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Abstract

Behavioral Adaptations of Drivers to Autonomous Systems:
Evaluating Intermediate and Carryover Effects

Erika E. Miller

Chair of the Supervisory Committee:
Chair and Professor Linda Ng Boyle
Industrial & Systems Engineering and Civil & Environmental Engineering

Autonomous vehicle systems have elicited the attention of car manufacturers, con-
sumers, policy makers, and the media as they offer societal, environmental, and economic
benefits. However, prolonged exposure to these systems may lead drivers to adapt to these
systems in ways not anticipated by the designer; resulting in unintended safety consequences.
To explore this issue, a longitudinal driving simulator study was conducted to evaluate be-
havioral adaptations due to exposure to an active lane keeping system. In this study, per-
formance before, during, and after exposure to the semi-autonomous system was compared.
Forty-eight participants (30 treatment, 18 control) completed a series of eight drives across
three separate days. Treatment participants were exposed to approximately 40 minutes of
baseline [manual] driving, 80 minutes of semi-automated driving, and 40 minutes of post-
automated [manual] driving. A control group was exposed to approximately 160 minutes
of manual driving, but otherwise identical study procedures, in order to provide a reference
for time on task effects. Changes in secondary task engagement (number completed and
accuracy), driving performance (SDLP and TTC), cognitive workload (TDRT response time
and miss rate) and eye glance behavior (mean glance duration, 90" percentile glance du-
ration, total eyes-off-road time, and percent long glances) were modeled using generalized
linear mixed models. Cluster analysis techniques were used to examine the effects of trust in
automation on behavioral adaptations. The findings of this dissertation suggest that drivers

began to rely on automation for support and experienced adverse effects when the system



was removed. Moreover, drivers with higher self-reported trust in the autonomous system
experienced the largest degradations in performance and were associated with inherently
more risky driving habits. By identifying the associations between trust and behavioral
adaptations over time, vehicle systems, infrastructure, and educational programs can be de-
signed to support appropriate use and attention allocation, in order to minimize adverse

effects during handover and takeover of vehicle control.
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Chapter 1
INTRODUCTION

As market penetration of autonomous vehicle systems continues to increase, the roles
of all transportation users will continue to evolve. Humans are likely to adapt their driving
behaviors in both positive and adverse ways as their interactions with these systems changes.
Previous research suggests that these adaptations can manifest as misplaced trust (J. D. Lee
& See, 2004), misuse and disuse of systems (Parasuraman & Riley, 1997), skill atrophy
(Casner et al., 2014), and increased risky behavior (Wochinger et al., 2008). Moreover,
vehicle fleet turnover is relatively slow and different manufacturers design systems with
differing functionality and limitations. This resulting mixed equipage vehicle fleet has the
potential to undermine the benefits and efficiency that automation affords, as vehicles of
varying levels of automation interact and driver expectations change based on the vehicle
they are in.

There is limited research in quantifying adaptations in driver behavior due to pro-
longed exposure and transfer effects of removing or changing these systems, particularly
with active lane keeping assistance systems. It is important to understand how the human
operator will adapt their behaviors, in order to effectively design systems, infrastructure,
and policy for successful exchange of control between the vehicle and the driver.

A longitudinal driving simulator study was conducted with 48 drivers from the Seattle,
Washington area. There were 30 participants exposed to an active lane keeping system and
18 participants used as a control group with no exposure to automation. The control group
provided a baseline for expected changes in performance due to increased familiarity with
study procedures (i.e., time on task effects). Drivers in both groups completed eight drives,
across three different days within a seven-day period. During drives two through seven,
participants completed visual-manual distracting tasks on an In-Vehicle Information System

(IVIS). Participants in the treatment group were exposed to the lane keeping system in



2

drives three through six. Changes in drivers’ driving performance, cognitive workload, risk
perception, and trust in automation were examined across drives. Driving performance was
measured using a driving simulator, cognitive workload was assessed using a Tactile Detection
Response Task (TDRT), risk perception was evaluated based on engagement with IVIS tasks

and eye glance patterns, and trust in automation was quantified using a questionnaire.
1.1 Research Aims

There were three research aims in this study, targeted at understanding behavioral
adaptations and the role that trust plays in driving these adaptations. In this disserta-
tion, behavioral adaptations are characterized as changes overtime in an individuals’ driving
performance (i.e., lateral and longitudinal control of the vehicle), cognitive workload (as mea-
sured by their performance in responding to a detection task), engagement in a secondary
distracting task (i.e., frequency and accuracy of engagement), and eye glance behavior (i.e.,
durations of glances off road). These behavioral adaptations were measured as (1) immedi-
ate effects, such as occurring immediately during exposure to the lane keeping system, and
(2) carryover effects, such as occurring after exposure and withdrawal of the lane keeping
system.

Aim 1: Are there changes in performance and risk perception during erposure to
a lane keeping system? Baseline performance measures for each driver were collected in
drives 1 and 2, which were used as baseline for comparison of performance in subsequent
drives. Changes in performance were quantified using driving performance measures and
cognitive workload measures. Changes in drivers’ willingness to engage in risky behaviors was
quantified using IVIS task completion measures. This research aim evaluates the immediate
effects of exposure.

Aim 2: Do behavioral adaptations persist after the lane keeping system is withdrawn?
The last two drives (i.e., drives 7 and 8) required drivers to return back to manual driving.
Changes in performance and risk perception in these two drives relative to baseline were con-
sidered carryover effects due to exposure and withdrawal of the active lane keeping system.
Similar to Research Aim 1, driving performance, cognitive workload, and IVIS task comple-

tion measures were evaluated. Additionally, changes in eyes-off-road patterns were examined



3

to quantify adaptations in risk perception. This research aim evaluates the carryover effects
of exposure.

Aim 8: How do drivers self-reported levels of trust impact behavioral adaptations?
Drivers in the treatment group (i.e., exposed to the automation) were asked to fill out a
questionnaire regarding their trust in the lane keeping system at the end of each of the three
days. Their responses to these questions were used to quantify their trust in the system and
group participants based on similar levels of trust. Differences in the effect sizes of behavioral

adaptations and inherent measures of riskiness were then compared across trust groups.



Chapter 2
BACKGROUND

This chapter summarizes the current state of knowledge regarding vehicle automa-
tion and the relation to driver behavior. Previous research has evaluated the potential
benefits and implications of assimilating large share market penetration of autonomous ve-
hicle systems. However, the majority of this research to date forecasts these effects without
considering the behavioral adaptations of drivers due to prolonged exposure to automation.
This chapter highlights the importance of these issues pertaining to human-automation in-

teractions and current gaps in research.

2.1 Vehicle Automation

2.1.1 Levels of Automation

The term autonomous vehicle systems refers to the technology within the vehicle that
aids the vehicle in sensing, and potentially responding, to its environment. There are various
degrees that a vehicle can be equipped with these systems, and as such SAE defined six levels
of automation, ranging from 0 to 5, in an effort to provide conformity to the industry. The
definitions for the SAE levels of vehicle automation are summarized below, as adapted from

SAE J3016-201609 (2016):

o Level 0 - No Automation: Human performs all driving tasks at all times.

e Level 1 - Driver Assistance: Vehicle can aid with either lateral or longitudinal control,

but not both, and human performs remainder of driving task.

e Level 2 - Partial Automation: Vehicle can perform lateral and longitudinal control,

but the human must monitor the environment and supervise the system at all times.

o Level 3 - Conditional Automation: Vehicle can perform driving task, but human must

be ready to takeover control.
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e Level 4 - High Automation: Vehicle can perform entire driving task under limited

conditions, with no expectation of the human to respond to a request to intervene.

o Level 5 - Full Automation: Vehicle provides full control and there is no expectation

of the human to intervene.

By removing the human from the control loop and replacing this control with automa-
tion, it reduces the likelihood of human error occurring or changes the types of human errors.
If properly designed and implemented, automation has the potential to increase safety and
network efficiency. However, even through level 4 automation, there still exists the potential
for the human to intervene with the driving task. Thus, it is still necessary to consider
the human in the control loop, as well as the reality that machines are prone to errors and

limitations as well (e.g., speed limitation, poor visibility, faded pavement markings).

2.1.2  Advanced Driver Assistance Systems, ADAS

Advanced Driver Assistance Systems (ADAS) are often referenced when discussing
vehicle automation. ADASs are systems that aid the driver with the task of driving. These
systems can range from providing real-time advisory information (e.g., alerting of hazards),
to intervening [partial] vehicle control (e.g., crash avoidance, parking assist), to providing full
control in the longitudinal and/or lateral direction for extended periods of time. Examples
of real-time advisory information include blind spot monitoring, navigation cues, and rear-
view cameras. Support and control technologies can provide longitudinal, lateral, and/or
angular rate control (Gustafsson, 2009). Longitudinal control includes, but is not limited
to, cruise control, adaptive cruise control, brake assistance, forward collision warning, and
forward collision mitigation. Examples of lateral control include lane departure warning and
lane-keeping assistance. Systems for angular rate include roll stability control and rollover
detection. Autopilot, summon, and platoon driving are examples of conditional to high
automation. Figure 2.1 further illustrates how these countermeasure technologies relate to

a hypothetical crash sequence.



Non-conflict
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1 | 1

Navigation 1 Forward 1 Forward I  Roll-over | 911 Dial
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: Warning : Avoidance : (airbags) :

Figure 2.1: Example of ADAS for Crash Sequence, Adapted from Gordon et al. (2010)

2.1.8 Takeover and Handover

Takeover and handover are important constructs of human-automation interaction.
Handover, or handoff, refers to the vehicle system releasing control, with the expectation that
the driver will assume control. Takeover refers to the driver initiating the transfer of control
away from the vehicle in order to intervene with the automation. In instances of handover, it
is imperative to capture the drivers’ attention, as it is likely they are not prepared to resume
control. That is, as drivers remain out of the control loop for an extended period of time,
their vigilance to the driving task will likely decrease. Therefore, their reaction time and
execution of the appropriate maneuver will likely be slow and less effective. Takeover often
has less of a safety critical implication, as it often refers to the driver choosing to intervene.
This generally occurs based on the driver’s understanding of the system’s capabilities. If
their mental model of the system’s limitations is accurate, then takeover is warranted; but if
they have an inaccurate overestimation of the system’s limitations, then their takeover may
negate the potential benefits of the autonomous system.

The overall task of takeover can be summarized by the human information processing
model (see Figure 2.2), which is adapted from human information processing models pre-
sented by J. D. Lee and See (2004) and J. D. Lee et al. (2017). This model describes the

process of a driver to decide to takeover control of the vehicle. As one would expect, this
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is highly dependent on the context; for example a driver might takeover control when in a
school zone, but not for a similar situation on a rural highway. Additionally, this decision
to takeover is highly dependent on the perception capabilities of the driver, such as what
information they are able to detect through their senses. All of this information filters into
the cognitive process to help formulate a decision; their decision making is also affected by
past experiences, time and workload constraints, and their confidence in their own driving
and the systems capabilities. Ultimately, they formulate a decision, and in the context of
takeover, that decision is to distribute vehicle control between some percentage of automated
control and some percentage of manual control (e.g., yield longitudinal control to the vehicle
and lateral control to manual). This is an iterative process, where the driver receives feed-
back from the system (e.g., lead vehicle brakes, approach intersection, adverse event changes

their trust), and has to reiterate this decision making process.

Context
e individual < social <« environment

Cognitive Process Action
Perception [—>| - trust —>| % automated |7
» workload % manual

» self-confidence
* past experiences/knowledge

I
|
I
|
|
|
4 ereliance | be--------- |
|
|
|
|
|
|

feedback

Figure 2.2: Human Information Processing Model for Takeover, Adapted from J. D. Lee and
See (2004) and J. D. Lee et al. (2017)

2.1.4 Effects of Automation

The design of autonomous systems have been focused on the assistance to the driver

and the ability to alleviate high driving demands. Under mass market penetration and
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assuming minimal system malfunctions, it is projected that automation can reduce crash
frequency and the associated economic cost of crashes, reduce fuel consumption, increase
route efficiency, expand parking possibilities, and increase mobility to under-served popula-
tions (e.g., young, elderly, disabled) (Fagnant & Kockelman, 2015; NHTSA, 2011; Skottke
et al., 2014; Levitan & Bloomfield, 1998; Gouy et al., 2014; VanArem et al., 2006). For
example, automation can assist drivers with safety concerns related to sight obstructions,
and help direct attention to critical elements, detecting activity deficits, and supporting
longitudinal and lateral control (Staubach, 2009; J. D. Lee et al., 2008). Automation can
also provide additional support by enhancing the skills of vulnerable driving groups, such as
those with disability, inexperience, or old age (Brookhuis et al., 2001). This is of particular
importance as human error tends to account for the primary factor in over 90% of vehicle
crashes, where approximately 41% are attributed to recognition errors, 33% are attributed
to decision errors, and 11% are attributed to performance errors (NHTSA, 2015).
Alternatively, some literature suggests that the integration of vehicle automation may
alter travel demands and patterns enough to offset many of the potential gains. For example,
increased mobility for previously non-driving demographic groups may lead to new vehicle
trips (Wadud et al., 2016; Sivak & Schoettle, 2015; Litman, 2017). New trips with empty
vehicle occupancy may also be generated as autonomous vehicles are summoned, parking
remotely, or picking-up/dropping-off car sharing individuals (Litman, 2017). Additionally,
alleviating the driving task from the human occupant can allow travel time to be better
used to increase productively; likely encouraging travelers to choose longer trips and lead to
increased sprawl (Stephens et al., 2015; Litman, 2017). Ultimately, this increase in vehicle
trips could actually lead to an increase in energy consumption and emissions (Wadud et
al.; 2016). Understanding how behaviors will shift is a critical component to successful

integration of autonomy into the vehicle fleet.

Behavioral Adaptations

Prolonged exposure to these systems may lead drivers to adapt to the system in ways
not anticipated by the designer. These unintended safety consequences can relate to changes

in driving performance, risk compensation, shifts in attention allocation, mode confusion, or
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misplaced trust. This phenomenon of the user changing their behavior in a way unintended
by designers is often referred to as behavioral adaptation (OECD, 1990).

These behavioral adaptations can manifest as net positive, neutral, or negative effects
on driving performance, see Figure 2.3. Ideally, these systems should be designed such that
they work synergistically with the human operator, where the system aids the driver and the
human is available to intervene when needed. However, these behavioral adaptations have
the potential to shift towards a negative impact on driving performance if the driver begins
to misuse and disuse these systems. This dissertation is aimed at understanding how these
negative adaptations may materialize. Behavioral adaptations occur over time; changes over
the initial exposure period as operators learn the system is often referred to as the learning
curve. After long durations of exposure, automaticity of the behavior begins to occur, which
is often referred to as habit. Previous studies have suggested that habit formation occurs,
on average, after approximately 66 days (Lally et al., 2009). Behavioral adaptations that
occur during this middle period may be attributed to malleable attentional resource theory,
which posits that attentional capacity fluctuates with demand (Young & Stanton, 2002).
For example, a driver may experience reduced attentional resources as a result of vehicle

automation reducing the driving task demand.

learning  malleable attentional habit
curve resource theory formation
—A A A
'd hYd N\
A . = === = Positive
Py
L 4
&
é L 4
- - €
Drivin o B
g ——=aiTTIS Neutral
Performance e maL,
L ~ - .
&
~§

© = === = Negative

>

Exposure to System

Figure 2.3: Theoretical Effect of Exposure to Automation on Driving Performance
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There has been previous research in comparing driving behaviors under manual,
semi-automated, and highly automated driving conditions. Past studies that examine semi-
automated systems have focused on Adaptive Cruise Control (ACC), but the findings were
not always consistent. Some studies show that situation awareness (Ma & Kaber, 2005)
and detection accuracy of a stimulus (Funke et al., 2007) increase (i.e., better performance)
for drivers when ACC is engaged (DeWinter et al., 2014). In contrast to those findings,
Rudin-Brown and Parker (2004) found that ACC increased response time to a hazard de-
tection task (i.e., worse performance). However, they did note that their finding could have
been confounded with secondary task engagement, as drivers also had increased secondary
task accuracy under ACC (Rudin-Brown & Parker, 2004). These studies suggest that the
presence of ACC may alleviate some of the demands of the driving task while it is engaged,
but that drivers may also offset the positive performance increase with more secondary task
engagement.

Other studies have evaluated ACC in conjunction with Lane Keeping Systems (LK
or LKS) as a proxy to measure highly automated conditions in a driving simulator. In a
between-subjects design, Strand et al. (2014) found that drivers under highly automated con-
ditions had lower minimum time to collision (TTC), lower minimum time headway (THW),
and longer response time when responding to an automation failure as compared to drivers
using only ACC. Gouy et al. (2014) showed that drivers in manual mode adapted their time
headway in correlation to an automated vehicle platoon in the next lane. Interestingly, once
the platoon was not present, drivers would revert back to their baseline driving. In the meta-
analysis by DeWinter et al. (2014), all studies (n=9) that examined secondary tasks showed
an increase in secondary task involvement under highly-automated driving when compared
to manual. This increase in engagement with secondary tasks can lead to safety implications
when handover or takeover is needed. As Merat et al. (2012) reported, drivers performed
poorly when having to takeover control from highly automated driving while engaging in
a secondary task. However, when not engaged in a secondary task, drivers driving with
automation were equally able to respond to critical events (e.g., reduce speed, change lanes)
as drivers driving manually. Several studies have also found that highly automated driv-

ing conditions lead to decreased driver arousal, increased drowsiness, slower reaction times,
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and reduced eyes-on-road gazes (Jamson et al., 2013; Barnard & Lai, 2010; Carsten et al.,
2012; DeWinter et al., 2014). These findings suggest that the increase in automation may
adversely effect safety when the driver needs to regain control after being out of the control
loop for an extended period of time.

