Cyclic liquefaction causes deformations that 

occur incrementally as the shear strength of the soil is momentarily exceeded over multiple cycles 

of loading. It is important to note that cyclic loading does not necessarily mean cyclic liquefaction, 

monotonic and cyclic loading can cause flow liquefaction, however, only cyclic loading can cause 

cyclic liquefaction. It is also important to note that the initiation of liquefaction has been defined 

Susceptible to Flow Liquefaction 

Susceptible to Cyclic Liquefaction 
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in multiple ways. Generally, the initiation of liquefaction is taken to be when the effective stress 

is reduced to zero (Seed and Lee, 1966), i.e., when the pore pressure ratio (see Equation 2.3) 

reaches a value of one, however, other methods are based on a threshold shear strain value such as 

Ishihara (1993). In this thesis, the initiation of liquefaction will be taken as when the pore pressure 

ratio reaches a value of one, and soils experiencing shear strains/deformations, but not reaching a 

pore pressure ratio of one, will be termed cyclic mobility. For example, Figure 2.20 from Kramer 

(1996) shows three stress paths of soils under different initial shear stress and different cyclic shear 

stresses where two of the cases are exhibiting cyclic mobility and one cyclic liquefaction. 

 

Figure 2.20. Stress paths for soils with different initial shear stress and cyclic shear stress utilized 

to show the difference between cyclic mobility and cyclic liquefaction (Kramer, 1996). 

 

Cases (a) and (b) presented in Figure 2.20 represent cyclic mobility, whereas case (c) 

illustrates cyclic liquefaction. Case (a) shows a cyclically loaded soil that stays below the steady 

state strength. Upon reaching the drained failure envelope the soil in case (a) will dilate and 

contract along the same path without ever reaching an effective stress of zero. Because of this the 

soil did not undergo cyclic liquefaction, but it did experience cyclic mobility where permanent 

strains developed throughout each loading cycle. These permanent strains become much larger 

when the state of stress is near an effective stress of zero because the soil stiffness decreases 

dramatically (see Section 2.4.1.1.4.2) when approaching liquefaction initiation. Case (b) also does 

not reach an effective stress value of zero, however, differs from the soil in (a) because the state 
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of stress of the soil in (b) briefly exceeds the steady state strength during multiple cycles of loading. 

Because the soil in (b) briefly exceeds the steady state strength, large permanent strains may occur 

in these brief moments of exceedance. Therefore, the soil in case (b) will not only obtain cyclic 

strains as those discussed for the soil in (a), but also may experience large permanent strains during 

the moments the steady state strength is exceeded. The soil in case (c), does reach the state of 

initial liquefaction because the effective stress does reach a value of zero. In fact, no soil will 

undergo cyclic liquefaction unless stress reversals occur as shown in case (c) (Kramer, 1996). In 

order for stress reversals to occur, the cyclic shear stress must be larger than the initial static shear 

stress as presented in case (c) where the stress path crosses the axis. Therefore, permanent strains 

will accumulate throughout loading for the soil in case (c), similar to the soil in case (a), however, 

the soil in (c) will also undergo permanent strains due to liquefaction of the soil. Kramer (1996) 

also illustrated in Figure 2.20 that fewer cycles of loading were required for the soil in case (c) 

because soils undergoing stress reversals have larger increases in pore pressure based on the work 

of Dobry et al. (1982) whom inferred the latter when developing a simplified cyclic strain approach 

for liquefaction analysis. 

2.4.2.2.1 Factors Affecting the Potential of Cyclic Liquefaction 

Many factors affect the initiation of cyclic liquefaction including the load amplitude, soil 

density, the plasticity of the fines, initial shear stress, and initial effective stress. These factors are 

practically the same as described by Seed and Harder (1990) in regards to impacting the equivalent 

uniform cyclic stress ratio required to initiate liquefaction. In order to clearly show the effects of 

each of these factors, stress controlled cyclic simple shear tests are performed showing the 

resulting shear stress versus shear strain curves and the corresponding stress path of shear stress 

versus initial effective stress. The effects on liquefaction will be noted based on the number of 
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cycles to reach liquefaction and because part of the initiation of cyclic liquefaction is characterized 

by the earthquake loading, Equation 2.4 is used to represent this loading since the following tests 

are cyclic simple shear tests, 

 𝐶𝑆𝑅 =
𝜏𝑐𝑦𝑐

𝜎′𝑣𝑜
  (2.4) 

where 𝐶𝑆𝑅 is the cyclic stress ratio, 𝜏𝑐𝑦𝑐 is the horizontal cyclic shear stress, and 𝜎′𝑣𝑜 initial 

vertical effective stress. 

2.4.2.2.1.1 Load Amplitude 

As one would expect, increasing the load amplitude (with all other factors the same) would 

decrease the number of cycles required to reach initial liquefaction because increasing the load 

amplitude causes an increase in pore pressure per cycle which in turn decreases the effective 

vertical stress per cycle. Figure 2.21 from Kramer (2009) shows the same soil subjected to cyclic 

shear stresses of 15 kPa and 20 kPa at a relative density of 60%. Therefore, the soil subjected to a 

cyclic shear stress of 15 kPa will have a lower CSR than the soil subjected to 20 kPa. The soil 

subjected to the higher cyclic shear stress amplitude of 20 kPa clearly requires less cycles to reach 

a vertical effective stress of zero (initiation of liquefaction) as the pore pressure is generated much 

more quickly than the same soil subjected to a cyclic shear stress of 15 kPa. The soil subjected to 

20 kPa reached initial liquefaction in 7 cycles of loading whereas the same soil subjected to 15 

kPa reach initial liquefaction in 23 cycles. 
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Figure 2.21. Two identical soils subjected to different cyclic shear stress amplitudes causing a 

different amount of cycles of loading to reach initial liquefaction (Kramer, 2009). 

 

For earthquake engineering applications, it’s also important to remember that although 

increasing load amplitude decreases the number of cycles to reach the initiation of liquefaction, a 

smaller load amplitude, but a longer duration of motion can also cause a soil to liquefy. For 

example, two identical soils termed soils A and B are subjected to the same weak amplitude ground 

motion, but soil A is exposed to this motion for 60 seconds, and soil B is exposed to this same 

motion for 75 seconds. Soil A does not liquefy, but soil B does reach initial liquefaction. Since the 

soils had identical properties, one can interpret that the additional duration of soil B allowed pore 

pressure generation to continue and thus keep reducing the effective stress allowing initial 

liquefaction to occur, whereas, soil A was not subjected to generate enough pore pressure to bring 

the soil to the initiation of liquefaction. 
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2.4.2.2.1.2 Soil Density 

Two soils with the same properties except for differing density, but at the same vertical 

effective confining stress, will behave differently. The soil at the lower density would be more 

contractive and because more contractive soils generate pore pressure more quickly, the looser soil 

would decrease in effective stress quicker than the denser soil. Therefore, the loose, and more 

contractive soil, would require less cycles of loading to reach the initiation of liquefaction 

compared to the denser soil. Figure 2.22 from Kramer (2008) shows two soils at same vertical 

effective stress with the same properties except for one of the soils is at a relative density of 40% 

and the other 50%. The looser soil with the relative density of 40% clearly shows larger decreases 

in vertical effective stress due to the increased rate of pore pressure generation and therefore 

required 15 cycles of loading to reach the initiation of liquefaction, whereas, the denser soil at a 

relative density of 50% required 39 cycles of loading to reach the initiation of liquefaction. 

 

Figure 2.22. Number of cycles of loading required to reach the initiation of liquefaction for two 

soils at the same vertical effective stress with the same soil properties, except differing relative densities 

of 40% and 50% (Kramer 2008). 
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2.4.2.2.1.3 Fines Plasticity 

The plasticity of the fines in a soil can play an important role in determining whether a soil 

will undergo liquefaction or not. It has already been established in Section 2.3 that a certain 

plasticity index prevents a soil from being able to liquefy because this soil is not able to generate 

enough pore pressure to bring the soil to a state of liquefaction. Boulanger and Idriss (2006) 

recommended that a soil with a plasticity index of greater than 7 is not susceptible to liquefaction. 

Figure 2.23 modified by Kramer (2008) and originally from Dahl et al. (2014) helps illustrate why 

soils with higher plasticity index do not liquefy. Figure 2.23 shows two soils, one with a plasticity 

index (PI) of 0 classified as a silty sand (SM), and the second with a PI of 26 and classified as a 

low-plasticity clay (CL) subjected to cyclic simple shear tests. It is important to note that although 

the name “low-plasticity clay” may be a bit confusing because of the word “low,” it does represent 

the soil with the PI of 26 compared to the silty sand with the PI of 0.  

 

Figure 2.23. Cyclic softening of a silty sand (PI = 0) and low-plasticity clay (PI = 26) subjected to a 

cyclic simple shear tests (Kramer, 2008). 
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First, it should be noted neither the silty sand (PI = 0) or low-plasticity clay (PI = 26) reach a state 

of initial liquefaction (therefore these soils are exhibiting cyclic softening) as indicated by the 

normalized vertical effective stress not reaching a value of 0, however, there are stark differences 

between the two soils due to their different plasticity. It is clear that the silty sand (lowest 

normalized vertical stress approximately 0.08) becomes closer to a state of liquefaction than the 

low-plasticity clay (lowest normalized vertical stress approximately 0.23). This is because the silty 

sand is more contractive (generates more pore pressure) than the low-plasticity clay as indicated 

by the lower slope of the normalized shear stress to normalized vertical stress for the silty sand as 

it moves farther to the left each cycle of loading. It is noticeable from the normalized shear stress 

versus shear strain plots that the low-plasticity clay initially has a lower stiffness than the silty 

sand, however, by the end of loading the low-plasticity clay has a higher stiffness as the slope is 

greater (higher shear modulus) than the silty sand. The low-plasticity clay has more “stretched” 

stress strain loops than the silty-sand, therefore, the low-plasticity clay has a higher rate of energy 

dissipation. In summary, the low-plasticity clay (PI = 26) is not able to generate as much pore 

pressure as the silty sand (PI = 0), and therefore the low-plasticity clay is farther from a state of 

initial liquefaction and retains a higher stiffness than the silty sand. 

2.4.2.2.1.4 Initial Static Shear Stress 

As with the previous factors described thus far, the generation of pore pressure is key in 

the generation of initial liquefaction. An initial shear stress on a soil is generated from either 

sloping ground or from some sort of structure (e.g., a building) that induces additional shear stress 

on a soil element that would not be there if the soil was either on flat ground or if there was no 

structure was present. Because the stability of a soil element is lower when subjected to an initial 

shear stress, it would seem reasonable to believe that a higher initial shear stress would reduce the 



 

 

67 

number of cycles to liquefaction initiation. However, this has been found to not always be the case 

(Castro and Poulos, 1977). While performing a series of cyclic triaxial tests, Castro and Poulos 

(1977) noticed that higher shear stresses actually produced smaller “cyclic mobility stress” (cyclic 

stress ratio). Lower CSRs would then mean more cycles to cause liquefaction initiation. Seed and 

Harder (1990) found that increased initial static shear stress on the soil favorably increased the 

liquefaction resistance (more cycles of loading to induce liquefaction) and that only relatively 

loose soils decreased the liquefaction resistance (less cycles of loading to induce liquefaction). The 

latter has been attributed to soil particle reorientation when an initial static shear stress is present 

when a soil is subjected to cyclic shear stresses. Relatively loose soils are able to continue particle 

reorientation as they fill void space (reduce void ratio) and cause contraction which generates pore 

pressures. The presence of an initial static shear stress for dense soils, on the other hand, inhibits 

particle reorientation and therefore less pore pressure is able to be generated each cycle of loading. 

Figure 2.24 from Kramer (2008) shows two soils both with a relative density of 60%, however 

subjected to different initial static shear stresses of 5 kPa and 8kPa. The shear strain versus vertical 

effective stress plots show that the soil specimen subjected to a lower initial static shear stress 

“triggered” liquefaction after 15 cycles, whereas the soil specimen subjected to a higher initial 

static shear stressed took 16 cycles to trigger liquefaction with slightly less pore pressure 

generation each cycle.  
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Figure 2.24. Two soils with loaded with identical cyclic stress ratios and the same relative density 

of 60%, but with differing initial static shear stresses of 5 kPa and 8 kPa applied (Kramer, 2008). 

2.4.2.2.1.5 Initial Effective Stress 

There are two key components to consider when evaluating the effects of initial effective 

stress on a soil. First, a soil that is subjected to a higher initial effective stress will be more 

contractive as can be observed from re-examining the state of a soil with respect to the critical 

state line shown in Figure 2.9. Second, increasing the initial effective stress naturally increases the 

density of soil, and the denser a soil is, the less contractive it becomes. As noted in Vaid et al. 

(1985) and Seed and Harder (1990), the impact of initial effective stress generally decreases the 

liquefaction resistance because increased initial effective stress causes increased pore pressure 

generation due to the first component (higher initial effective stress causes a soil to be more 

contractive). Therefore, the first component generally outweighs the second component in terms 

of cycles to reach the triggering of liquefaction. Kramer (2008) illustrated this behavior with Figure 
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2.25 comparing two soils subjected to the same cyclic stress ratios and relative density of 60%, 

however, differing initial vertical effectives stresses of 100 kPa and 200 kPa were applied. The 

soil subjected to the 200 kPa initial vertical effective stress reached initial liquefaction in 15 cycles 

due to the increase rate of pore pressure generation compared to the sample applied a 100 kPa 

initial effective vertical stress which reached initial liquefaction after 22 cycles of loading. 

 

Figure 2.25. Stress path behavior of two soils applied differing initial vertical effective stresses of 

100 kPa and 200 kPa that were subjected to the same cyclic stress ratios at a relative density of 60% 

(Kramer, 2008). 

2.4.2.2.1.6 Other Factors 

Several other factors can influence liquefaction triggering in a soil, however, to a lesser 

extent than the prior five factors. Seed et al. (1975) found that a soil subjected to prior shaking 

took more cycles of loading to reach liquefaction initiation with only negligible increase in relative 

density from the prior vibrations. Therefore, this prior shaking increased the soils liquefaction 
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resistance. A summary of many of the other factors can be found in Finn (1981) who highlighted 

the effects that the overconsolidation ratio (OCR) and the lateral earth pressure coefficient have 

on liquefaction initiation. It was first realized that increasing the OCR of a soil increased the 

liquefaction resistance of that soil. It was found that the increase in liquefaction resistance was 

partially attributed to the increase in the lateral earth pressure coefficient, however, the lateral earth 

pressure coefficient could not explain all of the increased liquefaction resistance. Therefore, both 

the OCR and the lateral earth pressure coefficient have been shown to increase a soils liquefaction 

resistance. Finn (1981) also provided a summary of the increased liquefaction resistance of a soil 

due to aging effects. Vaid et al. (1985) found that particle angularity also plays a role in 

liquefaction resistance. Generally, sand with more angular grains is more resistant to liquefaction 

compared to sand with rounded grains especially at low confining pressures. It should also be 

noted particle sorting (well graded or poorly graded) is also a factor in liquefaction resistance. 

Generally, sands that are poorly graded (well sorted) have similar grain sizes and therefore have 

more void space than a sand that’s well graded (poorly sorted) because well graded sands consist 

of sand particles of varying sizes that can fill the void space between particles of larger size. Thus, 

well graded sands have lower void ratios and thus higher density than poorly graded sands which 

lead to well graded sands having a higher liquefaction resistance. 

 In order to summarize the effects of the primary and secondary factors on liquefaction 

resistance Table 2.2 was created showing whether the number of cycles to reach liquefaction 

increases or decreases based on an increase in the previously discussed primary and secondary 

factors. 
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Table 2.2. Increase or decrease of number of cycles to reach cyclic liquefaction initiation based on 

known factors to affect cyclic liquefaction. 

 

2.4.2.2.2 Cyclic Stress Approach 

A simple way to determine whether liquefaction will or will not occur is the factor of safety. 

The factor of safety against liquefaction can be split into two parts: earthquake loading and 

liquefaction resistance. Therefore, the factor of safety against liquefaction can be represented as  

 𝐹𝑆𝐿 =
𝑅

𝐿
  (2.5) 

where 𝑅 is the liquefaction resistance and 𝐿 is the earthquake loading. Several methods have been 

developed in order to best characterize liquefaction potential. Each method has its strengths and 

weaknesses. The most common method implemented today is the cyclic stress approach which 

characterizes earthquake loading and liquefaction resistance in terms of cyclic shear stresses and 

the amplitude and duration of these cyclic shear stresses is related to pore pressure generation 

(Kramer, 1996). For the cyclic stress approach, earthquake loading is represented by the cyclic 

stress ratio (CSR) previously shown in Equation 2.4, and the cyclic resistance ratio (𝐶𝑅𝑅), both of 

which will be discussed in detail. With the latter being said, Equation 2.5 can be written as  

 𝐹𝑆𝐿 =
𝐶𝑅𝑅

𝐶𝑆𝑅
  (2.6) 

Type Factor Affecting the Potential of Cyclic Liquefaction

Increase in Factor 

Affecting 

Liquefaction 

Potential

Increase or Decrease in 

Number of Cycles to 

Reach Liquefaction 

Initiation

Load Amplitude

Soil Density

Fines Plasticity

Initial Static Shear Stress Both*

Initial Effective Stress

Prior Shaking

OCR and Lateral Earth Pressure Coefficient

Age of Soil Deposit

Particle Angularity

Gradation

Primary

Secondary

*For loose sand number of cycles decreases and for medium dense to dense sand number of cycles increases.
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where 𝐶𝑅𝑅 is the cyclic resistance ratio and 𝐶𝑆𝑅 is the cyclic stress ratio. The cyclic stress 

approach needs several correction factors because earthquake magnitude, initial shear stress, and 

initial vertical effective stress vary based on location. A weakness to the cyclic stress approach is 

that in-situ factors such as previous shaking history, age of the soil deposit, and soil fabric cannot 

be replicated in reconstituted lab specimens therefore field exploration of the liquefaction 

resistance of a soil is required.  

2.4.2.2.2.1 Earthquake Loading 

The earthquake loading component is broken into two methods: site response analysis and 

the simplified procedure, each of which will be explained in detail. It is important to note that the 

cyclic stresses that are used in empirical liquefaction potential evaluation are not to be impacted 

by pore pressure generation. This is because the case histories in which the empirical procedures 

to evaluate liquefaction potential are derived are based on ground motion prediction equations 

(GMPEs) that assume no pore pressure generation, or from recorded ground motions at sites that 

did not liquefy.  

2.4.2.2.2.1.1 Site Response Analysis 

Site response analysis is a detailed assessment of how ground motions will change 

characteristics when propagating from rock to soil. Several factors influence the behavior of a 

ground motion when transitioning from rock to soil and this change in behavior can be either good, 

or bad for the structures this ground motion is subjected to depending on many variables such as 

the natural frequency of the structure and amplification or de-amplification of the ground motion 

from rock to soil. An overview of a site response analysis procedure is as follows:  

1) Obtain or scale/modify an input ground motion on rock (acceleration time history) that is 

expected for the site of interest with similar magnitude, frequency content, and duration; 
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2) Utilize a computer program to apply a fourier transform and break the ground motion into 

a series of simple harmonic motions to develop the fourier amplitude spectrum (FAS) for 

rock which shows how the amplitude of the ground motion is distributed with frequency; 

3) Apply a transfer function to account for how each frequency of the rock input motion is 

altered when propagating through a soil deposit; 

4) The result of multiplying each FAS by the transfer function is the FAS on soil; 

5) Utilize a computer program to perform an inverse fourier transform to combine the FAS 

on soil into the ground motion on soil (acceleration time history). 

A transfer function is applied because soil acts as a “filter” which can amplify or de-amplify, 

change the frequency content, change the duration, or have only minor impact on the input rock 

ground motion (Kramer, 1996). A site response analysis therefore allows one to predict the ground 

motions on soil, and thus allows one to be able to design a structure to withstand the predicted 

level of shaking given the probability of that shaking occurring in some period of time. 

There are three approaches to site response analysis: linear, equivalent linear, and non-

linear. The linear approach assumes that the soil behaves linear and the dynamic soil properties 

(shear modulus and damping) remain constant throughout loading although the shear strain is 

changing. This means that a soils shear modulus, or stiffness of the soil, is assumed to remain at 

its initial value (the maximum) and damping is assumed to remain at its initial value (the 

minimum). It is known that the dynamic soil properties change with changing shear strain, 

therefore, to account for this the equivalent linear approach was developed. Because the equivalent 

linear analysis is still a linear analysis, constant shear modulus and damping are used, however, it 

assigns a constant shear modulus and damping based on the amount of strain in each soil layer. 

The level of strain is selected using an iterative approach because the dynamic soil properties and 
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shear strain depend on each other (Joyner and Chen, 1975). The strain selected is typically 65% of 

the peak shear strain (Kramer, 1996). The equivalent linear approach provides a more reasonable 

approximation of soil behavior than the linear approach, however, can underestimate and 

overestimate ground motions because the shear modulus and damping are constant and do not 

change with shear strain. Typically, equivalent linear analyses can provide results that are similar 

to nonlinear analyses when shear strains are small to moderate, however, when shear strains are 

large the equivalent linear approach can approximate soil behavior in an average sense, but the 

shear modulus may largely differ at certain shear strains (Kramer, 1996). Because soils behave 

linear only at small strains, the non-linear approach provides the most accurate representation of 

soil behavior. The non-linear approach can allow for the changing shear modulus and damping 

with changing shear strains. The non-linear approach integrates the wave equation for a visco-

elastic medium in small time steps, therefore, allowing for capturing the changing material 

properties. Because the non-linear model captures these changes and is able to be modeled in terms 

of effective stresses, one can model permanent displacements and pore pressure generation. From 

a commercial point of view, one downside to the non-linear approach at this point in time is that 

it requires expertise that oftentimes there is not time to learn, or if experienced personnel are 

available, it simply takes too long to compute from an economic standpoint. 

 An important final note on site response analysis is to know when 1-D site response 

analyses can be applied. 1-D site response analyses should only be used when the propagating 

shear waves are vertical when reaching the ground surface. Instances where vertical propagating 

shear waves will not occur, and thus where 1-D site response analysis should not be used, are a 

dam in a narrow canyon, retaining structures, dams and embankments, and tunnels (Kramer, 1996). 
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Vertical propagating shear waves are also likely to not occur for complex soil conditions (non-

horizontal soil boundaries) and inclined ground surface. 

2.4.2.2.2.1.2 Simplified Procedure 

Although site response analysis provides a more comprehensive evaluation of earthquake 

loading, the simplified procedure developed by Seed and Idriss (1971) provided an alternative to 

the computational extensive site response analysis. Seed and Idriss (1971) highlighted five factors 

that were known to influence the potential for liquefaction: soil type, relative density/void ratio, 

initial confining pressure, the intensity of ground shaking, and the duration of ground shaking. 

Therefore, from these five factors and Newton’s Second Law of Motion, Seed and Idriss developed 

the original form of the simplified procedure. Starting from Newton’s Second Law of Motion the 

force applied to an object is expressed as 

 𝐹 = 𝑚𝑎  (2.7) 

where 𝑚 is the objects mass and 𝑎 the objects acceleration. Noting the force can be represented as 

the maximum shear stress applied multiplied by the area, along with knowing the mass is simply 

the weight of the object divided by gravity, the latter expression can be written as 

  𝜏𝑚𝑎𝑥𝐴 =
𝑊

𝑔
𝑎𝑚𝑎𝑥  (2.8) 

where 𝜏𝑚𝑎𝑥 is the maximum shear stress, 𝐴 the area (thickness times width), 𝑊 the weight, and 𝑔 

gravity. The weight of the soil can be represented in terms of the soil unit weight multiplied by the 

volume (depth multiplied by thickness and width), therefore cancelling out like terms gives 

 𝜏𝑚𝑎𝑥 =
𝛾ℎ

𝑔
𝑎𝑚𝑎𝑥  (2.9) 
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where 𝛾 is the soil unit weight and ℎ the depth to the soil element. Knowing that the soil does not 

behave as a rigid body and therefore the maximum shear stress decreases with depth, Seed and 

Idriss (1971) modified Equation 2.9 to account for the maximum shear stress decreasing with depth 

 𝜏𝑚𝑎𝑥 =
𝛾ℎ

𝑔
𝑎𝑚𝑎𝑥𝑟𝑑  (2.10) 

where 𝑟𝑑 is the stress reduction coefficient that can be estimated from Figure 2.26 originally 

developed by Seed and Idriss (1971). 

 

Figure 2.26. Stress reduction coefficient representing the cyclic shear stress variation with depth 

for flat or nearly flat ground (After Kramer, 1996). 

 

Seed and Idriss also realized that an earthquakes transient acceleration time history could not be 

exactly replicated in the laboratory and that 𝜏𝑚𝑎𝑥, the maximum shear stress, may or may not occur 

more than once during shaking. To account for the latter and develop an average equivalent 

uniform shear stress, a shear stress value of 65% of 𝜏𝑚𝑎𝑥 was taken, giving 
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 𝜏𝑐𝑦𝑐 = 0.65
𝛾ℎ

𝑔
𝑎𝑚𝑎𝑥𝑟𝑑  (2.11) 

where 𝜏𝑐𝑦𝑐 is the average equivalent uniform shear stress. To take into account earthquakes of 

different magnitudes, Seed and Idriss proposed Table 2.3 which shows the number of significant 

stress cycles to apply for a given earthquake magnitude to implement with Equation 2.11 to 

calculate the stresses induced at variable depths for multiple magnitude earthquakes. 

Table 2.3. Number of significant stress cycles, Nc, for multiple magnitude earthquakes. 

 

 Since Seed and Idriss proposed the simplified procedure, changes have taken place. One 

of which was the introduction to the standardized cyclic stress ratio which is found when dividing 

both sides of Equation 2.11 by the initial vertical effective stress and also noting that the soil unit 

weight multiplied by the depth to the soil element is equal to the total initial vertical stress, 

therefore giving 

 𝐶𝑆𝑅 = 0.65
𝑎𝑚𝑎𝑥

𝑔

𝜎𝑣𝑜

𝜎′𝑣𝑜
𝑟𝑑  (2.12) 

where 𝐶𝑆𝑅 is the standardized cyclic stress ratio, 𝜎𝑣𝑜 is the total initial vertical stress, and 𝜎′𝑣𝑜 is 

the initial vertical effective stress. As an alternative to Table 2.3, Seed et al. (1975) developed a 

Magnitude Scaling Factor (𝑀𝑆𝐹) in order to better account for the duration of earthquakes of 

varying magnitude therefore giving rise to 

 𝐶𝑆𝑅 = 0.65
𝑎𝑚𝑎𝑥

𝑔

𝜎𝑣𝑜

𝜎′𝑣𝑜

𝑟𝑑

𝑀𝑆𝐹
  (2.13) 

where the larger a given earthquake magnitude, the smaller the value of 𝑀𝑆𝐹, and therefore the 

larger the 𝐶𝑆𝑅. More modern adjustments have been made as well including Idriss (1999), Cetin 

Earthquake Magnitude Number of Significant Stress Cycles, N c

7 10

7-1/2 20

8 30
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et al. (2004), Idriss and Boulanger (2008), and Boulanger and Idriss (2014) developing/modifying 

the 𝑟𝑑 and the 𝑀𝑆𝐹 terms.  

Idriss and Boulanger 

From site response analyses it is known that 𝑟𝑑 depends on characteristics of earthquake 

ground motion, the shear wave velocity profile of the site, and the non-linear shear modulus and 

damping (Idriss and Boulanger, 2008). From the work of Golesorkhi (1989), Idriss (1999) 

presented a new 𝑟𝑑 based on hundreds of parametric site response analyses and concluded that 𝑟𝑑 

could adequately be used in liquefaction evaluation procedures based on the depth and the 

magnitude of an earthquake. Equation 2.14, 2.15, and 2.16 show Idriss and Boulangers 𝑟𝑑 

expression 

 𝑟𝑑 = exp(α(z) + β(z)M)  (2.14) 

where α(z) and β(z) 

 α(z) = −1.012 − 1.126 sin(
𝑧

11.73
+ 5.133)  (2.15) 

 β(z) = 0.106 + 0.118 sin(
𝑧

11.28
+ 5.142)  (2.16) 

where M is the moment magnitude, 𝑧 is the depth in meters, and the portion of the equations in the 

sin terms are in radians. Figure 2.27 shows how the updated stress reduction coefficient decreases 

differently with depth based on magnitude from Idriss and Boulanger (2008). 
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Figure 2.27. Revised stress reduction coefficient with varying magnitude and depth (After Idriss 

and Boulanger, 2008). 

 

Idriss (1999) also presented an updated 𝑀𝑆𝐹 to better account for equivalent uniform stress 

cycles for earthquakes other than moment magnitude 7.5. This is needed because earthquakes of 

differing magnitude produce different amounts of energy. Larger earthquakes will produce more 

equivalent uniform stress cycles and therefore decrease the value of 𝑀𝑆𝐹 and increase the value 

of 𝐶𝑆𝑅. Idriss (1999) developed the Equation 2.17 to account different magnitude earthquakes 

causing more/less equivalent uniform stress cycles with respect to a moment magnitude 7.5  

 𝑀𝑆𝐹 = 6.9 exp (−
𝑀𝑤

4
) − 0.058 ≤ 1.8  (2.17) 

where 𝑀𝑤 is the moment magnitude and the upper bound limiting value of 1.8 for 𝑀𝑆𝐹 is used to 

account for smaller earthquakes with a single dominant stress pulse (Idriss and Boulanger, 2008). 

 Boulanger and Idriss (2014) further updated the 𝑀𝑆𝐹 in which Kramer and Stewart 

(unpublished manuscript) modified the equations to be more easily understood in terms of the 

effects on loading (𝐶𝑆𝑅) and resistance (𝐶𝑅𝑅). The loading 𝑀𝑆𝐹 will be presented here and the 

resistance MSF will be presented in Section 2.4.2.2.2.4. For the SPT penetration procedure 
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 MSF𝐿 = 0.5803 + 2.7368exp(
−𝑀

4
) ≤ 1.32  (2.18) 

and for the CPT penetration procedure 

 MSF𝐿 = 0.5803 + 2.7368exp(
−𝑀

4
)  (2.19) 

where MSF𝐿 is the loading magnitude scaling factor for calculating 𝐶𝑆𝑅. It should be noted the 

𝑀𝑆𝐹 developed by Boulanger and Idriss (2014) was not used for liquefaction analysis presented 

hereon in this thesis, but has been shown here to provide a thorough literature review. Equation 

2.17 was used for the liquefaction analysis presented later in this thesis. 

Cetin et al. (2004) also created their own 𝑟𝑑 from 2,153 site response analyses. They found 

that 𝑟𝑑 could be represented by depth, moment magnitude, peak ground acceleration, and site 

stiffness. Cetin et al. realized that below approximately 18 meters depth the 𝑟𝑑 decreased rather 

linearly with depth. Because of this, Cetin et al. represented their 𝑟𝑑 term for 𝑑 < 20𝑚 as 

 𝑟𝑑 =
[1+

−23.013−2.949𝑎𝑚𝑎𝑥+0.999𝑀𝑤+0.0525𝑉∗𝑠,12𝑚

16.258+0.201𝑒𝑥𝑝0.341(−𝑑+0.0785𝑉
∗
𝑠,12𝑚+7.586)

]

[1+
−23.013−2.949𝑎𝑚𝑎𝑥+0.999𝑀𝑤+0.0525𝑉∗𝑠,12𝑚

16.258+0.201𝑒𝑥𝑝0.341(0.0785𝑉
∗
𝑠,12𝑚+7.586)

]

± 𝜎
𝑟𝑑

  (2.20) 

and for 𝑑 ≥ 20𝑚 

 𝑟𝑑 =
[1+

−23.013−2.949𝑎𝑚𝑎𝑥+0.999𝑀𝑤+0.0525𝑉∗𝑠,12𝑚

16.258+0.201𝑒𝑥𝑝0.341(−20+0.0785𝑉
∗
𝑠,12𝑚+7.586)

]

[1+
−23.013−2.949𝑎𝑚𝑎𝑥+0.999𝑀𝑤+0.0525𝑉∗𝑠,12𝑚

16.258+0.201𝑒𝑥𝑝0.341(0.0785𝑉
∗
𝑠,12𝑚+7.586)

]

− 0.0046(𝑑 − 20) ± 𝜎
𝑟𝑑

  (2.21) 

where 𝑟𝑑 is a function of depth 𝑑 in meters, moment magnitude 𝑀𝑤, peak ground acceleration 

𝑎𝑚𝑎𝑥 in g’s, site stiffness (shear wave velocity for the top 12 m) 𝑉∗𝑠,12𝑚 in m/s, and 𝜎
𝑟𝑑

 for 𝑑 <

12𝑚 is given as 

 𝜎
𝑟𝑑
(𝑑) = 𝑑0.85000.0198  (2.22) 

and for 𝑑 ≥ 12𝑚 as 

 𝜎
𝑟𝑑
(𝑑) = 𝑑0.85000.0198  (2.23) 
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where  𝜎
𝑟𝑑

  is the standard deviation. It should be noted, Equations 2.20 and 2.21 are for “typical” 

stiffness conditions as stated by Cetin et al. (2004) who recommended that site response analyses 

be performed for sites with 𝑉∗𝑠,12𝑚 less than 120 m/s or greater than approximately 250 m/s. As 

an alternative, Cetin et al. suggested limiting values could be used as 120 m/s and 250 m/s for 

considerably soft soils and considerably stiff soils respectively. Cetin et al. (2004) also developed 

a duration weighting factor (DWF), analogous to the magnitude to scaling factor (MSF) that was 

first developed by Seed et al. (1975). Kramer (2008) determined the duration weighting factor of 

Cetin et al. (2004) could be written as 

 𝐷𝑊𝐹 = (
7.5

𝑀𝑤
)2.217  (2.24) 

where 𝑀𝑤 is the moment magnitude. 

 Before going into liquefaction resistance, it is important to understand where each of the 

parameters in the simplified procedure come from and the processes that have been used to 

generate 𝑎𝑚𝑎𝑥 values to implement into the simplified procedure. Up to this point, it has not been 

stated how 𝑎𝑚𝑎𝑥 is obtained in order to perform the simplified procedure. In order to do so 

deterministic seismic hazard analysis (DSHA) and probabilistic seismic hazard analysis (PSHA) 

are explained in the following sections prior to liquefaction resistance. 

2.4.2.2.2.2 Deterministic Seismic Hazard Analysis 

In order to evaluate earthquake hazards, geotechnical earthquake engineers initially used 

deterministic seismic hazard analysis (DSHA) to obtain an expected level of ground shaking. 

DSHA uses a single magnitude and distance scenario to calculate this expected level of ground 

shaking. For DSHA it is common practice to select the largest magnitude earthquake at the shortest 

source to site distance in at attempt to consider a “worst-case” scenario seismic event. The DSHA 

procedure can be broken down into four steps (modified from Reiter, 1990): 
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1) Compile and analyze a list of all seismic sources that are relevant to capturing the most 

damaging ground motions at the site of interest. Largest magnitude earthquakes are usually 

selected, however, careful consideration should be taken for a smaller magnitude 

earthquake at a small site-to-source distance. 

2) Classify the site-to-source distances from the latter seismic sources. It is important to note 

that site-to-source distance has been described in multiple ways (e.g., Joyner-Boore 

distance, epicentral distance, hypocentral distance) and the same distance measure selected 

in this step should also be implemented into the ground motion intensity calculation method 

used for step 3. Typically, the shortest site-to-source distance is used. 

3) Evaluate and select the “controlling” earthquake which produces the strongest level of 

shaking at the site of interest typically computed with a ground motion prediction equation 

(GMPE). The strongest level of shaking may or may not correspond to the largest 

magnitude earthquake. Similarly, the strongest level of shaking may or may not correspond 

to the shortest site-to-source distance. 

4) The selected controlling earthquake found to produce the largest ground shaking intensity 

allows for the hazard to be defined. Depending on several factors (e.g., the fundamental 

period of a structure) the ground shaking intensity can be defined in terms of an intensity 

measure such as peak ground acceleration (PGA), peak ground velocity (PGV), peak 

ground displacement (PGD), spectral acceleration (Sa), etc. 

Kramer (1996) illustrated the latter four steps with Figure 2.28. It should be noted “Y” in step four 

of Figure 2.28 represents the ground motion intensity measure defined in step four of the written 

procedure shown above. 
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Figure 2.28. Four steps of DSHA: selection of characterizing seismic sources, identifying site-to-

sources distances for those seismic sources, calculating the controlling earthquake, and characterizing 

the hazard given the calculated intensity measures (Kramer, 1996). 

 

 Although DSHA is relatively simple to use, it does not always produce the “worst-case” 

scenario earthquake, and even if it does, no probability of that earthquake occurring is associated 

with it. Baker (2008) provided an example of the “worst-case” scenario not actually being the 

“worst-case” scenario as illustrated in Figure 2.29 Baker used the Campbell and Bozorgnia 2008 

GMPE model to obtain the median prediction response spectra shown in Figure 2.29 (b). Figure 

2.29 (a) shows two faults capable of producing different magnitudes at differing site-to-source 
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distance. Fault A is capable of producing a magnitude 6.5 event at a distance of 10 km from the 

site and Fault B is capable of producing a magnitude 7.5 event at a distance of 20 km from the site. 

The spectral acceleration versus period plot shows that the spectral acceleration at the site is greater 

when generated from Fault A up until a period of 0.8 seconds and after 0.8 seconds the spectral 

acceleration at the site is greater when generated from Fault B. This situation shows that there is 

not a single “worst-case” scenario for the maximum spectral acceleration across all periods. 

 

Figure 2.29. An example of multiple sources providing a “worst-case” scenario event. (a) Map 

view of two seismic sources and their respective site-to-source distance. (b) Median predicted response 

spectra from using the Campbell and Bozorgnia 2008 GMPE model (Baker, 2008). 

 

 Kramer and Stewart (unpublished manuscript) provide another excellent viewpoint of why 

the DSHA is not an ideal way to characterize the seismic hazard of a site. Does the analysis 

consider if multiple fault segments, or multiple nearby faults rupture? Clearly, if one considers 

multiple faults rupturing at once because of one fault causing the other to rupture, then one would 

expect to encounter a larger magnitude event and more significant ground motions. In the example 

of Baker (2008), the Campbell and Bozorgnia 2008 GMPE prediction shown considered the 

median response. In order to actually have a “worst-case” scenario you would want to consider the 

intensity of the ground motion at for example 2 standard deviations above the mean (95th 
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percentile).  When taking into account factors such as multiple faults rupturing and taking the 95th 

or higher percentile of ground shaking, the design that would be required to adequately perform 

against this design event may be so expensive (while the probability of the event actually occurring 

is extremely low) that it is not reasonable to complete the project. Even if the probability of this 

“worst-case” scenario is not extremely low, the DSHA procedure does not actually given an actual 

probability of the ground motions that may occur at a site. The latter is because a DSHA fails to 

consider all possible ground motions due to not taking into account all magnitudes and site-to-

source distances. 

2.4.2.2.2.3 Probabilistic Seismic Hazard Analysis 

In order to account for all sources and all the magnitudes and source-to-site distances from 

these sources (and therefore all possible ground motion combinations) probabilistic seismic hazard 

analysis (PSHA) is required to be used. PSHA was derived mainly from the works of Cornell 

(1968) who developed a method to take into account all seismic sources, the likelihood of these 

seismic sources rupturing, and source to site distance in order to obtain a hazard curve for the 

average return period of a ground motion parameter such as peak ground acceleration.  In order to 

account for all possible ground motions and their relative likelihood, the PSHA procedure can be 

broken into five steps (modified from Baker, 2008): 

1)  Determine all seismic sources and their respective geometries (point, line, area, 

volume) that have the potential to cause and inadequate amount of damage. 

2) Determine the probability distribution of magnitudes from each of the seismic sources 

from step one in order to generate a magnitude hazard curve. 
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3) Determine the probability distribution of site-to-source distance from each of the 

seismic sources from step one in order to generate a site-to-source distance hazard 

curve. 

4) Determine the probability distribution of the desired ground motion intensity measure 

from steps one through three which include all seismic sources, all possible 

magnitudes, and all possible site-to-source distances. The ground motion intensity 

measure probability distribution is typically generated using GMPE’s. Because all the 

ground motions are considered this means that all percentiles of ground motion are 

considered. 

5) Use the total probability theorem to combine all of the earthquake magnitude, source-

to-site distance, and ground motion intensity measure uncertainties to find the annual 

rate of exceedance (or return period) of the desired intensity measure. 

Baker (2008) illustrated the latter five steps as shown in Figure 2.30. Each of these steps will be 

further described in order to make the PSHA procedure more transparent. 
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Figure 2.30. PSHA broken into five steps (Baker, 2008). 
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Determining All Earthquake Sources 

All earthquake sources that are capable of producing ground motions that are potentially 

damaging should be characterized whether these seismic sources can be represented as point, line, 

areal, or volumetric features. Point features may be a volcano, a fault that ruptures along a small 

region that continually erupts at the same location, or a fault that is relatively close to the design 

site. A line feature is typically represented by a fault that is not known to rupture at a certain 

location and is located relatively close to a site. An areal feature may be used to represent seismic 

activity where the source location is unknown, but the general area of seismic activity is. A 

volumetric source feature may be used to represent seismic activity where not only the area of the 

seismic source is unknown, but also the depth extent of the feature is unknown as well. Therefore, 

because areal and volumetric seismic sources have more uncertainty, the energy (moment 

magnitude) generated by these events are less confined. An example of an areal source is the New 

Madrid Fault Zone which is located in the Central U.S. and not on a plate boundary. Because of 

the infrequency of earthquakes in the New Madrid Fault Zone, and although widespread 

liquefaction took place during the 1811-1812 sequence of earthquakes, instruments to locate the 

seismic source had yet to be invented. According to the USGS (2018) earthquakes similar to the 

1811-1812 sequence have taken place approximately every 500 years over the last 1,200 year 

period. 

Determining Earthquake Magnitude 

The second step in the PSHA process is determining the distribution of earthquake 

magnitude. In order to determine the relative likelihood of a given earthquake occurring a 

probability density function (PDF) can be developed from the Gutenberg-Richter recurrence law. 

Gutenberg and Richter (1944) developed the Gutenberg-Richter recurrence law as 
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 log 𝜆𝑚 = 𝑎 − 𝑏𝑚  (2.25) 

where 𝜆𝑚 is the occurrence rate of earthquakes with a magnitude greater than m, a is a statistical 

constant indicating the total earthquakes in a region, b is a statistical constant indicate the ratio of 

small and large magnitude earthquakes, and m is the magnitude. The following expressions for 

developing a probability distribution for earthquake magnitude are based on Kramer (1996). 

Equation 2.25 can be written in terms of an exponential function as 

 𝜆𝑚 = 10𝑎−𝑏𝑚 = exp(𝛼 − 𝛽𝑚)  (2.26) 

where 𝑎 and 𝑏 are written in terms of  𝛼 = 2.303𝑎 and 𝛽 = 2.303𝑏 due to changing to the 

exponential function. Kramer (1996) normalized the expression of Equation 2.26 (the rate of 

earthquakes with a magnitude greater than 𝑚) by taking into account the rate of all earthquake 

magnitudes greater than a value of zero (𝑚 > 0) to give 

 𝑃(𝑀 > 𝑚|𝑚 > 0) =
𝜆𝑚

𝜆0
=

exp(𝛼−𝛽𝑚)

exp(𝛼)
= 𝑒𝑥𝑝−𝛽𝑚  (2.27) 

where 𝑀 is some earthquake with a magnitude greater than m and 𝜆0 is the recurrence rate for 

earthquakes with a magnitude greater than zero. Equation 2.27 therefore reads: the probability of 

some earthquake with magnitude 𝑀 being greater than an earthquake with magnitude 𝑚 given that 

𝑚 is greater than zero is equal to the exponential value of negative 𝛽 multiplied by 𝑚. In order to 

reach the goal of a PDF of earthquake magnitude (the relative likelihood of a given earthquake 

magnitude occurring), the cumulative distribution function (CDF) must first be found. A CDF is 

the probability that some variable (e.g., earthquake magnitude) is a value less than or equal to some 

value. Because the CDF is less than or equal to some value, Equation 2.27 should be re-written as  

 𝑃(𝑀 < 𝑚|𝑚 > 0) = 𝐹𝑀(𝑚) = 1 −
𝜆𝑚

𝜆0
= 1 − 𝑒𝑥𝑝−𝛽𝑚  (2.28) 
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where 𝐹𝑀(𝑚) is the CDF of some earthquake with magnitude 𝑀 given 𝑚 > 0. Therefore, an 

expression for the PDF of earthquake magnitude can now be found by taking the derivative of the 

CDF (Equation 2.28) giving 

 𝑓𝑀(𝑚) =
𝑑

𝑑𝑚
= 𝐹𝑀(𝑚) = 𝛽𝑒𝑥𝑝−𝛽𝑚  (2.29) 

where 𝑓𝑀(𝑚) is the PDF of some earthquake with magnitude 𝑀 given 𝑚 > 0. 

 Thus far, the expression for the PDF of earthquake magnitude has been for an earthquake 

of magnitude 𝑚 > 0, however, for the purposes of earthquake engineering, it is often typical that 

a lower bound of magnitude be set because earthquakes with a moment magnitude less than 

approximately 4 to 5 are oftentimes not significant to engineering applications (although small 

magnitude earthquakes may be useful for seismologists). Not only is there usually a lower bound 

for earthquake magnitude, but the source geometries can dictate the maximum magnitude that can 

occur. This brings about what is known as the truncated exponential model where the CDF and 

PDF for earthquake magnitude can be written in terms of a lower and upper bound earthquake 

magnitude. Accounting for these bounds the Equation 2.28 CDF can be written as 

 𝑃(𝑀 < 𝑚|𝑀0 < 𝑚 < 𝑀𝑚𝑎𝑥) = 𝐹𝑀(𝑚|𝑀0 < 𝑚 < 𝑀𝑚𝑎𝑥) =
1−𝑒𝑥𝑝−𝛽(𝑚−𝑀0)

1−𝑒𝑥𝑝−𝛽(𝑀𝑚𝑎𝑥−𝑀0)
  (2.30) 

where 𝑀0 is the lower bound minimum earthquake magnitude considered for engineering 

applications and 𝑀𝑚𝑎𝑥 is the upper bound earthquake magnitude dependent on the seismic source 

size. The portion of the exponent in the numerator “𝑚 −𝑀0” is the same form as Equation 2.28, 

however, the minimum magnitude is no longer taken as zero and the denominator still represents 

normalizing by the rate of all earthquakes considered which is now 𝑀0 < 𝑚 < 𝑀𝑚𝑎𝑥. Taking the 

derivative of the CDF with respect to 𝑚 as before, the PDF can be found as 

 𝑓𝑀(𝑚|𝑀0 < 𝑚 < 𝑀𝑚𝑎𝑥) =
𝛽𝑒𝑥𝑝−𝛽(𝑚−𝑀0)

1−𝑒𝑥𝑝−𝛽(𝑀𝑚𝑎𝑥−𝑀0)
  (2.31) 
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Figure 2.31 is an example of a magnitude probability distribution for a range of magnitudes of 5.0 

to 7.7 with a bin size of 0.1. It should be noted that Figure 2.31 is a typical earthquake magnitude 

probability distribution for sources when not accounting for a characteristic earthquake or geologic 

data that may refine magnitude probabilities. 

 

Figure 2.31. Example of an earthquake magnitude probability distribution. 

 

Determining Source-to-Site Distance 

The distance to the rupture of an earthquake source is typically considered to be uniformly 

distributed meaning that the likelihood of an earthquake occurring along a seismic source is the 

same at every point of that seismic source (Kramer, 1996). This may not always be the case, for 

example, the San Andreas fault which runs along most of California in the United States, has had 

more activity along some fault segments than others. This suggests that the fault segments with 

less recent activity will have a higher likelihood of stress release in the form of an earthquake 

(After Kramer, 1996). In order to understand how a uniform probability distribution for an 
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earthquake source can be developed, it is beneficial to start with a point source. For a point source 

there is only one source-to-site distance, for example, “rpoint,” therefore, the probability that the 

source-to-site distance is rpoint is equal to 1, and all other distances have a probability of zero of 

occurring. For explaining the source-to-site distance of a line source (e.g., a fault) assuming the 

rupture location of the earthquake is equally likely anywhere along the fault, Baker (2008) 

considered a 100 km fault with a site located 10 km from the center of the fault as shown in Figure 

2.32. 

 

Figure 2.32. Example site and line source geometry for calculating the source-to-site distance 

probability distribution (Baker, 2008). 

 

From the geometry of Figure 2.32 it is noticeable to see that the probability of a source-to-site 

distance less than 10 km and a source-to-site distance greater than 51 km is zero (when 𝑟 greater 

than 51 km then the distance from the center of the 100 km long line source is greater than 50 km 

which is not possible). For the example shown in Figure 2.32, the arbitrary value for the distance 

to the seismic source is represented as 𝑟. To obtain the PDF, one must first find the CDF which is 

the probability that some source-to-site distance 𝑅 is less than 𝑟 in this case. Therefore, the 

probability that the source-to-site distance R is less than 10 km is zero and the probability that the 

source-to-site distance 𝑅 is less than 51 is one (because the length from the site to the end of the 

100 km long fault cannot be greater than 51). To determine the CDF at source-to-site distances 

between 10 km and 51 km the length of the line source less than 𝑟 can be divided by the total 
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length of the fault (100 km), therefore, using the Pythagorean theorem to calculate the distance of 

the rupture location from the center of the fault the CDF can be represented as 

 𝐹𝑅(𝑟) = 𝑃(𝑅 ≤ 𝑟) =
2√𝑟2−102

100
  (2.32) 

where the “2” in the numerator comes from the √𝑟2 − 102 term being on both sides of the center 

of the fault. Considering the source-to-site distance 𝑟 less than 10 km and 𝑟 greater than or equal 

to 51 km, Equation 2.32 can be extended to 

 𝐹𝑅(𝑟) = 𝑃(𝑅 ≤ 𝑟) = {

0, 𝑖𝑓𝑟 < 10𝑘𝑚

=
2√𝑟2−102

100
, 𝑖𝑓10 ≤ 𝑟 < 51𝑘𝑚

1, 𝑖𝑓𝑟 ≥ 51𝑘𝑚

  (2.33) 

Taking the derivative of Equation 2.33 gives the PDF as 

 𝑓𝑅(𝑟) =
𝑑

𝑑𝑟
𝐹𝑅(𝑟) = {

0, 𝑖𝑓𝑟 < 10𝑘𝑚

=
𝑟

50√𝑟2−102
, 𝑖𝑓10 ≤ 𝑟 < 51𝑘𝑚

0, 𝑖𝑓𝑟 ≥ 51𝑘𝑚

  (2.34) 

The resulting PDF and CDF from Baker (2008) are shown in Figure 2.33 

 

Figure 2.33. PDF and CDF for the example line source geometry in Figure 2.32 (Baker, 2008). 
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In the event that the source of seismic energy is unknown, an area or volumetric source may be 

more beneficial to use instead. For example, for a circular area source with earthquakes equally 

likely to occur anywhere, the probability that the epicenter of an earthquake will occur at a distance 

𝑟 from the site will be the ratio of the area of the circle with a radius 𝑟 to the area source as a whole 

(Baker, 2008). 

Determining Ground Motion Intensity Measure 

Upon determining the magnitude and site to source distance probability distributions the 

probability of exceeding some intensity measure (IM) level can be computed. Intensity measures 

may be peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement 

(PGD), spectral intensity measures, etc. To determine the probability of exceeding some 𝐼𝑀 level 

given an earthquake event E, the total probability theorem can be applied to give 

 𝑃[𝐼𝑀 > 𝑖𝑚|𝐸] = ∬𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟]𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑚𝑑𝑟  (2.35) 

where the 𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟] is the attenuation relationship where the probability of an 𝐼𝑀 

exceeding some intensity measure value of 𝑖𝑚 given magnitude 𝑚 and source to site distance 𝑟 

where 𝐼𝑀 is typically obtained from a ground motion prediction equation (GMPE), 𝑓𝑀(𝑚) is the 

PDF for magnitude, and 𝑓𝑅(𝑟) is the PDF of source to site distance. Equation 2.35 can be re-written 

instead in terms of some rate of exceedance of some minimum intensity measure by introducing 

the rate of occurrence of earthquake magnitudes greater than some minimum magnitude 

 𝜆[(𝐼𝑀 > 𝑖𝑚)|𝐸] = 𝜆[(𝑀 > 𝑀𝑜)|𝐸]∬𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟]𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑚𝑑𝑟  (2.36) 

where 𝜆[(𝐼𝑀 > 𝑖𝑚)|𝐸] is the rate of exceedance of some IM greater than 𝑖𝑚 given an earthquake 

event E and 𝜆[(𝑀 > 𝑀𝑜)|𝐸] is the rate of exceedance of a magnitude occurring greater than 𝑀𝑜 

given an earthquake event 𝐸. Because evaluating the integrals analytically is quite complex, the 

evaluation is typically done using numerical integration using small intervals (e.g. small intervals 

M R 

R M 
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of magnitude and source to site distance) (Kramer 1996). In order to take into account multiple 

earthquake sources (not just a single event 𝐸), Equation 2.36 can be written in summation form to 

account for all sources and for numerical integration purposes of the magnitude and site to source 

distance. Equation 2.36 can be written as 

 𝜆(𝐼𝑀 > 𝑖𝑚) = ∑ ∑ ∑ 𝜆𝑖[𝑀𝑖 > 𝑀𝑜]
𝑁𝑅
𝑘=1

𝑁𝑀
𝑗=1

𝑁𝑠
𝑖=1 𝑃[𝐼𝑀 > 𝑖𝑚|𝑚𝑗, 𝑟𝑘]𝑃[𝑀𝑖 = 𝑚𝑗]𝑃[𝑅𝑖 = 𝑟𝑘]  (2.37) 

where 𝑃[𝑀𝑖 = 𝑚𝑗] and 𝑃[𝑅𝑖 = 𝑟𝑘] are the probability that a magnitude 𝑚𝑗 and distance 𝑟𝑘 are 

produced from a source. 

