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About a billion people are directly or indirectly affected by annual monsoon flooding in South 

and Southeast Asia. Skillful flood forecasting is crucial in this densely populated part of the 

world, where most of the countries share large international river basins. Flood forecasting is a 

challenging task for the downstream nations in this region due to lack of upstream in-situ data. 

Data from global numerical weather prediction (NWP) models are now common to the 

operational flood forecasting agencies as an alternative to in-situ data. Many of these agencies 

use the NWP model as a “black box” and the impact of model configurations in operational flood 

forecasting system has not been extensively studied for monsoon climates. Therefore, it is 

appropriate to study the performance of this NWP models in monsoon flood forecasting to 

enhance the current systems. 



 

Due to the current lack of structured guidance for operational users of weather and climate 

data for flood forecasting, performance of the general circulation model (GCM), regional NWP 

model (Weather Research and Forecasting), and global NWP model (Global Forecasting System) 

were studied for monsoon regimes. Investigation shows that the GCM are not suitable for 

operational application at seasonal timescales, where climatology outperforms in persistence 

based forecasting. Next, regional NWP model (WRF) model configuration was optimized for the 

monsoon climate before using it for flow forecasting. Through a comprehensive investigation of 

possible model configurations, three different cloud microphysics and cumulus parameterization 

schemes were identified as optimal for monsoon climates. Investigations revealed that a 

generalized forecasting approach is indeed feasible for the operational NWP-based flood 

forecaster in South and Southeast Asia.  

Finally, the most user-ready element of this study was derived from a comparison between 

the regional NWP model (WRF) and global NWP model (GFS) forecasted flow. The results 

indicate that the improvement due to the use of a regional NWP model like WRF for flow 

forecasting in large river basins with strong monsoon driven seasonality is marginal compared to 

that obtained from global NWP-based (GFS) flow forecasting. An easy to apply and 

computationally efficient bias correction scheme has been developed for operational application 

of weather forecast forcing from global NWP that can bypass the routine need for dynamic 

downscaling by regional NWP model. This bias correction scheme further improved skill in flow 

forecasting thereby making real-world application of global NWP weather forecast forcing 

computationally efficient in resource-constrained setting of forecasting agencies of South and 

Southeast Asia. 
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Chapter 1. INTRODUCTION  

1.1 BACKGROUND OF THE STUDY 

Flood is a common natural disaster all over the world [Yucel et al., 2015], and vary frequent in 

areas with monsoon climate (Figure 1.1) due to copious amounts of rain during that season 

[Kale, 2014]. Lack of knowledge about the real-time hydrological state of the upstream area 

makes flood more catastrophic in international river basins than other places. By analyzing the 

riverine flood data from 1985-2005, Bakker [2009] have shown that the number of the 

international river basin floods (i.e., transboundary flood) is only 10% of the total riverine floods. 

With this small number of occurrences, transboundary floods are responsible for 32% of total 

causalities, and the affected individuals could be high as 60%. UN-Water [2008] reported that 

40% of the global population lives in the 263 shared or transboundary lake or river basins 

(Figure 1.1). This large population is directly or indirectly affected by the transboundary floods. 

The situation is worse in large transboundary river deltas in monsoon climates, such as the 

Bengal and Mekong deltas [Maswood and Hossain, 2015]. Reluctance of real time hydro-

meteorological data sharing among the developing nations in such flood prone area makes the 

downstream nations more vulnerable to the flood hazard. 

Flood forecasting with an early warning system is one of the most economic and effective 

ways to mitigating flood, which is a good measure to reduce the transboundary flood hazard 

[CEGIS, 2007]. Such system requires forecasted or at least real time meteorological data of the 

upstream region. Further geophysical data (i.e. DEM, soil and vegetation, river network, cross-

section) are required to develop a physically-based (i.e., conventional model based approach) 

flood forecasting and warning system. A common physically-based flood forecasting system can 



 

 

2 

be divided into three major components along with warning generation and transmission (Figure 

1.2). The first component is preparing real-time or generating forecast of the necessary 

meteorological data (e.g., precipitation, temperature), used by the hydrological model of the next 

component. The calibrated hydrological model uses the meteorological forcing and produces 

flow forecast at the basin outflow, located near the boundary of an international river. In the last 

component, a calibrated hydrodynamic model uses this forecasted flow as model boundary. The 

hydrodynamic model generates forecasted water level at various locations of the downstream 

river network. Finally, the forecasted water levels and generated inundation maps using these 

water levels are used to prepare the flood warning. Setting up of such flood forecasting system in 

the downstream of a transboundary river is still a challenge for the forecaster due to insufficient 

real-time in-situ data of the upstream [Hossain et al., 2014a]. Thus, many feasible alternatives 

for acquiring real time and forecasted hydro-meteorological data for ungauged-transboundary 

river basin is an active research topic. 

Several investigations of flood forecasting using the real-time satellite data indicate that the 

use of the real-time space-borne data (i.e., precipitation, water level) for flood forecasting in 

ungauged river basin is now feasible. Satellite altimetry has shown a promising performance to 

predict downstream river levels from upstream water level data [Hossain et al., 2014b; 2014c; 

Biancamaria et al., 2011]. In numerical model based approach (Figure 1.2), the first step for a 

flood forecasting is the precipitation estimation or prediction. This type of forecasting system can 

utilize the near real-time precipitation from the satellite. Wardah et al. [2008] have demonstrated 

the performance of the geostationary satellite precipitation product for flash flood forecasting. 

They were able to achieve an extra 2 hours lead time in forecasting using the satellite-based 

Artificial Neural Network (ANN) rain estimation coupled with a hydrological model. However, 
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the maximum possible lead time of a flood forecasting system with real time data is limited up to 

the time of concentration of the basin (Figure 1.3). 

The most obvious and feasible alternative to increase the lead time beyond the time of 

concentration is the use of numerical atmospheric models like the General Circulation models 

(GCM) or Numerical Weather Prediction (NWP) models [Yucel el al., 2015; Nam et al., 2014; 

Cloke and Pappenberger, 2009]. In general, these global scale models are coarse in resolution. 

Further downscaling (i.e., statistical or dynamical) is required to make these products more 

usable. The regional NWP model is a tool to dynamically downscale the global NWP products. 

The finer scale of the regional NWP models allows one to predict the mesoscale phenomena, 

spatial features of various forms of precipitation, like convective precipitation. Studies have 

shown that the use of the regional NWP model can improve the forecast quality [Kumar et al., 

2016; Givati et al., 2012]. Many studies have been conducted for real time flood forecasting 

using the regional NWP along with hydrologic and hydrodynamic models [e.g., Liu et al., 2015; 

Liguori et al., 2012; Roberts et al., 2009; Verbunt et al., 2006; Jasper et al., 2002].  

However, forecasting precipitation using the NWP models remains difficult [Yucel el al., 

2015; Ebert, 2001]. One of the leading reasons is the improper representation of the atmospheric 

processes, like convection [Yucel and Onen, 2014; Lowrey and Yang, 2008] through model 

parameterization due to incomplete understanding of processes. As precipitation is the most 

important meteorological input for the hydrological models [Coe, 2000], the skill of the 

forecasted flow depends on the quality of the NWP forecasted quantitative precipitation forecast 

(QPF) [Yucel and Onen, 2014; Hapuarachchi et al., 2011]. The uncertainty of the QPF is 

propagated to the forecasted flood level through hydrologic-hydrodynamic models [Nam et al., 

2014; Bartholmes and Todini, 2005]. 
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Many operational agencies in South and Southeast Asia in monsoon climates are currently 

using [Shrestha et al., 2015] or have a plan [World Bank, 2016] to use dynamically downscaled 

NWP products for flood forecasting. However, there is a lack of detailed end to end studies about 

the performance of using this NWP products for flood forecasting in monsoon climate. Most of 

the studies with the NWP model are based on a storm or a set of storm events where the storms 

come with intense or heavy precipitation [e.g., Ahasan and Khan, 2013; Hsiao et al., 2013; Hong 

and Lee, 2009; Rao et al., 2007]. The NWP model performance need to be assessed throughout 

the monsoon period, including during no rain scenarios to prevent a false alarm by an operational 

flood forecasting system. In most cases, these operational agencies of South and Southeast Asia 

use the regional NWP model (e.g., Weather Research and Forecasting-WRF) as a “black box” to 

downscale the global NWP products (e.g., Global Forecast System-GFS). Therefore, it is 

appropriate to study the impact of using these NWP products for flood forecasting in that area to 

reduce the uncertainty of QPF and identify the optimized approach. 

In this study, the performance of different numerical modelling based approaches of flood 

forecasting in monsoon climate has been evaluated. The goal is to identify a simple, user-ready, 

and skillful model based flood forecasting approach to assist the operational agencies of that 

flood prone area. First, the efficiency of the forecasted flow derived from statistically 

downscaled General Circulation Models (herein, North American Multi-Model Ensemble-

NMME) forecasted meteorological data was evaluated. This is followed by a systematic study to 

optimize the performance of the forecasted precipitation of a regional NWP model (i.e., WRF) in 

monsoon climate. Finally, the forecasted meteorological data from the optimized regional NWP 

model and its parent global NWP model (here, GFS) have been used to derive forecasted flow. 

The performance of the forecasted flows from WRF and GFS have been compared with each 
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other to evaluate the impact of using the regional NWP model for monsoon flood forecasting. In 

the end, a simple and operationally suitable forecast approach for South and Southeast Asia is 

proposed. The research questions addressed in this dissertation are; 

1) Is GCM forecasts skillful enough to use it in the operational flood forecasting system in 

monsoon climate? 

2) Is it feasible to derive a generalized dynamic downscaling approach using the WRF 

model to forecast precipitation in the river basins with monsoon climate? 

3) Can we develop a generalized approach of downscaling global NWP precipitation using 

WRF model skillful enough to for operational flood forecasting? 

 

1.2 OBJECTIVE OF THE STUDY 

The general objectives of this study are; 

1) To evaluate the performance of numerical model based flood forecasting system in 

monsoon climate, using freely available space-borne data, numerical model, and model 

output by: 

a. evaluating the performance of statistically downscaled GCM products 

b. optimizing the dynamic downscaling process of the global NWP model (GFS) 

using a regional NWP model (WRF) for monsoon climate 

c. evaluating the performance of NWP (global and regional) in flood forecasting 

2) To assess the feasibility of the developed flood forecasting approach for operational 

flood forecasting in monsoon weather, and set a guideline for the flood forecasting 

agencies of South and Southeast Asia. 
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1.3 OUTLINE OF THE DISSERTATION 

Chapter 2: Are General Circulation Models Ready for Operational Streamflow Forecasting for 

Water Management in the Ganges and Brahmaputra River Basins? 

The performance of forecasted flow derived from GCM forecasted meteorological data has 

been evaluated in this chapter. Here, the North American Multi-Model Ensemble (NMME) 

forecasted precipitation, temperature and wind speed have been used to force a calibrated 

Variable Infiltration Capacity (VIC) model [a hydrologic model; Siddique-E-Akbor et al., 2014]. 

The results demonstrated that the GCMs (i.e., NMME) are not suitable for operational flood 

forecasting in South Asian monsoon weather. The Finding of this chapter has been published in 

AMS Journal of Hydrometeorology [Sikder et al., 2016]. 

Chapter 3: Assessment of the Weather Research and Forecasting Model Generalized 

Parameterization Schemes for Advancement of Precipitation Forecasting in Monsoon-Driven 

River Basins. 

Sensitivity of the WRF model performance in monsoon climate for combinations of 

different model parameterization schemes and model resolution was assessed in this chapter. 

Three different combinations of model parameterization schemes were identified among the 

tested, which are suitable for 9-27 km WRF model in such climate. The result of this sensitivity 

analysis has been published in Journal of Advances in Modeling Earth Systems [Sikder and 

Hossain, 2016]. 

Chapter 4: Sensitivity of Initial Condition and Cloud Microphysics to Forecasting of Monsoon 

Rainfall in South Asia. 

Evaluation of the WRF model performance in different states continues in this chapter. The 

sensitivity of different model initialization techniques indicates that the simple model 

initialization in worthy in monsoon weather. While, complex techniques introduced more 
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uncertainty in the forecast. The findings of this chapter have been submitted in the 

Meteorological Applications. 

Chapter 5: Improving Operational Flood Forecasting in Monsoon Climates with Bias-Corrected 

Quantitative Forecasting of Precipitation. 

In the chapter, the performance of the flow derived from the WRF forecasted precipitation 

has been evaluated and compared with the GFS forecast. The results indicate that the value of 

using WRF for monsoon flood forecasting is marginal when compared to that obtained from the 

global (GFS) forecast. A simple bias correction technique was developed, which showed 

promising performance in flow forecasting as a computationally efficient solution in real-time. 

The summary of the results of this study has been submitted in the International Journal of River 

Basin Management. 

Chapter 6: Conclusions and Recommendations. 

This concluding chapter contains the summary of the findings, based on the results from 

chapter 2 to chapter 5. The chapter also includes the recommendations and directions for further 

studies to enhance the NWP based flood forecasting system in monsoon weather. 
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1.4 FIGURES 

 

Figure 1.1. Transboundary river basins around the world along with the summer monsoon 

regime defined by Zhang and Wang [2008] [after Jacques et al., 2013]. 

 

Figure 1.2. Framework of a numerical model based flood forecasting and early warning 

system. 
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Figure 1.3. Time of concentration (TC) of river basin; time needed to travel the most remote 

water droplets to the basin outlet. 
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Chapter 2. ARE GENERAL CIRCULATION MODELS READY FOR 

OPERATIONAL STREAMFLOW FORECASTING FOR WATER 

MANAGEMENT IN THE GANGES AND BRAHMAPUTRA RIVER 

BASINS? 

Note: This chapter has been published in its current form as an article in Journal of 

Hydrometeorology [Sikder et al., 2016]; the main differences are in section numbering and some 

reference information. ©American Meteorological Society. Used with permission. 

 

Abstract: This study asks the question of whether GCMs are ready to be operationalized for 

streamflow forecasting in South Asian river basins, and if so, at what temporal scales and for 

which water management decisions are they likely to be relevant? The authors focused on the 

Ganges, Brahmaputra, and Meghna basins for which there is a gridded hydrologic model 

calibrated for the 2002–10 period. The North American Multi-model Ensemble (NMME) suite of 

eight GCM hindcasts was applied to generate precipitation forecasts for each month of the 1982–

2012 (30 year) period at up to 6 months of lead time, which were then downscaled according to 

the bias-corrected statistical downscaling (BCSD) procedure to daily time steps. A global 

retrospective forcing dataset was used for this downscaling procedure. The study clearly revealed 

that a regionally consistent forcing for BCSD, which is currently unavailable for the region, is 

one of the primary conditions to realize reasonable skill in streamflow forecasting. In terms of 

relative RMSE (normalized by reference flow obtained from the global retrospective forcings 

used in downscaling), streamflow forecast uncertainty (RMSE) was found to be 38%–50% at 

monthly scale and 22%–35% at seasonal (3 monthly) scale. The Ganges River (regulated) 

experienced higher uncertainty than the Brahmaputra River (unregulated). In terms of anomaly 
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correlation coefficient (ACC), the streamflow forecasting at seasonal (3 monthly) scale was 

found to have less uncertainty (>0.3) than at monthly scale (<0.25). The forecast skill in the 

Brahmaputra basin showed more improvement when the time horizon was aggregated from 

monthly to seasonal than the Ganges basin. Finally, the skill assessment for the individual 

seasons revealed that the flow forecasting using NMME data had less uncertainty during 

monsoon season (July–September) in the Brahmaputra basin and in post-monsoon season 

(October–December) in the Ganges basin. Overall, the study indicated that GCMs can have 

value for management decisions only at seasonal or annual water balance applications at best if 

appropriate historical forcings are used in downscaling. The take-home message of this study is 

that GCMs are not yet ready for prime-time operationalization for a wide variety of multiscale 

water management decisions for the Ganges and Brahmaputra River basins. 

 

2.1 INTRODUCTION 

General circulation models (GCMs) are most commonly applied as tools for making long-term 

(~50–100 years) projections on future climate based on natural and anthropogenic scenarios 

[IPCC, 2013]. At the heart of their projection-making ability lies a four-dimensional framework 

(x, y, z, and t) to model the land, ocean, and atmosphere processes of the entire Earth in a 

coupled manner. This requires a comprehensive computational platform to model the physics, 

albeit with certain parameterizations, to achieve realistic solutions of the future state of Earth’s 

climate. Historically, GCMs have been used mostly for addressing climate issues [Yuan et al., 

2015; Wilby et al., 1998) in the framework of a boundary value problem [Pielke, 1998]. There is 

now an ongoing discussion if such models, with proper initialization, especially for the ocean 

and land states, can also be used to operationally forecast future climate variability at seasonal to 
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interannual time scales [Salas et al., 2012, Kundzewicz and Stakhiv, 2010). For example, to 

predict streamflow at monthly to seasonal scales using a hydrologic model, GCMs can 

potentially provide vital information about the soil condition to initialize the model as well as the 

atmospheric boundary to force the model [Yuan et al., 2015]. 

South Asia represents a clear case where such short-term climate forecasts (of mostly 

precipitation) could play a vital role in the water management and planning decisions for water 

agencies. More than 700 million people of South Asian nations, comprising India, Pakistan, 

Nepal, Bhutan, Bangladesh, Myanmar, Thailand, Cambodia, and Vietnam, depend on the 

climate-sensitive Himalayan glaciers for a significant supply of water (Table 2.1). There are 

several societal issues that make the operational use of seasonal-scale precipitation forecast from 

GCMs urgent for this populous region. First, year-round cropping to support the green revolution 

and food demand of South Asian nations means that the agricultural lands are never left fallow 

with three major growing seasons (e.g., spring–summer, summer–fall, and winter–spring). 

Consequently, these agricultural lands not only depend on the monsoon rains during the 

summer–fall (May–October) growing seasons, but they also heavily depend on the glacier and 

snow-fed groundwater (deep and shallow) during the non-monsoon growing seasons when 

streamflow or surface water availability is either low or receding [Byerlee, 1992]. Second, South 

Asia is vulnerable to uncoordinated human activity in the upstream (higher elevation) regions, 

such as extraction, diversion, and dam impoundment of river waters. Some pertinent examples 

are the Farakka Barrage [on the Ganges River; Mirza, 1998], the Gozaldoba Barrage (on the 

Teesta River, a tributary of the Brahmaputra; Nishat and Faisal, 2000), the now-shelved 

Tipaimukh Dam on the Meghna River in India [Sinha, 1995], and the much-discussed Indian 

River Linking Project [IRLP; Misra et al., 2007]. This anthropogenic variability due to the 
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artificial redistribution of water (with no coordination with downstream water planning agencies) 

is compounded further by the seasonal variability of flow due to the monsoon. Overall, the 

coevolving human and natural drivers present a challenge for water managers, particularly those 

tasked with water resources planning and improving irrigation practices at seasonal or 

interseasonal time scales. Thus, forecasting surface water availability can be useful for making 

proactive decisions on water management [Hossain et al., 2014b]. 

To grasp the need for forecasts of water availability along with a clear understanding of 

regional-scale human impacts, consider the case of the Institute of Water Modeling (IWM) in 

Bangladesh. The IWM functions as a trust organization for the Government of Bangladesh and is 

the main technical partner for water-related decision-making activity for the Ministry of Water 

Resources of Bangladesh [see Hossain et al., 2014a]. One of the pressing needs for the IWM is 

to provide guidance to farmers who operate low-lift pumps for groundwater extraction (during 

December–April) and those who depend on surface water irrigation schemes in the Ganges 

tributaries (during October–December). A key surface water irrigation scheme in Bangladesh is 

based on one of the major tributaries of the Ganges River (known as Gorai) as it enters 

Bangladesh in the northwest (Fig. 2.1a). On the other hand, most groundwaterbased irrigation 

occurs in the Brahmaputra basin (which is mostly unregulated) in the northern part of 

Bangladesh (Fig. 2.1a). In both cases, skillful forecast of surface water availability is needed a 

few months ahead. For the Ganges River, Indian stakeholder agencies in the upstream area begin 

extensive diversion and withdrawal of flow during the non-monsoon period, which causes the 

downstream flow hydrograph to rapidly recede at downstream locations in Bangladesh. The 

converse is true for Brahmaputra River, which is a fast-flowing and rain-fed river basin. Thus, 

any precipitation forecast–based projection of water availability via hydrologic modeling can be 
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directly useful for season-to-season irrigation planning in Bangladesh if there is skill in the 

forecast. However, a hydrologic model without an upstream regulation component may not be 

able to pick up the human-altered recession in the downstream location, and thus, a simple bias 

adjustment of recession flow (i.e., subtracting or adding to flow approximately the flux that is 

being withdrawn in the upstream) during the non-monsoon period may be required to make the 

most of precipitation forecasts. This is in fact a common practice used by water managers. 

A few other agencies in the region that have very similar decision-making needs are the 

Indus River System Authority (IRSA) in Pakistan, which provides guidance on the operation of 

water regulation structures of Indus basin, and the Central Water Commission (CWC) in India. 

Operational agencies are now aware that the stand-alone use of physics-based numerical models 

(e.g., GCMs and hydrologic and hydraulic models) that mimic the physical laws of nature may 

not be sufficient to project water availability that is now increasingly dominated by human 

decisions made by competing users and nations [see, e.g., Vogel, 2011]. However, forecasts of 

surface water availability from numerical models remains an objective, physically based starting 

point for an agency to add a water management component based on proxy information on how 

the water is likely to be regulated by the competing user located in the upstream (transboundary) 

region. 

Based on the above tenet, this study investigates the question of whether GCMs are ready to 

be operationalized for streamflow forecasting for water management in South Asian river basins, 

and if so, at what temporal scales and water management decisions are they likely to be relevant? 

GCMs are essentially tailored for topdown and global-to-regional assessments and 

decisionmaking [Wilby et al., 1998]. Water management decisions by agencies at seasonal time 

scales are typically made at smaller spatial scales than the scale at which GCMs are generally 
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applied. GCM-idealized physics processes (parameterizations) are designed for function at the 

computational scales on the order of 100 km and are tuned to produce realistic and energetically 

consistent large-scale climate. Thus, there are significant uncertainties in scaling issues and the 

degree to which these parameterizations can deliver realistic means and distributions of 

hydrometeorological variables at their finest scales relevant for decision-making. At issue is how 

effectively these quantities can be downscaled to drive applications (e.g., hydrologic or 

agricultural) models whose processes operate at much finer scales. Before GCMs can be 

operationally implemented for short-term (seasonal scale) decision-making for water 

management by South Asian agencies, a rigorous assessment of the skill of GCM is essential. 

End-users are particularly interested in performance metrics, including uncertainties, when 

evaluating whether to operationalize any new forecast product on the fly. 