The majority of these studies were based on cross sectional designs and focused on be-
havioral differences for driving with the autonomous system engaged versus manual driving.
However, less information is known about the long-term effects of exposure to automation
and more importantly, the impact on performance when the automation is removed. This
latter situation is crucial to understand as the vehicle may not be able to handle all critical
situations and there may be times when the driver is in a vehicle with a different level of
automation (e.g., car sharing service, rental car, family member’s car).

Moreover, the current implementation of autonomous systems across vehicle makes
and models varies greatly in terms of distribution and functionality (e.g., capabilities and
limitations), even for seemingly similar systems. These discrepancies across systems and
interfaces can cause the driver to become confused or unknowingly react inappropriately
to a cue (Robinson et al., 2011). As the research presented above suggests, humans are
highly adaptive and thus likely to adapt their behaviors as the role of the driver changes
with the dissemination of automation. These differences in system functionality are likely
to elicit confusion and these adaptations in behavior due to exposure may lead to failures of
trust. As a result, drivers may unintentionally misuse different vehicles systems, and thereby

undermine the safety benefits that automation affords.

2.1.5 Trust and Acceptance of Automation

Designing the technology and infrastructure is not the only construct in ensuring
successful implementation of autonomous vehicle systems. It is also imperative to understand
how humans will interact with the system as they adapt over prolonged use. Even aggressive
forecasts do not have full saturation of fully autonomous vehicles occurring within the next 20
years (Lavasani et al., 2015; Litman, 2017). Therefore, this transition period towards higher
levels of automation will extend a substantial amount of time and designing for handoff and

takeover must be considered.
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The decision of the driver to takeover control and their performance during handover
is influenced by their trust. Trust can be indicative of how drivers interact with a system
(Kircher et al., 2014); drivers are likely to intervene when their trust falls below some thresh-
old (Muir, 1994; Rudin-Brown & Parker, 2004), while they are likely to become complacent
and fail to intervene when they trust the system too much (Parasuraman, 2000; Rudin-
Brown & Parker, 2004). J. D. Lee and See (2004, p. 51) defines trust as “the attitude that
an agent will help achieve an individuals goal in a situation characterized by uncertainty and
vulnerability.”

Ghazizadeh et al. (2012) used the Technology Acceptance Model to discuss how per-
ceived usefulness and ease of use are predictors in behavioral intent to use, acceptance, and
attitudes towards automation. Ghazizadeh et al. (2012), as well as J. D. Lee and See (2004),
contend that automation should be trustable (e.g., understandable and transparent) in or-
der to reduce automation misuse, disuse, and complacency. In this context, misuse refers
to inappropriate [over]-reliance on automation while disuse refers to the rejection of the
automations capabilities (J. D. Lee & See, 2004).

By developing appropriate trust between the system and the driver, the benefits of
automation can be maximized. A study by Seppelt and Lee (2007) revealed that drivers were
able to respond more quickly and more consistently when provided continuous information
about the state of the Adaptive Cruise Control (ACC) system. This concept of providing
feedback and transparency of the automation can facilitate appropriate trust. In a similar
context, Verberne et al. (2012) found that drivers were more trusting and accepting of ACC
systems that provided information during takeover, as opposed to systems with takeover
events that provided no information.

However, as drivers begin to trust, or even over trust their system, they may be-
come unavailable to regain control when needed. Drivers are likely to engage in non-driving
related activities with increased automation (Strand et al., 2014; Carsten et al., 2012). It
is important to understand how drivers allocate attention to the driving task as they are
removed from the control loop. Takeover and handover often require the driver to act within
milliseconds but yet, this reentry into the control loop can take seconds depending on the

system design and driver’s attentiveness (Merat & Lee, 2012). This shift of attention away
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from the driving task yields more safety concerns as many drivers are also often unaware of
system limitations. In a survey study with ACC owners, 72% of respondents reported that
they were not aware of any limitations about their ACC system and a large percentage had
incorrectly thought their ACC system would help them avoid a collision when the system in
fact would not be effective (Jenness et al., 2008).

It is also important to consider the human-automation interaction as dynamic; as
summarized in the previous section, drivers are likely adapting their behaviors with increased
exposure to the automation. This was demonstrated in the above mentioned studies that
evaluated changes in driving behaviors as drivers move between manual, semi-automated
(e.g., ACC), and highly automated driving conditions. Additional studies that support this
notion have found that drivers reduced their time headways for periods of manual driving
after decoupling from fully automated convoys (Eick & Debus, 2005). Young and Stanton
(2007) noted that automation led to a significant increase in secondary task performance.
Similarly, Flemisch et al. (2008) reported that drivers increased their engagement with sec-
ondary tasks for increasing levels of automation, and that drivers reported lower workload

with higher automation, as measured through NASA TLX.

2.2 In-Vehicle Information Systems

In-Vehicle Information Systems (IVIS) integrate information, entertainment, and
communication into a central location within the vehicle that has traditionally not been
available to the driver. These systems can provide information about the driving environ-
ment (e.g., navigation, traffic), media control (e.g., radio, connect external media players),
climate control (e.g., cabin temperature), communications (e.g., phone calls, text messag-
ing), and even Internet access. A well-designed IVIS interface can improve safety, efficiency,
situational awareness, and reduce anxiety (Vashitz et al., 2008). However, this increase in
access and quantity of information can also increase mental workload and distraction (Kaber
et al., 2012). Similar to vehicle automation, [VISs are becoming increasingly more prevalent
in vehicles, which is why it is important to evaluate driver behavior to automation with the
potential influence of IVISs.

IVISs are predominantly a visual-manual interface, as they display visual information



14

and provide controls for the driver to manually manipulate. Therefore these systems are of
particular concern as visual-manual tasks have the highest crash odds ratios as compared to
other secondary tasks (i.e., visual, manual, cognitive, and pairwise combinations) (Heikkinen
et al., 2013; NHTSA, 2013). In the 100-Car Naturalistic Driving Study, it was reported that
engagement in visual and/or manual complex tasks were associated with a three times higher
crash /near-crash risk, as compared to attentive driving (i.e., no engagement in distraction)
(Klauer et al., 2006). As drivers engage in tasks associated with their IVIS, their driving
performance may be degraded. Thus, when drivers are exposed to automation, IVIS tasks
can be a confounding covariate to performance and behavioral adaptations.

This can be further explained by Multiple Resource Theory, which describes the
limited capacity of humans to perceive, process, and respond to tasks across modalities and
channels (Wickens, 2002; Kahneman, 1973). According to this theory, task interference
occurs when concurrent tasks overlap across the dimensions of mental resources - stages,
sensory modalities, codes, and visual channels (Wickens, 2002). This resource competition

can occur as drivers engage in secondary tasks while driving, such as with IVISs.
2.3 Measuring Driver State and Performance

Driver state and performance variables can be used to measure behavioral adap-
tations. In the driving literature, a common method to assess driving performance is to
use vehicle kinematic data, such as in the studies previously discussed evaluating measures
such as time headway, speed, lateral deviations, etc. Metrics that also directly measure the
drivers’ state, such as cognitive workload and eye glance patterns, can provide further insight
in understanding confounding factors that may influence their interaction with autonomous

systems.

2.3.1 Cognitive Workload

The driving task is a complicated task, requiring drivers to perceive, process, and
respond to complex information in a dynamic context. As such, the driving task requires a
great deal of attention from the driver. However, increased cognitive workload can impair

attention allocation and information processing capabilities (Brookhuis & deWaard, 2010;
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Faure et al., 2016). Cognitive workload refers to the demand imposed by tasks on the
humans information processing capabilities (i.e., limited mental resources) (Wickens, 2008).
Cognitive workload has implications on transportation safety, as increased driver workload
has been associated with driving impairments (Strayer et al., 2015).

Detection Response Tasks (DRT), which are a variant of Peripheral Detection Tasks,
are commonly adopted in the driving domain to evaluate cognitive workload. In a Detection
Response Task, participants press a button every time they identify a somewhat randomly
appearing target/stimulus. Cognitive workload is quantified based on response time and
detection accuracy. The most common Detection Response Tasks include the Tactile Detec-
tion Response Task (TDRT), Head-mounted Detection Respond Task (HDRT'), and Remote
Detection Response Task (RDRT). Where the TDRT utilizes a vibrating stimulus taped
to the participant’s body (generally their neck), and an illuminating light stimulus either
mounted on the participant’s head (HDRT) or remotely in their forward vision (RDRT).
Previous studies have used TDRT, HDRT, and RDRT to evaluate visually demanding sec-
ondary tasks (Cooper et al., 2016) and auditory-vocal tasks (Ranney et al., 2014) in the
driving context. Ranney et al. (2014) reported that TDRT, as compared to HDRT and
RDRT, was more sensitive to changes in cognitive workload in a driving simulator setting.
TDRT has also been used in studies measuring load induced by voice control systems and

n-back tasks (Large et al., 2016; Chang et al., 2017; Miller et al., 2018).

2.3.2  Eye Glance Behavior

Previous studies have shown that eye glance behavior is correlated with crash risk,
which is not surprising since driving is a highly demanding visual task. Peng et al. (2013)
reported that eyes-off-road time influenced lane-keeping ability, or more specifically was
associated with increased Standard Deviation of Lane Position (SDLP). Results from the
100-Car Naturalistic Driving Study showed that 2 second glances away from the roadway in-
creased near-crash /crash risk by at least two times, as compared to baseline [non-distracted|
driving (Klauer et al., 2006). Similarly, a naturalistic study on commercial motor vehicle
drivers reported a positive correlation between tasks associated with increased risk and long

eyes-off-road time (Olson et al., 2009). NHTSA’s Visual-Manual Driver Distraction Guide-
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lines suggest using eyes-off-road glances in evaluating in-vehicle systems, as this metric often

correlates with crash risk (NHTSA, 2013; Boyle et al., 2013).
2.4 Gaps in Literature

Much of the current research, as summarized previously, has focused on ACC or ap-
proximated to highly automated systems, rather than evaluating lane keeping systems alone.
This is relevant, as several vehicle manufacturers offer lane keeping systems that do not need
to be used in conjunction with ACC. While there has been substantial research on driver
behavior using ACC, lane keeping (LK) systems can also foster negative behavioral adapta-
tions (Breyer et al., 2010). Moreover, advancements in technology have made lane keeping
systems a somewhat basic system to implement in the vehicle, as evident by the numerous
manufacturers that currently offer these systems at affordable prices or even standard; in-
cluding, but not limited to, Acura, Audi, Buick, Cadillac, Chevrolet, Ford, Honda, Jeep,
Lexus, Subaru, Toyota, Volkswagen, Volvo. Lane keeping systems are an important consid-
eration as these systems have a great potential to improve safety. Lane departure events
often provide minimal forgiveness, as lateral clearance on roadways is often restricted. In
fact, lane departure crashes constitute a high proportion of the total number of crashes, and
are often more severe. The Federal Highway Administration (FHWA), based on the NHTSA
Fatality Analysis Reporting System (FARS), estimated that 54% of all traffic fatalities in
the US in 2014 were a result of roadway departure crashes. This corresponds to 17,791 fatal-
ities, where a roadway departure was defined as a vehicle crossing an edge line or centerline
(FHWA, 2016).

Also, as noted previously, there is a general inconsistency across findings relating to
the effects of automation on driver behavior, and this may be largely due to experimental
design. Specifically, several studies have utilized between subject designs to compare manual
versus automated conditions. However, without meticulous matching of participants, it is
difficult to infer that differences are specific to the effects of automation. Even in studies
that use within subject designs, much of the studies collect cross sectional data (e.g., one
continuous drive or data measured within one day). As such, these studies may not be cap-

turing behavioral adaptations, but rather effects of learning a new system. Many of these
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cross sectional designs compare pre-exposure (manual driving) with during exposure (auto-
mated), but do not consider carryover effects of removing or changing these systems (e.g.,
decoupling from automation). Several studies have also considered the effects of automation
on secondary task engagement, however many of the secondary tasks used are not repre-
sentative of common tasks drivers would likely divert their attention to as automation aids
their driving. For example, tasks have included visual tracking of a target, n-back tasks, or
tests used in cognitive assessments (e.g., trail making). Rather, it is more likely drivers will
begin to engage with infotainment tasks (e.g., music, texting, reading).

Previous studies have had narrow scopes in automation type, adaptation time (i.e.,
exposure and withdrawal), performance measures, and inclusion of confounding factors. This
dissertation is unique in that it uses a holistic approach to measure and analyze behavioral
adaptations of drivers. This is accomplished by administering extended periods of exposure
and withdrawal time, using between subject measures to account for time on task effects,
and using within subject measures to account for behavioral adaptations and risk perception

across a broad range of driver state and performance measures.
2.5 Research Objectives

The main objectives of this dissertation is to evaluate the relation between behavioral
adaptations, changes in risk perception, and trust in automation as drivers are exposed to an
active lane keeping system. The scope of this dissertation includes evaluating intermediate
and carryover effects of exposure, in order to understand how drivers may perform during
handover and takeover in future contexts. These research objectives are further defined by
three research aims.

Aim 1: Are there changes in performance and risk perception during exposure to a lane
keeping system? This dissertation aims at establishing a methodology for an experimental
design and analytical method that can capture a broad range of behavioral adaptations, such
that a similar methodology could be deployed to evaluate various other autonomous vehicle
systems. It is hypothesized that behavioral adaptations will manifest in terms of changes
in driving performance, cognitive workload, and willingness to engage in a distracting task

while drivers are exposed to a semi-autonomous system. It is also expected that drivers
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will exhibit changes in behavior as they gain comfort and familiarity with study procedures,
therefore a control group is used to provide a reference for these expected time on task effects.
Aim 2: Do behavioral adaptations persist after the lane keeping system is withdrawn?
This dissertation seeks to expand the focus of behavioral adaptations to include carryover
effects as drivers return to manual driving. It is hypothesized that drivers will learn to rely
on these systems, potentially in ways they are not even aware of. Therefore, it is important
to consider how drivers will perform when they are required to return to manual driving.
Aim 3: How do drivers self-reported levels of trust impact behavioral adaptations?
Trust is an important construct in the decision to takeover and performance during han-
dover. This dissertation aims at providing a method for capturing trust and correlating
trust with behavioral adaptations. It is hypothesized that different degrees of trust will
impact interactions with these systems, and as such it is important to consider the effect of

trust on intermediate and carryover effects of exposure on behavioral adaptations.
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Chapter 3
EXPERIMENTAL DESIGN

This chapter outlines the experimental design employed for collecting the data. This
study utilized a longitudinal driving simulator study, which was conducted at the University
of Washington in Seattle, WA in February-April 2017. An active lane keeping system was
used to evaluate behavioral adaptations and trust to a semi-autonomous vehicle system. A
control group was used to measure baseline changes in performance, commonly referred to
as time on task effects (i.e., gaining familiarity with the study). An In-Vehicle Information
System (IVIS) was used to induce distraction, a Tactile Detection Response task (TDRT)
was used to measure cognitive workload, a driving simulator was used to collect driving
performance measures, a video camera was used to capture eye glance behaviors, and a
questionnaire was used to quantify trust. This study was approved by the Institutional
Review Board (IRB) at University of Washington. Informed written consent was obtained
from each participant at the beginning of the first day of their involvement.

The study was a 2 (Automation Group: Control, Treatment) x 3 (Drive: Pre, During,
Post Automation) x 3 (Age Group: Younger, Middle, Older) x 2 (Gender: Male, Female)
x 4 (Task Difficulty: Easy, Medium, Hard, Hardest) x 3 (Road Type: Straight, Curve, Hill

Curve) repeated measures mixed factorial design.
3.1 Participants

The study included 48 participants balanced across three age groups (younger: 25-34,
middle: 35-44, older: 45-54 years old). There were 18 (6 younger, 6 middle, 6 older aged)
participants in the control group (i.e., only manual driving throughout). There were 30 (10
younger, 10 middle, and 10 older aged) participants in the treatment group (i.e., intervention
of a lane keeping system). Gender was balanced across age group and automation treatment

groups, see Table 3.1. All participants had a valid US driver’s license, drove at least 3,000
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miles annually, and were fluent in English. Participants were compensated $20 for the first
day, $30 for the second day, and $50 for the third day, for a total of $100 for completing

entire study.

Table 3.1: Number of Participants in Each Group

Automation Younger (25-34) Middle (85-44) Older (45-54)

Group Male Female Male Female Male Female Total
Control 3 3 3 3 3 3 18
Treatment 5 ) 5) ) ) 5) 30

3.2 Apparatus

3.2.1 Driving Simulator

A National Advanced Driving Simulator (NADS) miniSim fixed-based quarter cab
driving simulator was used in this study (see Figure 3.1). The simulator display was com-

posed of three plasma 42-inch widescreen monitors with a horizontal field of view of 140

degrees and vertical field of view of 30 degrees. Data was collected from the simulator at 60

Hz.