Therefore, Equation 2.37 now allocates for the uncertainties in occurrence, the magnitude, 

and the source to site distance for earthquakes in order to produce a probability that a certain 𝐼𝑀 

will be exceeded. In order to account for all levels of shaking, Equation 2.37 can be implemented 

for additional 𝐼𝑀 to produce the rate of exceeding all intensity 𝐼𝑀 of interest. In doing so one can 

develop a curve such Figure 2.34 (after Kramer, 1996).  

 

Figure 2.34. Log normal distributions of an 𝑰𝑴 “Y” for a magnitude and multiple source to site 

distances (after Kramer, 1996). 
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Each magnitude and source to site distance combination shown in Figure 2.34 gives the rate of 

exceeding an 𝐼𝑀, 𝜆 (Y=y*). Equation 2.37 can be used to compute the rate of exceedance of y* 

for every magnitude and source to site distance combination in order to give the total rate of 

exceedance of a single 𝐼𝑀 y*. This process can be done for multiple y* values in order to develop 

a hazard curve similar to that shown in Figure 2.35. It should be noted the 𝐼𝑀 for Figure 2.35 is 

PGA (instead of being labeled as y*) and Tr is the return period of this PGA. The return period is 

the reciprocal of the rate of exceeding an 𝐼𝑀 and is given as 

 𝑇𝑅(𝑖𝑚) =
1

𝜆(𝐼𝑀>𝑖𝑚)
  (2.38) 

 

 

Figure 2.35. Hazard Curve showing the rate of exceedance and return period of PGA. 

 

DSHA and PSHA were covered in order to describe how the value of 𝑎𝑚𝑎𝑥 is calculated 

in order to perform the simplified procedure. The conventional liquefaction hazard evaluation 
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consists of obtaining an 𝑎𝑚𝑎𝑥 from a hazard curve generated via a PSHA for a specific mean 

annual rate of exceedance and inputting this value into a procedure for calculating CSR such as 

Cetin et al. (2004) and Boulanger and Idriss (2012) procedures. Liquefaction loading has now been 

covered in detail, however, whether liquefaction will occur also depends on the resistance of a soil 

to liquefaction. 

2.4.2.2.2.4 Liquefaction Resistance 

The next step proved to be a tough test for researchers to overcome. In the 1960’s and 

1970’s researchers believed that reconstituted sand soil specimens would replicate field conditions 

based on the assumption that the reconstituted sand specimens would have similar behavior as the 

field conditions if prepared to the same density (void ratio) and effective stress. The laboratory 

methods used to “deposit” the sand material were moist-tamped, dry-pluviated, and wet-pluviated. 

In the mid 1970’s researchers recognized that the sampling process itself (which caused 

disturbance of the soil fabric) was one of the reasons for inconsistent results in liquefaction 

behavior because the soil fabric of the soil specimen in-situ was altered and reconstituted soil 

specimens (and the different methods of preparing the specimen) thus do not replicate the in-situ 

field conditions (Ladd, 1974). Ladd (1974) recommended to perform laboratory tests on 

undisturbed samples when possible, however, this is very difficult to achieve for sand. The moist-

tamped, dry-pluviated, and wet-tamping depositional methods not only did not replicate field 

conditions, but these pseudo-depositional types could not achieve similar results themselves.  Not 

long after the discovery of the effects of depositional environment on soil fabric, Youd and Hoose 

(1977) first recognized that the age of the soil plays a role in soil behavior as well, realizing that 

older soils typically have a greater resistance to liquefaction. Due to the soil fabric and aging 

effects researchers moved toward in-situ testing methods for determining liquefaction resistance.  
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Three methods for quantifying the liquefaction resistance of soil will be discussed: the SPT 

procedure, the CPT procedure, and the shear wave velocity procedure. The SPT and CPT 

procedures will be described by the Cetin et al. (2004) and Boulanger and Idriss (2012) procedures.  

2.4.2.2.2.4.1 Liquefaction Resistance – Standard Penetration Test 

The second component to calculating the factor of safety against liquefaction for the cyclic 

stress-based approach (refer back to Equation 2.6) is the cyclic resistance ratio (𝐶𝑅𝑅). The 𝐶𝑅𝑅 

describes the liquefaction resistance of the soil. Penetration resistance procedures (such as the 

SPT) for determining the 𝐶𝑅𝑅 require many correction factors including the effective overburden 

stress, energy, equipment, and fines content adjustments for the penetration resistance “𝑁” values. 

Calculation of the 𝐶𝑅𝑅 also often includes adjustments for earthquake magnitudes that are not 7.5, 

the effective confining stress, and initial shear stress. Because researchers calculate and employ 

different methods for calculating 𝐶𝑅𝑅, the methods described by Cetin et al. (2004) and Boulanger 

and Idriss (2012) will be described separately. 

2.4.2.2.2.4.1.1 Cetin et al. – SPT 

Cetin et al. (2004) originally developed an expression for calculating a value of the 

probability of liquefaction using a Bayesian updating analysis and extended it to develop a 

deterministic expression for the 𝐶𝑅𝑅 given as 

 𝐶𝑅𝑅𝐶𝑒𝑡𝑖𝑛 = exp [
((𝑁1)60(1+0.004𝐹𝐶)−29.53 ln(𝑀𝑤)−3.70 ln(

𝜎′𝑣
𝑃𝑎

)+0.05𝐹𝐶+16.85+2.70𝜙−1(𝑃𝐿,𝐶𝑒𝑡𝑖𝑛))

2.70
]  

(2.39) 

where (𝑁1)60 is the overburden, energy, and equipment corrected SPT penetration resistance, 𝐹𝐶 

is the fines content (by dry weight) expressed in percent, 𝑀𝑤 is the moment magnitude, 𝜎′𝑣 is the 

effective overburden stress, 𝜙−1 is the inverse of the standard cumulative normal distribution with 
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a mean of zero and standard deviation of one, and 𝑃𝐿,𝐶𝑒𝑡𝑖𝑛 is the probability of liquefaction taken 

as 15 percent for deterministic analyses. Cetin et al. (2004) recommended the 𝐶𝑅𝑅 expression 

shown in Equation 2.39 not be used at very high CSR values greater than 0.4 because there is 

limited field data at such high CSR values and soils that require these large CSR values to liquefy 

are typically very dense with (𝑁1)60 values of at least 30 which only have a small amount of strain 

potential upon liquefaction. Use of Equation 2.39 requires knowing how the corrected SPT 

penetration resistance is obtained. Cetin et al. (2004) mainly followed the 1997 National Center of 

Earthquake Engineering Research (NCEER 1997) procedure for correcting SPT penetration 

resistance values, however, there are some differences as will be discussed. The Cetin et al. (2004) 

procedure for correcting SPT penetration resistance can be expressed in the form of Equation 2.40  

  (𝑁1)60,𝑐𝑠 = 𝑁1𝐶𝑅𝐶𝑆𝐶𝐵𝐶𝐸𝐶𝐹𝑖𝑛𝑒𝑠  (2.40) 

where (𝑁1)60,𝑐𝑠 is the overburden, fines content, energy, equipment, and procedural effects 

corrected penetration resistance, 𝑁1 is the overburden correction, 𝐶𝑅 is the rod length correction, 

𝐶𝑆 is the liner correction, 𝐶𝐵 is the borehole diameter correction, 𝐶𝐸 is the hammer energy 

correction, and 𝐶𝐹𝑖𝑛𝑒𝑠 is the fines content correction. The overburden correction is represented as 

 𝑁1 = 𝑁 × 𝐶𝑁  (2.41) 

where 𝑁 is the field measured uncorrected SPT resistance value and 𝐶𝑁 is a factor correcting for 

the effective overburden stress given as 

 𝐶𝑁 = (
1

𝜎′𝑣
)0.5 ≤ 1.6  (2.42) 

where 𝜎′𝑣 is the effective overburden stress at the depth of 𝑁. Cetin et al. (2004) differed from the 

NCEER (1997) procedure by adding the limiting value of 1.6 for the overburden correction instead 

of a value of 2.0. The rod length correction also differed from the NCEER (1997) procedure in 
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that the non-linear curve in Figure 2.36 was used instead of correction values assigned based on 

increments of rod length (e.g., 3 to 4 m 𝐶𝑅= 0.75, 4 to 6 m 𝐶𝑅= 0.85, etc.). 

 

Figure 2.36. Non-linear relationship of the rod length correction factor (Cetin et al. 2004). 

 

The liner correction given by Cetin et al. (2004) is given as 

 𝐶𝑆 = 1 +
(𝑁1)60

100
𝑤ℎ𝑒𝑟𝑒1.10 ≤ 𝐶𝑆 ≤ 1.30  (2.43) 

where (𝑁1)60 is the overburden, energy, and equipment corrected SPT penetration resistance value 

that can be found from Equation 2.40 by excluding the fines content correction factor. The 

borehole diameter correction factor is shown in Table 2.1 which is the same as the NCEER (1997) 

guidelines. 

Table 2.4. Borehole diameter correction factor (NCEER 1997). 

 

Borehole Diameter (mm)

65 to 115 1.00

150 1.05

200 1.15

𝐶𝐵
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The hammer energy correction factor for the Cetin et al. (2004) procedure slightly differs from the 

NCEER (1997) procedure and is generally given as shown in Table 2.5. 

Table 2.5. Hammer type energy correction factor (after Cetin et al. 2004). 

 

Cetin et al. (2004) gave an approximation for their fines content correction factor as 

 𝐶𝐹𝑖𝑛𝑒𝑠 = (1 + 0.004𝐹𝐶) + 0.05 (
𝐹𝐶

(𝑁1)60
)𝑤ℎ𝑒𝑟𝑒5% ≤ 𝐹𝐶 ≤ 35%  (2.44) 

where FC is the fines content in percent. Fines contents below 5 percent are assumed to have a 

correction factor value of 1.0. It is important to recognize that the 𝐶𝑅𝑅 expressed in Equation 2.39 

incorporates this fines content correction in the equation itself, therefore, Equation 2.39 is also 

limited to fines content values from 5 to 35 percent. 

 The deterministic 𝐶𝑅𝑅 of Cetin et al. (2004) procedure assumes a probability of 

liquefaction, 𝑃𝐿,𝐶𝑒𝑡𝑖𝑛, of 15 percent in Equation 2.39. Cetin et al. (2004) originally developed 

Equation 2.39 to account for the 𝐶𝑅𝑅 probabilistically accounting for the variability of the 

probability of liquefaction given as 

 𝑃𝐿,𝐶𝑒𝑡𝑖𝑛 = 𝜙 [−
((𝑁1)60(1+0.004𝐹𝐶)−13.32ln(𝐶𝑆𝑅)−29.53 ln(𝑀𝑤)−3.70 ln(

𝜎′𝑣
𝑃𝑎

)+0.05𝐹𝐶+16.85)

2.70
] (2.45) 

where 𝑃𝐿,𝐶𝑒𝑡𝑖𝑛 is the probability of liquefaction given as a decimal, 𝜙 is the standard cumulative 

normal distribution, and 𝐶𝑆𝑅 is the cyclic stress ratio without accounting for magnitude duration 

effects (termed DWF by Cetin et al. 2004) given by Equation 2.12. The reason 𝐶𝑆𝑅 in Equation 

2.45 does not take into account the magnitude duration effects is because Equation 2.45 itself 

accounts for this. Therefore, in order calculate the 𝐶𝑅𝑅 probabilistically, the value of 𝑃𝐿,𝐶𝑒𝑡𝑖𝑛 

Hammer Type

Donut Hammer 0.5 to 1.0

Safety Hammer 0.7 to 1.2

Automatic -Trip Hammer (Safety or Donut Type) 0.8 to 1.4

𝐶𝐸
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determined from Equation 2.45 should be implemented into the 𝐶𝑅𝑅 expression given in Equation 

2.39. 

2.4.2.2.2.4.1.2 Idriss and Boulanger – SPT 

The original derivation of the SPT correlation for 𝐶𝑅𝑅 of Idriss and Boulanger (2004, 

2008) can be written as 

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp
[(

(𝑁1)60,𝑐𝑠

14.1
) + (

(𝑁1)60,𝑐𝑠

126
)
2

− (
(𝑁1)60,𝑐𝑠

23.6
)
3

+ (
(𝑁1)60,𝑐𝑠

25.4
)
4

− 2.8]

× 𝐾𝜎 ×𝑀𝑆𝐹 × 𝐾𝛼

 (2.46) 

where 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐  is the 𝐶𝑅𝑅 corrected for overburden, magnitude, and shear stress, (𝑁1)60,𝑐𝑠 

is the overburden, fines content, energy, and equipment corrected SPT penetration resistance, 𝐾𝜎 

is the overburden correction factor, 𝑀𝑆𝐹 is the magnitude scaling factor, and 𝐾𝛼 is the static shear 

stress correction factor.  Use of Equation 2.46 requires knowing how the corrected SPT penetration 

resistance is obtained. Similar to Cetin et al. (2004), Idriss and Boulanger (2008) mainly followed 

the 1997 National Center of Earthquake Engineering Research (NCEER 1997) procedure for 

correcting SPT penetration resistance values, however, there are differences between these three 

procedures as will be discussed. The Idriss and Boulanger (2004) procedure for correcting SPT 

penetration resistance can be expressed in the form of Equation 2.40  

  (𝑁1)60 = 𝑁𝑓𝑖𝑒𝑙𝑑𝐶𝑅𝐶𝑆𝐶𝐵𝐶𝐸𝐶𝑁  (2.47) 

where (𝑁1)60 is the overburden, energy, equipment, and procedural effects corrected penetration 

resistance, 𝑁𝑓𝑖𝑒𝑙𝑑 is measured SPT penetration resistance in the field, 𝐶𝑅 is the rod length 

correction, 𝐶𝑆 is the liner correction, 𝐶𝐵 is the borehole diameter correction, 𝐶𝐸 is the hammer 

energy correction, and 𝐶𝑁 is the overburden correction factor. The rod length correction used by 

Idriss and Boulanger (2008) is the same as from the NCEER (1997) procedure and is shown in 

Table 2.6. 
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Table 2.6. Rod length correction factor (after Idriss and Boulanger 2008). 

 

The liner correction given by Idriss and Boulanger 2008 is taken to be a value of 1.0 for split spoon 

samplers that do not have room for liners and for those with room for liners the values depend on 

the (𝑁1)60 values as shown in Table 2.7. 

Table 2.7. Liner correction factor based on (𝑵𝟏)𝟔𝟎 for standard split spoon samplers with room for 

liners (after Idriss and Boulanger 2008). 

 

The borehole diameter correction factor is shown in Table 2.8 which is the same as the NCEER 

(1997) guidelines. 

Table 2.8. Borehole diameter correction factor (NCEER 1997). 

 

The hammer energy correction factor for Idriss and Boulanger (2008) is the same as the NCEER 

(1997) procedure and is given in Table 2.9 

Table 2.9. Hammer type energy correction factor (after Cetin et al. 2004). 

 

Idriss and Boulanger (2008) express the overburden correction factor as 

Rod Length (m)

< 3 0.75

3-4 0.80

4-6 0.85

6-10 0.95

10-30 1.00

𝐶𝑅

≤ 10 1.1

10 ≤             ≤ 30

≥ 30 1.3

𝑁1,60 𝐶𝑆
𝑁1,60

𝑁1,60

𝑁1,60

1+
𝑁1,60

100

Borehole Diameter (mm)

65 to 115 1.00

150 1.05

200 1.15

𝐶𝐵

Hammer Type

Donut Hammer 0.5 to 1.0

Safety Hammer 0.7 to 1.2

Automatic Trip Hammer 0.8 to 1.3

𝐶𝐸

(𝑁1)60 

(𝑁1)60 

(𝑁1)60 

(𝑁1)60 

(𝑁1)60 
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 𝐶𝑁 = (
1

𝜎′𝑣
)0.784−0.0768√(𝑁1)60,𝑐𝑠 ≤ 1.7  (2.48) 

where 𝜎′𝑣 is the effective overburden stress at the depth of (𝑁1)60,𝑐𝑠 and (𝑁1)60,𝑐𝑠 is the 

overburden, fines content, energy, equipment, and procedural effects corrected SPT penetration 

resistance. In order to solve Equation 2.48, 𝑁1,60 from Equation 2.47 must be corrected for fines 

content to obtain 𝑁1,60𝑐𝑠. This expression can be given as 

 (𝑁1)60,𝑐𝑠 = (𝑁1)60 + ∆(𝑁1)60  (2.49) 

where ∆(𝑁1)60 is the change in the corrected SPT penetration resistance due to the fines content 

of the soil which can be expressed as 

 ∆(𝑁1)60 = exp(1.63 +
9.7

𝐹𝐶+0.01
− (

15.7

𝐹𝐶+0.01
)
2

)  (2.50) 

where FC is the fines content of the soil. As can be seen from Equations 2.47 through 2.50, iteration 

is required to solve for 𝑁1,60𝑐𝑠.  

 As shown in Equation 2.46 the 𝐶𝑅𝑅 can be extended to account for differing values of 

effective overburden stress, earthquake magnitude of than a moment magnitude of 7.5, and initial 

shear stress. After Idriss and Boulanger (2008), effective overburden stress correction factor, 𝐾𝜎, 

can be computed as 

 𝐾𝜎 = 1 − 𝐶𝜎ln(
𝜎′𝑣

𝑃𝑎
) ≤ 1.1  (2.51) 

where the coefficient 𝐶𝜎 can be expressed as  

 𝐶𝜎 =
1

18.9−2.55√(𝑁1)60,𝑐𝑠
≤ 0.3  (2.52) 

In order to account for earthquakes of moment magnitude other than 7.5, Idriss and Boulanger 

(2008) expressed the magnitude scaling factor as 

 𝑀𝑆𝐹 = 6.9 exp (
−𝑀𝑤

4
) − 0.058 ≤ 1.8  (2.53) 
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Finally, the correction factor for static shear stress, 𝐾𝛼, that is used to account for the static shear 

stress imposed by conditions such as sloping ground or from a nearby or overlying foundation, can 

be expressed (after Idriss and Boulanger 2008) as 

 𝐾𝛼 = 𝑎 + 𝑏𝑒𝑥𝑝(
−ξ𝑅

𝑐
)  (2.54) 

where ξ𝑅 is the relative state parameter index and a, b, and c are coefficients expressed as 

 𝑎 = 1267 + 636𝛼2 − 634 exp(𝛼) − 631exp(−𝛼)  (2.55) 

 𝑏 = exp(−1.11 + 12.3𝛼2 + 1.31ln(𝛼 + 0.0001))  (2.56) 

 𝑐 = 0.138 + 0.126𝛼 + 2.52𝛼3  (2.57) 

where 𝛼 is the initial static shear stress ratio given as 

 𝛼 =
𝜏𝑠

𝜎′𝑣
  (2.58) 

where 𝜏𝑠 is the shear stress and 𝜎′𝑣 is the effective overburden stress. The relative state parameter 

index, ξ𝑅, is based on the penetration resistance as 

 ξ𝑅 =
1

𝑄−ln(
100(1+2𝐾𝑜)𝜎

′
𝑣)

3𝑃𝑎

−√
(𝑁1)60

46
  (2.59) 

where the initial shear stress ratio and relative state parameter index should be constrained to 𝛼 ≤

0.35 and −0.6 ≤ ξ𝑅 ≤ 0.1 respectively, 𝐾𝑜 is the coefficient of lateral earth pressure at rest with 

typical values of 0.45 to 0.5 for a simple shear device normally consolidated in one dimension, 

and 𝑄 is an empirical constant. 

 Boulanger and Idriss (2014) updated their MSF equation for liquefaction resistance from 

Idriss and Boulanger (2008) to 

 𝑀𝑆𝐹 = 1 + (𝑀𝑆𝐹𝑚𝑎𝑥 − 1)(8.64 exp (
−𝑀

4
) − 1.325)  (2.60) 

where 𝑀𝑆𝐹𝑚𝑎𝑥 can be written as 
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 𝑀𝑆𝐹𝑚𝑎𝑥 = 1.09 + (
(𝑁1)60,𝑐𝑠

31.5
)2 ≤ 2.2  (2.61) 

Based on Equations 2.60 and 2.61 Kramer and Stewart (unpublished manuscript) re-wrote 

Equation 2.46 to be in terms of 𝐾𝑀 instead of MSF as 

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp
[(

(𝑁1)60,𝑐𝑠

14.1
) + (

(𝑁1)60,𝑐𝑠

126
)
2

− (
(𝑁1)60,𝑐𝑠

23.6
)
3

+ (
(𝑁1)60,𝑐𝑠

25.4
)
4

− 2.8]

× 𝐾𝜎 × 𝐾𝑀 × 𝐾𝛼

 (2.62) 

where 𝐾𝑀 is the correction factor for magnitude expressed as 

 𝐾𝑀 =
1+(𝑀𝑆𝐹𝑚𝑎𝑥−1)(8.64exp(

−𝑀

4
)−1.325)

0.5803−2.7368exp(−𝑀 4⁄ )
  (2.63) 

It should be noted the new 𝑀𝑆𝐹 developed by Boulanger and Idriss (2014) and the 𝐶𝑅𝑅 expression 

shown in Equation 2.62 was not used for liquefaction analysis presented hereon in this thesis, but 

has been shown here to provide a thorough literature review. The 𝐶𝑅𝑅 used in deterministic 

liquefaction analyses is shown in Equation 2.46. 

 In order to develop a fully probabilistic liquefaction triggering procedure for SPT 

resistance, Boulanger and Idriss (2012) incorporated the performance-based method developed by 

Kramer and Mayfield (2007). The Boulanger and Idriss (2012) probabilistic liquefaction resistance 

in terms of 𝐶𝑅𝑅 can be written as  

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp
[(

(𝑁1)60,𝑐𝑠

14.1
) + (

(𝑁1)60,𝑐𝑠

126
)
2

− (
(𝑁1)60,𝑐𝑠

23.6
)
3

+ (
(𝑁1)60,𝑐𝑠

25.4
)
4

− 2.67 + 휀ln(𝑅)]

𝐾𝜎 × 𝐾𝑀 × 𝐾𝛼

  

(2.64) 

where 휀ln(𝑅) is the error term for the 𝐶𝑅𝑅 which is normally distributed with a mean of 0.0 and a 

recommended standard deviation,𝜎ln(𝑅), of 0.13 by Boulanger and Idriss (2012). Equation 2.64 

can be re-written as 
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 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp [(
(𝑁1)60,𝑐𝑠

14.1
) + (

(𝑁1)60,𝑐𝑠

126
)
2

− (
(𝑁1)60,𝑐𝑠

23.6
)
3

+ (
(𝑁1)60,𝑐𝑠

25.4
)
4

− 2.67 + 𝜎ln(𝑅) ×

𝜙−1(𝑃𝐿)]𝐾𝜎 × 𝐾𝑀 × 𝐾𝛼  (2.65) 

where 𝜎ln(𝑅) is the standard deviation, 𝜙−1 is the inverse of the standard cumulative normal 

distribution, and 𝑃𝐿 is the probability of liquefaction which Boulanger and Idriss (2012) expressed 

as 

 𝑃𝐿((𝑁1)60,𝑐𝑠, 𝐶𝑆𝑅𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚) =

𝜙 [
−(

(𝑁1)60,𝑐𝑠
14.1

)+(
(𝑁1)60,𝑐𝑠

126
)
2

−(
(𝑁1)60,𝑐𝑠

23.6
)
3

+(
(𝑁1)60,𝑐𝑠

25.4
)
4

−2.67−ln(𝐶𝑆𝑅
𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚

)

𝜎ln(𝑅)
]  (2.66) 

where 𝐶𝑆𝑅𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚
 is the cyclic stress ratio adjusted to a reference moment magnitude of 

7.5 and effective overburden stress of 1 atm. Equation 2.64, which represents the probabilistic 

triggering relationship for the 𝐶𝑅𝑅, is equal to the deterministic expression for the 𝐶𝑅𝑅 proposed 

by Idriss and Boulanger (2004, 2008) when 휀ln(𝑅) =−0.13. Therefore, the deterministic 

expression is one standard deviation below the expected triggering curve. This gives a probability 

of liquefaction of approximately 16 percent that can be input into Equation 2.65 to determine the 

𝐶𝑅𝑅 deterministically (Boulanger and Idriss 2012). 

It should be noted that the Kramer and Mayfield (2007) performance-based framework will 

be discussed in depth in Chapter 3 (Probabilistic Liquefaction Hazard Analysis) and has been 

introduced here to provide context as to how Boulanger and Idriss (2012) developed their 

probabilistic SPT liquefaction triggering procedure. 

2.4.2.2.2.4.2 Liquefaction Resistance – Cone Penetration Test 

Cone penetration tests (CPTs) involve mechanically pushing a steel cone into the ground 

while an electronic measuring system records the tip resistance and sleeve friction of the soil. In 

this manner the in-situ resistance of the soil can be determined. Oftentimes, the steel cone will also 



 

 

108 

be equipped with a pore pressure transducer to measure the pore pressure of the soil while the cone 

is pushed. The following CPT liquefaction triggering procedure is by Boulanger and Idriss (2014). 

The CPT correlation for 𝐶𝑅𝑅 of Boulanger and Idriss (2014) can be written as 

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp [(
𝑞𝑐1𝑁𝑐𝑠

113
) + (

𝑞𝑐1𝑁𝑐𝑠

1000
)2 − (

𝑞𝑐1𝑁𝑐𝑠

140
)
3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)
4

− 2.8] 𝐾𝜎 ×𝑀𝑆𝐹 × 𝐾𝛼  

(2.67) 

where 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐  is the 𝐶𝑅𝑅 corrected for overburden, magnitude, and shear stress, 𝑞𝑐1𝑁𝑐𝑠 

is the overburden and fines content corrected cone tip resistance, 𝐾𝜎 is the overburden correction 

factor, 𝑀𝑆𝐹 is the magnitude scaling factor, and 𝐾𝛼 is the static shear stress correction factor.  Use 

of Equation 2.67 requires knowing how the corrected CPT penetration resistance is obtained. The 

measured cone tip resistance can be corrected for unequal end area effects via the expression 

 𝑞𝑡 = 𝑞𝑐 + (1 − 𝐴𝑟)𝑢2  (2.68) 

where 𝑞𝑡 is the unequal end area effects corrected cone tip resistance, 𝑞𝑐 is the measured cone tip 

resistance, 𝐴𝑟 is the area ratio for the tip of the cone which has typical values between 0.65 and 

0.85, and 𝑢2 is the pore pressure that is measured behind the tip of the cone. For sands, 𝑞𝑡 and 𝑞𝑐 

have been found to be approximately equal whether the unequal end area correction is completed 

(Boulanger and Idriss 2014). Therefore, because the context of this thesis has to do with 

liquefaction (which typically occurs in sands) the cone tip resistance will be presented in terms of 

𝑞𝑐. 

In order to correct the cone tip resistance for overburden stress, the cone tip resistance can 

be presented as 

 𝑞𝑐1𝑁 = 𝐶𝑁𝑞𝑐𝑁 = 𝐶𝑁
𝑞𝑐

𝑃𝑎
  (2.69) 

where 𝑞𝑐1𝑁  is the overburden corrected cone tip resistance, 𝑃𝑎 is the atmospheric pressure, and 𝐶𝑁 

is the overburden correction factor which from Idriss and Boulanger (2008) can be expressed as 
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 𝐶𝑁 = (
𝑃𝑎

𝜎′𝑣
)1.338−0.249√𝑞𝑐1𝑁𝑐𝑠 ≤ 1.7  (2.70) 

where 𝜎′𝑣 is the effective overburden stress at the depth of 𝑞𝑐1𝑁𝑐𝑠 and 𝑞𝑐1𝑁𝑐𝑠 is the overburden 

and fines content corrected CPT resistance. In order to solve Equation 2.70, 𝑞𝑐1𝑁 from Equation 

2.69 must be corrected for fines content to obtain 𝑞𝑐1𝑁𝑐𝑠. This expression can be given as 

 𝑞𝑐1𝑁𝑐𝑠 = 𝑞𝑐1𝑁 + ∆𝑞𝑐1𝑁  (2.71) 

where ∆𝑞𝑐1𝑁 is the change in the corrected CPT resistance due to the fines content of the soil which 

Boulanger and Idriss (2014) expressed as 

 ∆𝑞𝑐1𝑁 = (11.9 +
𝑞𝑐1𝑁

14.6
) exp (1.63 −

9.7

𝐹𝐶+2
− (

15.7

𝐹𝐶+2
)
2

)  (2.72) 

where FC is the fines content of the soil. As can be seen from Equations 2.69 through 2.72, iteration 

is required to solve for 𝑞𝑐1𝑁𝑐𝑠.  

 As shown in Equation 2.46 the 𝐶𝑅𝑅 can be extended to account for differing values of 

effective overburden stress, earthquake magnitude of than a moment magnitude of 7.5, and initial 

shear stress. After Idriss and Boulanger (2008), effective overburden stress correction factor, 𝐾𝜎, 

can be computed as 

 𝐾𝜎 = 1 − 𝐶𝜎ln(
𝜎′𝑣

𝑃𝑎
) ≤ 1.1  (2.73) 

where the coefficient 𝐶𝜎 can be expressed as  

 𝐶𝜎 =
1

37.3−8.27(𝑞𝑐1𝑁𝑐𝑠)0.264
≤ 0.3  (2.74) 

In order to account for earthquakes of moment magnitude other than 7.5, Idriss and Boulanger 

(2008) expressed the magnitude scaling factor as 

 𝑀𝑆𝐹 = 6.9 exp (
−𝑀𝑤

4
) − 0.058 ≤ 1.8  (2.75) 
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Finally, the correction factor for static shear stress, 𝐾𝛼, that is used to account for the static shear 

stress imposed by conditions such as sloping ground or from a nearby or overlying foundation, can 

be expressed (after Idriss and Boulanger 2008) as 

 𝐾𝛼 = 𝑎 + 𝑏𝑒𝑥𝑝(
−ξ𝑅

𝑐
)  (2.76) 

where ξ𝑅 is the relative state parameter index and a, b, and c are coefficients expressed previously 

in Equations 2.55, 2.56, 2.57, and 2.58. The relative state parameter index, ξ𝑅, is based on the 

penetration resistance as 

 ξ𝑅 =
1

𝑄−ln(
100(1+2𝐾𝑜)𝜎

′
𝑣)

3𝑃𝑎

− (0.478(𝑞𝑐1𝑁)
0.264 − 1.063)  (2.77) 

where 𝑞𝑐1𝑁 is constrained to values ≥ 21 and the initial shear stress ratio and relative state 

parameter index should be constrained to 𝛼 ≤ 0.35 and −0.6 ≤ ξ𝑅 ≤ 0.1 respectively, 𝐾𝑜 is the 

coefficient of lateral earth pressure at rest with typical values of 0.45 to 0.5 for a simple shear 

device normally consolidated in one dimension, and 𝑄 is an empirical constant. 

 Boulanger and Idriss (2014) updated their MSF equation for liquefaction resistance from 

Idriss and Boulanger (2008) to 

 𝑀𝑆𝐹 = 1 + (𝑀𝑆𝐹𝑚𝑎𝑥 − 1)(8.64 exp (
−𝑀

4
) − 1.325)  (2.78) 

where 𝑀𝑆𝐹𝑚𝑎𝑥 can be written as 

 𝑀𝑆𝐹𝑚𝑎𝑥 = 1.09 + (
𝑞𝑐1𝑁𝑐𝑠

180
)3 ≤ 2.2  (2.79) 

Based on Equations 2.78 and 2.79 Kramer and Stewart (unpublished manuscript) re-wrote 

Equation 2.67 to be in terms of 𝐾𝑀 instead of MSF as 

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp [(
𝑞𝑐1𝑁𝑐𝑠

113
) + (

𝑞𝑐1𝑁𝑐𝑠

1000
)2 − (

𝑞𝑐1𝑁𝑐𝑠

140
)
3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)
4

− 2.8] 𝐾𝜎 × 𝐾𝑀 × 𝐾𝛼  

(2.80) 

where 𝐾𝑀 is the correction factor for magnitude expressed as 
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 𝐾𝑀 =
1+(𝑀𝑆𝐹𝑚𝑎𝑥−1)(8.64exp(

−𝑀

4
)−1.325)

0.5803−2.7368exp(−𝑀 4⁄ )
  (2.81) 

Equation 2.80 represents the CPT deterministic expression for calculating the cyclic resistance 

ratio corrected for overburden, magnitude, and shear stress. 

 In order to develop a fully probabilistic liquefaction triggering procedure for CPT 

resistance, Boulanger and Idriss (2014) incorporated the performance based method developed by 

Kramer and Mayfield (2007). The Boulanger and Idriss (2012) probabilistic liquefaction resistance 

in terms of 𝐶𝑅𝑅 can be written as  

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp [(
𝑞𝑐1𝑁𝑐𝑠

113
) + (

𝑞𝑐1𝑁𝑐𝑠

1000
)2 − (

𝑞𝑐1𝑁𝑐𝑠

140
)
3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)
4

− 2.60 + 휀ln(𝑅)] 𝐾𝜎 × 𝐾𝑀 ×

𝐾𝛼  (2.82) 

where 휀ln(𝑅) is the error term for the CRR which is normally distributed with a mean of 0.0 and a 

recommended standard deviation,𝜎ln(𝑅), of 0.20 by Boulanger and Idriss (2012). Equation 2.82 

can be re-written as 

 𝐶𝑅𝑅𝑀,𝜎′𝑣𝑜,𝜏𝑠𝑡𝑎𝑡𝑖𝑐 = exp [(
𝑞𝑐1𝑁𝑐𝑠

113
) + (

𝑞𝑐1𝑁𝑐𝑠

1000
)2 − (

𝑞𝑐1𝑁𝑐𝑠

140
)
3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)
4

− 2.60 + 𝜎ln(𝑅) ∙

𝜙−1(𝑃𝐿)]𝐾𝜎 × 𝐾𝑀 × 𝐾𝛼  (2.83) 

where 𝜎ln(𝑅) is the standard deviation, 𝜙−1 is the inverse of the standard cumulative normal 

distribution, and 𝑃𝐿 is the probability of liquefaction which Boulanger and Idriss (2012) expressed 

as 

 𝑃𝐿(𝑞𝑐1𝑁𝑐𝑠, 𝐶𝑆𝑅𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚) =

𝜙 [
−(

𝑞𝑐1𝑁𝑐𝑠
113

)+(
𝑞𝑐1𝑁𝑐𝑠
1000

)
2
−(

𝑞𝑐1𝑁𝑐𝑠
140

)
3
+(

𝑞𝑐1𝑁𝑐𝑠
137

)
4
−2.60−ln(𝐶𝑆𝑅

𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚
)

𝜎ln(𝑅)
]  (2.84) 

where 𝐶𝑆𝑅𝑀=7.5,𝜎′𝑣𝑜=1𝑎𝑡𝑚
 is the cyclic stress ratio adjusted to a reference moment magnitude of 

7.5 and effective overburden stress of 1 atm. Equation 2.82, which represents the probabilistic 

triggering relationship for the 𝐶𝑅𝑅, is equal to the deterministic expression for the 𝐶𝑅𝑅 proposed 
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by Idriss and Boulanger (2004, 2008) when 휀ln(𝑅) =−0.20. Therefore, the deterministic 

expression is one standard deviation below the expected triggering curve. This gives a probability 

of liquefaction of approximately 16 percent that can be input into Equation 2.83 to determine the 

𝐶𝑅𝑅 deterministically (Boulanger and Idriss 2014). 

It should be noted that the Kramer and Mayfield (2007) performance-based framework will 

be discussed in depth in Chapter 3 (Probabilistic Liquefaction Hazard Analysis) and has been 

introduced here to provide context as to how Boulanger and Idriss (2014) developed their 

probabilistic CPT liquefaction triggering procedure. It should also be noted that other probabilistic 

CPT based liquefaction triggering procedures have been introduced (such as Moss et al. 2006), 

however, have not been discussed due to the prominence of the Boulanger and Idriss (2014) 

procedure. 

Up to this point the uncertainty in the prediction of response of a system has only been 

briefly introduced for the purpose of explaining probabilistic liquefaction triggering relationships. 

Chapter 3 discusses combining a probabilistic response model with a probabilistic seismic hazard 

analysis which forms what is now known as Probabilistic Liquefaction Hazard Analysis. 

2.4.2.2.2.4.3 Liquefaction Resistance – Shear Wave Velocity 

Evaluating liquefaction resistance does not need to be performed using a costly penetration 

based procedure such as the SPT and CPT. Instead, a cheaper non-invasive alternative for 

evaluating liquefaction potential can be performed using a shear wave velocity liquefaction 

potential method. Shear wave velocity can be measured via several different methods such as 

spectral analysis of surface waves (SASW), multichannel analysis of surface waves (MASW), and 

seismic cross-hole to name a few. Andrus and Stokoe (2000) developed one of the first shear wave 

velocity based liquefaction potential procedures incorporating the simplified method originally 
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developed by Seed and Idriss (1971) and previously discussed in Section 2.4.2.2.2.1.2, however, 

using correlations with shear wave velocity instead of SPT resistance. 

Andrus and Stokoe (2003) updated the Andrus and Stokoe (2000) procedure and 

highlighted several advantages of using a shear wave velocity based liquefaction method: 

1) Shear wave velocity measurements can be performed in soils (e.g., gravel) that are difficult 

or even impossible for penetration based methods such as the SPT and CPT to be 

performed. 

2) Shear wave velocity is directly related to the shear modulus, and the shear modulus is 

directly related to a materials shear strain, and shear strain is directly related to the 

generation of pore pressure, which is a critical factor in assessing the potential of 

liquefaction. 

3) Because shear wave velocity is directly related to the shear modulus, Gmax, it can be 

important for characterizing earthquake loading via a site response analysis because it 

allows for the measurement of the anchor point on modulus degradation curves that are 

used in equivalent-linear site response analyses. 

4) Shear wave velocity methods may be used where invasive penetration based procedures 

are not allowed. For example, a paleoliquefaction site of interest may be located on a 

wildlife refuge where invasive testing may not be allowed to evaluate the liquefaction 

resistance due to the noise and vibrations disturbing wildlife, whereas, a method such as 

an active MASW or passive MASW (analogous to the Microtremor Array Measurement, 

or MAM method) may be used to obtain shear wave velocity measurements. 

Andrus and Stokoe (2003) also noted a couple of disadvantages of the shear wave velocity 

approach to evaluating liquefaction potential: 



 

 

114 

1) Shear wave velocity measurements are made at small strains and liquefaction occurs at 

relatively large strains.  

2) Because shear wave velocity testing does not obtain a sample of the soil it can be difficult 

to discertain between liquefiable and non-liquefiable soils even though both soils may have 

the same shear wave velocity. 

Based on these disadvantages, a preferred usage of the shear wave velocity based procedure would 

be when it’s used in conjunction with a SPT, CPT, dynamic cone penetration test, vibrocore, or 

hand auger in order to identify the type of soil and/or soil characteristics to determine whether the 

soil is susceptible or not susceptible to liquefaction. 

There are multiple shear wave velocity procedures for assessing liquefaction potential, 

however, the shear wave velocity procedures of Andrus and Stokoe (2003) and Kayen et al. (2013) 

for evaluating liquefaction potential provide a good basis for comprehending shear wave velocity 

methods and provide an understanding one of the first procedures and a relatively new procedure 

for assessing liquefaction potential based on shear wave velocity. 

Andrus and Stokoe 

The shear wave velocity procedure presented by Andrus and Stokoe (2003) evaluates the 

earthquake loading via the CSR based on the simplified method (Seed and Idriss 1971) previously 

expressed in Equation 2.12. Andrus and Stokoe (2003) recommended that the stress reduction 

coefficient, 𝑟𝑑, be determined from the average curve shown in Figure 2.26 originally developed 

by Seed and Idriss (1971). 

Andrus and Stokoe (2003) developed the following expression for the CRR  

 𝐶𝑅𝑅 = 𝑀𝑆𝐹 [0.022 (
𝐾𝑐𝑉𝑆1

100
)
2

+ 2.8 (
1

𝑉∗𝑆1−𝐾𝑐𝑉𝑆1
−

1

𝑉∗𝑆1
)]  (2.85) 
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where 𝑀𝑆𝐹 is the magnitude scaling factor, 𝑉𝑆1 is the overburden corrected shear wave velocity, 

𝑉∗𝑆1 is the upper constraint on 𝑉𝑆1 for the occurrence of cyclic liquefaction, and 𝐾𝑐 is a correction 

factor to handle high 𝑉𝑆1 values due to cementation and aging effects. They also noted that the 

𝐶𝑅𝑅 expression given in Equation 2.85 is for cases where severe liquefaction behavior has 

occurred such as where sand boils and ground cracks are present. Andrus and Stokoe (2003) 

recommended using the magnitude scaling factor initially recommended by the 1996 NCEER 

Workshop as 

 𝑀𝑆𝐹 = (
𝑀𝑤

7.5
)
𝑛

  (2.86) 

where 𝑀𝑤 is the moment magnitude and 𝑛 is an exponent with a recommended value by Andrus 

and Stokoe (2003) of -2.56. As with the penetration based procedures, the shear wave velocity 

procedure is corrected for the overburden pressure. The expression used by Andrus and Stokoe to 

correct the shear wave velocity to a standard vertical effective stress of 1 atm is 

 𝑉𝑆1 = 𝑉𝑠 (
𝑃𝑎

𝜎′𝑣𝑜
)
0.25

  (2.87) 

where 𝑉𝑠 is the shear wave velocity, 𝑃𝑎 is the atmospheric pressure in kPa, and 𝜎′𝑣𝑜 is the initial 

effective overburden stress in kPa. Based on case history data, along with penetration tests 

correlated with shear wave velocity, Andrus and Stokoe (2003) estimated 𝑉∗𝑆1 values for sandy 

soils based on the fines content. For sands with a fines content less than or equal to 5 percent a 

value of 215 m/s is used for 𝑉∗𝑆1, for sands and silts with a fines content greater than or equal to 

35 percent a value of 200 m/s is used for 𝑉∗𝑆1, and if the fines content is between 5 percent and 35 

percent then the following expression is used 

 𝑉∗𝑆1 = 215 − 0.5(𝐹𝐶 − 5)
𝑚

𝑠
  (2.88) 
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where FC is the fines content of the soil. Andrus and Stokoe (2003) also recommended that the 

latter values of 𝑉∗𝑆1 developed for sandy soils could also be used for gravelly soils. 

 Because the case history database generally consisted of soils that were uncemented and 

less than 10,000 years old, Andrus and Stokoe (2003) developed the cementation and aging 

correction factor, 𝐾𝑐, to extend to soils conditions other than those from which the case history 

database consists of. Andrus and Stokoe (2003) recommended that a 𝐾𝑐 value of 1 be used for soils 

that are uncemented and less than 10,000 years old (Holocene age soils), for soils weakly cemented 

and older than 10,000 years old (Pleistocene age soils) Andrus and Stokoe suggested 𝐾𝑐 be 

determined from correlations with the SPT and CPT penetration test data as shown in Figures 2.37-

2.38 below. For soils without penetration data and no cementation and aging information, Andrus 

and Stokoe recommended assuming a 𝐾𝑐 value of 0.6. 

 

Figure 2.37. Method for evaluating 𝑲𝒄 for soils that are weakly cemented and based on 𝑽𝑺𝟏, 

(𝑵𝟏)𝟔𝟎, and 𝑭𝑪 (Andrus and Stokoe 2003). 
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Figure 2.38. Method for evaluating 𝑲𝒄 for soils that are weakly cemented and based on 𝑽𝑺𝟏, 𝒒𝒄𝟏𝑵, 

and 𝑭𝑪 (Andrus and Stokoe 2003). 

 

The Andrus and Stokoe (2003) deterministic shear wave velocity procedure then evaluated the 

potential for liquefaction based on Equation 2.6 where if the factor of safety is less than or equal 

to 1 liquefaction would occur, and when the factor of safety is greater than 1 liquefaction does not 

occur. In order to calculate the probability of liquefaction Andrus  and Stokoe used the expression 

 𝑃𝐿 =
1

1+(
𝐹𝑆𝐿
0.73

)
3.4  (2.89) 

where 𝑃𝐿 is the probability of liquefaction and 𝐹𝑆𝐿 is the factor of safety against liquefaction. 

Andrus and Stokoe realized that this approach did not take into account the uncertainties in CSR 

and 𝐶𝑅𝑅, however, believed these uncertainties to be relatively small. Using this approach, a 

deterministic factor of safety against liquefaction value of 1 corresponds to a 26 percent chance of 

the occurrence of liquefaction. 
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Kayen et al. 

The shear wave velocity procedure of Kayen et al. (2013) is based on 422 liquefaction case 

histories, many of which correspond to case histories where penetration testing had been 

previously performed, however, shear wave velocity measurements had not been made until the 

Kayen et al. (2013) study. The shear wave velocity procedure of Kayen et al. (2013) is based on 

the simplified method introduced by Seed and Idriss (1971), however, incorporated the stress 

reduction coefficient based on Cetin et al. (2004) shown in Equation 2.20 with the standard 

deviation term in Equation 2.20 given by Equations 2.22 or 2.23 depending on whether the depth 

is less than or greater than 12 meters respectively. Kayen et al. (2003) did not use Equation 2.21 

(calculation of 𝑟𝑑 for depths greater than 20 meters) because the global case history dataset mainly 

consists of depths less than 20 meters. 

Similar to Cetin et al. (2004), Kayen et al. (2013) developed an expression for calculating 

a value of the probability of liquefaction using a Bayesian updating analysis and extended it to 

develop a deterministic expression for the 𝐶𝑅𝑅 given as 

 𝐶𝑅𝑅𝐾𝑎𝑦𝑒𝑛 = exp [
((0.0073𝑉𝑠1)

2.8011−2.6168 ln(𝑀𝑤)−0.0099 ln(𝜎
′
𝑣)+0.0028𝐹𝐶−0.4809𝜙

−1(𝑃𝐿,𝐾𝑎𝑦𝑒𝑛))

1.946
]  

(2.90) 

where 𝑉𝑠1 is the shear wave velocity corrected for overburden pressure as given in Equation 2.87, 

𝑀𝑤 is the moment magnitude,  𝜎′𝑣 is the effective overburden stress, 𝐹𝐶 is the fines content (by 

dry weight) expressed in percent, 𝜙−1 is the inverse of the standard cumulative normal distribution, 

and 𝑃𝐿,𝐾𝑎𝑦𝑒𝑛 is the probability of liquefaction taken as 15 percent for deterministic analyses. 

In the Kayen et al. (2013) study, the authors adjusted the CSR by normalizing it by the 

effective stress and accounting for durations of earthquake shaking other than an 𝑀𝑤 of 7.5. The 

expression for this is 
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 𝐶𝑆𝑅∗ = 𝐶𝑆𝑅𝑀𝑤=7.5,𝜎
′
𝑣=1𝑎𝑡𝑚 =

𝐶𝑆𝑅

𝐷𝑊𝐹∙𝐾𝜎
  (2.91) 

where 𝐶𝑆𝑅𝑀𝑤=7.5,𝜎
′
𝑣=1𝑎𝑡𝑚is the cyclic stress ratio corrected to an equivalent 𝑀𝑤 of 7.5 and 

overburden stress of 1 atm, DWF is the duration weighting factor, and 𝐾𝜎 is the overburden 

correction factor. The 𝐾𝜎 relationship from Kayen et al. (2013) is 

 𝐾𝜎 = 𝜎′𝑣
−0.0099/1.946

= 𝜎′𝑣
−0.00509

  (2.92) 

Due to limitations of the 422 liquefaction sites (e.g., all liquefaction sites having a vertical effective 

stress less than 180 kPa) 𝐾𝜎 should not be evaluated for vertical effective stress greater than 200 

kPa (Kayen et al. 2013). 

 Kayen et al. (2013) expressed the DWF from Equation 2.91 as 

 𝐷𝑊𝐹 = 15𝑀𝑤
−1.342  (2.93) 

and this expression for DWF is valid for moment magnitudes between 5.5 to 9.0 based on this 

being the range of earthquake magnitudes in the dataset. Kayen et al. (2013) also noted the shear 

wave velocity measurements are relatively insensitive to fines content and exclaimed that the 

uncertainty in fines content is relatively small when compared the uncertainty in the estimation of 

𝐶𝑆𝑅∗ and 𝑉𝑠1. The Kayen et al. (2013) paper does not provide a specific adjustment for fines 

content, however, does provide an example of how little variability there is between a CSR versus 

𝑉𝑠1 curve for fines contents of 0 percent and 35 percent for a probability of liquefaction of 50 

percent given a moment magnitude 7.5 earthquake and initial effective stress of 100 kPa as shown 

below in Figure 2.39. 
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Figure 2.39. Influence of a fines content adjustment for fines content values of 0 percent and 35 

percent for a probability of liquefaction of 50 percent, moment magnitude 7.5 event, and initial vertical 

effective stress of 100 kPa (Kayen et al. 2013). 

 

 The deterministic 𝐶𝑅𝑅 of Kayen et al. (2013) procedure assumes a probability of 

liquefaction, 𝑃𝐿,𝐾𝑎𝑦𝑒𝑛, of 15 percent in Equation 2.90. Kayen et al. (2013) originally developed 

Equation 2.90 to account for the 𝐶𝑅𝑅 probabilistically accounting for the variability of the 

probability of liquefaction given as 

 𝑃𝐿,𝐾𝑎𝑦𝑒𝑛 = 𝜙 [−
((0.0073𝑉𝑠1)

2.8011−1.946ln(𝐶𝑆𝑅)−2.6168 ln(𝑀𝑤)−0.0099 ln(𝜎
′
𝑣)+0.0028𝐹𝐶)

0.4809
] (2.94) 

where 𝑃𝐿,𝐾𝑎𝑦𝑒𝑛 is the probability of liquefaction given as a decimal, 𝜙 is the standard cumulative 

normal distribution, and 𝐶𝑆𝑅 is the cyclic stress ratio without accounting for magnitude duration 

effects (termed DWF by Kayen et al. 2013) given by Equation 2.93. The reason 𝐶𝑆𝑅 in Equation 

2.94 does not take into account the magnitude duration effects is because Equation 2.94 itself 

accounts for this. Therefore, in order calculate the 𝐶𝑅𝑅 probabilistically, the value of 𝑃𝐿,𝐾𝑎𝑦𝑒𝑛 

determined from Equation 2.94 should be implemented into the 𝐶𝑅𝑅 expression given in Equation 

2.90. 
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2.5 LIQUEFACTION EFFECTS 

The consequences of liquefaction can range from minor cracks in buildings to the collapse 

of bridges. Liquefaction can range across large areas of naturally deposited loose sand to localized 

zones where loose sand fill has been placed. Flow liquefaction oftentimes causes catastrophic 

effects such as the static liquefaction flow failure of Fort Peck Dam described in Section 2.4.1.1.2. 

The effects of cyclic liquefaction, while not usually as severe as flow liquefaction, can also cause 

tremendous damage as shown previously in Figure 2.2 showing liquefaction induced lateral 

spreading during the 2010 Haiti earthquake. Flow failures, floatation of light buried structures, 

bearing capacity failures, and retain wall failures are oftentimes the results of flow liquefaction. 

The most common effects of cyclic liquefaction include alteration of ground motions, sand boils, 

settlement, and lateral spreading (Kramer 1996). These liquefaction effects will be described in 

this section except for lateral spreading which will be thoroughly discussed in Chapter 5. 

2.5.1 Alteration of Ground Motions 

Soils that undergo cyclic liquefaction are subject to continuous cycles of loading that cause 

the pore pressure in a liquefaction susceptible soil to increase which reduces the effective stress 

and therefore reduces the shear strength and stiffness of the soil. This is important because a soil 

at the beginning of earthquake shaking may amplify or de-amplify ground motions from 

underlying bedrock depending on the amplitude and frequency content of the motion and the 

natural period of the soil which is based on the soil stiffness. Therefore, as the shaking continues 

the stiffness of the soil decreases which causes the natural period of the soil to change as well. 

Ground motions will therefore respond differently at the end of shaking than at the beginning of 

shaking. This can cause problems if not accounted for in design, for example, consider a twenty 

story building with a fundamental period of 2 seconds resting on top of a liquefiable soil that 
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initially has a natural period of 0.1 seconds. Initially, the building may not be impacted much 

because the oscillation of the building doesn’t match the period of the ground motion, however, as 

the shaking continues, and the soil softens, the fundamental period of the soil may progressively 

or abruptly change to 2 seconds upon liquefaction. If this were to occur the ground motions would 

bring about a maximum response on the building due to resonance where the frequency of the 

ground motion matches the frequency of the building. 

A soil liquefying at depth can also cause a variety of other potential design problems. 

Consider a liquefiable soil between two non-liquefiable soils for a level ground surface. Upon the 

occurrence of liquefaction the liquefiable soil could disconnect from the non-liquefiable soils and 

this could cause tension cracks in the overlying soil to form due to ground oscillations and separate 

the overlying soil into blocks as shown in Figure 2.40. Clearly a structure resting on top of a soil 

where this occurs would be introduced to forces and moments that it was not subjected to prior to 

liquefaction. A liquefiable soil decoupling from an overlying non-liquefiable soil can also cause 

major problems for pile foundations. Piles extending through the non-liquefiable and liquefiable 

layers may be introduced to large bending moments upon liquefaction (Kramer 1996). This is 

because the non-liquefiable soil below the liquefiable layer exhibits little deformation, whereas, 

the liquefiable soil may undergo displacement due to the loss in shear strength caused by 

liquefaction. Large lateral forces causing bending moments may form causing the pile to fail. 