It should be noted that the development of streamflow forecasting systems for South Asia 

and in other regions has been ongoing for a number of years given the frequent occurrence of 

large-scale flooding and drought problems (i.e., first in the Ganges and Brahmaputra basins in 

Bangladesh and more recently in the Indus basin in Pakistan). Many of these systems typically 

have a flood-centric focus and not necessarily a water management-centric objective. For 

example, Shrestha et al. [2014] have demonstrated the forecasting of daily mean streamflow at 

an unregulated river location in the upper Indus using numerical weather prediction initial states 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) to drive a 

hydrologic model. Webster [2013] has called for a need to improve weather forecasts in the 

developing world. Hopson and Webster [2010] have developed an automated system for 

streamflow forecasting in Bangladesh at 1–10 days by propagating calibrated ECMWF 

precipitation forecast ensembles through a hydrologic model. The platform for such a system 
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was provided by Jian et al. [2009], who explored the large-scale controls on streamflow at 

intraseasonal time scales. For gaining an understanding of the rich heritage of using climate 

signals in extending forecasts of hydrologic prediction systems in the United States, the reader is 

referred to the review of literature provided in Hamlet and Lettenmaier [1999a; 1999b] and 

Wood et al. [2002]. More recently, Yuan et al. [2015] have reviewed current climate model–

based hydrologic forecasting. 

Given the dominance of a monsoonal system where the majority of the precipitation occurs 

over a 3–5 month period, the surface water availability (flow in major rivers) is highly seasonal 

and skewed. At major river locations in downstream regions, such as Hardinge Bridge on the 

Ganges River or Bahadurabad on the Brahmaputra River (Fig. 2.1a), there exists multi-decadal 

records of streamflow (spanning at least 30 years or more). Such records allow the construction 

of flow climatology that is already used for decision-making by water management agencies at 

seasonal to annual time scales. Although GCMs are typically optimized to produce climate 

forecasts and not weather forecasts, it is nevertheless worthwhile to assess the value added by 

GCM-based streamflow forecasting beyond the traditional use of flow climatology. 

In this study, we focus exclusively on the Ganges, Brahmaputra, and Meghna (GBM) river 

basins for which we have a comprehensive and calibrated hydrologic model, the three-layer 

Variable Infiltration Capacity model [VIC-3L; Liang et al., 1994]. This model was used to 

convert the hydrometeorological (climate) forecast (of precipitation, temperature, and wind 

speed) into forecasts of surface water availability, primarily streamflow. In the remaining 

sections, we provide a brief overview of the North American Multi-model Ensemble (NMME) 

experiment protocol [Kirtman et al., 2014]. This is followed by a discussion of the study region 

and an overview of the streamflow predictability using VIC-3L to accurately capture streamflow 
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dynamics. A discussion of the necessary skill corrections and downscaling of the seasonal 

forecasts follows. Finally, we present our findings on the forecast skill of precipitation and 

streamflow to evaluate how ready GCMs are for prime-time use by South Asian agencies. We 

openly discuss the key issues that need a resolution to raise the application readiness of GCM-

based forecasting of water availability for water managers of South Asia. This study presents an 

application-oriented investigation aimed at judging the application readiness level (ARL) of 

GCMs for seasonal-scale transboundary water management in South Asia.  

 

2.2 NMME FOR PRECIPITATION FORECASTING 

We have applied the suite of general circulation models that have recently been organized under 

the auspices of the NMME initiative. As advocated by a recent U.S. National Academies report 

[NRC, 2010], a collaborative and coordinated implementation strategy for the NMME prediction 

system is currently delivering real-time, global, seasonal-to-interannual predictions on the 

NOAA Climate Prediction Center (CPC) operational schedule [Kirtman et al., 2014]. 

It is expected that multi-model ensembles provide improved forecasts through not only 

systematic error cancellation but improved sampling of the true forecast distribution [Hagedorn 

et al., 2005; Funk et al., 2014]. The NMME protocol consists of 9-month lead (at minimum) 

dynamical forecasts from nine participating GCMs. A detailed list of experimental setup, 

available models, number of ensembles, and hindcast period can be found in Kirtman et al. 

[2014]. Here, Table 2.2 provides an adapted [from Kirtman et al., 2014] and updated list of the 

models that are currently (as of March 2015) providing real-time forecasts and are used for 

constructing the multi-model ensemble forecasts. Briefly, both real-time forecasts and a set of 

hindcasts generally covering the period 1981–2010 are available through the International 
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Research Institute (IRI) for Climate and Society data portal. Archived forecast variables include 

precipitation, sea surface temperature (SST), and 2-m air temperature. As the NMME progresses 

during its second phase, a more expansive set of archived variables is being made available 

[Kirtman et al., 2014]. Thus, the choice of NMME for our skill assessment was deemed 

appropriate given the increasing versatility (beyond just a few hydrometeorological variables) 

that NMME is expected to afford in the upcoming years. The total multi-model ensemble utilized 

in this study consists of 96 members obtained from eight of the contributing models. In section 5, 

we discuss the treatment of NMME-forecasted hydrometeorological variables for the 

development of downscaled scenarios necessary for resolving surface water availability at 

hydrologically relevant scales. 

 

2.3 STUDY REGION 

The study region is the GBM basin of South Asia. The total catchment area of the GBM basin is 

about 1.72 X 106 km2. The countries within the GBM basin are Bangladesh, India, Nepal, 

Bhutan, and China. The geographical location of the GBM basin is between 21˚ and 31˚N and 

73˚ and 97˚E. The Ganges, Brahmaputra, and Meghna Rivers are the three major rivers in the 

GBM basin. The Himalayan and Vindhya ranges are the sources of these three rivers [Nishat and 

Rahman, 2009]. The catchment areas of different countries within the GBM basin are furnished 

in Table 2.3 (http://www.jrcb. gov.bd/). A map showing the region is in Fig. 2.1a. 

The GBM basin exhibits extremes in surface water availability. Annual rainfall in the GBM 

ranges from 990 to 11,500 mm [Shah, 2001]. Streamflow in the downstream regions of the 

Brahmaputra and Ganges Rivers can vary from 5,000 in winter to 80,000 m3s-1 during the 

monsoon season [Mirza, 1998]. The Himalayan Range covers about 15,000 glaciers, which store 
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about 12,000 km3 of freshwater [Dyurgerov and Meier, 2005]. Thus, annual water distribution in 

the GBM basin is highly dominated by the storage of precipitation over a long period in the 

Himalayas [Chowdhury and Ward, 2004]. In contrast, the Vindhya Range in the south, at 

elevations spanning 450–11,00 m, contributes significant amounts of orographic precipitation to 

nourish the southern tributaries of the Ganges–Yamuna system. The GBM river system is the 

third-largest (behind the Amazon and Congo) freshwater outlet to the world’s oceans 

[Chowdhury and Ward, 2004]. 

 

2.4 VIC-3L 

The Variable Infiltration Capacity model, first developed by Liang et al. [1994], was used as the 

macroscale distributed hydrological model. VIC is a large-scale, semidistributed macroscale 

hydrological model. It is capable of solving full water and energy balances. The minimum set of 

input forcing data that are required for simulation of the hydrologic fluxes is 1) precipitation, 2) 

temperature (minimum and maximum), and 3) wind speed. The basic features of VIC are as 

follows: 

1) The land surface is modeled as a (lumped) grid of large (e.g., 12.5 km), flat, uniform 

cells. 

2) Inputs to the model are time series of daily or subdaily meteorological drivers (e.g., 

rainfall, snow, air temperature, and wind speed). 

3) Land–atmosphere fluxes, and the water and energy balances at the land surface, are 

simulated at a daily or subdaily time step. Water can only enter a grid cell via the atmosphere. 
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4) Grid cells are simulated independently of each other, and the entire simulation is run for 

each grid cell separately, one grid cell at a time, rather than for each time step, looping over all 

grid cells. 

5) Routing of streamflow is performed separately from the land surface simulation, using a 

separate model. In this study, we used the routing model of Lohmann et al. [1998, 1996]. 

Previous applications of VIC in nearby and similar environments are reported in the work of 

Costa-Cabral et al. [2008] for the Mekong basin, Shrestha et al. [2014] for the Indus basin, and 

Wu et al. [2012] for the South Asian region. Flow routing was carried out at the locations of 

streamflow gauging (at Bahadurabad station in the Brahmaputra River and Hardinge Bridge in 

the Ganges River). The streamflow simulation using in situ forcing data (gridded from in situ 

weather station measurements that were available only from 2002 to 2010) is shown in Fig. 2.1b 

along with in situ (i.e., observed) flow measurements. Table 2.4 provides a summary of the 

performance of the calibrated VIC-3L against streamflow observations. On the other hand, the in 

situ flow-calibrated VIC-3L could be applied over a much longer period (30 years) because of 

availability of long-term retrospective global forcings archived by Sheffield et al. [2006, 2012] 

that were used for downscaling of GCM forecast forcings. Hydrologic simulation from 1982 to 

2012 was therefore used in the skill assessment of flow forecasting relative to the retrospective 

global forcing. For further details on the calibration, validation, and in situ dataset preparation, 

the reader is referred to Siddique-E-Akbor et al. [2014]. 

Given the hydrological characteristics of the GBM basin dominated by a strong monsoonal 

signal each year (during June–September), streamflow in large rivers shows well-defined 

seasonality, particularly at lower regions of the basin with higher drainage area. Figures 2.1c and 

2.1d show the simulation of streamflow for the Ganges River using in situ records that the water 
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resources and planning division of IWM in Bangladesh already use for seasonal-scale decision-

making on water management. It should be kept in mind that this conventional decision-making 

on water management for the whole region of Bangladesh is afforded only at few locations 

where a continuous record of flow gauging exists since the 1960s for building and updating flow 

climatology. Thus, a spatially distributed model, if it is demonstrated to have skill at these select 

locations, can be a platform for estimating forecast climatology at ungauged locations (or at a 

collection of grid cells) where there is no measurement and yet water management decisions 

need to be made based on mean annual or seasonal flow or flow duration curves. 

Our VIC-3L simulation of streamflow using the 1982– 2012 retrospective global forcing of 

Sheffield et al. [2006], which is used as the baseline for downscaling GCM outputs, indicates that 

the VIC-simulated streamflow captures quite well the interannual and interseasonal variability 

(for 17 out of 26 years where in situ flow data were available from 1985 to 2010; Figs. 2.1c,d). 

The performance metrics of VIC-3L using this baseline forcing is comparable to those obtained 

with in situ forcing data for the same study period (see Table 2.4 and Figs. 2.1c,d). The long-

term anomaly (Figs. 2.2a,b) of the simulated streamflow from global forcing [Sheffield et al., 

2006] indicated that the reference forcing (used for downscaling of GCM forecast forcing) can 

capture the inter-annual variability for most years. For example, both basins were able to capture 

the extreme flooding events of 1988 and 1998 in lower regions of the Ganges and Brahmaputra 

basins. The annual anomaly of the Brahmaputra basin from Sheffield global forcing (SGF) 

matched well qualitatively (as a trend) with the observed anomaly up to 1998 and again during 

2004–09 (Fig. 2.2a). For the Ganges at the Hardinge Bridge location, the SGF yielded better 

agreement in picking up observed flow anomaly after 1994, which is an intriguing but 
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unverifiable coincidence as the Ganges water sharing treaty between the governments of India 

and Bangladesh was signed in 1996 (Fig. 2.2b). 

In general, we observe that the accuracy of the simulated flow during the 1982–2012 time 

period using the retrospective global forcing is significantly reduced (Table 2.4) as the 

simulation reflects the uncertainty due to both VIC and the SGF dataset. If we assume that VIC 

is able to perfectly represent the rainfall–runoff process of the basins, the quality of the simulated 

streamflow using the global retrospective forcing can be attributed to the uncertainty of the 

global forcing dataset only (Table 2.5). Comparing the values reported in Table 2.4 with those 

shown in Table 2.5 indicates that high uncertainty is introduced into the simulated flow because 

of uncertainty in the retrospective global forcing data. As an initial proof-of-concept study to 

assess prime-time readiness of GCM for operational streamflow forecasts, we circumvented this 

problem by treating the streamflow generated from global forcing–derived flow as reference 

flow in all subsequent skill assessment. The justification for this is that GCM forecasting 

forcings will not be able to exceed the skill obtained from the global forcing used in the 

downscaling. In this way, the uncertainty involved in the GCM downscaling using the 

retrospective global forcing of Sheffield et al. [2006] can be avoided to analyze scenarios of what 

if forcings to downscale GCM were perfect. Nevertheless, in the truest operational sense, we 

have observed, as will be shown later, that GCM-based streamflow forecasting is not ready for 

prime time, even for the basic water management applications (such as seasonal to annual water 

balance decision-making) until the quality of the historical forcing used for downscaling is 

improved through the creation of a more regionally consistent in situ forcing dataset. In other 

words, a future study of GCM forecast forcings downscaled on the basis of a more regionally 

relevant dataset would be worthwhile. 
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2.5 INTERANNUAL VARIABILITY AND DEVELOPMENT OF DOWNSCALED 

SCENARIOS 

Prior to use of the NMME seasonal forecasts, GCM simulations require careful evaluation and 

must be downscaled to the resolution of the VIC-3L system. GCMs are typically run at a more 

coarse resolution than numerical weather prediction models. As such, a primary objective of 

GCMs is to capture the slowly evolving, large-scale components of oceanic and atmospheric 

dynamics. To understand the relationship between the local-scale GBM rainfall with that at the 

regional and global scale, an analysis has been performed using the area-average rainfall 

anomalies.   

2.5.1 Large-Scale Relationships 

A record of precipitation variability from the Asian Precipitation–Highly-Resolved 

Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) dataset 

[Yatagai et al., 2012] has been used to construct a standardized precipitation index (SPI) of 

GBM area-average rainfall. Global precipitation and SST estimates have been obtained from the 

Global Precipitation Climatology Project [GPCP; Adler et al., 2003] and the Reynolds et al. 

[2007] Optimum Interpolation Sea Surface Temperature (OISST) dataset. Figures 2.3a and 2.3b 

are used to illustrate the relationships between the GBM regional-average SPI, rainfall within the 

GBM itself, and global-scale SST and precipitation. During most months (including January and 

July as illustrated), the SPI is significantly correlated (p = 0.10) with most locations in the GBM 

region. The remainder of Fig. 2.3a depicts strong correlations with SST and precipitation 

throughout the tropics; these patterns are reminiscent of those associated with well-known 

phenomena such as El Niño–Southern Oscillation (ENSO). It is known that tropical SST 

variability influences atmospheric convection, and together they can influence remote regions 
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through teleconnection patterns [Alexander et al., 2002; Klein et al., 1999]. Note that the 

connection to the GBM regional precipitation anomalies appears stronger for January than July. 

It is precisely these large-scale climate anomalies and their remote teleconnections that 

provide a significant source of seasonal forecasting skill. In Fig. 2.3b, the same teleconnections 

are examined between observed SPI interannual variability and forecasted precipitation and sea 

surface temperature. The correlations are based on the NCEP Climate Forecast System, version 2 

(CFSv2), 24-ensemble mean forecast. It is evident that the seasonal climate model forecasts are 

able to capture similar structures, as observed. However, the amplitudes and locations of the 

teleconnection patterns can vary systematically from those in Fig. 2.3a. For example, the model-

forecast SST teleconnections are more narrowly constrained along the equator and somewhat 

eastward. There is also a strong precipitation teleconnection over the northwestern tropical 

Pacific (near Japan) that is not found in the observations.  

2.5.2 Raw Forecast Skill 

The inability to fully capture these large-scale relationships has direct influence on the ability of 

the model to properly translate forcing from remote tropical regions to higher latitudes. The 

result can be subpar performance of direct model forecasts in these tele-connected regions 

despite reasonably skillful forecasts within the tropics. While it is possible to apply multivariate 

corrections (e.g., canonical correlation analysis) trained using the hindcast datasets, it is beyond 

the scope of this study. Rather, this study will focus on the native forecast skill of the NMME 

forecasts. Figure 2.4 provides an analysis of the probabilistic forecast skill of the raw NMME 

forecasts. The debiased ranked probability skill score (RPSS) is computed for both rainfall and 

temperature forecasts following Müller et al. [2005]. The RPSS is evaluated at each point within 

the GBM basin individually, and the area-average RPSS is shown as a function of verifying 
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month and forecast lead. A positive value of the RPSS indicates the percentage improvement of 

the NMME forecast of identifying the observed tercile bin—below-, near-, or above-normal 

monthly average—against that of climatology (i.e., assuming equal chances for each tercile). As 

shown, only marginal improvement is found on average within the basin against a climatological 

forecast. The highest, but very modest, skill is found for the shortest lead time. We should note 

that the evaluation of the RPSS for individual point locations is a very stringent test, as it is 

expected most skill present is only found at the large, coarse resolution of the GCM. These 

results indicate a potentially significant shortcoming for providing distributed model forecasts 

for point locations. Further, it implies that at least some bias correction, particularly one that can 

improve the probabilistic forecast, may be needed. 

2.5.3 Bias Correction and Spatial Disaggregation 

For application to the VIC-3L, the NMME forecasts must be downscaled to the daily, 0.58 

forcing of the model grid. The NMME forecasts are archived at monthly, 1˚ resolution. As with 

long-term climate projections, a downscaling approach must be employed. Here, we take the 

approach of bias-corrected statistical downscaling (BCSD), as established in Wood et al. [2002]. 

It is known that coupled general circulation models do not adequately capture the climatological 

cycle for atmospheric, land, and oceanic variables and require systematic error corrections 

[Becker et al., 2013]. Following Wood et al. [2002], systematic error correction of the monthly 

forecasts has been implemented through use of a cumulative distribution function (CDF) 

matching technique. The model distributions of precipitation and temperature are CDF matched 

to those of the Sheffield et al. [2006] meteorological forcing dataset (SGF) for the years 1982–

2012. Gamma distributions are used for the nonzero precipitation estimates while a Gaussian 

distribution is used for temperature variables. To downscale from the 1˚ NMME resolution, a 
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local scaling approach is applied to the bias-corrected NMME forecasts. The local scaling factor 

is equal to the ratio of the climatological high-resolution estimate against that obtained by 

resampling of the coarse-resolution climatology to the locations of the finer-resolution grid. 

After correcting monthly mean biases and applying the local scaling factor, daily forcing is 

obtained by randomly drawing a year (for the appropriate forecast month) from the historical 

archive of the SGF dataset. The daily values are multiplicatively scaled (zero-bounded 

quantities) or shifted (nonzero-bounded quantities) to match the bias-corrected NMME forecast 

at each grid point. If a daily rainfall value results in a value higher than that observed in the 

historical archive, then its total value is equally spread among its neighboring days. Because only 

daily average temperature is forecast by NMME, daily minimum and maximum temperatures 

were obtained by shifting the SGF average by the same amount, resulting in their average 

matching the monthly mean, as in Wood et al. [2002]. Wind speed is left unadjusted, as the 

NMME forecasts do not typically provide this variable. The BCSD approach is applied to every 

forecast lead for every verifying forecast month. 

 

2.6 RESULTS AND DISCUSSION 

We applied the NMME suite of GCMs as an ensemble of precipitation forecasts that were made 

for each month of our study period (1982–2012; 372 months) and at up to 6 months of lead time. 

First, the forecast skill of precipitation data was assessed against the SGF dataset. Here the SGF 

was used as the reference data for performance analysis, because, as noted earlier, the same 

dataset was used to downscale the NMME data from monthly to daily scale. As our original 

input data (NMME data) are in monthly scale, we first show the skill of the forecast at monthly 

scales. The skill of the NMME precipitation was determined in terms of relative root-mean-
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square error (RMSE). Also, to quantify the correlation between the observed (SGF) and the 

NMME forecast, the anomaly correlation coefficient (ACC) was used [Wilks, 2011; Miyakoda et 

al., 1972]. Both matrices were calculated for the entire Ganges and Brahmaputra basins for the 

time period of 1982–2012. 

Figure 2.5 shows the relative RMSE (normalized by the SGF) trend of the NMME 

precipitation forecast over the entire Ganges and Brahmaputra basins. It is quite clear that there 

is no significantly consistent trend of the relative RMSE with lead time. In addition, the 

difference between the RMSE values at different lead times is not significant, indicating a lack of 

sensitivity to the precipitation forecast horizon. However, a modestly increasing trend in RMSE 

(or loss of skill at longer lead times) is visible in both basins. The uncertainly of the NMME 

precipitation forecast in Brahmaputra basin is generally lower (<30%) than the Ganges basin 

(44%–48%; Fig. 2.5). The ACC trend shows a similar type of assessment for the NMME 

precipitation forecast (Fig. 2.6). The pattern of the ACC versus lead time is weakly correlated 

(<0.35) to lead time. In general, when the ACC values are below 0.6, skill is considered 

unsatisfactory [Murphy and Epstein, 1989]. 

Next, we performed similar assessment for streamflow forecasting at monthly time scales. 

The ensembles of forecast hydrograph are shown for both river locations and for specific lead 

times (Fig. 2.7). The reference streamflow (i.e., obtained from SGF data) is found to be bound 

within the forecast ensembles for most of the period when the flow is lean (November–May). In 

general, the Ganges River at Hardinge Bridge yields higher variability in forecast (Fig. 2.7b), 

while for Brahmaputra (at Bahadurabad), the forecast simulations exhibit higher precision. 

Forecasts in general are challenged during the late monsoon season (August–October) for the 

Ganges River (Fig. 2.7b) and during the monsoon season (June–September) for the Brahmaputra 
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River (Fig. 2.7a). The precipitation forecast yielded a probabilistic streamflow forecast that also 

enveloped the reference flow during the rising or receding periods of the highly seasonal flow 

regimes of the rivers. It should be noted that the spread of the forecast streamflow from all eight 

ensembles at monthly time scales was very small to yield a discernible envelope. In terms of 

relative RMSE (normalized by reference streamflow from SGF; Fig. 2.8, left), streamflow 

forecast uncertainty (RMSE) was found to be 38%–50% of the reference flow, with a more 

consistent trend against lead time compared to precipitation skill (i.e., RMSE rises while ACC 

decreases reasonably consistently as lead time increases). However, as mentioned earlier, the low 

ACC observed (<0.35) is indicative of poor skill at the monthly time scale. This indicates that 

water management based on forecasting at monthly time scales will not be appropriate for the 

two river basins yet. 

The comparison between relative RMSE of the NMME-derived outflow (normalized by in 

situ observed flow and reference streamflow from SGF) is shown in Fig. 2.9 to help us 

understand the combined role of uncertainty due to hydrologic model and downscaling approach 

based on SGF data. The relative RMSE with respect to the in situ observed flow is almost flat 

against the lead time, which is inconsistent and points to needed improvements in downscaling 

using more robust and regionally appropriate forcing datasets and hydrologic model accuracy. 

The RMSE values normalized by the reference streamflow from SGF are slightly lower than the 

in situ RMSE and show a more sensitive trend to lead time. This likely proves that the use of 

good-quality in situ historical forcings in NMME downscaling may improve the true forecast 

performance. Again, we do observe that the skill values are quite high (>45%) at monthly time 

scales, to warrant any useful decision-making. 
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To explore a more appropriate time scale (than monthly) for the eventual use 

(operationalization) of streamflow forecast, the seasonal (3-monthly average flow) scale was 

analyzed. For this purpose, the year was subdivided into four seasons; January–March, April–

June, July–September, and October–December. The overall performance of the seasonal analysis 

is shown in Fig. 2.10. The relative RMSE that was normalized by reference flow from SGF 

showed much more sensitivity to lead time (Fig. 2.10, left). The uncertainty in terms of relative 

RMSE ranged from 22% to 35% of reference flow at seasonal time scales, which is lower than 

the uncertainty at monthly time scales. The Brahmaputra basin showed relatively better 

performance in terms of relative RMSE as well as the ACC (Fig. 2.10, right). The ACC for 

Bahadurabad in the Brahmaputra River showed a clear decreasing trend after a 2-month lead. 