Figure 3.1: Driving Simulator Used for the Study (left) and Schematic (right, from NADS)
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The driving scenario used in this study was developed specifically for this dissertation.
The miniSim software Tile Mosaic Tool, TMT, (version 1.7.5.4) was used for creating the
visual environment and Interactive Scenario Authoring Tool, ISAT, (version 1.8.0) was used
for developing the scenario logic. There were two versions of the driving scenario, one with
lane keeping enabled throughout and the second without the lane keeping algorithm, but
otherwise these two scenarios were identical.

The driving scenario was a two—lane (one lane in each direction) undivided rural road
with one lead vehicle and no intersections. The geometric configuration included straight
segments, wide curved segments, and two moderate hills (each with an uphill and downhill
grade) with slight horizontal curvature (see Figure 3.2). Each drive took approximately 20
minutes to complete; the end of the drive was based on distance traveled rather than time,
thus some participants finished slightly faster or slower than 20 minutes. The posted speed
limit was 50 miles per hour (mph) and the lead vehicle traveled at a normally distributed
speed of 50 mph with a standard deviation of 2.5 mph. However, in order to allow the par-
ticipant to reach target speed in the beginning of the drive, the lead vehicle was programmed
to maintain a 3 second gap for the first three-fourths of a mile. Participants were instructed
to keep a safe following distance behind the lead vehicle and never overtake it. Each vehicle

was approximately 5.8 feet wide and the lanes were 12 feet wide.

Straight
Straight

Figure 3.2: Scenario Roadway Configuration (not to scale)
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The algorithm for the active lane keeping system was programmed such that the
vehicle would follow the center of the lane, which meant participants did not need to steer the
vehicle. Participants were able to override the system by moving the steering wheel, however
if the vehicle deviated beyond the lane boundaries, the system provided force feedback on the
steering wheel to keep it in the lane. No audio alert was provided for lane departure events.
For drives with the lane keeping system enabled, the participants only had to control the
longitudinal control (i.e., brake and accelerator) of the vehicle. Participants were told this
information about how the lane keeping system operated and given the freedom to choose
how they engaged with the steering wheel during these drives (i.e., steer or not steer).

Each drive was partitioned into 13 different segments for most of the analyzes (i.e.,
mean values for performance measures of each participant were aggregated for each of the
13 segments). The 13 segments were defined based on the geometric roadway type, but each
section were approximately 1.25 miles long. There were four straight, five curved (2 right,
3 left), and two hill (each with an uphill and downhill component) segments included in
analysis. There were two segments excluded from analysis, which were the straight segments
at the beginning and end of the drive. The beginning segment was excluded to allow drivers
to achieve target speed and get comfortable with the scenario tasks. The end segment was
excluded as to avoid any differences in driving behavior when bringing the vehicle to a stop.

There were three practice scenarios developed for this study, one performed at the
beginning of each day. All three of the practice scenarios were designed to take approximately
ten minutes to complete. The roadway was similar to the main study drive, with a lead
vehicle and was predominately composed of straight road segments. One practice drive was
only manual driving (used for the control group on all three days); one practice drive had
the lane keeping system turn on approximately halfway through the drive (used for the
treatment group on day one); the third practice drive had the lane keeping system engaged
for the entire drive (used for the treatment group on day two and three). The practice drive
provided the driver with exposure to manual driving, then added the TDRT, then added
IVIS tasks. The lane keeping system was then also engaged for the first practice drive for
the treatment group, otherwise the lane keeping was on the entire time (practice drive 2 and

3 for treatment) or never engaged (all practice drives for control group).
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3.2.2  In-Vehicle Information System, IVIS

A T-inch (800 x 480 pixels) capacitive touchscreen was mounted to the right of the
steering wheel at about a 20 degree visual angle for the driver. This touchscreen was used in
drives 2 through 7 to provide visual-manual distracting tasks. An application was developed
specifically for this study using C# on Microsoft Visual Studio. The application was designed
to emulate an In-Vehicle Information System (IVIS) that was representative of systems
currently embedded in vehicles. All tasks were completed using visual-manual input (i.e.,
no voice control).

There were five different types of tasks ranging across four difficulty levels (see Table
3.2): Contact (easy), Playlist (easy), Radio (medium), Climate (hard), and Dial (hardest).
Task difficulty was determined during pilot testing on four undergraduate students and
assessed using NASA TLX. There were a total of 150 unique tasks (30 different tasks for
each task type) and the order was randomly generated by the application for each day, such
that no task was repeated within the same day. The application logged task activity to a
CSV file. Each time a task was completed, data was recorded for the task start time, end

time, task identification number, and whether the task was completed correctly.

Table 3.2: TVIS Task Descriptions

Task Difficulty Example

Contact Easy “Call contact Julie Reed”

Playlist Easy “Select song Rocket Man, by Elton John, from music playlist”
Radio Medium “Tune to FM station 98.1, and set volume to 21”

Climate Hard “Set temperature to 68°, fan level to high, and rear defrost on”
Dial Hardest “Dial phone number 1-800-blue-car”

Participants were instructed to complete IVIS tasks at a pace they were comfortable
with. Participants were cued to begin the tasks approximately two minutes into the drive. A
computer automated voice provided task instructions and participants were given five seconds
after the instruction to repeat the audio once more. The task would begin by displaying the
home screen (see Figure 3.3) after the audio instruction was finished. A task was completed

once the participant pressed the submit button at the top right of the touchscreen. The next
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task automatically began ten seconds after the submit button was pressed.

0a

Climate

Figure 3.3: IVIS App Home Screen

The music screen was used for the radio and playlist tasks, see Figure 3.4. For each
new task, the application would randomly generate a set of 15 songs from a database and
assigned it to the playlist menu (in a random order). The music database contained 260
different songs, which were generated using the billboard top charts across various years and
genres. The songs were selected to be representative of different genres and eras as to not
give any participant group an advantage in song recognition over another. For the radio
tasks, participants were instructed to tune to either an FM or AM station, and adjust the
volume to a specific value. For the playlist tasks, participants were provided the song and

artist name for a specific song.

Away From the Sun
3 Doors Down

Brown Eyed Girl

ik 98.1

Lips of an Angel

Hinder

Love Don't Live Here

PLAYLIST PLAYLIST
1(2(3[als]. A [
Ny promtnesn | LI 30D0Ee B -

Figure 3.4: IVIS App Playlist (left) and Radio (right) Screens

Similarly to the playlist menu, the default state for the settings on the climate screen
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were randomly generated for each new task (see Figure 3.5). Logic was programmed into
the application such that the default setting never included the state instructed by the
task instructions (e.g., the same temperature, fan direction, etc.). For each climate task,
participants were given three climate functions to adjust, including any three of the following
settings: cabin air temperature, fan direction, fan level, air conditioning, front defrost, and

rear defrost.

Figure 3.5: IVIS App Climate Screen

The phone screen was used for the contacts and dial tasks (see Figure 3.6). For
each new task, the list of contacts in the phonebook was randomly generated by selecting a
set of 15 names from the phone database. The database contained a list of 180 randomly
generated names, with equal male and female names. The names in the contacts list were
in a random order, rather than alphabetically, in order to make the task similar in structure
to the playlist task. The dial task instructed the participant to dial a phone number, where
the instruction was an alpha phrase (e.g., 1-400-Red-Sock) and the participant had to dial
the number using the numeric pad (e.g., 1-400-733-7625). The use of an alpha phrase as
the phone number was selected because it yielded a reasonable amount of information for
the participant to remember, rather than a random string of 11 digits. Each alpha phrase
was specifically selected to reflect words that could be easy to understand from the audio

instruction and spell at a 7th grade reading level.
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Katrina Pierce

Martha Baker

CONTACTS Ken Gomez , CONTACTS

Jenna Stokes

( CALL

Figure 3.6: IVIS App Contact (left) and Dial (right) Screens

3.2.3 Tactile Detection Response Task, TDRT

A Tactile Detection Response Task (TDRT) was used to measure cognitive workload
during the drives. The TDRT was implemented and analyzed per the protocol defined in the
ISO 17488:2016 standard (ISO, 2016). A small motor, which was taped to the participant’s
neck, randomly vibrated once every 3-5 seconds. Participants responded to the vibration by
pressing a small button as soon as they felt the vibration. This button was strapped to their
left index finger, see Figure 3.7. More specifically, cognitive workload was evaluated using
response time (i.e., time between vibration to button press) and miss rate (i.e., number of

stimulus misses divided by total number of stimulus events).

Figure 3.7: TDRT Motor and Button Configuration on Participant
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3.2.4  Video Camera

A GoPro Hero4 was mounted on the driving simulator above the IVIS touchscreen.
The camera was focused on the participant’s face for all drives, in order to capture eye glance
patterns to and away from the driving scene. The camera was set to collect video data at 30
frames per second at 720p. The Morae Manager software (version 3.3.4) was used to identify

eyes on and off road glances from the video data.

3.2.5  Trust Questionnaire

A questionnaire was developed to evaluate trust in the lane keeping system. This
questionnaire was administered at the end of each of the three days for the treatment partic-
ipants. The trust questionnaire was a series of eight 10—point Likert scale questions regarding
various dimensions of trust, where 1 indicated very low trust and 10 was very high trust.
The survey was adapted from a survey previously used to evaluate trust in ACC (Moeckli et
al., 2015). The questions were developed and refined based on previous research evaluating
key aspects of human-computer trust, such as capturing reliability, confidence, faith, pre-

dictability, and dependability (Jian et al., 2000). The eight trust questions were as follows:

1. To what extent does the lane keeping system perform the task it was designed to do?

2. To what extent can the lane keeping system’s behavior be predicted from moment to

moment?

3. To what extent does the lane keeping system respond similarly to similar circumstances

at different points in time?

4. What is your degree of faith that the lane keeping system will be able to cope with

future driving situations?
5. What is your degree of trust in the lane keeping system to respond accurately?

6. What is your degree of self-confidence to manually intervene with the lane keeping

system?

7. What is your overall degree of trust in the lane keeping system?
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8. How confident do you feel about your previous trust ratings?

3.2.6 NASA TLX Questionnaire

The NASA Task Load Index (TLX) was used to measure perceived workload for each
of the five IVIS task types (i.e., contact, playlist, radio, climate, dial). This questionnaire
was originally developed to assess subjective workload by the Human Performance Group at
NASA (Hart, 1986). Participants were asked to fill out the NASA TLX survey immediately
after completing the last drive on each of the three days. This assessment measures workload
based on six scales: mental demand, physical demand, temporal demand, performance,
effort, and frustration. The questions were answered based on a 20-point Likert scale. A
weighted average for the workload was computed by asking each participant to rank the
relative importance for the 15 pairwise contrasts of the scales. An overall workload score
was computed for each participant on each day for each of the five task types; the score

could range from 0 to 100, with higher values indicating higher workload.
3.3 Procedure

Participant recruitment was conducted using Craigslist and through student outreach
at the University of Washington. All study procedures took place at the Human Factors and
Statistical Modeling Lab in the Engineering Library at the University of Washington - Seattle
campus. Upon arrival to the lab, the study procedures were explained to the participant
and written informed consent was obtained.

Participants completed a total of eight drives: three on the first day, two on the second
day, and three on the third day. All three study days were completed within a seven-day
period. There was also a practice drive at the beginning of each day. The eight study drives
were approximately 20 minutes each and the practice drives were 10 minutes each. There
was a ten minute break between each drive. After participants completed the study drives
each day, they were asked to fill out a series of surveys relating to demographics, driving
history, task difficulty, trust, and simulator realism.

Drive 1 provided baseline measures for driving performance for each participant. Dur-

ing the second through seventh drives, all of the participants engaged in visual-manual dis-
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tracting tasks on the IVIS application. Drive 2 provided baseline measures with a secondary
task. In drives three through six, participants from the treatment group were exposed to the
lane keeping system. Drive 7 was used to quantify changes in behavior after exposure and
withdrawal of the lane keeping system. Drive 8 was used to further measure any carryover
effects on baseline driving. Fully manual driving (i.e., no automation) was required in drives

1, 2, 7, and 8 for both groups. See Table 3.3 for this sequence by group.

Table 3.3: Drive Order

Automation Vehicle Drive Number

Group System 1 2 3 4 5 6 7 8
Contirol IVIS No Yes Yes Yes Yes Yes Yes No
Treatment

Control No No No No
Treatment LK No No Yes Yes Yes Yes No No
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Chapter 4
ANALYTICAL METHODS

As discussed in the previous chapter, this study used a longitudinal experimental
design to evaluate behavioral adaptations to the lane keeping system. Longitudinal data
often has inherent correlation within its structure, which occurs due to multiple observations
(i.e., repeated measures) across time for each participant. These repeated measures lead
to correlated observations and as such violates the assumption of independence required
for traditional regression methods (e.g., Ordinary Least Squares, OLS). Using OLS with
longitudinal data often results in inaccurate standard error estimates (Hubbard et al., 2010).
To account for this covariance structure, this dissertation utilized generalized linear mixed

models.
4.1 Independent Variables

This study utilized both between-subject and within-subject measures to evaluate

behavioral adaptations across various driving demands and driver populations.

4.1.1  Age Group (between-subject): 3 levels

Previous literature suggests that there are differences across age groups in regards to
driver behavior (Korber et al., 2016; Xiong & Boyle, 2012) and trust (Sanchez et al., 2004)
with autonomous vehicle systems. Differences in crash risk associated with secondary task
engagement have also been correlated to age (Guo et al., 2017). Therefore three age groups
were included in the study: (1) younger (25-34 years old), (2) middle (35-44 years old), and
(3) older (45-54 years old). There were 16 participants in each age group.
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4.1.2  Gender (between-subject): 2 levels

Similarly, previous studies have shown that there are effects of gender on trust in
automation (Hoff & Bashir, 2015) and attitudes towards automation (Payre et al., 2014).

Therefore gender, (1) male and (2) female, were balanced within each age group.

4.1.8  Automation Group (between-subject): 2 levels

Participants were randomly assigned to the (1) treatment group or (2) control group.
Both groups were exposed to the same study procedures, except the treatment group had
the addition of the lane keeping system engaged in drives 3-6. The control group was used

to account for time on task effects.

4.1.4  Drive Number (within-subject): 8 levels

Each participant completed 8 drives: (1-2) the first two were before automation (i.e.,
manual driving) and were used to collect baseline measures; (3-6) the middle four were
exposure to automation (for the treatment group) and used to collect intermediate effects of
exposure; and (7-8) the last two were withdrawal of automation (i.e., manual driving) and

captured carryover effects of exposure.

4.1.5 Road Type (within-subject): 3 levels

There were three different geometric alignments implemented in the driving scenario.
These were used to assess the driving skill aided by the semi-autonomous system (i.e., lateral
control). The alignments were (1) straight road, (2) curved road (i.e., horizontal alignment),

and (3) curved hill road (i.e., horizontal and vertical alignment).

4.1.6  IVIS Task Difficulty (within-subject): 4 levels

There were four levels of task difficulty for the secondary tasks on the IVIS: (1) easy
(contact and playlist), (2) medium (radio), (3) hard (climate), and (4) hardest (dial). The
tasks were a prior: designed to yield different levels of workload and were further calibrated

based on pilot testing.
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4.2 Dependent Variables

The dependent variables were collected using the IVIS application (secondary task
engagement), TDRT (cognitive workload), driving simulator (driving performance), video
camera (eyes-off-road behavior), and surveys (trust in automation). The driving performance
measures were aggregated at eleven different intervals across each drive, corresponding to
the geometric alignment. Each of the 11 segments were approximately 1.25 miles long and
included four straight, five curved (2 right, 3 left), and two hill (each with an uphill and
downhill) segments. The first and last mile of the drives were excluded from analysis in order
to remove accelerating from and decelerating to a parked position. The cognitive workload
and eye glance measures were aggregated for each IVIS task within the drive in order to

account for each IVIS task difficulty.

4.2.1 1VIS Task Completion Count

The total number of tasks completed per participant for each drive were collected in
order to capture risk perception. Participants were instructed to complete the tasks at their

own pace, thus the number of tasks completed was used as a measure of riskiness.
4.2.2 1VIS Task Accuracy

A binary indicator of whether the task was completed correctly or not was used to
gauge performance of secondary tasks over time and influence of automation.

4.2.83 TDRT Response Time

Response time was measured, in milliseconds (ms), from the onset of the tactile
stimulus until the participant pressed the button with their finger. In all analysis involving
response time, only correct responses (i.e., non-misses) were included. A larger response

time is associated with an increase in cognitive workload (ISO, 2016; Victor et al., 2008).
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4.2.4 TDRT Miss Rate

A miss was classified as a response slower than 2500 ms (i.e., unrequested response),
quicker than 100 ms (i.e., premature response), or more than one button press for a single
stimulus (i.e., repeated response). The miss rate was computed as the total number of misses
divided by the total number of tactile stimulus events over the respective time segment. A
larger miss rate is associated with an increase in cognitive workload (ISO, 2016; Victor et
al., 2008). Miss rate was used rather than hit rate in order to reduce dissonance between the
two TDRT metrics, so that an increase in both TDRT measures correlated to an increase in

cognitive workload.

4.2.5 Standard Deviation of Lateral Position, SDLP

Standard Deviation of Lateral Position (SDLP) was used as a driving performance
measure because it directly related to the driving skill aided by the semi-autonomous inter-
vention (i.e., lane keeping). Lateral position of the vehicle was measured as the difference
between the center of the vehicle and the center of the lane (in inches). SDLP was then

computed using the equation defined in SAE J2944 201506 (2015), see Equation 4.1.

where,

x; = i" observation of lane position,
Z = mean lane position of the segment,

N = number of data points in the segment.