Kramer (1996) illustrated the possible effects of liquefaction on a pile foundation as shown in 

Figure 2.41 
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Figure 2.40. The effects of liquefaction decoupling a liquefiable layer from an overlying non-

liquefiable layer due to ground oscillation on a level ground surface (Kramer 1996). 

 

 

Figure 2.41. The effects of liquefaction on a pile foundation where a liquefiable layer displaces 

relative to an underlying non-liquefiable layer. The non-liquefiable layer above the liquefied layer 

moves with it causing large bending moments which may cause failure of the pile. 

2.5.2 Sand Boils 

Sand boils are a mixture of water and sand ejected from below the ground surface due to 

the build up of pore pressure caused by the tendency of a soil to contract during earthquake 

shaking. As water escapes toward the ground surface following the path of least resistance, it 

brings with it sand particles of the liquefied soil and potentially particles of any overlying soil as 
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well. Oftentimes, sand boils (and the ejecta they leave on the ground surface) are used as evidence 

to claim that liquefaction occurred at a site due to an earthquake. However, sand boils are not only 

evidence for liquefaction, they can potentially have severe consequences as well. A sand boil 

developing in a localized area underneath a building can cause large settlements of the soil to that 

area of the building. These settlements would cause less resistive force to support the building and 

add stress in parts of the building affected that may not be designed to handle these stresses.  

Although sand boils are used as evidence for liquefaction, the lack of them does not indicate 

that liquefaction has not occurred. Liquefaction that occurs at deeper depths, in small thickness 

soil layers, or a liquefied soil that does not experience continued duration of ground motions may 

not reach the ground surface. Evidence for cases like these are dikes and sills that form in overlying 

non-liquefiable soils from sand boils that did not reach the surface and left behind the remnants of 

the particles the water brought along with it that never reached the ground surface. Liquefaction 

evidence from dikes and sills are much more difficult to obtain because they are below the ground 

surface and either require erosional processes (such as a river) or man-made processes (such as 

excavation for a structure) to take place in order for them to be discovered. Oftentimes, these dikes 

and sills are discovered from prehistoric earthquakes and are indicators for paleoliquefaction. 

Areas of the world that have a relatively short time period of a documented earthquake records 

(such as the Western United States) may benefit largely from paleoliquefaction studies which may 

provide a better indication of the recurrence rate of earthquakes in these areas allowing for better 

earthquake design codes. 

2.5.3 Flow Failures 

Flow failures are the consequence of flow liquefaction and are the most severe form of 

liquefaction due to the large movements of soil involved. Flow failures occurs when the shear 



 

 

125 

strength of the soil drops below the static shear stresses present in the soil due to the reduction of 

shear strength from loading (seismic or non-seismic). When the shear strength is less than the static 

shear stress this means that the resistance of the soil is less than the initial static load. The National 

Research Council (1985) described four different types of flow failure that will be discussed below. 

2.5.3.1 Flow Failure Mechanisms 

NRC Mechanism A 

 Flow failure NRC Mechanism A is flow liquefaction which was previously discussed in 

Section 2.4.2.1. A brief review of flow liquefaction is that it occurs when the initial shear stress 

imposed on a soil exceeds the steady state shear strength of the soil. The steady state shear strength 

is the strength of the soil at which constant shearing resistance is obtained meaning a soil will 

strain at the same rate for a given applied stress. The generation of pore pressure from undrained 

loading (either monotonic or cyclic) decreases the strength of the soil to this steady state shear 

strength. Assuming the soil is initially stable, a soil exhibiting flow liquefaction will initially have 

a shear strength greater than the initial shear stress imposed on the soil, however, due to either 

monotonic or cyclic loading the strength of the soil will be decreased below the initial static stress 

on the soil at which point flow liquefaction will occur. Soil that is initially at a state where the 

imposed initial shear stress is slightly below the initial strength of the soil would only require a 

small undrained disturbance to occur in order to drop the shear strength of the soil below the initial 

shear stress on the soil (Kramer and Seed 1988). 

NRC Mechanism B 

 Flow failure NRC Mechanism B occurs when a liquefiable soil is capped by a non-

permeable layer that does not allow the pore pressure, caused by the densification of sand grains 

during shaking, to escape. The liquefiable soil layer as a whole may initially be at the same state 
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having the same void ratio, however, when shaking takes place causing the densification of soil 

particles the action of gravity may drive the soil to a state in which the lower portion of the 

liquefiable layer is denser (at a lower void ratio) than the upper portion of the liquefiable layer. 

Castro (1975) observed this phenomenon, which was later termed void redistribution by Fiegel 

and Kutter (1992), in cyclic triaxial tests when studying the conservatism in regards to liquefaction 

occurrence for medium dense and dense sands in cyclic triaxial tests. Because the upper portion of 

the soil layer is at a looser state than it originally was, the steady state strength of the soil will 

decrease. If the steady state strength of the soil in this upper portion of the soil is lower than the 

initial shear stress applied to the soil a flow failure may occur. Because the steady state strength 

of the upper portion of the soil is lower than the initial shear stress, a further undrained disturbance 

of the soil is capable of achieving a soil state in which the shear strength of the soil is less than the 

initial static shear stress at which point a flow failure will occur. It is important to remember that 

just because a soils steady state strength is lower than the initial static shear stress imposed on the 

soil, does not mean flow failure will occur. A flow failure will only occur if there is a disturbance 

that causes the soils shear strength to drop below the imposed initial static shear stress. A steady 

state strength below the initial static shear stress simply implies that a soil is capable of having a 

flow failure. 

Void redistribution is the phenomenon that causes NRC flow failure mechanism B. When 

a saturated soil between two impermeable layers begins to reconsolidate after reaching zero 

effective stress (initial liquefaction) the particles of the liquefied layer will start to settle out and 

become denser at the base and looser at the top due to the effects of gravity (see Figure 2.42). It 

also should be noted that the pore pressure generated during liquefaction applies a force to the 

above impermeable layer as the water tries to escape causing the soil skeleton of this impermeable 
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layer to rebound, which in turn reduces the effective confining pressure allowing for the liquefiable 

soil to reach a looser state during the reconsolidation process (Kramer and Stewart, unpublished 

manuscript). Because the soil at the top of the liquefied layer is at a looser state than the base of 

the liquefied layer after liquefaction, the steady state strength of the top of the soil layer will be 

reduced. Therefore, if the steady state strength of the upper portion of the liquefied layer is below 

the initial shear stress on the soil, then a flow failure is capable of occurring. 

Void redistribution may also cause thin water interlayers at the boundary between the 

liquefied layer and the above impermeable layer (Fiegel and Kutter, 1992). If the water interlayer 

is large in extent (continuous) along this boundary (e.g., the sand/clay boundary in Figure 2.42), a 

flow failure may occur because the water has zero shear strength. Therefore, if this water interlayer 

takes the place of enough of the soil that was resisting a slide from occurring along this boundary 

a flow failure would occur. 

 

Figure 2.42. Illustration of the effects of void redistribution causing the soil particles of a liquefied 

soil to rearrange into a loose state above a dense state between two impermeable boundaries with a 

water interlayer between the upper sand-clay boundary. 
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NRC Mechanism C 

 When pore pressures generated in a layer at depth due to shaking are not impeded by an 

overlying impermeable layer, the pressurized water will intrude the overlying soil causes cracks 

and pathways into the soil. These cracks would reduce the shear strength of the soil above the layer 

where the pore pressures were generated. Therefore, not only will the upper portion of the high 

pore pressure soil be loosened and undergo a reduction in shear strength, but the overlying soil 

along the boundary will also be reduced as well causing a further reduction of the total shear 

strength along the boundary between the soils (National Research Council, 1985). Therefore, if 

the total shear strength along this boundary is reduced to a value lower than the initial shear stress, 

a flow failure will occur. This process is the same as that for how sand boils are generated which 

leave dikes and sills of sand in soils that a sand boil passed through on its journey from the source 

sand layer that liquefied to the ground surface. Conceptually, this can be thought of being a natural 

hydraulic fracturing process as the pore pressure escapes from the its origin to the ground surface. 

It is also worth noting that flow failure via NRC Mechanism C does not need to occur during 

earthquake shaking because the effective stress, and therefore the steady state strength, in the 

overlying soil is not actually reduced until the water penetrates into the overlying soil (Kramer, 

1996). Flow failure NRC Mechanism C is similar to NRC Mechanism B, however, the pore 

pressures generated do not need to be prevented by an overlying impermeable soil layer. Because 

flow failure NRC Mechanism C causes changes in shear strength in not only the layer where high 

pore pressures develop, but also the surrounding soil (see Figure 2.43) this is a global loosening 

failure, contrary to flow failure NRC Mechanism B which causes the reduction of shear strength 

in only the layer where high pore pressures develop. 
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Figure 2.43. Illustration of flow failure NRC Mechanism C showing the zone of high pore pressure 

causing loosening of the sand at the upper portion of the sand layer along with reducing the shear 

strength of the overlying soil (National Research Council, 1985). 

 

NRC Mechanism D 

 Flow failure NRC Mechanism D occurs when a liquefiable soil (e.g., sand and coarse silts) 

is in contact with a stiff body (such as steel or concrete structures) and pore pressure build up due 

to shaking reduces the shear strength of the soil below what is required for equilibrium (National 

Resource Council, 1985). Contacts between soil layers are almost always continuous, gradual, and 

are not smooth (e.g., the transition from a silt to a sand due to the progradation of a coast), whereas, 

the contact between a soil and a steel pile would be well-defined. Consider the development of a 

high pore pressure zone along the side of a friction pile that causes the reduction in shear strength 

of the soil along the soil and pile interface. If the strength of the soil at the interface is reduced 

enough, and this extent of loss of strength along the pile interface long enough, the pile can undergo 

a plunging failure where a large amount of settlement can occur instantaneously. The effects of 

high pore pressure reducing the shear strength along the interface of friction piles and causing 

plunging failure has been studied by De Alba (1983). 
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2.5.3.2 Residual Strength of Liquefied Soil 

Because flow failures cause severe consequences when they occur, estimating the shear 

strength of liquefied soil is of critical importance in geotechnical engineering. Up to this point it 

has only been discussed that when the shear strength of a soil is reduced below the initial shear 

stress imposed on the soil then a flow failure will occur, however, methods for calculating the 

shear strength of liquefied soil up to this point have not been discussed. 

Estimating the shear strength of soil at which flow failures occur is typically done by using 

residual strengths that have been back-calculated from flow slide case histories. This is done 

because the conditions for steady state concepts hardly ever exist for actual flow slides because 

during flow failures drainage can occur (causing changes in effective stress) and strain rates are 

variable throughout flow failures (Kramer and Wang, 2014). Steady state concepts also require 

laboratory testing of soil specimens which are very sensitive to small changes in density which 

oftentimes occur from disturbance during the sampling of soil specimens. 

Currently, there is a limited number of case histories for flow failures due to their relatively 

uncommon occurrence along with uncertainty and the lack of key parameters in these case histories 

which occur for many reasons such as the locations of occurrence often are in unpopulated areas 

(Kramer and Wang, 2014). Because of the uncertainties in parameters involved for the back 

calculation of residuals strengths and the subjective assumptions involved in developing 

procedures for calculating residual strength, it is wise to weight the results of the different 

procedures based upon application to the site of interest. The three primary methods for estimating 

the shear strength of liquefied soil based on flow slide case histories are the direct approach, the 

normalized strength approach, and a mixed approach that incorporates parts of the direct and 

normalized strength approaches. 
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2.5.3.2.1 Direct Approach 

The direct approach relates the residual strength of the soil directly to the corrected SPT resistance 

and the first correlation was developed by Seed (1987) as a tentative relationship and is shown in 

Figure 2.44. The SPT values shown in Figure 2.44 were corrected for energy, overburden, and 

fines content. The expression for the fines content was given as 

 (𝑁1)60,𝑐𝑠 = (𝑁1)60 + ∆(𝑁1)  (2.95) 

where (𝑁1)60 is the overburden and energy corrected SPT resistance and ∆(𝑁1) was the fines 

correction given by Table 2.10. 

Table 2.10. Correction of SPT resistance for fines content (Seed, 1987). 

 

 

Figure 2.44. Tentative estimation of residual strength from clean sand corrected SPT resistance 

values (Seed, 1987). 

The correlation by Seed (1987) was revised by Seed and Harder (1990) who reexamined several 

of the case history flow slides and added additional data. The revised residual strength correlation 

by Seed and Harder (1990) is shown in Figure 2.45. The SPT values shown in Figure 2.45 were 
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corrected for energy, overburden, and fines content. The expression for the fines content can be 

expressed as given in Equation 2.95 where the fines correction ∆𝑁1 was slightly adjusted and given 

by Table 2.11. 

Table 2.11. Correction of SPT resistance for fines content (Seed, 1987). 

 

 

Figure 2.45. Estimation of residual strength from clean sand corrected SPT resistance values 

(Seed and Harder, 1990). 

 

As shown in Figure 2.45 the relationship between the corrected SPT resistance and residual 

strength has a large amount of uncertainty as given by the large spread of the data. One main 

attribute to this spread is likely from the mixing soils that occurred during the flow failure. 
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Therefore, the SPT resistance values used in the correlation may not correspond to the soil that 

was the main factor in causing the flow failure. 

 Idriss (1999) reexamined the flow slide case histories and developed an exponential 

relationship using the median measured SPT resistance as shown in Figure 2.46 and given by  

 𝑆𝑟 = 0.0236𝑒𝑥𝑝(0.16(𝑁1)60,𝑐𝑠)  (2.96) 

where the residual strength, 𝑆𝑟, is in atm.  

 

Figure 2.46. Estimation of residual strength from clean sand corrected SPT resistance values 

(Seed and Harder, 1990). 

2.5.3.2.2 Normalized Strength Approach 

The normalized strength approach stems from the basis of how the consolidation curve 

compares to the steady state line. If the consolidation curve and steady state line were parallel for 

a soil, then the ratio of steady state strength to consolidation stress would be constant for that soil. 

If this were true for sandy soils, the steady state strength could be obtained from performing 

consolidation tests on the soil, however, this is known to not be the case. This has not stopped 
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researchers from developing relationships for the normalized strength ratio. Stark and Mesri (1990) 

developed a correlation of normalized strength ratio based upon normalized SPT penetration 

resistance because the strength ratio of liquefied soil and values of SPT penetration resistance are 

both dependent upon the density of the soil and its effective confining stress. The correlation to 

the normalized penetration resistance was based upon back calculated and laboratory measured 

residual strengths from the flow failure case histories and was given as 

 
𝑆𝑟

𝜎′𝑣𝑜
= 0.0055(𝑁1)60,𝑐𝑠   (2.97) 

where (𝑁1)60,𝑐𝑠 is the overburden, energy, and fines content correct SPT penetration resistance. 

Olson and Stark (2002) updated the case history database used by Stark and Mesri (1990) to a total 

of 33 case histories and developed their own linear normalized strength ratio expression dependent 

upon normalized SPT resistance and cone penetration tip resistance as 

 
𝑆𝑟

𝜎′𝑣𝑜
= 0.03 + 0.0075(𝑁1)60 ± 0.03𝑤ℎ𝑒𝑟𝑒(𝑁1)60 ≤ 12   (2.98) 

 
𝑆𝑟

𝜎′𝑣𝑜
= 0.03 + 0.0143𝑞𝑐1 ± 0.03𝑤ℎ𝑒𝑟𝑒𝑞𝑐1 ≤ 6.5𝑀𝑃𝑎   (2.99) 

where the normalized penetration resistances were not corrected for fines content and the ±0.03 

term represents the range of the linear relationship although Olson and Stark (2002) specify the 

standard deviation to be 0.025. Figure 2.47-2.48 show the linear relationship between the residual 

strength ratio and the corrected SPT and CPT resistances respectively. 
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Figure 2.47. Linear relationship of the residual strength ratio and normalized SPT resistance for 

liquefied soil (Olson and Stark, 2002). 

 

Figure 2.48. Linear relationship of the residual strength ratio and normalized CPT tip resistance 

for liquefied soil (Olson and Stark, 1992). 
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 Idriss and Boulanger (2007) reduced the size of the case history database from 33 as 

investigated by Olson and Stark (2002) to 18 case histories. Idriss and Boulanger broke the 33 case 

histories from Olson and Stark (2002) into three main groups where group 1 consisted of 7 case 

histories with adequate SPT/CPT and geometric details, group 2 consisted of 11 case histories with 

either adequate SPT/CPT or geometric details, and group 3 consisted of the 17 case histories 

eliminated from consideration due to inadequate details in regards to SPT/CPT resistances and the 

geometry. Kramer and Stewart (unpublished manuscript) expressed the normalized residual 

strength expressions of Idriss and Boulanger (2007) for correct SPT resistance and void 

redistribution effects as 

 
𝑆𝑟

𝜎′𝑣𝑜
= 𝑒𝑥𝑝 (

(𝑁1)60,𝑐𝑠−𝑆𝑟
16

+ (
(𝑁1)60,𝑐𝑠−𝑆𝑟−16

21.2
)
3

− 3.0) × (1 + 𝛽𝑒𝑥𝑝 (
(𝑁1)60,𝑐𝑠−𝑆𝑟

2.4
− 6.6)) ≤ 𝑡𝑎𝑛𝜙′   

(2.100) 

where 𝛽 is 0 when void redistribution effects are significant and 𝛽 is 1 when void redistribution is 

insignificant and  (𝑁1)60,𝑐𝑠−𝑆𝑟 is expressed as 

 (𝑁1)60,𝑐𝑠−𝑆𝑟 = (𝑁1)60,𝑐𝑠 + ∆(𝑁1)60,𝑐𝑠−𝑆𝑟   (2.101) 

where ∆(𝑁1)60,𝑐𝑠−𝑆𝑟 is a fines content correction to determine the SPT resistance for residual 

strength given in Table 2.12. Idriss and Boulanger (2007) also developed an expression for 

corrected CPT resistance from a conversion from SPT resistance that can be expressed as 

 
𝑆𝑟

𝜎′𝑣𝑜
= 𝑒𝑥𝑝 (

𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟
24.5

− (
𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟

61.7
)
2

+ (
𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟

106
)
3

− 4.42) × (1 + 𝛽𝑒𝑥𝑝 (
𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟

11.1
− 9.82)) ≤

𝑡𝑎𝑛𝜙′   (2.102) 

where 𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟 is expressed as 

 𝑞𝑐1𝑁𝑐𝑠−𝑆𝑟 = 𝑞𝑐1𝑁𝑐𝑠 + ∆𝑞𝑐1𝑁−𝑆𝑟    (2.103) 

where ∆𝑞𝑐1𝑁−𝑆𝑟 is a fines content correction to determine the CPT resistance for residual strength 

given in Table 2.12.The relationships normalized residual strength relationships to corrected SPT 

and CPT resistance proposed by Idriss and Boulanger (2007) are graphically shown in Figure 2.49-

2.50 respectively. 
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Figure 2.49. Residual shear strength versus median SPT resistance relationship for significant and 

insignificant void redistribution effects (Idriss and Boulanger, 2007). 

 

Figure 2.50. Residual shear strength versus median CPT resistance relationship for significant and 

insignificant void redistribution effects (after Kramer and Stewart, unpublished manuscript). 
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Table 2.12. Correction of SPT and CPT resistance for fines content (Idriss and Boulanger (2007). 

 

Based on Figure 2.49-2.50 the void redistribution effects have little influence up until the clean 

sand correct SPT and CPT resistances are at values of 8 and 75 respectively. Upon exceeding the 

latter values it is very important to distinguish if void redistribution effects should be accounted 

for or not because there is a large spread between the curves based on whether 𝛽 is 0 or 1. In 

current practice it is typical to consider the void redistribution effects to be significant as it is more 

conservative in the liquefaction analysis for flow failures which can cause devastating effects. 

2.5.3.2.3 Mixed Approach 

 In order to account for the deviation of the steady state line from parallel with the 

consolidation curve as effective stress increases (see Figure 2.51), Kramer and Wang (2014) 

developed a non-linear relationship for determining the residual strength based upon both 

corrected SPT resistance and initial vertical effective stress expressed as 

 𝑙𝑛𝑆𝑟 = −8.444 + 0.109(𝑁1)60 + 5.379(𝜎′𝑣𝑜)
0.1   (2.104) 

where the standard deviation in the relation is given as 

 𝜎𝑙𝑛𝑆𝑟 = √𝜎2𝑚 +0.00073𝑁2
(𝐶𝑂𝑉2𝑁)+4.935𝑆0.2 (𝐶𝑂𝑉2𝑆)   (2.105) 

where 𝑁 is the mean value of the overburden and energy corrected SPT resistance (𝑁1)60, 𝑆 is the 

mean value of the vertical effective stress 𝜎′𝑣𝑜, and 𝐶𝑂𝑉 is the coefficient of variation. Kramer 

and Wang (2014) developed their relationship after re-analyzing several of the case histories from 

the database used by Olson and Stark (2002). In doing so they assigned a weighting factor based 

on the quality of the case histories and differentiated between conditions where lateral spreading 

Fines content (%) ΔN160cs- Sr Δqcs1N- Sr

10 1 10

25 2 25

50 4 45

75 5 55

∆(𝑁1)60,𝑐𝑠−𝑆𝑟 ∆𝑞𝑐1𝑁−𝑆𝑟  
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would occur instead of flow sliding. The Kramer and Wang (2014) relationship for relation for 

estimating the residual strength is shown in Figure 2.52 for median residual strengths. 

 

Figure 2.51. Example illustration of how the steady state line deviates from parallel with the 

consolidation curve at high vertical effective stresses. 

 

Figure 2.52. Estimation of median residual strength values based on corrected SPT resistance and 

vertical effective stress (Kramer and Wang, 2014). 

2.5.4 Settlement 

Settlement occurs from liquefaction due to the tendency of a soil to densify when shaken. 

Initially upon liquefaction, soils lose their strength and an immediate punching or rotational 

bearing capacity failure may occur due to the structure settling with respect to the soil around it. 

Settlement from liquefaction may also occur after earthquake shaking has ended. Because sands 
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are undrained when liquefaction occurs, there is no volume change until the pore pressure escapes 

and the water filling the voids of the soil is expelled. Therefore, if the pore pressure cannot escape 

right away (as would be the case for a liquefied sand trapped between two very low permeability 

clay layers) the sand may not settle until minutes, hours, or even days after shaking has ended.  

The effects of settlement are dependent on where the settlement occurs. Three types of settlement 

will be discussed including free-field settlement, foundation settlement, and settlement due to 

ejecta. The two most common procedures for estimating settlement induced by liquefaction will 

be discussed as well. It should be noted that non-seismic related settlement calculations typically 

exhibit 25-50% errors, therefore, settlements due to seismic loading are likely to have less accuracy 

(Tokimatsu and Seed, 1987). 

2.5.4.1 Free-Field Settlement 

The simplest case of settlement is that which occurs on level ground and away from any structures. 

The amount of settlement that occurs is dependent on the volumetric strain incurred during and 

after earthquake shaking. When level ground conditions exist, it is typical to consider compression 

in a single dimension and therefore consider the volumetric strain to be approximately equal to the 

vertical strain. It is only logical to incur that the amount of settlement also depends on the thickness 

of the liquefiable layer. Therefore, conceptually it is not hard to see that any settlement model will 

include both the amount of vertical strain and thickness of the liquefiable layer. Therefore, similar 

to static settlement calculations, the amount of settlement can be found by breaking up the 

thickness of the soil profile into small sublayers (oftentimes no larger than 1m thick) and 

integrating the vertical strain over the thickness of each of the sublayers. The latter can be written 

as the sum of the vertical strain of each sublayer multiplied by each sublayers thickness  

 ∆𝐻 = ∑ (휀𝑣)𝑖∆𝑧𝑖
𝑛
𝑖=1    (2.106) 
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where 𝑖 represents the 𝑖th sublayer, 𝑛 is the total number of sublayers, 휀𝑣 is the vertical strain in the 

𝑖th sublayer, and ∆𝑧 is the thickness of the 𝑖th sublayer. The latter relationship for settlement is 

relatively simple to comprehend, however, understanding the factors that influence the amount of 

vertical strain must be considered as well. One such factor is the void ratio (density) of the soil. 

As discussed in Section 2.4.2.2.2.4 (Liquefaction Resistance) laboratory procedures are not able 

to replicate field conditions adequately so in-situ tests for measuring density via penetration 

resistance (SPT and CPT) have often been used. With that being said, laboratory tests did help 

Tokimatsu and Seed (1987) find that the volumetric strain from liquefaction is related to relative 

density and peak shear strain. Tokimatsu and Seed (1987) then extended these findings and related 

the relative density to SPT resistance and the peak shear strain to the CSR as shown in Figure 2.53 

in order to obtain the volumetric strain. Therefore, with the latter process of determining the 

volumetric strain along with knowing the liquefiable layer thicknesss, Tokimatsu and Seed (1987) 

could then calculate settlements based on Equation 2.106. 
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Figure 2.53. Evaluation of volumetric strain from CSR and corrected SPT resistance (Tokimatsu 

and Seed, 1987). 

 

 Ishihara and Yoshimine (1992) were able to relate post-liquefaction volumetric strain to 

the density of a sand and factor of safety against liquefaction using a simple shear apparatus. 

Ishihara and Yoshimine (1992) broke their procedure into three steps: 

1) Evaluate the factor of safety against liquefaction at the center of each sublayer (see Sections 

2.4.2.2.2.1.2 and 2.4.2.2.2.4 on obtaining values of 𝐶𝑆𝑅 and 𝐶𝑅𝑅 to calculate the factor of 

safety against liquefaction using Equation 2.6). 

2) Obtain the in-situ relative density via correlations from in-situ penetration resistance tests 

(SPT or CPT) performed on sand and then use Figure 2.54 to obtain the post-liquefaction 

volumetric strain for each sublayer.  

3) Upon determining the volumetric strains for each sublayer, apply Equation 2.106 in order 

to calculate the total earthquake induced settlement. 
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Ishihara and Yoshimine noted that their procedure is only applicable for deposits consisting mainly 

of sand. 

 

Figure 2.54. Evaluation of volumetric strain from the factor of safety against liquefaction and 

relative density based on corrected SPT or CPT resistance (Ishihara and Yoshimine, 1992). 

2.5.4.2 Foundation Settlement 

Foundation settlement can occur when a shallow foundation rests upon, or is above, a soil 

layer that liquefies during an earthquake. The settlement of ground in the vicinity of a foundation 

is oftentimes found to be more than that of free-field settlement. This is because as a structure 

shakes due to an earthquake it will impose additional shear stresses on the soil, especially at the 

corners of buildings (Kramer and Stewart, unpublished manuscript). Therefore, the CSR beneath 

a building, especially at the corners, will be greater than the CSR for a free-field situation for a 

liquefiable deposit with the same properties. 

Currently, there are no simple empirical relations to estimate the complex phenomena of 

settlement of structures overlying liquefiable soil deposits. There does, however, appear to be a 
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relation between building width and thickness of a liquefied soil to the quantity of settlement 

observed. Liu and Dobry (1997) normalized the building width and average foundation settlement 

by the thickness of the liquefied layer for the 1964 Niigata earthquake and the 1990 Luzon 

Philippine earthquakes to create Figure 2.55 to show how the amount of foundation settlement 

increases when the liquefied layer thickness increases and the building width decreases.  

 

Figure 2.55. Relation between normalized average foundation settlement and building width by the 

liquefied layer thickness (Liu and Dobry, 1997). 

 

Kramer and Stewart (unpublished manuscript) show a simple, but effective illustration of 

pockets of liquefiable sand that can cause differential settlement problems to buildings. 

Differential settlement may occur from shallow small pockets of liquefied soil beneath isolated 

areas of a building, or large pockets of liquefiable soil at greater depths. 
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Figure 2.56. Possible differential settlement from small isolated pockets of liquefied soil at shallow 

depths and large pockets of liquefied soil at larger depths (Kramer and Stewart, unpublished 

manuscript). 

2.5.4.3 Settlement Due to Ejecta 

Large settlements have been observed due to sand ejecta that is spewed when the excess 

pore pressure from liquefaction escapes to the ground surface carrying with it soil particles from 

the liquefied layer and likely particles from any other layer it passed through in route to the ground 

surface. The latter phenomenon is often called a sand boil. Sand boils can occur in the free-field 

or near/beneath structures. As discussed in the previous section, the shear stresses imposed beneath 

the corners of buildings causes generation of more pore pressure in the liquefiable layer than in 

the free-field. For this reason, it is not uncommon for buildings to have large differential 

settlements due to a sand boil forming beneath the corner of a building. For example, during the 

Canterbury Earthquake Sequence that occurred in the vicinity of Christchurch, New Zealand 

between September 2010 and December 2011 sand ejecta from liquefaction caused numerous 

differential settlements for residential buildings in the suburbs of Christchurch, New Zealand 

causing substantial damage to the building foundations (Cubrinovski, 2013).  

Many of the factors that influence the severity of liquefaction also influence the amount of 

settlement due to sand ejecta (e.g., density, effective stress, and fines content), however, an 

Pockets of liquefied soil 
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important factor to consider must also be the depth of the liquefiable layer and the geotechnical 

properties of any overlying layers that may inhibit the flow of water that carries the ejecta particles. 

2.6 CONCLUSION 

Liquefaction is a significant result to earthquake shaking causing pore pressure to build up 

in saturated loose sand/coarse silts which reduces the strength and the stiffness of the soil which 

can cause severe consequences to natural and man-made structures. There are two types of 

liquefaction, flow liquefaction and cyclic liquefaction. Flow liquefaction occurs when the shear 

strength of soil is reduced (due to pore pressure generation) to a level below the initial static shear 

stress acting on the soil from a slope and/or a foundation. Cyclic liquefaction occurs when the 

initial static shear stress is less than the shear strength of the soil, i.e., during earthquake shaking, 

the cyclic nature of the ground motion causes deformations to develop incrementally and cause 

lateral spreading when the combination of the initial static stresses and the cyclic stress exceed the 

shear strength of the soil for a brief period of time. 

The first step in any liquefaction analysis is evaluating the susceptibility of the soil. Many 

soils are not considered liquefiable for several reasons including they are too dense, contain too 

many plastic fines, and/or have too little water to generate pore pressures. It’s important to 

remember that just because a soil is susceptible to liquefaction, does not necessarily mean that it 

will liquefy given that an earthquake occurs. 

The simplified procedure developed by Seed and Idriss (1971) is the most common 

procedure for the evaluation of earthquake loading and still provides the basis for simplified 

approaches today. Liquefaction resistance is characterized by in-situ testing (typically SPT, CPT, 

or shear wave velocity) due to the effects of the disturbance of the soil fabric during sampling, 

transportation, and lab testing. Several liquefaction initiation procedures have been developed with 
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the two most common procedure today being those of Cetin et al. (2004) and Boulanger and Idriss 

(2012) for both deterministic and probabilistic liquefaction analysis. 

The effects of liquefaction include alteration of ground motion, sand boils, flow failures, 

lateral spreading, and settlement – all of which can have severe consequences. There are 

procedures for evaluating the effects of liquefaction, however, many are empirical and are typically 

based on a database lacking the size and consistency needed to not have large uncertainty in them. 

Numerical procedures for evaluating the effects of liquefaction show promise, and will be 

discussed later in this thesis. 
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Chapter 3. PROBABILISTIC LIQUEFACTION HAZARD 

ANALYSIS 

3.1 INTRODUCTION 

In professional practice it is common to use PSHA (Section 2.4.2.2.2.3) to define ground 

motion hazards, however, it is not currently common to account for the liquefaction potential 

probabilistically. Originally termed performance-based liquefaction analysis, a probabilistic 

liquefaction hazard analysis (PLHA) takes the seismic loading and the liquefaction resistance into 

account probabilistically. PLHA uses probabilistic 𝐶𝑅𝑅 curves and accounts for ground motion 

contributions from all hazard levels and all earthquake magnitudes that contribute to each ground 

motion hazard level (Kramer and Mayfield, 2007). This chapter will: (a) discuss a framework to 

quantify liquefaction hazards, (b) discuss the current tools available for PLHA analysis, (c) discuss 

relatively new methods of mapped parameters, (d) introduce a new liquefaction-targeted intensity 

measure that can be mapped, and (e) discuss the current role of PLHA in design.  

3.2 CONVOLUTION OF HAZARD AND RESPONSES 

Kramer and Mayfield (2007) presented a methodology for the convolution of hazard and 

response through integrating a probabilistic liquefaction resistance procedure with a PSHA. 

Kramer and Mayfield’s methodology allows design to be based on a certain return period of 

liquefaction (or some effect of liquefaction, e.g., lateral spreading) that accounts for all levels of 

ground shaking, whereas, conventional procedures determine the probability of liquefaction or 

factor of safety against liquefaction for only a single level of shaking. Because earthquake sources 

can be highly variable (i.e., weak ground motions occur relatively frequently and strong ground 
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motions relatively rarely) designs based on a single ground motion do not define the true hazard 

for a site. 

This methodology to design for the return period of liquefaction allows for a complete 

probabilistic evaluation of liquefaction and can be incorporated into the Pacific Earthquake 

Engineering Research (PEER) center framework to determine the effects of liquefaction which 

allows decision makers to design for decision variables such as repair costs. The PEER 

probabilistic framework (Deierlein et al., 2003) can be given as 

 𝜆𝑑𝑣 = ∑ ∑ ∑ 𝑃[𝐷𝑉 > 𝑑𝑣|𝐷𝑀 = 𝑑𝑚𝑘]𝑃[𝐷𝑀 = 𝑑𝑚𝑗|𝐸𝐷𝑃 = 𝑒𝑑𝑝𝑗]𝑃[𝐸𝐷𝑃 =
𝑁𝐼𝑀
𝑖=1

𝑁𝐸𝐷𝑃
𝑗=1

𝑁𝐷𝑀
𝑘=1

𝑒𝑑𝑝𝑘|𝐼𝑀 = 𝑖𝑚𝑖]∆𝜆𝐼𝑀𝑖
  (3.1) 

where the effects of an intensity measure (𝐼𝑀) such as PGA can be evaluated by an engineering 

demand parameter (𝐸𝐷𝑃) such as the factor of safety against liquefaction. The actual effects of the 

𝐸𝐷𝑃 are termed damage measures (𝐷𝑀) which are effects such as lateral spreading displacement 

and settlement. The actual risk can be communicated to decisionmakers in the form of a decision 

variable (𝐷𝑉) such as repair cost or downtime, and ∆𝜆𝐼𝑀𝑖
 is the incremental mean annual rate of 

exceedance of an 𝐼𝑀 which is given by Equation 2.37. From this, one could create a hazard curve 

of some decision variable versus return period.  

3.3 TOOLS FOR PLHA 

The difficulty in attracting the professional community to use PLHA in evaluation for site 

design is the time involved in learning the theoretical background of a PLHA and the 

computational effort required to carry out an analysis. Researchers have recognized this gap and 

have attempted to bridge it by developing tools that make carrying out a PLHA relatively easy for 

the practicing engineer with the goal of requiring less, or no additional work, than what’s needed 

for a conventional liquefaction hazard analysis. 
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3.3.1 WSliq 

WSliq was developed by researchers at the University of Washington for the purpose of 

allowing Washington State Department of Transportation (WSDOT) engineers to evaluate 

liquefaction hazards more accurately, consistently, and reliably, while also requiring less time than 

conventional procedures used in engineering practice for liquefaction evaluation. The WSliq 

interface is organized in a series of tabs that follow how a typical liquefaction hazard evaluation 

would be performed – there are tabs for the soil profile, susceptibility to liquefaction, initiation of 

liquefaction, and the effects of liquefaction. An additional tab presents the results of the 

liquefaction analysis. 

Susceptibility Tab 

Liquefaction susceptibility in WSliq can be determined either by the Boulanger and Idriss 

(2006) procedure, the Bray and Sancio (2006) procedure, or some combination of the two 

procedures by applying a weighting factor. The Boulanger and Idriss (2006) and Bray and Sancio 

(2006) procedures were discussed in Section 2.3. 

Liquefaction Initiation Tab 

The liquefaction initiation tab allows for computation of liquefaction initiation based upon 

the three most commonly used procedures at the time WSliq was created, which were the NCEER 

(Youd et al. 2001), Idriss and Boulanger (2004), and Cetin et al. (2004) procedures. WSliq allows 

for the use of one, two, or all three procedures for liquefaction triggering analyses along with an 

equally weighted average of the results of all three procedures termed the “WSDOT 

Recommended” liquefaction model. 

WSliq also allows for a single scenario and multiple scenario analyses, and performance-

based analysis of liquefaction initiation. All three procedures can be used for the single scenario 

and multiple scenario analysis, whereas, only the Cetin et al. (2004) procedure can be used for the 
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performance-based analysis. The multiple scenario analysis accounts for all magnitudes and source 

to site distances whereas the single scenario analysis only accounts for a single magnitude 

(typically chosen as the mean or modal magnitude from a PGA deaggregation). The performance-

based analysis integrates the results of a PSHA with a probabilistic response analysis. Therefore, 

the performance-based analysis accounts for all peak acceleration values produced by all 

magnitudes and source-to-site distances at all return periods. The probabilistic liquefaction model 

of Cetin et al. (2004) is used to account for uncertainty in triggering, and is implemented into the 

PEER probabilistic framework (Deierlein et al., 2003). 

Liquefaction Effects Tab 

 WSliq allows for the evaluation of liquefaction effects including: lateral spreading, 

settlement, response spectrum, and residual strength computations. Each of the liquefaction effects 

have several different models associated with them allowing the user the option to use a preferred 

model, or a logic tree method that computes a weighted average of the results of the individual 

models. Each of the four liquefaction effects computed in WSliq can be analyzed using single 

scenario, multiple scenario, and performance-based analyses. 

Limitations 

WSliq is an excellent program for evaluating liquefaction susceptibility, initiation, and effects with 

a user-friendly interface and a concise explanatory manual. However, it was developed in 2006, 

and does not reflect the significant advances that have been made in both the development of 

triggering and effects models (e.g., the Boulanger and Idriss probabilistic models for SPT [2012] 

and CPT [2015]) and the updating of USGS seismic hazard maps over the last decade or so. 
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3.3.2 PB LiquefY 

Similar to WSliq, PB LiquefY was developed to make carrying out a PLHA relatively easy 

for the practicing engineer with the goal of requiring less, or no additional work than what’s needed 

for a conventional liquefaction hazard analysis. PB LiquefY is a Microsoft Excel-based program 

with Visual Basic macros that can perform both deterministic and probabilistic liquefaction 

analysis. PB LiquefY allows for the evaluation of liquefaction susceptibility, initiation, and effects 

for multiple SPT-based procedures. 

The PB LiquefY Excel Spreadsheet has several tabs. One presents a flow chart explaining 

how to perform a liquefaction analysis in PB LiquefY. The others consist of a soil profile tab, a 

loading information tab, a liquefaction analysis options tab, several deterministic and probabilistic 

output factor of safety against liquefaction and required SPT resistance to prevent liquefaction 

tabs, and several liquefaction effects tabs. Only the main tabs, which include the 

“Soil_Profile_Info” tab, the “Loading_Info” tab, and the “Liquefaction_Analysis_Options” tab, 

will be discussed in this section of the thesis. 

Soil Profile 

The “Soil_Profile_Info” tab allows for input of a soil profile for the site of interest. The 

soil profile input in PB LiquefY requires uncorrected SPT resistance values and information 

required to correct the SPT resistance for energy and overburden effects (e.g., borehole diameter, 

hammer efficiency, etc.).  Once the soil profile information has been input, the susceptibility of 

the soil, along with the total and effectives stresses at the center of each soil layer, is computed. 

PB LiquefY’s default susceptibility criteria are based on Bray and Sancio (2006), however, the 

program does allow you to manually specify whether a soil is susceptible or not.  
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Loading USGS Seismic Hazard Deaggregation Data 

The “Loading_Info” tab allows the user to specify the type of soil amplification factor and 

the magnitude bin size for deaggregation purposes, and to download the seismic hazard data. The 

seismic hazard data is collected through using the National Seismic Hazard Mapping Project 

(NSHMP) tool “nshmp-haz” which was developed by the USGS earthquake hazards program. The 

“nshmp-haz” tool can be downloaded to one’s local Root C:\ drive. The user then selects the 

deaggregation type, inputs the file path to the nshmp-haz folder (e.g., C:\nshmp-haz), and specifies 

the latitude and longitude of the site of interest. Downloading the data may take 5-15 minutes, 

however, this depends on the site location specified and the machine used to run the “nshmp-haz” 

java script. 

Liquefaction Analysis 

 The “Liquefaction_Analysis_Options” tab allows the user to specify whether to compute a 

deterministic analysis, a performance-based analysis, or both. The deterministic option allows for 

the input of a mean magnitude, modal magnitude, or a user defined maximum acceleration and 

magnitude. If mean or modal magnitude is selected the user must specify the return period of 

interest to obtain a consistent maximum acceleration value based on the downloaded USGS 

seismic hazard data. Although PB LiquefY calls this a deterministic approach, it is a pseudo-

probabilistic approach if a mean or modal magnitude is selected from the PSHA output. Therefore, 

the method will be termed conventional instead of deterministic throughout the remainder of this 

thesis. For performance-based analysis, the user must specify the “# of runs” or the number of 

increments of the hazard curve that are analyzed. The higher the specified value input of “# of 

runs,” the more precise the performance-based computation will be, however, it will also take 

longer to run. The creators of PB LiquefY specify that a value of 250 is acceptable for most cases. 
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PB LiquefY also allows the user to specify multiple analysis types, which include Boulanger and 

Idriss (2012), Juang et al. (2012), and Cetin et al. (2004) for the conventional and performance-

based computations. 

Limitations 

 One of PB LiquefY’s most useful qualities is that it provides easy access to the USGS 

deaggregation data through the “nshmp-haz” tool. However, as with many programs, PB LiquefY 

was found to have some limitations. PB LiquefY had difficulty characterizing the seismic hazard 

at moderate to long return periods for sites in moderate to low areas of seismicity. For example, 

specifying a return period of 475 years for Philadelphia, Pennsylvania caused the program to 

produce output factors of safety against liquefaction values based on a return periods of 2000-7000 

years. The program did, however, work well in areas of higher seismicity such as the west coast 

of the United States. Perhaps the biggest limitation results from the program having been created 

on a Microsoft Excel platform with Visual Basic macros. The latter combination at times led to 

unexpected Visual Basic errors or caused the program to stop altogether. Although these 

limitations were found to exist, PB LiquefY provides an excellent service for comparing 

liquefaction triggering models for areas of moderate to high seismicity. PB LiquefY will be 

discussed further in Chapter 4 in regards to the latter. 

3.3.3 Mapped Parameters 

Mapped parameters are those for which a practicing engineer could simply enter the 

latitude and longitude coordinates of their site of interest, extract the mapped parameter related to 

liquefaction potential that has been developed by researchers using a PLHA, and input this mapped 

parameter into the practicing engineer’s conventional liquefaction analysis method to generate a 

result that they would obtain if they were to carry out a full PLHA themselves. The latter enables 
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practicing engineers to realize the benefits of a full PLHA without having to do the voluminous 

calculations required for PLHA – this is the goal of mapped liquefaction parameters. 

3.3.3.1 Required Blowcount, 𝑁𝑟𝑒𝑞  

Mayfield et al. (2010) used the penetration resistance required to prevent initiation of 

liquefaction, 𝑁𝑟𝑒𝑞, for a specific 6-meter-deep reference element within a reference soil profile as 

the scalar parameter. Mayfield et al. (2010) showed that maps of 𝑁𝑟𝑒𝑞, such as those shown in 

Figure 3.1, provided a good estimate of the results of a full PLHA with two simple adjustment 

factors. The two adjustment factors account for different site conditions and depths other than 6 

meters that were characteristic of the reference soil profile, to obtain the factor of safety against 

liquefaction and required penetration resistance to resist liquefaction. The Mayfield et al. (2010) 

procedure was limited to the use of the Cetin et al. (2004) procedure which was the only 

appropriate probabilistic liquefaction triggering procedure available at the time. The more recent 

Boulanger and Idriss (2012) liquefaction initiation model was included in PB LiquefY. 
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Figure 3.1. Mapped contours of 𝑵𝒓𝒆𝒒 for Washington State for return periods of (a) 475 years; (b) 

2475 years (Mayfield et al., 2010). 

3.3.3.2 𝐶𝑆𝑅 

To add another tool to the practicing engineer, Ulmer and Franke (2016) created a new 

simplified performance-based procedure for 𝐶𝑆𝑅 instead of 𝑁𝑟𝑒𝑞 using the Boulanger and Idriss 

(2012) liquefaction initiation model for return periods of 475 years, 1,033 years, and 2,475 years. 

The goal of Ulmer and Franke (2016) was to develop an alternative mapped liquefaction parameter 

using the Boulanger and Idriss (2012) liquefaction triggering curves to complement the Mayfield 

et al. (2010) mapped parameter procedure which used the Cetin et al. (2004) liquefaction triggering 

curves. Ulmer and Franke (2016) found that their modified performance-based procedure could 
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reasonably estimate hazard-targeted liquefaction triggering metrics such as the factor of safety 

against liquefaction, and probability of liquefaction, at return periods of 475 years, 1,033 years, 

and 2,475 years. Since 𝐶𝑆𝑅 is based on multiple factors, however, five adjustment factors were 

required. 

3.3.3.3 Liquefaction-Targeted, Magnitude-Corrected 𝑃𝐺𝐴 

The goal of a mapped liquefaction parameter that can be used by the practicing engineer to 

obtain the results of a full PLHA would be aided by the use of a parameter that eliminated the need 

for a reference element and for any adjustment factors required. Starting with the simplified 

procedure, Equation 2.13 can be rewritten as 

 𝐶𝑆𝑅 = 0.65 [
𝑃𝐺𝐴 𝑔⁄

𝑀𝑆𝐹
]
𝜎𝑣𝑜

𝜎′𝑣𝑜
𝑟𝑑  (3.2) 

which can be replaced by 

 𝐶𝑆𝑅 = 0.65𝑃𝐺𝐴𝑀
𝜎𝑣𝑜

𝜎′𝑣𝑜
𝑟𝑑  (3.3) 

where 

 𝑃𝐺𝐴𝑀 =
𝑃𝐺𝐴 𝑔⁄

𝑀𝑆𝐹
  (3.4) 

Therefore, this combination of 𝑃𝐺𝐴 and 𝑀𝑆𝐹 produces the parameter, 𝑃𝐺𝐴𝑀, that represents the 

ground surface motion and its contribution to liquefaction loading. With the use of 𝑃𝐺𝐴𝑀, values 

of 𝜎𝑣𝑜, 𝜎′𝑣𝑜, and 𝑟𝑑 can be used directly in the liquefaction potential calculations instead of through 

adjustment factors. 

 To implement 𝑃𝐺𝐴𝑀 into a conventional liquefaction analysis, 𝐹𝑆𝐿 will be used as a limit 

state variable. Performing a full PLHA with 𝐹𝑆𝐿 as the limit state variable, a 𝐹𝑆𝐿 hazard curve can 

be obtained (Figure 3.2a). Performing multiple conventional analyses, a relation between 𝑃𝐺𝐴𝑀 

and 𝐹𝑆𝐿 (Figure 3.2b) can be established. This allows for a 𝑃𝐺𝐴𝑀 from a conventional method to 
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be related to a 𝐹𝑆𝐿 from a PLHA at a specific return period. For example, Point A in Figure 3.2 

represents a 475-year return period that intersects the 𝐹𝑆𝐿 hazard curve at Point B, which has a 

single 𝐹𝑆𝐿 associated with it. Continuing along the dotted line the conventional hazard curve is 

intersected at Point C which has the same 𝐹𝑆𝐿, however, obtained from the conventional method. 

Following the dashed line to Point D on the 𝑃𝐺𝐴𝑀 axis, a 𝑃𝐺𝐴𝑀 value of 0.24 g is obtained. This 

𝑃𝐺𝐴𝑀 value represents the 𝑃𝐺𝐴𝑀 associated a 475-year return period of liquefaction itself. 

Conventional 𝑃𝐺𝐴𝑀 values associated with different return periods of liquefaction can be 

computed. If these 𝑃𝐺𝐴𝑀 values were then mapped, and accessible to the practicing engineer, 

implementation of this mapped 𝑃𝐺𝐴𝑀 value into the practicing engineers conventional method 

would output a 𝐹𝑆𝐿 that represents the 𝐹𝑆𝐿 that would be un-exceeded at the specified return 

period. Validation of this approach, however, requires investigation of the sensitivity of 𝑃𝐺𝐴𝑀 to 

site conditions and liquefaction triggering models. 

 

Figure 3.2. Illustration illuminating the procedure of how a conventional 𝑷𝑮𝑨𝑴 value can be 

associated with a return period of a full PLHA. 

3.3.4 Role of PLHA in Design 

Kramer and Mayfield (2007) demonstrated that conventional methods of liquefaction 

analysis provide a non-uniform likelihood of liquefaction initiation and effects in different 
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geographic regions. For example, Kramer and Mayfield (2007) showed that soil deposits with the 

same factor of safety against liquefaction produced by conventional methods would be twice as 

likely to liquefy in San Jose, CA as one in Memphis, TN. Franke and Kramer (2014) showed that 

conventional lateral spreading hazard procedures produce severely inconsistent lateral spreading 

hazards in different geographic areas, and therefore different seismic environments. Their results 

indicate the consistent application of conventional lateral spreading procedures can lead to highly 

inconsistent safety standards across different locations in the US. This leads to US residents in one 

seismic area being at a higher safety risk than residents in another seismic area, or vice-versa. It 

can also be interpreted as requiring residents in one seismic environment to incur greater expenses 

for earthquake damage mitigation than residents of other seismic environments. The latter 

inconsistencies stem from the incomplete characterization of the seismic hazard. Conventional 

liquefaction hazard methods use the results of a PSHA to define earthquake loading in terms of a 

𝑃𝐺𝐴 at a single design return period. One magnitude (mean or modal) is typically taken from the 

many magnitudes that contribute to the 𝑃𝐺𝐴 value. This, however, does not represent the true 

seismic hazard of a site because liquefaction can be triggered by weak motions that occur more 

often, or strong motions that occur less often. Therefore, to solve the problem of inconsistent 

seismic hazards across different locations, one must consider all levels of shaking, along with the 

magnitudes that contribute to each level of shaking, for each site. PLHA does the latter, and 

therefore, produces more consistent and uniform safety across different seismic environments – 

this is the role of PLHA in design. 

3.4 CONCLUSION 

PLHA allows for a fully probabilistic evaluation of liquefaction initiation/effects by 

accounting for not only seismic loading probabilistically, but also the liquefaction resistance 
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probabilistically. Currently, PLHA is not often performed for typical engineering projects by 

practicing professionals due to the voluminous calculations that are involved and the limited time 

that is often available on engineering projects. In order to address this issue, researchers have 

developed programs such as WSliq and PB LiquefY in order to help practicing professionals 

implement PLHA into their designs. Although these tools are available, most practicing engineers 

continue to use conventional methods for liquefaction analysis. To solve this problem, researchers 

have now been working towards developing a mapped liquefaction parameter that could be 

extracted by a practicing engineer and implemented into their typical conventional liquefaction 

analyses in order to receive the benefits of a full PLHA without having to do the voluminous 

calculations. Current mapped parameter procedures have two limitations: (a) they require 

adjustment factors needed to account for varying site conditions and (b) the sensitivity to the 

liquefaction triggering model used is unknown. The liquefaction targeted ground motion 

parameter, 𝑃𝐺𝐴𝑀, aims to address these limitations. 
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Chapter 4. SENSITIVITY OF PGAM TO SITE CONDITIONS AND 

LIQUEFACTION TRIGGERING MODELS 

4.1 INTRODUCTION 

Improving the prediction of liquefaction triggering has already been undertaken for many 

years, however, in ways that can be burdensome, involved, and heavily time dependent for the 

practicing engineer. In order to help the practicing geotechnical engineering community, and in 

turn the people/community they work with, new methods for prediction of liquefaction triggering 

need to be easy for practicing engineers to implement. The liquefaction targeted intensity measure, 

𝑃𝐺𝐴𝑀, provides an opportunity for practicing engineers to use the same, or less effort, than the 

conventional liquefaction triggering methods they are used to while allowing the user to obtain the 

liquefaction triggering results that would be obtained had they ran a full PLHA. This would be 

achieved by users being able to enter the latitude and longitude of their site location, along with a 

Vs30 value, to obtain a mapped 𝑃𝐺𝐴𝑀 value at the return period of interest. The user would then 

be able to use this value of 𝑃𝐺𝐴𝑀 to compute 𝐹𝑆𝐿 using current conventional procedures and 

obtain the same 𝐹𝑆𝐿 value that would be produced by a full PLHA. This chapter describes the use 

of PB LiquefY to validate a 𝑃𝐺𝐴𝑀-based procedure for PLHA. It will include discussion of the 

procedural setup to obtain conventional and probabilistic liquefaction triggering results in PB 

LiquefY, the calculation of 𝑃𝐺𝐴𝑀 from the PB LiquefY results, a comparison of the two common 

liquefaction triggering procedures, and an evaluation of the sensitivity of site conditions (e.g., 

density and depth) on 𝑃𝐺𝐴𝑀 for each triggering procedure. 
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4.2 PROCEDURAL SETUP 

The Excel-based software program, PB LiquefY, was used to perform both conventional 

and probabilistic liquefaction triggering analysis. The general format of PB LiquefY was discussed 

in Section 3.3.2. Additional information about the methods used for this research are explained in 

this chapter. 