Also, the performance of the Brahmaputra basin significantly increases in the seasonal scale than 

the monthly scale in both benchmarks (Figs. 2.8, 2.10). 

Last, Figs. 2.11 and 2.12 show the performance of individual seasons with respect to the 

reference streamflow from SGF in terms of relative RMSE and ACC, respectively. In relative 

RMSE standards, July–September showed the worst performance (<35%) and January–March 

showed the best (>10%) for both basins (Fig. 2.11). But the ACC showed that July–September in 

the Brahmaputra basin and October–December in the Ganges basin is more skillful than the other 

seasons (Fig. 2.12). In both cases, the ACC remained lower than 0.6, even at seasonal time 

scales.  

 

 



 

 

30 

2.7 CONCLUSIONS 

The key features of the study findings can be summarized as follows. In terms of relative RMSE 

(normalized by reference flow from global forcing), streamflow forecast uncertainty was found 

to be higher (38%–50%) at monthly time scales and lower (22%–35%) at seasonal time scales. 

The Ganges River experienced higher uncertainty than the Brahmaputra River in terms of 

relative RMSE. Skill of the NMME flow forecast in terms of ACC showed similar outcomes, 

where the seasonal forecast yielded better correlation with the reference flow than the monthly 

scale. The forecast skill in the Brahmaputra basin showed more improvement in seasonal time 

scales than the Ganges basin after switching from the monthly scale. Forecast of streamflow 

during the late monsoon period (August–October) was found to be a little challenging for the 

lack of NMME precipitation forecast skill during the peak season over the Ganges basin. 

Overall, the ACC in both monthly and seasonal scales remained well below 0.6. 

Earlier we asked whether GCMs are ready to be operationalized for streamflow forecasting 

in South Asian river basins, and if so, at what temporal scales and water management decisions 

are they likely to be relevant? Based on the summary of the findings reported above, which are 

mostly relative to assuming that reference flow from global forcing is perfectly representative of 

in situ conditions, our take-home message is that, despite skill improvement of streamflow 

forecast in seasonal scale for water balance applications, GCMs are not yet ready for prime-time 

operationalization for a wide variety of multiscale water management decisions for the Ganges 

and Brahmaputra River basins. In tracing the source of what is likely required to be improved a 

priori before revisiting these two questions, we have identified the hydrologic model and 

downscaling approach using a more regionally consistent forcing dataset. 
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Toward continuous improvement of operational readiness of GCM streamflow forecasting, 

future studies, in addition to creating better forcings for downscaling and models, need to address 

the current limitations. A primary hurdle in the way of raising skill of operational forecasting is 

lack of better hydrologic records and regionally consistent forcing datasets for downscaling 

across the entire basin [Sikder and Hossain, 2015; Hossain and Katiyar, 2006]. Assessment of 

GCM forecasting as well as hydrologic model improvements should be assessed at locations that 

represent smaller drainage areas within the GBM, lower response time (more flashiness), and 

less seasonality in the flow patterns of flow. For example, the Meghna basin in the northeast 

suffers from flash flood during spring season. Another issue to address is that of 

hydromorphology [Hossain, 2014; Vogel, 2011], which encompasses the difficult issue of 

artificial redistribution of surface water by competing upstream parties and cannot be resolved 

wholly using physical models forced with GCM forecast forcings alone. This is where a satellite-

based observational system that routinely monitors the state of surface water (height, surface 

area, and volume changes) at high space–time resolution and provides clues on water 

redistribution can potentially be integrated in water forecast modules. Recent work on radar 

altimeters by Hossain et al. [2014b] indicates that the expanding constellation of surface water–

relevant satellites may indeed make the monitoring of water management in regulated basins 

much more feasible. Future assessments of operational readiness of GCMs for seasonal 

streamflow forecasting in large river systems should therefore also involve the coupling of water 

management component assimilating surface water measurements from satellites with a 

hydrologic model so that the variability due to human activity can be teased out as much as 

possible. 
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As noted earlier, the South Asian region is vulnerable to uncertainty in water resources 

availability that often manifests as shortage (drought or upstream and unilateral extraction by 

dams or diversion projects), excess (floods), and crop-damaging natural disasters (cyclones and 

river flooding). Among various options to build resilience against this vulnerability, one of the 

most costeffective strategies with a proven benefit-to-cost ratio is to institutionalize a forecasting 

system that can forecast and warn of the changing dynamics of water cycle parameters [Negri et 

al., 2005]. For example, recent rural household surveys in Bangladesh have revealed that a 

doubling of the flood forecasting range from 3 to 7 days can potentially minimize losses further 

from 3% to 20% for the Bangladesh economy [CEGIS, 2007]. A comprehensive water 

availability forecasting system during the season when water is limited or in excess can provide 

routine and early information to beneficiaries such as farmers and water supply managers. For all 

these reasons, the systematic improvement of the downscaling procedure using regionally 

consistent historical forcings and improved hydrologic models should be a high priority to make 

better use of gradually improving GCMs in the future. When GCMs are ready for 

operationalization, water balance–based management decisions at seasonal time scales should be 

practiced before pushing the envelope toward monthly time scales, which seems quite impossible 

according to our study given the current state of the art. 

Given the findings with GCM for operational flow forecasting, the next logical step was to 

investigate the application of NWP models and QPF. The next set of 3 chapters explore this topic 

with chapter 3 exploring the performance of regional NWP and the optimization of its 

configuration for monsoon climates. 
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2.8 TABLES 

Table 2.1. Summary of water resources vulnerability indicators for South Asian nations. 

Country Population 

density 

(km-2) 

GDP per 

capita/HDIa 

Water 

vulnerability 

indexa 

Major issues of 

water 

vulnerabilityb 

Bangladesh 1060 $406/137 0.45 FL, DR, CYC, 

GWCONT, GLM 

Pakistan 202 $632/134 0.60 FL, DR, CYC 

India 334 $640/126 0.50 FL, DR, CYC, 

GLM, GWCONT 

Nepal 179 $252/138 0.40 GLB, GLM  

Afghanistan 40 $202/NA 0.60 DR, GLM 

Myanmar 74 $702/132 0.30 FL, CYC 

Vietnam 259 $1170/113 0.31 FL, GW CONT 
 

a HDI is the Human Development Index rank (out of all nations). 
b FL, flood; DR, drought; CYC, cyclone; GW CONT, groundwater contamination (arsenic); 

GLM, glacier melt; and GLB, glacier burst. Water vulnerability varies from 0 to 1, with 1 being 

highly vulnerable water resources. 

 

Table 2.2. List of NMMEs utilized in this study. 

Model Hindcast 

period 

Ensemble 

size 

Maximum 

lead (months) 

Version 

Canadian Coupled Global 

Climate Model 

1981 - 2010 10 11.5 Fourth Generation 

(CanCM4) 

Community Climate 

System Model  

1982 - 2010 6 11.5 3 (CCSM3) 

1982 - 2010 10 11.5 4 (CCSM4) 

Geophysical Fluid 

Dynamics Laboratory 

Climate Model 

1982 - 2010 10 11.5 2.1 (GFDL CM2.1) 

1981- 2010 12 11.5 2.5 (GFDL 

CM2.5_FLOR-A06) 

1981 - 2010 12 11.5 2.5 (GFDL 

CM2.5_FLOR-B01) 

Goddard Earth Observing 

System Model 

1981 - 2010 12 8.5 5 (GEOS-5) 

Climate Forecast System  1982 - 2010 24 9.5 2 (CFSv2) 
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Table 2.3. Geographic and hydrologic model properties of the GBM basins. 

River basin Area (km2) Model gridcell 

resolution (km) 

No. of 

grids 

Peak elev 

(m MSL) 

Ganges 1,087,300 12.5 5506 3892 

Brahmaputra 552,000 25.0 1550 8848 

Meghna 82,000 12.5 1171 600 

 

Table 2.4. Performance of VIC-3L during 2002–10 using in situ gridded and SGF data (shown in 

parentheses). Performance metrics are shown for streamflow simulation against observed 

measurements at two downstream locations of GBM basins shown in Fig. 2.1. 

Basin Season RMSE (m3/s-1) Correlation Efficiency 

Brahmaputra 

location: Bahadurabad 

 

Dry (Nov-May) 7,847 (7,340) 0.74 (0.73) 0.45 (0.39) 

Wet (Jun-Oct) 16,230 (14,615) 0.84 (0.75) 0.70 (0.40) 

Full year 12,088 (11,013) 0.92 (0.88) 0.83 (0.75) 

Ganges 

location: Hardinge Bridge 

Dry (Nov-May) 4,510 (4,045) 0.86 (0.85) 0.23 (0.54) 

Wet (Jun-Oct) 10,733 (12,931) 0.80 (0.54) 0.46 (0.25) 

Full year 7,750 (8,919) 0.88 (0.75) 0.73 (0.55) 

 

Table 2.5. Performance of streamflow using SGF, relative to flow simulated using in situ gridded 

forcing data (i.e., considering no model uncertainty from VIC-3L during 2002–10). Metrics are 

shown for 2002–10 to allow for comparison with Table 2.4 to understand the combined effect of 

model and input uncertainty. 

Basin Season RMSE (m3/s-1) Correlation Efficiency 

Brahmaputra 

location: Bahadurabad 

 

Dry (Nov-May) 3,523 0.74 0.45 

Wet (Jun-Oct) 13,153 0.76 0.29 

Full year 8,926 0.88 0.62 

Ganges 

location: Hardinge Bridge 

Dry (Nov-May) 1,429 0.88 0.76 

Wet (Jun-Oct) 15,602 0.57 0.33 

Full year 10,156 0.74 0.54 
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2.9 FIGURES 

 

Figure 2.1. (a) The GBM basins that are currently modeled by VIC-3L to simulate surface runoff 

streamflow. The solid circles represent streamflow locations at the Ganges (black), Brahmaputra 

(red), and Meghna (green) Rivers. (b) Discharge simulation by VIC-3L using in situ and gridded 

forcing (green line) and observed (blue line) data at the Ganges River [Hardinge Bridge location, 

black circle in (a); after Siddique-E-Akbor et al., [2014]]. (c) Streamflow simulated by the SGF 

data for the Brahmaputra River at Bahadurabad for 1982–2012. (d) As in (c), but for the Ganges 

River at Hardinge Bridge location. Note that performance metrics are shown in Table 2.3. 
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Figure 2.2. (a) Annual average anomaly of in situ observed flow, outflow simulated using the 

SGF data, and outflow from six different lead times of average NMME at Bahadurabad in the 

Brahmaputra River. (b) As in (a), but for Hardinge Bridge in the Ganges River. 
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Figure 2.3. (a) Observed area-average SPI correlations with observed rainfall (significant at the p 

5 0.10 level) at each point over (top) the GBM basin, with large-scale precipitation from 

(middle) GPCP and (bottom) SST. Both (left) January and (right) July are illustrated. (b) The 

observed January area-average SPI correlations with the NMME seasonal forecasts (significant 

at the p 5 0.10 level) for (left) precipitation and (right) SST at lead times of (top) 0.5, (middle) 

2.5, and (bottom) 4.5 months. Note the similarity of tropical precipitation and SST signals with 

those in (a). 
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Figure 2.4. The GBM area-average RPSS for (a) rainfall and (b) air temperature are shown for all 

12 verifying months. Within each grouping by month, the bars indicate the ranked probability 

skill with increasing forecast lead from 0.5 (black) to 5.5 (white) months (from left to right). The 

RPSS is computed against the use of climatological tercile (e.g., below, near, and above normal) 

probabilities. 

 

 

Figure 2.5. Relative RMSE (normalized by SGF) trend of NMME precipitation forecast (during 

1982–2012) over the entire Ganges and Brahmaputra basin as a function of lead time (months). 

Note that the trend is idealized as a linear regression mainly to observe sensitivity to lead time. 
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Figure 2.6. ACC trend of NMME precipitation forecast (during 1982–2012) as a function of lead 

time (months) when compared to Princeton global forcing data over the entire Ganges and 

Brahmaputra basin. Note that the trend is idealized as a linear regression mainly to observe 

sensitivity to lead time. 

 

 

Figure 2.7. (a) Monthly average forecast hydrograph showing all eight ensemble members 

lumped as an envelope of black lines at Bahadurabad (Brahmaputra River). The red line is the 

hydrograph simulated using SGF. There is no clear distinction in performance in terms of 

hydrograph spread at increasing lead times. (b) As in (a), but for Hardinge Bridge (Ganges 

River). 
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Figure 2.8. (left) Relative RMSE (normalized by the streamflow from SGF) and (right) ACC of 

the streamflow from NMME average for Brahmaputra at Bahadurabad and Ganges at Hardinge 

Bridge in monthly scale (1982–2012; 372 months). 

 

 

Figure 2.9. Relative RMSE of the outflow from NMME average. Normalized by in situ flow and 

outflow from Princeton forcing (Sheffield) in monthly scale (1985–2010; 312 months). 
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Figure 2.10. As in Fig. 2.8, but for seasonal scale (3-month average of January–March, April–

June, July–September, and October–December; 1982–2012; 124 seasons). Note that 

Brahmaputra yields a slightly more consistent trend with respect to lead time. 

 

 

Figure 2.11. Relative RMSE of the streamflow from NMME average (normalized by the 

streamflow from SGF) at seasonal time scales for different seasons (1982–2012): (left) 

Bahadurabad in the Brahmaputra River and (right) Hardinge Bridge in the Ganges River. 
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Figure 2.12. ACC of NMME forecast with streamflow from SGF at seasonal time scales for 

different seasons (1982–2012; 30 seasons): (left) Bahadurabad in the Brahmaputra River and 

(right) Hardinge Bridge in the Ganges River. 
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Chapter 3. ASSESSMENT OF THE WEATHER RESEARCH AND 

FORECASTING MODEL GENERALIZED PARAMETERIZATION 

SCHEMES FOR ADVANCEMENT OF PRECIPITATION 

FORECASTING IN MONSOON-DRIVEN RIVER BASINS 

Note: This chapter has been published in its current form as an article in Journal of Advances in 

Modeling Earth Systems [Sikder and Hossain, 2016]; the main differences are in section 

numbering and some reference information. It is used here by permission of John Wiley and 

Sons. 

 

Abstract: Some of the world’s largest and flood-prone river basins experience a seasonal flood 

regime driven by the monsoon weather system. Highly populated river basins with extensive 

rain-fed agricultural productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and 

Mekong are examples of monsoon-driven river basins. It is therefore appropriate to investigate 

how precipitation forecasts from numerical models can advance flood forecasting in these basins. 

In this study, the Weather Research and Forecasting model was used to evaluate downscaling of 

coarse-resolution global precipitation forecasts from a numerical weather prediction model. 

Sensitivity studies were conducted using the TOPSIS analysis to identify the likely best set of 

microphysics and cumulus parameterization schemes, and spatial resolution from a total set of 15 

combinations. This identified best set can pinpoint specific parameterizations needing further 

development to advance flood forecasting in monsoon-dominated regimes. It was found that the 

Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF 

Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in the 

Ganges-Brahmaputra-Meghna basins. Finer spatial resolution (3 km) without cumulus 
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parameterization schemes did not yield significant improvements. The short-listed set of the 

likely best microphysics-cumulus parameterization configurations was found to also hold true for 

the Indus basin. The lesson learned from this study is that a common set of model 

parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least 

in South Asian river basins. 

 

3.1 INTRODUCTION 

Perhaps the most challenging part of flood forecasting is the lack of meteorological observations, 

particularly precipitation [Liu et al., 2012]. The problem is critical in the transboundary or 

international river basins where it is almost impossible to obtain reliable precipitation data from 

the upstream regions in near real-time due to hydropolitical issues [Hopson and Webster, 2010; 

Hossain et al., 2007; Hossain and Katiyar, 2006]. A report by UN-Water [2008] shows that 40% 

of the global population resides in the 263 transboundary or International River basins. 

Moreover, if the real-time (i.e., nowcast) observed data (e.g., rain gauge data, satellite-observed 

precipitation) are available, these allow forecasting of floods limited by the time taken for runoff 

once generated in the river, to flow from the most upstream location to the downstream sink of 

an ocean or lake. In order to extend this forecast lead time beyond the maximum bounded by a 

basin’s time of concentration, precipitation forecasts are needed. Thus, the use of model-based 

precipitation forecasts in flood forecasting has recently become a trend among many flood 

forecasting agencies and flood management communities [e.g., Liu et al., 2015; Liguori et al., 

2012; Verbunt et al., 2006; Jasper et al., 2002]. For example, the Flood Forecasting and Warning 

Center of Bangladesh now takes advantage of 5 day precipitation forecasts in the Ganges-
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Brahmaputra basins to improve skill of its 5 day river level forecast product during the monsoon 

season [FFWC, 2014]. 

Precipitation forecasts using Numerical Weather Prediction (NWP) models still face 

difficulties at scales relevant for flood forecasting [e.g., Yucel et al., 2015; Nam et al., 2014; 

Ebert, 2001]. For example, for convective precipitation processes, this is more challenging due 

to the lack of better representation of convective processes through appropriate parameterizations 

[Yucel and Onen, 2014; Lowrey and Yang, 2008]. Therefore, investigations are required to 

understand the physical properties of small scale meteorological processes. Assessment of the 

small-scale meteorological processes (e.g., thunderstorm) can be performed by finer scale NWP 

models. Many studies suggest that higher spatial resolution models perform better when the 

precipitation is intense [e.g., Jang and Hong, 2014; Givati et al., 2012; Roberts et al., 2009]. Due 

to the computational limitations of global modeling, most global NWP model-based precipitation 

forecasts are available at large spatial scales. For example, the Global Forecast System (GFS) of 

the National Oceanic and Atmospheric Administration (NOAA) produces nowcast and 10 day 

forecasts of meteorological conditions and precipitation at 0.258 resolution every 6 h. Naturally, 

there is therefore a need to explore downscaling options available with finer resolution numerical 

models such as the Weather, Research and Forecasting (WRF) model [Skamarock et al., 2008]. 

A recent study by Kumar et al. [2016] showed that the quality of global NWP model-forecasted 

precipitation over the Indian continent can be improved by downscaling using the WRF. 

In many cases, it is not computationally feasible to operate a regional numerical weather 

prediction model (e.g., WRF) routinely using a very fine resolution grid over a large domain for 

flood forecasting operations. For such issues, subgrid-scale parameterization schemes, nesting, 

and data assimilation techniques have been introduced in numerical models to improve 
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downscaled output. Thus, the simulated precipitation can be sensitive to spatial resolution, 

parameterization schemes, nesting ratios, and domain size of the model. Many studies evaluated 

the sensitivity of these features. Liu et al. [2012] studied the downscaling ratio between the nests 

in the modeling domain. They showed that the performance of the model to predict precipitation 

decreased with high downscaling ratios (e.g., 1:10). In addition, they noted that model 

performance is also sensitive to domain size. Model parameterization schemes are likely the 

most studied feature to optimize model performance. For example, Efstathiou et al. [2013] 

evaluated WRF model performance for a heavy precipitation event in northern Greece using 

different planetary boundary layer options and microphysics schemes. Mannan et al. [2013] 

tested the WRF model using different microphysics for an intense rainfall event in Bangladesh. 

Rao et al. [2007] assessed the model for several Indian heavy precipitation events using different 

microphysics and cumulus parameterization schemes. Pennelly et al. [2014] evaluated five 

different cumulus parameterization schemes for heavy rainfall in Alberta with different grid 

spacing and reported that at 6 km resolution or higher, the model performance is independent of 

cumulus physics parameterization schemes.  

Another critical issue of downscaling forecasted precipitation from global NWP models is 

the skill dependence on forecast lead time. Usually, precipitation forecast deteriorates with 

increasing lead time [Georgakakos et al., 2014]. Accuracy of the forecasted precipitation also 

depends on the model parameterization and spatial resolution. Therefore, evaluation of different 

sets of parameterization schemes and spatial resolution as a function of precipitation estimation 

accuracy and forecast lead time is important for advancing numerical model-based downscaling 

of global NWP forecasts for operational flood forecasting. Such an evaluation can pinpoint a 



 

 

47 

more manageable set of parameterizations that may need further refinement through atmospheric 

field studies before operationalization in flood forecasting applications. 

In this study, we investigate the performance of the WRF model to predict (nowcast and 

forecast) precipitation for monsoon-affected flood-prone river basins. We apply a numerical 

model (e.g., WRF) for spatial downscaling of global NWP model output on precipitation for 

flood forecasting applications. The definition of monsoon weather systems and its spatial domain 

as outlined by Ramage [1971] was used and is shown in Figure 3.1. This monsoon boundary 

covers almost 20% of the world’s surface, and incorporates some of the largest and most 

populous transboundary river basins (e.g., Ganges, Brahmaputra, Indus, Mekong, Salween, 

Upper Nile). The prevalence of transboundary flooding in such monsoon regions is critical as it 

negatively impacts downstream nations due to the lack of shared hydrometeorological 

observations in near real-time [Hossain and Katiyar, 2006]. 

This study explores the sensitivity of WRF physics parameterizations and spatial scale to 

identify a more optimal configuration for downscaling global NWP forecasts that is more likely 

to ‘‘work’’ in monsoon-dominated regions. The goal is to derive a configuration that is 

computationally efficient and yet skillful enough for a large international river basin for eventual 

use in operational applications. The question we try to answer in this study is as follows: Is it 

possible to identify the likely best set of parameterization schemes for cloud and cumulus 

processes and spatial resolution for WRF downscaling of global NWP forecasts that will hold 

true for most monsoon-affected river basins? As mentioned earlier, such a set can make further 

refinement of model parameterizations (or proposal of new ones) through targeted field 

campaigns practically feasible due to a smaller working sample.  
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3.2 NUMERICAL MODELS FOR PRECIPITATION FORECASTING 

The GFS is a global-scale NWP model developed by the NOAA. The model is run four times per 

day by the US National Weather Service to generate detailed and global output of atmospheric 

variables. At each run, the model generates a forecast up to 16 days. The model simulation is 

divided into two steps. In the first step, the GFS generates forecast every 3 h from 000 to 240 h 

(i.e., 10 days). In the next step, the model generates forecast every 12 h from 240 to 384 h (i.e., 

next 6 days). The model resolution is different in both steps. However, the 16 day forecast data 

are available at 0.25˚, 0.5˚, 1˚, and 2.5˚ resolution through the National Center for Environmental 

Prediction (NCEP). NCEP uses the same GFS model to run with more observational data and 

generate a more accurate daily output. The product is known as NCEP final analysis. The NCEP 

final analysis (FNL from GFS) data are available at 1˚ resolution every 6 h. 