4.2.6  Time to Collision, TTC

Time to Collision (TTC), in seconds, measured the time required for the participant’s
vehicle to strike the lead vehicle, factoring in speed, acceleration, and distance. A cutoff
value of 20 seconds was used for TTC, as supported by the SAE operational definitions
(SAE, 2015). A cutoff value is often adopted in the literature as TTC can approach infinity
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when the two objects are traveling at the same speed. TTC was selected as a variable of

interest because it was not a driving maneuver aided by the semi-autonomous intervention.

4.2.7 FEyes-Off-Road Behavior

Eyes-off-road was characterized as any eye glance to the IVIS touchscreen, in order to
quantify willingness to engage in a distracting task. Participants were instructed to complete
IVIS tasks at their own pace and the order was randomly generated for each drive. As a
result, each participant completed a different number and combination of tasks. In order to
make comparisons across participants, a set of 15 tasks per drive were extracted for analysis.
Fifteen tasks were utilized as it provided three trials (repetitions) for each task type and thus
an average of task performance could be computed. The average of task performance, rather
than one single trial of a task, was preferred as it would reduce the impact of randomly
selecting a task with outlier performance. For each drive, there were 3 contact, 3 playlist, 3
radio, 3 climate, and 3 dial tasks randomly selected.

There were four metrics of eye glance behavior analyzed in relation to eyes-off-road
(EOR) glances to the IVIS: (1) mean glance duration per task, (2) 90" percentile glance
duration per task, (3) proportion of glance durations that exceeded 2.0 seconds (i.e., long
glances) per task, and (4) total eyes-off-road time per task.

The eyes-off-road measures were aggregated at the task level for each participant for
each drive. Since each participant completed 3 trials of each task type, the four eye glance
metrics were first computed at the trial level and then averaged across the three trials to get
a task level average per participant. The equations are provided at the trial level for mean
glance duration (Equation 4.2), percent long glances (Equation 4.3), and total eyes-off-road
(Equation 4.4). The 90*® percentile glance duration was computed as the 90" quantile glance
duration (i.e., 90'® longest glance), aggregated at the task level for each participant on each

day.

>, EOR,;

M GD,; =
ean N,

(4.2)
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N; > 2.0 d
Percent Long GD; = Nsecon % % 100 (4.3)

N;
Total EOR; = EOR;; (4.4)
j=1
where,

1 = trial, where ¢ = 1, 2, 3,
FEOR;; = j™ EOR duration in trial i,

N; = total number of EOR glances in i‘" trial.

Previous literature has used various combinations of mean glance duration, maximum
glance duration, proportion of long glances, and total eyes-off-road time in evaluating safety
(Peng & Boyle, 2015; Boyle et al., 2013; Korber et al., 2018). This current study used 90"
percentile glance duration as opposed to maximum glance duration for robustness. The 2.0
second threshold for long glances was selected based on the NHTSA Distraction Guidelines
(NHTSA, 2013) and previous research that indicates an increased crash risk for glances off

road longer than 2 seconds (Klauer et al., 2006).

4.2.8 Trust in Automation

Trust in automation was a subjective measurement collected using the 10-point Likert
scale trust questionnaire, which was a series of eight questions administered to the treatment

participants at the end of each study day.
4.3 Statistical Models

All data reduction and analysis was conducted using the R statistical software pro-

gram (version 3.4.0). Statistical significance was assessed at o = 0.05.
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4.8.1 Generalized Linear Mized Model, GLMM

Theory

Generalized Linear Mixed Models (GLMMs) are an extension of both linear models
and mixed models. These models can account for a broader range of distributions, unlike
the linear model which is specific to the Gaussian distribution. The mixed model element
of the model class incorporates both fixed effects and random effects; fixed effects are con-
stant across individuals, while random effects can vary across individuals. Mixed models
can therefore account for hierarchical data structures, such as repeated observations across
individuals over time.

Generalized Linear Mixed Models utilize a link function, g(p;), which describes the
relation between the expected value, E(y;) = p;, and the linear predictor, n;, such that
ni = g(p;) = X;'3. The link function can be applied to the random effects model introduced
by Laird and Ware (1982), which is expressed in Equation 4.5.

Yi=XiB+ Zivi + € (4.5)
where,

y; = vector of size N; x 1 of the outcome variable for the i* participant,
X,; = design matrix for the fixed effects of size N; X p,

[ = vector of size p x 1 of the fixed effects coefficient estimates,

Z; = design matrix for the random effects of size N; X g,

v; = vector of size ¢ X 1 of the random effects estimates,

¢; = vector of size N; X 1 of the residuals, where ¢; ~ N'(0, R;) and R; = 0°1,,..

In this dissertation, only random intercepts are fit as the random effect and random
slopes are not implemented. Thus, the GLMMs used in this dissertation are expressed in
Equation 4.6 for the Gaussian model (i.e., continuous performance measures) and Equation

4.7 for the negative binomial model (i.e., count data).

i = Bo + yoi + BX; (4.6)
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Hi _ A A
log (- F5) = b+ 701 + X, (4.7)

where,

By = fixed intercept,
Y0i = random intercept for i'® participant,
[ = vector of fixed effects,

X; = design matrix of fixed effects.

Ezample

GLMMs are used in this study to account for the repeated observations of individual
participants over time (i.e., within and across drives). For example, consider the measured
response times to the TDRT across participants; it is likely that participants have inher-
ently different reaction times and a random intercept model can accommodate this. This is
demonstrated in Figure 4.1 using a subset of data from this study. TDRT response times
for one random participant across a 1.5 mile segment were plotted (top left). Then data
for three additional random participants (i.e., four total) were plotted (top right). A linear
model, using OLS, was fit to the data of all four participants, ignoring the violated indepen-
dence assumption (bottom left). It is apparent from the plot that this linear model poorly
fits the data, in fact the model has an adjusted R? = 0.105. Instead, a linear mixed model
was fit to the data (bottom right) allowing individual intercepts for each participant. As
it can be seen in this plot, the linear mixed model fits the data much better, allowing for
meaningful analysis of the data. While this example uses actual data from this study, the
data is plotted in its raw time series form. The data in this study was aggregated into bins in
order to evaluate trends specifically pertaining to the independent variables discussed above,
for example into 1.25 mile increments for driving measures and by each secondary task for
cognitive workload and eye glance measures. As such, the serial correlation of the data in

its time series form was removed.
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Figure 4.1: Subset of TDRT Data for Example with One Participant (top left), Four Partic-
ipants (top right), Linear Regression Model Fit (bottom left), and Linear Mixed Model Fit
(bottom right)

Application

GLMDMs were used to quantify behavioral adaptations in secondary task engagement,
cognitive workload, and driving performance. Mixed effects linear regression (i.e., g(-) = u)
was used to model the outcome variables for IVIS task count, TDRT response time, SDLP,
and TTC. Mixed effects negative binomial regression (i.e., g(-) = log(ﬁ)) was used to

model TDRT miss rate (i.e., miss count with exposure). These general equations can be

expressed as:
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TaskCount;; = By + voi + Pri T reatment + o5 DriveNumber +
BsijTreatment x Drive Number + (4.8)

BiiAgeGroup + Bs;Gender + €;;

CognitiveWorkload;; = By + voi + Bl reatment + Bo; Drive Number +
BsijTreatment x DriveNumber + B4;TaskType + (4.9)

BsiBaseline DRT + (4, AgeGroup + [r;Gender + €;;

DrivingPer formance;; = By + voi + BT reatment + Baj Drive Number +
BsiiTreatment x DriveNumber + By;RoadType +  (4.10)

BsiAgeGroup + BgiGender + €;;
where,

1 = participant ¢, where 7 is 1, ..., 48,

j = drive number j, where j is 1, ..., 8 for Equation 4.10 and j is 2, ..., 7 for Equations
4.8 and 4.9,

RoadType = curved or curved hill (reference straight),

TaskType = playlist, radio, climate, or dial (reference contact),

AgeGroup = middle or older (reference younger),

BaselineDRT = TDRT response time or miss rate measured in drive 1,

70i = random intercept for the i'* participant,

€;; = residual, Gaussian distributed for identity link and Gamma distributed for neg-

ative binomial link.

GLMM versus GEE

There are two common approaches for modeling longitudinal data: subject-specific

(GLMM) and population-averaged (Generalized Estimating Equation, GEE) models. The
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main difference between these two methods are in the interpretation of the regression co-
efficients; whether the inference is associated with individual or population averaged out-
comes. The population-averaged approach assumes heterogeneity of the population, whereas
subject-specific allows for random effects across individuals (Zeger et al., 1988). GEE models
are commonly applied in the health and medical sciences (Fitzmaurice et al., 2011), where
cohorts are grouped based on shared characteristics (e.g., similar risk factors or patients of
specific clinics or doctors) (Hardin & Hilbe, 2012).

These two statistical methods are also referred to as conditional models (GLMM) and
marginal models (GEE). The interpretation of a GLMM and GEE coefficient both describe
the mean change in response for one unit change in the covariate, holding all else equal across
the other covariates. However, the GLMM is conditional on the random effects, thus the
inference is specific to the individual. Whereas GEE describes the marginal response across
all groups (i.e., mean change regardless of holding the individual random effects constant)
(Y. Lee & Nelder, 2004). Previous literature recommends that conditional models (GLMM)
be applied for inference focusing on within-subject differences (e.g., before, during, after an
intervention) and GEE be applied for between-subject differences (e.g., effects of a condition
or state) (Murray et al., 2004).

GLMMs were applied to the data in this dissertation instead of GEEs for two reasons.
The first is that the objective of this dissertation was to evaluate the effects of exposure to
a lane keeping system, thus relating to the within-subject changes due to an intervention.
The second reason that GLMM was assumed to be more appropriate rather than GEE was
to account for individual differences of drivers; it is likely that individual drivers exhibit dif-
ferent driving behaviors, have unique eye glance patterns, and experience different cognitive
workload associated with the study tasks. Thus GLMM was applied to account for these

inherent subject specific differences and within-subject specific behavioral adaptations.

4.8.2  Analysis of Variance, ANOVA

Repeated measures Analysis of Variance (ANOVA) was used to understand differ-
ences in means across various categorical independent variables for several of the continuous

response variables. Repeated measures ANOVA is similar to the mixed models regression
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discussed previously, in that repeated measures ANOVA utilizes within-subject blocking to
account for the correlated nature of longitudinal data. This method is different from GLMM,
as the dependent variable in ANOVA must be continuous and follow a Gaussian distribu-
tion. Additionally, ANOVA utilizes the F statistic, which examines the variations within
groups. While ANOVA tests for the difference in means between groups, it is not restricted
to comparing two conditions like with the t-test. Therefore, the ANOVA was used in this
dissertation to evaluate the effects of various factors on performance and behavior, while
GLMM was used to quantify these effect sizes. For example, the output from the ANOVA
provides insight across all groups (e.g, is there a difference between younger, middle, and
older age groups), while the effects of a factor in the GLMM are in reference to another group
(e.g., older versus younger or middle versus younger). Tukey’s Honest Significant Difference
(HSD) test was used as a post hoc test for the ANOVA, in order to evaluate the differences
of specific contrasts (e.g., younger-middle, younger-older, middle-older age groups).

More specifically, the repeated measures ANOVAs used in this dissertation applied the
blocking on the participant level (equivalent to the random intercept used in the GLMMs).
The ANOVAs were used to evaluate behavioral adaptations in eye glance behavior between
the two automation groups, where the response variables were mean GD, 90" percentile GD,
percent long glances, and total EOR time. ANOVAs were also used to evaluate differences in
behavioral adaptations based on trust, where the response variables were driving performance
(SDLP), cognitive workload (DRT response time), and eye glance behavior (mean GD, 90
percentile GD, percent long glances, and total EOR time). The model equations are provided
for driving performance in Equation 4.11, cognitive workload in Equation 4.12, and eye glance
behavior in Equation 4.13. Similar model structures were used in the ANOVAs focusing on
automation group (Chapter 6) and trust group (Chapter 7), where automation group (2
levels) was used in place of trust group (3 levels). The following equations demonstrate the

ANOVA structures used for the analysis on trust (i.e., Chapter 7).

Driving;jrimn = i + (Trust x Drive);j + Trust; + Drivejy) + ( )
4.11
RoadTypeyu) + Gendery, + AgeGroupy, + €;jximn
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Cognitive;oppmn = o+ (Trust x Dm’ve)w(k) + T'rust; + Drivey) + ( )
4.12

TaskTypey) + Gender,, + AgeGroup, + €iokpmn

EyeGlance;gipmn = p + (Trust x Drive);qyu) + Trust; + Driveyy) + ( )
4.13

TaskTypeyry + Gender,, + AgeGroup, + €igkpmn
where,

Driving;jgimn = observed driving performance on the k" participant for the i trust

[ road type for the m*" gender for the n'* age group,

group for the j** drive for the
Cognitive;oppmn = observed cognitive measure on the kth participant for the it" trust
group for the o' drive for the p* task type for the m gender for the n'"* age group,
EyeGlance;gppmn = observed eye behavior on the k™ participant for the " trust group
for the ¢*" drive for the p™* task type for the m™ gender for the n** age group,

i = overall population mean,

Trust; = effect of the i*" trust group,

Drive;(k) = effect of the j drive number within the k™ participant (or o' or ¢*"
drive number),

(Trust x Drive)u = effect of the i trust group for the j™ drive within the &
participant,

RoadTypeyy) = effect of the I road type within the k™ participant,

Gender,, = effect of the m'" gender,

AgeGroup, = effect of the n'" age group,

€ijkimn = €iokpmn = €igkpmn = individual deviation,

1=1,2,37=1,.,8 k=1, ..,481=1,2,3;m=1,2;n=1,2,0=2, ..., 7, p =
1, s 5 ¢ =1, 2 Napiving = 1152 Nupgnitive = 1436; Noye = 480.
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4.3.3  Cluster Analysis

A cluster analysis was used to group participants based on their trust in automation
across the three study days. The analysis was conducted on the responses to the question-
naire relating to trust in the lane keeping system. The questionnaire had eight questions
and was administered at the end of each of the three days on the treatment group, resulting
in 24 observations per each of the 30 treatment participants. The resulting matrix used in
the cluster analysis was 30 rows (one per participant) by 24 columns (each trust question,
Q1 to Qs, across the three days), see Equation 4.14. The cluster analysis was performed on
the standardized values (i.e., z-scores, with mean 0 and SD 1) for the 10-point Likert scale

trust questions.

S's QlDayl QQDayl Q?)Dayl e QlDayQ e QSDay?)
1 11,1 183
(4.14)
30 x3071’1 e e e e e x307873

Hierarchical clustering with Ward’s minimum variance method was used (Ward,
1963). This agglomerative method (i.e., starting with each observation as its own cluster)
builds clusters based on minimizing the total within-group error sum of squares across obser-
vations for each iteration (Contreras & Murtagh, 2016). The distance matrix was computed

using the Euclidean distance, see Equation 4.15.

(i,§) = \/(X; = X, + (¥ = ¥;)? (4.15)

The within-cluster sum of squares calculates the variability of observations within a
cluster. Such that a smaller within-cluster sum of squares value suggests a tighter cluster of

observations. The definition for within-cluster sum of squares is provided in Equation 4.16.

C  nc
SSwithin cluster — Z Z(xz - 60)2 (416)

c=1 i=1

where,



44

C = number of clusters,
n. = number of observations in the ¢ cluster,

7. = mean of the ¢** cluster.

The number of clusters was determined using the pseudo F statistic, which measures
the ratio of the between-cluster variation to the within-cluster variation. The between-cluster
variation provides a measure of how close the clusters are from each other, see Equation 4.17,

which was adapted from (Yang et al., 2015).

C  ne
SSbetween cluster — Z Z nc<vc - 1_))2 (417)

c=1 i=1

where,

c__ 1 c c c
08 = o= (2] + 25 + . 2,

U=2(z1 422+ ... + Tp).

The pseudo F statistic is shown in Equation 4.18, where a larger pseudo F value is

generally optimal for clustering.

(7’L B C) X ZS:I Z:l:cl nc(vc - 1_})2 _ n—=«c¢ SSbetween cluster
(C - 1) X chzl Z?:Cl (xz - 60)2 c—1 SSwithin cluster

pseudo F' = (4.18)

where,

n = number of observations,

¢ = number of clusters.

Previous literature in the driving domain has used Ward’s minimum variance tech-
nique for clustering driving behaviors and driver perceptions (Donmez et al., 2010; Xiong et

al., 2012; Peng & Boyle, 2015).
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Chapter 5
PARTICIPANT AND TASK SUMMARY STATISTICS

This chapter presents summary statistics on the participants included in the study.
Descriptive statistics on study participants were evaluated in order to understand the gen-
eralizability of the cohort to the general driving population. This was also important in
understanding any differences between groups (e.g., automation groups, age groups). The
descriptive statistics on the IVIS tasks are also provided in this chapter, as it was considered
important to understand differences in performance and workload across the different task
types. Specifically, this provided validation in the a priori determined task difficulty levels

and rationale for including task type as an independent variable in the analytical models.
5.1 Participant Demographics

There were a total of 48 participants included in the analysis, however there were a
total of 52 participants involved in this study (i.e., four participants did not finish entire
study procedures). One participant was scheduled, but never showed up for any of their
sessions. Two participants experienced simulator sickness during their practice drive on the
first day and did not complete any study procedures as a result. One participant completed
the first two study days, but did not show up for their third session; this participant was
not able to reschedule their third session within the seven day window needed to complete
all three of their sessions.