4.2.1 Soil Profiles 

The “Soil_Profile_Info” tab of PB LiquefY allows for input of soil profile data for the site 

of interest. The soil profile input includes uncorrected SPT resistance values and data that allows 

the SPT resistance to be corrected for energy (e.g., borehole diameter, hammer efficiency, etc.) 

and overburden effects, and fines content. The profiles used for this research consisted of a 16-

meter depth clean sand layer split into 18 sublayers with the water table located one meter below 

the ground surface. Because the soil is a clean sand, the corrected SPT resistance will be defined 

as (𝑁1)60 in this chapter. The soil profiles were defined by the uncorrected SPT resistances 

required to produce (𝑁1)60 values of 5, 10, 15, 20 and 25 blows using both the Cetin et al. (2004) 

and Boulanger and Idriss (2012) procedures. A total of 10 soil profiles were needed for the five 

desired (N1)60 values because the calculation of the corrected SPT resistance is slightly different 

between the Cetin et al. (2004) and Boulanger and Idriss (2012) procedures. The unit weight for 

the clean sand input into PB LiquefY was found using Equations 4.1-4.4 with typical clean sand 

values for a minimum and maximum void ratio of 0.4 and 1.0 respectively. The relative density, 

𝐷𝑟, can be estimated (Meyerhof, 1957) as 

 𝐷𝑟 = √
(𝑁1)60

46
  (4.1) 

and then input into 
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 𝑒 = 𝐷𝑟 × (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) + 𝑒𝑚𝑎𝑥  (4.2) 

where 𝑒𝑚𝑎𝑥 is the maximum void ratio, 𝑒𝑚𝑖𝑛 is the minimum void ratio, and 𝑒 is the current void 

ratio. With the latter, the dry unit weight,𝛾𝑑, (for soils above the water table) and the saturated 

unit weight,𝛾𝑠𝑎𝑡, (for soils below the water table) can be calculated using Equation 4.3 and 4.4 

assuming a specific gravity, 𝐺𝑠, of 2.65 for the sand and a unit weight of water, 𝛾𝑤, of 9.81 kN/m3. 

 𝛾𝑑 =
𝐺𝑠×𝛾𝑤

1+𝑒
  (4.3) 

 𝛾𝑠𝑎𝑡 =
(𝐺𝑠+𝑒)×𝛾𝑤

1+𝑒
  (4.4) 

The shear wave velocity was obtained from correlation to SPT resistance using the Brandenberg 

et al. (2010) procedure 

 ln 𝑉𝑠 = 𝛽0 + 𝛽1 × ln𝑁60 +𝛽2 × ln 𝜎′𝑣𝑜  (4.5) 

where 𝑉𝑠 is the shear wave velocity, 𝑁60 is the energy-corrected SPT resistance given by Equations 

4.6 and 4.7, 𝜎′𝑣𝑜 is the vertical effective stress at the depth of the SPT measurement, and 𝛽0, 𝛽1, 

and 𝛽2 are coefficients shown in Table 4.1. The value of 𝑁60 was computed as 

 𝑁60 =
(𝑁1)60

𝐶𝑁
  (4.6) 

where 𝐶𝑁 is the overburden correction given by 

 𝐶𝑁 = √
𝑃𝑎

𝜎′𝑣𝑜
  (4.7) 

where 𝑃𝑎 is the atmospheric pressure assumed to be 101.325 kPa. Upon entering the soil profile 

information, the corrected SPT resistance for each sublayer and the total and effective stresses at 

the midpoint of each sublayer were computed by the program. 
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Table 4.1. Coefficients for shear wave velocity estimation (Brandenberg et al., 2010). 

 

4.2.2 Loading Information 

The “Loading_Info” tab allows the user to specify the type of soil amplification factor, the 

magnitude bin size for deaggregation purposes, and download the seismic hazard data (See Section 

3.3.2). The soil amplification factor used to compute the peak ground acceleration at the ground 

surface was computed from the Stewart et al. (2003) expression given as 

 𝐹𝑎 =
𝑃𝐺𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑃𝐺𝐴𝑟𝑜𝑐𝑘
= 𝑒𝑥𝑝(𝑎 + 𝑏 ln 𝑃𝐺𝐴𝑟𝑜𝑐𝑘)  (4.8) 

where 𝐹𝑎 is the soil amplification factor, 𝑃𝐺𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the peak ground acceleration at the surface 

of a soil site, 𝑃𝐺𝐴𝑟𝑜𝑐𝑘 is the peak rock outcrop acceleration (obtained from the nshmp-haz tool), 

and 𝑎 and 𝑏 are statistical regression coefficients. The default 𝑎 and 𝑏 values used in PB LiquefY, 

and for this research, are 𝑎 = -0.15 and 𝑏 = -0.13, which are values corresponding to Quaternary 

age alluvium (see Stewart et al. 2003). Rearranging Equation 4.8, 𝑃𝐺𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is calculated as 

 𝑃𝐺𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐹𝑎 × 𝑃𝐺𝐴𝑟𝑜𝑐𝑘  (4.9) 

The magnitude bin size for each site observed in this research was set to a value of 0.1 to 

adequately assess the contributions of each magnitude for the particular site latitude and longitude 

entered into the nshmp-haz tool (see Section 3.3.2). The seismic hazard data was downloaded 

using the nshmp-haz tool selecting the USGS 2014 Interactive Deaggregation option and then 

entering the longitude and latitude of the site of interest. 

Soil Type β0 β1 β2

Sand 4.045 0.096 0.236

Silt 3.783 0.178 0.231

Clay 3.996 0.230 0.164
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4.2.3 Liquefaction Analysis Options 

The “Liquefaction_Analysis_Options” tab allows the user to specify whether to compute a 

conventional analysis, a performance-based analysis (PLHA), or both, for a user-selected 

liquefaction triggering model. To find the 𝑃𝐺𝐴𝑀 values that correspond to a PLHA factor of safety 

against liquefaction, and in turn the return period of liquefaction, both conventional and PLHA 

were performed for this research. Both the Cetin et al. (2004) and the Boulanger and Idriss (2012) 

liquefaction triggering procedures were selected for the conventional and probabilistic analyses. 

The conventional analyses used a mean magnitude and the overburden correction factor limit of 

1.1 was used for the Boulanger and Idriss procedure. A probability of liquefaction of 15% was 

used for the Cetin et al. (2004) deterministic procedure. For the PLHA, the overburden correction 

factor limit of 1.1 was used for the Boulanger and Idriss procedure. PLHA requires the user to 

specify the “# of runs” or the number of increments of the hazard curve that are analyzed. The 

creators of PB LiquefY specify that a value of 250 is acceptable for most cases. For this research 

the “# of runs” was selected to be 500 in order to adequately characterize site locations which have 

a steep sloping hazard curve. The option to run the conventional and PLHA was then selected. 

4.2.4 Calculation of a liquefaction-targeted intensity measure, PGAM  

After setting up the soil profile, the loading information, and selecting the desired 

liquefaction analysis options, PB LiquefY was used to compute a full PLHA at the site of interest 

and conventional analyses with ground motion parameters corresponding to seven return periods. 

For each return period of the conventional analyses, 𝑃𝐺𝐴𝑀 and 𝐹𝑆𝐿 were calculated. The PLHA 

allowed calculation of a 𝐹𝑆𝐿 hazard curve, so that PLHA-based 𝐹𝑆𝐿 could be plotted as a function 

of return period (or mean annual rate of non-exceedance). Therefore, the conventional 𝑃𝐺𝐴𝑀 value 

that corresponds to a PLHA 𝐹𝑆𝐿 at a certain return period can be determined using the process 
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shown graphically in Section 3.3.3.3. The determination of this 𝑃𝐺𝐴𝑀 that corresponds to a certain 

PLHA 𝐹𝑆𝐿 at a particular return period can be automated from the PB LiquefY result through 

linear interpolation (in log-log space) using Equation 4.10 and Equation 4.11. 

 log 𝑃𝐺𝐴∗𝑀 = log 𝑃𝐺𝐴𝑀1
+(

log𝐹𝑆∗𝐿−log𝐹𝑆𝐿1

log𝐹𝑆𝐿2−log𝐹𝑆𝐿1

) × (log 𝑃𝐺𝐴𝑀2
− log𝑃𝐺𝐴𝑀1

)  (4.10) 

 𝑃𝐺𝐴∗𝑀 = 10log𝑃𝐺𝐴
∗
𝑀  (4.11) 

where 𝑃𝐺𝐴∗𝑀 is the magnitude corrected peak ground acceleration at a desired PLHA return 

period, 𝐹𝑆∗𝐿 is the PLHA factor of safety at a desired return period, and 𝑃𝐺𝐴𝑀1
, 𝑃𝐺𝐴𝑀2

, 𝐹𝑆𝐿1, 

and 𝐹𝑆𝐿2 are the magnitude corrected peak ground acceleration and factor of safety against 

liquefaction that correspond to the closest return periods on the conventional 𝐹𝑆𝐿 vs 𝑃𝐺𝐴𝑀 curve 

to where the 𝐹𝑆∗𝐿 intersects (see Figure 4.1a). Linear interpolation in log-log space can be used 

because the 𝐹𝑆𝐿 and 𝑃𝐺𝐴𝑀 data plots nearly linear in log-log space (see Figure 4.1b). To make 

the latter clear, the following example is shown illustrating the graphical and linear interpolated 

𝑃𝐺𝐴∗𝑀 methods. 

For example, a site located in Seattle, WA with a (𝑁1)60 value of 15 at a depth of 4 meters 

was analyzed. The data shown in Table 4.2 and Figure 4.1 were obtained from PB LiquefY in 

order to find the conventional 𝑃𝐺𝐴∗𝑀 value that corresponds to a PLHA 𝐹𝑆𝐿 at a return period of 

1,039 years. 

Table 4.2. Conventional and PLHA data for a site located in Seattle, WA. 
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Using the values in Table 4.2, Equations 4.10 and 4.11 were used in order to find the 𝑃𝐺𝐴∗𝑀 value 

that corresponded to a 𝐹𝑆𝐿 at a return period of 1,039 years from a full PLHA. 

 log 𝑃𝐺𝐴∗𝑀 = −0.569 + (
−0.355−(−0.215)

−0.357−(−0.215)
) × (−0.428−(−0.569))  (4.12) 

 log 𝑃𝐺𝐴∗𝑀 = −0.430  (4.13) 

 𝑃𝐺𝐴∗𝑀 = 10−0.430  (4.14) 

 𝑃𝐺𝐴∗𝑀 = 0.372  (4.15) 

 

 

Figure 4.1. Graphical Illustration of determining the conventional magnitude corrected peak 

ground acceleration, 𝑷𝑮𝑨∗𝑴, for an event with a return period of 1,039 years from a full PLHA for a 

site in Seattle, WA in (a) linear space (b) log-log space. 

 

The figures in the results section that follows were generated using the automated way described. 

For simplicity, the conventional magnitude corrected peak ground acceleration, 𝑃𝐺𝐴∗𝑀, that 

(a) 

(b) 
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corresponds to a particular return period from a PLHA will be termed 𝑃𝐺𝐴𝑀 for the remainder of 

this thesis. 

4.2.5 Correction Factor for Site Conditions 

Ideally, a mapped 𝑃𝐺𝐴𝑀 value would be applicable to all conditions – all components of 

𝐶𝑆𝑅 and 𝐶𝑅𝑅. That means it would apply to all depths, all (𝑁1)60 values, all water table locations, 

all 𝜎𝑣𝑜 𝜎′𝑣𝑜⁄  ratios, etc. In order for that to happen, the 𝐹𝑆𝐿 values in the conventional and PLHA 

analyses have to be influenced identically by those parameters. Graphically, that means Site 

Conditions A and B in Figure 4.2 would have to intersect the 𝑃𝐺𝐴𝑀 axis at the same location. 

 

Figure 4.2. Graphical Illustration comparing Site Condition A to Site Condition B showing an 

example of when a correction factor is needed. 

Site Condition A represents an (𝑁1)60 = 5 at a depth of 2 meters BGS, and Site Condition B 

represents an (𝑁1)60 = 25 at a depth of 15 meters BGS. If the conventional 𝑃𝐺𝐴𝑀 values, based 

on a particular return period of liquefaction, are not the same (as illustrated in Figure 4.2), a 

separate map for Conditions A and B (which is not very practical) would be required. Instead of a 

separate map, a correction factor that allows a value of 𝑃𝐺𝐴𝑀 for Condition B to be computed 

from a mapped value of 𝑃𝐺𝐴𝑀 for Condition A can be used. 
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4.3 RESULTS 

Two of the most generally accepted liquefaction triggering procedures are compared for a 

moderate seismicity location (Charleston, SC) and a very high seismicity location (Eureka, CA). 

The trends of the 𝑃𝐺𝐴𝑀 values obtained when implementing the Cetin et al. (2004) and Boulanger 

and Idriss (2012) procedures are discussed with respect to the insensitivity to depth, SPT 

resistance, and water table location. Because of the large difference in seismicity between sites, 

the 𝑃𝐺𝐴𝑀 axis on the plots have a different range of values in order to see trends in the data. 

Following the discussion on the procedural trends, the Cetin et al. (2004) and Boulanger and Idriss 

(2012) results are compared, while several site locations were analyzed, this chapter focuses on 

two site locations, one of moderate seismicity, and another representing the highest seismicity site 

analyzed. The highest seismicity site was chosen because if 𝑃𝐺𝐴𝑀 is insensitive to site conditions 

at this site, then it would be insensitive at all sites. The reader is referred to Appendix A to see the 

results for all 27 locations observed in this research.  For the remainder of this thesis, the Cetin et 

al. (2004) procedure will be termed “CEA2004” and the Boulanger and Idriss (2012) procedure 

will be termed “IB2012.” 

4.3.1 Influence of SPT resistance on PGAM  

To gain an understanding of how the CEA procedure performs in different seismic 

environments, a very high seismicity location (Eureka, CA) and a moderate seismicity location 

(Charleston, SC) were used to observe the influence of SPT resistance on 𝑃𝐺𝐴𝑀. 

Cetin et al. (2004) 

 The liquefaction-targeted intensity measure, 𝑃𝐺𝐴𝑀, is influenced by SPT resistance (a 

proxy for the soils density) for both moderate and very high seismicity sites for the CEA2004 

procedure. Figures 4.3-4.4 show 𝑃𝐺𝐴𝑀 vs (𝑁1)60 plots at six depths for three return periods at 
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Charleston, SC and Eureka, CA. If the 𝑃𝐺𝐴𝑀 value was perfectly insensitive to SPT resistance, 

which would be a desirable result, these curves would be perfectly flat. The slopes of the curves 

show that there is sensitivity of 𝑃𝐺𝐴𝑀 to blow counts – particularly at longer return periods and 

in higher seismicity locations like Eureka, CA. 

A linear regression equation was developed for each sublayer/return period for each of the 

sites. Therefore, the slope of the lines indicates the sensitivity of 𝑃𝐺𝐴𝑀 to SPT resistance. The 

linear regression equations developed for each site are shown in Appendix B and were used to 

develop normalized sensitivity plot shown in Figures 4.5-4.6. Each figure has 6 different lines 

corresponding to each depth of interest. If the SPT resistance did not influence the 𝑃𝐺𝐴𝑀 the plots 

would appear as six horizontal lines with normalized 𝑃𝐺𝐴𝑀 values of 1.0. The moderate seismicity 

site of Charleston, SC only shows minor variation of the normalized 𝑃𝐺𝐴𝑀 at the different return 

periods. The high seismicity site of Eureka, CA, however, shows significant influence of SPT 

resistance on 𝑃𝐺𝐴𝑀 at longer return periods. Therefore, a correction factor to account for the 

influence of SPT resistance in high seismicity areas may be required. 

 

Figure 4.3. Charleston, SC – Magnitude corrected peak ground acceleration dependent upon SPT 

resistance, (𝑵𝟏)𝟔𝟎, for the CEA2004 procedure. 
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Figure 4.4. Eureka, CA – Magnitude corrected peak ground acceleration dependent upon SPT 

resistance, (𝑵𝟏)𝟔𝟎, for the CEA2004 procedure. 
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Figure 4.5. Charleston, SC – Normalized 𝑷𝑮𝑨𝑴 dependent upon SPT resistance, (𝑵𝟏)𝟔𝟎, for the 

CEA2004 procedure at return periods of (a) 475 years, (b) 2,475 years, and (c) 4,975 years.  

(a) 

(b) 

(c) 
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Figure 4.6. Eureka, CA – Normalized 𝑷𝑮𝑨𝑴 dependent upon SPT resistance, (𝑵𝟏)𝟔𝟎, for the 

CEA2004 procedure at return periods of (a) 475 years, (b) 2,475 years, and (c) 4,975 years.  

(a) 

(b) 

(c) 
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Boulanger and Idriss (2012) 

The same type of analysis was performed using the liquefaction triggering procedure of 

IB2012. The liquefaction-targeted intensity measure, 𝑃𝐺𝐴𝑀, was found to be negligibly influenced 

by SPT resistance for both moderate and very high seismicity sites with this procedure. Figures 

4.7-4.8 show 𝑃𝐺𝐴𝑀 vs (𝑁1)60 plots at six depths for three return periods at Charleston, SC and 

Eureka, CA. The IB2012 procedure performed well as indicated by the curves in Figures 4.7-4.8 

being flat. Therefore, this suggests 𝑃𝐺𝐴𝑀 is insensitive to (𝑁1)60 for this procedure. 

A linear regression equation was developed for each sublayer/return period for each of the 

sites (see Appendix B). Following the same method as before, Figures 4.9-4.10 were developed 

for the IB2012 procedure. Because the normalized 𝑃𝐺𝐴𝑀 plots show a flat line with no variation 

with respect to (𝑁1)60 at all return periods and for both site locations, SPT resistance has little to 

no influence on 𝑃𝐺𝐴𝑀 values for the IB2012 procedure in areas of moderate to high seismicity. 

This same trend persists for 25 other site locations as shown in the Appendix A. Therefore, an 

(𝑁1)60 correction factor is not needed for 𝑃𝐺𝐴𝑀 when using the IB2012 procedure, 

 

Figure 4.7. Charleston, SC – Magnitude corrected peak ground acceleration dependent upon SPT 

resistance, (𝑵𝟏)𝟔𝟎, for the IB2012 procedure. 
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Figure 4.8. Eureka, CA – Magnitude corrected peak ground acceleration dependent upon SPT 

resistance, (𝑵𝟏)𝟔𝟎, for the IB2012 procedure. 
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Figure 4.9. Charleston, SC – Normalized 𝑷𝑮𝑨𝑴 dependent upon SPT resistance, (𝑵𝟏)𝟔𝟎, for the 

IB2012 procedure at return periods of (a) 475 years, (b) 2,475 years, and (c) 4,975 years.  

(a) 

(b) 

(c) 
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Figure 4.10. Eureka, CA – Normalized 𝑷𝑮𝑨𝑴 dependent upon SPT resistance, (𝑵𝟏)𝟔𝟎, for the 

IB2012 procedure at return periods of (a) 475 years, (b) 2,475 years, and (c) 4,975 years.  

(a) 

(b) 

(c) 



 

 

178 

4.3.2 Influence of depth on PGAM  

Cetin et al. (2004) 

Figure 4.11 shows the 𝑃𝐺𝐴𝑀 dependent upon the depth BGS for a site in Charleston, SC. 

If 𝑃𝐺𝐴𝑀 was insensitive to depth, the curves shown would be flat. This plot shows from a depth 

of one meter to approximately four meters BGS there is a rather steep positive slope present. After 

four meters the 𝑃𝐺𝐴𝑀 has a negative slope with increasing depth down to 16 meters. A site in 

Eureka, CA (see Figure 4.12) has similar behavior to the site in Charleston, SC for a return period 

of 475 and 2,475 years, however, there is considerable difference in behavior between the sites at 

a return period of 4,975 years. The difference stems from the significant variation of 𝑃𝐺𝐴𝑀 with 

depth for Eureka, CA at this return period. Therefore, the 𝑃𝐺𝐴𝑀 obtained by the CEA2004 

procedure appears to be influenced by the seismicity of the site locations in addition to the depth 

BGS. Thus, the CEA2004 procedure requires a depth correction factor and a correction factor 

dependent on return period. 
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Figure 4.11. Charleston, SC – Magnitude corrected peak ground acceleration dependent upon 

depth for the CEA2004 procedure. 

 

 

Figure 4.12. Eureka, CA – Magnitude corrected peak ground acceleration dependent upon depth 

for the CEA2004 procedure. 

 

Boulanger and Idriss (2012) 

Figures 4.13-4.14 (Charleston, SC and Eureka, CA, respectively) show that the curves are 

not flat and have a positive slope at deeper depths at longer return periods. The trend of a positive 

slope at deeper depths persisted for all 27 locations observed and appears to be steeper with 
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increasing seismicity. At shallow depths (ranging from 1-5 meters) the curves are flat for all return 

periods at both sites. Although behavior at longer return periods will need a correction factor, it 

appears to be sufficiently consistent that a relatively simple depth correction factor could be 

developed. 

 

Figure 4.13. Charleston, SC – Magnitude corrected peak ground acceleration dependent upon 

depth for the IB2012 procedure. 

 

 

Figure 4.14. Eureka, CA – Magnitude corrected peak ground acceleration dependent upon depth 

for the IB2012 procedure. 
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4.3.3 Influence of water table depth on PGAM 

The water table was analyzed at six different depths ranging from 0-4.5 meters for a soil 

profile with an (𝑁1)60 = 15 in order to see how the ratio of total stress to effective stress, which 

influences 𝐶𝑆𝑅, ultimately affects 𝑃𝐺𝐴𝑀 values. In order to change the water table depth, each 

soil profile was updated to maintain the desired (𝑁1)60 value in light of different total and effective 

vertical stress and shear wave velocity values. 

Analyses were performed two sites, one of moderate seismicity (Charleston, SC), and 

another of high seismicity (Eureka, CA). Figures 4.15-4.18 illustrate the sensitivity of 𝑃𝐺𝐴𝑀 to 

water table depth at both locations. Examination of these figures shows that water table depth has 

little impact on 𝑃𝐺𝐴𝑀 for all return periods for the CEA2004 procedure for Charleston, SC and 

for shorter return periods (475, 1,039, and 2,475 years) for Eureka, CA. The CEA2004 procedure 

is strongly influenced by water table depth at return periods of 4975 and 9950 years. The IB2012 

procedure shows little impact from changing the water table depth except at longer return periods 

where it appears to have a minor influence on 𝑃𝐺𝐴𝑀. 

 The CEA2004 and the IB2012 procedures appear to give 𝑃𝐺𝐴𝑀 values that are negligibly 

influenced by water table depth except at longer return periods. Based on these results, the 

CEA2004 procedure may be better suited for higher return periods in moderate seismic 

environments like Charleston, SC, while the IB2012 procedure may be more suitable at high return 

periods in high seismicity environments like Eureka, CA where the CEA2004 procedure doesn’t 

perform well. 
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Figure 4.15. Charleston, SC – 𝑷𝑮𝑨𝑴 dependent upon water table depth (WTD) in meters (m) for 

the CEA2004 procedure. 

 

 

Figure 4.16. Charleston, SC – 𝑷𝑮𝑨𝑴 dependent upon water table depth (WTD) in meters (m) for 

the IB2012 procedure. 
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Figure 4.17. Eureka, CA – 𝑷𝑮𝑨𝑴 dependent upon water table depth (WTD) in meters (m) for the 

CEA2004 procedure. 

 

 

Figure 4.18. Eureka, CA – 𝑷𝑮𝑨𝑴 dependent upon water table depth (WTD) in meters (m) for the 

IB2012 procedure. 
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4.3.4 Comparison of Liquefaction Triggering Procedures on PGAM 

The results of the CEA2004 liquefaction triggering procedure indicate that correction 

factors for both depth and (𝑁1)60 would be needed to use the mapped 𝑃𝐺𝐴𝑀 parameter at most 

return periods. Furthermore, the correction factor would depend on seismicity of the site. Locations 

of high seismicity show stronger variation of 𝑃𝐺𝐴𝑀 with both depth and (𝑁1)60 at all return 

periods investigated. Moderate seismicity sites such as Charleston, SC appear to have a rather 

constant 𝑃𝐺𝐴𝑀 with varying depth and (𝑁1)60 for a return period of 475 years, however, 𝑃𝐺𝐴𝑀 

is still sensitive to both depth and (𝑁1)60 at longer return periods of 2475 and 4975 years.  

The IB2012 procedure performed better overall than the CEA2004 procedure with 

negligible influence of (𝑁1)60 on 𝑃𝐺𝐴𝑀 with only a simple depth correction factor needed. These 

general trends of variation of depth and (𝑁1)60 on the 𝑃𝐺𝐴𝑀 values obtained using the CEA2004 

and IB2012 procedures persisted throughout all site locations analyzed as can be viewed in 

Appendix A. 

The CEA2004 and IB2012 procedures have showed negligible sensitivity to water table 

depth except at longer return periods in high seismicity environments. The IB2012 procedure had 

only minor variation of 𝑃𝐺𝐴𝑀 with water table depth at a return period of 9,950 years, whereas, 

the CEA2004 procedure was strongly influenced by water table depth at return periods of 4,975 

and 9,950 years in a high seismicity environment. 

4.4 DIFFICULTIES WITH PB LiquefY 

PB LiquefY is an excellent program for evaluating liquefaction potential via conventional 

and PLHA methods for areas of moderate to high seismicity, however, there are limitations that 

can be detrimental to the user. The two main limitations of PB LiquefY that will be discussed 

include: 
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(1) The inability of the program to evaluate liquefaction potential in areas of lower 

seismicity at return periods commonly desired by the practicing engineer. 

(2) Errors occurring due to the program being created on a Microsoft Excel platform with 

Visual Basic macros. 

 Liquefaction Potential in Areas of Low Seismicity 

PB LiquefY evaluates liquefaction potential at a return period other than the one specified 

for sites with lower seismic activity. For example, Figure 4.19 shows a Microsoft Excel warning 

that occurred when a 475-year return period was specified “RPuserspec” and was automatically 

replaced by the program to a different return period “RPused” for the IB2012 procedure at several 

depths, and for an (𝑁1)60 = 5. Sublayer 4, which corresponds to a depth of 2 meters BGS, for 

instance, is evaluated for liquefaction potential at a return of 1,573 years instead of the 475-year 

return period specified. Two important ramifications of this are: 

(a) Liquefaction potential is calculated at a return period other than specified, 

(b) Only the first “10-20 exceptions” are shown which are for the IB2012 procedure so it is 

unknown if the CEA2004 procedure (which was performed at the same time) is having its 

return period changed, and if so, what return period it is being changed to. 

Because this occurs for all sites of lower seismicity, this impacts major cities like New York City, 

NY, along with a vast majority of the Central and Eastern U.S. 
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Figure 4.19. Microsoft Excel error that occurred for New York City, NY when specifying a return 

period of 475 years for a soil with an SPT resistance of five. 

Microsoft Excel Platform with Visual Basic Macros 

 In general, the use of Visual Basic Macros in Microsoft Excel made the program slow when 

transitioning between tabs in the Microsoft Excel Worksheet, caused PB LiquefY to quit for no 

apparent reason at times, and led to several Microsoft Visual Basic “Run-time error.” Although 

PB LiquefY has the capability of performing PLHA analyses at multiple site locations at once, 

these problems made it nearly impossible to do so for sites in different seismic areas, therefore, 

only a single site could be feasibly performed causing a significant amount of manual labor.  

Several Microsoft Visual Basic run time errors, which cause the code to stop during the 

execution of a command, were encountered during the use of PB LiquefY. Two of the more 

common errors were “Run-time error 13” and “Run-time error 6.” Run-time error 13 is termed a 

“mismatch” error and occurred when attempting to view the PLHA results for longer return periods 

for some sites. For example, run-time error 13 occurred for a site location in Reno, NV when 
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attempting to view PLHA results for a return period of 4,975 years or greater. Because of this, 

PLHA results for a return period of 4,975 years or greater were not possible for this site. Run-time 

error 6 is termed “Overflow” and occurs when the program tries to store too much data in 

temporary folders. Run-time error 6 occurred for multiple situations, one of the common situations 

was during the middle of a PLHA computation (which typically takes 5-20 minutes to complete), 

and another when trying to view PLHA results for return periods less than 475 years. In general, 

most site locations that did not have problems performing the PLHA calculation, were still unable 

to have PLHA results extracted for return periods less than 475 years. 

 In addition to the difficulties with low seismicity areas and Microsoft Visual Basic run-

time errors, the way in which PB LiquefY analyzes the hazard curve causes unnecessary 

computation time. For PLHA analyses, PB LiquefY requires the input of “# of runs,” or the number 

of increments of the hazard curve that are analyzed. These increments are equally spaced for the 

entire hazard curve, therefore, the increment size is the same for steeper and gently sloping portions 

of the curve. This causes unnecessary additional computation time during analyses because if a 

high “# of runs” is needed for the steep portion of a hazard curve, the same incremental spacing is 

used for the more gently sloping portion of the curve where it may be unneeded. 

4.5 CONCLUSIONS 

PLHA requires voluminous calculations leading many practicing engineers to continue to 

use less accurate and less consistent methods for evaluating liquefaction potential. The goal of a 

liquefaction-targeted intensity measure, 𝑃𝐺𝐴𝑀, is to enable the practicing engineer to input a 

mapped 𝑃𝐺𝐴𝑀 value into their conventional liquefaction hazard analysis procedure and receive 

the liquefaction triggering results that would be obtained had they performed a full PLHA. This 

chapter has described the process of obtaining this conventional 𝑃𝐺𝐴𝑀 value that corresponds to 
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an event with a return period of a full PLHA and has discussed how the 𝑃𝐺𝐴𝑀 values obtained by 

two common liquefaction triggering procedures are influenced by various site conditions. It has 

been shown that both procedures would require a correction factor for depth, however, only the 

CEA2004 procedure appears to require a correction factor for (𝑁1)60. The IB2012 procedure also 

appears to give consistent results between moderate and high seismicity sites with respect to the 

effects of variations in depth, (𝑁1)60, and water table depth on 𝑃𝐺𝐴𝑀. Excluding long return 

periods in a high seismic environment, the CEA2004 procedure does, however, appear to be 

slightly less sensitive to the water table depth than the IB2012 procedure. 
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Chapter 5. LATERAL SPREADING 

5.1 INTRODUCTION 

Lateral spreading refers to the incremental displacements that can occur due to cyclic 

liquefaction within gentle slopes or flat ground near steeper slopes such as river banks. Lateral 

spreading often occurs near water bodies such as rivers, lakes, or oceans where the water table is 

high and soils have been deposited in a loose state as soil particles settle through water. Because 

fresh water is a necessity of life, and salt water often provides for transportation of goods, humans 

have always constructed dwelling and engaged in commerce near water bodies where lateral 

spreading hazards may occur. Lateral spreading is one of the most common, and most severe, 

effects of liquefaction. The lateral displacements resulting from lateral spreading is the most 

common cause of damage to bridges from liquefaction (Youd, 1993). Lateral spreading has also 

been known to cause failure of underground utilities that traverse areas where displacements occur, 

and can cause failure of deep foundations due to bending failure (see Figure 2.41).  

 One of the most iconic remnants of a lateral spread are tension cracks that are observed at 

the ground surface as the underlying soil deforms. Figure 5.1 shows a schematic of lateral 

spreading deformations that occur beneath a non-liquefiable crust. The non-liquefiable crust is 

split into several blocks after failing in tension as the liquefiable soil moves downslope. Where 

tension cracks form, ejecta from sand boils may be spewed to the surface causing settlement to 

accompany the lateral deformation. Figure 5.2 shows the damage to a quay wall from liquefaction-

induced lateral spreading during the 1995 Kobe, Japan earthquake having similar characteristics 

to the schematic shown in Figure 5.1. 
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Figure 5.1. Schematic of lateral spreading displacements adjacent to a water body (Rauch, 1997). 

 

 

Figure 5.2. Liquefaction-induced lateral spreading from the 1995 Kobe, Japan earthquake causing 

severe damage to a quay wall (UW). 

 

This chapter will briefly review current common lateral spreading case history databases 

and a future next generation liquefaction (NGL) case history database. An overview of the most 
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common procedures used to predict lateral spreading displacement used today will be presented 

and their crude interpretation of the static stress state highlighted. The bulk of this chapter will 

focus on characterizing the static stress state of lateral spread slope geometries through the use of 

numerical tools. A function that predicts the static stress ratio within a wide range of lateral 

spreading slope geometries will be introduced and future research for the development of a uniform 

model to predict lateral spreading displacement discussed. 

5.2 CASE HISTORIES 

Lateral spreading case histories are locations where lateral spreading has been documented 

following an earthquake event. Documentation includes collection of data about the displacement 

due to lateral spreading, the site characteristics where the displacements occurred (e.g., the slope 

of the ground or the density of the soil), and the ground motion characteristics that caused the 

displacements. Case history data has been used to develop empirical and semi-empirical models, 

and to validate numerical models for prediction of future lateral spreading displacments. The 

prediction of lateral spreading from case history data is influenced by many things, a few of these 

are: (a) the quality of case histories, (b) the size of the case history database and its applicability 

to a range of different lateral spreading conditions, and (c) interpretation/estimation of soil 

properties either made by the original author, or interpretation of that authors work by another. 

Two of the most common lateral spreading case history databases are Youd et al. (2002) and Olson 

and Johnson (2008) databases, which will be discussed briefly. 

5.2.1 Youd et al. (2002) Lateral Spreading Database 

The Youd et al. (2002) database consists of 484 observed lateral spreading displacements 

from ten earthquake events ranging from the 1906 San Francisco, California earthquake to the 

1995 Kobe, Japan earthquake. The Youd et al. (2002) database is an extension of the initial lateral 
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spreading database of Bartlett and Youd (1992). Youd et al. (2002) made three modifications to 

the initial database: (1) a correction was made to displacements calculated from the 1983 Nihonkai-

Chubu, Japan earthquake, (2) eight displacement vectors were removed where boundary effects 

impeded displacement, and (3) additional case histories from the 1983 Borah Peak, Idaho, 1989 

Loma Prieta, California, and 1995 Kobe, Japan earthquakes were added. Because of the size of the 

Youd et al. (2002) database, and the range of lateral spreading conditions it encompasses, it is 

currently the most commonly used lateral spreading case history database, however, it does not 

cover the entire range of conditions that may occur in the field. 

5.2.2 Olson and Johnson (2008) 

The Olson and Johnson (2008) lateral spreading database consists of 39 lateral spread case 

histories from a total of 12 earthquakes. The earliest of these was the 1971 San Fernando, 

California earthquake and the latest the 2003 San Simeon, California earthquake. Olson and 

Johnson (2008) did not include the 1906 San Francisco, CA, 1964 Alaska, 1964 Niigata, Japan, 

1983 Nihonkai-Chubu, Japan, or 1995 Kobe, Japan earthquakes, which were included in the Youd 

et al. (2002) database. They did, however, include lateral spreads from the 1987 Edgecumbe, New 

Zealand, 1990 Luzon, Phillippines, 1990 Manjil, Iran, 1994 Northridge, California, 1999 Chi-Chi, 

Taiwan, 1999 Kocaeli, Turkey, and 2003 San Simeon, California earthquakes. Because of the 

exclusion of higher moment magnitude case histories (1964 Alaska and 1906 San Francisco, 

California earthquakes) their database had a relatively small range of moment magnitudes of 6.5 

to 7.6 which consisted of peak ground accelerations of 0.16 to 0.84g and caused displacements of 

about 15 centimeters to 6 meters. For an in-depth, qualitative assessment of the Olson and Johnson 

(2008) database the reader is referred to Makdisi (2016). 
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5.2.3 Future NGL Database 

Based on the recommendation of the National Research Council liquefaction committee, 

the development of an open-source liquefaction case history database is currently underway. The 

Next Generation Liquefaction (NGL) open-source database is a relational database that allows 

users to query and use advanced tools to relate information more easily than current databases, 

which are typically in the form of spreadsheets. The NGL database has the benefit of having case 

history data from different events in a consistent format that can be accessed by anyone. The NGL 

database includes lateral spread data from the numerous earthquakes (e.g., the Canterbury 

Earthquake Sequence from 2010-2016) that have occurred over the last 16 years and are not 

included in the Youd et al. (2002) or Olson and Johnson (2008) databases. The NGL database will 

be updated as data from future earthquakes becomes available. 

5.3 LATERAL SPREADING PROCEDURES TODAY 

Due to the severe effects of lateral spreading, several procedures to predict lateral spreading 

displacements have been developed. These procedures have based on (a) lateral spreading case 

histories (empirical), (b) case histories and laboratory data characterizing cyclic strain amplitude 

(semi-empirical), and (c) numerical methods. Because of their ease of use, empirical and semi-

empirical procedures are the most commonly used approaches in practice today.  

5.3.1 Empirical Procedures 

Empirical procedures for lateral spreading are based upon collections of case histories of 

past lateral spreading events. The better the documentation of the case history and the better quality 

the data, better will be the empirical model developed from it. Bartlett and Youd (1992) collected 

an expansive database for lateral spreads that occurred in the western United States and Japan, and 

developed multilinear regression equations to estimate lateral spread displacements. Bartlett and 
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Youd (1992) found that two general types of failures occurred while developing their model and 

thus allowed for two geometry conditions – a free-face case and a ground-slope case. The 

geometries of the two cases are shown in Figure 5.3. It should be noted that, despite the 

implications of Figure 5.3, users of the Bartlett and Youd (1992) method were forced to determine 

whether the site should be modeled as a free-face or ground slope site. This leads to difficulties for 

sites where both 𝐻 and 𝑆 are greater than zero. 

 

Figure 5.3. Definitions of the free-face, 𝑾, and ground slope, 𝑺 for Equation 5.1 (Kramer, 2008). 

 

Youd et al. (2002) updated and made several corrections to the Bartlett and Youd (1992) 

case history database and developed new multilinear regression equations for the free-face and 

ground-slope cases. The cases can be combined into a single equation of the form 

 Log𝐷𝐻 = 𝑏0 + 𝑏1𝑀𝑤 + 𝑏2𝑙𝑜𝑔 log𝑅
∗ + 𝑏3𝑅 + 𝑏4 log𝑊 + 𝑏5 log 𝑆 + 

𝑏6 log 𝑇15 + 𝑏7 log(100 − 𝐹15) + 𝑏8 log(𝐷5015 + 0.1𝑚𝑚)   (5.1) 

 

where 𝐷𝐻 is the estimated lateral spread displacement in meters, 𝑀𝑤 is the moment magnitude, 

and 𝑅 is the nearest horizontal distance to the energy source. The free-face ratio, 𝑊, is given as 

the ratio of the height of the site above the free face to the horizontal distance from the base of the 

free face in percent, and 𝑆 is the inclination of the ground slope in percent (see Figure 5.3). The 

cumulative thickness of liquefiable soil, 𝑇15, in meters, is soil that is saturated and has corrected 
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SPT resistance, (𝑁1)60, less than or equal to 15 blows, 𝐹15 is the average fines content for the soil 

included in 𝑇15 in percent, and 𝐷5015 is the mean grain size for the soil included in 𝑇15 in 

millimeters. The 𝑏 values are regression coefficients shown in Table 5.1 and 𝑅∗ is a modified 

source distance value given by 

 𝑅∗ = 𝑅 + 𝑅𝑜   (5.2) 

where 𝑅𝑜 is a factor for distance that is dependent on moment magnitude given by 

 𝑅𝑜 = 10(0.89𝑀𝑤−5.64)  (5.3) 

Youd et al. (2002) developed Equation 5.1 from a large number of case histories, however, the 

case history data did not cover the entire range of conditions that may occur in the field. Hence, 

the predictive relationships based on that data only apply to restricted conditions. Therefore, Youd 

et al. recommended that Equation 5.1 be used only within the variable ranges shown in  

Table 5.2. 

Table 5.1. Youd et al. (2002) regression coefficients for Equation 5.1. 

 

Table 5.2. Youd et al. (2002) variables, variable description, and recommended variable range for 

Equation 5.1. 

 
 

Geometry

Ground-slope -16.213 1.532 -1.406 -0.012 0 0.338 0.540 3.413 -0.795

Free-face -16.713 1.532 -1.406 -0.012 0.592 0 0.540 3.413 -0.795

 𝟎  𝟏  𝟐  𝟑    𝟓  𝟔     

Variable Description of Variable

Range Recommended 

for Variable

Moment magnitude 6 ˂         ˂ 8

Modified source to site distance value (in kilometers) --

Nearest horizontal distance to the energy source from the site  

(in kilometers)
--

Free face ratio (in percent) 1 ˂       ˂ 20 (in percent)

Ground slope (in percent) 0.1 ˂       ˂ 6 (in percent)

Cumulative thickness of liquefiable soil where corrected SPT 

resistance is ≤ 15 (in meters)
1 ˂         ˂ 15 (in meters)

Average fines content for the soil included in         (in percent) See

Mean grain size for the soil included in         (in millimeters) See

𝑅∗

𝑇15

𝑀𝑤

𝑅

𝑊

𝑆

𝐹15
𝐷5015

𝑇15
𝑇15

𝑀𝑤

𝑊
𝑆

𝑇15

Figure 5.4 

Figure 5.4 
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Figure 5.4. Plot of fines content and mean grain-size where the values of 𝑭𝟏𝟓 and 𝑫𝟓𝟎𝟏𝟓 for a soil 

must plot within the specified bounds to make Equation 5.1 eligible to be used (Youd et al., 2002). 

 

 The Youd et al. (2002) procedure requires determination of whether the site conditions are 

ground-slope or free-face conditions in order to calculate the lateral spread displacement. For 

ground-slope conditions the regression coefficient, 𝑏4, is zero cancelling out the free-face ratio 

term, 𝑊, in Equation 5.1, and for free-face ratio conditions the regression coefficient, 𝑏5, is zero 

taking care of the ground-slope term, 𝑆 (see Table 5.1). For sites with a distant free face, Youd et 

al. (2002) recommended that ground-slope conditions be used when the free-face ratio is less than 

1% and that free-face conditions be used when the free-face ratio is greater than 5%. For sites that 

have a free-face ratio 1% ≤ 𝑊 ≤ 5% both the ground slope and free-face conditions can be used, 

however, Youd et al. (2002) recommend selecting the condition that provides the larger predicted 

displacement and using that for design. Youd et al. (2002) did not recommend summing the 

displacements from both ground-slope and free-face conditions for the latter case because the 

results would be overly conservative. Youd et al. (2002) indicate that 90% of the displacement 
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predicted by their model fall within a factor of two of the observed displacement when staying 

within the recommended variable ranges shown in Table 5.2. Franke and Kramer (2014) found the 

actual total model uncertainty of Youd et al. (2002) to have a logarithmic standard deviation of 

𝜎log𝐷𝐻 = 0.197, which corresponds to 𝜎ln𝐷𝐻 = 0.464. 

The Youd et al. (2002) procedure has been one of the most common procedures used to 

evaluate lateral displacements in practice. Their procedure makes the inherent assumption that any 

soil with an (𝑁1)60 value of less than 15 blows is capable of contributing to lateral spreads, 

whereas, an (𝑁1)60 value greater than 15 is not capable of lateral spreads. This can create a problem 

for soils that are subjected to strong shaking (i.e., high amplitudes and long duration motion). For 

example, a soil that has an (𝑁1)60 of 16 and is subjected to strong shaking (e.g., 𝑀𝑤 = 7.9 and 

𝑅 = 10 kilometers), will not undergo lateral spread displacement according to the Youd et al. 

(2002) model. This model also does not differentiate in lateral spread displacement for (𝑁1)60 

values that are less than or equal to 15. Therefore, an (𝑁1)60 value of 5 will give the same lateral 

spread displacement value as an (𝑁1)60 value of 14 when considering the same magnitude 

earthquake, source-to-site distance, slope geometry, soil profile thickness, fines content, and mean 

grain size. The latter assumptions are inconsistent with laboratory data and the mechanical 

properties of soil. 

Gillins and Bartlett (2014) modified the Youd et al. (2002) empirical expression for lateral 

spread displacements by removing the fines content and mean grain size variables and replacing 

them with a descriptive soil index, SI, variable (Table 5.3). This approach was taken because 

several of the case histories lacked fines content and mean grain size values, but did have useful 

soil descriptions. The modified expression for calculating the lateral spread displacements by 

Gillins and Bartlett (2014) can be expressed as  
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 Log𝐷𝐻 = 𝑏0 + 𝑏1𝑀𝑤 + 𝑏2𝑙𝑜𝑔 log𝑅
∗ + 𝑏3𝑅 + 𝑏4 log𝑊 + 𝑏5 log 𝑆 + 

𝑏6 log 𝑇15 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5   (5.4) 

where 𝑥𝑖 is the ratio of the soil description type thickness in 𝑇15 to the cumulative thickness of 𝑇15, 

and 𝑏0-𝑏6 are regression coefficients shown in Table 5.4. The 𝑎 values are coefficients that either 

reduce or increase the lateral spread displacement value based on their susceptibility to liquefaction 

(e.g., SI 3 which consists mainly of sand adds to the value of log𝐷𝐻, whereas, SI 1 which consists 

of mainly silty gravel with sand reduces the value of log𝐷𝐻) and are shown in Table 5.5. The 

remaining variables are as described previously for the Youd et al. (2002) model. 

Table 5.3. SI group soil descriptions from the Youd et al. (2002) database. 

 

Table 5.4. Gillins and Bartlett (2014) regression coefficients for Equation 5.4. 

 

Table 5.5. Gillins and Bartlett (2014) soil coefficients for Equation 5.4. 

 

The Youd et al. (2002) model, and the modification by Gillins and Bartlett (2014), are 

limited to certain slope conditions, but many slopes in nature do not neatly fit within the 

requirements of their procedure. According to the National Center for Biotechnology Information 

(NCBI), 90% of the world’s population lives within 10 kilometers of a surface freshwater body 

and over half the world’s population lives within 3 kilometers (NCBI, 2011). The latter is surface 

water and does not include oceans in which approximately 2.4 billion people live within 100 

SI Typical Soil Description General USCS Symbol

1 Silty gravel with sand, silty gravel, fine gravel GM

2 Very coarse sand, sand and gravel, gravelly sand, Coarse sand, sand with some gravel GM-SP, SP

3 Sand, medium to fine sand, sand with some silt SP-SM

4 Fine sand, sand with silt, Very fine sand, silty sand, dirty sand, silty/clayey sand SM, SM-ML

5 Sandy silt, silt with sand ML

Geometry

Ground-slope -8.208 1.318 -1.073 -0.016 0 0.337 0.592

Free-face -8.208 1.318 -1.073 -0.016 0.445 0 0.592

 𝟎  𝟏  𝟐  𝟑    𝟓  𝟔

Soil Coefficients

Values -0.683 -0.2 0.252 -0.04 -0.535

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂 𝒂𝟓



 

 

199 

kilometers (The Ocean Conference, 2017). Liquefaction-induced lateral spreading can occur from 

soil saturated with fresh water or salt water, therefore, improvement upon the factor of 2 between 

the predicted and observed lateral displacements would have tremendous impacts on society. As 

one can imagine, the geometry of slopes composed of soil rarely match that shown in Figure 5.3 

and likely more closely align with something similar to Figure 5.5 where the ground slopes, 𝑆1 and 

𝑆2, are different whether caused by nature, or by anthropogenic interaction with the land. 

 

Figure 5.5. Example slope geometry in nature where ground slopes, 𝑺𝟏 and 𝑺𝟐, are different. 

 

Using the Youd et al. (2002) lateral spreading model for a slope geometry such as that depicted in 

Figure 5.5 can lead to many problems. For a ground slope interpretation, what is the slope variable, 

𝑆? For a free-face interpretation, what is the slope height, 𝐻? Different engineers will likely answer 

those questions differently, leading to uncertainty and inconsistency in predicted displacements. 

5.3.2 Semi-Empirical Procedures 

Empirical procedures benefit from the fact that they are based on actual observed data, 

however, there is often insufficient case history data to develop empirical procedures that are 

applicable to a sufficiently broad range of situations. For this reason, semi-empirical procedures 

were developed to estimate lateral spread displacements that can extend the range of lateral 

spreading displacement predictions. Semi-empirical procedures use both observations (case 

histories of lateral spreading) and laboratory test data to estimate the maximum cyclic shear strains 
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of liquefiable soils. The commonly used Zhang et al. (2004) semi-empirical procedure will be 

discussed. 

The Zhang et al. (2004) procedure used a modified version of the maximum cyclic shear 

strain, 𝛾𝑚𝑎𝑥, and factor of safety against liquefaction relationship for different relative densities 

developed by Ishihara and Yoshimine (1992) for a clean sand. Under the assumption that soils at 

any density should reach a limiting shear strain, the Seed (1979) approach was taken to modify the 

Ishihara and Yoshimine (1992) relationship by limiting the maximum shear strain as shown in 

Figure 5.6.  

 

Figure 5.6. Modified maximum cyclic shear strain versus factor of safety relationship (Zhang et 

al., 2004). 

 

Figure 5.6 shows that both the factor of safety against liquefaction and relative density are 

required to calculate 𝛾𝑚𝑎𝑥. Zhang et al. (2004) at the time recommended evaluation of the factor 

of safety against liquefaction using the Youd et al. (2001) procedure for SPT or CPT liquefaction 

resistance methods. To estimate relative density, Zhang et al. (2004) used a modified version of 
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the Meyerhof (1957) empirical relationship for SPT resistance and the empirical relationship of 

Tatsuoka et al. (1990) for CPT resistance as shown in Equations 5.5 and 5.6 respectively. 

  𝐷𝑟 = 14√(𝑁1)60,𝑐𝑠𝑤ℎ𝑒𝑟𝑒(𝑁1)60,𝑐𝑠 ≤ 42   (5.5) 

 𝐷𝑟 = −85 + 76 log(𝑞𝑐1𝑁,𝑐𝑠) 𝑤ℎ𝑒𝑟𝑒𝑞𝑐1𝑁,𝑐𝑠 ≤ 200   (5.6) 

Zhang et al. (2004) used the value of 𝛾𝑚𝑎𝑥 from Figure 5.6. to calculate a lateral displacement 

index (LDI) by integrating 𝛾𝑚𝑎𝑥 over the depth of the liquefiable zone of soil, 

 𝐿𝐷𝐼 = ∫ 𝛾𝑚𝑎𝑥𝑑𝑧
𝑍𝑚𝑎𝑥

0
   (5.7) 

where 𝑍𝑚𝑎𝑥 is defined as the maximum depth below all of the potentially liquefiable layers with 

a factor of safety against liquefaction less than 2.0. 

 LDI does not directly characterize the geometric characteristics of a site. Site geometry is 

an important factor in lateral spreading since sloping ground induces static shear stresses in the 

soil. Because of this, Zhang et al. (2004) calibrated their model against empirical case history data 

using the ground slope and free-face geometric parameters of Youd et al. (2002) described 

previously in Figure 5.3. This resulted in the following equations that could be used to estimate 

lateral spread displacements, 

 𝐷𝐻 = (𝑆 + 0.2)𝐿𝐷𝐼𝑓𝑜𝑟0.2% < 𝑆 < 3.5%   (5.8) 

 𝐷𝐻 = (6𝑊−0.8)𝐿𝐷𝐼𝑓𝑜𝑟4 < 𝑊 < 40   (5.9) 

Zhang et al. (2004) recommended their procedure be restricted to cases of moment magnitudes 

between 6.4 and 9.2, peak ground surface accelerations from 0.19 g to 0.6g, free face heights less 

than 18 meters, and 𝑞𝑐1𝑁,𝑐𝑠 ≥ 50. According to Zhang et al. (2004), the calculated lateral 

displacements of their approach gave values between 50 and 200% of the measured values from 

the case histories their model is based on. Zhang et al. (2004) stated that LDI should be interpreted 
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as an index of potential lateral displacements (e.g., high, low, or medium displacement) for a given 

resistance and loading. 

Although semi-empirical approaches like Zhang et al. (2004) incorporate laboratory testing 

to make up for the lack of case histories, they still have large differences between calculated and 

measured error. The Zhang et al. (2004) procedure also doesn’t characterize the initial static stress 

state any better than the Youd et al. (2002) procedure. Therefore, applying the Zhang et al. (2004) 

procedure to slopes with varying ground slopes (such as Figure 5.5) leads to the same challenging 

questions as the Youd et al. (2002) model – how do the ground slopes interact with each other? A 

more thorough characterization of the initial static stress state would provide key insight into how 

to handle geometries such as Figure 5.5. 

5.3.3 Numerical Analysis 

Numerical analyses provide an alternative to empirical and semi-empirical procedures for 

modeling lateral spreading. Numerical analysis of lateral spreading solves partial differential 

equations (e.g., the wave equation and diffusion equation) in order to model the mechanical and 

hydraulic response of the model. In order to model soil behavior, the numerical model needs to 

have constitutive models that are able to relate stresses to strains and also model the increase in 

pore pressure due to cyclic loading before and up to the point of liquefaction initiation. These 

constitutive models need to be calibrated via laboratory testing at the element level to ensure they 

are working properly. Numerical models also need to be validated against physical models (such 

as centrifuge tests) and/or lateral spreading case histories to prove they can provide reasonable 

predictions of lateral displacements. 

While such models have increasingly become available, they tend to be time-consuming to 

use both from input parameter development and computational standpoints. Their responses can 
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also be sensitive to details of soil profiles that are difficult to characterize accurately. As a result, 

they have not been well validated against case history data, and have not seen widespread adoption 

in engineering practice. 