In this study, we used the WRF-ARW V3.7.1 to dynamically downscale the global NWP 

model outputs. The WRF is a new generation numerical weather prediction model with advanced 

dynamics, physics, and numerical schemes, and was developed from its predecessor, the MM5 

model. It is a mesoscale meteorological model that uses fully compressible, nonhydrostatic Euler 

equations. For horizontal discretization, it uses Arakawa-C grid staggering and a third-order 

Runge-Kutta integration scheme for time separation. The model is capable of dealing with both 

one-way and two-way nesting. Details of the dynamics and physics of the WRF model are 

described in Skamarock et al. [2008]. 

In a numerical model like WRF, the Microphysics (MP) and Cumulus Parameterization 

(CP) schemes are mainly responsible for precipitation generation. Water vapor, cloud, and 

precipitation process are explicitly resolved by the microphysics. The subgrid-scale convective 

process and shallow clouds are managed by the cumulus parameterization. The Indian summer 
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monsoon rainfall prediction using the WRF model has been found to be sensitive to the choice of 

convective parameterization scheme [Srinivas et al., 2015]. Many studies on the Indian summer 

monsoon rainfall reported that the Betts-Miller-Janjic CP scheme performs better in that region 

[e.g., Srinivas et al., 2013; Kumar et al., 2010; Mukhopadhyay et al., 2010; Vaidya, 2006]. 

The cloud microphysics scheme is mainly responsible for nonconductive rainfall in the 

coarse resolution (>10 km) WRF model. Rajeevan et al. [2010] conducted a sensitivity test of 

four different WRF microphysics schemes on a severe thunderstorm over southeast India. They 

found that the Thompson scheme performed well out of the four microphysics options, although 

the Morrison scheme was the most sophisticated among them. At high spatial resolution (less 

than 5 km), numerical models are expected to capture the convective processes and therefore the 

use of a convective scheme is optional [Hsiao et al., 2013]. Thus, the sensitivity of different 

microphysics schemes over the Indian monsoon rainfall needs to be evaluated, particularly for 

very high-resolution models (<10 km). More recently, Zheng et al. [2016] identified that cloud 

microphysics alone was not sufficient to resolve convective processes at higher resolution in the 

WRF model. They compared high-resolution model simulations (grid increments of 9 km and 3 

km) over the U.S. southern Great Plains with no convective scheme runs, and reported that the 

updated Kain–Fritsch schemes showed better result in both resolutions. 

Precipitation is also sensitive to the planetary boundary layer (PBL). Ulate et al. [2014] 

studied the sensitivity of CP-PBL parameterization schemes for the Indian Ocean and Maritime 

Continent water cycle, and reported that the water cycle was more sensitive to the PBL than CP. 

However, a dry bias was found with the Mellor-Yamada-Janjic PBL scheme, while the Yonsei 

University Scheme performed relatively better. A similar observation was reported by Efstathiou 

et al. [2013] for the heavy rain rate over the eastern Chalkidiki peninsula in northern Greece. 
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Therefore, the Yonsei University PBL scheme was used in this study. Table 3.1 provides the list 

of microphysics and cumulus parameterization schemes along with other parameterization 

schemes used in this study. 

 

3.3 STUDY APPROACH AND METHODOLOGY 

The main objective of this study is to identify the likely best set of parameterization 

schemes and spatial resolution that can hold true for most river basins in monsoon-driven flood-

prone regions. Due to the computationally prohibitive nature of running WRF, a 1-month period 

during the monsoon season was selected. This period had short dry spells that allowed for 

assessment of false rain simulation. We selected the monsoon-driven Ganges-Brahmaputra-

Meghna (GBM) basins as the test river basin to explore the various combinations of 

parameterization and scale (Figure 3.2). GBM basins have the characteristic of incorporating 

three river basins of contrasting size, precipitation intensity, times of concentration, and flood 

regime [Mirza et al., 1998]. Here, Meghna is the smallest in size and response time while Ganges 

is the largest. Brahmaputra has steep terrain with high flow rate flood regime, often exceeding 

70,000 m3/s during the Monsoon season. 

We set up the WRF model for the entire GBM river basin system (Figure 3.2). The model 

setup consisted of three one-way nested domains, where the smallest-scale domain was divided 

further into two subdomains (D03 and D04) for computational efficiency (Figure 3.2). The 

smallest domains span different climatic regions of the GBM basin, where there is strong 

variability in precipitation climatology. Domain 3 covers the heavy rainy region which is a 

mainly humid subtropical zone and Domain 4 covers the semiarid area (less rainy) of Western 

India. The outermost domain (D01) has 27 km grid resolution and covers the entire Indian 
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subcontinent, northern Indian Ocean, southern part of central Asia, northern part of Southeast 

Asia, and a part of China (spanning 54˚E-106˚E and 2˚N-40˚N). The smallest domains (i.e., D03 

and D04) have grids with 3 km resolution. Domains 3 and 4 were configured without any CP 

parameterization, assuming that the MP is capable of explicitly solving the convective process in 

3 km resolution. The second domain (D02) is the child of the outermost domain (D01) and 

parent of the smallest domains (D03 and D04). The default two-way nesting in WRF updates the 

parent domain using the results of the child domain. Here, we used one-way nesting to keep the 

parent domain output ‘‘as is’’ for further analysis. A 1-month time period of the Indian summer 

monsoon from 5 August 2015 to 4 September 2015 was chosen as the simulation period. During 

this period several heavy rainfall events occurred in the region. The simulation time step of the 

outer domain (i.e., D01) was selected as 90 s. Model outputs were saved every 3 h, although 

output of every 24 h interval was used. 

To test if the likely best configuration of parameterizations identified for GBM basins is 

applicable to other regions, a similar WRF setup was prepared for the Indus river basin (Figure 

3.3) with two one-way nested domains. The outermost domain (D01) has 27 km resolution and 

innermost domain (D02) has 9 km resolution. The analysis extent (Figure 3.3) covers almost 

entire Indus river basin. The outer domain covers nearly the same area as domain 1 of the GBM 

basin (47˚N-99˚N and 2˚N-42˚N). Given limitations of CPU resources, a one-week time period 

(25–31 July 2010) was selected for testing the efficacy of GBM-derived configuration. We 

consider this an appropriate period as it includes a severe flood event with basin-wide 

precipitation peaking on 29 July 2010 and leading to large-scale floods in most parts of Pakistan. 

All other parameters and model configurations remained the same. 
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As seen from Table 3.1, five MP schemes and three CP schemes were chosen at three 

different spatial resolutions (27, 9, and 3 km) to evaluate the sensitivity to precipitation 

simulations. Parameterization schemes beyond CP and MP were selected based on compatibility 

with the monsoon-driven climate [e.g., Ahasan and Khan, 2013; Kumar et al., 2012; Rao et al., 

2007] and are also shown in Table 3.1. However, these parameterizations were not part of the 

sensitivity study. A total of 15 MP-CP combinations (5 MP 3 3 CP) were evaluated in GBM 

basins over a one-month time period to identify the existence of the likely best MP-CP 

combination and spatial scale. Each combination is denoted hereafter by their MP-CP 

abbreviation shown in Table 3.1. For example, WSM5-KF means the combination of the WRF 

Single Moment 5 class microphysics and Kain-Fritch cumulus parameterization. The 6 hourly 1˚ 

resolution NCEP GFS final analysis data were used as the boundary data and initial condition for 

a continuous 1 month simulation of the GBM basins. From the sensitivity study, the three best 

MP-CP combinations and spatial scales were chosen according to their performance in 

simulating precipitation in nowcast mode. Thereafter, we applied these MP-CP combinations and 

spatial resolution to the Indus river basin. The initial and boundary data source remained the 

same as in the GBM nowcast mode for the Indus river basin. For assessment of the MP-CP 

combination in the forecast mode, two storm events in the GBM basin were selected and 

simulated using the GFS forecast data as the model boundary up to 10 days lead time. To 

generate the forecast for 10 different lead times of a storm event, a total of 10 simulations were 

carried out for a particular MP-CP combination, starting 10 days before the storm event followed 

by 9 days, 8 days and so on. The 3 hourly 0.5˚ resolution GFS forecast data were used as the 

boundary condition for the forecast simulation, while the initial condition of each simulation was 

taken from the previous day’s model output. For example, initial conditions for the 9 day lead 
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simulation (i.e., starting 9 days before the storm event) were taken from the 1st date output of the 

10 day lead simulation thereby minimizing the effect of the model spin-up time error to generate 

more accurate output at smaller lead times. 

 

3.4 DATA 

In our parameterization and spatial resolution sensitivity experiments, the 6 hourly 1˚ X 1˚ 

resolution NCEP GFS final analyses data were used as the boundary in the WRF model [e.g., 

Rao et al., 2007]. These boundary data were available through the University Cooperation for 

Atmospheric Research-Research Data Archive (http://rda.ucar.edu/datasets/ds083.2/). Data from 

the same source were used as the boundary to evaluate the performance of the likely best MP-CP 

combinations over the Indus basin for the July 2010 storm event. To evaluate the performance of 

the MP-CP schemes in forecast mode with different lead times, forecasted boundary data were 

used. In the case of a forecasted boundary, we used 3 hourly 0.5˚ X 0.5˚ resolution archived GFS 

forecast up to 10 days (http://www.nco.ncep.noaa.gov/pmb/products/gfs/). 

Simulated precipitation was compared against satellite-estimated precipitation from the 

Global Precipitation Measurement (GPM)-Integrated Multi-satellitE Retrievals for GPM 

(IMERG) final run data (30 min precipitation with 0.1˚ resolution). This global precipitation data 

set was prepared using satellite-estimated precipitation (from microwave and microwave-

calibrated infrared), precipitation gauges analysis [Huffman et al., 2015]. GPM is the core 

satellite of this data set. WRF-simulated precipitation over the Indus basin precipitation is 

compared against the daily 0.25˚ X 0.25˚ Climate Hazards Group InfraRed Precipitation with 

Station data-CHIRPS [Funk et al., 2015], as GPM-IMERG data record begins from 2014. This 

historical data set (since 1981) was prepared using satellite imagery and gauged station data. The 
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mean daily precipitation of CHIRPS data shows consistency with GPM-IMERG over the GBM 

basin for peak one month of the 2015 monsoon (Figure 3.4). Therefore, the comparison between 

the simulated precipitation performance of GBM basin (with respect to GPM-IMERG) and Indus 

basin (with respect to CHIRPS) is fair. Finally, the amount of predicted precipitation (areal-

averaged precipitation) was evaluated against in situ ground station data available from the 

World Meteorological Organization though NCDC (National Climatic Data Center) GSOD 

(Global Surface Summary of the Day). The heavy rainy area of the GBM basin (D03) covers 43 

GSOD stations while the less rainy area of the GBM basin (D04) covers 13. Sixty GSOD 

stations located in the Indus basin were used and the point precipitation values were converted to 

areal averages using the Thiessen polygon method (see Figures 3.2 and 3.3). 

 

3.5 PERFORMANCE CRITERIA 

We used error metrics proposed by Liu et al. [2012] to evaluate model output performance with 

respect to observed data. Four categorical metrics were used. These included probability of 

detection (POD), the frequency bias index (FBI), the false alarm ratio (FAR), and critical success 

index (CSI). The POD indicates the probability of detection of rainfall, while FAR is the 

probability of the false rain (alarm) produced by the simulation. The CSI also indicates the 

probability of the detection, but with respect to the total rainfall predicted by model and 

observation. The FBI evaluates the tendency to over or underestimate simulated rainfall with 

respect to observed data. The ideal scores for POD, FBI, FAR, and CSI are 1, 1, 0, and 1, 

respectively. Three continuous metrics, including the root mean square error (RMSE), the mean 

bias error (MBE), and the standard deviation (SD) were used in this study. Both RMSE and SD 
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indicate the amount of error in predicted precipitation without showing the bias. The MBE shows 

the bias of the simulated precipitation with respect to the observed. 

The categorical metrics were calculated with respect to the gridded satellite final (gauge-

calibrated) products (i.e., GPM-IMERG for GBM and CHIRPS for Indus), while the other three 

error metrics were calculated with respect to the areal-averaged observed precipitation 

determined from NCDC-GSOD station data. Here, each error metric represents different 

characteristics of the performance of simulated precipitation. It is difficult to choose the best 

options based on these seven different error metrics. Therefore, a multicriteria decision analysis 

was carried out to find the likely best MP-CP combination over the GBM basin. Furthermore, 

two unified performance scores were used to compare the results from different model 

configurations. The description of the multicriteria decision analysis technique and the unified 

performance scores are given in the next sections. 

3.5.1 Multicriteria Decision Analysis 

We used a multicriteria decision analysis technique named TOPSIS (Technique for Order of 

Preference by Similarity to Ideal Solution) to find the likely best MP-CP combinations. TOPSIS 

was first developed by Hwang and Yoon [1981] and later modified and used in numerous studies 

[e.g., Upadhyaya and Ramsankaran, 2014; Milani et al., 2005]. This multicriteria decision 

analysis technique determines the best alternative using the shortest and longest geometric 

distance from the positive and negative ideal solution, respectively [Assari et al., 2012]. 

TOPSIS consists of six steps, starting with a decision matrix with different alternatives and 

criteria. In this study, we used 15 different MP-CP combinations to find the likely best 

combination for monsoon-driven weather. These 15 MP-CP combinations along with three 

different spatial resolutions provided 45 different alternatives in this case. Therefore, the decision 
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matrix in this study had 45 alternatives and 7 criteria (i.e., 4 categorical and 3 continuous error 

metrics). The value of each criterion indicates the performance of different alternatives. In 

TOPSIS, each criterion should have the evaluation as ‘‘more is better’’ or ‘‘less is better.’’ To 

meet the requirements, the FBI and MBE were rescaled. Both rescaled metrics were ranging 

from 0 to 1, where 0 is the perfect score. Therefore, the POD and CSI are ‘‘more is better’’ and 

FAR, rescaled FBI, RMSE, SD, and rescaled MBE are ‘‘less is better’’ criteria in this study. We 

used equal weight for all criteria. Finally, the relative closeness to the ideal solution was 

computed. Hereafter, this computed value is denoted as TOPSIS RCV (Relative Closeness 

Value). The higher TOPSIS RCV means closer to the observed data or more accurate alternative.  

3.5.2 Unified Performance Scores 

The TOPSIS RCV is a relative value to identify the best alternative based on the given criteria. 

Which means that the value is not absolute and may change with different sets of alternatives. 

Therefore, two unified performance scores were used to compare overall model performance 

across different configurations, where the score of each alternative is not relative to others. At 

first, the values of all error metrics were rescaled to calculate the performance scores. 

Table 3.2 shows the relationship between the original error metric and rescaled metric 

(where subscript ‘‘r’’ denotes ‘‘rescaled’’). Here, the thresholds were selected based on the 

highest and lowest metric values. All rescaled values range from 0 to 1, where 0 represents the 

worst case and 1 is for an ideal case. Thereafter, a unified score was calculated by assigning 

equal weights to all rescaled error metrics (i.e., by averaging all rescaled values). The point of 

deriving a unified score was to allow a convenient and multidimensional assessment of 

precipitation simulation quality for various WRF configurations. Here, a higher unified score 

means better model performance or closer to the observed data. 
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 𝑈𝑛𝑖𝑓𝑖𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  (
𝑃𝑂𝐷𝑟+𝐹𝐵𝐼𝑟+𝐹𝐵𝐼𝑟+𝐶𝑆𝐼𝑟+𝑀𝐵𝐸𝑟+𝑅𝑀𝑆𝐸𝑟+𝑆𝐷𝑟

7
) (3.1) 

Another performance score was calculated to evaluate model performance in forecast mode 

using only the rescaled categorical metrics denoted here as the spatial extent score. Like the 

unified score, the spatial extent score ranges from 0 to 1 with 1 being the ideal value. This score 

shows the overall model performance in terms of spatial distribution of precipitation. 

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑥𝑡𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 =  (
𝑃𝑂𝐷𝑟+𝐹𝐵𝐼𝑟+𝐹𝐵𝐼𝑟+𝐶𝑆𝐼𝑟

4
) (3.2) 

 

3.6 RESULTS AND DISCUSSION 

3.6.1 Identifying the Likely Best Set of MP-CP Configurations 

The model was simulated for 31 days over the GBM domain in nowcast mode to identify the 

likely best MPCP combinations. Figure 3.4 shows a sample comparison between the mean daily 

precipitations of the study area from two MP-CP combinations with 9 km resolution (i.e., 

domain 2) and GPM-IMERG. The black boxes in Figure 3.4 are the analysis extent for heavy 

rainy areas and less rainy areas, and are equivalent to the area of Domains 3 and 4 of the GBM 

setup (Figure 3.2), respectively. 

Figure 5 shows a sample comparison between the areal-averaged precipitation from two 

MP-CP combinations with 9 km resolution and NCDC-GSOD. For the combined case, both 

heavy rainy areas and less rainy areas were considered. 

The spatial distribution of simulated precipitation was assessed using categorical metrics 

(i.e., POD, FBI, FAR, and CSI), which were calculated against the GPM-IMERG data for the 

heavy rainy area, less rainy area, and for the combined area. Figure 3.6 shows the comparison 
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between the performance of WRF-modeled nowcast precipitation against GPM-IMERG for 

different MP-CP combinations and spatial resolutions according to different categorical metrics. 

In the heavy rainy area, the POD of the simulated precipitation is relatively better with the 

BMJ and GF CP schemes. The performance of the GF-CP scheme is marginally better than BMJ 

in the humid subtropical zone (Figure 3.6a). In the less rainy or semiarid zone, performance of 

the BMJ scheme is significantly superior to the other two CP schemes (Figure 3.6b). In the 

combined case (Figure 3.6c), the performance of the BMJ and GF are almost similar, except for 

a few cases where the GF shows better performance (e.g., WSM3-GF). Across all conditions, the 

KF CP scheme shows poor performance. An almost similar pattern is visible in CSI (Figures 

3.6d–3.6f). Both POD and CSI indicate that the BMJ and GF are adequate to detect rainfall. 

However, the GF exhibits better rain detection performance over wet regions (Figures 3.6a and 

3.6d), while BMJ appears acceptable across all climatic conditions (Figures 3.6a, 3.6b, 3.6d, and 

3.6e). The FBI indicates that the BMJ and GF parameterization schemes have a tendency to 

overestimate precipitation, particularly when the resolution is coarse (Figures 3.6g–3.6i). In 

general, the KF scheme shows better performance (closer to 1) in coarse resolution (Figure 3.6i). 

The overall performance of the BMJ scheme is slightly better than the GF scheme in terms of 

FBI. One of the reasons of selecting continuous 1-month period in the monsoon including few 

dry spell was evaluating the false alarm of the simulated precipitation. However, the FAR in the 

heavy rainy area do not appear sensitive to a specific MP-CP combination (Figure 3.6j). This 

may be due to the fact that the wet region experiences rainfall almost every day and thus there is 

no opportunity for the WRF model to produce a false rain simulation. In the dry area, the 

performance of the GF scheme is noticeably poor in terms of FAR, while the KF scheme shows 

better results (Figure 3.6k). From Figure 3.6k, it is clear that the performance of the MDM MP 
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scheme is worse than others and ultimately, it reduces the overall performance of the MDM MP 

scheme in combined conditions (Figure 3.6l). The above analysis of FAR reveals that the 

selection of the analysis area and period have an impact on the evaluation of model simulated 

precipitation performance. Similarly POD and CSI are not sensitive in case of dry period, when 

less or no rain occurs. Therefore, selection of multiple area with different characteristics and 

longer time period is necessary to correctly evaluate the performance of simulated precipitation. 

From the analysis of the categorical metrics, we can see that the accuracy of simulating the 

spatial distribution of precipitation is quite sensitive to the CP schemes, and the overall 

performance of the BMJ scheme is better than the other two studied. 

Daily areal-averaged precipitation for both simulated and observed data were calculated to 

evaluate the metrics of MBE, RMSE, and SD. The NCDC-GSOD station data were used as 

reference Figure 3.7 depicts comparisons of the continuous error metrics or RMSE, SD, and 

MBE. From the MBE plot, it is clear that the WSM3 MP scheme has a tendency to yield 

negative bias (underestimation), while the GFCP scheme has an opposite tendency of positive 

bias in all conditions (Figures 3.7a–3.7c). Patterns of the RMSE and SD are almost similar and 

show sensitivity of the CP schemes to the accuracy of the precipitation amount (Figures 3.7d–

3.7i). The performance of the KF-CP scheme is worse for most cases of the wet climate region 

(Figures 3.7d and 3.7g). In dry conditions, the performance of the GF-CP scheme is relatively 

inferior to others (Figures 3.7e and 3.7h). In general, the BMJ scheme is better in all conditions 

in terms of areal-averaged precipitation. 

Finally, the calculated TOPSIS RCV indicated that in wet area the BMJ and GF CP schemes 

perform relatively better than KF (Figure 3.8a). In the dry area, the BMJ is clearly superior 

(Figure 3.8b). Overall, performance of the BMJ is better in all conditions (Figure 3.8c). Similar 
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results were found by other studies for the same region [e.g., Srinivas et al., 2013; Kumar et al., 

2010; Mukhopadhyay et al., 2010]. The MP schemes are not as sensitive as the CP schemes. The 

combination of the WSM3, WSM5, and WSM6 microphysics schemes with the BMJ cumulus 

parameterization scheme shows promising results in the GBM basins. The WSM3-GF with 27 

and 9 km resolution and TF-GF, MDM-BMJ, MDM-GF with 3 km resolution also provide 

favorable results in combined cases. Considering the relatively poor performance of the GF-CP 

and MDM-MP scheme in the less rainy (semiarid) region and the difference between the 

TOPSIS RCV at different resolutions with the WSM3-GF, TF-GF, MDM-BMJ, MDM-GF 

combinations, we discarded combinations in further investigations (over Indus basin). Based on 

the sensitivity analyses shown in Figures 3.6–3.8, the likely best set of configurations selected 

for further investigation were: WSM5-BMJ, WSM6-BMJ, and TS-BMJ.  

3.6.2 The Likely Ideal Spatial Resolution 

In this study, we also evaluated the performance of three different spatial resolutions of the WRF 

model over the GBM basin domain. From the POD and CSI (Figures 3.6a–3.6f), it is clear that 

the probability of detecting precipitation is lower at finer resolutions (i.e., 3 km). Moreover, in 

most cases, the finer resolution model underestimates precipitation (Figures 3.6g–3.6i). In terms 

of FAR, the difference between the model resolutions is insignificant. For the semiarid region, 

the finer resolution model shows slightly better performance in FAR (Figure 3.6k). The 27 km 

resolution performs better than others in terms of POD and CSI when the KF CP scheme is used. 