There were 30 participants in the treatment group, ranging in age from 26 to 54 years
old with a mean age of 38.7 years old (SD 9.6 years). The control group was comprised of 18
participants, who also ranged in age from 26 to 54 years old with a mean age of 38.3 years
old (SD 9.1 years). The breakdown of demographics by age group (i.e., younger, middle,

older) for each automation group is provided in Table 5.1.
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Table 5.1: Participant Demographics

Group Age (years) Age at Education n(%)
Mean P Range License H.S. Assoc. Bach. Grad.
Control
Younger  27.7 137 26-29 162117 1(16.7) 0(0.0) 2(33.3) 3 (50.0)
Middle 38.8 319 35-42  19.03% 0 (0.0) 2(33.3) 3(50.0) 1 (16.7)
Older 49.5404 4554 16508 2(333) 1(16.7) 2(33.3) 1(16.7)
All 38.7 962 26-54  17.22%%2 3 (16.7) 3 (16.7) 7(38.9) 5 (27.7)
Treatment
Younger  28.3 27! 26-33  17.5 11 2(20.0) 1 (10.0) 3(30.0) 4 (40.0)
Middle 36.7 224 35-42  17.229% 1(10.0) 2 (20.0) 4 (40.0) 3 (30.0)
Older 48.7310 4554 18449 1(10.0) 2(20.0) 5 (50.0) 2 (20.0)
All 38.3 914 26-54  17.8 %% 4 (13.3) 5 (16.7) 12 (40.0) 9 (30.0)

Participants in both automation groups had similarities in average weekly driving
frequencies, where the majority of the participants drove on average seven days a week
(66.7% in the control group and 70.0% in the treatment group). However, two of the 30
participants in the treatment group (6.7%) drove on average less than one day a week, while
none of the participants in the control group reported having this low of an average weekly
driving frequency. The treatment group also had a slightly higher proportion of drivers with
at least one moving violation within the past 5 years (43.3% for treatment versus 22.2% for

control), but both groups had very similar 5 year crash histories, see Table 5.2.

Table 5.2: Participant Driving History

Avg Weekly Driving Moving Violations Crashes in
Group Frequency, days n(%) 5 years n(%) 5 years n(%)
7 6-1 <1 0 14 0 14
Control 12 (66.7) 6(33.3) 0(0) 14 (77.8) 4(22.2) 13 (72.2) 5 (27.8)
Treatment 21 (70.0) 7 (23.3) 2 (6.7) 17 (56.7) 13 (43.3) 23 (76.7) 7 (23.3)

Previous driving experience with Advanced Driver Assistance Systems (ADAS) was
similar across groups, where 22.2% of control group participants and 23.3% of treatment

group participants had previously driven a vehicle with lateral assist; 22.2% of control and
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26.7% of treatment group participants had previous experience with a forward assistance
system; 38.9% of control group participants and 23.3% of treatment group participants had
prior experience with a blind spot alert system (see Table 5.3). Participants were told that
lateral assistance included either a lane keeping system or lane departure warning system (i.e.,
mitigation or alert system). Similarly, participants were informed that a forward assistance

system could include a forward collision mitigation or warning system.

Table 5.3: Participant Experience with Advanced Driver Assistance Systems

Ever Driven n(%) Ever Owned n(%)
Yes No Not Sure Yes No Not Sure
Lateral Assistance
Control 4(22.2) 14 (77.8) 0 (0.0) 2 (11.1) 16 (88.9) 0 (0.0)
Treatment 7 (23.3) 21 (70) 2 (6.7) 2 (6.7) 28(93.3) 0 (0.0)
Forward Assistance
Control 4 (22.2) 14(77.8) 0 (0.0) 3 (16.7) 15 (83.3) 0 (0.0)
Treatment 8 (26.7) 19 (63.3) 3 (10) 5 (16. .7)
Blind Spot Alert
Control 7(38.9) 11(61.1) 0 (0.0) 2(11.1) 16(88.9) 0 (0.0)
Treatment 7 (23.3) 20 (66.7) 3 (10.0) 3 (10.0) 24 (80.0) 3 (10.0)

Group

5.2 1IVIS Task Performance

The IVIS tasks were performed in drives 2 through 7. There were a total of 9,435 tasks
completed across all participants and all days, where 5,996 of these tasks were completed by
treatment participants and 3,439 were completed by control participants. The total number
of tasks completed in drives 2, 3, 4, 5, 6, and 7, respectively, was 1,265, 1,516, 1,630, 1,695,
1,750, and 1,579. The IVIS application randomly generated the task sequence for each driver,
and as expected from this randomization, none of the tasks were over represented. Across
all participants and all drives, there was a total of 1,240 contact tasks, 1,177 playlist tasks,
1,145 radio tasks, 1,200 climate tasks, and 1,234 dial tasks.

As mentioned previously, task difficulty was a priori defined based on calibration
during pilot testing. Participants in this study were asked to complete a NASA TLX ques-
tionnaire relating to each of these five IVIS task types at the end of each study day. The rank
ordering of the NASA TLX scores matched the intended task difficulty ranking (i.e., higher
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NASA TLX score indicated increased difficulty). Summary statistics were also computed
for task accuracy and time duration, which was collected using the IVIS application (see
Table 5.4). These two task performance measures did not identically match the difficulty
rank order. However, the two easiest tasks did have the highest accuracy rate (99.3%). One
possible explanation for this could be that NASA TLX is a multidimensional assessment of
workload, encompassing mental demand, physical demand, temporal demand, performance,
effort, and frustration, and also allows each person to weight these individual scales. Thus,

task accuracy and duration are just components of the overall NASA TLX assessment.

Table 5.4: Task Performance and NASA TLX by Task Type

Task Type Difficulty NASA TLX Score Accuracy (%) Duration (sec)

Mean SF Mean “F Mean SF
Contact Basy 35.1 280 99.3 041 14.3 064
Playlist Easy 35.8 277 99.3 0-26 17.2 084
Radio Medium 57.3 271 69.5 331 20.3 131
Climate Hard 59.4 289 71.5 182 13.9 0-54
Dial Hardest 62.0 260 81.2 240 18.5 097

TDRT performance by task type was also used to evaluate workload across the dif-
ferent tasks. On average, participants had the shortest response time and lowest miss rate
(i.e., lower cognitive workload) to the TDRT stimuli while not engaging with the IVIS. The
individual differences between task types are less obvious when aggregated at the entire co-
hort level (see Table 5.5). Given that, the subsequent chapters analyze TDRT measures at

the individual participant’s drive level to closer examine these differences over time.

Table 5.5: TDRT Performance by Task Type

Task Type Difficulty Response Time (msec) Miss Rate (%)

Mean °F Mean SF
None — 457.6 3083 5.6 088
Contact Easy 718.8 4111 30.9 18
Playlist Easy 714.7 4198 31.0 191
Radio Medium 738.1 40-50 33.5 2%
Climate Hard T47.1 4449 36.1 232

Dial Hardest 731.9 4142 30.7 197
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Chapter 6
BEHAVIORAL ADAPTATIONS

The proportion of vehicles with autonomous systems is on the rise, with new tech-
nologies rapidly entering the market place. As a result, the demands of the driving task
are evolving and as such drivers are likely adjusting their behaviors as their role as a driver
[operator| changes. Although not all behavioral adaptations are disadvantageous, it is impor-
tant to understand how these behavioral adaptations manifest in order to identify training
and feedback systems needed to minimize adverse outcomes in safety critical situations (e.g,
handover and takeover). This chapter evaluates behavioral adaptations of secondary task
engagement, driving performance, cognitive workload, and eye glance patterns between base-
line (i.e., manual driving), semi-automated, and post semi-automated (i.e., manual) driving
conditions. The objective of this chapter is to address the first two research aims of this

dissertation:

e Aim 1: Are there changes in performance and risk perception during exposure to a

lane keeping system?

o Aim 2: Do behavioral adaptations persist after the lane keeping system is withdrawn?

6.1 Analytical Methods

Generalized Linear Mixed Models and repeated measures ANOVA with Tukey’s HSD
test were used to evaluate the immediate and carryover effects of automation exposure on
drivers. Drives 1 and 2 provided baseline measures for before exposure to automation. Drives
3 through 6 were used to evaluate immediate effects, as these were the drives with the lane
keeping system engaged. Drives 7 and 8 were used to evaluate the carryover effects, as these

drives required returning back to manual driving.
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6.2 Results

6.2.1 Secondary Task Engagement

Secondary tasks on the IVIS were completed in drives 2 through 7 for all participants.
The mean number of IVIS tasks completed and mean completion accuracies were aggregated
at the drive level by automation group (see Figure 6.1). These aggregated trends suggests
that treatment participants completed more tasks while the lane keeping system was engaged,
as compared to the control participants. However, trends in accuracy were similar between
the two groups across the six drives, suggesting that the presence of automation did not

enhance task accuracy.
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Figure 6.1: IVIS Task Performance for Completion (left) and Accuracy (right)

Wilcoxon rank sum tests were used to evaluate differences in mean task accuracies
between the treatment and control groups across various drives (see Table 6.1). Wilcoxon
rank sum was used due to the non-normality of the task accuracy distributions for the two
groups. These pairwise tests support the hypothesis derived from the previous figure (Figure
6.1), that task accuracy was similar regardless of the presence of automation. Specifically,
there was no difference between or within groups across all drives aggregated together (All

Drives), before exposure to automation (Drive 2), during exposure (Drive 6), after with-
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drawal (Drive 7), or between the pairwise contrasts for these conditions.

Table 6.1: Wilcoxon Rank Sum Test on Task Accuracy by Drive and Group

Contrast W-statistic p-value

Control (All Drives) vs. Treatment (All Drives) 9354.0 0.593 (ns)
Control (Drive 2) vs. Treatment (Drive 2) 306.0 0.449 (ns)
Control (Drive 6) vs. Treatment (Drive 6) 242.5 0.565 (ns)
Control (Drive 7) vs. Treatment (Drive 7) 226.5 0.360 (ns)
Control (Drive 2) vs. Control (Drive 6) 164.0 0.962 (ns)
Control (Drive 2) vs. Control (Drive 7) 174.5 0.704 (ns)
Control (Drive 6) vs. Control (Drive 7) 147.0 0.656 (ns)
Treatment (Drive 2) vs. Treatment (Drive 6) 381.0 0.310 (ns)
Treatment (Drive 2) vs. Treatment (Drive 7) 378.5 0.294 (ns)
Treatment (Drive 6) vs. Treatment (Drive 7) 437.0 0.853 (ns)

The trends in secondary task engagement were further explored using a linear mixed
model, where the outcome variable was total number of tasks completed. The fixed effects
included the full interaction of automation group with drive number, where drive 2 (before
automation) was the reference drive. Participant demographics were also accounted for in
the model. A random intercept was fit on the participant level. The results of the model are
summarized in Table 6.2. This model suggests that there was no initial or final significant
difference in the mean number of tasks completed between the two groups, as expressed
by the p-values for the Treatment and Treatment x Drive 7 coefficients. However, the in-
teraction term for Treatment X Drive 3-6 suggests that the presence of the lane keeping
system correlated with a significant increase in the number of tasks completed, relative to
their performance before the automation exposure. There was also an increasing trend for
the number of tasks completed regardless of automation group as the study progressed, as
evident by the increasing magnitude in the Drive 3-7 coefficient estimates. There was no sig-
nificant difference between genders (see Male variable) or between middle and younger aged
groups (see Middle Aged Group variable). However, the older aged participants completed
significantly less tasks throughout all of the drives, as compared to younger individuals (see

Older Aged Group variable).



Table 6.2: Linear Mixed Model on Task Count

Variable Estimate SE t-statistic p-value
(Intercept) 29.20 1.87 15.62 < 0.001
Treatment -1.50 1.76 -0.85 0.398 (ns)
reference: Treatment X Drive 2 — — — —
Treatment x Drive 3 2.94 1.41 2.09 0.038
Treatment x Drive 4 4.34 1.41 3.08 0.002
Treatment x Drive 5 4.91 1.41 3.48 < 0.001
Treatment x Drive 6 5.86 1.41 4.15 < 0.001
Treatment x Drive 7 0.16 1.41 0.11 0.912 (ns)
reference: Drive 2 — — — —
Drive 3 3.39 1.12 3.04 0.003
Drive 4 4.89 1.12 4.38 < 0.001
Drive 5 5.89 1.12 5.28 < 0.001
Drive 6 6.44 1.12 5.78 < 0.001
Drive 7 6.44 1.12 5.78 < 0.001
reference: Younger — — — —
Middle Aged Group -2.30 1.82 -1.26 0.214 (ns)
Older Aged Group -5.99 1.76 -3.40 0.002
Male 1.80 1.46 1.23 0.225 (ns)
Model Fit AlC LogLik L Ratio p-value
At Convergence 1657.2 -811.6
N 18456 9198 2104 = 0.001

Number of Observations = 288
Number of Groups = 48
Intraclass Correlation = 0.679
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Further visualization of this model is provided in Figure 6.2, where the effect size with

95% confidence intervals is provided for the estimated change in number of tasks completed

for each factor. Although this plot expresses the same information as Table 6.2, it allows for

clearer comparison of relative magnitudes and significance across variables. Specifically, this

plot demonstrates how the effect of the lane keeping system was associated with a substantial

increase in task engagement for the drives in which it was turned on. Additionally, being

in the older age group was associated with one of the largest effects on number of tasks

completed.
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Figure 6.2: Coefficient Estimates with 95% CI for LMM on Task Count

6.2.2 Cognitive Workload

Cognitive workload was measured using the TDRT. The DRT data was first aggre-
gated at the drive level for every participant to compare overall trends across time (see Figure
6.3). Only drives 2-7 are plotted as these were the drives with a secondary task, thus were
relatively comparable drives for comparing workload measured by the TDRT. In this plot,
each participant’s baseline DRT performance, as measured in drive 1, was subtracted from
their subsequent drives (e.g., DRT yrive2 — DRTyrive1, DRT yrives — DR T griver, €te.). This ad-
justed DRT measure, relative to their baseline, allowed for comparison between participants.
There was an overall decreasing trend in cognitive workload (i.e., lower response time and
lower miss rate) as the study progressed for both automation groups, as evident in the plot
by the negative slopes between drives. However, participants in the treatment group had
an increase in response time and miss rate (i.e., increase in cognitive workload) in drive 7,

which was when the automation was withdrawn.
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Figure 6.3: DRT Performance for Response Time (left) and Miss Rate (right)

A linear mixed model was fit on the TDRT response time data, aggregated at the
task level for each participant’s drive (see Table 6.3). There was no significant difference in
response time between automation groups before or during exposure to the automation, as
suggested by the p-values for Treatment and Treatment X Drive 3-6 coefficients. However,
the treatment group had a significant increase in response time in drive 7 ( Treatment x Drive
7), and this factor was relative to their before exposure performance (Treatment x Drive
2). The increasingly more negative coefficients for Drive 8 to Drive 7 likely represents the
time on task effect, where participants became more comfortable with the study procedures
as they gained experience (i.e., less workload experienced for study tasks). There was no sig-
nificant difference in response time between the two easy IVIS tasks (i.e, Playlist Task with
Contact as reference task). The Radio and Climate Tasks, which were designed to be more
difficult then the easy (Contact) task, were associated with longer response times. There
was no significant difference between genders (Male coefficient) or middle and younger aged
individuals (Middle Age Group coefficient). However, older drivers had significantly higher
response time measures as compared to younger participants (Older Age Group coefficient).
Each participants’ inherently unique response time was accounted for in the model by in-
cluding the continuous covariate Baseline Response Time (i.e., response time in drive 1 for

each participant).
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Table 6.3: Linear Mixed Model on DRT Response Time, msec

Variable Estimate SE t-statistic  p-value
(Intercept) 299.35 80.877 3.70 < 0.001
Treatment -9.22 58.474 -0.16 0.875 (ns)
reference: Treatment x Drive 2 — — — —
Treatment x Drive 3 -17.32 22.591 -0.77 0.443 (ns)
Treatment x Drive 4 -16.55 22.577 -0.73 0.464 (ns)
Treatment x Drive 5 -22.22 22.577 -0.98 0.325 (ns)
Treatment x Drive 6 -22.35 22.577 -0.99 0.323 (ns)
Treatment x Drive 7 47.09 22.577 2.09 0.037
reference: Drive 2 — — — —
Drive 3 -23.77 17.814 -1.33 0.182 (ns)
Drive 4 -76.91 17.814 -4.32 < 0.001
Drive 5 -95.51 17.814 -5.36 < 0.001
Drive 6 -110.17 17.814 -6.18 < 0.001
Drive 7 -125.06 17.814 -7.02 < 0.001
reference: Contact = - = -
Playlist Task -3.35 9.967 -0.34 0.737 (ns)
Radio Task 27.55 9.976 2.76 0.006
Climate Task 20.57 9.976 2.06 0.039
Dial Task 11.12 9.976 1.11 0.265 (ns)
Baseline Response Time 0.97 0.118 8.21 < 0.001
reference: Younger — — — —
Middle Age Group -29.83 66.464 -0.45 0.657 (ns)
Older Age Group 154.60 63.674 2.43 0.019
Male 18.46 52.402 0.35 0.726 (ns)
Model Fit AIC LogLik L Ratio p-value
At Convergence 18039 -8997.6
Null 18257 91255 0000 = 0.001

Number of Observations = 1436
Number of Groups = 48
Intraclass Correlation = 0.693

The coefficient estimates and corresponding 95% confidence intervals for their effect
on response time, as derived from the above model, are plotted in Figure 6.4. This figure
highlights the decreasing trend in cognitive workload as the study progressed (Drive 3 to
Drive 7) and significant increase in workload for the treatment participants once the au-
tomation was withdrawn ( Treatment x Drive 7). The relatively wide confidence interval for
the effect of older age on response time also shows how being in the older age group could

be associated with as much as 280 msec slower response time.
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Figure 6.4: Coefficient Estimates with 95% CI for LMM on DRT Response Time

A mixed model was also fit on DRT miss count. This model structure utilized the
negative binomial link function, as the response variable was a count variable and followed a
negative binomial distribution (i.e., overdispersed). The total number of DRT stimuli within
the given time interval (i.e., total number of vibrations during each task for the participant)
was used as an exposure variable. Since the negative binomial link function utilizes the

logarithmic scale, the miss count can also be expressed as miss rate (see Equation 6.1).
log(E(MissCount;)) =pX; + log( Exposure;)
log(E(MissCount;)) — log( Exposure;) =pX;

log ( E(M“S—Count)) — log(E(MissRate;) =3X;

Ezxposure;

(6.1)

The model for DRT miss count is summarized in Table 6.4. The results are consistent
with the estimated cognitive workload based on response time from Table 6.3. Specifically,
there is no statistically significant difference between automation groups through drive 5

(i.e., Treatment and Treatment x Drive 3-5). While there is an associated increase in work-
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load after the automation is removed (Treatment x Drive 7), and this is relative to before
exposure (Treatment x Drive 2). This model also suggests that older drivers experienced
higher cognitive workload compared to young drivers, as expressed by the Older Age Group
variable. However, miss count appears more sensitive as compared to response time in iden-
tifying a reduction in workload in drive 6 ( Treatment x Drive 6) and identifying differences
in workload between the five IVIS tasks, where all four tasks are associated with higher

workload as compared to the Contact task.