5.4 CHARACTERIZATION OF STATIC STRESS STATE – A UNIFIED 

APPROACH 

It has been postulated (S. Kramer, personal communication, 2018) that up to three 

mechanisms drive lateral spreading: 

1) Softening of the liquefied material that causes shearing distortion of the soil under the static 

shear stresses that act upon it; 

2) Cumulative cyclic deformations during earthquake shaking that are driven by cyclic shear 

stresses superimposed on the existing static shear stresses; 

3) Post-shaking deformations associated with void redistribution phenomena and driven by 

static shear stresses. 

Each of these potential deformation mechanisms is influenced by static shear stresses yet 

both empirical and semi-empirical procedures for prediction of lateral spreading displacements 

currently characterize static shear stresses in a crude and incomplete manner. The work described 

in the remainder of this chapter was directed toward developing an improved procedure for 

characterizing the initial static shear stresses over a continuous range of site conditions commonly 

encountered at lateral spreading sites. 

Given the importance of the static shear stresses to the lateral spreading problem and the 

simple, binary procedures by which they are represented in current empirical and semi-empirical 

procedures for prediction of lateral spreading displacement, an effort was made to identify a 

function that could describe the static stress distribution in a continuous, but reasonably simple 
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manner. This approach was considered to involve two parts: (1) description of the driving stresses 

(shear and normal) in a general slope with, a geometry representative of those involved in lateral 

spreading failures, and (2) a procedure for using these stresses to characterize the resulting forces 

acting on the soil bounded by the ground surface and a failure surface. 

The first of these parts, i.e. development of a unified stress function, is the subject of the 

remainder of this chapter. The description of the process of developing that function is organized 

about the following steps taken to accomplish it: 

1) Definition of a generic slope geometry for slopes susceptible to lateral spreading (Section 

5.4.1); 

2) Definition of a transformed slope geometry system that would facilitate comparison of 

different slope geometries and lead to a simpler stress function (Section 5.4.2); 

3) Establishment of a range of slope geometries representative of those involved in lateral 

spreading case histories (Section 5.4.3); 

4) Development of a numerical model for computation of stresses (Section 5.4.4); 

5) Analysis of the results of the numerical analyses (Section 5.4.5); 

6) Development of a procedure to map computed stresses from the numerical model to a 

regular, standard grid in the transformed geometry space (Section 5.4.6); and 

7) Development of stress functions by optimization analysis (Section 5.4.7). 

5.4.1 Generic Slope Geometry 

The two binary geometries used in common empirical and semi-empirical procedures for 

estimation of lateral spreading analyses were described in Section 5.3.1. In reality, however, slopes 

can be more complicated than either of those geometries. Figure 5.7 illustrates possible slope 
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geometries that could range from a ground slope geometry (Figure 5.7a) to a free-face geometry 

(Figure 5.7e), but could include intermediate geometries with different, non-zero slope angles. 

 

Figure 5.7. Slope geometries ranging from (a) ground slope to (e) free-face cases. 

 

A more general geometry that would more accurately represent the range of slope geometries 

encountered at liquefiable sites, could consist of three linear segments with variable inclinations 

(Figure 5.8). By specifying the three slope angles and the height of the intermediate segment, a 

general geometry can be defined by four parameters – 𝜃1, 𝜃2, 𝜃3, and 𝐻. For slopes with different 

heights and/or central slope angles, the length shown in Figure 5.8 can change. 

 

Figure 5.8. Generic slope geometry model depicting parameters that vary for each profile. 

(a) 

(b) 

(c) 

(d) 

(e) 
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5.4.2 Transformed Coordinate System 

To develop a unified approach to characterizing the static stress state for different forms of 

the three-segment slope geometry, transformation to a dimensionless coordinate system was 

required so different geometries could be related to each other. PLAXIS takes compressive stresses 

and forces as negative, while tensile stresses and forces as positive, as shown in Figure 5.9. The 

coordinate transformation chosen for this research took 𝑥 to be positive to the right and 𝑦 to be 

positive downwards. The PLAXIS 𝑥 and 𝑦 coordinates were then transformed into a dimensionless 

coordinate system composed of delta (𝛿) and eta (𝜂) coordinates by normalizing both 𝑥 and 𝑦 by 

the slope height, 𝐻. Therefore, points at the same depth below the ground surface would have the 

same value of 𝜂, as illustrated in Figure 5.10. The ground surface position is designated by 𝑦𝑜, and 

is different for the three slope segments, as shown in Figure 5.11. As a result, the expressions for 

𝛿 and 𝜂 must be developed individually for the materials directly beneath each slope segment. 

These expressions are presented in Figures 5.11-5.14. 

 

Figure 5.9. PLAXIS sign convention. 
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Figure 5.10. Illustration depicting the grid of the dimensionless coordinate system of 𝜹 = 𝒙/𝑳 

versus 𝜼 = (𝒚 − 𝒚𝟎)/𝑯. 

 

 

Figure 5.11. Calculation of vertical ground surface coordinate, 𝒚𝟎, relative to the toe of the slope.  
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Figure 5.12. Calculation of 𝜹 and 𝜼 for x < 0 (shaded region). 

 

 

Figure 5.13. Calculation of 𝜹 and 𝜼 for 0 < 𝒙 < 𝑳 (shaded region). 
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Figure 5.14. Calculation of 𝜹 and 𝜼 for < 𝒙 ≥ 𝑳 (shaded region). 

5.4.3 Investigated Slope Geometries 

In order to cover the range of slope geometries that can lead to lateral spreading hazards, a 

suite of 102 different geometries (Table 5.6) was developed and used in the subsequently described 

numerical analyses. For simplicity and conciseness, the geometries in the remainder of this thesis 

will be described in the short hand form 𝐻-𝜃1-𝜃2-𝜃3. For example, a slope with 𝐻 = 5 meters, 𝜃1 

= 0 degrees, 𝜃2 = 15 degrees, and 𝜃3 = 3 degrees will be described as 5-0-15-3.  
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Table 5.6. Slope geometries analyzed to develop data for a stress function. 

 

 

Case Model_ID Height (m) θ1 (deg) θ2 (deg) θ3 (deg) Case Model_ID Height (m) θ1 (deg) θ2 (deg) θ3 (deg)

Infinite Slope INF_S_1 1 0.5 0.5 0.5 Case 3 2-0-15-1 2 0 15 1

Infinite Slope INF_S_2 1 1 1 1 Case 3 2-0-15-3 2 0 15 3

Infinite Slope INF_S_3 1 1.5 1.5 1.5 Case 3 2-0-15-5 2 0 15 5

Infinite Slope INF_S_4 1 2 2 2 Case 3 2-0-20-1 2 0 20 1

Infinite Slope INF_S_5 1 3 3 3 Case 3 2-0-20-3 2 0 20 3

Infinite Slope INF_S_6 1 4 4 4 Case 3 2-0-20-5 2 0 20 5

Infinite Slope INF_S_7 1 5 5 5 Case 3 2-0-25-1 2 0 25 1

Case 2 1-0-5-0 1 0 5 0 Case 3 2-0-25-3 2 0 25 3

Case 2 2-0-5-0 2 0 5 0 Case 3 2-0-25-5 2 0 25 5

Case 2 3-0-5-0 3 0 5 0 Case 3 3-0-5-1 3 0 5 1

Case 2 4-0-5-0 4 0 5 0 Case 3 3-0-5-3 3 0 5 3

Case 2 5-0-5-0 5 0 5 0 Case 3 3-0-10-1 3 0 10 1

Case 2 1-0-10-0 1 0 10 0 Case 3 3-0-10-3 3 0 10 3

Case 2 2-0-10-0 2 0 10 0 Case 3 3-0-10-5 3 0 10 5

Case 2 3-0-10-0 3 0 10 0 Case 3 3-0-15-1 3 0 15 1

Case 2 4-0-10-0 4 0 10 0 Case 3 3-0-15-3 3 0 15 3

Case 2 5-0-10-0 5 0 10 0 Case 3 3-0-15-5 3 0 15 5

Case 2 1-0-15-0 1 0 15 0 Case 3 3-0-20-1 3 0 20 1

Case 2 2-0-15-0 2 0 15 0 Case 3 3-0-20-3 3 0 20 3

Case 2 3-0-15-0 3 0 15 0 Case 3 3-0-20-5 3 0 20 5

Case 2 4-0-15-0 4 0 15 0 Case 3 3-0-25-1 3 0 25 1

Case 2 5-0-15-0 5 0 15 0 Case 3 3-0-25-3 3 0 25 3

Case 2 1-0-20-0 1 0 20 0 Case 3 3-0-25-5 3 0 25 5

Case 2 2-0-20-0 2 0 20 0 Case 3 4-0-5-1 4 0 5 1

Case 2 3-0-20-0 3 0 20 0 Case 3 4-0-5-3 4 0 5 3

Case 2 4-0-20-0 4 0 20 0 Case 3 4-0-10-1 4 0 10 1

Case 2 5-0-20-0 5 0 20 0 Case 3 4-0-10-3 4 0 10 3

Case 2 1-0-25-0 1 0 25 0 Case 3 4-0-10-5 4 0 10 5

Case 2 2-0-25-0 2 0 25 0 Case 3 4-0-15-1 4 0 15 1

Case 2 3-0-25-0 3 0 25 0 Case 3 4-0-15-3 4 0 15 3

Case 2 4-0-25-0 4 0 25 0 Case 3 4-0-15-5 4 0 15 5

Case 2 5-0-25-0 5 0 25 0 Case 3 4-0-20-1 4 0 20 1

Case 3 1-0-5-1 1 0 5 1 Case 3 4-0-20-3 4 0 20 3

Case 3 1-0-5-3 1 0 5 3 Case 3 4-0-20-5 4 0 20 5

Case 3 1-0-10-1 1 0 10 1 Case 3 4-0-25-1 4 0 25 1

Case 3 1-0-10-3 1 0 10 3 Case 3 4-0-25-3 4 0 25 3

Case 3 1-0-10-5 1 0 10 5 Case 3 4-0-25-5 4 0 25 5

Case 3 1-0-15-1 1 0 15 1 Case 3 5-0-5-1 5 0 5 1

Case 3 1-0-15-3 1 0 15 3 Case 3 5-0-5-3 5 0 5 3

Case 3 1-0-15-5 1 0 15 5 Case 3 5-0-10-1 5 0 10 1

Case 3 1-0-20-1 1 0 20 1 Case 3 5-0-10-3 5 0 10 3

Case 3 1-0-20-3 1 0 20 3 Case 3 5-0-10-5 5 0 10 5

Case 3 1-0-20-5 1 0 20 5 Case 3 5-0-15-1 5 0 15 1

Case 3 1-0-25-1 1 0 25 1 Case 3 5-0-15-3 5 0 15 3

Case 3 1-0-25-3 1 0 25 3 Case 3 5-0-15-5 5 0 15 5

Case 3 1-0-25-5 1 0 25 5 Case 3 5-0-20-1 5 0 20 1

Case 3 2-0-5-1 2 0 5 1 Case 3 5-0-20-3 5 0 20 3

Case 3 2-0-5-3 2 0 5 3 Case 3 5-0-20-5 5 0 20 5

Case 3 2-0-10-1 2 0 10 1 Case 3 5-0-25-1 5 0 25 1

Case 3 2-0-10-3 2 0 10 3 Case 3 5-0-25-3 5 0 25 3

Case 3 2-0-10-5 2 0 10 5 Case 3 5-0-25-5 5 0 25 5
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5.4.4 Numerical Model 

To analyze the stresses within slopes with different geometries, the finite element program 

PLAXIS was used. In finite element analysis, a region of interest is broken up into a finite number 

of elements where calculations are performed – these elements make up the mesh of the model. 

PLAXIS allows the user to select from 6-noded or 15-noded triangular elements. For this research 

15-noded triangular elements were used due to increased accuracy of results (PLAXIS, 2019a). 

Each 15-noded triangular element has 12 stress points within the element where stresses are 

calculated. Figure 5.15 shows the locations of the nodes and stress points for a 15-noded triangular 

element. 

 

 

 

 

 

Figure 5.15. Illustration of location of PLAXIS node and stress point locations within a 15-noded 

triangular element (PLAXIS, 2019a). 

 

For this research, the introductory version of PLAXIS was used because it had the 

capability to analyze the static stresses within lateral spreading slope geometries and was freely 

available. The general constraints of the PLAXIS introductory version are: 

(1) Limited to one material dataset and therefore soil type; 

(2) Limited to a certain number of structural elements; 

(3) Limited to the choice of three simple material models; 

(4) Limited to five calculations phases; 

(5) Unable to print/copy using the PLAXIS software. 

Nodes Stress points 
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Limitations (1), (3), and (4) did not impact the research as only one soil type is used, a simple 

material model is all that’s needed to characterize the static stress, and only gravity loading is 

needed to characterize the static stress within a slope. Constraints (2) and (5) provided the 

following minor limitations: 

(a) Structures in PLAXIS can be used for the development of the model geometry, boundary 

conditions, and additional mesh zones. Because the model geometry and boundary 

conditions are essential to any model, the creation of zones of different mesh size within 

the model was limited to three. However, three mesh zones still allowed for a very fine 

mesh at shallow depths of lateral spreading interest and a progressively coarser mesh 

farther away.  

(b) The inability to print/copy data/results from PLAXIS caused the graphics used in this thesis 

to have the words “Introductory version” imprinted on them. 

5.4.4.1 Material Model 

Two material models were used in the PLAXIS introductory version – the linear elastic 

and Mohr-Coulomb models. 

Linear Elastic Model 

The linear elastic model is the simplest constitutive model and is governed by Hooke’s law 

of linear and isotropic elasticity. The linear elastic model is characterized by two elastic 

parameters, Young’s modulus, 𝐸, and Poisson’s ratio, 𝜈. Materials modeled via the linear elastic 

model use a constant average 𝐸 value. Figure 5.16 shows how stresses are related to strains for the 

linear elastic model. 
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Figure 5.16. Linear elastic definition of how stresses are related to strains. 

 

The linear elastic model was initially used in this research because it is simple, has a long history 

of use for modeling stress distributions in geotechnical engineering, and was hypothesized to be 

able to handle the shear stresses produced by gravity loading for the relatively flat slope geometries 

typically associated with lateral spreading case histories. However, the complex behavior of the 

computed shear stresses for even simple slope geometries in terms of a static stress ratio, led to the 

use of the Mohr-Coulomb model. 

Mohr-Coulomb Model 

The Mohr-Coulomb material model is a simple constitutive model that behaves as a linear 

elastic material until the shear strength is mobilized, after which it behaves as a perfectly plastic 

material. The initial linear elastic behavior is governed by Hooke’s Law (Figure 5.16) and the 

perfectly plastic behavior is governed by the Mohr-Coulomb failure criterion shown in Equation 

5.10. The Mohr-Coulomb model is therefore termed an elastic-perfectly plastic material model and 

is governed by five parameters Young’s modulus, 𝐸, Poisson’s ratio, 𝜈, cohesion, 𝑐, friction angle, 

𝜑, and dilatancy angle, 𝜓. Materials modeled via the Mohr-Coulomb model use a constant average 

𝐸 value. Figure 5.17 shows how stresses are related to strains for the elastic-perfectly plastic 

model. 
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 𝜏 = 𝑐 + 𝜎 tan𝜑   (5.10) 

 

Figure 5.17. Mohr-Coulomb linear elastic perfectly-plastic stress-strain behavior. 

 

The Mohr-Coulomb model is used in this research because it is a simple model that is easy to 

implement, it has relatively quick computation times compared to more advanced material models, 

and it is capable of developing a simple stress function in terms of the static stress ratio. 

5.4.4.1.1 Soil Parameters 

Table 5.7 shows the soil parameters of the sand material used in the linear elastic PLAXIS 

analyses. A shear wave velocity of 500 m/s, corresponding to that of a very dense soil, was initially 

used to prevent overly excessive deformations in the sand material during gravity loading. 

However, during the early stages of research the PLAXIS models included a water table and a 

saturated unit weight of 20 kN/m3 was used to calculate the stiffness parameters. Because the goal 

was to model the static shear stress, the water table was removed for simplicity and an unsaturated 

unit weight of 17 kN/m3 was used. Using the unsaturated unit weight required the shear wave 

velocity to be changed to 542 m/s to give the same stiffness parameters as were used when the 

water table was present. Therefore, the stiffness parameters were the same, however, the unit 
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weight used differed between the analysis of boundary condition effects and the bulk of analyses 

to follow. 

Table 5.7. Model parameters, general soil properties, and stiffness parameters for the sand 

material used in PLAXIS linear elastic analyses. 

 
 

5.4.4.2 Mesh 

Three different mesh zones with varying resolution were used to allow for a very fine mesh 

to be used in the vicinity of the slope and a coarser mesh farther away from the slope. This was 

done to achieve accurate results in the region of interest, but also limit the total number of elements, 

which affects PLAXIS file sizes and calculation times. The geometry and dimensions of the 

different mesh zones are shown in Figures 5.18-5.20 where 𝐻 and 𝐿 are as defined in Figure 5.8.  

 

Figure 5.18. Mesh used in PLAXIS analysis of 5-0-25-0. 

Material Name Sand

Material Model Linear Elastic

Drainage Type Drained

γunsat (kPa) 17

γsat (kPa) 20

Vs (m/s) 542

Elastic Modulus, E (kPa)

Poisson Ratio, v 0.30

Shear Modulus, G (kPa)

1.325 × 106

5.097 × 105

𝐸

 

𝐺

𝑉𝑠

x 

y 
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Figure 5.19. Geometry of mesh Zone 1 for PLAXIS model 5-0-25-0. 

 

 

Figure 5.20. Geometry of mesh Zone 2 for PLAXIS model 5-0-25-0. 

 

The desired mesh size in Zone 1 would have stress points spaced laterally at 𝐿/10 and 

vertically at 𝐻/5. For the 5-0-25-0 model, 𝐿 is 10.7 meters. Therefore, the desired stress points 

would be spaced at about 1 meter both laterally and vertically in Zone 1 for 5-0-25-0. Zones 2 and 

3 would having progressively larger spacing between stress points. 

 The size of elements in a mesh is controlled by three components in PLAXIS: the size of 

the overall model created by the user, a factor for the relative element size, and the local refinement 

settings. Based on the overall dimensions for the created PLAXIS model (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) 

and the relative element size factor, 𝑟𝑒, the PLAXIS mesh generator creates an average element 

size, 𝐼𝑎𝑣𝑔, given as 

 𝐼𝑎𝑣𝑔 = 0.06 × 𝑟𝑒√(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)2 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)2   (5.11) 
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The relative element size factor, and the mesh type it corresponds to, is shown in Table 5.8. Table 

5.8 also shows the approximate number of elements for each mesh size specified where the actual 

number of elements depends on the geometry shape and local refinement settings (PLAXIS, 

2019a). 

Table 5.8. Mesh type corresponding to 𝒓𝒆 and the approximate number of elements associated with 

it for default local refinement settings (PLAXIS, 2019a). 

 
 

For each of the three zones shown in Figures 5.18-5.20, a “Very fine” mesh was specified 

in PLAXIS, however, whether the mesh is specified as “Very fine” or “Very coarse” in PLAXIS 

only initially controls the number of elements for the default local refinement settings. Local 

refinement was accomplished using the PLAXIS coarseness factor.  

 For this research, the mesh for Zones 1-3 are as follows: 

• Zone 1: very fine mesh with a coarseness factor of 0.03125 (the smallest coarseness factor 

possible); 

• Zone 2: very fine mesh with a coarseness factor of 0.1250; 

• Zone 3: very fine mesh with default coarseness factor of 1.0. 

The latter mesh/coarseness factor specifications produced the mesh shown in Figure 5.18 for the 

5-0-25-0 model. The important part of the mesh can be examined in more detail by zooming into 

the region of Zones 1 and 2. Figure 5.21a shows the relative element sizes of all three zones and 

Figure 5.21b shows the locations of stress points within the elements within a portion of Zone 1. 

Mesh  # of elements

Very coarse 2.00 30-70

Coarse 1.33 50-200

Medium 1.00 90-350

Fine 0.67 250-700

Very fine 0.50 500-1250
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Figure 5.21b shows that the diamond shaped stress points are less than 1 meter apart, thereby 

meeting the desired lateral and vertical spacings within Zone 1.  

 

 
 

 

Figure 5.21. Mesh used in PLAXIS analysis of 5-0-25-0 (a) zoomed into Zones 1 and 2; (b) further 

zoomed into the slope in Zone 1 with the stress points shown. 

5.4.4.3 Boundary Conditions 

A linear elastic constitutive model was used in order to identify the model dimensions 

required to ensure that the boundary conditions (BC) would not significantly impact the stresses 

3 meters 

3 meters 

Zone 1 

Zone 3 

Zone 1 

Zone 2 

(a) 

(b) 
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in the region of interest of the model. For lateral spreading, the desired distance of negligible 

influence of the stress within the slope was conservatively set at the boundaries of Zone 2 (Figure 

5.20). Therefore, if the BC effects do not impact the shear stress results within Zone 2, the shear 

stress results obtained from PLAXIS were considered to represent stress conditions unaffected by 

the boundary conditions. The desired BCs for the model are shown in Figure 5.22 where the base 

and sides of the model are constrained against vertical and horizontal displacement, respectively, 

and the ground surface is free in both the 𝑥 and 𝑦 directions. In order to test the sensitivity of the 

stresses within a model, a 5-0-25-0 model was used as it represented the steepest slope of the 

geometries associated with lateral spreading (Table 5.6). A 𝜃3 = 0 model was chosen for the 

purpose of evaluating the horizontal extent because it produces sharper “kinks” in the ground 

surface profile, which result in locally increased shear stresses. The horizontal extents can be 

interpreted to have negligible influence when at a lateral distance at which the horizontal shear 

stresses within the model return to very nearly zero. 

 

Figure 5.22. Generic slope geometry with rollers on the base and sides of the model. 
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The BCs were evaluated by comparing the computed shear stress with respect to depth and 

lateral distance from the toe for various combinations of “fixed” and “free” BCs. An illustration 

of each of these BCs is shown in Figure 5.23. The desired BC was compared to two control BCs 

which will further be denoted as: 

• Desired BC: base: 𝑥 = free, 𝑦 = fixed, vertical: 𝑥 = fixed, 𝑦 = free  (Figure 5.23a) 

• Control BC 1: base: 𝑥 = fixed, 𝑦 = fixed, vertical: 𝑥 = fixed, 𝑦 = free (Figure 5.23b) 

• Control BC 2: base: 𝑥 = free, 𝑦 = fixed, vertical: 𝑥 = fixed, 𝑦 = fixed (Figure 5.23c) 

 

Figure 5.23. Illustration of boundary conditions (a) Desired BC, (b) Control BC 1, and (c) Control 

BC 2. 

 

By comparing the Desired BC with the control BCs, the vertical and lateral extents of the PLAXIS 

model could be determined in terms of the number of multiples of 𝐻 the model boundaries needed 

to be placed at in order to meet the previously described requirement of negligible effects within 

Zone 2. After many iterations of experimenting with different vertical and lateral model extents, 

an overall model depth of 250𝐻 and width of ±300𝐻 were found to meet the conservative criteria. 

5.4.4.3.1 Validating Vertical Extent of Models 

In order to validate that the depth of the models was large enough to ensure that the BCs 

do not impact the shear stresses, the shear stress with depth was compared between the Desired 

BC and Control BC 1 at eight vertical cross-sections (Table 5.9) within the 5-0-25-0 model. The 

cross-sections ranged from 200 meters to the left and right of the toe of the slope and extended 
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from the ground surface to the base of the mesh at a depth of 1250 meters. Figure 5.24 shows the 

shear stress with respect to depth for both BCs. From Figure 5.24, it appears that the shear stress 

is negligibly impacted by the BCs down to a depth of about 100 meters for all cross-section 

locations. Table 5.9 supports the latter showing that the maximum shear stress difference between 

the BCs is 0.27 kPa and 0.04 kPa within 100 meters and 15 meters depth from the toe of the slope, 

respectively. The lateral spreading depth of interest was conservatively taken to be 20𝐻 vertically, 

therefore, for geometry 5-0-25-0 the 5-meter high slope meets this condition. 

Table 5.9. Vertical cross-section locations for validating model depth and the maximum shear 

stress difference between fixed and free BC. The toe of the slope is at x = 0, y = 0. 

 

x (m) y (m) x (m) y (m) From 0 to 100 m below toe From 0 to 15 m below toe

1 -200 0 -200 -1250 0.27 0.03

2 -100 0 -100 -1250 0.26 0.03

3 -40 0 -40 -1250 0.26 0.03

4 0 0 0 -1250 0.26 0.04

5 10.72 5 10.72 -1250 0.26 0.03

6 50 5 50 -1250 0.25 0.04

7 100 5 100 -1250 0.26 0.04

8 200 5 200 -1250 0.27 0.04

Cross-Section
A A' Max Shear Stress Difference Between Fixed and Free (kPa)
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Figure 5.24. Shear stress versus depth plots for validating vertical extent of models via eight 

cross-sections where the solid lines labeled “Fixed” are Control BC 1 and the dotted lines labeled 

“Free” are the Desired BC. 
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5.4.4.3.2 Validating Lateral Extent of Models 

To confirm that the lateral extent of the models was large enough to ensure that the BCs 

did not impact the shear stresses, the normalized shear stresses (shear stress divided by the unit 

weight multiplied by the slope height) for the Desired BC and Control BC 2 were compared for 

seven different horizontal cross-sections (Table 5.10) within the 5-0-25-0 model. The comparison 

of the normalized shear stress between the Desired BC and Control BC 2 is shown in Figure 5.25. 

To make clear the shear stress difference between the Desired BC and Control BC 2, plots of the 

difference of the normalized shear stress between these conditions were also created as shown in 

Figure 5.26. These plots show that there is negligible difference between shear stress for the 

Desired BC and Control BC 2 up to almost 1000 meters laterally from the toe of the slope for all 

cross-section locations. The lateral spreading depth of interest was taken to be 100𝐻 laterally, 

therefore, for geometry 5-0-25-0 the 5-meter high slope meets this condition.  

Table 5.10. Horizontal cross-section locations for validating model lateral extents from the toe of 

the slope. 

 

 

 

 

 

 

x (m) y (m) x (m) y (m)

1 5.36 2.5 1500 2.5

2 -1500 -1 1500 -1

3 -1500 -10 1500 -10

4 -1500 -25 1500 25

5 -1500 -50 1500 50

6 -1500 -100 1500 100

7 -1500 -400 1500 -400

Cross-Section
A A'
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Figure 5.25. Normalized shear stress with respect to lateral distance from the toe of the slope for 

validating lateral extent of models via seven cross-sections where the solid lines labeled “Fixed” 

are Control BC 2 and the dotted lines labeled “Free” are the Desired BC. 
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Figure 5.26. The difference in normalized shear stress with respect to lateral distance from the 

toe of the slope for validating lateral extent of models via seven cross-sections where the solid 

lines labeled “Fixed” are Control BC 2 and the dotted lines labeled “Free” are the Desired BC. 
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5.4.4.3.3 Discussion 

Shear stress with depth was compared between the Desired BC and Control BC 1 at eight 

different vertical cross-sections within the model. Shear stress with lateral distance from the toe of 

the slope was compared between the Desired BC and Control BC 2 at seven different horizontal 

cross-sections within the model. The results show that model extents of depth = 250𝐻 and lateral 

extent = +/- 300𝐻 from the toe of the slope will give reasonable shear stresses within the depth 

and lateral extents of interest (20𝐻 vertically and +/- 100𝐻 laterally from the toe) for lateral 

spreading.  

Validation of the model extents was done when the model had a water table that 

corresponded to the height of the toe of the slope. After completion of these analyses on BC effects, 

it was decided to remove the water table altogether for simplicity because a water table is not 

required to determine the static stresses within a slope. While the water table was incorporated 

during the analysis of BC effects, the saturated unit weight was 20 kN/m3 and the unsaturated unit 

weight 17 kN/m3. The normalized shear stress was found using the saturated unit weight because 

most of the model was below the water table. It was decided not necessary to re-validate the 

boundary conditions of the model after removing the water table from the profile.  

5.4.5 Results of Numerical Analyses 

Two material models – linear elastic and elastic-perfectly plastic (Mohr-Coulomb) were 

investigated in the process of developing a unified stress function that would be applicable to a 

wide array of slope geometries. The material model used to calculate the stresses for the large 

number of lateral spreading slope geometries (see Table 5.6) needed to be simple to limit the 

computation time and file size, while also producing reasonable results. The linear elastic model 

was initially selected because it is the simplest material model and is governed by only two 
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parameters, one of which being a constant average stiffness. Because the stiffness is not stress-

dependent for the linear elastic model, the computational time is much faster than a material model 

that has a stress-dependent stiffness. However, because complex shear stress behavior was 

observed to occur from gravity loading, it was decided to use the static stress ratio for the 

development of a unified stress function. The linear elastic model had a fundamental problem with 

accurately modeling the static stress ratio at shallow depths, therefore, it was decided to use the 

non-linear Mohr-Coulomb material model. The Mohr-Coulomb model is based on five parameters, 

however, has a constant average stiffness while also being able to provide reasonable static stress 

ratio values for the determination of a unified stress function. The calculation settings used for 

PLAXIS numerical analyses are shown in Table 5.11. 

Table 5.11. Calculation settings used in PLAXIS for the linear elastic analyses. 

 
 

Phase Initial Phase

Calculation Type Gravity Loading

Loading Type Staged Construction

Total Multiplier for Material Weight 1

Time Interval (days) 0

Ignore Suction Yes

Max Cores to Use 256

Max Number of Steps Stored 100

Use Default Iteration Parameters Yes

Max Steps 250

Tolerated Error 0.01

Max Unloading Steps 5

Max Load Fraction Per Step 0.5

Over-relaxation Factor 1.2

Max Number of Iterations 60

Desired Minimum Number of Iterations 6

Desired Maximum Number of Iterations 15

Arc-length Control Type On

Use Line Search No

Use Gradual Error Reduction No
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5.4.5.1 Results – Linear-Elastic Constitutive Model 

Linear elastic analyses were performed using the soil parameters shown in Table 5.7 and 

the PLAXIS calculation settings shown in Table 5.11. Figure 5.27 shows the shear stress 

distribution for the entire 5-0-5-0 model. As the depth below the slope increases the larger the 

lateral extent effected by the stresses imposed by the slope – similar to a stress bulb below a 

footing, i.e., as the depth increases below the footing the wider the stress bulb becomes and thus 

the larger area effected. Figure 5.27 also shows that the horizontal shear stresses diminish as 

moving laterally away from the central slope segment. This shear stress behavior appears to be 

reasonable. 

 

Figure 5.27. Shear stress distribution for geometry 5-0-5-0. 

 

 Recognizing that the goal was to develop a simple stress function, limiting the number of 

variables in the function was important. To remove the effect of slope height, the shear stress was 

normalized by the product of the unit weight of the soil and the height of the slope, 𝐻, thereby 

slope 

Shear stress 

returns to 

zero 

Shear stress 

returns to 

zero 
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reducing the number of geometries by a factor of five. For example, geometry 5-0-5-3 would have 

the same normalized shear stress as geometry 1-0-5-3. 

Figure 5.28 depicts the variation of normalized shear stress near the central slope in the 

relatively simple 5-0-5-0 geometry. The shear stress distribution shows significant asymmetry 

beneath the central slope segment (i.e., 0 ≤ 𝛿 ≤ 1). These sharp and rapid variations in shear stress 

were recognized as being potentially difficult to model with simple stress functions. It was 

determined, however, that normalizing the shear stress by the vertical stress (instead of 

normalizing by 𝛾𝐻) would produce a static stress ratio, 𝑆𝑆𝑅, that was better behaved and still 

removed the effect of slope height along with providing a useful measure of initial shear stress for 

the purpose of lateral spreading displacement estimation. 

 

Figure 5.28. Normalized shear stress versus 𝜹 for various 𝜼 values. 
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A Fundamental Problem With an Elasticity-based Approach 

The static stress ratio can be defined as 

 𝑆𝑆𝑅 =
𝜎𝑥𝑦

𝜎𝑦𝑦
   (5.12) 

For an infinite slope of inclination, 𝛽, the value of 𝑆𝑆𝑅 can be represented as 

 𝑆𝑆𝑅 = tan𝛽   (5.13) 

Therefore, if a slope is composed of three linear ground surface segments as shown in Figure 5.29, 

elements of soil close to the ground surface (elements that are so shallow that the slopes of the 

other segments have no effect) should each have 𝑆𝑆𝑅 values corresponding to their respective 

infinite slope values. In other words, the values of 𝑆𝑆𝑅 at the ground surface can be represented 

as 

 𝑆𝑆𝑅 = {

tan 𝜃1 𝑓𝑜𝑟𝛿 < 0, 𝜂 = 0
tan 𝜃2 𝑓𝑜𝑟0 < 𝛿 < 1, 𝜂 = 0
tan 𝜃3 𝑓𝑜𝑟𝛿 > 1, 𝜂 = 0

   (5.14) 

 

Figure 5.29. Slope geometry composed of three linear ground surface segments controlled by 

angles 𝜽𝟏, 𝜽𝟐, and 𝜽𝟑. 

 

Examining Figure 5.29, it is clear that the 𝑆𝑆𝑅 values will have a transition in the vicinity of 𝛿 =

0 and 𝛿 = 1, and will also vary with 𝜂 as the stresses spread out with depth.  

The 𝑆𝑆𝑅 given in Equation 5.12 illustrates a fundamental problem with an elasticity-based 

analysis approach. As the surface of a slope is approached, the vertical stress is observed to 

decrease faster than the shear stress, thus causing 𝑆𝑆𝑅 to be extremely large at shallow depths. It’s 

𝜃2 

𝜃3 

𝜃1 
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known that for cohesionless soils, 𝑆𝑆𝑅 cannot be greater than tangent of the infinite slope angle, 

which it can be at shallow depths in steep profiles as 𝑆𝑆𝑅 continues to increase as approaching the 

ground surface. Because of this, the Mohr-Coulomb model was used in subsequent PLAXIS 

analyses. 

5.4.5.2 Results – Mohr-Coulomb Constitutive Model 

The analysis for 5-0-5-3 was performed using the Mohr-Coulomb model under drained 

conditions. All soil parameters were the same as for the linear elastic case, but zero cohesion, and 

an effective stress friction angle, 𝜑′, of 33 degrees were used to model the shear strength. For 

quartz sand, the dilatancy angle was taken as 𝜑′ − 30, or 3 degrees. As in the linear elastic 

analyses, default iteration parameters were used. 

Figure 5.30 presents shear stress contours of geometry 5-0-5-3, for a portion of the lateral 

spreading region of interest, near the toe of the slope. These contours show an unusual shear stress 

pattern near the ground surface where values alternate from a small negative shear stress to a small 

positive shear stress. This pattern of shear stress corresponds to a region of the slope where plastic 

points were computed, which indicates that the Mohr-Coulomb failure envelope was reached.  
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Figure 5.30. Shear stress for the 5-0-5-3 model in the lateral spreading region of interest. 

 

When such results are encountered, the PLAXIS material model manual advises that the cohesion 

be increased from zero to a small non-zero value (𝑐 > 0.2 kPa) to avoid complications associated 

with the very low strengths of cohesionless sands (PLAXIS, 2019b) at shallow depths. The 

cohesion value of the sand was increased to values ranging from 0.3 to 25 kPa and the model 

analyzed for each cohesion value. The increased cohesion, however, did not prevent plastic points 

from occurring and shear stress results were similar to those obtained with no cohesion. In fact, a 

cohesion value of 185 kPa was needed to fully prevent plastic points from occurring for model 5-

0-5-3; the fact that such a high cohesion value (nearly two atmospheres) was needed to prevent 

yielding in a very gentle slope indicates that the shallow stresses computed by PLAXIS are not 

reliable.  

 

Figure Error! No text of specified style in document..1. Shear stress for 5-0-5-3 model in 

the region of interest for lateral spreading within slopes. 
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A strong effort was made to inhibit the plastic points from occurring. These efforts include, 

but were not limited to, decreasing the error tolerance, changing the default iteration settings, 

increasing mesh size, incorporating a plastic nil-step, including tension cut-off, excluding tension 

cut-off, changing the dilation angle from three degrees to zero degrees, and using six-noded 

triangular elements instead of 15-noded triangular elements. 

5.4.5.2.1 Level Ground Models 

Because plastic points had developed in the sloping ground models, a level-ground case 

was performed to determine whether plastic points would persist for a model without shear 

stresses. A level ground model with the same overall dimensions as the 5-0-5-3 model was 

developed. A Mohr-Coulomb model was implemented with the same material parameters (𝑐 = 0 

kPa), calculation settings, and iteration settings. Level-ground analyses showed that the shear 

stress was zero and that no plastic points developed. The level-ground stresses from PLAXIS were 

found to agree with those calculated from basic elasticity theory (Table 5.12).  

 𝐾𝑜 =
𝜈

1−𝜈
  (5.15) 

 𝜎𝑦𝑦 = 𝐷𝑒𝑝𝑡ℎ × 𝛾  (5.16) 

 𝜎𝑥𝑥 = 𝜎𝑧𝑧 = 𝜎𝑦𝑦 × 𝐾𝑜  (5.17) 

Although Table 5.12 shows this for a single element (5128) near the ground surface, the stresses 

also agree at larger depths. Based on the results of level ground case, it was determined to track 

the response of the stresses in PLAXIS by analyzing infinite slopes of incrementally greater 

inclination. 
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Table 5.12. Shallow-depth stresses from PLAXIS compared to calculated stresses using depth and 

Equations 5.15-5.17 for a level-ground case for Element 5128. 

 
 

5.4.5.2.2 Infinite Slope Models 

Figure 5.31 shows the geometry of the infinite slope models in PLAXIS, albeit at an 

exaggerated slope angle. Infinite slope angles of 0.5, 1, 2, and 3 degrees were analyzed and the 

resulting stresses checked with a vertical cross-section at 𝛿 = 0. The Mohr-Coulomb constitutive 

model was used with a cohesion of 5 kPa, and a Poisson’s ratio of 0.49 to reduce locked-in stresses 

(i.e. due to the difference between 𝜎𝑥𝑥 and 𝜎𝑦𝑦). Other material and stiffness parameters, along 

with the calculation and iteration settings, were the same as previous analyses. It was expected that 

non-zero shear stresses would start to develop, but the vertical stresses would be similar to those 

for the level-ground case. For brevity, only the results of the 0.5- and 3-degree infinite slope 

models will be presented, although the results were similar between all of the infinite slope 

analyses. 

 

Stress 

point
x (m) y (m)

σxx 

(kPa)

σyy 

(kPa)

σxy 

(kPa)

σxx 

(kPa)

σyy 

(kPa)

σxy 

(kPa)
σxx σyy σxy

61525 -59.149 -0.146 -1.063 -2.480 0.000 -1.063 -2.480 0.000 0% 0% 0%

61526 -57.924 -2.020 -14.719 -34.344 0.000 -14.719 -34.344 0.000 0% 0% 0%

61527 -56.678 -0.146 -1.063 -2.480 0.000 -1.063 -2.480 0.000 0% 0% 0%

61528 -58.300 -0.576 -4.199 -9.798 0.000 -4.199 -9.798 0.000 0% 0% 0%

61529 -57.919 -1.159 -8.446 -19.708 0.000 -8.446 -19.708 0.000 0% 0% 0%

61530 -57.531 -0.576 -4.199 -9.798 0.000 -4.199 -9.798 0.000 0% 0% 0%

61531 -58.806 -0.718 -5.228 -12.198 0.000 -5.228 -12.198 0.000 0% 0% 0%

61532 -58.313 -1.472 -10.721 -25.016 0.000 -10.721 -25.016 0.000 0% 0% 0%

61533 -57.529 -1.472 -10.721 -25.016 0.000 -10.721 -25.016 0.000 0% 0% 0%

61534 -57.028 -0.718 -5.228 -12.198 0.000 -5.228 -12.198 0.000 0% 0% 0%

61535 -57.416 -0.123 -0.895 -2.089 0.000 -0.895 -2.089 0.000 0% 0% 0%

61536 -58.410 -0.123 -0.895 -2.089 0.000 -0.895 -2.089 0.000 0% 0% 0%

Plaxis Output Equations 5.19-5.21 Percent Error
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Figure 5.31. General form of infinite slope geometry modeled in PLAXIS. 

 

Analyses of the 0.5- and 3-degree infinite slope models produced plastic points near the 

ground surface and the non-uniform shear stress distribution previously observed in the analysis 

of profile 5-0-5-3. For example, Figure 5.32 shows the non-uniform shear stress distribution for 

the three-degree infinite slope case. To determine if the shear stresses in this region of interest 

output by PLAXIS were correct, the vertical stress, shear stress, and 𝑆𝑆𝑅 from the PLAXIS results 

are compared to the vertical stress, shear stress, and 𝑆𝑆𝑅 calculated using the equilibrium equations 

for the exact solution of an infinite slope given by Cruikshank (2002).  

 𝜎𝑦𝑦 = 𝛾 ∗ 𝑌 ∗ 𝑐𝑜𝑠(𝛽)  (5.18) 

 𝜎𝑥𝑦 = 𝛾 ∗ 𝑌 ∗ 𝑠𝑖𝑛(𝛽)  (5.19) 

 𝑆𝑆𝑅 =
𝜎𝑥𝑦

𝜎𝑦𝑦
= 𝑡𝑎𝑛(𝛽)  (5.20) 

Figures 5.33-5.35 compare the PLAXIS stress values with those obtained by the infinite slope 

equilibrium equations (ISEE) for 0.5- and 3-degree infinite slope models along vertical cross 

sections at 𝛿 = 0. 
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Figure 5.32. Shear stress distribution for a three-degree infinite slope. 
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Figure 5.33. Comparing PLAXIS and ISEE shear stress versus depth at 𝜹 = 0 for infinite slope 

angles of 0.5- and 3-degrees where (a) shows the entire model and (b) shows the shear stress near the 

ground surface. 

 

(a) 

(b) 
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Figure 5.34. Comparing PLAXIS and ISEE vertical stress versus depth at 𝜹 = 0 for infinite slope 

angles of 0.5- and 3-degrees where (a) shows the entire model and (b) shows the vertical stress near the 

ground surface. 

(a) 

(b) 
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Figure 5.35. Comparing PLAXIS and ISEE 𝑺𝑺𝑹 versus depth at 𝜹 = 0 for infinite slope angles of 

0.5- and 3-degrees. The 3-degree PLAXIS results exclude a very high negative 𝑺𝑺𝑹 value of 17 near 

the ground surface. 

 

 Figures 5.33-5.35 show significant differences in the stresses calculated via PLAXIS and 

those calculated from the ISEE. Figure 5.33 shows that the difference in shear stress begins 

immediately at shallow depths. Figure 5.34, however, shows that the vertical stresses calculated 

by PLAXIS and the ISEE agree for the entire depth of the cross-section at 𝛿 = 0. Figure 5.35, 

therefore, confirms that the stress ratios calculated by PLAXIS and the ISEE do not agree. At the 

ground surface (𝜂 = 0) PLAXIS computes 𝜎𝑦𝑦 = 0.00514 kPa and 𝜎𝑥𝑦 = 0.0873 kPa, which result 

in a stress ratio of approximately 17, which is excluded from Figure 5.35b.  

Because of these results, further comparisons between the PLAXIS results and the ISEE 

were performed at the element level. Four soil elements were chosen from the three-degree infinite 

slope model as shown in Figure 5.36. Figure 5.37 shows typical locations of stress points within 

an element. 
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Figure 5.36. Shear stress distribution for the three-degree infinite slope model with four soil 

element general locations noted. 

 

 

Figure 5.37. Example locations of stress points (squares) within an element. 

 

The ISEE results were calculated using Equations 5.18-5.20 where the “𝑌” value in these equations 

is termed 𝑦𝐵𝐺𝑆, the vertical distance a stress point is below the ground surface. Because the model 

is sloping, 𝑦𝐵𝐺𝑆 is calculated from the 𝑦-coordinate of each stress point output from PLAXIS, 𝑦, 

and the 𝑦-coordinate of the ground surface, 𝑦𝐺𝑆, as follows: 
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 𝑦𝐵𝐺𝑆 = {

𝑦𝐺𝑆 − 𝑦𝑓𝑜𝑟𝑥 > 0𝑎𝑛𝑑𝑦 > 0
𝑦𝐺𝑆 + 𝑦𝑓𝑜𝑟𝑥 > 0𝑎𝑛𝑑𝑦 < 0

𝑦 − 𝑦𝐺𝑆𝑓𝑜𝑟𝑥 < 0
   (5.21) 

where careful attention to the coordinate system is needed to determine whether the value of 𝑦𝐺𝑆 

and 𝑦 are positive or negative. For clarity, the calculation of 𝑦𝐵𝐺𝑆 is shown for an exaggerated 

slope angle in Figure 5.38 

 

Figure 5.38. Illustration defining the variables 𝒚, 𝒚𝑮𝑺, and 𝒚𝑩𝑮𝑺 at different locations beneath an 

infinite slope. 

 

To compare the PLAXIS and ISEE results percent error is used which is given as  

 %𝑒𝑟𝑟𝑜𝑟 =
|𝑃𝑙𝑎𝑥𝑖𝑠𝑣𝑎𝑙𝑢𝑒−𝐼𝑆𝐸𝐸𝑣𝑎𝑙𝑢𝑒|

|𝐼𝑆𝐸𝐸𝑣𝑎𝑙𝑢𝑒|
× 100  (5.22) 

Soil Element 1 

Soil Element 1 is located at the center of the model with coordinates (𝑥, 𝑦) = (0,0). The center of 

the model at the ground surface should be the least influenced region of the model from boundary 

conditions and is one of the two chosen soil elements (out of the four) that did not have any plastic 
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stress points (i.e., all points remained elastic). Table 5.13 shows the PLAXIS and ISEE results for 

Soil Element 1. Examining the percent error in Table 5.13, one can see the 𝜎𝑦𝑦 values are very 

similar between the PLAXIS and ISEE results, however, the 𝜎𝑥𝑦 and 𝑆𝑆𝑅 values are significantly 

different with error values ranging from about 65% to 137%. Figure 5.39 shows the shear stress 

contours for Soil Element 1. Detailed analysis of Soil Elements 2-4 is included in Appendix C and 

is excluded here for brevity, however, the results of all four elements will be discussed. 

Table 5.13. Comparison of PLAXIS and ISEE stresses for Soil Element 1 of the three-degree 

infinite slope. 

 
 

 

Stress point  x (m) y (m) yGS (m)
yBGS 

(m)
σyy (kPa)

σxy 

(kPa)
SSR σyy (kPa) σxy (kPa) SSR σyy σxy SSR

3805 0.141 -2.420 0.007 -2.427 -41.244 -0.750 0.018 -41.207 -2.160 0.052 0.088% 65.275% 65.306%

3806 1.189 -0.113 0.062 -0.175 -2.972 0.058 -0.019 -2.975 -0.156 0.052 0.120% 137.014% 137.058%

3807 -1.169 -0.237 -0.061 -0.175 -2.975 -0.005 0.002 -2.975 -0.156 0.052 0.012% 97.094% 97.094%

3808 0.081 -1.389 0.004 -1.393 -23.664 -0.394 0.017 -23.646 -1.239 0.052 0.075% 68.208% 68.232%

3809 0.407 -0.671 0.021 -0.692 -11.761 -0.143 0.012 -11.756 -0.616 0.052 0.048% 76.809% 76.820%

3810 -0.326 -0.710 -0.017 -0.692 -11.762 -0.162 0.014 -11.756 -0.616 0.052 0.055% 73.780% 73.795%

3811 0.477 -1.743 0.025 -1.768 -30.040 -0.514 0.017 -30.016 -1.573 0.052 0.080% 67.294% 67.320%

3812 0.898 -0.815 0.047 -0.862 -14.643 -0.190 0.013 -14.635 -0.767 0.052 0.053% 75.283% 75.297%

3813 0.483 -0.122 0.025 -0.148 -2.503 0.049 -0.019 -2.506 -0.131 0.052 0.121% 137.144% 137.189%

3814 -0.466 -0.172 -0.024 -0.148 -2.504 0.024 -0.009 -2.506 -0.131 0.052 0.069% 118.035% 118.047%

3815 -0.798 -0.904 -0.042 -0.862 -14.645 -0.232 0.016 -14.635 -0.767 0.052 0.067% 69.723% 69.744%

3816 -0.271 -1.782 -0.014 -1.768 -30.040 -0.532 0.018 -30.016 -1.573 0.052 0.082% 66.174% 66.201%

Percent ErrorLocation Information PLAXIS Output ISEE
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Figure 5.39. Shear stress distribution for the three-degree infinite slope model in the region of Soil 

Element 1. 

Discussion 

 The difference in PLAXIS and the ISEE infinite slope stress results appear to indicate the 

stresses calculated in PLAXIS for the infinite slope model are being impacted by the boundary 

conditions although the models extend 1500 meters in each lateral direction and are 1250 meters 

in depth from the toe. Analysis of the infinite slope Soil Elements 1-4 shows that areas where 

plastic points occur (Soil Elements 2 and 3) had larger percent error values for shear stress and 

𝑆𝑆𝑅 than where the behavior was elastic (Soil Elements 1 and 4), although, even where elastic, 

percent error for shear stress and 𝑆𝑆𝑅 were at least 60%. The PLAXIS vertical stress values near 

the center of the model (Soil Elements 1 and 4) were negligibly influenced from the boundary 

conditions based on the percent error values typically being 0.1% between PLAXIS and ISEE 

values. Soil Elements 1 and 4 were at the ground surface and a depth of approximately 22 meters, 

14 m 

x = -22 m 
x = 23 m 
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respectively, indicating vertical stress is negligibly influenced at typical lateral spreading depths 

at the center of the infinite slope model. The vertical stress for Soil Elements 2 and 3 were 

influenced by the boundary conditions with percent error values between the PLAXIS and ISEE 

results ranging from approximately 1-6% for Soil Element 2, and 6-57% for Soil Element 3. 

 A similar set of analyses were performed by Mr. Long Chen in OpenSees for a three-degree 

infinite slope model with the same geometry, boundary conditions, material parameters, and 

stiffness parameters. The OpenSees stress results were similar to the PLAXIS stress results. 

Therefore, OpenSees results also did not match the stress values obtained by the ISEE equations 

when modeled that same way as discussed in PLAXIS because of the boundary conditions. 

However, when simulating a 3-degree infinite slope model in OpenSees by using a level-ground 

model with gravity applied at an angle of three degrees from the vertical and the boundary 

conditions shown in Figure 5.40, results matching the ISEE were able to be obtained. Therefore, 

this suggests that the boundary conditions are the problem with the PLAXIS analyses. The 

introductory version of PLAXIS does not allow for changing the inclination of gravity from the 

vertical, therefore, a “simulated” 3-degree infinite slope model was not able to be performed. 

 

Figure 5.40. Simulated 3-degree infinite slope model used in OpenSees with gravity applied three 

degrees from vertical. 
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5.4.5.2.3 𝑺𝑺𝑹 Behavior at Shallow Depths 

It was previously discussed that a high cohesion value (nearly two atmospheres) was 

needed to prevent yielding in geometry 5-0-5-3. The fact that yielding occurred pervasively in 

gentle slopes for which shear stresses should have been well below strengths indicates that the 

shallow stresses computed by PLAXIS are not reliable. To obtain a better idea of how stresses at 

shallow depths are behaving,  𝑆𝑆𝑅 was plotted with respect to 𝛿 for 𝜂 values ranging from 0 to 3 

for geometries 5-0-5-3, 5-0-5-0, and 5-0-25-0. Based on the 𝛿-𝜂 coordinate system (see Section 

5.4.2) 𝜂 values ranging from 0 to 3 correspond to depths of zero to 15 meters for geometries with 

an 𝐻 = 5 meters. Figure 5.41(a) shows unstable complex variations of 𝑆𝑆𝑅 from 0 < 𝜂 < 0.51 and 

Figure 5.41(b) shows reasonable, smooth behavioral trends of 𝑆𝑆𝑅 when 𝜂 > 0.51 for geometry 5-

0-5-3. Figure 5.42(a) shows unstable rapid variations of 𝑆𝑆𝑅 from 0 < 𝜂 < 0.51 and Figure 5.42(b) 

shows reasonable, smooth behavioral trends of 𝑆𝑆𝑅 when 𝜂 > 0.51 for geometry 5-0-5-0. The 

results of 5-0-25-0 were similar to that of 5-0-5-0 as illustrated in Figure 5.43.  
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Figure 5.41. Geometry 5-0-5-3 unstable 𝑺𝑺𝑹 behavior at shallow depths where (a) is equivalent to 

depths from 0-1 meter and (b) is equivalent to depths of 0-15 meters. 

 

(a) 

(b) 
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Figure 5.42. Geometry 5-0-5-0 unstable 𝑺𝑺𝑹 behavior at shallow depths where (a) is equivalent to 

depths from 0-1 meter and (b) is equivalent to depths of 0-15 meters. 

 

(a) 

(b) 
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Figure 5.43. Geometry 5-0-25-0 unstable 𝑺𝑺𝑹 behavior at shallow depths where (a) is equivalent to 

depths from 0-1 meter and (b) is equivalent to depths of 0-15 meters. 

 

 

(a) 

(b) 
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Discussion 

Based on Figures 5.41-5.43 the 𝑆𝑆𝑅 values for 𝜂 < 0.51 are variable, and the behavior is 

complex. The 𝑆𝑆𝑅 behavior between 𝜂 = 0.51 to 𝜂 = 3 is simple, and shows reasonable trends, 

even if the actual values don’t agree well with the theoretical solutions. Because 𝜂 = 0.51 to 𝜂 = 3 

represent an important lateral spreading area of interest, developing a function that could predict 

the static stresses within lateral spreading slopes via the 𝑆𝑆𝑅 became an achievable task. 