The 9 km resolution model performs reasonably well with BMJ and GF CP schemes showing a 

modest improvement over the 27 km resolution. 
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In terms of MBE, the finer resolution model shows a mostly negative bias, while the coarser 

resolutions are positive (Figures 3.7a–3.7c). In the heavy rainy area, the performance of the 3 km 

resolution is better in terms of areal-averaged precipitation according to RMSE and SD metrics 

(Figures 3.7d and 3.7g). In the less rainy (semiarid) area, the sensitivity to spatial resolution is 

insignificant in terms of RMSE and SD metrics (Figures 3.7e and 3.7h). In TOPSIS RCV plots 

(Figure 3.8), the overall performance of the finer resolution model is not significantly higher than 

with coarser resolution, except for the case of TS and MDM MP schemes in the combined case 

(Figure 3.8c). The MDM is the most sophisticated MP scheme used in this study with a total of 

10 variables [Rajeevan et al., 2010]. The TS is the second most complex MP scheme used here. 

In general, the higher resolution model demands a complex microphysics scheme (i.e., with more 

variable) to resolve finer-scale processes explicitly [Stensrud, 2007]. This indicates the necessity 

of a complex MP scheme in high resolution to resolve convective process explicitly when no 

cumulus physics are used. This may explain why the performance of the 3 km resolution is 

remarkably better than the coarse resolution model with the TS and MDM MP schemes. 

The CP scheme was not used with 3 km resolution in this study. The WSM3-GF 

combination was chosen to assess the performance of the 3 km resolution model using the CP 

scheme, as this combination shows good performance for 27 km and 9 km resolutions, but 

remarkably poor performance at 3 km resolutions (Figure 3.8c). We used the unified score 

(equation (1)) to compare the results before and after using the CP scheme in the 3 km 

resolution. The simulation of 3 km resolution with the CP scheme significantly improves model 

performance in finer resolution in terms of unified score (Figure 3.9). A possible reason could be 

that the relatively simple WSM3-MP scheme (with only three variables) is unable to capture the 

convective process in the finer resolution grids. Use of the CP scheme appears to overcome this 
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limitation. Therefore, additional care may be required for the higher-resolution WRF model 

simulations, where convective precipitation is common. The higher-resolution model 

performance can be improved by using the CP scheme with it or by using any sophisticated MP 

scheme with many variables when no CP scheme is used. 

Figure 3.10 shows areal-averaged precipitation for all three likely best MP-CP combinations 

in conjunction with the observed data (GSOD) at different spatial resolutions for all domains 

(wet, dry, and combined). In the heavy rainy area, the WRF model is able to capture the 20 and 

30 August storm events that took place in GBM (GSOD in Figures 3.10a/3.10d/3.10g). All 

model combinations are found to overestimate the first storm event and underestimate the second 

storm event. The 27 km resolution shows relatively better performance in the first storm event 

using the WSM6 scheme (Figure 3.10a), while the 9 km resolution with WSM5 is best for the 

second event (Figure 3.10d). In the less rainy (semiarid) area, all model combinations show poor 

performance and fail to capture the storm events on 11 August, but are able to capture the 17 

August storm event (Figure 3.10b, 3.10e, and 3.10h). In general, the use of 3 km resolution does 

not yield superior skill in terms of areal-averaged precipitation. Finally, the difference between 

the TOPSIS RCV of the 27 km and 9 km resolutions is less than the difference with the 3 km 

resolution in the combined case (Figure 3.8c). Therefore, both 27 km and 9 km resolutions can 

be considered to be part of the likely ideal set of combinations. 

3.6.3 Reproducibility Over Indus Basin 

The WRF model was set up over the Indus river basin using a set of three likely ideal MP-CP 

combinations and two resolutions identified over the GBM domain. The simulation period 

spanned a week time period when a severe storm event in late July 2010 took place and flooded 

large parts of Pakistan [Ahasan and Khan, 2013]. The peak of the storm occurred on 29 July 
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2010. Similar to the GBM basin, the accuracy of simulated precipitation was calculated using a 

similar set of metrics (Figure 3.11). The CHIRPS data set was used as the reference data set to 

calculate the categorical metrics, as the GPM-IMERG data record only starts in 2014. 

From Figure 3.11, it is visible that the difference among the three likely best sets of 

combinations (derived from GBM) in the Indus basin is marginal. Only the MBE shows that the 

TS-BMJ combination overestimates precipitation slightly more than the others. The unified score 

was calculated using equation (1) and compared with the unified score of GBM basins (Figure 

3.12). The comparison shows that in both cases, the unified score yielded by the WSM5-BMJ is 

superior followed by the WSM6-BMJ and TS-BMJ combinations. In both basins, the 27 km 

resolution with WSM5-BMJ and WSM6-BMJ show slightly improved performance over the 9 

km resolution. This indicates that the likely best combination of parameterizations hold true for 

the Indus basin and the yield skill is consistent to that observed for GBM basins (Figure 3.12). 

The areal-averaged precipitation calculated for different likely best MP-CP combinations 

and resolutions are shown in Figure 3.13 along with the observed data. The storm was captured 

by all combinations, but appeared to have an offset in the time to peak. WRF estimated the 

timing when rainfall peaked by about a day. The peak achieved by the TS-BMJ combination was 

somewhat closer to the observed (Figure 3.13). Performance of the other combinations is similar 

as reflected in the unified score values (Figure 3.12). 

Overall, our sensitivity analyses indicate that the WSM5-BMJ at 27 km resolution shows the 

ideal performance for both GBM and Indus river basins. This therefore serves as a tremendously 

useful guide and starting platform for various flood forecasting agencies around the world that 

deal with monsoon-driven seasonal flooding. The validation and reproducibility of performance 

on an independent and neighboring basin (Indus) to GBM indicates that findings are 
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representative of the broader South Asian Monsoon climate. For assessing robustness beyond 

South Asia, further analyses in farther away Monsoon-affected basins such as the Mekong or 

Upper Nile are required. 

3.6.4 Assessment of Forecast Skill 

The previous analyses used WRF nowcast (or in other words—retrospective simulation based on 

boundary conditions from the NCEP GFS final analysis). In this section, we show the 

performance of the likely best set of combinations in forecast mode using GFS forecast boundary 

condition data (GFS real-time forecast from NCEP). For computational efficiency, two storm 

events were selected that occurred on 20 and 30 August 2015 in the heavy rainy area of the GBM 

basins. The areal-averaged precipitation of two storms at lead times up to 10 days along with the 

observed data (GSOD) are shown in the top plot of Figure 3.14. The comparison shows that the 

WRF model configuration is able to downscale and maintain skill of the GFS forecast well 

enough to capture the first storm event (20 August). The 9 km resolution shows better 

performance than 27 km resolution across all combinations after the 5 day lead time. We believe, 

the ‘‘rising trend’’ in skill between lead times ranging from 5 to 7 days should not be given too 

much consideration at this stage given that only two events were studied in a limited manner. 

Rather, what is more telling from Figure 3.14 is that the 30 August 2015 storm could not be 

forecast well using any of the WRF combinations. Another point to note is that for the 20 August 

storm, the WSM6-BMJ combination performs similar to the WSM5-BMJ combination (Figure 

3.14 bottom plot). 

We should note here that the time period selected, especially for assessment of forecast skill, 

is quite short (a week) compared to what would have been normally desirable. Our main 

limitation was CPU resources because running WRF in 45 different configurations and scales for 
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an extended period was a logistic challenge. Nevertheless, readers should note the 1-week 

assessment as a potential limitation to making broad-based conclusions for the global Monsoon 

system. For example, we were not able to study how forecasting performs during El Nino or La 

Nina years or other types of oscillations with such a short period. Rather, the findings should be 

considered strictly limited to an ‘‘average’’ South Asian monsoon wherein the precipitation 

characteristics are assumed to be relatively steady in time during the months of July–October. 

 

3.7 CONCLUSIONS 

In this study, we explored the likely ideal set of WRF physics combination for simulating 

(downscaling) precipitation from a global NWP model over the monsoon-dominated region of 

the Ganges-Brahmaputra-Meghna river basins. The likely ideal combination was validated in a 

neighboring basin. Such an evaluation helped pinpoint a more manageable set of 

parameterizations for atmospheric modelers that may need further refinement through field 

campaigns for operational readiness in flood forecasting operations. 

It was found that the Indian monsoon rainfall regime is more sensitive to the cumulus 

physics scheme than the cloud microphysics scheme. Our study showed that the performance of 

the MP and CP scheme in dry and wet areas of the GBM basins are considerably different. 

Model sensitivity to the CP scheme was different in both areas, but overall the Betts-Miller-

Janjic scheme performed better. The performance of the most complex MP scheme of our study 

was better in the heavy rainy areas, while the same scheme showed poor results in the less rainy 

areas of the region. We also found that the finest resolution without using any cumulus physics 

option underestimated precipitation when a simple cloud microphysics scheme was used with far 

less variables. On the other hand, a more complex microphysics scheme with more variables 
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yielded better performance at the finest resolution without the use of cumulus physics 

parameterization. From a set of 15 combinations of WRF parameterizations and three spatial 

resolutions, the sensitivity study converged to a set of three likely best MP-CP combinations and 

two spatial resolutions. Using a multi-criteria decision analysis, it was found that the WRF 

Single Moment 3 Class, WRF Single Moment 6 Class, and Thompson microphysics schemes 

with Betts-Miller-Janjic cumulus parameterization scheme works well with 27 and 9 km spatial 

resolution for all conditions in the GBM basin. 

The study found that the likely ideal configurations derived using the GBM domain also 

held true for the Indus domain. In both regions, the WSM5-BMJ yielded the best result, followed 

by WSM6-BMJ and TS-BMJ combinations. The difference in performance between 27 and 9 km 

was marginal, indicating that computational efficiency could be achieved at 27 km without 

compromising accuracy. Additionally, the study tested the WRF precipitation simulation in 

forecast mode using GFS forecast boundary data for two storm events in the GBM basin. The 

results of this skill assessment yielded a mixed bag of results, where skill was found to be storm 

event sensitive. Although good forecast skill was achieved for a storm event on 20 August 2015, 

our study points to the need for more investigation in the forecast mode as a function of storm 

physics characteristics and quality of boundary condition data. 

There is no doubt that flood forecasting with longer lead times along with sufficient 

accuracy can reduce the flood hazard in flood-prone countries. The only way to increase the lead 

time of a flood forecasting system beyond the hydrologic time of concentration is to produce 

accurate precipitation forecasts. We believe the freely available global NWP products and 

regional NWP model packages (like WRF) are the best tools to forecast precipitation in 

ungauged river basins by flood management agencies constrained by limited financial resources. 
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Therefore, further development of modeling systems that downscale NWP model forecast should 

be explored for eventual use by operational flood forecasting agencies. Additional numerical 

models should also be considered, such as Regional Atmospheric Modeling System (RAMS) 

[e.g., Freitas et al., 2017]. Use of additional numerical models allows a more robust assessment 

of forecast skill through multi-model ensembles. Future studies should include the following 

topics: (1) exploring further refinements to our proposed likely best set of parameterization 

configurations; (2) evaluation of model performance using forecasted boundary data from NWP 

models other than NOAA models; (3) exploration of multiple storm events of contrasting 

characteristics in different regions; (4) assimilation of satellite observations of the atmosphere to 

improve skill in precipitation forecasts; and (5) exploration of multi-model ensembles. 

Based on the recommendations of this chapter, the identified optimized MP-CP 

combinations were tested for several storm events in the next chapter using GFS forecast data. 

The chapter 4 also includes the WRF model performance with different model initialization 

technique and comparing the results with its parent GFS model. 
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3.8 TABLES 

Table 3.1. Selected MP-CP Parameterization Schemes for Evaluation Along With Other 

Parameterization Schemes. 

Physics Options Parameterization Schemes 

Microphysics (MP) WRF Single Moment 3 Class Scheme (WSM3) [Hong 

et al., 2004] 

WRF Single Moment 5 Class Scheme (WSM5) [Hong 

et al., 2004] 

WRF Single Moment 6 Class Scheme (WSM6) [Hong 

and Lim, 2006] 

Thompson Scheme (TS) [Thompson et al., 2008] 

Morrison 2-Moment Scheme (MDM) [Morrison and 

Thompson, 2009] 

Cumulus Parameterization (CP) Kain-Fritsch Scheme (KF) [Kain, 2004] 

Betts-Miller-Janjic Scheme (BMJ) [Janjic, 1994] 

Grell-Freitas Ensemble Scheme (GF) [Grell and 

Freitas, 2014] 

Planetary Boundary Layer (PBL) Yonsei University Scheme (YSU) [Hong et al., 2006] 

Radiation-Shortwave (Ra-SW) Dudhia Shortwave Scheme [Dudhia, 1989] 

Radiation-Longwave (Ra-LW) RRTM Longwave Scheme [Mlawer et al., 1997] 

Land Surface (SF_SURFACE) Unified Noah Land Surface Model [Tewari et al., 2004] 

Surface Layer (SF_SFCLAY) MM5 Similarity Scheme [Zhang and Anthes, 1982] 

 

Table 3.2. Relationship Between Original and Rescaled Error Metricsa Rescaled Error Metrics. 

Rescaled Error Metrics Threshold Value 

PODr = POD N/A 

If FBI>1: FBIr = (2-FBI) +2 max 

If FBI<=1: FBIr = FBI 

FARr = 1-FAR N/A 

CSIr = CSI N/A 

If MBE>0: MBEr = 1+MBE/6 -6 to +6 

If MBE<0: MBEr = 1-MBE/-6 

RMSEr = (1-RMSE/12) +12 max 

SDr = (1-SD/12) +12 max 
aValues of the rescaled error metrics range from 0 to 1, and were used to calculate the ‘‘Unified 

Score’’ and ‘‘Spatial Extent Score". 
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3.9 FIGURES 

 

Figure 3.1. The area inside the box is the Monsoon climate regime, according to Ramage [1971]. 

The monsoonal areas defined by Khromov [1957] are shown by the hatched polygon [after 

Ramage, 1971]. 

 

Figure 3.2. WRF model domains for the GBM basin. Here, Domain 3 and 4 are for the heavy 

rainy and less rainy areas, respectively. The weather stations (obtained from NCDC Global 

Summary of the Day-GSOD) are shown along with the Thiessen polygons inside the 3 km 

domains. Data from these stations were used to calculate the areal-averaged observed 

precipitation. 
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Figure 3.3. Same as Figure 3.2 but for the Indus basin to test if the likely best configuration 

identified using GBM basins hold true for Indus. Here, the GSOD stations and their respective 

Thiessen polygons are shown over the entire domain of analysis. 
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Figure 3.4. Mean daily precipitation (mm/day) from the WSM3-KF– 9 km simulation, WSM3-

GF– 9 km simulation, GPM-IMERG (0.18 resolution), and CHIRPS (0.258 resolution) of the 

GBM basins for peak 1 month of the 2015 monsoon season. The boxes show the analysis extent 

of the heavy rainy area (same as Domain 3) and less rainy area (same as Domain 4). 
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Figure 3.5. Areal-averaged precipitation from WSM3-GF– 9 km simulation, TS-GF– 9 km 

simulation, and GSOD station data (i.e., using the Thiessen polygon method). The areas covered 

in the analysis (i.e., D03, D04) are shown in Figure 3.4. 
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Figure 3.6. Comparison between different combinations of parameterizations (MP-CP and spatial 

resolution) in terms of spatial distribution accuracy in GBM basins for the 2015 monsoon season. 

Different spatial resolutions are represented by different lines in each subplot. In the case of 

POD, CSI, and FBI, the combination closer to 1 is more accurate, while for FAR, the value 

closer to 0 is better with respect to the GMP-IMERG. 
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Figure 3.7. Same as Figure 3.6 but in terms of accuracy in areal-averaged precipitation with 

respect to the NCDC-GSOD data. 
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Figure 3.8. TOPSIS RCV of different combinations (MP-CP and spatial resolution) in GBM 

basins for the 2015 monsoon season. Higher TOPSIS RCV means it is more optimal. The 

selected combinations (i.e., with better and consistent performance) are shown by dashed border. 

 

 

Figure 3.9. Comparison between the unified scores of the WSM3-GF combination in higher 

resolution (3 km) using CP and without CP in GBM basins for the 2015 monsoon season. 
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Figure 3.10. Comparison between areal-averaged precipitation for the three likely best MP-CP 

combinations and observed precipitation (GSOD) in GBM basins for the 2015 monsoon season. 

The extent of the heavy rainy areas and less rainy areas are shown in Figure 3.5. Combined areas 

consider both heavy and less rainy areas. 
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Figure 3.11. Comparison between the performance of the likely best MP-CP and spatial 

resolution combinations in the Indus basin for a one week time period for the late July 2010 

storm event. The most optimized value for POD, CSI, and FBI is 1 and is 0 for FAR, RMSE, SD, 

and MBE. 

 

 

Figure 3.12. Comparison between the performances of the likely best MP-CP combinations in 

GBM basins for the 2015 monsoon season (one month) and Indus basin for the storm event of 

late July 2010 (1 week) in terms of unified score. 
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Figure 3.13. Same as Figure 3.10 but in the Indus basin domain for the storm event of late July 

2010. 

 

 

Figure 3.14. (top) Comparison of areal-averaged precipitation in forecast mode using the likely 

best MP-CP combinations along with the observed (GSOD in black line) as a function of lead 

times. (bottom) The skill of forecasted precipitation in terms of spatial distribution. 
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Chapter 4. SENSITIVITY OF INITIAL CONDITION AND CLOUD 

MICROPHYSICS TO FORECASTING OF MONSOON RAINFALL 

IN SOUTH ASIA 

Note: This chapter has been provisionally accepted in the Meteorological Applications and 

currently in revision. 

 

Abstract: The main objective of this study is to assess the impact of using different initialization 

techniques and cloud microphysics of a numerical atmospheric model to improve forecasting of 

Indian Summer Monsoon Rainfall (ISMR). A total of six intense precipitation events over 

Ganges-Brahmaputra- Meghna (GBM) and Indus river basins were tested to identify the most 

suitable combination of parameterization and initialization technique. The Global Forecast 

System (GFS) based numerical weather prediction (NWP) forecast fields were dynamically 

downscaled by the mesoscale model of Weather Research and Forecasting (WRF). Performance 

of four types of initial conditions with three cloud microphysics was assessed using the model 

resolution up to 9 km. A main conclusion is that the more complex initial condition techniques 

involves more uncertainty through process and cannot exceed the performance of simple 

initialization techniques. The study findings provide evidence that the finer resolution initial 

condition is promising in higher resolution models. In case of cloud microphysics, the 

performance of WSM5 was sufficient for South Asian monsoon systems within this scale of the 

model resolution. The study findings provide a general guideline for flood forecasters for WRF 

model setup for forecasting ISMR from publicly available GFS-based NWP forecast fields. 
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4.1 INTRODUCTION 

The economies of South Asia are pre-dominantly agrarian with a significant dependence on 

monsoon rainfall [Molden, 2007]. The high population density in most of the South Asian river 

basins (e.g., Ganges, Brahmaputra, Indus) make the situation more complex [Kale, 2012]. 

Flooding in such river basins causes substantial damage to lives and properties. For example, A 

widespread flood in the Ganges basin caused by monsoon rainfall in 2007 killed over 2000 and 

displaced about 20 million people [Dulal, 2014]. Therefore, understanding and prediction of 

monsoon rainfall are very important for this region.  

Predicting monsoon rainfall is complicated for the irregular characteristics of monsoon in 

the tropical cycle [Dwivedi et al., 2006]. Numerous studies have been conducted to better 

understand the monsoon system. Such studies have explored how to predict ahead of time 

(hereafter referred to as ‘forecasting’) the timing and intensity of Indian Summer Monsoon 

Rainfall (ISMR). Many of these studies typically use a global Numerical Weather Prediction 

(NWP) model as the primary tool [e.g., Srinivas et al., 2013; Medina et al., 2010; Bhaskaran et 

al., 1996]. Such NWP is perhaps the only plausible option for forecasting rainfall by piecing 

together the fundamental building blocks of weather prediction variables that lead to 

precipitation, i.e., humidity (mass), pressure/wind speed (momentum) and temperature (energy). 

Quantitative Precipitation Forecast (QPF) using NWP models have not yet reached the 

required accuracy at the regional scale [Nam et al., 2014; Cuo et al., 2011; Kalnay, 2003]. QPF 

is challenging due to inadequate observational data, as well as the improper physical 

representation of precipitation (hereafter used interchangeably with ‘rainfall’) process in models 

due to lack of knowledge [Yucel and Onen, 2014; Vaidya, 2006; Ebert, 2001]. The uncertainty in 

the NWP model derived precipitation can be introduced from a number of sources. These are: 
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model physical parameterization, initial condition or computational precision [Rakesh et al., 

2009a]. The simulation uncertainty can be reduced by advancing the physical parameterization, 

applying better numerical techniques and improving state estimation of initial condition via data 

assimilation [Jang and Hong, 2014]. QPF is also sensitive to the model resolution [Roberts et al., 

2009], model domain size [Bray et al., 2011], model downscaling ratio [Liu et al., 2012], initial 

and boundary data [Kumar et al., 2015]. Moreover, the suitable model parameterization, 

resolution, and boundary can vary by region, season and storm type, and often needs to be fine-

tuned separately [Sikka and Rao, 2008]. 

Model parameterization is the most studied feature of NWP models. Many studies have 

conducted sensitivity tests of different model parameterizations on real storm events [e.g., Alam, 

2014; Rakesh et al., 2007; Ratnam and Cox, 2006]. Past studies have shown that the cloud 

microphysics and cumulus parameterization of high resolution NWP models are directly related 

to QPF [Sikder and Hossain, 2016]. The microphysics (MP) explicitly resolves water vapor, 

cloud and precipitation process in the model. In simple words, MP scheme is responsible for 

cloud and ice formation, their evolution and eventual fallout as precipitation. The cumulus 

parameterization (CP) is used in coarse resolution NWP models (>10 km), when the MP scheme 

is unable to capture the fine scale convective events explicitly [Hsiao et al., 2013; Roberts and 

Lean, 2008]. The CP scheme is responsible for sub-grid scale convective precipitation in NWP 

models. Numerous studies reported that the ISMR is sensitive to the choice of CP scheme [e.g., 

Sikder and Hossain, 2016; Srinivas et al., 2015]. Many of these studies found that the Betts-

Miller-Janjic (BMJ) CP scheme [Janjic, 1994] performs reasonably well in case of ISMR [e.g., 

Kumar et al., 2010; Mukhopadhyay et al., 2010]. 
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Besides the physical parameterization, QPF also depends on the accuracy of initial 

conditions [Bei and Zhang, 2007]. The errors in representing initial condition are eventually 

amplified by the chaotic nature of the primitive equations of weather models. Therefore, several 

approaches can be introduced into NWP models to reduce the uncertainty in representing initial 

condition (IC for shot). One of the theses approaches is the use of ensembles [e.g., Georgakakos 

et al., 2014; Durai and Bhardwaj, 2013]. In the ensemble approach, the model is initialized with 

multiple perturbations of IC to reduce sensitivity to a single realization of the initial condition. 

Data assimilation is another approach [Kalnay, 2003]. This approach has been used frequently to 

improve ISMR forecasts [e.g., Raju et al., 2015; Sowjanya et al., 2012; Routray et al., 2010; 

Rakesh et al., 2009b].  