Table 6.4: Negative Binomial Mixed Model on DRT Miss Count

Variable Estimate SE t-statistic p-value
(Intercept) -2.409 0.298 -8.09 < 0.001
Treatment 0.241 0.252 0.96 0.339 (ns)
reference: Treatment x Drive 2 — — — —
Treatment x Drive 3 0.130 0.086 1.51 0.132 (ns)
Treatment x Drive 4 0.126 0.091 1.39 0.165 (ns)
Treatment x Drive 5 -0.071 0.089 -0.80 0.423 (ns)
Treatment x Drive 6 -0.338 0.088 -3.83 < 0.001
Treatment x Drive 7 0.236 0.091 2.59 0.010
reference: Drive 2 — — — —
Drive 3 -0.272 0.071 -3.85 < 0.001
Drive 4 -0.568 0.075 -7.60 < 0.001
Drive 5 -0.425 0.072 -5.89 < 0.001
Drive 6 -0.335 0.070 -4.77 < 0.001
Drive 7 -0.635 0.075 -8.44 < 0.001
reference: Contact — — — —
Playlist Task 0.101 0.041 2.47 0.014
Radio Task 0.294 0.039 7.46 < 0.001
Climate Task 0.283 0.040 6.99 < 0.001
Dial Task 0.085 0.040 2.11 0.035
Baseline Miss Rate 0.043 0.012 3.49 < 0.001
reference: Younger — — — —
Middle Age Group 0.179 0.290 0.62 0.537 (ns)
Older Age Group 0.658 0.278 2.37 0.018
Male -0.361 0.232 -1.56 0.120 (ns)
Model Fit AIC LogLik L Ratio p-value
At Convergence 7064.0 -3510.0
Nl 74083 37011 002 = 0.001

Number of Observations = 1438; Number of Groups = 48
Intraclass Correlation = 0.091
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The incidence rate ratios (IRRs) from the regression on miss count are plotted in

Figure 6.5. This plot emphasizes the relative effects of each variable on cognitive workload

based on the model output summarized in Table 6.4. Specifically, this plot highlights the

decreasing trend in miss rates for the treatment group as the study progressed, and how

the reduction in workload becomes statistically significant in drive 6. This suggests that

by drive 6, the treatment participants may have had enough exposure to the system for

it to effectively reduce cognitive workload. Additionally, the strongest effect on cognitive

workload is associated with being in the older age group.

Treatment
Treatment:Drive 3 1
Treatment:Drive 4 4
Treatment:Drive 5 4
Treatment:Drive 6 1
Treatment:Drive 7 1

Drive 3 1

Drive 4 -

Drive 54

Drive 6

Drive 7 -

Playlist Task (vs. Contact) -
Radio Task (vs. Contact) -
Climate Task (vs. Contact) -
Dial Task (vs. Contact) -
Baseline Miss Rate -
Middle Age (vs. Younger) 1
Older Age (vs. Younger)
Male -

~

7

I
=
I
=Or—

=O=
-O=
0=
“O=
=O=
O

-O=

-, -

-O-
-O-

i__()_o-b

7~
~7

0%

100%

200% 300%

Incident Rate Ratios for Miss Count

Figure 6.5: Incidence Rate Ratio Estimates with 95% CI on DRT Miss Count

6.2.3 Driving Performance

Driving performance was analyzed in terms of Standard Deviation of Lateral Position,

SDLP, (i.e., driving maneuver directly aided by autonomous intervention) and Time to

Collision, TTC, (i.e., driving maneuver not directly effected by autonomous intervention).



99

Standard Deviation of Lateral Position

SDLP was aggregated at the drive level across participants to compare general trends
between the two automation groups. It is expected that different roadway curvature would
have different values of SDLP, thus this was accounted for in Figure 6.6, while all road
alignments were aggregated for simplicity in Figure 6.7. Participants in the control group
had an overall decreasing trend in lateral deviation as the study progressed for comparable
drives (i.e., drives with and without distracting tasks). However, participants in the treat-
ment group had an increase in lateral deviation after the system was removed (drive 7).
Participants in both groups had similar initial values of SDLP (i.e., means between groups
within drive 1 and drive 2). The lane keeping system provided lateral control of the vehicle,
hence the low values of SDLP in drives 3 through 6. The noticeable difference in mean
SDLP between the two groups in drive 7 emphasizes this change in behavior after exposure.
These trends were similar across all roadway alignments, with larger variations on the road

segments with curvature.
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Figure 6.6: Observed SDLP 4+ 1 SE Across Drives by Automation Group and Road Type
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Figure 6.7: Observed SDLP + 1 SE Averaged Across All Roadway Alignments

A linear mixed model was fit on the log transformed values of SDLP, which were
transformed for normality, see Table 6.5. In this model, the Treatment x Drive 2-§ variables
estimate differences specifically observed in the treatment group that differ from their drive 1
measures. The results support the notion that there were no initial significant differences in
SDLP between the two groups before exposure, as expressed by the p-values for Treatment
and Treatment x Drive 2. Additionally, treatment participants had significantly larger
lateral deviations after withdrawing the system (Treatment x Drive 7-8), relative to their
SDLP values before exposure with no distracting tasks (drive 1). Participants had an increase
in SDLP relative to drive 1 for the first two drives after adding the IVIS tasks Drive 2 and
Drive 3. However, Drives 4-7, which still included the IVIS tasks, was not associated with
any additional increase in SDLP relative to the first drive. This could be capturing the
time on task effect, where participants became better at managing the demands of the study
tasks. The negative estimate for Drive 8 further supports this time on task effect, where
participants may have become more comfortable with the study environment and thus able
to perform better. The roadway sections with curvature, Curved Road and Curved Hill
Road, also had larger values of SDLP as compared to Straight Road segments. There were

no significant differences in SDLP between genders or age groups.
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Table 6.5: Linear Mixed Model on log(SDLP, inches)

Variable Estimate SE t-statistic p-value
(Intercept) 2.152 0.083 26.05 < 0.001
Treatment -0.079 0.083 -0.95 0.346 (ns)
reference: Treatment x Drive 1 — — — —
Treatment x Drive 2 0.124 0.090 1.39 0.166 (ns)
Treatment x Drive 3 -1.123 0.090 -12.51 < 0.001
Treatment x Drive 4 -1.031 0.090 -11.49 < 0.001
Treatment x Drive 5 -1.028 0.090 -11.46 < 0.001
Treatment x Drive 6 -1.086 0.090 -12.11 < 0.001
Treatment x Drive 7 0.369 0.090 4.12 < 0.001
Treatment x Drive 8 0.182 0.090 2.03 0.043
reference: Drive 1 — — — —
Drive 2 0.221 0.071 3.12 0.002
Drive 3 0.229 0.071 3.23 0.001
Drive 4 0.096 0.071 1.35 0.176 (ns)
Drive 5 0.098 0.071 1.38 0.167 (ns)
Drive 6 0.122 0.071 1.73 0.085 (ns)
Drive 7 0.122 0.071 1.72 0.086 (ns)
Drive 8 -0.145 0.071 -2.04 0.042
reference: Straight — — — —
Curved Road 0.323 0.027 12.15 < 0.001
Curved Hill Road 0.700 0.027 26.32 < 0.001
reference: Younger — — — —
Middle Age Group -0.005 0.070 -0.07 0.948 (ns)
Older Age Group 0.036 0.068 0.53 0.599 (ns)
Male 0.068 0.056 1.22 0.229 (ns)
Model Fit AIC LogLik L Ratio p-value
At Convergence 1084.9 -519.4
Null 24446 -12193 108 < 0.001

Number of Observations = 1152; Number of Groups = 48
Intraclass Correlation = 0.191

These coefficient estimates with 95% confidence intervals are also visualized in Figure
6.8, which are expressed as a percent change in SDLP due to the log transformation of
SDLP in the model. This plot emphasizes the relative magnitude of effect for each factor,
such as the largest values of SDLP were associated with the drive after removing the system

(Treatment x Drive 7) and the roads with curvature (Curved Road and Hill Road).
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Figure 6.8: Coefficient Estimates with 95% CI for LMM on SDLP

Time to Collision

TTC was also aggregated at the drive level across participants to compare general
trends between the two automation groups, see Figure 6.9 for differentiation by roadway
alignment and Figure 6.10 for trends averaged across all roadway alignments. Although
participants in the treatment group appeared to have lower initial mean values of TTC,
there still appears to be an effect associated with the lane keeping system. Participants in
both groups had an increase in TTC from drive 1 to drive 2, which corresponded to driving
under manual conditions only (drive 1) to manual driving with the addition of the secondary
task (drive 2). This is to be expected, as it is likely that drivers would increase their TTC
when engaging in a secondary task in an effort to provide a larger safety margin between
them and the car in front of them. However, mean TTC for the treatment group reduced
after the lane keeping was engaged (drives 3 through 6) and remained low even after the
system was withdrawn (drives 7 and 8). Whereas, the control group had relatively consistent

mean TTC values across all drives with the IVIS distracting tasks (drive 2 through 7).
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Figure 6.10: Observed TTC + 1 SE Averaged Across All Roadway Alignments

A linear mixed model was fit on the log transformed TTC observations, see Table 6.6.
There was no significant difference in TTC between the two groups before the automation
intervention, as suggested by the p-values for the Treatment and Treatment x Drive 2
coefficients. Exposure to the lane keeping system (Treatment x Drive 3-6) was associated

with lower TTC as compared to their values of TTC in drive 1, and a carryover effect of
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this lower TTC was found for the drive immediately following withdrawal (Treatment x
Drive 7). Meanwhile, the coefficient estimates for Drive 2-7 (i.e., drives with IVIS tasks)
suggests that the control participant increased their TTC values relative to their drive 1
values. There were also differences in TTC associated with demographic effects, where older
participants had larger values of TTC as compared to the younger drivers (see Older Age

Group). Additionally, Males had smaller values of TTC as compared to females.

Table 6.6: Linear Mixed Model on log(TTC, sec)

Variable Estimate SE t-statistic p-value
(Intercept) 1.498 0.115 12.98 < 0.001
Treatment -0.151 0.109 -1.39 0.172 (ns)
reference: Treatment X Drive 1 — — — —
Treatment x Drive 2 0.019 0.089 0.22 0.828 (ns)
Treatment x Drive 3 -0.307 0.089 -3.46 < 0.001
Treatment x Drive 4 -0.365 0.089 -4.11 < 0.001
Treatment x Drive 5 -0.509 0.089 -5.74 < 0.001
Treatment x Drive 6 -0.364 0.089 -4.10 < 0.001
Treatment x Drive 7 -0.423 0.089 -4.77 < 0.001
Treatment x Drive 8 -0.170 0.089 -1.92 0.055 (ns)
reference: Drive 1 — — — —
Drive 2 0.552 0.070 7.86 < 0.001
Drive 3 0.517 0.070 7.37 < 0.001
Drive 4 0.490 0.070 6.98 < 0.001
Drive 5 0.548 0.070 7.80 < 0.001
Drive 6 0.471 0.070 6.71 < 0.001
Drive 7 0.434 0.070 6.19 < 0.001
Drive 8 -0.121 0.070 -1.73 0.084 (ns)
reference: Straight — — — —
Curved Road 0.087 0.03 3.302 < 0.001
Curved Hill Road -0.050 0.026 -1.918 0.055 (ns)
reference: Younger — — — —
Middle Age Group 0.184 0.110 1.674 0.101 (ns)
Older Age Group 0.251 0.11 2.351 0.023
Male -0.201 0.09 -2.274 0.028
Model Fit AIC LogLik L Ratio p-value
At Convergence 1105.1 -529.5
N 15120 7534 4TS < 0.001

Number of Observations = 1152; Number of Groups = 48
Intraclass Correlation = 0.399
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These coefficient estimates with 95% confidence are also plotted in Figure 6.11 to
further visualize their relative effect on percent change in TTC. Percent change was used
because TTC was log transformed for normality in the regression model, thus the coefficient
estimates have a multiplicative effect. This plot particularly shows the pronounced effect of

secondary task engagement on TTC (Drive 2-7).

Treatment A e ® e
Treatment:Drive 2 - —O—
Treatment:Drive 3 = I
Treatment:Drive 4 - s e :
Treatment:Drive 59 ==O=— I
Treatment:Drive 6 —— :
Treatment:Drive 7 - e © I
Treatment:Drive 8 - =)

Drive 2+
Drive 34
Drive 4 -
Drive 54
Drive 6 -
Drive 7 -
Drive 8 - S
Curved Road (vs. Straight) - | =O=
Hill Road (vs. Straight) - =O=
Middle Age (vs. Younger) -
Older Age (vs. Younger) -
Male - ——

50% 100% 150% 200%
Change in Time to Collision

Q

O

(o}

()

(@)

©

Q

(0]

Figure 6.11: Coefficient Estimates with 95% CI for LMM on TTC

6.2.4 FEye Glance Behavior

Eyes-off-road glances to the IVIS touchscreen were compared between drive 2 (before
exposure) and drive 7 (after withdrawal). Repeated measures ANOVAs were used to assess
differences between the various factors and Tukey’s HSD test was used to specifically under-
stand the differences in means for the contrasts of Automation Group (2 levels: treatment,

control) x Drive (2 levels: drive 2, drive 7).
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Mean Glance Duration

Mean glance durations for each IVIS task type were compared between the two au-
tomation groups, see Figure 6.12. Most of the mean glances were below 2.0 seconds. However,
the average mean GD for the treatment group in drive 7 for the Contact, Playlist, Radio,
and Dial tasks increased to approximately 2 seconds. Meanwhile, the control group mean

GDs appeared to remain stable or decrease in duration from drive 2 to drive 7.
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Figure 6.12: Observed Mean Glance Durations + 1 SE by Task Types for Before (Drive 2)
and After (Drive 7) Automation Exposure

As suggested by the trends in Figure 6.12, there was a significant effect for the in-
teraction of drive and automation group (F(1, 416) = 29.29, p < 0.001). There was also a
significant difference in mean GDs between drives (F(1, 416) = 74.39, p < 0.001) and task
type (F(4, 416) = 12.07, p < 0.001). There was no effect of automation group, gender, or
age group. The results of the post hoc test on the comparisons between drive and automa-
tion group are summarized in Table 6.7. There were no differences between mean GDs for
the control participants in drive 2 or 7, or between the two automation groups in drive 2.
However, treatment participants in drive 7 had significantly higher mean values as compared

to their glances in drive 2 and as compared to control participants in drives 2 and 7.



Table 6.7: ANOVA Contrasts of Mean Glance Durations, seconds

Tukey’s HSD p-value

. Control x Control x Treatment x
Interaction Mean 5P Drive 2 Drive 7 Drive 2
Control x Drive 2 1.499 061 —

Control x Drive 7 1.498 0-44 ns -
Treatment x Drive 2 1.543 053 ns ns —
Treatment x Drive 7 1.898 069 0.014 0.034 < 0.001

90" Percentile Glance Duration
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The 90" percentile glance durations for drives 2 and 7 by automation group were

aggregated by IVIS task type, see Figure 6.13. The control group had fairly comparable

90 percentile glance durations in drives 2 and 7 across all five task types. However, the

treatment group had noticeably higher values of 90" percentile glance durations in drive 7

as compared to drive 2 across tasks.
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Figure 6.13: Observed 90" Percentile Glance Durations 4+ 1 SE by Task Types for Before
(Drive 2) and After (Drive 7) Automation Exposure
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The ANOVA on 90" percentile glance durations indicated a significant effect for
drive (F(1, 416) = 55.94, p < 0.001), automation group (F(1, 42) = 5.30, p = 0.026), the
interaction of drive and automation group (F(1, 416) = 36.62, p < 0.001), and task type (F(4,
416) = 11.32, p < 0.001). There was no significant effect of gender or age group. Tukey’s
HSD test was used to further evaluate the difference between means for the interaction of
drive and automation group, see Table 6.8. The results are similar to the findings for mean
glance duration, where only the contrasts involving treatment participants in drive 7 had
significantly different mean values of 90" percentile glance durations. While there was no
difference in initial values between automation groups (i.e., in drive 2) or between the two

drives for the control group participants.