5.4.5.2.4 Results of Parametric Analyses 

The preceding analyses have shown that there were some significant practical difficulties 

with the PLAXIS results. These included: (a) apparent unstable behavior at shallow depths, as 

illustrated in Figures 5.41-5.43, (b) an inability to produce shear stresses that agree with theoretical 

solutions based on simple limit equilibrium concepts, and (c) apparent effects of boundary 

conditions despite the very large domain being modeled. 

After extensive and time-consuming attempts to understand and correct the deficiencies in 

the PLAXIS results, the decision was made to shift the focus of the work to developing procedures 

for fitting a stress function to the reasonable portion of the PLAXIS results, i.e., the stress at 𝜂 > 

0.51 which, although likely inaccurate, vary in a manner likely to be similar to that anticipated for 

more accurate analyses. These procedures would then be applied to more accurate finite element 

analyses performed by a subsequent researcher. 

The following pages present typical 𝑆𝑆𝑅 behavior produced by PLAXIS. These results 

illustrate the effects of slope height, 𝐻, central slope angle, 𝜃2, and upper slope angle, 𝜃3, on the 

vertical and horizontal variation of 𝑆𝑆𝑅. The term peak amplitude (Figure 5.44) will be frequently 

used when describing these results. 
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Figure 5.44. Illustration of the term peak amplitude. 

Effects of Slope Height on 𝑺𝑺𝑹 

The 𝑆𝑆𝑅 represents the shear stress normalized by the vertical stress. One should expect 

the variation of 𝑆𝑆𝑅 vertically and horizontally to be the same for slope geometries that have the 

same 𝜃1, 𝜃2, and 𝜃3, but differing 𝐻 values if the behavior of the stresses are linear elastic. To 

illustrate the effects of 𝐻 on the 𝑆𝑆𝑅, geometries 1-0-5-0, 5-0-5-0, 1-0-25-0, and 5-0-25-0 are 

given in Figure 5.45. These figures indicate: 

(1) There is no effect of 𝐻 on the 𝑆𝑆𝑅 since the material is behaving linear elastically, 

(2) The peak amplitude of 𝑆𝑆𝑅 is largest at smaller values of 𝜂, 

(3) 𝑆𝑆𝑅 widens laterally with increasing 𝜂, 

(4) 𝑆𝑆𝑅 increases vertically with increasing 𝜃2. 

Because there is no effect of 𝐻 on the 𝑆𝑆𝑅 only the 𝐻 = 5 meters geometries will be shown in the 

remainder of this thesis.
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Figure 5.45. Geometries (a) 1-0-5-0, (b) 5-0-5-0, (c) 1-0-25-0, and (d) 5-0-25-0 illustrating that changing the slope height for a given 𝜽𝟏, 

𝜽𝟐, and 𝜽𝟑 does not change the 𝑺𝑺𝑹. 

(a) (b) 

(c) (d) 
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Effects of central slope angle, 𝜽𝟐, on 𝑺𝑺𝑹 

 To visualize the effects of 𝜃2 on the 𝑆𝑆𝑅, geometries with different 𝜃2 values, but identical 

𝜃1 and 𝜃3 values, were compared. Figure 5.46 shows the 5-0-𝑋-0 (where 𝑋 = 5, 10, 15, 20, and 

25) geometries at 𝜂 = 0.51 and 𝜂 = 2.01 to cover a range of depths. These plots indicate: 

(1) 𝑆𝑆𝑅 increases with increasing 𝜃2, 

(2) 𝑆𝑆𝑅 widens laterally with increasing 𝜂, 

(3) The peak amplitude of 𝑆𝑆𝑅 is largest at smaller values of 𝜂, 

Further interpretation of Figure 5.46 indicates that 𝜃2 may vary as a power function with respect 

to 𝑆𝑆𝑅 based on the distance between successive 𝜃2 values. 
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Figure 5.46. Geometry 5-0-X-0 illustrating the effects of changing 𝜽𝟐 on the 𝑺𝑺𝑹 for a given 𝜽𝟏 

and 𝜽𝟑 for (a) 𝜼 = 0.51 and (b) 𝜼 = 2.01. 

(a) 

(b) 
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 Effects of upper slope angle, 𝜽𝟑, on 𝑺𝑺𝑹 

To determine the effect of 𝜃3 on the 𝑆𝑆𝑅, geometries with varying 𝜃3 values, but identical 

𝜃1 and 𝜃2 values, were compared. Figure 5.47 shows the 5-0-15-𝑌 (where 𝑌 = 0, 1, 3, and 5) 

geometries at 𝜂 = 0.51 and 𝜂 = 2.01 to cover a range of depths. These plots indicate: 

(1) The amplitude of 𝑆𝑆𝑅 appears to drop quickly as soon as 𝜃3 > 0 between 0 < 𝛿 < 1 

(2) 𝑆𝑆𝑅 is nearly constant in the lower and central slope regions for 𝜃3 > 0,  

(3) 𝑆𝑆𝑅 increases in a linear fashion with increasing 𝜃3 in the upper region of the slope, 

(4) The addition of a 𝜃3 > 0 value causes the 𝑆𝑆𝑅 to decrease beneath the central slope region, 

(5) 𝑆𝑆𝑅 widens laterally with increasing 𝜂. 
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Figure 5.47. Geometry 5-0-15-𝒀 illustrating the effects of changing 𝜽𝟑 on the 𝑺𝑺𝑹 for a given 𝜽𝟏 

and 𝜽𝟐 for (a) 𝜼 = 0.51 and (b) 𝜼 = 2.01.  

(a) 

(b) 
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5.4.6 Mapping Stresses to Regular Grid 

There are aspects of the PLAXIS response that could not be captured (infinite slope cases 

and shear stress at shallow depths), however, the model is considered to have captured the most 

important trends in the stresses within deeper parts of a slope. The results of the analyses were 

therefore processed in a manner that would expedite development of a predictive relationship for 

𝑆𝑆𝑅. Because PLAXIS uses triangular elements that can be oriented irregularly for different slope 

geometries, it was considered advisable to improve consistency of the computed stresses across 

different geometries by mapping the computed stresses for each geometry to a consistent and 

regular grid in 𝛿-𝜂 space. Figure 5.48 illustrates the grid, which is refined in the area of greatest 

interest. 

 

Figure 5.48. Grid used for mapping stresses with higher refinement in the area of greatest interest 

(area under/near the central slope segment). 

 

Because the values of 𝛿 and 𝜂 at PLAXIS stress points did not coincide with regular grid 

points, stress values at the grid points had to be interpolated. The mapping procedure was based 
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on inverse distance weighting (IDW), which assigns weighting factors inversely proportional to 

their distances from PLAXIS stress points. Therefore, the stress at each grid point had 

contributions from all PLAXIS stress points. However, only the PLAXIS stress points close to 

each grid point have a significant impact on the target stress value, 𝜎𝑡𝑎𝑟𝑔𝑒𝑡, so PLAXIS stress 

points beyond a radius of two meters were not used in the interpolation process. Equation 5.23 

shows the IDW factors used to calculate the 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 values 

 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 =
∑ (

𝜎𝑖
𝐷𝑖

𝑝)
𝑛
𝑖=1

∑ (
1

𝐷𝑖
𝑝)

𝑛
𝑖=1

   (5.23) 

where 𝜎𝑖 is the stress ratio at a PLAXIS stress point, 𝐷𝑖 is the distance from 𝜎𝑖, and 𝑝 is a power 

that dictates the rate of decay of the weighting factor with distance. A higher value of 𝑝 will cause 

a higher rate of decay with distance.  

In order to accomplish these tasks, the PLAXIS stress data including 𝑥 and 𝑦 coordinate 

locations of stress points, vertical stress, horizontal stress, shear stress, and geometry identification 

number were extracted to Microsoft Excel and Matlab Code “load data” (see Appendix D) 

executed to create a .mat file. The .mat file was then read into Code “Coordinate Transformation” 

(Appendix D) to transform the PLAXIS 𝑥-𝑦 coordinates into the 𝛿-𝜂 dimensionless coordinate 

system. Code “Mapping Stresses to Regular Grid” (Appendix D) was then executed to map the 

stresses from the irregularly distributed PLAXIS stress points to the uniform grid and then refine 

this grid to provide higher resolution of stresses in areas where they changed more quickly. 
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5.4.7 Development of Stress Function 

The results of the non-linear analyses presented in Figures 5.45-5.47 indicated a generally 

regular variation of 𝑆𝑆𝑅 within and beneath the simple slopes considered in this research. 

Examination of the results of the PLAXIS analyses showed that the distributions of 𝑆𝑆𝑅 exhibited 

the following characteristics: 

(1) 𝑆𝑆𝑅 values were constant beneath the outer portions of the left and right slope segments. 

The values were zero when those slopes were level and increased with increasing slope 

angle when they were not. 

(2) 𝑆𝑆𝑅 values increased with increasing central slope angle when it was steeper than the left 

or right slopes. 

(3) 𝑆𝑆𝑅 values decreased with increasing depth beneath the central slope segment. 

(4) The distribution of 𝑆𝑆𝑅 at a particular depth became wider with increasing depth. 

(5) The distribution of 𝑆𝑆𝑅 at a particular depth was able to be relatively symmetric or 

asymmetric. 

(6) 𝑆𝑆𝑅 was nearly constant beneath the left and central slope segments for 𝜃3 > 0. 

(7) 𝑆𝑆𝑅 values increased in a linear fashion with increasing 𝜃3 beneath the right slope segment. 

(8) 𝑆𝑆𝑅 values beneath the central slope decreased with increasing 𝜃3. 

These characteristics required identification of a stress function that had the capability of 

representing this type of behavior. After consideration of a number of possible functions, a two-

part function was established. One part took the form of a sigmoidal function that could transition 

smoothly from one constant value to another; this function, henceforth termed the filter function, 

was used to model the generally constant 𝑆𝑆𝑅 values beneath the left and right slopes. The second 
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part took the form of a four-parameter beta distribution function, which gives the ability to control 

its amplitude, width, and symmetry. 

The four-parameter beta distribution consists of two shape parameters, 𝛼 and 𝛽, and the 

minimum and maximum bound parameters, 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥, which represent the lateral extent of 

the distribution. The beta distribution is undefined beyond its bounding values. The general form 

of the four-parameter beta distribution can be expressed as 

 𝐵𝐷 = [(𝛿 − 𝛿𝑚𝑖𝑛)
(𝛼−1)(𝛿𝑚𝑎𝑥 − 𝛿)(𝛽−1)]  (5.24) 

In order to validate the four-parameter beta distribution function used to represent the 𝑆𝑆𝑅, the 

predicted values it outputs will be compared to the PLAXIS 𝑆𝑆𝑅 data. From this point on, the four-

parameter beta distribution will be termed 𝐵𝐷. 

The 𝐵𝐷 consists of four shape-related parameters and its amplitude. Understanding how 

the parameters of the 𝐵𝐷 interact with each other is key in developing a stress function that can 

match the PLAXIS 𝑆𝑆𝑅 data. Figure 5.49 shows the predicted 𝐵𝐷 compared to the PLAXIS 𝑆𝑆𝑅 

for geometry 5-0-10-0 and illustrates how each parameter influences the shape of the predicted 

𝑆𝑆𝑅 function. The shape of the predicted 𝑆𝑆𝑅 function changes from Figure 5.49(a) to Figure 

5.49(f) by changing one parameter at a time (the other parameters stay constant) while the PLAXIS 

𝑆𝑆𝑅 data does not change. Key observations from Figure 5.49 include: 

(1) Decreasing 𝛿𝑚𝑖𝑛 shifts the predicted function to the left and widens the distribution (Figure 

5.49b). 

(2) Increasing 𝛿𝑚𝑎𝑥 shifts the predicted function to the right and widens the distribution 

(Figure 5.49c). 

(3) When the ratio 𝛽/𝛼  > 1, the predicted function shifts to the left (Figure 5.49e). 

(4) When the ratio 𝛽/𝛼  < 1, the predicted function shifts to the right (Figure 5.49f). 
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(5) When 𝛼 ≠ 𝛽 the predicted function becomes asymmetric (Figures 5.49(e) and 5.49(f)). 

(6) The 𝛿 value where the predicted 𝑆𝑆𝑅 returns to nearly zero is affected by 𝛼 and 𝛽 as well 

as 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥.
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Figure 5.49. Influence of 𝑩𝑫 parameters on the shape of the predicted SSR function: (a) control figure, (b) effect of reduced 𝜹𝒎𝒊𝒏, (c) 

effect of increased 𝜹𝒎𝒂𝒙, (d) effect of reduced amplitude, (e) effect of reduced 𝜶, and (f) effect of reduced 𝜷. 

 

(a) (b) (c) 

(d) (e) (f) 
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The filter function (𝐹𝐹) is represented by four parameters, 𝑐1-𝑐4, that define two plateaus 

and the transition between them. The 𝑐1 parameter defines the center of the transition zone, 𝑐2 

controls the steepness of the transition, 𝑐3 defines the left plateau, and 𝑐4 defines the right plateau. 

 𝐹𝐹 = 𝑐3 +
(𝑐4−𝑐3)

(1+(
𝑐1
𝛿
)
𝑐2
)
  (5.25) 

The left plateau depends on the left slope segment value of 𝜃1, which is taken to be zero 

for all geometries considered in this research, therefore, 𝑐3 is always 0. The right plateau depends 

on the right slope segment value of 𝜃3. 𝑐1 parameter needs to ensure that the center of the 𝐹𝐹 is 

near the center of the 𝐵𝐷, and 𝑐2 needs to make the 𝐹𝐹 smoothly transition from the left to right 

plateau generally within the central slope segment.  

5.4.8 Calibration of Stress Function 

The variation of 𝑆𝑆𝑅 on a plane of constant 𝜂 beneath the central slope segment (e.g., 

Figures 5.45-5.47) takes the general form of a probability density function (PDF) of 𝛿. If 

interpreted in that manner, the position and breadth of the 𝛿 distribution can be characterized by 

its mean and standard deviation. If the 𝑆𝑆𝑅 curves are considered to be approximated by a beta 

distribution function, the moments of the distribution will be related to the parameters, 𝛼, 𝛽, 𝛿𝑚𝑖𝑛, 

and 𝛿𝑚𝑎𝑥from Equation 5.24. Specifically,  

 𝜇𝛿 = 𝛿𝑚𝑖𝑛 +
𝛼−1

𝛼+𝛽−2
(𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)  (5.26) 

 𝜎𝛿
2 =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
(𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)

2  (5.27) 

These equations can be used to solve for 𝛼 and 𝛽, i.e.,  

 𝛼 =
(

𝜇𝛿−𝛿𝑚𝑖𝑛
𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛

)
2

×(1−
𝜇𝛿−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
)

𝜎𝛿
2

(𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛)
2

−
𝜇𝛿−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
  (5.28) 
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 𝛽 =
(

𝜇𝛿−𝛿𝑚𝑖𝑛
𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛

)×(1−
𝜇𝛿−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
)

𝜎𝛿
2

(𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛)
2

− 𝛼  (5.29) 

Equations 5.28 and 5.29 give shape parameters that are consistent with the moments and the 

bounds of the PLAXIS 𝑆𝑆𝑅 distribution. 

The mean 𝛿-value typically occurs beneath the central slope segment i.e., with a 𝛿 values 

between 0 and 1. The distribution of 𝛿, however, can be quite broad. For example, the mean stress 

ratio may be at 𝛿 = 0.5 with a standard deviation of 0.35 which would give a coefficient of variation 

of 70%. High coefficients of variation were found to cause problems when the 𝐵𝐷 was used to fit 

an array of lateral spreading geometries and depths. To correct this, the 𝛿 scale was shifted upward 

by a constant (a value of 2 was found to be sufficient) for all 𝛿 values. The shift would increase 

the mean, but not affect the standard deviation; the coefficient of variation for the previous case 

would drop from 70% to 14%, which is in a reasonable range for a 𝐵𝐷 to be used. For this reason, 

all of the 𝛿 values (i.e., 𝛿 values at grid locations) were shifted by 2.0 for all geometries. The shift 

in 𝛿 by a value of 2.0 will be termed 𝛿𝐺𝑙𝑜𝑏𝑎𝑙. For example, the central slope segment, prior to a 

shift of 𝛿𝐺𝑙𝑜𝑏𝑎𝑙, ranges from 0 < 𝛿 < 1. After the shift of 𝛿𝐺𝑙𝑜𝑏𝑎𝑙 the central slope segment now 

ranges from 2 < 𝛿 < 3. 

5.4.8.1 Statistical Moments of a PDF 

A PDF can be defined in terms of its statistical moments – a specific quantitative measure 

of the shape of the function. The first three statistical moments are the mean, variance, and 

skewness. The first moment, the mean, describes the central location of the data and can be 

expressed as 

 𝑀𝑒𝑎𝑛 = 𝜇𝛿 = ∑ [𝛿𝑗 × 𝑃𝐷𝐹𝑆𝑆𝑅(𝛿𝑗)]𝑎𝑙𝑙𝑗   (5.30) 
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where 𝑆𝑆𝑅 is the static stress ratio of the PLAXIS data, 𝜇𝛿 is the central location (mean) of 𝛿, 𝛿𝑗 

is the 𝛿 increment, and 𝑃𝐷𝐹𝑆𝑆𝑅 is the PDF of the 𝑆𝑆𝑅. The shifted 𝛿 value range that the mean is 

evaluated over is wide enough to encompass when the 𝑆𝑆𝑅 returns to a constant value beneath the 

lower and upper slope segments for the desired 𝜂 range of 0.5 to 3.0.  

 The second moment, i.e., the variance, represents the spread of the data and can be 

expressed as 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎𝛿
2 = ∑ [(𝛿𝑗 − 𝜇𝛿)

2
× 𝑃𝐷𝐹𝑆𝑆𝑅(𝛿𝑗)]𝑎𝑙𝑙𝑗   (5.31) 

where 𝜎𝛿
2 is the variance of 𝛿. The third statistical moment, the skewness, measures the 

asymmetry of the PDF about its peak and can be expressed as  

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = ∑ [(𝛿𝑗 − 𝜇𝛿)
3
× 𝑃𝐷𝐹𝑆𝑆𝑅(𝛿𝑗)]𝑎𝑙𝑙𝑗   (5.32) 

The statistical moments of a PDF can be used to obtain 𝛼 and 𝛽 (without having to solve 

nonlinear equations) of the 𝐵𝐷 if 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 of the PDF are known. The 𝛼 and 𝛽 shape 

parameters are calculated from the 𝜇𝛿, 𝜎𝛿
2, 𝛿𝑚𝑖𝑛, and 𝛿𝑚𝑎𝑥 using Equations 5.28 and 5.29, 

respectively. Therefore, because the 𝑆𝑆𝑅 at each 𝜂 value takes the general form of a PDF, and the 

PDF can be used to determine 𝛼 and 𝛽 from its statistical moments if 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are known at 

every 𝜂, then the predicted 𝐵𝐷 can be calculated at each 𝜂 if 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are known at every 𝜂. 

This procedure helps define the values of 𝛼 and 𝛽 as functions of 𝜂 for each case, and can be used 

as good initial parameter estimates for optimization analyses.  

5.4.8.2 Estimating 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 

To calculate 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥, the PDF of 𝑆𝑆𝑅 is integrated to produce an analog to a 

cumulative distribution function (CDF) at each 𝜂. The 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are estimated at each 𝜂 as 

the 𝛿 values that correspond to CDF values of 0.01 and 0.99. Figure 5.50 shows the estimated 
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values of 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 at CDF values of 0.01 and 0.99, respectively, for geometry 5-0-10-0 at 𝜂 

= 1.5. PDF and CDF plots like those shown in Figure 5.50 were calculated at all 𝜂 values in the 

range of interest (0.51 < 𝜂 < 3.0). Plotting these estimated 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 values with respect to 𝜂 

for geometry 5-0-10-0 is shown in Figure 5.51. 

 

Figure 5.50. CDF and PDF of the PLAXIS stress ratio distribution at 𝜼 = 1.5 for geometry 5-0-10-

0.  

 

𝛿𝑚𝑖𝑛 

𝛿𝑚𝑎𝑥 
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Figure 5.51. 𝑩𝑫 parameters (a) 𝜹𝒎𝒊𝒏 and (b) 𝜹𝒎𝒂𝒙 as a linear function of 𝜼 for geometry 5-0-10-0.  

5.4.8.3 Calculation of the Predicted SSR With Respect to 𝜂 for a Single Geometry 

The 𝛼 and 𝛽 shape parameters are calculated from the aforementioned 𝜇𝛿, 𝜎2𝛿,  𝛿𝑚𝑖𝑛, and 

𝛿𝑚𝑎𝑥 using Equations 5.28 and 5.29, respectively. The 𝐵𝐷 is calculated by inputting these 𝛼 and 

𝛽 values, along with the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 found from the CDF, using Equation 5.24. The predicted 

𝐵𝐷 can be compared to the PLAXIS data to see how well the predicted function matches it. This 

requires the PLAXIS 𝑆𝑆𝑅 data to be normalized by the peak amplitude at each 𝜂 value to be 

comparable to the predicted function given by Equation 5.24. Figure 5.52 shows the comparison 

between the predicted 𝐵𝐷 and the PLAXIS 𝑆𝑆𝑅 data at 𝜂 values of 1, 1.5, and 2 for geometry 5-0-

10-0. The poor fit of the predicted function shown in Figure 5.52 is due to the 𝐵𝐷 calculating 

complex values from 𝛿 = 3.35 to 𝛿 = 3.7. The complex values occur when the 𝛼 and/or 𝛽 

parameters have a value less than one. 

(a) (b) 
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Figure 5.52. Comparison between the predicted 𝑩𝑫 and the PLAXIS 𝑺𝑺𝑹 data at 𝜼 values of 1.0, 

1.5, and 2.0 for geometry 5-0-10-0. 

 

It was determined that additional shifts of the minimum and maximum 𝛿 values could be applied 

to the CDF estimated 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 values to push the bounds outward to obtain a better match 

between the predicted 𝑆𝑆𝑅 and the PLAXIS 𝑆𝑆𝑅. The additional shifts, 𝛿min_𝑠ℎ𝑖𝑓𝑡 and 𝛿max_𝑠ℎ𝑖𝑓𝑡, 

were added to 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 causing the 𝛼 and 𝛽 shape parameters to change in order to obtain 

the better fit. Figure 5.53 shows the benefit of the modification for the 5-0-10-0 geometry. 

𝜼 = 1.0 

𝜼 = 1.5 

𝜼 = 2.0 
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Figure 5.53. Comparison between the predicted 𝑩𝑫 and the PLAXIS 𝑺𝑺𝑹 data at 𝜼 values of 1.0, 

1.5, and 2.0 for geometry 5-0-10-0 with 𝜹𝒎𝒊𝒏_𝒔𝒉𝒊𝒇𝒕 and 𝜹𝒎𝒂𝒙_𝒔𝒉𝒊𝒇𝒕 included. 

 

It should be noted there are several more PLAXIS 𝑆𝑆𝑅 points plotted in Figure 5.53 than 

the 𝛿 range of -6 to 10 in Equations 5.30-5.32 appear to indicate. This is because: (a) the stress 

points in mesh zone 1 are spaced approximately one meter apart which corresponds to about 28 

stress points (for geometry 5-0-10-0) for every one 𝛿 moved laterally and (b) these stress points 

are interpolated to a regular grid and then mapped to a grid of variable size that is refined in the 

region of the central slope segment, 1 < 𝛿 < 4. Figure 5.48 in Section 5.4.6 shows the grid of 

variable size prior to 𝛿𝐺𝑙𝑜𝑏𝑎𝑙 shift. 

The values for 𝛿min_𝑠ℎ𝑖𝑓𝑡 and 𝛿max_𝑠ℎ𝑖𝑓𝑡 were found by trial and error for each of the five 

5-0-𝑋-0 geometries. The best match, and therefore the best combination of 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥, 𝛼, and 𝛽 

𝜼 = 1.0 

𝜼 = 1.5 

𝜼 = 2.0 
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parameters, was evaluated by a number of factors including plotting and visually inspecting the 

difference between the PLAXIS 𝑆𝑆𝑅 and the predicted 𝑆𝑆𝑅, and by calculating the coefficient of 

determination, sum of squared errors, normalized error, and absolute error. It was found that 

𝛿min_𝑠ℎ𝑖𝑓𝑡 and 𝛿max_𝑠ℎ𝑖𝑓𝑡 generally provided a better fit to PLAXIS 𝑆𝑆𝑅 data as constant values 

for geometries with lower 𝜃2 values and a better fit to PLAXIS 𝑆𝑆𝑅 data as values varying with 𝜂 

for geometries with higher 𝜃2 values. A more in-depth look at the process of obtaining 𝛼 and 𝛽 

from the moments of the stress ratio distribution can be referenced in Code “Moments”. 

5.4.8.4 Calculation of 𝛼 and 𝛽 at All 𝜂 Values for a Single Geometry 

After matching the predicted 𝐵𝐷 to the PLAXIS data, the 𝛼 and 𝛽 values calculated at every 

depth were plotted in order to develop simple expressions for 𝛼 and 𝛽 as functions of 𝜂. For 

example, Figure 5.54 shows 𝛼 and 𝛽 approximated as exponential functions of 𝜂 for geometry 5-

0-10-0. The decreasing values of both 𝛼 and 𝛽 with increasing 𝜂 reflect the broadening and 

flattening of the 𝑆𝑆𝑅 distribution with increasing depth below the ground surface. 

 

 

 

 

 

 

 

Figure 5.54. Shape parameters (a) 𝜶 and (b) 𝜷 as an exponential function of 𝜼 for geometry 5-0-

10-0.  

(a) (b) 
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5.4.8.5 Calculation of Peak Amplitude at all 𝜂 Values for a Single Geometry 

The peak amplitude of the predicted 𝐵𝐷 is the maximum absolute value of the PLAXIS 

𝑆𝑆𝑅 distribution at each 𝜂 value. Figure 5.55 shows peak amplitude modeled as a power function 

of 𝜂 for geometry 5-0-10-0. 

 

Figure 5.55. Peak amplitude of 𝑩𝑫 as a power function with respect to 𝜼 for geometry 5-0-10-0. 

 

5.4.8.6 Optimization of Minimum and Maximum Bounds 

Using the expressions shown in Figures 5.51, 5.54, and 5.55, the 𝐵𝐷 prediction function 

was calculated and compared to the PLAXIS 𝑆𝑆𝑅 data for geometry 5-0-10-0 as shown in Figure 

5.56. Figure 5.56 shows the fit obtained when using the estimated 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 from Figure 

5.51. Because the alpha and beta were found from additional shifts of the minimum and maximum 

𝛿 values, it makes sense why the match in Figure 5.56 is unsatisfactory. 
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Figure 5.56. Predicted stress ratio function based on estimated minimum and maximum bounds compared to PLAXIS stress ratio for 

geometry 5-0-10-0. 
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To correct the estimated values of 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥, and to obtain a better predicted 𝑆𝑆𝑅 fit 

to the PLAXIS data, the coefficients for 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 in Figure 5.51 were optimized using Codes 

“Optimization Function” and “Optimizing Coefficients”, and then plotted using “Optimization 

Plotting” (Appendix D). Optimization was performed using the Matlab command, fminsearch, 

which finds the minimum value of an error function. For this research, the error function described 

the difference between the 𝑆𝑆𝑅 predicted from the 𝐵𝐷 and the PLAXIS 𝑆𝑆𝑅 data. In this initial 

phase, expressions for the 𝛼 and 𝛽 shape parameters and the amplitude of the predicted 𝐵𝐷 were 

locked and only the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 bound values were optimized. Two formulations of the error 

function guiding fminsearch were investigated: the sum of squared errors (𝑆𝑆𝐸) and normalized 

error as shown in the Equations 5.33 and 5.34. 

 𝑆𝑆𝐸 = ∑ ∑ [𝑆𝑆𝑅(𝜂, 𝛿)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑆𝑆𝑅(𝜂, 𝛿)𝑃𝐿𝐴𝑋𝐼𝑆]
2𝛿=10

𝛿=−6
𝜂=3
𝜂=0.5   (5.33) 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑟𝑟𝑜𝑟 = ∑ ∑ [
𝑆𝑆𝑅(𝜂,𝛿)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑆𝑆𝑅(𝜂,𝛿)𝑃𝐿𝐴𝑋𝐼𝑆

𝑆𝑆𝑅(𝜂,𝛿)𝑃𝐿𝐴𝑋𝐼𝑆
]
2

𝛿=10
𝛿=−6

𝜂=3
𝜂=0.5   (5.34) 

The ranges of 0.5 < 𝜂 < 3 and -6 < 𝛿 < 10 in these error functions are based on the vicinity of the 

slope that would typically be most important for lateral spreading. 

 For optimization of a single geometry, the normalized error was found to provide a better 

match between the predicted 𝑆𝑆𝑅 and the PLAXIS data. Optimization of 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 for 

geometry 5-0-10-0 was performed and Figure 5.57 was obtained.  
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Figure 5.57. Predicted stress ratio function based on optimized minimum and maximum bounds compared to PLAXIS stress ratio for 

geometry 5-0-10-0. 
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Figure 5.58. Predicted stress ratio function based on optimized minimum and maximum bounds compared to PLAXIS stress ratio for 

geometry 5-0-5-0, 5-0-15-0, and 5-0-25-0 at 𝜼 = 0.51 and 𝜼 = 3.0. 
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Following the same process described for geometry 5-0-10-0 for determining 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥, 𝛼, 𝛽, 

and peak amplitude, plots similar to Figures 5.51, 5.54, and 5.55 can be made for the remaining 5-

0-𝑋-0 geometries (where 𝑋 represents the 𝜃2 values of 5, 10, 15, 20, and 25). The same 

optimization routine as was done for 5-0-10-0 was then performed for all the 5-0-𝑋-0 geometries 

individually. For brevity, the predicted/PLAXIS matches are shown in Figure 5.58 for geometries 

5-0-5-0, 5-0-15-0, and 5-0-25-0 at 𝜂 = 0.51 and 𝜂 = 3 to show the match is good at a wide range 

of 𝜃2 values and depths. The coefficients used to obtain these matches for the 5-0-𝑋-0 geometries 

are shown in Figures 5.59-5.63 with the exception of the optimized 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 which are 

shown in Table 5.14. Figures 5.62-5.63 show the coefficients of the initial 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 prior to 

optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.59. Shape parameter 𝜶 as an exponential function of 𝜼 for geometry (a) 5-0-5-0, (b) 5-0-

15-0, (c) 5-0-20-0, and (d) 5-0-25-0. 

(a) 

(c) (d) 

(b) 
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Figure 5.60. Shape parameter 𝜷 as an exponential function of 𝜼 for geometry (a) 5-0-5-0, (b) 5-0-

15-0, (c) 5-0-20-0, and (d) 5-0-25-0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.61. Peak amplitude as a power function of 𝜼 for geometry (a) 5-0-5-0, (b) 5-0-15-0, (c) 5-

0-20-0, and (d) 5-0-25-0. 

 

(a) (b) 

(d) (c) 

(a) (b) 

(c) (d) 
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Figure 5.62. 𝜹𝒎𝒊𝒏 as a linear function of 𝜼 for geometry (a) 5-0-5-0, (b) 5-0-15-0, (c) 5-0-20-0, and 

(d) 5-0-25-0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.63. 𝜹𝒎𝒂𝒙 as a linear function of 𝜼 for geometry (a) 5-0-5-0, (b) 5-0-15-0, (c) 5-0-20-0, and 

(d) 5-0-25-0. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Table 5.14. Optimized 𝜹𝒎𝒊𝒏 and 𝜹𝒎𝒂𝒙 for each individual 5-0-X-0 geometry. 

 
 

5.4.8.7 SSR Prediction Function for all 𝜃2 Geometries 

The matches between the Predicted/PLAXIS 𝑆𝑆𝑅 were shown for each individual 5-0-𝑋-

0 geometry, however, these all use different coefficients based on that single geometry. This 

section discusses obtaining a single 𝑆𝑆𝑅 prediction function, based on both 𝜂 and 𝜃2, that can be 

used for any 5-0-𝑋-0 geometry. Therefore, a single set of coefficients is used to match the 

predicted/PLAXIS 𝑆𝑆𝑅 data instead of using coefficients for each particular geometry. This 

requires the development of a function that depends on 𝜂 and 𝜃2 for each of the 𝐵𝐷 parameters and 

its peak amplitude. For example, the variation of α with 𝜂 for a given 𝜃2 value was observed to be 

reasonably modeled by an exponential function, of the form 

  α = 𝛼1 ∗ exp(−𝛼2 ∗ 𝜂)   (5.35)   

however, as shown in Figure 5.59, the coefficients, 𝛼1 and 𝛼2, of the exponential functions that 

provided the best fit to each 𝜃2 value were different.  Those coefficients varied with 𝜃2 as shown 

in Figure 5.64. 

Geometry θ2
δmin intercept δmin coefficient δmax intercept δmax coefficient

5-0-5-0 5 1.3000 -0.6809 3.4845 0.5469

5-0-10-0 10 -2.8000 -0.3500 3.7001 0.7021

5-0-15-0 15 -1.3000 -2.1000 6.6557 1.8000

5-0-20-0 20 -1.9000 -2.9000 6.6304 3.2723

5-0-25-0 25 -4.4000 -2.4000 7.7893 1.5000
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Figure 5.64. The 𝜶 parameter (a) coefficient and (b) exponent coefficient (from 𝜶 with respect to 

𝜼) for the 5-0-X-0 geometries behavior as a power function with respect to 𝜽𝟐. 

 

While the variation was observed to be irregular, the basic trends in the data can be expressed in 

terms of power law functions. The best fits to the coefficients were given by 

  𝛼1 = 11.672𝜃2
0.9729

   (5.36)   

  𝛼2 = −0.2412𝜃2
0.2759

   (5.37)   

Therefore, the final expression for 𝛼 was given by 

 α = (11.672𝜃2
0.9729) ∗ exp([−0.2412𝜃2

0.2759] ∗ 𝜂)  (5.38)  

 

 

 

Following the same logic, the behavior of the other 𝐵𝐷 parameters that depend on 𝜂 and 𝜃2 

are developed and shown in Figures 5.65-5.68. 

 

 

 

 

 

 

 

Figure 5.65. The 𝜷 parameter (a) coefficient and (b) exponent coefficient (from 𝜷 with respect to 

𝜼) for the 5-0-X-0 geometries behavior as a power function with respect to 𝜽𝟐. 

 

(a) (b) The value of 0.070529 is negative, but shown 

here as positive for plotting purposes 

Power (𝜃2) 

Exponential (𝜂) 

Power (𝜃2) 

(b) (a) 

The value of 0.241213 is 

negative, but shown here as 

positive for plotting purposes 



 

 

280 

 

 

 

 

 

 

 

Figure 5.66. The 𝜹𝒎𝒊𝒏 parameter (a) intercept and (b) coefficient (from 𝜹𝒎𝒊𝒏 with respect to 𝜼) for 

the 5-0-X-0 geometries behavior as a power function with respect to 𝜽𝟐. 

 

 

 

 

 

 

 

 

Figure 5.67. The 𝜹𝒎𝒂𝒙 parameter (a) intercept and (b) coefficient (from 𝜹𝒎𝒂𝒙 with respect to 𝜼) for 

the 5-0-X-0 geometries behavior as a power function with respect to 𝜽𝟐. 

 

 

 

 

 

 

 

 

 

Figure 5.68. The peak amplitude parameter (a) coefficient and (b) exponent coefficient (from peak 

amplitude with respect to 𝜼) for the 5-0-X-0 geometries behavior as a power function with respect to 

𝜽𝟐. 

 

Figure 5.65 shows how the coefficients of 𝛽, that were found with respect to 𝜂 in Figure 

5.54, vary with 𝜃2 as a power function and is given as 

(a) (b) 

(a) (b) 

(a) (b) 

The value of 0.099801 is 

negative, but shown here as 

positive for plotting purposes 
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 𝛽 = (2.7242𝜃2
1.376) ∗ exp([−0.07053𝜃2

0.6723] ∗ 𝜂)  (5.39)  

Figure 5.66 shows how the coefficients of 𝛿𝑚𝑖𝑛, that were found with respect to 𝜂 in Figure 5.51, 

vary with 𝜃2 as a linear function and is given as 

 𝛿𝑚𝑖𝑛 = (1.33 − 0.21𝜃2) + (0.1103 − 0.1198𝜃2) ∗ 𝜂 (5.40)  

Figure 5.67 shows how the coefficients of 𝛿𝑚𝑎𝑥, that were found with respect to 𝜂 in Figure 5.51, 

vary with 𝜃2 as a linear function. 

 𝛿𝑚𝑎𝑥 = (2.19 + 0.2308𝜃2) + (0.2213 + 0.0895𝜃2) ∗ 𝜂 (5.41)  

Figure 5.68 shows how the coefficients of peak amplitude, 𝐴𝑝𝑒𝑎𝑘, that were found with respect to 

𝜂 in Figure 5.55, vary with 𝜃2 as a power function.  

 𝐴𝑝𝑒𝑎𝑘 = (0.027332𝜃2
0.668503) ∗ 𝜂(−0.099801𝜃2

0.630551) (5.42)  

Therefore, Equations 5.38-5.42 are used to calculate the predicted 𝑆𝑆𝑅 as functions of 𝜂 and 𝜃2 to 

match the PLAXIS data for all of the 5-0-X-0 geometries. Entering these coefficients into Code 

“Optimization Plotting” and then running the code gives the predicted/PLAXIS 𝑆𝑆𝑅 fits shown 

in Figure 5.69. To compare the predicted and PLAXIS 𝑆𝑆𝑅 fits at a range of geometries and depths, 

Figure 5.69 shows the predicted/PLAXIS 𝑆𝑆𝑅 for geometries 5-0-5-0, 5-0-15-0, and 5-0-25-0 at 

𝜂 values of 0.51 and 3.0. 
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Figure 5.69. Predicted stress ratio function using initial coefficients compared to PLAXIS stress ratio for the 5-0-𝑿-0 geometries. 
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The match between the predicted/PLAXIS SSR using the initial coefficients appears good except 

at larger depths and steep slopes (i.e., at 𝜂 = 3.0 for geometry 5-0-25-0) where the predicted 

function is shifted to the right. To correct this, and to obtain a better predicted 𝑆𝑆𝑅 fit to the 

PLAXIS data, the coefficients for 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 shown in Figures 5.66-5.67 were optimized using 

Codes “Optimization Function” and “Optimizing Coefficients”, and then plotted using Code 

“Optimization Plotting” (Appendix D). Optimization was performed with SSE and normalized 

error (Equations 5.33 and 5.34) to guide the Matlab command, fminsearch, in the same manner as 

was done for each individually geometry. However, when incorporating more than a single 

geometry both of these error functions favor limiting a certain geometry. 

The 𝑆𝑆𝐸 function in Equations 5.33 is influenced more by larger 𝑆𝑆𝑅 values, and 

consequently produced better fits to shallower depths (lower 𝜂) and steeper slopes (higher 𝜃2) at 

the expense of other conditions. To illustrate this point, the predicted/PLAXIS results obtained by 

optimization of the 5-0-𝑋-0 geometries with the 𝑆𝑆𝐸 error function are shown in Figure 5.70. A 

clear trend is shown – the match obtained between the predicted/PLAXIS 𝑆𝑆𝑅 improves as 𝜃2 

increases, while 𝜂 decreases. Therefore, the best match between the predicted/PLAXIS 𝑆𝑆𝑅 for 

the 𝜂 values shown is at an 𝜂 = 0.51 for geometry 5-0-25-0, while the worst match is at 𝜂 = 3.0 for 

geometry 5-0-5-0 in Figure 5.70. 

The normalized error was then used to reduce that effect. However, using normalized error 

instead of 𝑆𝑆𝐸 to guide the optimization also led to unsatisfactory results. The largest total 

normalized error occurred when the PLAXIS 𝑆𝑆𝑅 distribution extended over a wide range of 𝛿 

values. A wide 𝑆𝑆𝑅 distribution occurs with increasing depth and steepness of the central slope 

segment, therefore, the best match between predicted/PLAXIS 𝑆𝑆𝑅 occurs at 𝜂 = 3.0 for geometry 

5-0-25-0, while the worst match is at 𝜂 = 0.51 for geometry 5-0-5-0 as shown in Figure 5.71. 
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Figure 5.70. Predicted stress ratio function optimized via 𝑺𝑺𝑬 compared to PLAXIS stress ratio for the 5-0-𝑿-0 geometries. 
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Figure 5.71. Predicted stress ratio function optimized via normalized error compared to PLAXIS stress ratio for the 5-0-𝑿-0 geometries. 
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Closer examination of the PLAXIS data revealed that 𝛿𝑚𝑎𝑥 behavior was sufficiently 

simple and consistent that it could be adequately characterized by a more manual process. The 

predicted/PLAXIS 𝑆𝑆𝑅 fits found using the initial values show that the predicted function veers 

away from the PLAXIS 𝑆𝑆𝑅 data at large depths and for steep slopes (see Figure 5.69). Therefore, 

𝛿𝑚𝑎𝑥 needs to be reduced at high 𝜂 and 𝜃2 values. A manual adjustment was made, resulting in 

Equations 5.43 being used for calculating 𝛿𝑚𝑎𝑥 for the 5-0-𝑋-0 geometries. A separate small 

manual adjustment was also made to one of the 𝛽 coefficients to improve the predicted/PLAXIS 

𝑆𝑆𝑅 fit. Equation 5.44 gives the equation for calculating the final expression for 𝛽 for the 5-0-𝑋-

0 geometries. The simple manual adjustments to 𝛿𝑚𝑎𝑥 and 𝛽 gives the predicted function a good 

fit to the PLAXIS 𝑆𝑆𝑅 for the 5-0-𝑋-0 geometries as shown in Figure 5.72. The reader is referred 

to Appendix E for additional predicted/PLAXIS 𝑆𝑆𝑅 fits for the 5-0-𝑋-0 geometries. 

 𝛿𝑚𝑎𝑥 = (2.19 + 0.2308 ∗ 𝜃2) + (0.2213 + 0.077 ∗ 𝜃2) ∗ 𝜂  (5.43) 

 𝛽 = (2.6𝜃2
1.376) ∗ exp([−0.07053𝜃2

0.6723] ∗ 𝜂)  (5.44)  
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Figure 5.72. Predicted stress ratio function optimized manually compared to PLAXIS stress ratio for the 5-0-𝑿-0 geometries. 
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Discussion 

Incorporating the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 from the CDF, 𝛼 and 𝛽 parameters found from the 

moments of the PLAXIS 𝑆𝑆𝑅 PDF, manually optimizing one of the 𝛿𝑚𝑎𝑥 coefficients, and using 

the peak amplitudes from the PLAXIS 𝑆𝑆𝑅 data, led to the 𝐵𝐷 predicted 𝑆𝑆𝑅 and PLAXIS 𝑆𝑆𝑅 

fit shown in Figure 5.72. Simple visual inspection of Figure 5.72 shows the predicted 𝐵𝐷 matches 

the PLAXIS 𝑆𝑆𝑅 well. The “best fit” between the predicted/PLAXIS 𝑆𝑆𝑅 is first determined by 

visual inspection to analyze the how reasonable the fit is, then minor adjustments are made based 

on calculated 𝑆𝑆𝐸 and normalized error values. Geometry 5-0-25-0 does have a small amount of 

variability between the predicted and PLAXIS 𝑆𝑆𝑅 at large depths, however, generally performs 

well for all depths and 5-0-𝑋-0 geometries. 

5.4.8.8 Accounting for a Steeper Upper Slope Angle, 𝜃3 

Thus far, the geometries incorporated into the predicted 𝑆𝑆𝑅 function had a flat upper slope 

which caused the stress ratio to return to zero at the maximum extent. Figure 5.73 shows an 

example of this behavior. 
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Figure 5.73. PLAXIS stress ratio values for geometry 5-0-15-0. 

 

For cases with 𝜃3 > 0, the minimum extent will still have a stress ratio value of zero since 𝜃1 = 0, 

however, the maximum extent will have a constant non-zero stress ratio as is shown for the 5-0-

15-3 geometry in Figure 5.74. 

 

Figure 5.74. PLAXIS stress ratio values for geometry 5-0-15-3. 
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Therefore, the previously described 𝐹𝐹 must be added to the 𝐵𝐷 function to allow the predicted 

stress ratio to transition from a value of zero at 𝛿 values well to the left of the slope, to a constant 

non-zero value for 𝛿 values well to the right of the slope. For the 5-0-15-3 geometry, the predicted 

stress ratio should vary from zero for the left plateau to a constant value of approximately -0.016 

computed by PLAXIS for the right plateau.  

Geometries with 𝜃3 > 0 degrees will therefore require identification of eight parameters to 

predict the 𝑆𝑆𝑅 – four from the 𝐵𝐷, the amplitude of the 𝐵𝐷, and the three 𝐹𝐹 parameters (since 

𝑐3 = 0). To incorporate the addition of 𝜃3 > 0 geometries, the predicted fit from geometry 5-0-15-

0 was plotted with the PLAXIS 𝑆𝑆𝑅 data for 5-0-15-1, 5-0-15-3, and 5-0-15-5 to determine how 

the predicted functions parameters would need to be adjusted for different 𝜃3 values (see Figures 

5.75-5.77). 
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Figure 5.75. Predicted function for geometry 5-0-15-0 compared to the PLAXIS stress ratio data for geometry 5-0-15-1. 
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Figure 5.76. Predicted function for geometry 5-0-15-0 compared to the PLAXIS stress ratio data for geometry 5-0-15-3. 
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Figure 5.77. Predicted function for geometry 5-0-15-0 compared to the PLAXIS stress ratio data for geometry 5-0-15-5. 
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Figure 5.75 indicates, even for an upper slope of only 1°, the amplitude of the PLAXIS 𝑆𝑆𝑅 

decreases significantly from the level-ground case. The decrease in amplitude is small at large 

depths (𝜂 = 3) and greater at shallower depths (𝜂 = 0.51). The separation of 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 also 

needs to be reduced (increase 𝛿𝑚𝑖𝑛and decrease 𝛿𝑚𝑎𝑥,) when going from a 𝜃3 = 0 geometry to a 

𝜃3 > 0 geometry. However, the decrease in separation of 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 is smallest at shallow 

depths and greatest at larger depths. 

The predicted/PLAXIS 𝑆𝑆𝑅 trends in Figures 5.76-5.77 (the 𝜃3 = 3 and 𝜃3 = 5 cases) are 

the same as discussed for Figure 5.75 except the right plateau increases to a larger 𝑆𝑆𝑅 as the 

incline of the upper slope segment increases. To illustrate this effect, the PLAXIS 𝑆𝑆𝑅 data for the 

5-0-15-1, 5-0-15-3, and 5-0-15-5 geometries are shown in Figure 5.78. Figure 5.78 shows the 

PLAXIS 𝑆𝑆𝑅 behavior for these geometries is generally constant beneath the left and central slope 

segments and the only difference in 𝑆𝑆𝑅 between them is the 𝑆𝑆𝑅 beneath the right plateau. In 

fact, the difference in𝑆𝑆𝑅 beneath the right slope segment for these geometries appears to be 

evenly spaced – indicating the 𝑆𝑆𝑅 increase with increasing 𝜃3 values behaves in a linear fashion. 
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Figure 5.78. PLAXIS stress ratio data for geometries 5-0-15-1, 5-0-15-3, and 5-0-15-5. 
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Amplitude Adjustments 

Figures 5.75-5.77, show that the computed peak stress ratio for 5-0-15-0 was greater than 

that computed for the 𝜃3 = 1, 3, and 5 degrees models. The predicted 𝑆𝑆𝑅 amplitude for the 𝜃3 = 

0 case, therefore, needs to decrease when 𝜃3 > 0. The computed amplitude reduction for the 𝜃3 > 

0 models appears to be the same whether 𝜃3 = 1, 3, and 5 degrees (see Figure 5.78). This amplitude 

decreases with increasing depth. The latter observations of the peak amplitude dropping quickly 

between 𝜃3 = 0 to 𝜃3 = 1°, and the constant peak amplitude once 𝜃3 > 0, agree with the parametric 

analyses discussed in Section 5.4.5.2.4 and shown in Figure 5.47. 

To obtain a reduction function, one can subtract the peak predicted amplitude from the 

peak PLAXIS amplitude at each 𝜂 as shown in Table 5.15. The difference in peak amplitude 

between the predicted/PLAXIS 𝑆𝑆𝑅 data was fit with a power function as shown in Figure 5.79. 

This adjustment is notable for the fact that it does not depend on 𝜃3 because the peak amplitude 

computed by PLAXIS does not vary with 𝜃3 for 𝜃3 > 0. This unexpected, and currently 

unexplained, result complicates the modeling process because it implies a nearly binary condition 

for 𝜃3 = 0 and 𝜃3 > 0. 

Table 5.15. Calculation of the peak amplitude difference between the predicted and PLAXIS SSR. 
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Figure 5.79. Predicted function peak amplitude decrease to fit 𝜽𝟑 > 0 geometries. 

 

Therefore, the peak amplitude adjustment expression shown in Figure 5.79 can be added to the 

predicted function base 𝜃2 expressions (expression for the 5-0-𝑋-0 geometries) for peak amplitude. 

Adding this peak amplitude adjustment (which is a negative value) gives a relatively good fit for 

amplitude for the 5-0-15-1, 5-0-15-3, and 5-0-15-5 geometries. To account for the observed 𝜃3 

sensitivity, a pseudo-Kronecker delta function was developed. The Kronecker delta function gives 

a value of 1 if a condition (𝜃3 > 0) is met and 0 if it is not (𝜃3 = 0) met. 

 𝛿𝐾 = {
0𝑖𝑓𝜃3 = 0
1𝑖𝑓𝜃3 > 0

  (5.45) 

where 𝛿𝐾 is the Kronecker delta. The pseudo-Kronecker delta developed replicates the Kronecker 

delta, however, does not require a conditional statement. The pseudo-Kronecker delta was 

developed by carefully creating data that ranges from 0 to 1 for a 𝜃3 ranging from 0 to 5 and fitting 

a power function to the data. The absolute difference between the power function fit, and the data 

it is fit to, was calculated. This absolute difference was plotted and a linear function was fit to it 

with the intercept set to a value of 0.05. The power function was subtracted by the linear function 

The value of 0.087171 is negative, 

but shown here as positive for 

plotting purposes 
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and this difference was plotted to give the pseudo-Kronecker delta function as shown in Figure 

5.80 and shown in Equation 5.46. 

 

Figure 5.80. Pseudo Kronecker delta function developed. 

 

 𝛿𝐾 =(1.1065𝜃3
0.15847) − (0.0767𝜃3 + 0.05)  (5.46) 

The pseudo-Kronecker delta function in Figure 5.80 goes from a value of 0.01 at 𝜃3  = 0.00000001 

to a value of approximately 1 from 𝜃3  = 1 to 5. Even a value of 𝜃3  = 0.5 degrees still returns 0.9. 

Therefore, the pseudo-Kronecker delta is sufficient in making the amplitude reduction 0, when 𝜃3 

= 0, and whatever it calculates to be when 𝜃3 > 0. Thus, multiplying the amplitude reduction shown 

in Figure 5.79 by the pseudo-Kronecker delta function given by Equation 5.46, allows the 

amplitude adjustment with respect to 𝜂 to be applied for the 5-0-15-𝑌 (where 𝑌 = 1, 3, and 5) cases 

without impacting the 5-0-15-0 case as shown in Figures 5.81-5.84. Therefore, the peak amplitude 

is given as 

            𝐴𝑝𝑒𝑎𝑘 = [(0.027332𝜃2
0.668503) ∗ 𝜂(−0.099801𝜃2

0.630551)] + [(1.1065𝜃3
0.15847) −

(0.0767𝜃3 + 0.05)] ∗ (−0.087171𝜂−1.021359) (5.47) 
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Figure 5.81. Predicted function for geometry 5-0-15-0 with amplitude reduction adjustment compared to the PLAXIS stress ratio data for 

geometry 5-0-15-0. 
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Figure 5.82. Predicted function for geometry 5-0-15-1 with amplitude reduction adjustment compared to the PLAXIS stress ratio data for 

geometry 5-0-15-1. 
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Figure 5.83. Predicted function for geometry 5-0-15-3 with amplitude reduction adjustment compared to the PLAXIS stress ratio data for 

geometry 5-0-15-3. 
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Figure 5.84. Predicted function for geometry 5-0-15-5 with amplitude reduction adjustment compared to the PLAXIS stress ratio data for 

geometry 5-0-15-5. 
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 At this point, the amplitude of the predicted 𝑆𝑆𝑅 matches the PLAXIS 𝑆𝑆𝑅 data for the 5-

0-X-0 geometries and the 5-0-15-Y geometries (where Y represents the 𝜃3 values of 1, 2, and 3 

degrees), however, the 𝑆𝑆𝑅 behavior will be different when including the 5-0-5-Y, 5-0-10-Y, 5-0-

20-Y, and 5-0-25-Y geometries. Using the same method as was done for the 5-0-15-Y geometries, 

the behavior of the PLAXIS data for the 5-0-5-Y, 5-0-10-Y, 5-0-20-Y, and 5-0-25-Y geometries 

were carefully analyzed and trial and error was used to incorporate all 19 of the 5-0-X-Y geometries 

(see Table 5.6). Including all of these geometries into the predicted 𝑆𝑆𝑅 function required 

adjustments to the amplitude, the minimum and maximum bounds, and the 𝐹𝐹 parameters. The 𝛼 

and 𝛽 shape parameters were assumed to be influenced by 𝜃3, e.g., 𝛼 and 𝛽 values will not change 

between 5-0-10-0, 5-0-10-1, 5-0-10-3, and 5-0-10-5. 