If one had to prioritize key issues, then the short term rainfall forecast can be considered 

most sensitive primarily to model parameterization and initial condition. In this study, sensitivity 

of both of these NWP factors to ISMR forecast was investigated. The motivation of such a study 

is two-fold. From a societal stand point, any improvement in QPF translates directly to greater 

benefits in flood forecasting or water supply management at short lead times (days to weeks). 

From a computational standpoint for the weather modeler, exploring the impact of initial 

condition demands revisiting the chaotic nature of the weather system vis a vis its physical 

modeling complexity.  

This study is particularly skewed towards the latter motivation of exploring initial condition. 

The natural intuition is to expect any improvement in initial condition representation to translate 

directly as improved skill in forecast of rainfall. However, given the chaotic nature of weather 

and the further computational complexities of today’s NWP models, how consistent is the impact 

of initial condition on forecast accuracy? To the best of this author’s knowledge, such a question 
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has not been answered before for the monsoon driven climate regime. In order to elucidate the 

weather-scale features of a storm system, dynamic downscaling of coarse resolution NWP output 

through higher-resolution cloud resolving model is the common strategy that is employed in this 

study. In scientific terminology first defined by Castro et al. [2005], the study focuses on Type 1 

downscaling that is tailored for short-term weather prediction and involves the representation of 

initial condition. 

The main objective of this study is therefore to assess the impact of using different model 

initialization techniques (for IC) and cloud microphysics to improve rainfall forecasting of ISMR 

and guide the flood forecaster. In addition to the previous question, an overarching question that 

is asked here is- Is it possible to improve the precipitation forecast over South Asian river basins 

affected by the monsoon using the appropriate model initialization techniques and cloud 

microphysics?  

 

4.2 WRF MODEL AND BOUNDARY DATA 

The Weather Research and Forecasting (WRF) model V3.7.1 was used for dynamic downscaling 

(type 1) of coarse resolution global NWP weather forecast and generate high resolution 

precipitation forecast over South Asia. See the previous chapter (Section 3.2) for more details 

about the WRF model. 

The WRF model can be initialized with the boundary from various global NWP models like 

GFS (Global Forecast System), CFS (Coupled Forecast System) and regional NWP models like 

NAM (North American Mesoscale Model). These large scale NWP model forecast output data 

are used to generate the initial and lateral boundary condition for the WRF model. In this study, 

the GFS (see Section 3.2 for details about GFS) outputs were used as WRF initial and boundary 
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condition. As a publicly available service for the world, GFS is ideal for short-term weather 

prediction applications, particularly in South Asia where economic resources are constrained. 

Historical data of this model are available in 0.5˚ resolution since October 2006. Lead time of the 

historical data varies with time. The 0.5˚ GFS model outputs were used to run the WRF in this 

study. 

Another set of GFS product is generated by NCEP (National Centers for Environmental 

Prediction) known as NCEP final analysis, often termed as GFS-FNL. This final analysis usually 

contains 10% more observed data in the representation of the initial condition than standard 

‘quick-view’ GFS forecast. These data are not technically weather forecast, but are near-real 

time GFS model outputs and available at 1˚ and 6 hour resolution. Recently, NCEP start to 

distribute more finer analysis data from Global Data Assimilation System (GDAS) called GDAS 

final analysis (GDAS-FNL). These GDAS-FNL data are available in 0.25˚ resolution. The 

GDAS-FNL product is the output of the model, which initiated at every 6 hours with 10-15% 

more observed data than GFS forecast. Therefore, expected to be more accurate than normal 

GFS forecast. Unlike GFS-FNL, the GDAS-FNL provides forecast up to 9 hours lead time (3 

hourly forecast). Thus, for monsoonal flood forecasting operations for lead times up to a week, 

there is no reason why the GFS-FNL and GDAS-FNL cannot be used in a real-world 

environment. 

 

4.3 STUDY REGION AND METHODOLOGY 

The Indian Summer Monsoon (ISM) covers most of the Indian subcontinent. The Ganges-

Brahmaputra-Meghan (GBM) river basin system of this region, which drains out through 

Bangladesh to Bay of Bengal was selected for this study. This system covers about 1.7 million 



 

 

85 

km2 where at least 750 million people reside [FAO, 2011]. Another selected large river basin 

within the ISM regime was the Indus basin. The area of this river basin is 1.12 million km2 

where about 200 million. In total, about 1 billion people live in the river basins of GBM and 

Indus and are directly or indirectly affected by the ISMR. 

The earlier model setups of GBM and Indus basin used by Sikder and Hossain [2016] were 

used as a starting point in this study. Setups for both basins have two modeling domains. The 

outer domain (D01) covers almost the same area of the Indian subcontinent and India ocean in 

both setups (Figure 4.1). The inner domain (D02) covers a slightly larger area than the river 

basin extent. In both model setups, the resolution of D01 and D02 are 27 km and 9 km, 

respectively. More details about the extent of these domains are available in the previous chapter 

(Section 3.3). Furthermore, an analysis extent within the D02 was selected to evaluate 

precipitation forecast accuracy. The analysis extent within the GBM basin was divided into two 

segments due to strong gradients of precipitation within this large basin system. The heavy rainy 

area within the GBM basin covers the humid subtropical region of eastern Indian subcontinent 

(Figure 4.1a). The less rainy area covers mainly the semi-arid region of mid-western Indian 

subcontinent. For Indus basin, the analysis extent covers almost the entire basin area (Figure 

4.1b). 

Sikder and Hossain [2016] had already identified three appropriate MP-CP combinations for 

the monsoon climate regime of South Asia. They reported that three different MP schemes work 

well with the BMJ CP scheme in both GBM and Indus basins. These MP schemes are WRF 

Single Moment 5 Class (WSM5) [Hong et al., 2004], WRF Single Moment 6 Class (WSM6) 

[Hong and Lim, 2006], and Thompson Scheme (TS) [Thompson et al., 2008]. In this study, the 
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sensitivity of these three likely best MP schemes was assessed in terms of forecasted 

precipitation. Other model parameterizations remain same as the previous chapter (Table 3.1). 

Besides the sensitivity test of MP schemes in WRF forecast, performance of four different 

WRF model initialization techniques was tested in this study. In the first experiment case, the 

traditional “cold start” technique was used to initiate the WRF model using GFS forecast [e.g., 

Givati et al., 2012]. The initial condition of the WRF model was directly taken from the GFS 

forecast in this case. The second case was also a “cold start” setup, but the first hour GFS 

forecast data were replaced by the GFS-FNL data that are expected to represent more accurate 

initial condition given the higher number of assimilated observations. Thus, the initial condition 

of the model is derived from GFS-FNL and simulation continued using the GFS forecast data as 

the model boundary. The first 6 hour simulation is excluded from the results in case of “cold 

start” setup to eliminate the “spin up” time error. Although, the first two cases involved “cold 

start” initialization, the spin up effect was not considered in this study to evaluate the advantages 

of other initialization techniques.  

The next two cases were based on “warm start” (often called “hot start”) approach [e.g., 

Jankov et al., 2007]. The output of one day pre-simulated WRF model was used to initiate the 

WRF forecast model in these cases. In this way, the uncertainty related to model instability 

during the so called “spin up time” is expected to be reduced. The GFS-FNL data were used as 

the initial and boundary condition for this one day pre-simulation. Thereafter, the WRF forecast 

model was initiated with the output of this pre-simulated model, and continued with GFS 

forecast data as the boundary condition in the third experiment case. The last experimental case 

was almost similar to the third experimental case. The only difference was the first hour GFS 

forecast data were replaced by the GFS-FNL data in WRF forecast simulation. Therefore, the last 
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case is the fusion of the second and third experimental cases. These four experiment cases are 

denoted here with IC and a serial number denoting the experimental case. Hereafter, the IC1 

means the first experiment case to initiate the WRF model. Similarly, the IC2, IC3, and IC4 

mean second, third and fourth experimental cases, respectively. 

The IC might have effect on forecasted temperature and wind speed, which directly 

influence the precipitation and other forecasted variables. Thus, the sensitivity of different IC 

approaches in forecasted daily average wind speed at 10 m height, maximum and minimum 

temperature at 2 m height was assessed in this study. Furthermore, the sensitivity of spatial 

resolution of IC data was tested to better understand the IC approaches used in this study. To do 

that the IC2, IC3 and IC4 test cases were simulated again, but using the GDAS-FNL instead of 

GFS-FNL data. 

Six different events associated with heavy rainy day over the GBM and Indus basin during 

the monsoon period were selected (Table 4.1). Thus, twelve different combinations (3MP X 4IC) 

were run for each of these six events. Each event was simulated for at least 7 days lead time. In 

other words, the total number of simulations required would be 504 (= 12 MP-IC X 6 events X 7 

days). Because it is computationally challenging to simulate all of these six events using all 

twelve combinations, the events were simulated for a sample of MP-IC combinations. Only the 

Indus 2007 event was simulated for all of these 12 MP-IC combinations. The selected 

combinations are listed in Table 4.1. 
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4.4 HISTORY AND BACKGROUND OF SELECTED PRECIPITATION EVENTS 

4.4.1 GBM 2007 Event 

The year 2007 was a widespread flood year in South Asia. Several countries, including 

Bangladesh, Bhutan, India, Nepal were affected severely from this flood event. The event has 

been one of the major five flood events in Bangladesh within a 20 year return period (last 

recorded similar event was in 1987) [Mirza, 2011]. The precipitation amount over the 

Brahmaputra and Meghna river basins on July 2007 was higher than any other month of previous 

two years [Islam et al., 2010]. In this study, a particular day of the event was selected in July 

month (26th July of 2007), when the 24 hour accumulated areal-averaged precipitation (from 

NCDC-GSOD) exceeded 26 mm within the heavy rainy area of the GBM basin (Figure 4.2a). 

4.4.2 GBM 2015 Event 

The year 2015 was also a substantial flood year for the GBM basin. Two events were selected 

when the 24 hour accumulated - areal average precipitation (from NCDC-GSOD) within the 

heavy rainy domain exceeded 20 mm. The first event was on 20th August and the second was on 

30th August of that year (Figure 4.2c, and 4.2e). The first and the second events of the year 2015 

are denoted here as GBM 2015.1 and GBM 2015.2, respectively. 

4.4.3 Indus 2007 Event 

Pakistan was also severely affected by the 2007 South Asian floods in 2007. The coastal area of 

the country was affected by a cyclone in late June, followed by heavy monsoon precipitation in 

July-August. The cyclone disappeared on 26th June 2007. Immediately after the cyclone, heavy 

rainfall event affected the North-West Frontier and Punjab [World Bank, 2007]. The peak was 
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observed within the Indus basin on 28th June 2007 (Figure 4.2b), when the 24-hour accumulated 

basin average rainfall was over 10 mm (from NCDC GSOD). 

4.4.4 Indus 2010 Event 

The 2010 flood event in the Indus basin was one of the most severe in the recent history of 

Pakistan [Paulikas and Rahman, 2015]. The flood was caused by heavy monsoon precipitation in 

late July. Unusual wind and pressure anomaly on that day conveyed moisture into the 

northwestern part of the country and caused heavy rainfall [Houze et al., 2011]. Wang et al. 

[2011] claimed that the anomalies observed during the 2010 event was not intermittent, and this 

abnormal circulation was a part of long-term trend of the monsoon. However, precipitation of 

this event intensified on 28th July (Figure 4.2d). The 24 hour accumulated basin average 

precipitation was over 17 mm on that day (from NCDC-GSOD). 

4.4.5 Indus 2012 Event 

During the year of 2012, monsoon precipitation within the Indus basin was moderate until the 

August. Rainfall rapidly intensified during the first half of September and caused severe flooding 

in Pakistan. The precipitation peaked during September 6 to September 11 in Punjab and Sindh 

province of Pakistan [Memon et al., 2015]. The maximum 24 hour accumulated areal-averaged 

precipitation within the basin area was on 9th September (Figure 4.2f), and exceeded 11 mm 

(from NCDC-GSOD). 
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4.5 REFERENCE DATA AND ANALYSIS TECHNIQUE 

Two sets of reference data were used in this study to evaluate the performance of WRF 

forecasted precipitation. A gridded reference data set was used to determine the ability of the 

model to capture precipitation in the spatial direction. The TRMM (Tropical Rainfall Measuring 

Mission) product 3B42V7 was used as the gridded reference data source. This daily data are 

available in 0.25˚ resolution. Details of this product are described by Huffman [2013]. Another 

data set was used to evaluate the accuracy of the model to estimate precipitation amount. The 

GSOD (Global Summary of the Day) data set provided by the NCDC (National Climatic Data 

Center) was used for this purpose. This in-situ station-based data set is available through WMO 

(World Meteorological Organization). The Thiessen polygon approach was applied to determine 

the areal average precipitation within the analysis extents of GBM and Indus basins. Figure 4.2 

shown the locations of the available stations within the study areas and their associated Thiessen 

polygons in GBM and Indus basin, respectively. The same data source (i.e., NCDC-GSOD) was 

used for the performance evaluation of simulated daily maximum temperature, minimum 

temperature and average wind speed. Based on the data availability, total 9 and 10 stations were 

used for the GBM and Indus basin, respectively. The stations were selected carefully to cover the 

entire basin as well as different climate regime. The locations of these stations are shown in 

Figure 4.1. 

The model performance metrics in this study were divided into two parts like Liu et al. 

[2012]. Four categorical metrics were used to understand the model accuracy to determine 

rainfall in the spatial direction. These metrics are POD (Probability of Detection), FBI 

(Frequency Bias Index), FAR (False Alarm Ratio), and CSI (Critical Success Index). These four 
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metrics were calculated with respect to the gridded reference data (i.e., TRMM). The categorical 

metrics were calculated based on the contingency table of precipitation (Table 4.2). 

The equations for calculating the average categorical metrics are; 
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Here, n is the number of time steps multiplied by the number of grid cells. The POD is the 

probability of success to detect rainfall with respect to all observed rainfall. The CSI, often 

termed as “Theta Score” is also represents the same characteristics as POD, but with respect to 

all observed rainfall as well as the unwanted rainfall generated by the simulation. Both these 

metrics are ranging from 0 to 1, where 1 is for the ideal case. The FAR indicates the probability 

of false rainfall generated by the simulation with respect to all rainfall generated by the model. 

The perfect score of the FAR is 0. All of these metrics (POD, CSI, FAR) do not consider the bias 

of forecasted rainfall. The FBI was used here to detect the trend (i.e., underestimation or 

overestimation) of the simulated precipitation with respect to the observed data. The value of the 

FBI is ranging from 0 to infinity, where 1 is the ideal score. Any value smaller than 1 or greater 

than 1 indicates that the simulation is underestimating or overestimating the event, respectively. 

Similarly, two continuous metrics were used here to evaluate the ability of the model to 

estimate the amount of precipitation. These continuous metrics are RMSE (Root Mean Squared 

Error) and MBE (Mean Bias Error). All of these continuous metrics were evaluated with respect 

to the areal averaged in situ measured rainfall data (i.e., NCDC-GSOD). 
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The equations of the continuous metrics are; 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
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Here, n is the number of time steps. Rsim and Robs are simulated and observed areal 

averaged precipitation within the analysis extent, respectively. The RMSE and SD represent the 

amount of error but not the direction of the error with respect to the observes. The MBE indicates 

the cumulative error as well as the direction of the simulated rainfall bias. The value of MBE can 

be any real number. The negative or positive value of MBE indicates that the model is 

underestimating or overestimating the amount of precipitation, respectively. 

Evaluating the performance of simulated rainfall derived from different sets of combinations 

is difficult using seven different metrics. Therefore, a single skill score that can combine the 

characteristics of these seven metrics is useful. Two skill scores, called “Unified Score” and 

“Spatial Extent Score” defined in earlier chapter were used here (see Section 3.5.2). However, 

the threshold values of the MBE, RMSE, and SD were ±15, 15, and 15 respectively, which were 

set based on the maximum and minimum values of these metrics found in this study (see Table 

3.2). 

Performance of the simulated daily maximum temperature, minimum temperature, and 

average wind speed were evaluated using average MBE and RMSE of all stations within the 

basins.   
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4.6 RESULTS AND DISCUSSION 

In GBM basin, the analysis was carried out in two different locations to observe the WRF 

precipitation forecast performance in different climate regimes. The selected intense 

precipitation events were located within the heavy rainy area of the GBM basin. Thus, the 

outputs of the heavy rainy area revealed the forecast performance during the instance of rainfall 

event at that region. On the other hand, the results over the less rainy area provides the 

performance criteria when the precipitation is sparse or negligible. In case of Indus basin, almost 

the entire basin was considered for the analysis. 

At first, the sensitivity of three different cloud microphysics on the forecasted precipitation 

was tested. In the next step, the sensitivity of four different IC test cases on the WRF forecasted 

precipitation was evaluated. The main objective is to identify the suitable test cases in all 

conditions of the monsoon driven South Asian river basins. These analyses were carried out for a 

few day time period (3-6 day, depending on the available 5-day simulated forecast, Table 4.1), 

and results are shown up to 5 days lead. For example, the GBM 2007 storm event was simulated 

from 20-26 July 2016. Results up to 5 day lead time were available from 24-26 July 2016 for this 

event. Therefore, these three consecutive days were considered for the IC-MP sensitivity 

analysis. Likewise, the performance of simulated daily average wind speed, maximum and 

minimum temperature were evaluated with respect to different IC approach, up to 5 day lead 

time. The impact of using finer resolution data (i.e., GDAS) as model IC then evaluated for 

GBM 2015.1 event with respect to different MP schemes and IC approaches. Finally, the ability 

of the model to capture the intense precipitation events was evaluated. To do this, only the 

rainiest day of each event was considered. Thus, this analysis was carried out only for one day of 

each event. 



 

 

94 

To carry out the IC and MP sensitivity tests, the categorical and continuous metrics were 

used. The rescaled error metrics then calculated using the equations from Table 4.2. These 

rescaled metrics are ranging from 0 to 1, and 1 is the ideal value in all cases. Finally, the unified 

score was calculated using Equation (8) to evaluate the overall performance of each combination. 

In GBM basin, all three MP schemes were simulated using only the IC4 test case (Table 4.1). 

Thus, only the IC4 test case (i.e., warm start) was considered for MP scheme sensitivity analysis. 

On the other hand, all four IC test cases were simulated with WSM5 MP scheme in GBM 2007, 

and with TS MP scheme in GBM 2015.1 event. Therefore, the IC sensitivity analysis was carried 

out only for these two events. It should be noted here, 3 days were considered from GBM 2007 

event for this analysis, while 6 days in case of GBM 2015.1 (Table 4.1). Thus, the IC sensitivity 

analysis in GBM basin is biased to the performance of GBM 2015.1 event as well as TS MP 

scheme. In contrast with the analysis of GBM basin, the Indus basin is more uniform. The 

number of warm start and cold start simulation is equal in this basin (Table 4.1). All the 

simulations were considered for MP scheme sensitivity test. The simulations of Indus 2010 event 

were used for IC sensitivity test, as all the IC test cases were simulated for this event. Overall, 

the result of Indus analysis is partially and fully biased by the performance of Indus 2010 event 

in case of MP and IC sensitivity test, respectively. 

Figures 4.3 shows the IC-MP sensitivity results. Each line of these radar charts represents a 

lead time, while each spoke (i.e., radii) represents an alternative (e.g., IC or MP). The results for 

both 27 km and 9 km domains are shown here to evaluate the sensitivity of these variables under 

different model resolution. Here, the higher score (i.e., unified score) means a better match with 

the observation. Thus, the line closer to the circumference of these radar chart means more 

accurate result, and less accurate results are closer to the center. 
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The selected MP schemes (Figure 4.3a) are not much sensitive as the IC approaches (Figure 

4.3b) in the heavy rainy area of the GBM basin. Within this area, the WRF forecasted 

precipitation with all MP scheme shows relatively poor performance than GFS in higher lead 

time (Figure 4.3a). The reason is, only IC4 was considered for MP scheme sensitivity analysis in 

GBM basin. The sensitivity analysis of IC approaches (Figure 4.3b) suggested that the cold start 

options (i.e., IC1 and IC2) are better than warm start within the wet area of GBM basin. This 

explains why the GFS shows relatively better result in MP scheme sensitivity test. The same 

figure also shows that the 27 km domain simulate the precipitation with greater accuracy. 

Though, individual analysis of events (not shown here) indicates that the simulated precipitation 

is not much sensitive to resolution in this scale, except GBM 2015.1 event (explained later). 

Here, the IC sensitivity test is dominated by the GBM 2015.1, and showing the 27 km slightly 

better. The WRF shows relatively better result than GFS in all lead time within the less rainy 

area of the basin (Figure 4.3c), yet using only IC4 test case. However, the performance of 

forecasted precipitation is not much sensitive to MP scheme (Figure 4.3c) or IC approach (Figure 

4.3d) within less area of GBM basin. The results of the heavy rainy area are dominating in the 

combined case, as the analysis extent of the heavy rainy area is larger than the less rainy area 

(Figure 4.3e and 4.3f). The Indus basin shows almost a similar response to different MP schemes 

(Figure 4.3g) and IC approaches (Figure 4.3h). The WRF forecasted precipitation is not notably 

sensitive to the selected MP schemes as well as spatial resolution in this scale. The optimized 

MP schemes and resolutions identified by Sikder and Hossain [2016] for monsoon weather 

remains true for forecasting mode. The WRF model shows sensitivity to the IC test cases in the 

heavy rainy area of the GBM basin. Here, the cold start IC approaches showing promising result 

than warm start. 
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Precipitation is a derived variable in NWP models. Temperature and wind vectors are 

directly calculated by the primitive equations of NWP models. Therefore, the performance 

analysis of the WRF simulated daily average wind speed, maximum and minimum temperature 

was conducted to better understand the sensitivity of IC approaches. The MBE and RMSE of 

daily temperature and wind speed up to 5 day lead are shown in Figure 4.4. The MBE in GBM 

basin (Figure 4.4a) indicates that the daily maximum temperature (Tmax) is overestimated by the 

WRF model. The Tmax is more overestimated by the warm start approaches (i.e., IC3 and IC4). 

On the other hand, the estimated Tmax is more sensitive to the model resolution than IC 

approaches in the Indus basin (Figure 4.4b). The RMSE of Tmax (Figure 4.4c and 4.4d) shows 

that in this scale of model resolution, the WRF forecasted Tmax cannot exceed the accuracy of 

its model boundary (i.e., GFS). However, the finer resolution model shows slightly and 

significantly better result in GBM and Indus basin, respectively. Almost a similar performance 

was found for daily minimum temperature (not shown here) and daily average wind speed 

(Figure 4.4e and 4.4f). Like precipitation, the rather counterintuitive finding of insignificant 

improvement in forecast using IC3 and IC4 (supposedly a better representation of initial 

condition with assimilated observations) can attributed to the spatial scale issue. The GFS-FNL 

is actually available at 1 degree resolution, while the cold start IC fields are at 0.5 degree. It is 

therefore likely that the coarser scale in the observation-assimilated IC scenarios provide no 

significant benefit to improving forecast accuracy. This finding regarding the impact of spatial 

scale in dynamic downscaling is somewhat consistent with Xiaodong and Hossain [2016]. 