Table 6.8: ANOVA Contrasts of 90" Percentile Glance Durations, seconds

Tukey’s HSD p-value

Control x Control x Treatment X
. SD

Interaction Mean Drive 2 Drive 7 Drive 2
Control x Drive 2 2.264 095 —

Control x Drive 7 2.201 0-76 ns —

Treatment X Drive 2 2.423 1.06 ns ns -
Treatment x Drive 7 3.007 127 0.007 0.007 < 0.001

Total Eyes-Off-Road and Long Glances

Total eyes-off-road and percent long glances were aggregated at the drive level by
automation group in order to more easily compare these two measures with each other,
see Figure 6.14. Participants in both the treatment group and control group had similar
total eyes-off-road time behavior across the two drives. Specifically, both automation groups
showed a decreasing trend in total eyes-off-road time in drive 7 as compared to drive 2. This
suggests that participants were able to, on average, complete each IVIS task quicker after
gaining experience with the tasks. However, the two automation groups differed in their
proportions of long glances off road, where the control group remained consistent and the

treatment group had an increase in percent long glances from drive 2 to 7.
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Figure 6.14: Observed Mean + 1 SE of Total Eyes-Off-Road Time (left) and Percent Long
Glances (right) for Before (Drive 2) and After (Drive 7) Automation Exposure

The results from the ANOVA on total eyes-off-road indicated a significant effect for
drive (F(1, 416) = 195.84, p < 0.001), task type (F(4, 416) = 36.45, p < 0.001), and age
group (F(2, 42) = 3.48, p = 0.04). There was no significant difference between automation
groups, the interaction of automation group and drive, or gender. A Tukey test on age group
showed that older drivers had longer mean total eyes-off-road time (mean 13.94, SD 5.63)
as compared to younger drivers (mean 11.07, SD 3.94), p = 0.038. Tukey’s post hoc test
was not conducted on the contrasts for Automation Group x Drive since this interaction
variable was not significant in the ANOVA.

The ANOVA on percent long glances showed a significant difference for the factors
drive (F(1, 416) = 56.77, p < 0.001), automation group (F(1, 42) = 9.90, p = 0.003),
interaction of automation group and drive (F(1, 416) = 13.61, p < 0.001), and task type
(F(4,416) = 11.48, p < 0.001). There was no significant effect of age group or gender. Tukey’s
post hoc comparisons of percent long glances for automation group by drive is provided in
Table 6.9. Similar to the results for mean and 90" percentile glance durations, there were
no differences in means for percent long glances between the two automation groups before
exposure (i.e., drive 2), or between the two drives for the control group. However, the

treatment group in drive 7 had a larger mean value of percent long glances as compared to
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in drive 2 and as compared to both drives for the control group.

Table 6.9: ANOVA Contrasts of Percent Long Glances

Tukey’s HSD p-value

Control x Control x Treatment X
. SD

Interaction Mean Drive 2 Drive 7 Drive 2
Control x Drive 2 19.25 2248 —

Control x Drive 7 19.20 1864 ns —

Treatment X Drive 2 21.68 1535 ns ns —
Treatment x Drive 7 35.52 1870 < 0.001 0.002 < 0.001

6.3 Discussion

This chapter evaluated the first two research aims, which focused on intermediate
(Aim 1) and carryover effects (Aim 2) of exposure to an active lane keeping system on driver
behavioral adaptations. Changes in secondary task engagement and eyes-off-road patterns
were used to quantify adaptations in risk perception; changes in driving performance and

cognitive workload were used to quantify adaptations in performance.

6.3.1 Changes in Performance

As expected, drivers with the lane keeping system had less lateral deviations when the
system was engaged as compared to manual drivers. However, after the lane keeping system
was removed, drivers in the treatment group had a significant increase in lateral deviation
relative to their before exposure performance. These results are comparable to Rudin-Brown
and Noy (2002), who evaluated the effects of accurate and inaccurate lane departure warning
systems, and reported that drivers had improved lane-keeping performance regardless of
system accuracy as compared to manual driving. That study also found that drivers self-
reported a high degree of trust in the inaccurate system. Those findings, in conjunction with
the carryover effect of decreased lateral performance found in this current study, suggest
that drivers may begin to over trust these lateral assistance systems.

It is also important to consider the time interval that SDLP was aggregated at for

the regression model. For this study, the driving performance measures were aggregated
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to correspond with the roadway geometry to account for differences between straight and
curved roads. Thus, SDLP was computed over segments that were approximately 1.25 miles
in length, and took the driver, on average, 1.5 minutes to travel. The mean degradation in
SDLP from drive 2 to drive 7 for the treatment participants across a straight segment was
approximately 3 inches. In 1.5 minutes, this may only equate to 0.25 feet of variation, but in
an average drive of about 30 minutes, that could be as much as an added 5 feet of deviation.

Drivers, regardless of automation group, tended to have an increase in TTC corre-
sponding to the introduction of IVIS tasks on manual driving (i.e., drive 1 to drive 2). Once
the lane keeping system was engaged, drivers [in the treatment group| had significantly lower
values of TTC as compared to their own values of TTC under manual conditions. This de-
creased TTC for the treatment group persisted in the drives even after the lane keeping
system was withdrawn (i.e., drive 7 and 8). These findings suggest that a lateral assistance
system also has an impact on longitudinal vehicle control; that is, lateral and longitudi-
nal driving performance are not independent tasks. This is in accordance with Strand et
al. (2014), who also argue that longitudinal and lateral control are not independent; in a
study evaluating automation failure in a single direction, drivers experienced adverse effects
on both lateral and longitudinal vehicle control. In a similar context, Rudin-Brown and
Parker (2004) found a similar relationship in the inverse, where drivers had increased lateral
variability when using ACC as compared to manual driving. However, that study did not
examine carryover effects.

There was a decreasing trend in cognitive workload for time on task, as measured by
the TDRT miss rate and response time. This was observed in the parameter estimates for
each consecutive drive in the regression model, where response time became quicker (i.e.,
coefficient estimates became more negative) for subsequent drives. In the first three drives
with the lane keeping engaged (i.e., drives 3-5), there was no significant change in workload,
which is somewhat surprising given that the system should alleviate some of the driving
demands. This could be due to risk compensation. That is, the driver was increasing their
level of engagement with the secondary task (i.e., completing more tasks) as they became
more accustomed to the lane keeping system helping with lateral control. As a result,

a decrease in cognitive workload would not be observed, as they would be offsetting the
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decreased driving demands with an increased load induced by completing more secondary
tasks. Previous research has found that drivers will increase engagement with IVIS tasks
under automated assisted driving (Jamson et al., 2013; DeWinter et al., 2014). Thus, it is
possible that drivers in this study were increasing their attention to the secondary task as
the driving component became less demanding and hence a change in cognitive workload
could not be detected.

In the last drive with the lane keeping engaged (i.e., drive 6), there was a significant
and negative interaction effect for treatment and drive on miss rate, which indicated a
decrease in cognitive workload relative to before exposure to the system. This reduction
in cognitive workload under the lane keeping assistance system is consistent with previous
literature that has evaluated workload under ACC and highly-automated driving (DeWinter
et al., 2014). This finding suggests that these autonomous systems can have an overall
positive effect on safety, as they appear to reduce the overall driving load. This can be
leveraged if systems are designed to capture the operators attention at crucial times or
target their available attention to more important information.

There was a significant increase in both measures of cognitive workload (i.e., DRT
response time and miss rate) for the treatment group when the lane keeping system was
turned off, relative to their cognitive workload before exposure. This suggests that there was
a carryover effect on cognitive workload from exposure to the lane keeping system, where
the driving task may have become more demanding than drivers had previously experienced
before exposure. These cognitive models only considered the carryover effect on drive 7, and
did not include drive 8. This was because TDRT was used to measure cognitive workload and
the ISO standard indicates that the DRT protocol is best intended for use with secondary
tasks; there were no secondary tasks in drive 8 (ISO, 2016).

Cognitive workload was assessed using both TDRT miss rate and response time.
These measures were mostly consistent with each other in measuring differences in workload
across the various study factors. However, it is noteworthy that miss rate appeared to be
more sensitive in identifying these changes in workload. One possible explanation for this
could be in the relative magnitude that each metric captures workload. That is, response

time only analyzes successful responses to the DRT stimulus; in other words, only when



73

participants are able to notice and respond to the event in a timely manner. While miss rate
analyzes those instances when drivers do not respond to the stimulus in a reasonable amount
of time. Thus, miss rate may be capturing when drivers are too cognitively overloaded to
respond. Hence, the possible differences in workload measured across the study for the

various tasks.

6.3.2 Changes in Risk Perception

The IVIS tasks were used as a way to evaluate willingness to engage in a distracting
task (i.e., riskiness). Participants were instructed to complete the tasks at a pace they were
comfortable with and the IVIS application was designed to allow the participant to cue the
frequency of the tasks. Thus, engagement with these tasks was considered a measure of risk
perception.

The exposure of automation did not appear to improve drivers’ task accuracy, as
drivers in the control group and treatment group had similar accuracy across all drives. Re-
gardless of automation group, both groups had a similar baseline number of tasks completed
(i.e., treatment variable not significant in regression model). However, automation exposure
was associated with an increase in task engagement, where drivers in the treatment group
completed more tasks while the lane keeping system was engaged (drives 3-6). After the
lane keeping system was removed (drive 7), treatment and control participants completed a
similar number of tasks. Although this can be considered a good sense of risk compensation
by the treatment participants, it is important to note that they were told before the drive
that the lane keeping system would not be turned on for the entirety of drive. Hence, a
different outcome may occur if the lane keeping system suddenly and unexpectedly handed
off control to the driver.

The evaluation of eye glance behavior provided a further measure of risk perception, as
eyes-off-road time can be an important indicator of safety. Previous research has shown that
eyes-off-road glances (particularly glances greater than 2.0 seconds) can increase standard
deviation of lane position (Peng et al., 2013; Liang & Lee, 2010) and increase crash risk
(Klauer et al., 2006).

There were no changes in mean glance durations and 90" percentile glance durations
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for the control group from drive 2 to drive 7. Additionally, there were no initial differences
between the two automation groups (i.e., in drive 2). However, mean glance durations and
90" percentile glance durations were significantly higher for the treatment participants in
drive 7 (after withdrawal) as compared to their matched glances in drive 2 (before exposure).
This suggests that there was a carryover effect on glance durations after removing the system.
Specifically, treatment group participants had a mean value of 3.0 seconds for 90'" percentile
glance durations in drive 7 as compared to the 2.2 second mean value in drive 7 for control
participants. This can have implications on safety, particularly as these glances approach or
exceed the 2.0 second threshold.

Participants in both automation groups were able to complete the tasks with less
total eyes-off-road time in drive 7 as compared to drive 2. Specifically, there was an average
decrease in total eyes-off-road time from drive 2 to drive 7 of almost 3.0 seconds for the
control group and 4.0 seconds for the treatment group. While there was no significant
change in the proportion of glances longer than 2.0 seconds for the control group, there was
a significant increase observed for the treatment participants. In fact, treatment participants
had an average increase from 21.7% in drive 2 to 35.5% in drive 7 of percent long glances.
This is a meaningful change, as these glances are considered particularly unsafe as glances

greater than or equal to 2.0 seconds are associated with increased crash risk.

6.3.3 Behavioral Differences Across Demographics

Participant demographics were also accounted for in the regression models and ANOVA
analyzes in order to evaluate differences between driving populations. This is an important
consideration, as different driving groups may benefit more or less from specific autonomous
systems. Thus, systems may be more effective if they can be personalized to individuals or
groups.

There were no differences observed in driving performance, cognitive workload, eye
glance behaviors, or secondary task engagement between the younger (25-34 years old) and
middle (35-44 years old) age groups. When comparing the older (45-54 years old) aged par-
ticipants to the younger aged group, there were some noticeable differences across measures.

Specifically, these older drivers had higher values of TTC and higher values of cognitive
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workload (i.e., DRT response time and miss rate) as compared to the younger drivers. This
is similar to a finding by Korber et al. (2016), who found that younger drivers (< 28 years
old) were more likely to adapt TTC values below 1 second as compared to older drivers (>
60 years old).

Older drivers also exhibited different behaviors associated with secondary task en-
gagement. While there were no differences associated with age on mean glance duration,
90*™" percentile glance duration, or percent long glances, older drivers had significantly longer
mean total eyes-off-road time per task as compared to younger drivers. This older popula-
tion also completed less tasks during the drives. These behaviors (i.e., less engagement with
distracting tasks) are consistent with safer driving habits.

There were no effects associated with gender on lateral deviation, cognitive workload,
eye glance behavior, or secondary task completion. However, males had significantly lower

values of TTC as compared to females, which is generally indicative of more risky driving.
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Chapter 7
DRIVER TRUST IN AUTOMATION

Drivers’ trust in an autonomous vehicle system can predicate how they will interact
with the system. Lee and See (J. D. Lee & See, 2004) posits that trust guides reliance in
a system, where drivers will rely on a system they trust and reject a system they do not
trust. This chapter characterizes drivers based on their trust in the lane keeping system and
then evaluates the influences of trust on adaptations in their driving performance, cognitive
workload, and eye glance patterns. The objective of this chapter is to address the third

research aim of this dissertation:

e Aim 3: How do drivers self-reported levels of trust impact behavioral adaptations?

7.1 Analytical Methods

Hierarchical clustering using Ward’s minimum variance method was applied to the
responses from the trust in the lane keeping system questionnaire. This analysis was con-
ducted on the standardized values of the 24 observations per participant, on all 30 treatment
participants.

Repeated measures Analysis of Variances (ANOVAs) were then used to evaluate
changes in driving performance, cognitive workload, and eye glance behavior across trust
cluster groups and drives. Changes in lateral vehicle control (SDLP) was compared between
drive 2 (before exposure) and drive 7 (after system was removed). This provided insight on
carryover effects of exposure based on trust levels. Cognitive workload (i.e., TDRT response
time and miss rate) was compared between drive 6 (final drive with automation) and drive 7
(after system was removed). This was used to understand changes in workload experienced
(e.g., reliance on automation) between semi-automated and post semi-automated driving,
based on trust levels. Changes in eye glance behavior between drives 2 and 7 were used to

evaluate carryover effects on risk perception based on the trust.
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7.2 Results

7.2.1 Cluster Analysis

The pseudo F statistic indicated that three cluster groups were appropriate for cluster-
ing the data. The final clustering appeared to group participants into a low trust, moderate
trust, and high trust in the lane keeping system. The three trust cluster groups are hereafter
refereed to as “low”, “middle”, and “high”. Table 7.1 provides a list of the eight questions

used in the trust questionnaire and the median score for each trust group by day.

Table 7.1: Trust Survey Questions with Responses by Trust Group

Trust Question Group (median)

1 (not at all) - 10 (extremely high) Day Low Middle High
1. To what extent does the LK perform the task it ; 673 g 50
was designed to do? 3 75 3 10
, ) 1 6 6 8
2. To what extent can the LK’s behavior be 9 6 3 9
predicted from moment to moment? 3 6.5 3 9
.. 1 6 6 9
3. To what extent does the LK respond similarly to 9 6 3 9
similar circumstances at different points in times? 3 6.5 9 9
: : ) 1 4 7 9
4. What is your degree of faith that the LK will be 9 55 7 9
able to cope with future driving situations? 3 6' 3 9
) ) 1 4.5 6 9
5. What is your degree of trust in the LK to respond 9 6 7 9
accurately? 3 6 3 9
_ 1 5.5 8 9
6. What is your degree of self-confidence to manually 9 6.5 N 9
. . ? .
intervene with the LK 3 6 N 9
1 4 7 9
7. What is your overall degree of trust in the LK? 2 5.5 7 9
3 6 8 9
) 1 6 7 9
8. How confident do you feel about your previous 9 6.5 3 0.5
S ) .
trust ratings? 3 75 9 9
Average Trust Score 1 0.5 0.8 8.8
(not included in cluster analysis) 2 6.3 7.7 9.1
3 6.5 8.3 9.0
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An average trust score per day was computed for each participant based on their
responses, which was calculated as the mean value of the eight questions per day per partici-
pant (i.c., 5% . Q:). This average trust score was not used in the cluster analysis, however
was computed to help provide a simple visualization of the overall trust in the lane keeping
system for each participant (i.e., single dimensionality response for the day). These average
trust scores by day for each participant, grouped by trust cluster, are plotted in Figure 7.1.
The within group trust scores were relatively consistent across days for the low and high
trust groups. The middle trust group tended to be more spread across mid-range scores on
the first day, but seemed to learn to trust the lane keeping system by the third day (i.e.,

scores were higher in day 3 relative to day 1).
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Figure 7.1: Summary of Average Trust Scores (1, low, to 10, high)
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7.2.2  Trust Group Summary Statistics

There were 6 (4 male, 2 female) participants in the low trust group, 11 (4 male, 7
female) in the middle trust group, and 13 (7 male, 6 female) in the high trust group. A
Fisher’s exact test was used to evaluate differences in the proportions of gender by cluster,
which indicated there was no significant difference among clusters (p = 0.527). The high
trust group were the oldest on average (mean 40.2 years old, SD 8.90), followed by the lowest
trust group (mean 38.2 years old, SD 10.19), and the middle trust group had the youngest
average age (mean 35.7 years old, SD 8.90).