The amplitude has been corrected by decreasing it for changes in 𝜂, however, when adding 

the 5-0-5-Y, 5-0-10-Y, 5-0-20-Y, and 5-0-25-Y geometries an amplitude adjustment accounting for 

the change in 𝜃2 for 𝜃3 > 0 geometries needed to be incorporated. Based on the PLAXIS 𝑆𝑆𝑅 data 

from the new geometries added, the amplitude increase needed to be the greatest at 𝜃2 = 5 degrees 

and smallest at 𝜃2 = 25 degrees. The amplitude also needed to be increased more at 𝜂 = 0.5 than 

at 𝜂 = 3. Therefore, through trial and error and diligently examining the stress ratio plots for each 

geometry at each 𝜂 value, the adjustments that needed to occur dependent upon 𝜃2 for 𝜃3 > 0 

geometries produced the amplitude adjustment shown in Figure 5.85. The amplitude expression 

shown in Figure 5.85 needs to be multiplied by 0.24/𝜂2 (see Equation 5.48) to account for the 

larger increase in amplitude needed at 𝜂 = 0.5 and a smaller increase in amplitude at 𝜂 = 3. 
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Figure 5.85. Amplitude increase as a function of 𝜽𝟐. 

 

 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 1.7608𝜃2
−1.6272 × (

0.24

𝜂2
)  (5.48) 

It’s important to note that no amplitude adjustment is needed for the base 5-0-X-0 geometries, 

therefore, the amplitude increase adjustment shown in Equation 5.48 can be multiplied by the 

pseudo-Kronecker delta function (Equation 5.46) in order for this adjustment to only apply when 

𝜃3 > 0. Therefore, the peak amplitude has been corrected for all geometries with 5 ≤ 𝜃2 ≤ 25 

degrees and 0 ≤ 𝜃3 ≤ 5 degrees for a slope height of 5 meters and a 𝜃1 = 0. The final peak amplitude 

expression is given as 

            𝐴𝑝𝑒𝑎𝑘 = [(0.027332𝜃2
0.668503) ∗ 𝜂(−0.099801𝜃2

0.630551)] + [(1.1065𝜃3
0.15847) −

(0.0767𝜃3 + 0.05)] ∗ [(−0.087171𝜂−1.021359) + (1.7608𝜃2
−1.6272) × (

0.24

𝜂2
)]   

 (5.49) 

Minimum and Maximum Bound Adjustments 

As the depth below the slope increases, the lateral extent affected by the stresses imposed 

by the slope increases. Therefore, it is reasonable that as 𝜂 increases, the range between 𝛿𝑚𝑖𝑛 and 
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𝛿𝑚𝑎𝑥 must increase. Examination of the PLAXIS 𝑆𝑆𝑅 data shows the latter – the separation 

between the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 for geometries with 𝜃3 > 0 needed to increase from 𝜂 = 0.51 to 𝜂 = 3. 

For example, Figure 5.86 depicts the need for an increase between the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 from 𝜂 = 

0.51 to 𝜂 = 3 for geometry 5-0-15-3. 

 

   

Figure 5.86. PLAXIS stress ratio data plotted for geometry 5-0-15-3 at 𝜼 = 0.51 and 𝜼 = 3 shown in 

(a) and (b) respectively. 

 

(a) 

(b) 
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Analyzing PLAXIS 𝑆𝑆𝑅 results similar to Figure 5.86, a power function dependent on 𝜂 for the 

𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 was created in order to increase the separation of the predicted function for the 𝜃3 

> 0 cases (Figure 5.87). This adjustment is only needed for the 𝜃3 > 0 geometries, therefore, it 

should be multiplied by the pseudo Kronecker delta function (Equation 5.46) to not change the 

base 5-0-X-0 geometries. 

 

Figure 5.87. Minimum/Maximum Bound power function dependent on η adjustment. 

 

The final expressions for 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are given as 

 𝛿𝑚𝑖𝑛 = (1.33 − 0.21𝜃2) + (0.1103 − 0.1198𝜃2) ∗ 𝜂 + [(1.1065𝜃3
0.15847) − (0.0767𝜃3 +

0.05)] ∗ 0.8019𝜂0.8962   (5.50) 

 𝛿𝑚𝑎𝑥 = (2.19 + 0.2308 ∗ 𝜃2) + (0.2213 + 0.077 ∗ 𝜃2) ∗ 𝜂 + [(1.1065𝜃3
0.15847) −

(0.0767𝜃3 + 0.05)] ∗ 0.8019𝜂0.8962   (5.51) 

Filter Function Parameters 

The 𝐹𝐹 parameters were discussed in 5.4.7, however, only the value of the left plateau, 𝑐3, 

was provided. Because 𝜃1 = 0 for all of the geometries in this research 𝑐3 = 0. The value of the 

𝑆𝑆𝑅 where the right plateau, 𝑐4, occurs is dependent on the value of 𝜃3. Referring back to Figures 
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5.47-5.48, and careful examination of the PLAXIS 𝑆𝑆𝑅 data for the other 𝜃3 > 0 geometries, 𝑐4 

was established to vary as a linear function dependent on 𝜃3 as shown in Figure 5.88. This linear 

function dependent on 𝜃3 does not have an intercept, therefore, when 𝜃3 = 0 the 𝑐4 = 0 as it should. 

 

Figure 5.88. Right plateau behavior as a linear function dependent on 𝜽𝟑. 

 

Therefore, the final expression for the right plateau is given as 

 𝑐4 = 0.0052 ∗ 𝜃3 (5.52) 

The center of the 𝐹𝐹, 𝑐1, was taken to be a constant value of two in order for it to occur 

near the 𝛿 value at center of the predicted function since the 𝐵𝐷 was shifted to the right by 𝛿𝐺𝑙𝑜𝑏𝑎𝑙 

= 2 to lower the coefficient of variation as described in Section 5.4.8. The steepness of the 𝐹𝐹, 𝑐2, 

was taken to be a constant value of four to have a smooth transition of the predicted function from 

the left plateau to the right plateau within the central slope segment. 

The 𝐹𝐹 does change the amplitude slightly in order to drop from the left plateau to the right 

plateau, however, this slight amplitude change was accounted for in the amplitude adjustments 

already described, i.e., the 𝐹𝐹 described here was completed prior to making both of the amplitude 

adjustments. The latter constant values for the 𝐹𝐹 center and 𝐹𝐹 steepness do not impact the 𝜃3 = 

y = 0.0052x 
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0 case, because, the left and right plateau are zero at 𝜃3 = 0, which forces the 𝐹𝐹 to be zero (see 

Equation 5.25). 

Therefore, starting with the base 𝜃2 expressions and then applying the peak amplitude, 

𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥, and 𝑐4 adjustments, along with the constant values for the 𝑐3, 𝑐1, and 𝑐2, 19 predicted 

functions were fit to the PLAXIS 𝑆𝑆𝑅 data for the 5-0-X-Y geometries. Figures 5.89-5.107 show 

the results of the 19 predicted functions matching the PLAXIS 𝑆𝑆𝑅 data for each of the 

corresponding geometries. Following these figures, the predicted function equations, and the 

coefficients of the nine parameters that make up the predicted function (the 𝐵𝐷, the amplitude of 

the 𝐵𝐷, and the 𝐹𝐹), are given. Although only shown for the 19 5-0-X-Y geometries, the predicted 

function at this point could be applied geometries with 𝐻 > 0, 𝜃1 = 0, 5 ≤ 𝜃2 ≤ 25 degrees, 0 ≤ 𝜃3 

≤ 5 degrees.  
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Figure 5.89. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-5-0. 
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Figure 5.90. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-10-0. 
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Figure 5.91. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-15-0. 
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Figure 5.92. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-20-0. 
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Figure 5.93. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-25-0. 
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Figure 5.94. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-5-1. 
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Figure 5.95. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-5-3. 
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Figure 5.96. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-10-1. 
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Figure 5.97. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-10-3. 
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Figure 5.98. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-10-5. 
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Figure 5.99. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-15-1. 
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Figure 5.100. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-15-3. 
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Figure 5.101. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-15-5. 
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Figure 5.102. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-20-1. 
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Figure 5.103. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-20-3. 
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Figure 5.104. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-20-5. 
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Figure 5.105. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-25-1. 
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Figure 5.106. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-25-3. 
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Figure 5.107. Predicted stress ratio function compared to PLAXIS stress ratio for geometry 5-0-25-5. 
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Calculation of the Predicted Function 

 Up to this point the full predicted function equation developed in order to match the 

PLAXIS stress ratio data has yet to be shown except for references to the codes in Appendix D. It 

has been explained that the predicted function is represented by a 𝐵𝐷 for geometries with 𝜃3 = 0 

while geometries with 𝜃3 > 0 also needed the addition of a 𝐹𝐹 to have the predicted function 

smoothly transition from a stress ratio of zero at the left plateau to a nonzero stress ratio at the right 

plateau. The predicted 𝑆𝑆𝑅 function can be written as 

 𝑆𝑆𝑅 = −(𝐴𝑝𝑒𝑎𝑘 ∗ 𝐵𝐷,𝑛𝑜𝑟𝑚 + 𝐹𝐹)  (5.53) 

where the negative is needed to match the PLAXIS coordinate system and 𝐵𝐷,𝑛𝑜𝑟𝑚 is the 

normalized four-parameter beta distribution which consists of the shape parameters 𝛼 and 𝛽 along 

with the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 bounds, and 𝐹𝐹 is the filter function which consists of the left and right 

plateau, 𝐹𝐹 center, and 𝐹𝐹 steepness parameters. To find 𝐵𝐷,𝑛𝑜𝑟𝑚, the 𝐵𝐷 must first be calculated. 

The 𝐵𝐷 values outside of the 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are set to the values of the left and right plateau 

respectively. 

 𝐵𝐷 = {

0𝛿 < 𝛿𝑚𝑖𝑛

[(𝛿 − 𝛿𝑚𝑖𝑛)
(𝛼−1) ∗ (𝛿𝑚𝑎𝑥 − 𝛿)(𝛽−1)]𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥

𝑐4𝛿 > 𝛿𝑚𝑎𝑥

  (5.54) 

The 𝐵𝐷 written as Equation 5.54 made it difficult to match the amplitude and the 𝛼 and 𝛽 shape 

parameters because changing the values of 𝛼 and 𝛽 also changed the amplitude of the 𝐵𝐷. in 

addition to the peak amplitude variable. To prevent the latter, the 𝐵𝐷 was normalized by its peak 

value which occurs at the modal value of the distribution. The peak value of the 𝐵𝐷 was calculated 

for each 𝜂 value and then used to calculate 𝐵𝐷,𝑛𝑜𝑟𝑚 by dividing Equation 5.54 by the peak value. 
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Therefore, the peak value of the 𝐵𝐷,𝑛𝑜𝑟𝑚 at each 𝜂 is 1.0 regardless of the bounds or exponents. 

This peak value for the 𝐵𝐷 can be calculated as 

 𝐵𝐷,𝑝𝑒𝑎𝑘 = [
𝛼−1

𝛼+𝛽−2
∗ (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)]

(𝛼−1)
∗ [𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛 −

𝛼−1

𝛼+𝛽−2
∗ (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)]

(𝛽−1)
 (5.55) 

and thus 𝐵𝐷,𝑛𝑜𝑟𝑚 can be calculated as 

 𝐵𝐷,𝑛𝑜𝑟𝑚 =
𝐵𝐷

𝐵𝐷,𝑝𝑒𝑎𝑘
  (5.56) 

The 𝐹𝐹 in Equation 5.53 was shown in Equation 5.25. Therefore, with all of the parameters 

explained, and their values given, Equation 5.53 is used to calculate the predicted 𝑆𝑆𝑅. 

The predicted 𝑆𝑆𝑅 function requires a total of 36 coefficients to match the PLAXIS 𝑆𝑆𝑅 

data. Four of the 36 coefficients are for the pseudo-Kronecker Delta function created and given in 

Equation 5.46. The nine parameters that describe the 𝐵𝐷, the amplitude of the 𝐵𝐷, and the 𝐹𝐹, 

have 32 coefficients between them. The description of each parameter, along with the values of 

their coefficients, are shown in Table 5.16 and the equations of each parameter are reshown in 

Equations 5.57 to 5.65.
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Table 5.16. 𝑭𝑭 and 4BDP parameters, descriptions of those parameters, and the values of each of 

the coefficients. 

Parameter Coefficient Number Value Individual Description* Description

FF Center (c1) x1 2 N/A N/A

FF Steepness (c2) x2 4 N/A N/A

Left Plateau (c3) x3 0 N/A N/A

Right Plateau (c4) x4 0.0052 N/A N/A

x5 1.33 Min Bound int - int

x6 -0.21 Min Bound int - coeff

x7 0.1103 Min Bound coeff - int

x8 -0.1198 Min Bound coeff - coeff

x9 0.8019 Min shift coeff

x10 0.8962 Min shift exp

x11 2.19 Max Bound int - int

x12 0.2308 Max Bound int - coeff

x13 0.2213 Max Bound coeff - int

x14 0.077 Max Bound coeff - coeff

x15 -0.8019 Max shift coeff

x16 0.8962 Max shift exp

x17 11.672 Alpha coeff - coeff

x18 0.9729 Alpha coeff - exp

x19 -0.24121 Alpha exp - coeff

x20 0.27591 Alpha exp - exp

x21 2.6 Beta coeff - coeff

x22 1.376 Beta coeff - exp

x23 -0.070529 Beta exp - coeff

x24 0.67234 Beta exp - exp

x25 0.0273316 Amplitude coeff - coeff

x26 0.6685027 Amplitude coeff - exp

x27 -0.099801 Amplitude exp - coeff

x28 0.63055066 Amplitude exp - exp

x29 -0.087171 Amplitude reduction coeff

x30 -1.021359 Amplitude reduction exp

x31 1.760799 Amplitude increase coeff

x32 -1.627222 Amplitude increase exp

x33 1.10653 Kronecker Delta coeff

x34 0.15847 Kronecker Delta exp

x35 0.0767 Kronecker Delta int

x36 0.05 Kronecker Delta coeff

**This is not a filter function or beta function parameter, but rather a constant that returns a value of 0 if θ 3 = 0 and a value of approximately 1 if θ3 > 0.

Pseudo-Kronecker Delta**

Power Law w/r/t θ3 used to develop the pseudo-

Kronecker Delta function

Linear function subtracted from the Power Law to get 

the pseudo-Kronecker Delta function

*Min Bound int - int means: The first int stands for the minimum bound intercept for the linearly varying expression w/r/t η. The second "int" is because this 

linear intercept varies via a linear function w/r/t θ2. Other Parameter "coeff" - "coeff" can be interpreted in a similar manner - see "Description" for details.

Alpha

(α )

The alpha parameter varies exponentially w/r/t η as 

found from the code 4 for each 5-0-x-0 case. The 

alpha parameter coefficient and exponent of this 

exponential fit varies via Power Law w/r/t θ2

Beta

(β )

The beta parameter varies exponentially w/r/t η as 

found from the code 4 for each 5-0-x-0 case. The beta 

parameter coefficient and exponent of this exponential 

fit varies via Power Law w/r/t θ2

Amplitude

(A peak )

The Amplitude varies via Power law relationship 

w/r/t η as found from code 4 for each 5-0-x-0 case. 

The coefficient and exponent of this Power law varies 

via Power law w/r/t θ2

Amplitude reduction w/r/t η for geometries with θ3 > 0 

values - Power Law

Amplitude increase to fit all θ3 > 0 geometries (Power 

Law w/r/t θ2) as well as vary w/r/t η via (0.24/η^2)

Minimum Bound

(δ min)

The minimum bound varies linearly w/r/t η as found 

from code 4 for each 5-0-x-0 case. The intercept and 

coefficient of this linear function varies linearly w/r/t 

θ2

Minimum shift w/r/t η for geometries with θ3 > 0 

values - Power Law

Maximum Bound

(δ max )

The maximum bound varies linearly w/r/t eta as found 

from code 4 for each 5-0-x-0 case. The intercept and 

coefficient of this linear function varies linearly w/r/t 

θ2

Maximum shift w/r/t η for geometries with θ3 > 0 

values - Power Law
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 𝑐1 = 𝑥1     (5.57) 

 𝑐2 = 𝑥2      (5.58) 

 𝑐3 = 𝑥3       (5.59) 

 𝑐4 = 𝑥4 ∗ 𝜃3     (5.60) 

 𝛿𝑚𝑖𝑛 = (𝑥5 + 𝑥6𝜃2) + (𝑥7 + 𝑥8𝜃2) ∗ 𝜂 + [𝑥33𝜃3
𝑥34 − (𝑥35𝜃3 + 𝑥36)] ∗ 𝑥9𝜂

𝑥10       (5.61) 

 𝛿𝑚𝑎𝑥 = (𝑥11 + 𝑥12𝜃2) + (𝑥13 + 𝑥14𝜃2) ∗ 𝜂 + [𝑥33𝜃3
𝑥34 − (𝑥35𝜃3 + 𝑥36)] ∗ 𝑥15𝜂

𝑥16       (5.62) 

 𝛼 = (𝑥17𝜃2
𝑥18) ∗ exp([𝑥19𝜃2

𝑥20] ∗ 𝜂)       (5.63) 

 𝛽 = (𝑥21𝜃2
𝑥22) ∗ exp([𝑥23𝜃2

𝑥24] ∗ 𝜂)      (5.64) 

𝐴𝑝𝑒𝑎𝑘 = [(𝑥25𝜃2
𝑥26) ∗ 𝜂(𝑥27𝜃2

𝑥28)] + [𝑥33𝜃3
𝑥34 − (𝑥35𝜃3 + 𝑥36)] ∗ [(𝑥29𝜂

𝑥30) + (𝑥31𝜃2
𝑥32) ∗ (

0.24

𝜂2
)]     (5.65) 

 

 



5.4.9 Discussion 

Although stymied by time restrictions to justify the use of the static stress ratio for infinite 

slope geometries in this thesis, it is believed the static stress ratio has the capability to do so based 

on the theoretical solutions that have been developed (Cruikshank 2002). The inclusion of infinite 

slope models in the static stress state framework proposed in this thesis can be done in future work. 

A possible solution to model an infinite slope in PLAXIS or other software (without tilting the 

angle of gravity) would be to consider a slope geometry similar to that shown in Figure 5.108 

where 𝜃1 is zero, 𝜃2 represents the infinite slope, 𝜃3 is a non-zero value less than 𝜃2, and the slope 

governed by 𝜃4 is zero and extends a large distance to minimize the effects of boundary conditions 

in the 𝜃2 and 𝜃3 regions. Such analyses, however, were beyond the scope of this study. 

 

Figure 5.108. Proposed infinite slope geometry to limit the impacts of boundary conditions on the 

infinite slope with angle 𝜽𝟐. 
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5.5 CONCLUSION 

Lateral spreading involves the incremental displacements that can occur due to cyclic 

liquefaction within gentle slopes or flat ground near steeper slopes such as river banks. Although 

the initial static shear stress is a key component to lateral spreading, the most common lateral 

spreading procedures used in practice today characterize the static stresses crudely leading to a 

large uncertainty in displacement predictions. This chapter introduced a function that predicts the 

static stress ratio within a wide range of lateral spreading slope geometries based on numerical 

tools allowing for the determination of the initial static shear stress by simply multiplying the 

predicted static stress ratio by the vertical stress anywhere within a slope. The predictive static 

stress ratio function presented was shown for a finite number of geometries, however, it can be 

applied to any geometry with 𝐻 > 0 meters, 5 ≤ 𝜃2 ≤ 25 degrees, 0 ≤ 𝜃3 ≤ 5 degrees, and 𝜃1 = 0. 

The determination of the initial static stress is important because there are believed to be three 

mechanisms that drive lateral spreading: 

1) Softening of the liquefied material that causes shearing distortion of the soil under the static 

shear stresses that act upon it; 

2) Cumulative cyclic deformations during earthquake shaking that are driven by cyclic shear 

stresses superimposed on the existing static shear stresses; 

3) Component of post-shaking deformations associated with void redistribution phenomena 

and driven by static shear stresses; 

all of which are influenced by the initial static shear stress. Therefore, any lateral spreading model 

should completely characterize the initial static shear stress to better predict lateral spread 

displacement. 
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 It has been shown that the PLAXIS and theoretical 𝑆𝑆𝑅 values are inconsistent, stemming 

from the differences between the shear stress output by PLAXIS and the values calculated from 

the infinite slope equilibrium equations. Based on previous analyses in OpenSees, these 

inconsistencies are due to the boundary conditions of the PLAXIS models, even though the extents 

of the model used are quite large. Although this inconsistency exists, a framework has been 

developed for predicting 𝑆𝑆𝑅 that can be used, after recalibration using more accurate data, by 

future researchers. 
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Chapter 6. SUMMARY AND CONCLUSIONS 

6.1 INTRODUCTION 

Soil liquefaction is a complex phenomenon that can cause tremendous damage to natural 

and man-made structures. Improvement upon the current state of knowledge of liquefaction and 

its effects is key to designing for, and mitigating, the damage it causes. The two focal points of 

this thesis were: 

1) Introduction of a new liquefaction-targeted ground motion parameter, 𝑃𝐺𝐴𝑀, and 

discussion of the influences of various site conditions on its values for two common 

liquefaction triggering procedures. 

2) Development of a unified framework for characterizing the static stress state for a 

continuous range of slope geometries (from free-face to ground slope) using numerical 

analyses. 

6.2 PGAM 

The goal of a liquefaction-targeted intensity measure, 𝑃𝐺𝐴𝑀, is to enable the practicing 

engineer to input a mapped 𝑃𝐺𝐴𝑀 value into their conventional liquefaction hazard analysis 

procedure and receive the liquefaction triggering results that would be obtained had they 

performed a full PLHA. The process of obtaining the conventional 𝑃𝐺𝐴𝑀 value that corresponds 

to an event with the return period from a full PLHA has been demonstrated, and the effects of 

various site conditions on the value of 𝑃𝐺𝐴𝑀 for two common liquefaction triggering procedures 

have been evaluated. The Boulanger and Idriss (2012) liquefaction triggering procedure was found 

to perform better, in terms of being less sensitive to various site conditions, than the Cetin et al. 

(2004) liquefaction triggering procedure. The key observations made were: 



 

 

336 

(a) Both procedures require a depth correction factor, however, the depth correction for the 

Boulanger and Idriss (2012) appeared to be sufficiently consistent between site locations 

that a relatively simple depth correction factor could be developed, whereas, the Cetin et 

al. (2004) procedure would require something more complex. 

(b) The sensitivity of the Cetin et al. (2004) to SPT resistance also suggested a correction factor 

for SPT resistance would be needed, whereas, the Boulanger and Idriss (2012) procedure 

was insensitive to SPT resistance. 

(c) The Cetin et al. (2004) was found to be slightly better suited for varying water table depth 

at higher return periods in moderate seismic environments like Charleston, SC, while the 

Boulanger and Idriss (2012) procedure more suitable at high return periods in high 

seismicity environments like Eureka, CA. 

(d) PB LiquefY is a good tool for evaluating PLHA in high seismicity environments, however, 

the inability of the program to evaluate liquefaction potential at return periods specified in 

areas of lower seismicity, and the numerous Microsoft Excel/Visual Basic errors that 

occurred when running the program, make it an arduous program to use. 

6.3 CHARACTERIZATION OF A STATIC STRESS STATE 

Static shear stresses are believed to play a crucial role in the mechanisms that drive lateral 

spreading. Therefore, the second focal point of this thesis was to develop a function that could 

predict the initial static shear stress within a wide array of lateral spreading slope geometries at 

depths of lateral spreading interest. The initial static shear stress function developed could then be 

used by future researchers to more accurately predict lateral spreading displacements than current 

procedures. Numerical analyses were used to develop a function that predicts the static stress ratio 

within a wide range of lateral spreading slope geometries. During development of this function, it 
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was found that the PLAXIS and theoretical static stress ratio values were inconsistent, due to the 

differences between shear stresses computed by PLAXIS and the values calculated from the 

infinite slope equilibrium equations. The PLAXIS static stress ratio values for 𝜂 < 0.51 were also 

found to be variable and have complex behavior. However, the static stress ratio behavior between 

𝜂 = 0.51 to 3 was simple, and showed reasonable trends (i.e., it smoothly transitioned between 

geometries in a manner consistent with basic elasticity theory). Because 𝜂 = 0.51 to 3 represents 

important lateral spreading depths of interest, development of a function that could predict the 

static stress ratio within lateral spreading slopes for those depths was investigated. Therefore, a 

framework was presented that allows for the calculation of a static stress ratio dependent on 36 

coefficients and applicable to any geometry with 𝐻 > 0 meters, 5 ≤ 𝜃2 ≤ 25 degrees, 0 ≤ 𝜃3 ≤ 5 

degrees, and 𝜃1 = 0. The key observations made were: 

(a) A coordinate transformation can be used to relate a wide array of lateral spreading 

geometries to one another. 

(b) Irregularly spaced PLAXIS stress points can be mapped to a consistent and regular grid 

using an inverse distance weighting interpolation. 

(c) A two-part function consisting of a four-parameter beta distribution and a sigmoidal (filter) 

function can be used to accurately model the static stress ratio for a wide array of slope 

geometries. 

(d) Some aspects of the computed PLAXIS response could not be captured including (i) 

apparent unstable behavior at shallow depths, (ii) an inability to produce shear stresses that 

agreed with theoretical solutions based on simple limit equilibrium concepts, and (iii) 

apparent effects of boundary conditions despite the very large domain being modeled. 
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Although these aspects existed, the model is considered to have captured the most 

important trends in the stresses within deeper parts of a slope. 

6.4 FINAL REMARKS AND POTENTIAL FUTURE WORK 

Both the focal points of this thesis can be built upon by future researchers for the continued 

improvement of the current state of knowledge of liquefaction. The process of obtaining the 

conventional 𝑃𝐺𝐴𝑀 value that corresponds to an event with a return period of a full probabilistic 

liquefaction hazard analysis has been shown for 27 site locations of moderate to very high 

seismicity. These 27 locations, therefore, only correspond to certain regions of at least moderate 

seismicity in the United States and do not include locations of low seismicity (e.g., New York City, 

NY and Philadelphia, PA). The reason is that PB LiquefY was not able to evaluate liquefaction 

potential at specified return periods in areas of lower seismicity. Therefore, future research could 

evaluate of the sensitivity of 𝑃𝐺𝐴𝑀 to various site conditions in areas of low seismicity. 

In this thesis, 𝑃𝐺𝐴𝑀 was evaluated for a triggering limit state and its sensitivity to various 

site conditions analyzed. Following the same type of framework, 𝑃𝐺𝐴𝑀 can be evaluated for 

different effects-based limit states by performing conventional and probabilistic liquefaction 

hazard analysis effects analyses. Sensitivity analysis of 𝑃𝐺𝐴𝑀 to various site conditions could then 

be evaluated for different effects-based limit states. 

 Finally, the framework for characterizing the static stress state proposed in this thesis can 

be extended for the purpose of predicting lateral spreading displacement. The initial static shear 

stress plays a key role in the mechanisms that drive lateral spreading which are believed to include: 

1) Softening of the liquefied material that causes shearing distortion of the soil under the static 

shear stresses that act upon it; 
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2) Cumulative cyclic deformations during earthquake shaking that are driven by cyclic shear 

stresses superimposed on the existing static shear stresses; 

3) Component of post-shaking deformations associated with void redistribution phenomena 

and driven by static shear stresses; 

Therefore, any lateral spreading procedure needs characterize the initial static shear stress in order 

to accurately predict lateral spreading displacement. 
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APPENDIX A 

INFLUENCE OF (N1)60 AND DEPTH ON THE MAGNITUDE 

CORRECTED PEAK GROUND ACCELERATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure A.1. Plots showing the influence of (a) (N1)60 on PGAM and (b) Depth BGS on PGAM – San Francisco, CA. 
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Figure A.1. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Los Angeles, CA. 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

IB – PGAM vs SPT 

P
G

A
M

 

Depth (m) 

P
G

A
M

 

IB – PGAM vs Depth 

Depth (m) 

P
G

A
M

 

CEA – PGAM vs Depth CEA – PGAM vs SPT 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

P
G

A
M

 

(a) (b) 



 

 

350 

 

Figure A.2. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Charleston, SC. 
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Figure A.3. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Seattle, WA. 
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Figure A.4. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Portland, OR. 
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Figure A.5. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Eureka, CA. 
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Figure A.6. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Memphis, TN. 
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Figure A.7. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Aberdeen, WA. 
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Figure A.8. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Pacific City, OR. 
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Figure A.9. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Coos Bay, OR. 
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Figure A.10. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Forks, WA. 
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Figure A.11. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Olympia, WA. 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

IB – PGAM vs SPT 

P
G

A
M

 

Depth (m) 

P
G

A
M

 

IB – PGAM vs Depth 

Depth (m) 

P
G

A
M

 

CEA – PGAM vs Depth CEA – PGAM vs SPT 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

P
G

A
M

 

(a) (b) 



 

 

360 

 

Figure A.12. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – San Jose, CA. 
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Figure A.13. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Reno, NV. 
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Figure A.14. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Salt Lake City, UT. 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

IB – PGAM vs SPT 

P
G

A
M

 

Depth (m) 

P
G

A
M

 

IB – PGAM vs Depth 

Depth (m) 

P
G

A
M

 

CEA – PGAM vs Depth CEA – PGAM vs SPT 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

P
G

A
M

 

(a) (b) 



 

 

363 

 

Figure A.15. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – San Diego, CA. 
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Figure A.16. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Provo, UT. 
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Figure A.17. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Sacramento, CA. 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

IB – PGAM vs SPT 

P
G

A
M

 

Depth (m) 

P
G

A
M

 

IB – PGAM vs Depth 

Depth (m) 

P
G

A
M

 

CEA – PGAM vs Depth CEA – PGAM vs SPT 

SPT Resistance, (𝑵𝟏)𝟔𝟎 

P
G

A
M

 

(a) (b) 



 

 

366 

 

Figure A.18. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Medford, OR. 
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Figure A.19. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Avila Beach, CA. 
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Figure A.20. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Eugene, OR. 
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Figure A.21. Plots showing the influence of (a) (N1)60 on PGAM and (b) Depth BGS on PGAM – Irvine, CA. 
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Figure A.22. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Oroville Dam, CA. 
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Figure A.23. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Shasta Dam, CA. 
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Figure A.24. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Seven Oaks Dam, CA. 
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Figure A.25. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Mossyrock Dam, WA. 
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Figure A.26. Plots showing the influence of (a) (𝑵𝟏)𝟔𝟎 on PGAM and (b) Depth BGS on PGAM – Paducah, KY.
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APPENDIX B 

LINEAR REGRESSION EQUATIONS USED TO DEVELOP 

NORMALIZED PGAM AS A FUNCTION OF (N1)60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table B.1. Linear Regression equations of the CEA2004 calculated PGAM as a function of (𝑵𝟏)𝟔𝟎 for returns periods of 475, 2475, and 

4975 years at depths of 1.05 m., 2m., 4m., 6m., 10m., and 15 m. for Charleston, SC. 

 
 

Table B.2. Linear Regression equations of the CEA2004 calculated PGAM as a function of (𝑵𝟏)𝟔𝟎 for returns periods of 475, 2475, and 

4975 years at depths of 1.05 m., 2m., 4m., 6m., 10m., and 15 m. for Eureka, CA. 

 

 

Table B.3. Linear Regression equations of the IB2012 calculated PGAM as a function of (𝑵𝟏)𝟔𝟎 for returns periods of 475, 2475, and 4975 

years at depths of 1.05 m., 2m., 4m., 6m., 10m., and 15 m. for Charleston, SC. 

 
 

Table B.4. Linear Regression equations of the IB2012 calculated PGAM as a function of (𝑵𝟏)𝟔𝟎 for returns periods of 475, 2475, and 4975 

years at depths of 1.05 m., 2m., 4m., 6m., 10m., and 15 m. for Eureka, CA. 

 

 

 

CEA2004

Tr 1.05m 2m 4m 6m 10m 15m

475 y = 0.000207125x + 0.098988818 y = 0.000192489x + 0.112546953 y = -0.000431879x + 0.123745621 y = -0.000232813x + 0.118452604 y = 0.000033194x + 0.110520733 y = 0.000295851x + 0.101541119

2475 y = 0.000829883x + 0.382290240 y = 0.000698260x + 0.436640860 y = -0.001799788x + 0.482165817 y = -0.001014163x + 0.462958801 y = -0.000293033x + 0.443696727 y = 0.000925155x + 0.413852989

4975 y = 0.001185570x + 0.537233322 y = 0.001074016x + 0.611826670 y = -0.002467457x + 0.677550843 y = -0.001497980x + 0.653092213 y = -0.000430252x + 0.624068105 y = 0.001464547x + 0.578425894

Depth

CEA2004

Tr 1.05m 2m 4m 6m 10m 15m

475 y = 0.000899702x + 0.433241303 y = 0.000812922x + 0.493015552 y = -0.001863553x + 0.541239919 y = -0.001259947x + 0.523776418 y = -0.000022948x + 0.490249387 y = 0.001286465x + 0.449769180

2475 y = 0.001829866x + 0.932891992 y = 0.001628622x + 1.065030843 y = -0.004924832x + 1.186619847 y = -0.003639497x + 1.153839508 y = -0.001339909x + 1.110904427 y = 0.001091698x + 1.081716283

4975 y = 0.002211356x + 1.166814067 y = 0.001808600x + 1.333892536 y = -0.006662863x + 1.493589735 y = 0.011706503x + 1.388198505 y = 0.016158706x + 1.291727195 y = -0.002831593x + 1.532781451

Depth

IB2012

Tr 1.05m 2m 4m 6m 10m 15m

475 y = 0.00000080x + 0.15395150 y = -0.00000091x + 0.15374382 y = 0.00036483x + 0.14788398 y = 0.00028041x + 0.14847250 y = -0.00002177x + 0.15100467 y = -0.00028440x + 0.15217557

2475 y = -0.00002571x + 0.54087651 y = -0.00002425x + 0.54138482 y = 0.00086445x + 0.52263629 y = 0.00102640x + 0.50767929 y = 0.00037790x + 0.54161305 y = -0.00055313x + 0.58380985

4975 y = -0.00003310x + 0.74891214 y = -0.00009068x + 0.75144142 y = 0.00103891x + 0.72824580 y = 0.00101258x + 0.70773497 y = 0.00070962x + 0.75140250 y = -0.00061681x + 0.82134928

Depth

IB2012

Tr 1.05m 2m 4m 6m 10m 15m

475 y = 0.00001107x + 0.60101243 y = 0.00001037x + 0.60161852 y = 0.00093968x + 0.58102815 y = 0.00098332x + 0.56494950 y = 0.00037538x + 0.60125866 y = -0.00051197x + 0.64788425

2475 y = 0.00007561x + 1.28191581 y = -0.00022922x + 1.29297426 y = 0.00190336x + 1.25472404 y = 0.00192773x + 1.21527126 y = 0.00133175x + 1.31316932 y = -0.00053500x + 1.47728215

4975 y = 0.00018541x + 1.59986016 y = -0.00013248x + 1.61362027 y = 0.00177442x + 1.58261935 y = 0.00264650x + 1.51899089 y = 0.00203577x + 1.64700606 y = -0.00019860x + 1.87290102

Depth



APPENDIX C 

 INFINITE SLOPE MODELS - COMPARISON OF INFINITE 

SLOPE EQUILIBRIUM EQUATIONS TO PLAXIS OUPUT 
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Soil Element 2 

 Soil Element 2 is located at the model coordinates (x,y) = (-384,-20) meters which 

corresponds to the center of an element at the ground surface (see Figure C.1) All 12 stress points 

for Soil Element 2 are plastic and the PLAXIS and ISEE stress results are shown in Table C.1. 

Examining the percent error in Table C.1, one can see the 𝜎𝑦𝑦 values between the PLAXIS and 

ISEE results have a percent error of approximately 1-6%. The 𝜎𝑥𝑦 and 𝑆𝑆𝑅 are significantly 

different as indicated by percent error values ranging from over 200% to 1000%.  

 

Figure C.1. Shear stress color contour for the three-degree infinite slope model in the region of 

Soil Element 2. 

 

 

 

 

 

 

 

 

y = -35 m 

15 m 
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Table C.1. Comparison of PLAXIS and ISEE stresses for Soil Element 2 of the three-degree 

infinite slope. 

 

Soil Element 3 

Soil Element 3 is located at the model coordinates (x,y) = (343,18) meters which 

corresponds to the center of the element at the ground surface (see Figure C.2). Six of the 12 stress 

points are considered elastic and the other six considered plastic. The shear stress in Figure C.2 is 

“jumping” between approximately -1 kPa and 3 kPa in just Soil Element 3 which is approximately 

3 meters in width at the ground surface. Plastic points are shown in Figure C.3 in the Soil Element 

3 region. 

Stress point  x (m) y (m) yGS (m)
yBGS 

(m)
σyy (kPa)

σxy 

(kPa)
SSR σyy (kPa) σxy (kPa) SSR σyy σxy SSR

3817 -383.769 -22.540 -20.112 -2.427 -41.645 -8.122 0.195 -41.208 -2.160 0.052 1.061% 276.097% 272.147%

3818 -382.721 -20.233 -20.058 -0.175 -3.138 -1.523 0.485 -2.977 -0.156 0.052 5.417% 876.290% 826.122%

3819 -385.079 -20.356 -20.181 -0.175 -3.017 -1.517 0.503 -2.977 -0.156 0.052 1.363% 872.511% 859.432%

3820 -383.829 -21.509 -20.116 -1.393 -23.910 -5.119 0.214 -23.647 -1.239 0.052 1.113% 313.019% 308.474%

3821 -383.503 -20.791 -20.099 -0.693 -11.934 -3.014 0.253 -11.757 -0.616 0.052 1.505% 389.227% 381.972%

3822 -384.237 -20.830 -20.137 -0.693 -11.968 -3.086 0.258 -11.757 -0.616 0.052 1.797% 400.887% 392.046%

3823 -383.434 -21.863 -20.095 -1.768 -30.315 -6.186 0.204 -30.017 -1.573 0.052 0.994% 293.262% 289.390%

3824 -383.012 -20.935 -20.073 -0.862 -14.778 -3.433 0.232 -14.637 -0.767 0.052 0.963% 347.599% 343.328%

3825 -383.428 -20.242 -20.095 -0.148 -2.651 -1.480 0.558 -2.508 -0.131 0.052 5.715% 1026.093% 965.218%

3826 -384.376 -20.292 -20.144 -0.148 -2.583 -1.454 0.563 -2.508 -0.131 0.052 3.014% 1006.174% 973.807%

3827 -384.709 -21.024 -20.162 -0.862 -14.893 -3.613 0.243 -14.637 -0.767 0.052 1.749% 370.972% 362.875%

3828 -384.182 -21.902 -20.134 -1.768 -30.305 -6.161 0.203 -30.017 -1.573 0.052 0.961% 291.658% 287.930%

Percent ErrorLocation Information PLAXIS Output ISEE
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Figure C.2. Shear stress distribution for the three-degree infinite slope model in the region of Soil 

Element 3. 

 

 

Figure C.3. Plastic points in the region of Soil Element 3 for the three-degree infinite slope. 
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y = 4 m 

14 m 

x = 369 m x = 326 m 
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Table C.2 shows the PLAXIS and ISEE results. Examining the percent error in Table C.2 one can 

see the 𝜎𝑦𝑦 values between the PLAXIS and ISEE results have a percent error of approximately 

6% to 57%. The 𝜎𝑥𝑦 and 𝑆𝑆𝑅 are significantly different as indicated by percent error values typical 

ranging in the hundreds of percent. There was no clear difference between the stress results for the 

six elastic and plastic stress points.  

Table C.2. Comparison of PLAXIS and ISEE stresses for Soil Element 3 of the three-degree 

infinite slope. 

 
 

Soil Element 4 

Soil Element 4 is located at the model coordinates (x,y) = (0,-22.23) which corresponds to the top 

center of the element (see Figure C.4). Because Soil Element 4 is at the center of the model it 

should be less likely to be influenced by boundary conditions when compared to Soil Elements 2 

and 3. Soil Element 4 has all elastic stress points and Table C.3 shows the PLAXIS and ISEE 

results for each stress point. Examining the percent error in Table C.3, one can see the 𝜎𝑦𝑦 values 

are very similar between the PLAXIS and ISEE results (just like Soil Element 1 which was also at 

the center of the model). The 𝜎𝑥𝑦 and 𝑆𝑆𝑅 values are significantly different between the PLAXIS 

and ISEE results as indicated by percent error values of about 63.5% for each stress point. 

Stress point  x (m) y (m) yGS (m)
yBGS 

(m)
σyy (kPa)

σxy 

(kPa)
SSR σyy (kPa) σxy (kPa) SSR σyy σxy SSR

3793 343.334 15.566 17.993 -2.427 -45.953 3.035 -0.066 -41.207 -2.160 0.052 11.518% 240.557% 226.040%

3794 344.382 17.873 18.048 -0.175 -3.499 -0.960 0.274 -2.974 -0.156 0.052 17.644% 515.892% 423.523%

3795 342.024 17.750 17.925 -0.175 -4.685 1.045 -0.223 -2.974 -0.156 0.052 57.523% 770.420% 525.601%

3796 343.274 16.597 17.990 -1.393 -25.004 -0.140 0.006 -23.645 -1.239 0.052 5.748% 88.665% 89.281%

3797 343.600 17.315 18.007 -0.692 -13.281 -0.746 0.056 -11.755 -0.616 0.052 12.987% 21.057% 7.142%

3798 342.866 17.276 17.969 -0.692 -12.583 0.133 -0.011 -11.755 -0.616 0.052 7.049% 121.574% 120.154%

3799 343.670 16.243 18.011 -1.768 -32.954 1.184 -0.036 -30.015 -1.573 0.052 9.791% 175.297% 168.583%

3800 344.091 17.171 18.033 -0.862 -13.739 -1.175 0.086 -14.634 -0.767 0.052 6.121% 53.226% 63.216%

3801 343.676 17.864 18.011 -0.148 -3.035 0.197 -0.065 -2.505 -0.131 0.052 21.169% 249.898% 223.710%

3802 342.727 17.814 17.962 -0.148 -1.095 0.203 -0.185 -2.505 -0.131 0.052 56.305% 254.347% 453.239%

3803 342.394 17.082 17.944 -0.862 -16.262 1.980 -0.122 -14.634 -0.767 0.052 11.124% 358.105% 332.267%

Percent ErrorLocation Information PLAXIS Output ISEE
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Figure C.4. Shear stress distribution for the three-degree infinite slope model in the region of Soil 

Element 4. 

 
Table C.3. Comparison of PLAXIS and ISEE stresses for Soil Element 4 of the three-degree 

infinite slope. 

 
 

 

 

 

 

Stress point  x (m) y (m) yGS (m)
yBGS 

(m)
σyy (kPa)

σxy 

(kPa)
SSR σyy (kPa) σxy (kPa) SSR σyy σxy SSR

8713 -0.141 -22.580 -0.007 -22.573 -383.702 -7.327 0.019 -383.210 -20.083 0.052 0.128% 63.516% 63.563%

8714 -1.189 -24.887 -0.062 -24.825 -421.978 -8.044 0.019 -421.442 -22.087 0.052 0.127% 63.582% 63.628%

8715 1.169 -24.763 0.061 -24.825 -421.995 -8.004 0.019 -421.442 -22.087 0.052 0.131% 63.761% 63.808%

8716 -0.081 -23.611 -0.004 -23.607 -401.287 -7.648 0.019 -400.772 -21.004 0.052 0.129% 63.588% 63.635%

8717 -0.407 -24.329 -0.021 -24.308 -413.191 -7.870 0.019 -412.662 -21.627 0.052 0.128% 63.608% 63.654%

8718 0.326 -24.290 0.017 -24.308 -413.196 -7.858 0.019 -412.662 -21.627 0.052 0.130% 63.664% 63.711%

8719 -0.477 -23.257 -0.025 -23.232 -394.906 -7.538 0.019 -394.402 -20.670 0.052 0.128% 63.531% 63.578%

8720 -0.898 -24.185 -0.047 -24.138 -410.304 -7.826 0.019 -409.782 -21.476 0.052 0.127% 63.558% 63.604%

8721 -0.483 -24.878 -0.025 -24.852 -422.452 -8.040 0.019 -421.911 -22.111 0.052 0.128% 63.638% 63.684%

8722 0.466 -24.828 0.024 -24.852 -422.459 -8.024 0.019 -421.911 -22.111 0.052 0.130% 63.709% 63.756%

8723 0.798 -24.096 0.042 -24.138 -410.316 -7.798 0.019 -409.782 -21.476 0.052 0.130% 63.690% 63.738%

8724 0.271 -23.218 0.014 -23.232 -394.911 -7.525 0.019 -394.402 -20.670 0.052 0.129% 63.592% 63.639%

Percent ErrorLocation Information PLAXIS Output ISEE

x = -45 m x = 45 m 

y = -22 m 
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APPENDIX D 

CODES FOR DEVELOPMENT OF PREDICTIVE STRESS 

FUNCTION 
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Code “load data” 

% Load Plaxis Output data 

clc 

clear all 

  

MainDirectory='C:\Users\Ryan_\Desktop\PLHA 

Kramer\Lateral_Spreading\PLAXIS2D\Calculations\Matlab_testing\Excel_Database_MC'; 

 

[~,~,Filenames]=xlsread('Filenames.xlsx'); 

  

% Filesnames is an Excel file that stores the geometry names in the form of "12.xlsx" for example. 

  

for a=[61,62,63,64,65,66,67,68,69,70,71,72,73,74] 

% "a" represents the name of each geometry, e.g., 12 is geometry 5-0-5-0 

    Present_filename=Filenames{a}; 

    File2Read=fullfile(MainDirectory,Present_filename); 

    [values, text, raw] = xlsread(File2Read,1,'D:J'); 

    Cell_data_table{:,:,a}=values;  

% Creating multiple tables laterally stacked 

end 

  

ALL_values=Cell_data_table{:,:,61}; 

% all other i's except the first that are included in "a" 

 

for i=[62,63,64,65,66,67,68,69,70,71,72,73,74] 

        temp_values=Cell_data_table{:,:,i}; 

        ALL_values=[ALL_values;temp_values]; 

end 

  

% Cell data table = each geometry individually stacked into multiple tables 

% ALL_values = all of the geometires specified by "a" vertically concatenated into one table 

% ALL_values=[ALL_values;temp_values]; is what stacks it vertically as indicated by the semicolon 
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Code “Coordinate Transformation” 

% Calculate dimensionless coordinates and normalize stresses 

clear all 

clc 

  

% If desire to vertically concatenate all PLAXIS output data from each geometry and then calculate delta, eta, norm shear stress, etc. 

then load "All_values.mat" 

  

% To load all files load "All_values_ALL" instead. 