Therefore, the results of GBM 2015.1 initiated with GDAS-FNL (0.25 degree) was compared 

with the same model initiated with GFS-FNL in the next step. 
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The impact of using fine resolution IC within the heavy rainy area is shown with respect to 

different MP schemes (Figure 4.5a), and different IC approaches (Figure 4.5b). The analysis of 9 

km domain is reported here, as the impact of finer IC in 27 km domain is not significant. This 

indicates that the use of finer resolution IC is only suitable in higher resolution models. The use 

of GDAS-FNL does not have any positive impact in case of WSM5 and WSM5 MP schemes 

(Figure 4.5a). Though, the difference between GDAS-FNL and GFS-FNL initiated model is less 

in 9 km domain than the 27 km domain (not reported here). A slight improvement with TS MP 

scheme is visible in lower lead time. It should be noted here that only IC4 test case was 

considered for this analysis. In case of different IC approaches (Figure 4.5b), the impact of using 

finer resolution IC is clearly visible, as only the TS scheme was considered here. However, the 

figure reveals that the cold stat approach (here, IC2) significantly improves the result with 

GDAS-FNL from 1 day lead time. In case of warm starts (i.e., IC3 and IC4), a late improvement 

is noticeable. Here, the cold start approach IC2 directly got the IC form GDAS-FNL without any 

further degradation of quality. The warm starts in this study used a one day pre-simulation using 

the available analysis data, seems not reducing the spin-up time error. Instead of reducing any 

error, the process adds some further uncertainty in the IC through simulation. Therefore, the 

warm start approaches used in this study are not worthy for heavy precipitation forecasting in 

monsoon weather. 

Furthermore, each of the precipitation events was evaluated separately to see the 

performance of the WRF model to detect the rainiest day of the events. The performance of 

different combinations was calculated in term of accuracy in spatial distribution using Equation 

(9), as well as the areal average amount of precipitation. Only the heavy rainy area of the GBM 

basin was considered for this analysis, while the full basin was considered in case of Indus. 
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Model performance on 26 July 2007 shows that the cold start case IC1 exhibit better 

performance in terms of spatial extent as well as in precipitation amount (Figures 4.6a, 4.6b) 

within the heavy rainy area of the GBM basin. The IC4 test case with TS MP scheme shows 

slightly better performance in spatial extent score. The accuracy of different combinations in 

terms of spatial distribution is not varying significantly on 20 August 2015 (Figure 4.6c). 

However, in areal average precipitation, the accuracy of the 27 km domain is significantly better 

than 9 km domain (Figure 4.6d). The 20 August 2015 is the only intense event among the 

selected six days, where WRF simulated precipitation is significantly overestimated. Only the 

IC4 was tested on August 30, 2015 with different MP schemes, where the variation in terms of 

spatial extent (Figure 4.6e) and amount of precipitation (Figure 4.6f) is not significant. In 

general, the performance of the WSM5 and WSM6 MP schemes is almost similar and they 

perform well, particularly with cold start approaches.  

In Indus basin, the 28 June 2007 event was only tested for IC1 test case with different MP 

schemes. The TS scheme shows slightly better performance at higher lead time (after 4 day lead 

time) both in terms of spatial extent and precipitation amount (Figure 4.7a, 4.7b). The 28 July 

2010 is the only event where all the MP-IC combinations were tested. However, only WSM5 

with all IC approaches are reported here (Figure 4.7c, 4.7d). The IC1 and IC2 perform better 

here. On 9 September 2012, only the IC4 experiment case was tested, and the TS shows 

relatively better performance (Figure 4.7e, 4.7f). Overall, the cold start approaches perform 

relatively better in Indus basin like GBM. However, the TS performs slightly better in Indus 

basin in case of heavy rainy day. 
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The WSM5 and WSM6 relatively simple MP scheme, which were designed to work with 

less complex and commonly used data and other physical parameterization schemes. The TS is 

the most complex MP scheme used in this study, with double moment capability in case of cloud 

ice and rain [Lim and Hong, 2010]. This is the reason of the difference in performance of WSM 

schemes with TS. However, all three MP schemes produced almost similar result within the 

range of 9 km to 27 km domains. Thus, the impact of using any sophisticated MP scheme seems 

not suitable due to computational time within this scale of model resolution (i.e., 9-27 km). 

Furthermore, using a MP scheme with graupel (e.g., WSM6, TS) is worthy only when the model 

resolution is below 10 km. Therefore, using the WSM5 scheme up to 9 km domain is sufficient 

to generate precipitation forecast in monsoon weather. In case of finer models (< 9 km), the 

complex schemes may provide better forecast.  

 

4.7 CONCLUSIONS 

The major goal of this study was the assessment of the sensitivity of different model initializing 

techniques (IC) and cloud microphysics (MP) on the accuracy of the WRF forecasted 

precipitation of South Asia. A total of six events including intense rainy day in GBM and Indus 

river basin were tested to identify the most suitable MP-IC combination for the flood forecaster. 

From the results of this study, the authors have attempted to present a general guideline to 

predict rainfall more accurately using the WRF model in the monsoon driven climate regime. 

Such a guideline can be helpful for the flood forecasting agencies of the South Asian countries 

where the ISMR is the governing reason of floods. 
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The primary conclusion is that the warm start options designed for this study are unable to 

significantly outperform the cold start options. In most cases, the cold start shows better 

performance than warm start options. From the comparison of GDAS-FNL and GFS-FNL 

initiated models, it seems that the one day pre-simulation of warm start options does not remove 

the spin-up time error. Rather, this pre-simulation process adds further uncertainty in the model 

IC. The same comparison analysis reveals that the use of higher resolution IC with simple cold 

start option may improve the forecast performance. A similar finding has been reported about the 

model boundary resolution for the Indian subcontinent by Kumar et al. [2016].  

In case of cloud microphysics, the performance of WSM5 and WSM6 MP schemes is 

mostly similar. These two MP schemes perform well with cold start options. The WSM schemes 

showing their consistency in case of the heavy rainy days within the GBM basin. On the other 

hand, the TS MP scheme seems works well in the heavy rainy days of Indus basin, no matter 

what is the IC case. Though, the difference between the WSM schemes and TS scheme in not 

much significant in this scale. Thus, considering the computational requirement of complex 

microphysics, it can be concluded that the WSM5 is the recommended option with the cold start 

IC approach in this scale. The sensitivity of the MP schemes from this study shows consistency 

with the findings of Sikder and Hossain [2016]. 

Meteorological data from the WRF model using the suitable configurations for monsoon 

climate (identified in the last two chapters), were applied in a hydrological model to generate the 

forecasted flow. The next chapter exploring the performance of this forecasted flow and compare 

it with the flow derived from the GFS forecast to identify the best operational technique for flow 

forecasting. 
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4.8 TABLES 

Table 4.1. Selected events and lead time along with simulated MP-IC combinations. 

Basin Event Simulation 

Period (Peak 

Rainy Day) 

Sim. 

Lead 

Time 

(Day) 

Simulated 

5-day 

Forecast 

Available 

IC MP Number of 

Simulations WSM5 WSM6 TS 

GBM GBM 

2007 

20-26 July 

2007 

(26 July 2007) 

7 24-26 July 

2007 

IC1 X   7 

IC2 X   7 

IC3 X   7 

IC4 X X X 21 

GBM 

2015.1 

11-20 August 

2015 

(20 August 

2015) 

10 16-20 

August 

2015 

IC1   X 10 

IC2   X 10 

IC3   X 10 

IC4 X X X 30 

GBM 

2015.2 

21-30 August 

2015 

(30 August 

2015) 

10 26-30 

August 

2015 

IC4 X X X 30 

Indus Indus 

2007 

22-28 June 

2007 

(28 June 2007) 

7 26-28 

June 2007 

IC1 X X X 21 

Indus 

2010 

22-29 July 

2010 

(28 July 2010) 

7 26-29 July 

2010 

IC1 X X X 24 

IC2 X X X 24 

IC3 X X X 24 

IC4 X X X 24 

Indus 

2012 

1-9 September 

2012 

(9 September 

2012) 

8 5-9 

September 

2012 

IC4 X X X 27 

Note: Cross marks are indicator of selected IC-MP combination. 

 

Table 4.2. Contingency table for precipitation analysis. 

Simulated/Observed Rainobserved No Rainobserved 

Rainsimulated RR (Hit) RN (False Rain) 

No Rainsimulated NR (Miss) NN (Correct Negative) 
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4.1 FIGURES 

 

Figure 4.1. WRF model domains and analysis extents of a) GBM, and b) Indus basin along with 

the selected NCDC-GSOD stations, used for the performance evaluation of simulated 

temperature and wind speed. 
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Figure 4.2. Selected intense precipitation events (TRMM 3B42V7) in the GBM (left panel), and 

Indus basin (right panel) along with available NCGC-GSOD station within the analysis extents 

and their associated Thiessen polygons. 
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Figure 4.3. Performance (unified score) of the WRF forecasted precipitation at different lead 

time with respect to different microphysics (MP) schemes (left panel), and initial condition (IC) 

experiment cases (right panel). Performance of the QPF within the heavy rainy area, less rainy 

area, combined area of GBM basin, and within the analysis extent of Indus basin are shown in 

upper, upper-middle, lower-middle, and lower panel, respectively. Here, each line represents a 

lead time. The alternatives (e.g., WSM6, IC3) with higher scores (i.e., closer to the 

circumference) are more accurate. 
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Figure 4.4. Upper panel: MBE of the daily maximum temperature (Tmax); Middle panel: RMSE 

of the daily maximum temperature (Tmax); Lower panel: RMSE of the daily average wind speed 

with respect to different IC approaches in GBM (left panel), and Indus basin (right panel). 
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Figure 4.5. Comparison between the GFS-FNL and GDAS-FNL initiated model results with 

respect to different MP schemes (left panel), and IC approaches (right panel). Analyses are 

shown here for the 9 km domain of the heavy rainy area of the GBM basin. 
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Figure 4.6. Assessment of forecast accuracy within the heavy rainy area of the GBM basin in 

terms of spatial extent score and as a function of lead time (left panel), and in terms of 

precipitation amount (right panel). In left panel, the firm and dashed lines are for results from 27 

km and 9 km domains, respectively. 
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Figure 4.7. Same as Figure 4.6, but for Indus basin. 

 

 

 

 

 

 



 

 

109 

Chapter 5. IMPROVING OPERATIONAL FLOOD FORECASTING IN 

MONSOON CLIMATES WITH BIAS-CORRECTED 

QUANTITATIVE FORECASTING OF PRECIPITATION 

Note: This chapter is currently under review in the International Journal of River Basin 

Management. 

 

Abstract: For flood prone countries subject to large scale and seasonal flooding, precipitation 

forecasting is the single most important factor for improving skill of flood forecasting for such 

large river basins dominated by the monsoon. Several flood forecasting agencies in South and 

Southeast Asia, where monsoon floods dominate (e.g., Bangladesh; Pakistan; India, Thailand and 

Vietnam), are currently using quantitative precipitation forecast (QPF) from numerical weather 

prediction (NWP) models. Although there are numerous studies reported in literature to evaluate 

QPF precipitation performance, there appears to be lack of studies about the impact on the flood 

forecasting skill. In this study, we demonstrate tangible improvements in flood forecasting based 

on NWP precipitation forecast using an approach that is operationally feasible in resource 

limited settings of many flood agencies. Our improvement is based on a proposed bias correction 

methodology for enhancing the skill of QPF using observed and QPF climatology and anomalies. 

The proposed approach can be applied to any type of QPF dataset such as those dynamically 

downscaled from regional NWP. We demonstrate clear and consistent improvement in 

enhancement of flood forecasting skill at longer lead times of up to 7 days in three river basins of 

Ganges, Brahmaputra and Mekong by about 50% (reduction in RMSE) or 25% improvement in 

correlation when compared to the forecasts obtained from uncorrected QPF. Furthermore, our 

proposed bias correction methodology yields significantly higher skill improvement in flood 
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forecast for global (non-downscaled) QPF than those dynamically downscaled QPFs for the 

macroscale hydrologic model used for predicting stream flows. The simplicity of the QPF bias 

correction methodology along with the numerical efficiency can be of tremendous appeal to 

operational flood forecasting agencies of the developing world faced with large-scale monsoonal 

flooding and limited computational resources. 

 

5.1 INTRODUCTION 

In large river basins located in the monsoon dominated climates of Asia and Africa, such as the 

Ganges, Brahmaputra, Indus, Mekong, Niger, Nile, the most flood-prone country is often located 

downstream [Katiyar and Hossain, 2007].  Such countries receive the lion share of flooding as 

seasonal and transboundary flow [Sood and Mathukumalli, 2011].  In general, the forecasting of 

such flooding can be performed in many different ways by operational flood management 

agencies. Examples of various approaches are:  persistence techniques based on auto-regression 

[Hirpa et al., 2013], statistical-dynamical technique [Cane et al., 2013], use of hydrologic-

hydrodynamic models [Maswood and Hossain, 2015], or assimilation of weather forecast and 

satellite data [Biancamaria et al., 2011].  

For flood prone countries, precipitation forecasting is the most critical factor for improving 

skill of flood forecasting for such large river basins dominated by the monsoon [Coe, 2000]. 

Forecasting of precipitation is needed to increase the lead time of a flood forecast beyond the 

time of concentration of the river basin. Hereafter, we shall use flood forecast with flow forecast 

to imply the same physical phenomenon. If we assume that nowcast estimated precipitation (such 

as satellite multi-sensor precipitation products) provides the most reliable source of precipitation 

for large river basins, the lead time will remain limited by the hydrologic time of concentration 
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of flow. Thus, one of the most common practices to increasing the flood forecasting lead time 

beyond the time of concentration is to use Numerical Weather Prediction (NWP) models [Yucel 

et al., 2015; Nam et al., 2014; Cloke and Pappenberger, 2009]. NWP models can quantitatively 

forecast precipitation and their use are becoming widespread among operational flood agencies 

as data on meteorological forcings and computational resources are more widely available [e.g. 

Liu et al., 2015; Liguori et al., 2012; Jasper et al., 2002]. In this study, NWP forecast 

precipitation is considered synonymous with Quantitative Precipitation Forecast (QPF). 

Many studies have been conducted for real time flood forecasting using NWP precipitation 

along with hydrologic and hydrodynamic models [Liguori et al., 2012; Roberts et al., 2009; 

Verbunt et al., 2006]. However, such studies have shown that the precipitation forecasting using 

the NWP remains challenging [Yucel el al., 2015; Ebert, 2001]. The high uncertainty of NWP 

precipitation at longer lead times propagates through the hydrologic transformation of flooding 

to often results in low skill in forecast of flood level [Nam et al., 2014; Bartholmes and Todini, 

2005]. 

Recent studies also show that the use of more regionally constrained NWP models (such as 

the Weather Research and Forecast-WRF - model) can improve the QPF estimates in monsoon 

climates [Kumar et al., 2016]. Regional NWPs allow one to physically and dynamically predict 

the mesoscale phenomena comprising convective, cumulus and various cloud processes by 

taking advantage of features of terrain and land use afforded by a higher resolution model 

[Sikder and Hossain, 2016; Ahasan and Khan, 2013; Hsiao et al., 2013; Hong and Lee, 2009; 

Rao et al., 2007].  
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Several flood forecasting agencies in South and Southeast Asia where monsoon floods 

dominate (e.g., Bangladesh; Pakistan; India, Thailand and Vietnam), are currently using WRF as 

the regional NWP model as a source for higher resolution QPF [Shrestha et al. 2015]. The 

Department of Hydrology and Meteorology-Nepal and Department of Hydro-meteorological 

Services-Bhutan have also begun introducing dynamically downscaled QPF precipitation for 

flood forecasting [World Bank, 2016].  

Although there are numerous studies reported in literature to evaluate global QPF or the 

dynamically downscaled QPF precipitation performance, there appears to be lack of studies 

about the impact on the flood or flow forecasting skill. This study is motivated by the current 

lack of a structured approach to the use of NWP based QPF forecasting for flood forecasting in 

monsoon dominated flood regimes. In particular, we are motivated by the need to improve the 

use of global QPFs from NWP in a way that is cognizant of the resource limitations of 

forecasting agencies of flood prone countries. Our current study is also a natural progression 

from a series of two previous works carried out to systematically understand impact of NWP 

parameterizations for cloud microphysics, cumulus physics and initial conditions on QPF skill 

[Sikder and Hossain, 2016; 2017a]. The goal of these two studies was to explore if an optimal set 

of core parameterizations existed for skillful QPF in monsoonal climates. The key findings from 

those studies were: 

1) An optimal set of core parameterizations and scale exists for South and Southeast Asian 

regions that can be independently validated [Sikder and Hossain, 2016]. 

2) Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, 

WRF Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in 

South Asian region [Sikder and Hossain, 2016]. 
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3) Finer spatial resolution (3 km) regional NWP models without cumulus parameterization 

schemes do not necessarily yield significant improvements, especially if the cloud microphysics 

scheme is not sufficiently complex [Sikder and Hossain, 2016]. 

4) The more complex initial condition techniques typically involve more QPF uncertainty 

and cannot significantly exceed the performance of simple initialization techniques [Sikder and 

Hossain, 2017a]. 

The natural extension of above two studies is to now explore how well NWP-based QPF 

precipitation from global or regionally constrained models (i.e., dynamically downscaled by 

WRF) performs in flow forecasting during the flood season. An issue worth an investigation for 

operational flood agencies is whether flood forecasting in large river basins truly benefits from 

regionally constrained and higher resolution NWP models that are computationally prohibitive. 

We test the idea of publicly available global QPFs being sufficient for capturing flooding in large 

river basins of monsoon climates.  

Although it is not the focus of this study, assessment of flood forecasting performance 

requires recognition of the compounding issues of uncertainty. The propagation of uncertainty of 

QPF forecasting from regional or global NWP models in the non-linear and physically complex 

hydrologic models implies that the same benefits of using optimally parameterized QPF may not 

translate to flow forecasting. Also, operational-scale dynamic downscaling of QPF through 

higher resolution NWP models represents a computationally expensive exercise for real-time 

forecasting in developing nations that are constrained by resources. On the other, if non-

downscaled QPF as already available publicly from global NWPs (such as NOAA’s Global 

Forecasting System) is found reasonably acceptable, then the appeal for operationalization of 
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such publicly available QPFs would far outweigh the cost of operational downscaling in regional 

NWP models like WRF. 

The specific research question we ask in this study is “How can we improve flood 

forecasting based on NWP precipitation forecast that is skillful and operationally feasible in 

resource limited settings of flood agencies of monsoon dominated countries?”  

 

5.2 STUDY REGION 

For assessment of operational flood forecasting based on NWP QPF, two of the world’s largest 

river basins that experience large scale and seasonal flooding during the monsoonal season were 

selected. These are: Ganges Brahmaputra Meghna (GBM) basin and the Mekong river basin 

(MRB). 

The Ganges, Brahmaputra, and Meghna (GBM) river basins comprise land areas from 

Bangladesh, India, Nepal, Bhutan, and China (Nishat and Rahman 2009, Figure 5.1). With 

Meghna river basin being a considerably smaller part of GBM, we shall confine our study to 

Ganges and Brahmaputra river locations. The total drainage area of GBM is about 1.72 million 

sq. km, with a population of at least 630 million. The downstream most country (i.e., 

Bangladesh) if the most flood-prone and occupies only 8% of GBM basin area. All of the basin 

stream flow flows through that country and discharges into the Bay of Bengal [Nishat and 

Rahman, 2009]. For more details about the basin, the reader is referred to Siddique-E-Akbor et 

al. [2011], while historical evolution of the flood forecasting system of Bangladesh may be 

found in Webster et al. [2010], Hossain et al. [2014a, 2014b, 2014c].  
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The Mekong River Basin (MRB) (Figure 5.2) is also a monsoon dominated river basin 

currently undergoing rapid development due to increasing water and energy demand [Zarfl et al., 

2014]. It comprises land areas from China, Myanmar, Thailand, Vietnam, Laos and Cambodia 

[Kummu and Sarkula, 2008]. In addition to development pressures, a changing climate (e.g. a 

changing Monsoon) and rising sea level are perhaps the biggest threats to livelihood in the MR 

[Syvitski et al., 2009]. For more details on the MRB, the reader is referred to Hossain et al. 

[2017]. 

 

5.3 MODELS 

5.3.1 Hydrologic Model for QPF based Flood Forecasting 

The Variable Infiltration Capacity (VIC) model, first developed by Liang et al. [1994] was used 

as the macroscale distributed hydrological model for forecasting of riverine flooding in GBM 

and MRB. The basic structure of the VIC model is described in detail by Liang et al. [1994]; 

followed by many papers that provide various updates to the model [e.g., Cherkauer et al. [2003] 

for cold land process updates, Andreadis et al. [2009] for snow model updates, Bowling and 

Lettenmaier [2010] for lakes and wetlands, among others].  The model has been widely applied 

for purposes such as seasonal hydrological forecasting, climate change impacts studies, and 

water and energy budget studies among various other applications. VIC’s distinguishing 

hydrologic features are its representation of the role of sub-grid variability as a control on soil 

water storage and in turn runoff generation, and its parameterization of base flow, which occurs 

from a lower soil moisture zone as a nonlinear recession [Dumenil and Todini, 1992]. The basic 

model features of VIC were discussed in chapter 2 (Section 2.4). 
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The VIC model was set up over GBM and MRB at daily time step and 0.1 degree spatial 

resolution, calibrated and subsequently validated based on quality controlled hydro-

meteorological forcing datasets from in-situ and space platforms. Most of these quality 

controlled forcing are derived from Global Summary of Day (GSOD) archived by National 

Climatic Data Center (NCDC). Details of the calibration and validation are available in Siddique-

E-Akbor et al. [2011] for GBM and Hossain et al. [2017] for MRB. Currently, this calibrated 

setup provides routine nowcast of streamflow, soil moisture and runoff at 0.1 degree grids 

operationally for 4 national agencies. These nowcast hydrologic variables are currently rendered 

for end users on the South Asian Surface Water Modeling System (SASWMS) portal developed 

by the research group of the second author and hosted at http://depts.washington.edu/saswe. 

Figures 5.1 and 5.2 show the skill of the VIC model to capture the flow peaks during the 

Monsoon season for GBM and Mekong, respectively. Table 5.1 provides performance metrics in 

terms of RMSE and efficiency of the VIC model calibrated using the quality controlled forcing 

datasets prepared from GSOD. These metrics indicate that the VIC model acceptable for 

assessing the propagation of NWP-based QPF precipitation forecasts for assessment of skill in 

flood forecasting. 

5.3.2 NWP model for QPF 

The Global Forecasting System (GFS) developed by the National Oceanic and Atmospheric 

Administration (NOAA) was used as the key source of global NWP model based QPF. As a 

publicly available service for the world, GFS is ideal for short-term weather prediction 

applications, particularly in South Asia where economic resources are constrained. More details 

about the GFS model is available in chapter 3 (Section 3.2). Historical data of this model are 

available in 0.5 degree resolution since October 2006. Lead time of the historical data varies with 
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time. The 0.5 degree GFS based NWP model QPFs were used to run this study for propagation 

through VIC model with or without dynamic downscaling by WRF. 