  

% For MC 

load('MC_All_values.mat'); 

  

% If desire to create plots of each geometry individually, e.g. norm. stress vs delta or eta vs norm. stress then load 

"Cell_data_table.mat" 

  

% To load all files load "Cell_data_table_ALL" 

  

% For MC 

load('MC_Cell_data_table.mat'); 

  

load('geom_values.mat'); 

% Loads the geometry parameters for each geometry such as the height of the slope 

 

geo=geom_values; 

% change to "geo" to shorten the commands later 

  

gamma = 17; 

% Unit weight 

  

multiple_geomrun=0; 

% If only a single geometry is desired in the output "data_table" type any # but "1" below, and if it is desired to have multiple    

%geometries included in the "data_table" then type 1 below 
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for i=[74] 

    if multiple_geomrun==1 

        geomdata=ALL_values; 

    else 

        geomdata=ALL_values(ALL_values(:,1)==i,:); 

    end 

         

    data_table = array2table(geomdata,'variablenames',{'ID','X','Y','s_xx','s_yy','s_zz','s_xy'}); 

    % Adding columns of new variables to table 

    data_table.Y_pos = (data_table.Y*(-1)); 

    data_table.s_yy_pos = (data_table.s_yy*(-1)); 

    data_table.delta = (data_table.X.*(tand(geo(i,6))))./(geo(i,4)); 

     

    y0_1 = data_table.X.*(tand(geo(i,5))); 

    % don't make -X in yo_1 since X is already negative if left of (0,0) 

 

    y0_2 = (-1)*data_table.X.*(tand(geo(i,6))); 

    y0_3 = ((-1)*(geo(i,4)))-((data_table.X-(geo(i,9))).*(tand(geo(i,7)))); 

    % yo_2 and yo_3 are not inherently negative because the PLAXIS does not output the negative y value so you have to add a (-1) in          

%     yo_2 and yo_3 

     

    % Using the proper eta values based on the location "x" with respect to the toe of the slope 

    eta = zeros(length(y0_1),1); 

    index1 = find(data_table.X <= 0); 

    eta(index1) = ((data_table.Y_pos(index1))-(y0_1(index1)))./(geo(i,4)); 

     

    index2 = find((data_table.X > 0 & data_table.X <= (geo(i,9))));  

    eta(index2) = ((data_table.Y_pos(index2))-(y0_2(index2)))./(geo(i,4)); 

     

    index3 = find(data_table.X > (geo(i,9))); 

    eta(index3) = ((data_table.Y_pos(index3))-(y0_3(index3)))./(geo(i,4)); 

     

    data_table.eta = eta; 



 

 

387 

     

    % Normalizing the vertical eff. stress and shear stress by gamma*H 

    data_table.s_yy_norm = data_table.s_yy_pos./((geo(i,4))*gamma); 

     

    data_table.s_xy_norm = data_table.s_xy./((geo(i,4))*gamma); 

end 
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Code “Mapping Stresses to Regular Grid” 

clear all 

% Important to update filename, output textfile to proper file directory, slope angles, and slope height 

  

% Example loading of a geometry 

load c:\ryan\MC\H1_a0_B25_T5.mat; 

  

% Enter slope angles based on file names loaded theta_one = alpha, theta_two = beta, and theta_three = theta 

height = 1; 

theta_one = 0;                   

theta_two = 25; 

% theta_three = 0.00000001;                                                 

% if geometry has a theta_three = 0 use 0.00000001 for computational reasons 

theta_three = 5; 

  

ryan = table2array(data_table);                                              % Change .mat file to array (remove headers) 

  

% Assign variables to columns 

delta = ryan(:,10); 

eta = ryan(:,11); 

sig = ryan(:,12); 

tau = ryan(:,13); 

ratio = tau./sig; 

nn = size(eta); 

n = nn(1,1);                                                                % length of vectors 

etamin = 0;                                                                  % lower bound eta for grid 

etamax = 3;                                                                  % upper bound eta for grid 

deltamin = -8;                                                               % lower bound delta for grid 

deltamax = 8;                                                               % upper bound delta for grid 

n_eta = 200;                                                                 % number of eta subdivisions for grid 

n_delta = 320;                                                              % number of delta subdivisions for grid 

eta_grid = (etamin:(etamax-etamin)/n_eta:etamax);               % define eta values for grid 

delta_grid = (deltamin:(deltamax-deltamin)/n_delta:deltamax);              % define delta values for grid 
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[roww1,coll]=find(isinf(ratio));                                            % Set "Inf" values to some value (Usually 0 or only a few) 

ratio(roww1,1)=0; 

[roww2,coll]=find(isnan(ratio));                                            % Set "NaN" values to some values, e.g. 0 (Usually 0 or only a few) 

ratio(roww2,1)=0; 

  

p = 8;                                                                       % exponent for IDW factors 

radius = 2;                                                                  % distance beyond which weighting factors set to zero 

for i=1:n_delta                                                              % loop over all delta values 

    for j=1:n_eta                                                            % loop over all eta values 

        den = 0;                                                             % set denominator of weighting factor summation to zero 

        sig_grid(i,j) = 0;                                                   % set initial value of sigma summation to zero 

        tau_grid(i,j) = 0;                                                   % set initial value of tau summation to zero 

        ratio_grid(i,j) = 0;                                                % set initial value of ratio summation to zero 

        for k=1:n                                                            % loop over all PLAXIS stress point values 

            dist(k,1) = sqrt((eta(k,1)-eta_grid(1,j))^2+(delta(k,1)-delta_grid(1,i))^2);  

% calculate distance from grid point (i,j) in delta, eta space 

            if dist(k,1) < radius 

                den = den + dist(k,1)^-p;                                   % carry out summation for denominator in IDW factor expression 

            else 

                den = den; 

            end 

        end 

        for k=1:n 

            if dist(k,1) < radius 

                w(k,1) = dist(k,1)^-p/den;                                  % compute weighting factor for each PLAXIS stress point 

            else 

                w(k,1) = 0; 

            end 

        end 

  

        for k=1:n 
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            sig_grid(i,j) = sig_grid(i,j)+w(k,1)*sig(k,1);          % sum up weighted vertical stress values 

            tau_grid(i,j) = tau_grid(i,j)+w(k,1)*tau(k,1);         % sum up weighted shear stress values 

            ratio_grid(i,j) = ratio_grid(i,j)+w(k,1)*ratio(k,1);    % sum up weighted stress ratio values 

        end 

        xx = [i j delta_grid(i) eta_grid(j) sig_grid(i,j) tau_grid(i,j)]    % set up array to be displayed during calculations (can be deleted) 

        disp(xx)                                                              % display values during calculations (can be deleted) 

    end 

end 

  

figure(1) 

mesh(eta_grid(1,1:n_eta),delta_grid(1,1:n_delta),tau_grid)           % shear stress values at grid points 

title('Shear stress grid') 

  

figure(2) 

mesh(eta_grid(1,1:n_eta),delta_grid(1,1:n_delta),sig_grid)          % vertical stress values at grid points 

title('Vertical stress grid') 

  

figure(3) 

mesh(eta_grid(1,1:n_eta),delta_grid(1,1:n_delta),ratio_grid)        % vertical stress values at grid points 

title('Stress ratio grid') 

  

figure(4) 

scatter3(eta,delta,tau,'.')                                                  % shear stress values at PLAXIS stress points 

ylim([deltamin deltamax]) 

xlim([etamin etamax]) 

zlim([-0.12 0.12]) 

title('Shear stress data') 

  

figure(5) 

scatter3(eta,delta,sig,'.')                                                  % normal stress values at PLAXIS stress points 

ylim([deltamin deltamax]) 

xlim([etamin etamax]) 

zlim([0 5]) 
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title('Normal stress data') 

  

figure(6) 

scatter3(eta,delta,ratio,'.')                                                % stress ratio values at PLAXIS stress points 

ylim([deltamin deltamax]) 

xlim([etamin etamax]) 

title('Stress ratio data') 

  

figure(7)                                                                     % shear stress vs delta at different shallow eta 

plot(delta_grid(1,1:n_delta),tau_grid(:,1),delta_grid(1,1:n_delta),tau_grid(:,4),delta_grid(1,1:n_delta),tau_grid(:,7),delta_grid(1,1:n_de

lta),tau_grid(:,10),delta_grid(1,1:n_delta),tau_grid(:,15)) 

  

figure(8)                                                                     % shear stress vs delta down to larger eta's (from eta = 0 to eta = 3) 

plot(delta_grid(1,1:n_delta),tau_grid(:,1),delta_grid(1,1:n_delta),tau_grid(:,15),delta_grid(1,1:n_delta),tau_grid(:,35),delta_grid(1,1:n_

delta),tau_grid(:,68),delta_grid(1,1:n_delta),tau_grid(:,101),delta_grid(1,1:n_delta),tau_grid(:,135),delta_grid(1,1:n_delta),tau_grid(:,1

68),delta_grid(1,1:n_delta),tau_grid(:,200)) 

  

figure(9)                                                                     % stress ratio vs delta at different shallow eta 

plot(delta_grid(1,1:n_delta),ratio_grid(:,1),delta_grid(1,1:n_delta),ratio_grid(:,4),delta_grid(1,1:n_delta),ratio_grid(:,7),delta_grid(1,1:

n_delta),ratio_grid(:,10),delta_grid(1,1:n_delta),ratio_grid(:,15)) 

  

figure(10)                                                                    % stress ratio vs delta down to larger eta's (from eta = 0 to eta = 3) 

plot(delta_grid(1,1:n_delta),ratio_grid(:,1),'r',delta_grid(1,1:n_delta),ratio_grid(:,15),'g',delta_grid(1,1:n_delta),ratio_grid(:,35),'b',delta

_grid(1,1:n_delta),ratio_grid(:,68),'m',delta_grid(1,1:n_delta),ratio_grid(:,101),'k',delta_grid(1,1:n_delta),ratio_grid(:,135),'--

r',delta_grid(1,1:n_delta),ratio_grid(:,168),'--g',delta_grid(1,1:n_delta),ratio_grid(:,200),'--b') 

ylim([-0.15,0.2]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

legend({'eta = 0','eta = 0.21','eta = 0.51','eta = 1.005','eta = 1.5','eta = 2.01','eta = 2.505','eta = 3'},'Location','southwest') 

  

figure(11)                                                                    % stress ratio vs delta down to larger eta's (from eta = 0 to eta = 3) 

plot(delta_grid(1,1:n_delta),ratio_grid(:,35),'b',delta_grid(1,1:n_delta),ratio_grid(:,68),'m',delta_grid(1,1:n_delta),ratio_grid(:,101),'k',d

elta_grid(1,1:n_delta),ratio_grid(:,135),'--r',delta_grid(1,1:n_delta),ratio_grid(:,168),'--g',delta_grid(1,1:n_delta),ratio_grid(:,200),'--b') 
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xlim([-1.5 1.5]) 

ylim([-0.08,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

legend({'eta = 0.51','eta = 1.005','eta = 1.5','eta = 2.01','eta = 2.505','eta = 3'},'Location','southwest') 

  

  

load c:\ryan\delta_target.txt                                              % define final grid (reduced size) 

load c:\ryan\eta_target.txt                                                 % for eta down to 3 

  

for i = 1:length(delta_target) 

    for j = 1:length(eta_target) 

        sig1(i,j) = sig_grid(delta_target(i),eta_target(j)); 

        tau1(i,j) = tau_grid(delta_target(i),eta_target(j)); 

        ratio1(i,j) = ratio_grid(delta_target(i),eta_target(j)); 

    end 

end 

figure(12) 

mesh(eta_target(:,1),delta_target(:,1),tau1)                         % shear stress values at final grid points 

title('Shear stress - reduced grid') 

  

figure(13) 

mesh(eta_target(:,1),delta_target(:,1),sig1)                        % shear stress values at final grid points 

title('Normal stress - reduced grid') 

  

figure(14) 

mesh(eta_target(:,1),delta_target(:,1),ratio1)                    % shear stress values at final grid points 

title('Stress ratio - reduced grid') 

  

for i = 1:length(delta_target)                                            % put data for optimization in array that can be written to text file 

    for j = 1:length(eta_target) 

        k = (i-1)*length(eta_target)+j; 

        xxx(k,1) = delta_grid(delta_target(i,1)); 
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        xxx(k,2) = eta_grid(eta_target(j,1)); 

        xxx(k,3) = sig1(i,j); 

        xxx(k,4) = tau1(i,j); 

        xxx(k,5) = ratio1(i,j); 

        xxx(k,6) = theta_one; 

        xxx(k,7) = theta_two; 

        xxx(k,8) = theta_three; 

        xxx(k,9) = height; 

    end 

end 

  

fid = fopen('c:\ryan\MC\Optimization\RRresults\1_0_25_5\RRresults.txt','w');                                    % write results to RRresults.txt 

fprintf(fid,'%12.8f  %12.8f  %12.8f  %12.8f  %12.8f  %12.8f  %12.8f  %12.8f  %12.8f\n',xxx.'); 

fclose(fid); 
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Code “Moments” 

clear all 

close all 

format long 

load C:\ryan\MC\Optimization\RRresults\5_0_15_0\RRresults.txt                   % Read data in original format 

RRdelta = RRresults(:,1); 

RReta   = RRresults(:,2); 

RRratio = RRresults(:,5); 

nn = length(RRdelta); 

num = 0; 

minval = 0.01;                                   % May need to increase for theta3 > 0 geometries? 

maxval = 1-minval; 

delta_shift = 2;                                  % Allow delta values to be shifted to reduce COV (helps with beta function fit) 

  

  

for i=2:nn                                        % Find number of unique delta values delta values (e.g., 1 geometry then 91) 

    if RRdelta(i)-RRdelta(i-1) > 0.001 

        num = num+1; 

    end 

end 

m = num+1;                                       % Number of delta values 

n = nn/m;                                         % Number of eta values 

eta = RReta(1:n);                                % Vector of eta values 

  

dmax_shift = 1.6;                               % Allow max bound to be shifted to right (helps with beta function fit) 

dmin_shift = 1.8;                               % Allow min bound to be shifted left (helps with beta function fit) 

% dmax_shift and dmin_shift may be required to be functions of depth to obtain the best fit 

  

for i=1:m 

    nn=(n-1)/2+n.*(i-1);                         % nn jumps every 101 rows to find the next delta value (there are 101 of each unique delta) 

    delta(i) = RRdelta(nn) + delta_shift;        % Vector of delta values (shifted) 

end                                               
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count = 0; 

for i=1:n 

    if eta(i) < 0.5 

        count = count+1;                         % Find number of eta values < 0.5 to avoid plotting 

    end 

end 

  

for ii = 1:n 

    for jj = 1:m 

        ratio(ii,jj) = -RRratio((jj-1)*n+ii);     % Assemble ratio values in matrix form 

    end                                           % Cycling through j's first to fill out first 91 values in row 1 which is the first eta, then will fill out 

the 91 values of row 2 

end                                               % Note, stress ratio values are made negative, thus the stress ratio's we are looking at are now 

positive since PLAXIS ouputs negative values of the shear stress we were interested in 

  

cum_ratio = zeros(n,m);                           % creating a zero's matrix the same size as the ratio matrix (n,m) = (101x91) 

for i=1:n 

    for j=2:m 

        cum_ratio(i,j) = cum_ratio(i,j-1)+ratio(i,j);  % Cumulative ratio values (increasing left to right) 

    end                                                 

end                                                     

  

for i=1:n 

    for j=2:m 

        CDF(i,j) = cum_ratio(i,j)/cum_ratio(i,m);      % Normalize to produce data-based CDF  

    end                                                  %(i,m) gives the last value of the row, e.g., (1,91) which is the max value of the cumsum 

end 

  

for i=1:n 

    for j=2:m 

        PDF(i,j) = CDF(i,j)-CDF(i,j-1);                % Normalize to produce data-based PDF 

        if PDF(i,j) < 0 
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            PDF(i,j) = 0;                              % Eliminate negative PDF values (caused by negative CDF slopes) We no longer want 

negative values since we made "-ratio" earlier to give positive values that we are interested in 

        end 

    end 

end 

  

subplot(2,1,1) 

plot(delta,CDF(10,:),delta,CDF(20,:),delta,CDF(40,:),delta,CDF(80,:)) 

title('Data-based CDF') 

subplot(2,1,2) 

plot(delta,PDF(10,:),delta,PDF(20,:),delta,PDF(40,:),delta,PDF(80,:)) 

title('Data-based PDF') 

  

figure 

surf(PDF) 

title('Data-based PDF') 

  

for i=1:n                                               % Find left boundary at minval by linear interpolation 

    for j=2:m                                           % 0.01 could cause problems later if CDF goes above 0.01 then goes back below - can 

happen due to some larger positive shear stresses (and thus stress ratios) from PLAXIS 

        if (CDF(i,j-1)-minval)*(CDF(i,j)-minval) < 0   % Becomes > 0 when the first j value is > 0.01 --> everything before that j will 

give negative values! 

            nmin(i) = j;                               % index j when CDF for a certain eta, i, is at the min bound, i.e. just greater than 0.01 

            fraction(i) = (minval-CDF(i,nmin(i)-1))/(CDF(i,nmin(i)) - CDF(i,nmin(i)-1));    % part of linear interpolatiom 

            dmin(i) = delta(nmin(i)-1)+fraction(i)*(delta(nmin(i))-delta(nmin(i)-1));       % the rest of the linear interpolation 

            dmin_noshift(i) = dmin(i);                                                      % Not shifted yet 

            dmin(i) = dmin(i)-dmin_shift; 

        end 

    end 

end 

  

for i=1:n                                              % Find right boundary at maxval (0.99 for now) by linear interpolation 

    for j=2:m 
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        if (CDF(i,j-1)-maxval)*(CDF(i,j)-maxval) < 0 

            nmax(i) = j; 

            fraction(i) = (maxval-CDF(i,nmax(i)-1))/(CDF(i,nmax(i)) - CDF(i,nmax(i)-1)); 

            dmax(i) = delta(nmax(i)-1)+fraction(i)*(delta(nmax(i))-delta(nmax(i)-1)); 

            dmax_noshift(i) = dmax(i); 

            dmax(i) = dmax(i)+dmax_shift; 

        end 

    end 

end  

     

figure 

plot(dmin,eta,dmax,eta,dmin_noshift,eta,dmax_noshift,eta) 

title('Lower and upper bounds') 

set(gca, 'YDir','reverse') 

  

mean1 = zeros(n,1);                                      % Calculate mean value of delta based on data 

stdevv1 = zeros(n,1); 

for i=1:n                                                % remember n = 101 and m = 91 

    sum = 0; 

    for j=1:m 

%         if delta(j) < dmin(j) 

%             value(i,j) = 0; 

%             sum = sum+value(i,j); 

%         elseif delta(j) > dmax(j) 

%             value(i,j) = 0; 

%             sum = sum+value(i,j); 

%         else         

        value(i,j) = PDF(i,j).*delta(j);                 % Mean calculation - 1st moment 

        sum = sum+value(i,j); 

%         end  

    end 

    mean_data(i) = sum; 

end 
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for i=1:n                                                % Calculate standard deviation of delta based on data 

    sum = 0; 

    for j=1:m 

%         if delta(j) < dmin(j) 

%             value(i,j) = 0; 

%             sum = sum+value(i,j); 

%         elseif delta(j) > dmax(j) 

%             value(i,j) = 0; 

%             sum = sum+value(i,j); 

%         else 

        value(i,j) = PDF(i,j).*(delta(j)-mean_data(i))^2; 

        sum = sum+value(i,j); 

%         end 

    end 

    sigma_data(i) = sqrt(sum);                          % This would be the 2nd moment which is the variance, thus to get stan. dev. it needed 

to have the square root taken 

end 

         

for i=1:n                                                 % Calculate skewness of delta based on data - 3rd moment 

    sum = 0; 

    for j=1:m 

        value(i,j) = PDF(i,j).*(delta(j)-mean_data(i))^3; 

        sum = sum+value(i,j);                             % Third central moment 

    end                                                    % Pearson's moment coefficient of skewness 

    skew_data(i) = sum./sigma_data(i).^3;                % Skewness coefficient based on data 

end 

         

figure 

subplot(1,2,1) 

plot(mean_data,eta) 

title('Mean vs eta') 

set(gca, 'YDir','reverse') 
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subplot(1,2,2) 

plot(sigma_data,eta) 

title('Stdev vs eta') 

set(gca, 'YDir','reverse') 

         

for i=1:n 

    part1(i) = (mean_data(i)-dmin(i))/(dmax(i)-dmin(i));    % Note that the shift bounds are used to calculate alpha and beta! 

    part2(i) = 1- part1(i); 

    part3(i) = sigma_data(i).^2./(dmax(i)-dmin(i))^2;        

    alpha(i) = part1(i).^2.*part2(i)./part3(i)-part1(i); 

    beta(i) = part1(i).*part2(i)./part3(i)-alpha(i); 

end 

  

for i=1:n 

    mean_pred(i) = dmin(i)+alpha(i).*(dmax(i)-dmin(i))./(alpha(i)+beta(i));     % predicted mean 

    sigma_pred(i) = sqrt(alpha(i).*beta(i).*(dmax(i)-dmin(i)).^2./((alpha(i)+beta(i)).^2.*(alpha(i)+beta(i)+1)));   % predicted stan. dev. 

    skew_pred(i) = 2.*(beta(i)-alpha(i))*sqrt(alpha(i)+beta(i)+1)./((alpha(i)+beta(i)+2).*sqrt(alpha(i)*beta(i)));  % predicted skewness 

end 

  

figure 

subplot(1,3,1) 

plot(mean_data,eta,'o',mean_pred,eta) 

title('Mean vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,2) 

plot(sigma_data,eta,'o',sigma_pred,eta) 

title('Stdev vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,3) 

plot(skew_data,eta,'o',skew_pred,eta) 

title('Skew vs eta') 

set(gca, 'YDir','reverse') 
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for i = 1:n 

    alphabeta(i) = alpha(i)./beta(i); 

end 

figure 

subplot(1,3,1) 

plot(alpha,eta) 

title('Alpha vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,2) 

plot(beta,eta) 

title('Beta vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,3) 

plot(alphabeta,eta) 

title('Alpha/Beta vs eta') 

set(gca, 'YDir','reverse') 

  

figure 

subplot(1,3,1) 

plot(alpha,eta,'o') 

title('Alpha vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,2) 

plot(beta,eta,'o') 

title('Beta vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,3,3) 

plot(alphabeta,eta,'o') 

title('Alpha/Beta vs eta') 

set(gca, 'YDir','reverse') 

  

eta_fit = eta(count+1:n); 

alpha_fit = alpha(count+1:n); 
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beta_fit = beta(count+1:n); 

dmin_noshift_fit = dmin_noshift(count+1:n); 

dmax_noshift_fit = dmax_noshift(count+1:n); 

  

for i=1:n 

    for j=1:m 

        if delta(j) < dmin(i) 

            RR(i,j) = 0; 

        elseif delta(j) > dmax(i) 

            RR(i,j) = 0; 

        else 

            RR(i,j) = (delta(j)-dmin(i))^(alpha(i)-1)*(dmax(i)-delta(j))^(beta(i)-1);   % this is betafunc w/o amplitude 

        end 

    end 

end 

  

r20 = ratio(20,:);                                           % Create plots of normalized ratio to check shapes 

r40 = ratio(40,:); 

r80 = ratio(80,:);                                           % r is the PLAXIS data 

RR20 = RR(20,:); 

RR40 = RR(40,:);                                         % RR is the predicted fit to the data 

RR80 = RR(80,:); 

  

for i = 1:n 

    rmax(i) = max(ratio(i,:));                         % Maximum value of ratio at each eta 

    RRmax(i) = max(RR(i,:));                       % Maximum value of RR at each eta 

end 

for i = 1:n 

    for j = 1:m 

        rnorm(i,j) = ratio(i,j)./rmax(i);              % Normalized values of ratio 

        RRnorm(i,j) = RR(i,j)./RRmax(i);         % Normalized values of RR 

    end 

end 
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rmax_fit = rmax(count+1:n); 

  

r20norm = ratio(20,:)/max(r20);                       % normalizing by the maxval 

r40norm = ratio(40,:)/max(r40); 

r80norm = ratio(80,:)/max(r80); 

RR20norm = RR(20,:)/max(abs(RR20)); 

RR40norm = RR(40,:)/max(abs(RR40)); 

RR80norm = RR(80,:)/max(abs(RR80)); 

  

figure 

plot(delta,r20norm,'o',delta,RR20norm,'r-') 

figure 

plot(delta,r40norm,'o',delta,RR40norm,'r-') 

figure 

plot(delta,r80norm,'o',delta,RR80norm,'r-') 

  

  

for i=1:n                                               % Calculate error in normalized ratios (shape check) 

    for j=1:m 

        if delta(j) < dmin(j) 

            Error(i,j) = 0; 

        elseif delta(j) > dmax(j) 

            Error(i,j) = 0; 

        else 

            if eta(i) < 0.5 

                Error(i,j) = 0;                         % Don't count eta < 0.5 toward error 

            else 

                Error(i,j) = abs(RRnorm(i,j)-rnorm(i,j)); 

            end 

        end 

    end 

end 
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for i = 1:n                                             % Calculate errors at each eta value  

    AbsError = 0; 

    SquaredError = 0; 

    for j = 1:m 

        AbsError = AbsError+Error(i,j); 

        SquaredError = SquaredError+Error(i,j)^2; 

    end 

    TotAbsError(i) = AbsError; 

    TotSquaredError(i) = SquaredError; 

end 

  

E(1) = 0; 

E(2) = 0; 

for i = 1:n 

    E(1) = E(1) + TotAbsError(i);                    % Sum of absolute value of errors over all eta > 0.5 

    E(2) = E(2) + TotSquaredError(i);         % Sum of squared errors over all eta > 0.5 

end 

  

E                                                        % Display summed errors on one line 

  

figure 

subplot(1,2,1) 

plot(TotAbsError,eta) 

title('Abs Error (norm) vs eta') 

set(gca, 'YDir','reverse') 

subplot(1,2,2) 

plot(TotSquaredError,eta) 

title('Squared Error (norm) vs eta') 

set(gca, 'YDir','reverse') 
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Code 5 “Optimization Function” 

% Important to update output text file "RRParameters.txt" filepath to correct geometry folder 

clear all 

format long 

  

geometry_type = 3; 

% Enter 1 for theta1 > 0 and theta3 > 0 

% Enter 2 for theta1 > 0 and theta3 = 0 

% Enter 3 for theta1 = 0 and theta3 > 0 

% Enter any number other than 1, 2, or 3 for theta1 = 0 and theta3 = 0 

  

% Select optimization iteration tolerance - TolFun and TolX current values may not reflect values used 

options = optimset('TolFun',1.e-4,'TolX',1.e-4,'Display','iter'); 

  

% Values in square brackets below are initial estimates of values to be optimized (contained in x-vector) 

if geometry_type == 1 

[x,out] = fminsearch('code_6',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],options); 

  

elseif geometry_type == 2 

[x,out] = fminsearch('code_6',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],options); 

  

elseif geometry_type == 3 

[x,out] = fminsearch('code_6',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],options); 

  

else % geometry_type == 4 or any other number 

[x,out] = fminsearch('code_6',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],options); 

end 

  

fid = fopen('c:\Ryan\MC\Optimization\RRresults\Combined_more\RRParameters.txt','w'); 

fprintf(fid,'%18.12f',x); 

fclose(fid); 

 

x 
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Code 6 “Optimizing Coefficients” 

function f = Code_6(x) 

  

% Important to update file path to proper geometry folder (e.g. "5_0_5_0") and update/unlock coefficients, theta1 and theta3, and each 

of the variables not unlocked 

 

load c:\Ryan\MC\Optimization\RRresults\Combined_more\RRresults.txt                   % Read data in original format 

  

% if any geometries have theta1 or theta3 > 0 then insert any # other than 0 for theta1 and/or theta3 

theta1 = 0.0;                                    % Left slope angle 

theta3 = 1.0;                                    % Right slope angle 

  

number_geometries = 19;                 % MAKE SURE TO UPDATE 

RRdelta = RRresults(:,1); 

RReta   = RRresults(:,2); 

RRratio = RRresults(:,5); 

RRtheta2 = RRresults(:,7);                 % Central slope angle 

RRtheta3 = RRresults(:,8);             % Upper slope angle 

delta_inc = 0.001; 

nn = length(RRdelta); 

delta_shift = 2;                                  % Allow delta values to be shifted to reduce COV (helps with beta function fit) 

num = 0; 

for i=2:nn                                        % Find number of unique delta values (e.g., 90 but if multiple geometries like 3 then 270) 

    if RRdelta(i)-RRdelta(i-1) > 0.001 

        num = num+1; 

    end 

end 

m = num+number_geometries;     % Number of delta values the +# is based upon how many geometries 

n = nn/m;                                         % Number of eta values 

eta = RReta(1:n);                            % eta values 

for i=1:m 

    nn=(n-1)/2+n.*(i-1);                      % nn jumps every 101 rows to find the next delta value (there are 101 of each unique delta) 

    delta(i) = RRdelta(nn) + delta_shift;        % Vector of delta values (shifted) 
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end 

count = 0; 

for i=1:n 

    if eta(i) < 0.5 

        count = count+1;                           % Find number of eta values < 0.5 to avoid plotting 

    end 

end 

  

ww = length(RRtheta2)/number_geometries;            % find how many rows each geometry has 

for i=1:number_geometries 

    t=i*ww; 

    theta2(i,1) = RRtheta2(t);                         % Every geometry has rr number of rows, thus for 1 to the number of geometries 

we can find each theta2 value.  

end                                                 % Note it does not matter if you have two different geometries with the same 

theta2, it still will work as long as number_geometries is correct. 

  

rr = length(RRtheta3)/number_geometries;            % find how many rows each geometry has 

for i=1:number_geometries 

    t=i*rr; 

    theta3(i,1) = RRtheta3(t);                         % Every geometry has rr number of rows, thus for 1 to the number of geometries 

we can find each theta2 value.  

end                                                 % Note it does not matter if you have two different geometries with the same 

theta2, it still will work as long as number_geometries is correct 

  

for ii = 1:n 

    for jj = 1:m 

        ratio(ii,jj) = RRratio((jj-1)*n+ii);       % Creating ratio matrix. ii and jj = 1 gives RRratio(1) then ii = 1 and jj = 2 gives 

RRratio(102), so it's filling out the first row with 101 values since 101 values is the range of eta so for that specific delta you are again 

getting row 1 values 

    end 

end 

  

% NOTE: The following comments up until the next %%%% %%%% are not used, but provide 
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% insight to a possible method to determine the min and max bounds 

  

%%%%%%%%%%%%%%%%%---xx(7) to xx(10) determination start---%%%%%%%%%%%%%%%%% 

 

% % CALCULATING MIN AND MAX BOUNDS - FF FOR CALC MAX AND MIN BOUNDS 

 

% deltainterp = min(delta):delta_inc:max(delta);  

 

% ratio_inc = interp2(delta,eta,ratio,deltainterp,eta);  

 

% w = length(deltainterp); 

  

% CDF = zeros(n,w); 

% norm_CDF = zeros(n,w); 

 

% for i=1:n 

% ff_cent(i) =  0.5;                                   

% ff_steep(i) = 20;                                    

% index_negfour = find(deltainterp(1,:) ==-4);         

% index_posfour = find(deltainterp(1,:) ==4);          

% Left_Plateau(i) = sum(ratio_inc(i,1:index_negfour))/(length(ratio_inc(i,1:index_negfour)));  

% Right_Plateau(i) = sum(ratio_inc(i,index_posfour:w))/(length(ratio_inc(i,index_posfour:w))); 

 

%     for j=1:w                                     

%         if deltainterp(j) < 0 

%             ff(i,j) = Left_Plateau(i); 

%         else 

%             ff(i,j) = Left_Plateau(i)+(Right_Plateau(i)-Left_Plateau(i))./(1+(ff_cent(i)./deltainterp(j)).^ff_steep(i)); 

%         end 

%     end 

% end 

 

% for i = 1:n 
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%     if eta(i) > 0.5 

%         CDF(i,:) = cumtrapz(deltainterp,(ratio_inc(i,:)-ff(i,:)));  

%         norm_CDF(i,:) = CDF(i,:)/min(CDF(i,:)); 

%         if i == 18 

%         figure() 

%         plot(deltainterp,norm_CDF(count+1,:)) % Example psuedo CDF plot for eta = 0.51 

%         end 

%     else  

%         CDF(i,:) = zeros(1,w); 

%     end 

% end 

 

% for i = (count+1):n    

% ind_j_max(i) = find(norm_CDF(i,:) >.98, 1, 'first');        % find the first value of norm_CDF that is greater than 0.98 

% ind_j_min(i) = find(norm_CDF(i,:) <0.02, 1, 'last');      % find the first value of norm_CDF that is greater than 0.02 

  

% delta_max(i) = deltainterp(ind_j_max(i)); 

% delta_min(i) = deltainterp(ind_j_min(i)); 

% end 

 

% eta_reg = eta((count+1):n); 

% delta_min_reg = delta_min((count+1):n); 

% delta_max_reg = delta_max((count+1):n); 

  

% linear_regression_min = fitlm(eta_reg,delta_min_reg); 

% min_coeff = linear_regression_min.Coefficients.Estimate;   

  

% linear_regression_max = fitlm(eta_reg,delta_max_reg); 

% max_coeff = linear_regression_max.Coefficients.Estimate; 

 

%%%%%%%%%%%%%%%%%---xx(7) to xx(10) determination end---%%%%%%%%%%%%%%%%% 
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% Coefficients 

  

% Filter Function coefficients 

xx(1) =  2;                       % Center of filter function int - coeff added 2 due to shift 

  

xx(2) = 4;                        % Steepness of filter function coeff - Not too steep to be noticeable like step function, but steep enough 

to be occur between min and max bounds 

  

% Left Plateau coefficient 

xx(3) =  0;                       % Left plateau (we have found this to be constant at all eta's, i.e. no slope) 

  

% Right Plateau coefficient 

xx(4) = 0.0052;                   % Right plateau coeff 

  

% Min Bound coefficients 

xx(5) = 1.33;                     % Min Bound int - int 

xx(6) = -0.21;                    % Min Bound int - coeff 

xx(7) = 0.1103;                  % Min Bound coeff - int 

xx(8) = -0.1198;                  % Min Bound coeff - coeff 

  

% Min Shift for geometries with theta3 for one theta2 geometry 

xx(9) = 0.801928;                % Min shift coeff 

xx(10) = 0.896234;            % Min shift exp 

  

% Max Bound Coefficients 

xx(11) = 2.19;                    % Max Bound int - int 

xx(12) = 0.2308;                  % Max Bound int - coeff 

xx(13) = 0.221340;                % Max Bound coeff - int 

xx(14) = 0.077;                   % Max Bound coeff 

  

% Max Shift for geometries with theta3 for one theta2 geometry 

xx(15) = -0.801928;               % Max shift coeff 
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xx(16) = 0.896234;                % Max shift exp 

  

% Alpha coefficients 

xx(17) = 11.672;                  % Alpha coeff - coeff 

xx(18) = 0.9729;                  % Alpha coeff - exponent 

xx(19) = -0.241213;               % MAKE NEGATIVE - Alpha exponent - coeff 

xx(20) = 0.275908;                % Alpha exponent - exponent 

  

% Beta coefficients 

xx(21) = 2.6;                     % Beta coeff - coeff 

xx(22) = 1.376;                   % Beta coeff - exponent 

xx(23) = -0.070529;               % MAKE NEGATIVE - Beta exponent - coeff 

xx(24) = 0.672342;                % Beta exponent - exponent 

  

% Amplitude coefficients 

xx(25) = 0.0273315500;         % amplitude coefficient - coefficient 

xx(26) = 0.6685027450;         % amplitude coefficient - exponent 

xx(27) = -0.0998010525;        % MAKE NEGATIVE - amplitude exponent - coefficient 

xx(28) = 0.6305506628;        % amplitude exponent - exponent 

  

% Amplitude reduction for geometries with theta3 for one theta2 geometry 

xx(29) = -0.087171;               % Amplitude reduction coeff 

xx(30) = -1.021359;               % Amplitude reduction exp 

  

% Amplitude increase to fit all of the theta3 > 0 geometries 

xx(31) = 1.760799; 

xx(32) = -1.627222; 

  

% Pseudo Kronecker Delta Function (applies approximate value of 0 if theta3 = 0 and a value of 1 is theta3 > 0 

% Do not optimize the pseudo Kronecker Delta Function 

xx(33) = 1.106530; 

xx(34) = 0.158467; 

xx(35) = 0.0767; 
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xx(36) = 0.05; 

  

% Unlock and/or renumber coefficients to optimize 

  

% xx(1) = x(1); 

% xx(2) = x(2); 

% xx(3) = x(3);                

% xx(4) = x(4);       

% xx(5) = x(5);               

% xx(6) = x(6);             

% xx(7) = x(7);                 

% xx(8) = x(8);       

% xx(9) = x(9);        

% xx(10) = x(10);               

% xx(11) = x(11);        

% xx(12) = x(12);               

% xx(13) = x(13);               

% xx(14) = x(14);       

% xx(15) = x(15);              

% xx(16) = x(16);           

% xx(17) = x(17);      

% xx(18) = x(18);                

% xx(19) = x(19);    

% xx(20) = x(20);      

% xx(21) = x(21);     

% xx(22) = x(22);             

% xx(23) = x(23);                       

% xx(24) = x(24);                       

% xx(25) = x(25);               

% xx(26) = x(26);                  

% xx(27) = x(27);                

% xx(28) = x(28);    

% xx(29) = x(29);      
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% xx(30) = x(30);     

% xx(31) = x(31);             

% xx(32) = x(32);                       

  

end 

  

for k=1:number_geometries 

  

for i=1:n 

  

    c1(i,k) = xx(1);                   % FF center is constant 

    c2(i,k) = xx(2);                   % FF steepness is constant 

    c3(i,k) = xx(3);                   % Left Plateau = 0 

    c4(i,k) = xx(4)*theta3(k);        % Right Plateau 

    c5(i,k) = ((xx(5)+xx(6)*theta2(k))+(xx(7)+xx(8)*theta2(k))*eta(i))+((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*((xx(9)*eta(i)^xx(10)));                            

    c6(i,k) = ((xx(11)+xx(12)*theta2(k))+(xx(13)+xx(14)*theta2(k))*eta(i))+((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*((xx(15)*eta(i)^xx(16))); 

    c7(i,k) = ((xx(17)*theta2(k)^xx(18))*exp((xx(19)*theta2(k)^xx(20))*eta(i))); 

    c8(i,k) = ((xx(21)*theta2(k)^xx(22))*exp((xx(23)*theta2(k)^xx(24))*eta(i))); 

    c9(i,k) = ((xx(25)*theta2(k)^xx(26))*eta(i)^(xx(27)*theta2(k)^xx(28)))+(((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*(((xx(29)*eta(i)^xx(30)))+(xx(31)*theta2(k)^xx(32))*(0.24/(eta(i)^2)))); 

     

    maxval(i) = (((c7(i)-1)/(c7(i)+c8(i)-2))*(c6(i)-c5(i)))^(c7(i)-1)*(c6(i)-c5(i)-((c7(i)-1)/(c7(i)+c8(i)-2))*(c6(i)-c5(i)))^(c8(i)-1); 

 % peak amplitude of beta function 

     

    for j=1:m                                     % Compute filter function (adjusted for negative delta) 

        if delta(j) < 0 

            filterfunc(i,j) = c3(i); 

        else 

            filterfunc(i,j) = c3(i)+(c4(i)-c3(i))./(1+(c1(i)./delta(j)).^c2(i)); 

        end 

    end 
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    for j=1:m                                     % Compute beta function 

        if delta(j) < c5(i) 

            betafunc(i,j) = c3(i);                

        elseif delta(j) > c6(i) 

            betafunc(i,j) = c4(i);                

        else 

            betafunc(i,j) = (delta(j)-c5(i)).^(c7(i)-1).*(c6(i)-delta(j)).^(c8(i)-1); 

        end 

        betafuncnorm(i,j) = betafunc(i,j)./maxval(i);     % Normalize beta function so that all have the same peak amplitude 

        pred(i,j) = -(filterfunc(i,j)+c9(i).*betafuncnorm(i,j));    % Predicted stress ratio 

         

    end 

end 

end 

  

Error = 0; 

E = zeros(n,m); 

for k=1:number_geometries 

    for i = 1:n 

        for j = ((k-1)*91)+1 : k*91 

            if eta(i) > 0.5                                                % Don't count eta < 0.5 toward error 

                E(i,j) = (pred(i,j)-ratio(i,j))^2;                        % Matrix of error values 

%                 E(i,j) = ((pred(i,j)-ratio(i,j))./(ratio(i,j))).^2;        % Matrix of normalized error values     

            end 

                    Error = Error+E(i,j);                                  % Sum to obtain total error 

        end 

%         Error = Error*(1+50/((1+(c7(i))^40)*(1+(c8(i))^40)));         % Inflate error if c7 or c8 approach 0 

    end 

end 

  

Error                                                 % Let Error value be written to screen during optimization 

  

f = Error; 
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Code “Optimization Plotting” 

clear all 

load c:\Ryan\MC\Optimization\RRresults\Combined_more\RRresults.txt                   % Read data in original format 

  

% Note: You may see Nan and -Inf values for the predicted function when 

% eta = 0, however, we are only concerned with eta >= 0.51 to 3. 

  

theta1 = 0.0;                                       % Left slope angle 

theta3 = 1;                                       % Right slope angle 

number_geometries = 19;                          % MAKE SURE TO UPDATE THIS 

RRdelta = RRresults(:,1); 

RReta   = RRresults(:,2); 

RRratio = RRresults(:,5); 

RRtheta2 = RRresults(:,7);                          % Central slope angle 

RRtheta3 = RRresults(:,8);                          % Upper slope angle 

delta_inc = 0.001; 

nn = length(RRdelta); 

delta_shift = 2;                                   % Allow delta values to be shifted to reduce COV (helps with beta function fit) 

num = 0; 

for i=2:nn                                         % Find number of unique delta values (e.g., 90 but if multiple geometries like 3 then 270) 

    if RRdelta(i)-RRdelta(i-1) > 0.001 

        num = num+1; 

    end 

end 

m = num+number_geometries;                  % Number of delta values the +# is based upon how many geometries 

n = nn/m;                                          % Number of eta values 

eta = RReta(1:n);                                  % eta values 

for i=1:m 

    nn=(n-1)/2+n.*(i-1);                         % nn jumps every 101 rows to find the next delta value (there are 101 of each unique delta) 

    delta(i) = RRdelta(nn) + delta_shift;         % Vector of delta values (shifted) 

end 

count = 0; 

for i=1:n 
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    if eta(i) < 0.5 

        count = count+1;                           % Find number of eta values < 0.5 to avoid plotting 

    end 

end 

  

ww = length(RRtheta2)/number_geometries;          % find how many rows each geometry has 

for i=1:number_geometries 

    t=i*ww; 

    theta2(i,1) = RRtheta2(t);                     % Every geometry has rr number of rows, thus for 1 to the number of geometries 

we can find each theta2 value.  

end                                                 % Note it does not matter if you have two different geometries with the same 

theta2, it still will work as long as number_geometries is correct 

  

rr = length(RRtheta3)/number_geometries;          % find how many rows each geometry has 

for i=1:number_geometries 

    t=i*rr; 

    theta3(i,1) = RRtheta3(t);                     % Every geometry has rr number of rows, thus for 1 to the number of geometries 

we can find each theta2 value  

end                                                 % Note it does not matter if you have two different geometries with the same 

theta2, it still will work as long as number_geometries is correct 

  

for ii = 1:n 

    for jj = 1:m 

        ratio(ii,jj) = RRratio((jj-1)*n+ii);       % Creating ratio matrix. ii and jj = 1 gives RRratio(1) then ii = 1 and jj = 2 gives 

RRratio(102), so it's filling out the first row with 101 values since 101 values is the range of eta so for that specific delta you are again 

getting row 1 values 

    end 

end 

  

  

% NOTE: The following comments up until the next %%%% %%%% are not used, but provide 

% insight to a possible method to determine the min and max bounds 
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%%%%%%%%%%%%%%%%%---xx(7) to xx(10) determination start---%%%%%%%%%%%%%%%%% 

 

% % CALCULATING MIN AND MAX BOUNDS - FF FOR CALC MAX AND MIN BOUNDS 

 

% deltainterp = min(delta):delta_inc:max(delta);  

 

% ratio_inc = interp2(delta,eta,ratio,deltainterp,eta);  

 

% w = length(deltainterp); 

  

% CDF = zeros(n,w); 

% norm_CDF = zeros(n,w); 

 

% for i=1:n 

% ff_cent(i) =  0.5;                                   

% ff_steep(i) = 20;                                    

% index_negfour = find(deltainterp(1,:) ==-4);         

% index_posfour = find(deltainterp(1,:) ==4);          

% Left_Plateau(i) = sum(ratio_inc(i,1:index_negfour))/(length(ratio_inc(i,1:index_negfour)));  

% Right_Plateau(i) = sum(ratio_inc(i,index_posfour:w))/(length(ratio_inc(i,index_posfour:w))); 

 

%     for j=1:w                                     

%         if deltainterp(j) < 0 

%             ff(i,j) = Left_Plateau(i); 

%         else 

%             ff(i,j) = Left_Plateau(i)+(Right_Plateau(i)-Left_Plateau(i))./(1+(ff_cent(i)./deltainterp(j)).^ff_steep(i)); 

%         end 

%     end 

% end 

 

% for i = 1:n 

%     if eta(i) > 0.5 

%         CDF(i,:) = cumtrapz(deltainterp,(ratio_inc(i,:)-ff(i,:)));  
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%         norm_CDF(i,:) = CDF(i,:)/min(CDF(i,:)); 

%         if i == 18 

%         figure() 

%         plot(deltainterp,norm_CDF(count+1,:)) % Example psuedo CDF plot for eta = 0.51 

%         end 

%     else  

%         CDF(i,:) = zeros(1,w); 

%     end 

% end 

 

% for i = (count+1):n    

% ind_j_max(i) = find(norm_CDF(i,:) >.98, 1, 'first');        % find the first value of norm_CDF that is greater than 0.98 

% ind_j_min(i) = find(norm_CDF(i,:) <0.02, 1, 'last');      % find the first value of norm_CDF that is greater than 0.02 

  

% delta_max(i) = deltainterp(ind_j_max(i)); 

% delta_min(i) = deltainterp(ind_j_min(i)); 

% end 

 

% eta_reg = eta((count+1):n); 

% delta_min_reg = delta_min((count+1):n); 

% delta_max_reg = delta_max((count+1):n); 

  

% linear_regression_min = fitlm(eta_reg,delta_min_reg); 

% min_coeff = linear_regression_min.Coefficients.Estimate;   

  

% linear_regression_max = fitlm(eta_reg,delta_max_reg); 

% max_coeff = linear_regression_max.Coefficients.Estimate; 

 

%%%%%%%%%%%%%%%%%---xx(7) to xx(10) determination end---%%%%%%%%%%%%%%%%% 
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% Filter Function coefficients 

xx(1) =  2;                       % Center of filter function int - coeff added 2 due to shift 

  

xx(2) = 4;                        % Steepness of filter function coeff - Not too steep to be noticeable like step function, but steep enough 

to be occur between min and max bounds 

  

% Left Plateau coefficient 

xx(3) =  0;                       % Left plateau (we have found this to be constant at all eta's, i.e. no slope) 

  

% Right Plateau coefficient 

xx(4) = 0.0052;                   % Right plateau coeff 

  

% Min Bound coefficients 

xx(5) = 1.33;                     % Min Bound int - int 

xx(6) = -0.21;                    % Min Bound int - coeff 

xx(7) = 0.1103;                   % Min Bound coeff - int 

xx(8) = -0.1198;                  % Min Bound coeff - coeff 

  

% Min Shift for geometries with theta3 for one theta2 geometry 

xx(9) = 0.801928;                 % Min shift coeff 

xx(10) = 0.896234;                % Min shift exp 

  

% Max Bound Coefficients 

xx(11) = 2.19;                    % Max Bound int - int 

xx(12) = 0.2308;                  % Max Bound int - coeff 

xx(13) = 0.221340;                % Max Bound coeff - int 

xx(14) = 0.077;                   % Max Bound coeff - coeff 

  

% Max Shift for geometries with theta3 for one theta2 geometry 

xx(15) = -0.801928;               % Max shift coeff 

xx(16) = 0.896234;                % Max shift exp 

  

% Alpha coefficients 



 

 

419 

xx(17) = 11.672;                  % Alpha coeff - coeff 

xx(18) = 0.9729;                  % Alpha coeff - exponent 

xx(19) = -0.241213;               % MAKE NEGATIVE - Alpha exponent - coeff 

xx(20) = 0.275908;                % Alpha exponent - exponent 

  

% Beta coefficients 

xx(21) = 2.6;                     % Beta coeff - coeff 

xx(22) = 1.376;                   % Beta coeff - exponent 

xx(23) = -0.070529;               % MAKE NEGATIVE - Beta exponent - coeff 

xx(24) = 0.672342;                % Beta exponent - exponent 

  

% Amplitude coefficients 

xx(25) = 0.0273315500;       % amplitude coefficient - coefficient 

xx(26) = 0.6685027450;        % amplitude coefficient - exponent 

xx(27) = -0.0998010525;       % MAKE NEGATIVE - amplitude exponent - coefficient 

xx(28) = 0.6305506628;        % amplitude exponent - exponent 

  

% Amplitude reduction for geometries with theta3 for one theta2 geometry 

xx(29) = -0.087171;               % Amplitude reduction coeff 

xx(30) = -1.021359;               % Amplitude reduction exp 

  

% Amplitude increase to fit all of the theta3 > 0 geometries 

xx(31) = 1.760799; 

xx(32) = -1.627222; 

  

% Pseudo Kronecker Delta Function (applies an approximate value of 0 if theta3 = 0 and a value of 1 is theta3 > 0 

xx(33) = 1.106530; 

xx(34) = 0.158467; 

xx(35) = 0.0767; 

xx(36) = 0.05; 

  

for k=1:number_geometries 
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for i=1:n                               % Compute actual coefficients 

     

    c1(i,k) = xx(1);                    % FF center is constant 

    c2(i,k) = xx(2);                    % FF steepness is constant 

    c3(i,k) = xx(3);                    % Left Plateau = 0 

    c4(i,k) = xx(4)*theta3(k);         % Right Plateau 

    c5(i,k) = ((xx(5)+xx(6)*theta2(k))+(xx(7)+xx(8)*theta2(k))*eta(i))+((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*((xx(9)*eta(i)^xx(10)));                            

    c6(i,k) = ((xx(11)+xx(12)*theta2(k))+(xx(13)+xx(14)*theta2(k))*eta(i))+((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*((xx(15)*eta(i)^xx(16))); 

    c7(i,k) = ((xx(17)*theta2(k)^xx(18))*exp((xx(19)*theta2(k)^xx(20))*eta(i))); 

    c8(i,k) = ((xx(21)*theta2(k)^xx(22))*exp((xx(23)*theta2(k)^xx(24))*eta(i))); 

    c9(i,k) = ((xx(25)*theta2(k)^xx(26))*eta(i)^(xx(27)*theta2(k)^xx(28)))+(((xx(33)*theta3(k)^xx(34))-

(xx(35)*theta3(k)+xx(36)))*(((xx(29)*eta(i)^xx(30)))+(xx(31)*theta2(k)^xx(32))*(0.24/(eta(i)^2)))); 

  

    maxval(i,k) = (((c7(i,k)-1)/(c7(i,k)+c8(i,k)-2))*(c6(i,k)-c5(i,k)))^(c7(i,k)-1)*(c6(i,k)-c5(i,k)-((c7(i,k)-1)/(c7(i,k)+c8(i,k)-

2))*(c6(i,k)-c5(i,k)))^(c8(i,k)-1);  % peak amplitude of beta function 

     

    for j=1:m                                            % Compute filter function (adjusted for negative delta) 

        if delta(j) < 0 

            filterfunc(i,j,k) = c3(i,k); 

        else 

            filterfunc(i,j,k) = c3(i,k)+(c4(i,k)-c3(i,k))./(1+(c1(i,k)./delta(j)).^c2(i,k)); 

        end 

    end 

    for j=1:m                                                               % Compute beta function 

        if delta(j) < c5(i,k) 

            betafunc(i,j,k) = c3(i,k);                            % Set to zero outside left bound 

        elseif delta(j) > c6(i,k) 

            betafunc(i,j,k) = c4(i,k);                              % Set to right plateau outside right bound 

        else 

            betafunc(i,j,k) = (delta(j)-c5(i,k)).^(c7(i,k)-1).*(c6(i,k)-delta(j)).^(c8(i,k)-1); 

        end 
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        betafuncnorm(i,j,k) = betafunc(i,j,k)./maxval(i,k);                % Normalize beta function so that all have the same peak amplitude 

         

        pred(i,j,k) = -(filterfunc(i,j,k)+c9(i,k).*betafuncnorm(i,j,k));     % Predicted value - sum of filter and betafunc 

         

    end 

end 

end 

Error = 0; 

E = zeros(n,m,k); 

for k = 1:number_geometries 

    for i = 1:n 

        for j = ((k-1)*91)+1 : k*91 

            if eta(i) > 0.5 

                E(i,j,k) = (pred(i,j,k)-ratio(i,j))^2;     % SSE 

%                 E(i,j,k) = ((pred(i,j,k)-ratio(i,j))./(ratio(i,j))).^2;   % Normalized Error 

            else 

                E(i,j,k) = 0; 

            end 

            Error = Error+E(i,j,k); 

        end 

%         Error = Error*(1+50/((1+(c7(i,k))^40)*(1+(c8(i,k))^40)));         % Inflate error if c7 or c8 approach 0 

    end 

end 
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%%%%% IMPORTANT %%%%% 

% When plotting pred(i,j,k) or any 3 dimensional array you need to make sure you select the proper "j" columns. Geometry #1 will be 

from J = 1:91, #2 from J = 92:182, #3 from J = 183:273 and so on 

  

  

% 2D SUBPLOTS STRESS RATIO VS DELTA FOR DIFFERENT ETA'S 

  

% Only showing one subplot figure for brevity 

figure(13) 

subplot(2,3,1); 

plot(delta(1,1:91),pred(18,1:91,1)) 

hold 

scatter(delta(1,1:91),ratio(18,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 0.51') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 

  

subplot(2,3,2); 

plot(delta(1,1:91),pred(35,1:91,1)) 

hold 

scatter(delta(1,1:91),ratio(35,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 1.0') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 

  

subplot(2,3,3); 

plot(delta(1,1:91),pred(51,1:91,1)) 
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hold 

scatter(delta(1,1:91),ratio(51,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 1.5') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 

  

subplot(2,3,4); 

plot(delta(1,1:91),pred(68,1:91,1)) 

hold 

scatter(delta(1,1:91),ratio(68,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 2.0') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 

  

subplot(2,3,5); 

plot(delta(1,1:91),pred(84,1:91,1)) 

hold 

scatter(delta(1,1:91),ratio(84,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 2.5') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 

  

subplot(2,3,6); 

plot(delta(1,1:91),pred(101,1:91,1)) 
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hold 

scatter(delta(1,1:91),ratio(101,1:91)) 

xlim([-6,10]) 

ylim([-.35,0.05]) 

xlabel('Delta') 

ylabel('Stress Ratio') 

title('5-0-5-0, Pred. function with FEM data at eta = 3.0') 

legend({'Predicted','PLAXIS'},'Location','southwest','Box','off') 
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APPENDIX E 

COMPARISON OF PREDICTED FUNCTION AND PLAXIS SSR  
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Figure E.1. Predicted function using the 𝑩𝑫 compared to the PLAXIS stress ratio data for geometry 5-0-5-0. 
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Figure E.2. Predicted function using the 𝑩𝑫 compared to the PLAXIS stress ratio data for geometry 5-0-10-0. 
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Figure E.3. Predicted function using the 𝑩𝑫 compared to the PLAXIS stress ratio data for geometry 5-0-15-0. 
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Figure E.4. Predicted function using the 𝑩𝑫 compared to the PLAXIS stress ratio data for geometry 5-0-20-0. 
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Figure E.5. Predicted function using the 𝑩𝑫 compared to the PLAXIS stress ratio data for geometry 5-0-25-0.





VITA 

 

The author was born on April 23, 1992 in Seattle, Washington. His family moved for work 

to beautiful, although at times frozen, Minot, North Dakota where he grew up and then attended 

college at the University of North Dakota in Grand Forks, North Dakota – the coldest city in 

contiguous United States. The author started his career with a 4.0 GPA and degree in Geological 

Engineering from the University of North Dakota. After graduation, he found his way back to the 

PNW, gaining experience as a rock-mechanics engineer at Golder Associates in Portland, Oregon. 

While there, he specialized in landslide hazard analysis and developed training presentations on 

the derivations, applications, and benefits of different slope-stability models. He also analyzed 

laboratory test results in accordance with American Society of Testing (ASTM) standards to 

develop material parameters for slope-stability models. Recognizing that he desired a deeper 

understanding of soil mechanics, the author moved to GeoDesign, Inc. in Portland, Oregon. While 

working on large infrastructure projects, he performed exploratory drilling, in-situ and laboratory 

soil testing, and foundation installation. This gave him the critical hands-on experience to relate 

field investigations and measurements to engineering analyses. 

After gaining two years of experience in the mechanics and testing of geomaterials, the 

author enrolled at the University of Washington (UW) to pursue an M.S. degree in Geotechnical 

Engineering. While at UW, he sought out research with Professor Steven Kramer on probabilistic 

liquefaction modelling. Through this experience, he has studied the body of knowledge on 

liquefaction susceptibility, triggering, and effects. He also has conducted sensitivity analyses on 

the leading probabilistic liquefaction models to analyze their performance for differing site 

conditions, with the ultimate goal of formulating an improved model. This knowledge of 
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probabilistic liquefaction triggering models will be essential for formulating the mathematical 

tools to perform inverse-analysis of ancient liquefaction evidence, which is the topic of the authors 

future PhD research. The author has also developed new functions via optimization-analysis for 

computing the driving stress within a slope which is planned to be used in the future to develop an 

improved model to predict lateral spread displacements. The author graduated with a M.S. degree 

in Geotechnical Engineering in June 2019. 

The authors future goals include: graduating with a PhD from the University of 

Washington; promoting STEM education and STEM careers to younger students, particularly 

those less represented in science and engineering; working at the USGS to characterize the hazards 

and risks communities face across the country; becoming a professional engineer (EIT certification 

No. 13469); and becoming a leader in the ASCE Geo-Institute community. The author has 

progressed towards achieving these goals by serving as President of the Geo-Institute Student 

Society at the University of Washington. In this leadership role, he has: 

• Organized a regional Graduate Student conference where geotechnical engineering students 

from UW, Washington State University, Oregon State University, and the University of 

British Columbia presented their research and collaborated on engineering outreach programs.  

• Raised funds to send fellow students to national and international conferences so that they can 

grow connections in the scientific and engineering communities.  

• Established a monthly lecture series where practicing professionals from local geotechnical 

firms present their work in the community and form connections with graduate students. 

• Planned and hosted a Seattle-section ASCE research symposium attended by academics and 

practitioners and highlighted by an internationally-renowned keynote lecturer.  
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• Participated in Engineering Discovery Days and other events that facilitate K-12 outreach and 

mentorship, promoting STEM education and careers, and conveying the importance of 

natural-hazards engineering to society and the environment. 

The author has also made progress towards his PhD work and forming relationships with the 

USGS by having performed paleoliquefaction site investigations which included canoeing across 

the Columbia and Duwamish Rivers with Dr. Brian Atwater, an emeritus USGS scientist and 

member of the National Academy of Sciences. The author looks forward to continuing his 

research with Dr. Brian Atwater and his future PhD advisor Dr. Brett Maurer, who in an expert 

in liquefaction analytics. The authors future PhD research will be involved with decoding seismic 

hazard enigmas via next-generation paleoliquefaction analytics. The author was awarded the 

National Science Foundation Graduate Research Fellowship in 2019, which provides him 

funding for his PhD research over the next 3 years. The author is specifically interested in 

decoding the enigmas of the Cascadia Subduction Zone, and applying the research developed to 

other seismic hazard zones across the United States.  

 

 

 