5.3.3 The Weather Research and Forecasting (WRF) Model 

The Weather Research and Forecasting (WRF) model V3.7.1 was used for dynamic downscaling 

of coarse resolution global NWP weather forecasts, such as from GFS. Such downscaling 

generated high resolution precipitation forecast over the GBM and MRB. Details about the WRF 

model was discussed in chapter 3 (Section 3.2). 

The WRF model was recently applied in two previous studies to assess the role of cumulus 

and cloud microphysics parameterizations with scale [Sikder and Hossain, 2016] and initial 

conditions [Sikder and Hossain, 2017a] over GBM and Indus river basins. The Sikder and 

Hossain [2016] study explored the choice of 3 spatial resolutions from 3 to 27 km with 5 cloud 

microphysics and 3 cumulus parameterizations. A total of 45 combinations of WRF 

configuration were assessed to identify a set up that was most skillful in predicting precipitation 

in the monsoon climates of Ganges, Brahmaputra. This optimal set up was later independently 

verified over Indus [Sikder and Hossain, 2016]. In the Sikder and Hossain [2017a] study, various 

combinations of initialization of WRF model (known as hot start and cold start) were 

investigated with the optimal WRF set up identified in the earlier study. In this study, we have 

applied most optimal WRF set up (comprising the appropriate parameterization and skill) 

identified in the previous two studies, over GBM and MRB and for investigation of the impact of 

dynamic downscaling of QPF on flood forecasting. This set up is: 27 km spatial resolution; 

WSM5 cloud microphysics scheme and Betts-Miller-Janjic cumulus parameterization with cold 

start for model initialization. 
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5.4 IMPACT OF NWP BASED QPF ON FLOOD FORECASTING 

We first investigated the impact of regional NWP (i.e., WRF) based dynamic downscaling of 

global QPF on flood forecasting by comparing it with flood forecasts generated from global 

QPFs only. For both basins, a one month time period was selected during the peak of the 

monsoon. The selected time range for the basins is: 1 August – 10 September 2015 (41 days) for 

GBM; and 1 September – 30 September 2011 (30 days) for MRB. These two periods were 

unusually flood prone (high flow) episodes and therefore ideal for investigation of QPF based 

flood forecasting. 

The available 3 hourly GFS forecast data (global QPF and other relevant forcings) have a 

lead time up to 10 days and 8 days in case of GBM and Mekong basin, respectively. To generate 

the continuous 10 days WRF forecast within the study period of GBM basin, the WRF model 

was initialized 9 days before 1 August 2015 (i.e., 23 June 2015, total 50 days of simulation). In 

this way, 1-10 day WRF simulated forecasts were generated for 1-9 August. Similarly, the 

simulation of the MRB was started 7 days before 1 September to generate a complete 8 day 

forecast for the study period (total 37 days of simulation). For each day of forecast, the VIC 

model was spun up with the prior 2 years of data to reach equilibrium conditions. Figure 5.3 

shows an example of the skill of flood forecast in the MRB at the location of Kampong Cham at 

a 6 day lead time. The flow forecast pertinent to Julian Day on the x-axis that was predicted 6 

days ago is presented for various combinations of QPF (global from GFS or regionally 

downscaled by WRF) and compared against observed and VIC modelled streamflow.  

Figures5. 4a and 5.4b provide a closer look at the performance of flood forecast for various 

lead times for GBM basin in the context of VIC simulated flow from quality controlled nowcast 

forcing (shown as ‘GSOD’ in the figure). The various lines represent the forecast as obtained 
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from global QPF (GFS) and downscaled QPF (GFS downscaled by WRF) for a given optimum 

spatial resolution (i.e. 27 km). A good quality and skilful forecast is one that closely remembers 

the line obtained with quality controlled nowcast forcings (i.e., from GSOD in Figures 5.4a and 

5.4b). What is clear from these Figures 5.3, 5.4a and 5.4b is that the skill of regionally 

downscaling global QPF in flood forecasting is comparable to that from using only global QPFs. 

At times, the global QPF (see GFS-3day in Figure 5.4a for Brahmaputra river basin) seems to 

outperform modestly the downscaled QPF in flow forecasting. For the Ganges river basin, it 

appears there is some modest benefit of applying regional NWP for flood forecasting. Overall, 

due to the very modest gain (or the lack of it) in flood forecasting skill, there is no clear trend 

that informs an operational flood forecaster that incorporating computationally intensive QPF 

dynamic downscaling is worthwhile.  

There could be many factors at play for this apparent lack of clarity on the flood forecasting 

benefits of using downscaled QPF as indicated earlier. There may also be potential dependency 

on the quality of the hindcast meteorological data used in VIC model due to the hydrological 

system memory or the lack of appropriate hydrologic process complexity to take advantage of 

higher resolution and dynamically downscaled QPFs. It is however, not the goal of the study to 

investigate the underlying hydrologic factors, but rather to explore practical and operationally 

feasible ways where an agency can advance operational flood forecasting using global QPFs that 

are publicly available (see next section). 
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5.5 TOWARDS AN OPERATIONALLY FEASIBLE APPROACH 

Given the apparent lack of overwhelming benefit of dynamically downscaled QPF in flood 

forecasting for the hydrologic model in question (VIC), our next goal was to develop a 

practically efficient approach as a correction technique for global QPFs in order to maximize its 

skill in precipitation. This approach is modular enough that it can be applied to downscaled QPFs 

from WRF as well. The developed approach is based on climatology of forecasts from NWP and 

it applies bias correction by taking advantage of anomaly from climatology of observations. The 

approach does not require any regional NWP for downscaling and is therefore a computationally 

efficient technique involving only simple numerical adjustments. We applied the approach on 

both global QPFs and downscaled QPFs to compare the relative performance. 

In our proposed bias correction methodology for QPF, the daily gridded precipitation 

climatology was derived from gridded NCDC-GSOD data that is available in a quality controlled 

format over a long period. These gridded NCDC-GSOD data were already used for VIC model 

calibration and validation. This gridded climatology is considered as the true (or observed) 

climatology of the area or the river basin. Next, the daily gridded climatology was calculated for 

global NWP QPFs (i.e., GFS) for a given lead time from 1 (L1) to 7 days (L7). The gridded daily 

anomaly of GFS precipitation for each Julian day of forecasting was then calculated using this 

global QPF climatology for a given lead time (L1-L7). Finally, this anomaly was added to the 

true (or observed) gridded climatology from the NCDC GSOD dataset to derive the bias 

corrected NWP QPF for use in operational forecasting. The bias corrected global QPFs generated 

for each day was then used to force the VIC model and forecast the consequential flow at river 

locations. In essence, what the flood forecaster would do every day is extract the global QPF for 
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the forecasting domain or river basin, then derive the anomaly from QPF climatology pertaining 

to various lead times and finally add that anomaly to the observed climatology for that day. 

In this study, two types of bias correction were carried out. At first, the gridded GFS 

climatology was calculated using only 1-day lead time precipitation forecast. Herein, GFS and 

QPF imply the same forecast dataset. This 1-day lead time GFS climatology was considered as 

the constant or universal GFS climatology for different lead times for the sake of computational 

efficiency. In the second approach, the gridded daily GFS climatology was calculated for 

different lead times and not just for lead time 1 day or L1. For example, the 3-day lead time (L3) 

QPF climatology was calculated using the 3-day lead time QPF. Figure 5.5 demonstrates the 

concept of our proposed bias correction methodology to daily QPF using QPF climatology and 

true climatology using over the GBM basin. 

The impact of bias correction analysis was carried out for 7 and 6 years for GBM and 

Mekong basin, respectively. The years were selected based on the rated (observed) discharge 

availability. Figures 5.6, 5.7 and 5.8 show the impact of applying this bias correction to QPF for 

flow forecasting for Brahmaputra, Ganges and Mekong river basins, respectively. These figures 

are showing the flow climatology (6-7 year average flow) of three river basins. 

Two clear trends are apparent from these figures. First, the bias correction approach based 

on QPF climatology yields significant improvement in flood forecasting skill with drastic 

reduction in flow bias between observed and forecast at all lead times for all three river basins. 

Second, the use of QPF (GFS) climatology pertaining to the corresponding lead time improves 

flood forecast skill further compared to the use of computationally simpler 1 day QPF 

climatology (see the middle and lower panels of Figures 5.6, 5.7 and 5.8).  
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In the next step, we implemented the same bias correction approach on downscaled QPF 

(GFS) derived from WRF to identify the potential net benefit of using regional NWP for flood 

forecasting. Table 5.2 summarizes the forecast performance (skill in terms of correlation and 

normalized RMSE) for all three river basins. As the performance results for all basins follow 

mostly a similar trend, we show herein results from the Mekong river basin as an example 

(Figure 5.9). Two contrasting years were picked for the assessment of bias correction of WRF 

downscaled QPF – 2010 as the relatively weak flood year and 2011 as a very strong flood year. 

What is clear from Figure 5.9 or Table 5.2 is that while at lower lead times, there is no 

apparent difference between the flood forecasting skill of global QPF or downscaled QPF, the 

bias correction approach yields higher benefits for global QPF at longer lead times. At longer 

lead times, the bias correction methodology for WRF downscaled QPF appears to perform 

modestly worse than the bias corrected global QPF. There are likely many reasons behind this 

observation, with the critical ones being hydrologic, and stemming from the choice of hydrologic 

model, model initialization, hindcast, sensitivity to scale etc. These physical features of a 

hydrologic model are known to interact in a non-linear fashion with higher resolution forcing to 

often magnify the uncertainty in the simulation of the output (i.e. flow) [Nam et al., 2014]. This 

also brings up the intriguing issue of commensurate hydrologic model complexity in terms of 

scale and processes that can take advantage of the dynamically downscaled QPFs with higher 

spatial resolution. Perhaps a higher resolution and more physically distributed and complex 

hydrologic model (such as MIKE – SHE) would be able to accentuate the benefits of downscaled 

QPF in flood forecasting. However, the operational agency has to weigh in the benefit of such 

models in the context of the significant cost to its daily operations. 
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It is beyond the scope of this study to investigate the underlying hydrologic causes and this 

study is motivated by the need for an operationally feasible approach in resource-constrained 

settings of the developing world. We are therefore of the opinion that for an open-source, 

macroscale (10kmX10km, daily) hydrologic model like VIC, the use of global QPF with bias 

correction based on QPF climatology (and without any dynamic downscaling) has tremendous 

operational appeal to flood forecasters in developing nations. This appeal stems from the fact 

that the computationally prohibitive WRF need not be applied every day or every time step to 

update flow forecasts in large and higher order rivers with a lot of hydrologic processes 

integration. The publicly available global QPFs can be used ‘as is’ after some efficient bias 

correction to maximise the flood forecasting skill. In our study, the consistent performance of the 

computationally efficient bias correction approach for global QPFs is the take home message. 

We therefore recommend this approach to flood forecasters who routinely use QPF as a practical 

innovation for improving operational flood forecasting in monsoon dominated flood regimes.  

We believe such a simple approach has not appeared in flood forecasting literature to the best of 

our knowledge. 

 

5.6 CONCLUSIONS 

Our study was motivated by our long association with operational flood forecasting agencies of 

the developing world that deal with large scale monsoonal flooding and yet have limited 

resources. The first author had worked extensively in the flood management division of Institute 

of Water Modeling (Bangladesh) to provide routine support to Flood Forecasting and Warning 

Center (FFWC) of Bangladesh (www.ffwc.gov.bd), which currently applies regional NWP 

downscaled QPFs to issue official forecasts for up to 5 day lead times during the monsoon 
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season. The second author has been involved in capacity building and training of flood 

forecasting agencies of the developing world in an effort to bring in technological and science-

based solutions [Hossain et al., 2014a; 2014b; 2014c]. In our combined experience of having 

worked closely in real world operational settings, we have realised that the advancement of 

existing flood forecasting schemes in monsoon-drivel flood regimes require both computational 

feasibility as well as enhanced skill at longer lead times (> 5 days). The skill requires to be of a 

nature that allows agencies to issue specific warnings at specific locations with quantitative 

clarity in advance of the hardship the local inhabitants are likely to face. 

In our study, it is quite clear that flood forecasting systems using macroscale hydrologic 

models like VIC can benefit modestly from the application of regionally downscaled QPFs by 

WRF. However, the modest benefit does not appear to justify the significant computational 

burden of dynamic downscaling when compared with the bias corrected approach for global 

QPFs. We have developed our bias correction methodology for global and publicly available 

QPFs such that flood forecasting agencies can apply efficiently every day without requiring 

complex dynamic downscaling. Such a correction approach has been shown to significantly and 

consistently improve the skill in flood forecast for all three river basins of Ganges, Brahmaputra 

and Mekong studied here for important flood years. To the best of our knowledge, flood 

forecasting agencies of the developing world are not yet applying such an efficient approach to 

take advantage of the global QPFs that are publicly available. Furthermore, the simplicity of the 

bias correction methodology implies that it can be applied to any other forecast dataset such as 

WRF downscaled QPF or those that are not publicly available (e.g., from European Center for 

Medium Range Forecasting). If agencies are already employing computationally intensive 

techniques routinely (such as dynamic downscaling every time step), the bias correction 
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methodology will further improve the skill with the choice of an appropriate hydrologic model. It 

is our belief therefore that such computationally efficient methodology to reduce bias in QPF and 

enhance the consequential flood forecast skill is the future for most, if not all, flood forecasting 

agencies that deal with monsoon-driven large-scale flooding in the developing world. 
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5.7 TABLES 

Table 5.1. VIC Hydrologic model calibration and validation metrics for Ganges, Brahmaputra 

and Mekong river basins. Ganges and Brahmaputra basins were assessed at Hardinge Bridge and 

Bahadurabad, respectively, while Mekong basin was assessed at Kampong Cham (see Figure 

5.1). 

Basin Period RMSE (m3/s) Correlation Efficiency 

Calibration 

 

Ganges 2002-05 6523 0.89 0.78 

Brahmaputra 2002-05 7606 0.91 0.86 

Mekong 2003-08 6390 0.93 0.84 

Validation Ganges 2006-10 7081 0.89 0.77 

Brahmaputra 2006-10 10918 0.92 0.82 

Mekong 2009-13 5615 0.92 0.85 

 

Table 5.2. Performance (correlation and % NRSE in parenthesis) of the bias correction 

methodology for global QPF (GFS) and WRF downscaled QPF in flow forecast for Ganges, 

Brahmaputra and Mekong rivers. 

Lead 

Time 

(Day) 

Ganges Brahmaputra Mekong 

GFS WRF GFS WRF GFS WRF 

1 0.63 (81.3) 0.49 (79.3) 0.70 (37.5) 0.71 (33) 0.91 (24.2) 0.89 (33.1) 

2 0.77 (52.2) 0.72 (45.1) 0.58 (31.3) 0.59 (35.9) 0.87 (32.2) 0.80 (57.9) 

3 0.84 (44.2) 0.71 (45.6) 0.52 (33) 0.52 (40.1) 0.86 (29.6) 0.82 (64.1) 

4 0.88 (47.1) 0.80 (42.4) 0.42 (37) 0.6 (37.6) 0.77 (30.2) 0.75 (72.7) 

5 0.82 (78.8) 0.88 (45.9) 0.38 (41) 0.52 (38.3) 0.72 (33.3) 0.66 (92.9) 

6 0.8 (87.1) 0.80 (63.4) 0.23 (45.4) 0.29 (47.1) 0.72 (29.6) 0.57 (103.6) 

7 0.7 (103.2) 0.65 (87.2) 0.0 (66.6) 0.14 (53.9) 0.66 (30.8) 0.43 (94.1) 
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5.8 FIGURES 

 

Figure 5.1. GBM Basin as one of the study region along with VIC Model calibration points. 
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Figure 5.2. Same as Figure 5.1 but for Mekong River Basin. 
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Figure 5.3. Flow forecast obtained from WRF downscaled GFS forecasts and global QPF (as 

GFS)and compared with GSOD and observed flow at the 6 day lead time. The comparison was 

conducted at Kampong Cham in Mekong river (see Figure 5.2 for location of Kampong Cham). 

Here: GSOD is Global Summary of Day archive by National Climatic Data Center (NCDC) and 

represents the flow simulation by VIC model from quality controlled forcing datasets ; GFS is 

the flow forecast obtained at 6 day lead using the global QPF in VIC model as is without any 

dynamic downscaling; All other lines except for “Observed” represent various combinations of 

dynamically downscaled QPF via WRF. WSM5 – a cloud microphysics (MP) scheme found 

optimal for monsoon climates; TS – Thomson cumulus scheme found optimal for monsoon 

climates. Details on the skill of precipitation forecast for TS and WMS5 parameterizations can 

be found in Sikder and Hossain (2016, 2017a). 
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Figure 5.4. (a) Assessment of flood forecasting from NWP QPF (downscaled or global) for 

various leads times for Brahmaputra river basin at Bahadurabad location inside Bangladesh (see 

Figure 5.1). GFS represents the global QPF forecast as publicly available without any 

downscaling, while WRF represents the dynamically downscaled QPF via WRF. The WRF 

configuration pertains to 27 km resolution and WSM5 and BMJ combination. GSOD represents 

the VIC modelled flow from quality controlled forcing datasets (nowcast). Upper panel shows 

actual forecasted flows; Lower panel shows flow anomalies relative to the observed flow 

climatology. (b) Same as Figure 5.4a but for Ganges river basin assessed at Hardinge Bridge 

location inside Bangladesh (see Figure 5.1). 
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Figure 5.5. A proposed and simple methodology for bias correction of QPF data based on 

climatology of observation, QPF or downscaled QPF. 
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Figure 5.6. Impact of using bias corrected global QPF (from GFS) on flow climatology, with no 

dynamic downscaling on flood forecasting for Brahmaputra river basin at Bahadurabad station. 

The lower panel is the flood forecast based on bias corrected QPF using QPF climatology of the 

corresponding lead time; middle panel is bias corrected QPF using QPF climatology 

corresponding to lead time 1 day as representative climatology for all lead times. The GSOD line 

is the simulated VIC flow obtained from quality controlled nowcast forcing.  LX stands for lead 

time at X day. 
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Figure 5.7. Same as Figure 5.6 but for Ganges river basin at Hardinge Bridge station. 
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Figure 5.8. Same as Figures 5.6 and 5.7 but for Mekong River basin at Kampong Cham station. 
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Figure 5.9. Flow anomaly (relative to climatology of observed flow) for various combinations 

QPF (bias corrected or downscaled) for Mekong river at Kampong Cham. Suffix ‘.corr’ stands 

for the bias corrected QPF. 
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Figure 5.10. Flood forecasting skill in the Mekong river basin at Kampong Cham based on bias 

corrected and uncorrected QPF data with and without dynamic downscaling. NRMSE refers to 

RMSE of forecasted flow normalized by observed flow and expressed as a %. 
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Chapter 6. CONCLUSIONS AND RECOMMENDATIONS 

The focus of the study was to evaluate the performance of forecasted flow using different 

numerical modeling based approaches during the monsoon to improve current operational flood 

forecasting. This assessment was carried out by evaluating the flow derived from different 

numerical model forecasted precipitation and other meteorological data. The study started with 

the GCM products, and continued with the optimization of a regional NWP model configurations 

and exploration of initial conditions. In closure, the forecasted flow derived from the optimized 

regional NWP model and global NWP model was compared to address the research questions 

posed earlier in this study. 

To address the first question, “Is GCM forecasts skillful enough to use it in the operational 

flood forecasting system in monsoon climate?”, the calibrated VIC model of GBM basin was 

forced with the statistically downscaled NMME precipitation, temperature, and wind speed data. 

The forecasted flow up to 6-month lead at Ganges and Brahmaputra outlet shows the relative 

RMSE above 35% and 20% in monthly and seasonal case, respectively. While, the anomaly 

correlation coefficients were below 50% in all cases, which is unsatisfactory for operational 

propose. The study also indicates that the flow climatology performs better than the NMME 

based forecast. 

In the next step, to answer the second question, “Is it feasible to derive a generalized 

dynamic downscaling approach using the WRF model to forecast precipitation in the river 

basins with monsoon climate?”, the WRF model was optimized for the monsoon climate before 

use it to dynamically downscale the GFS products. This step was divided into two parts. At first 

the sensitivity of 15 different combinations model parameterization schemes was evaluated with 

3 different spatial resolution was evaluated to identify the optimized combination. For this study, 
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the combination between fire microphysics (MP) and three cumulus parameterization (CP) 

schemes were used in GBM basin. Three suitable MP-CP combination was identified and 

applied in the Indus basin. The similar response in the Indus basin indicates that a generalized 

approach for dynamic downscaling in monsoon weather is feasible. In the second part of this 

step, the WRF model was initialized with different model initialization technique, which were 

classified as warm start (complex) and cold start (simple). The results indicate that the cold start 

approach is better as the warm start approach introduce more uncertainty into the system through 

its complex process. 

At the last step, the GFS forecasted precipitation was dynamically downscaled by the 

optimized WRF setup, and named as WRF forecast. The flow was derived from both GFS and 

WRF forecasted precipitation using the calibrated VIC model of GBM and Mekong river basins. 

In the flow performance analysis, the WRF forested flow failed to prove any significant 

improvement form the GFS forecasted flow. Both models show a significant positive bias in 

flow prediction. To reduce this bias a simple correction technique based on the climatology was 

applied. This bias correction technique shows significant improvement in the forecasted flow. 

It is clear from this study that the GCM is not a feasible option for operational flood 

forecasting in monsoon weather regimes. The second step of this study indicates that a 

generalized dynamic downscaling approach exists for the rain-abundant monsoon season. The 

most important finding of this study is for end users is perhaps the impact of using the WRF 

model in flow forecasting, which is not significant in large river basins with monsoon climate 

when compared with non-downscaled forcing from global NWP. Rather, the simple bias 

corrected GFS precipitation is an operationally more attractive option for the large river basins of 

Asia where computational resources are limited and time is of the essence in issuing forecasts 
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every day. However, it must be mentioned that in a finer resolution, the WRF can more 

effectively introduce the topographic effect into the atmospheric process than the hydrostatic 

GFS model of the global NWP model. Such a feature of the regional NWP (WRF) can be 

valuable for small and flash flood prone river basins like Nepal (Koshi River), or the Northeast 

region of Bangladesh (Upper Meghna river), especially if WRF is run at < 3 km spatial scale. 

Recommendations for a future study should therefore investigate the use of regional NWP 

models for smaller and flashier river systems where forecasts need to be issued far more 

frequently (hourly) than monsoonal scale large river flooding (daily). Future studies should also 

explore the choice of hydrologic models, hydrologic processes and scales that this study has 

assumed as constant. Lastly, this study recommends that findings from this study, particularly the 

bias corrected scheme of Chapter 5, be comprehensively promoted and presented to operational 

flood forecasters of Asia and be operationally implemented. Research is meant to be not only 

use-inspired, but also user-ready and thus it is the view of this study that several user-ready 

findings have been identified for the operational flood forecasting community. 
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