The middle and high trust groups had similar driving history profiles, see Table 7.2.
The low trust group had the least prior experience with using a vehicle with lateral assistance
compared to the other two groups. The low trust group also had proportionally less crashes
in the past five years. Additionally, none of the drivers in the low trust group reported
receiving a moving violation in the past five years, whereas the same could not be said about

the middle and high trust groups.

Table 7.2: Trust Cluster Group Driving History

Previous Experience Moving Violations Crashes in
Trust with Lateral 5 years n(%) 5 years n(%)
Group Assistance n(%) 0 1+ 0 1+
Low 1 (16.7) 6 (100) 0 (0.0) 5(83.3) 1(16.7)
Middle 3 (27.3) 5(45.5) 6 (54.5) 8 (72.7) 3 (27.3)
High 3(23.1) 6 (46.2) 7 (53.8) 10 (76.9) 3 (23.1)

7.2.83  Driving Performance

The Standard Deviation of Lateral Position (SDLP) before exposure (drive 2) and
after withdrawal (drive 7) of the lane keeping system was examined, see Figure 7.2. The
change in mean SDLP values were noticeably the lowest across all road segments for the low

trust group as compared to the two higher trust groups.
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Figure 7.2: Observed Mean SDLP £ 1 SE by Trust Group for Before (Drive 2) and After
(Drive 7) Automation Exposure

Based on the ANOVA, there was a significant difference in mean SDLP between drives
(F(1,145) = 71.42,p < 0.001) and road type (F'(2,145) = 53.04,p < 0.001). However there
was no significant effect associated with cluster group (F(2,27) = 1.71,p = 0.200) or the
interaction of cluster group and drive (F(2,145) = 0.28,p = 0.754). A Tukey HSD test
indicated a significant difference between drive 2 (mean 17.11, SD 5.28) and drive 7 (mean
20.43, SD 5.86). There was also a difference between all three contrasts of road type, straight
(mean 16.33, SD 4.97), curved (mean 18.51, SD 4.94), and curved hill (mean 21.46, SD 6.29).

7.2.4  Cognitive Workload

Cognitive workload was compared across cluster groups for the last drive with au-
tomation (drive 6) to the drive after withdrawal (drive 7), see Figure 7.3. The TDRT
measures were adjusted to account for individual differences in reactions by subtracting each
participants’ respective baseline DRT measure (i.e., response time or miss rate), as measured
in drive 1. There was a very slight difference in mean cognitive workload for the low trust

group between when the lane keeping was engaged as compared to after it was removed;
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while there was a noticeable increase in workload for the two higher trust groups after the

system was removed.
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Figure 7.3: Mean DRT Response Times (left) and Miss Rates (right) + 1 SE by Trust Group
for During (Drive 6) and After (Drive 7) Automation Exposure

The ANOVA on adjusted DRT response times showed a significant difference between
drives (F'(1,27) = 8.55,p = 0.007), but not between cluster groups (F'(2,27) = 0.20,p =
0.823) or the interaction of cluster and drive (F'(2,27) = 1.43,p = 0.256). The ANOVA on
adjusted DRT miss rate indicated there was a difference between cluster groups (F(2,27) =
5.15,p = 0.012), but not between drive (F'(1,27) = 3.51,p = 0.071) or the interaction of
drive and cluster (F(2,27) = 0.61,p = 0.548).

7.2.5 Fye Glance Behavior

There were four measures examined for eye glance behavior, coinciding with the four

measures that were also evaluated in the previous chapter on behavioral adaptations:

1. Mean glance duration for each task type was computed based on the average of the

three trials (i.e., repetitions) within the drive for each participant.
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2. 90" percentile glance duration was computed based on the 90" quantile of all off road

glances per task type for each participant on the respective day.

3. Proportion of long glances was calculated for each task for each participant based on
the total number of glances that exceeded 2.0 seconds divided by the total number of

glances, and then averaged across the three repetitions for the participant.

4. Total eyes-off-road time for each participant by task was computed as the sum of the

glances off road, and averaged across the three trials per task per participant.

These eye glance behaviors were aggregated by cluster group to compare glance du-

rations and eyes-off-road time, see Figures 7.4 and 7.5.
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Figure 7.4: Eyes-Off-Road Glance Durations for Mean (left) and 90*® Percentile (right) by
Trust Group for Before (Drive 2) and After (Drive 7) Automation Exposure

The ANOVA on mean eye glance duration indicated a significant difference in means
by drive (F'(1,253) = 95.63,p < 0.001), task type (F'(4,253) = 7.24,p < 0.001), and interac-
tion of drive and cluster group (F'(2,253) = 3.97, p = 0.020). There was no significant differ-
ence between cluster groups (F(2,23) = 1.26,p = 0.301), gender (F'(1,23) = 0.59, p = 0.450),
or age groups (F'(2,23) = 0.701, p = 0.506). The interaction of day within each cluster group
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was particularly of interest and further evaluated using Tukey’s HSD test. There was a sig-
nificant difference (p < 0.001) between mean eye glance durations for the low trust group in
drive 2 (mean 1.28, SD 0.23) and drive 7 (mean 1.63, SD 0.49), the middle group in drive 2
(mean 1.51, SD 0.29) and drive 7 (mean 2.03, SD 0.80), and the high trust group in drive 2
(mean 1.67, SD 0.70) and drive 7 (mean 1.89, SD 0.64).

The ANOVA on the 90th percentile eye glance duration similarly indicated a signifi-
cant difference in means by drive (F(1,253) =,88.58,p < 0.001), task type (F'(4,253) =
7.28,p < 0.001), and the interaction of drive and cluster group F'(2,253) = 6.75,p =
0.001). There was no significant effect of cluster group (F'(2,23) = 1.56,p = 0.232), gender
(F(1,23) = 0.60,p = 0.445), or age group (F'(2,23) = 0.81,p = 0.456). The Tukey post-hoc
test was also performed on the contrast of each drive and cluster; there was a significant
difference (p < 0.01) between means for the low trust group in drive 2 (mean 1.94, SD 0.37)
and drive 7 (mean 2.47, SD 0.72), middle trust group drive 2 (mean 2.26, SD 0.48) and drive
7 (mean 3.20, SD 1.33), and the high trust group drive 2 (mean 2.74, SD 1.44) and drive 7
(mean 3.05, SD 1.33).
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Figure 7.5: Percent Long Glances (left) and Total Eyes-Off-Road Time (right) by Trust
Group for Before (Drive 2) and After (Drive 7) Automation Exposure

The ANOVA for percent long glances showed a significant difference for drive (F(1, 253)
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= 81.32,p < 0.001) and task type (F(4,253) = 7.22,p < 0.001). Unlike the previous two eye
glance behavior metrics on glance duration, there was also a significant difference between
cluster groups (F'(2,253) = 3.75,p = 0.039). There was no significant difference between
gender (F'(1,23) = 0.05,p = 0.818), age group (F'(2,23) = 0.55,p = 0.582), or interaction
of drive and cluster group (F'(2,253) = 1.60,p = 0.205). Based on the Tukey HSD results,
there was a significant difference (p = 0.029) in percent long glances between the low trust
cluster (mean 18.80, SD 15.26) and high trust cluster (mean 31.77, SD 17.17).

The ANOVA on the total eyes-off-road time also suggested there was a significance
difference in means by drive (F'(1,253) = 138.20,p < 0.001), task type (F'(4,253) = 30.98,
p < 0.001), and cluster group (F(2,23) = 4.61,p = 0.021). There was no significant differ-
ence between the interaction of drive and cluster group (F'(2,253) = 0.93,p = 0.396), gender
(F(1,23) = 0.034,p = 0.856) or age group (F(2,23) = 3.07,p = 0.066). The Tukey HSD
test indicated there was only a significant difference between the low trust group (mean 9.96,
SD 2.76) and high trust group (mean 14.60, SD 5.98) (p = 0.033), but not any of the other

contrasts.
7.3 Discussion

This analysis revealed three cluster groups based on a multidimensional trust assess-
ment: low trust, middle trust, and high trust. This approach was similar to a study by
Xiong et al. (2012), who conducted a cluster analysis based on ACC use patterns and found
that drivers could be grouped into high risk, moderate risk, and conservative. However, that
study clustered on driving performance measures (i.e., ACC gap setting, speed setting, num-
ber of warnings, number of disengagements of the system), rather than subjective measures
of trust.

The low trust group consistently remained low in their trust in the system and sim-
ilarly, the high trust group remained steady in their high trust across all three days. The
middle trust group had the largest shifts towards learning to trust the system. The change
in median average trust scores were 1.0, 1.5, and 0.2 for the low, middle, high groups, re-
spectively. Although the middle group had the largest median observed increase in trust, all

three groups had various degrees of increases in trust for the lane keeping system. This is
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consistent with previous literature that has noted trust increases after using an autonomous
system. Rudin-Brown and Parker (2004) reported that drivers trust in an ACC system in-
creased after exposure to the system, despite even experiencing system failures. Merat and
Lee (2012) also reported that trust in vehicle automation increases with increased familiarity,
while acceptance does not increase with experience. Beggiato and Krems (2013) reported
that drivers’ trust and acceptance increased with experience for ACC systems that operated
correctly, while drivers’ trust and acceptance decreased for experiences with an ACC that
provided incorrect descriptions and failures. This current study did not have any failures in
the lane keeping system, and, as such, is consistent with the findings from these previous
studies.

The three trust groups were also characterized by their demographics and driving
history. The low trust group had the safest driving history (i.e., proportionally less crashes
and no moving violations). The low trust group also had the least prior experience with
lateral assistance systems (16.7% versus 27.3% for the middle and 23.1% for the high group).
There were no significant differences in the gender distribution across the three groups, as
determined using Fisher’s exact test. Similarly, in a study by Xiong et al. (2012), there
were no differences in genders between groups clustered on use patterns with ACC. The high
trust group were the oldest on average, although the differences in age across the groups
were not statistically significant. Previous literature has noted age related differences in use
and acceptance of automation (Xiong & Boyle, 2012). Gold et al. (2015) found that older
drivers self reported higher levels of trust in a highly automated vehicle as compared to
younger drivers. Similar findings were observed in a survey study by Jenness et al. (2008),
who showed that older drivers were more likely to increase following distance under manual
driving as compared to ACC. They were also less likely to report problems or safety concerns
as a result of using ACC. Ho et al. (2005) suggests that older individuals tend to have greater
trust and reliance in automation due to deficits in cognitive abilities, increased workload,
and decreased self-confidence in completing tasks manually.

All three trust groups had decreased driving performance (i.e., higher SDLP) in drive
7 as compared to drive 2, which represented the drives immediately before exposure to

automation and immediately after withdrawing the automation. This concept of carryover
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effects of behavioral adaptations were also observed in a study by Skottke et al. (2014), where
drivers decreased time headways for 10 km after being decoupled from highly automated
driving. However, the exposure time to automation and duration measured for the carryover
effect differed between these two studies. On average, the largest SDLP occurred on the
curved hill road, followed by the curved flat road, while the straight segments had the least
lateral variations. Although it was not statistically significant, drivers in the low trust
group tended to have smaller degradations in lateral control (i.e., smaller increases in SDLP
after automation withdrawal). This was particularly pronounced on the straight and curved
roadway segments, while not as obvious on the curved hill roadway. Many participants
appeared to cut the corner on the uphill portion of the curved hill road by driving over
the lane center marker. This could have been a result of the absence of traffic in the on-
coming lane and relatively sharp horizontal curvature, rather then poor performance. This
geometric configuration and observed behavior could explain why there were noticeably larger
variations on the curved hill segment across all trust groups.

Changes in cognitive workload (i.e., TDRT response time and miss rate) were also
observed across groups and drives with and without automation. Drive 6 was the last drive
with exposure to the lane keeping system, thus cognitive workload was evaluated during this
drive to capture the effects of prolonged exposure and reliance on the system. Participants in
the middle and high trust groups tended to have higher response times and miss rates (i.e.,
increased workload) in the drive immediately after withdrawing the system, as compared to
during exposure. This suggests that these two higher trust groups experienced less workload
while the system was engaged. Previous research supports this notion that automation leads
to a decrease in workload as compared to manual driving. This has been shown through
decreased heart rate (Carsten et al., 2012; DeWinter et al., 2014), lower NASA TLX scores
(Dambock et al., 2013; Stanton & Young, 2005), lower stress using the Dundee Stress State
Questionnaire (DSSQ) scale (Stanton & Young, 2005), and increased blink rate (Dambock et
al., 2013). However, the low trust group had similar measures of cognitive workload in drives
with automation and following withdrawal. This negligible change in workload suggests that
drivers in the low trust group may not have been as reliant on the system during drives

with automation. Overall, drivers in the low trust group had significantly lower miss rates
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as compared to the other two groups in both drives that were evaluated. One possible
explanation for this difference in observed workload could be attributed to the confounding
effects of engaging in a secondary task, where drivers in this study were encouraged to engage
at their own pace during the drives.

Within all three trust groups, drive 7 (after withdrawal) had significantly longer mean
and 90" percentile glance durations as compared to drive 2 (before exposure). The largest
change in eye glance durations was observed in the middle trust group, which was the group
characterized as learning to trust the automation. Specifically, the middle trust group had
a mean increase of 0.52 seconds in mean glance duration and 0.94 second increase in 90"
percentile glance duration from drive 2 to drive 7. There was also a noticeable, but not
statistically significant, trend of increasing mean and 90" percentile glance durations for
increasing trust groups (i.e., low trust had the shortest and high had the longest glances). A
similar pattern was observed for percent long glances and total eyes-off-road time, however
this trend was statistically significant. Specifically, the low trust group had the lowest percent
long glances and total eyes-off-road time, while the high trust group had the highest. This,
in conjunction with driving history trends discussed above, suggests that drivers who were
more trusting of the automation, were also more risky drivers. In a similar methodology,
Peng and Boyle (2015) used cluster analysis on longitudinal measures to group drivers into
either high-risk or low-risk when driving while engaging with an in-vehicle device. The
results from this current analysis are consistent with findings from Peng and Boyle (2015),
who found that high risk drivers had longer maximum eyes-off-road glances and that this
difference increased with time. Other studies have also evaluated the relationship between
trust and eye glance behavior and reported comparable results. Korber et al. (2018) found
that participants who self-reported higher trust in a conditionally automated drive spent
more time with eyes-off-road to a non-driving related task as compared to those with lower
trust. Similarly, Hergeth et al. (2016) evaluated monitoring frequency (i.e., eye glances)
to the driving scene during highly automated driving, and found that drivers with higher
self-reported trust in the automation were associated with decreased monitoring frequency.

In this analysis, drivers in the middle and high trust groups had similar driving be-

haviors and habits (e.g., crash frequency, eye glance behavior, cognitive workload). However,
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these groups differed predominately in their initial trust ratings (i.e., day 1 trust scores).
By the third day, participants in the middle trust group appeared to have learned to trust
the system and had trust ratings similar to the high trust participants. If this study had
a longer duration, it is likely that these two trust groups would have converged into one
group. Future applications should consider not only building appropriate trust, but also
maintaining appropriate trust, as many drivers may also learn to over trust these systems

over time.
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Chapter 8
GENERAL CONCLUSIONS

This chapter provides an overall summary of the findings from this dissertation, the
relevance and dissemination of these results, and future research and applications of the

study methodology.
8.1 Overall Findings

The objective of this dissertation was to examine behavioral adaptations and changes
in risk perception during exposure to and after removing an active lane keeping system, as
well as examine the effect of trust on these adaptations. An active lane keeping system
was used to capture adaptation to automation, while still requiring drivers to attend to the
driving task. A longitudinal driving simulator study was conducted, providing drivers with
approximately 40 minutes of baseline driving, 80 minutes of semi-automated driving, and 40
minutes of post-automated (manual) driving. A control group was exposed to approximately
160 minutes of manual driving, but otherwise identical study procedures, in order to provide
a reference for time on task effects. Changes in driving performance and risk perception were
measured using driving performance measures, cognitive workload, eye glance behavior, and
quantifying secondary task engagement. Trust was quantified using a questionnaire targeted
at capturing a multidimensional assessment of human-automation trust. The key findings

from this dissertation are summarized below:

e Lateral Vehicle Control. Drivers in the treatment group tended to have an increase
in lateral deviations (i.e., worse lateral control) after the lane keeping system was
removed, relative to their performance before exposure. Meanwhile, drivers in the
control group tended to have improved lateral control (i.e., lower SDLP) as the study

progressed.
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e Longitudinal Vehicle Control. On average, drivers increased their TTC under manual
driving with the addition of IVIS tasks. However, a decrease in TTC was observed in
the treatment group once the lane keeping system was engaged. This decreased TTC
was comparable to their preferred TTC under manual control with no distracting
tasks. Despite the fact that they were still engaging with the IVIS. A carryover effect
on longitudinal control was observed after the lane keeping system was removed, such
that drivers in the treatment group tended to keep their decreased TTC when they
returned to manual driving while still engaging with the IVIS. There was no time on
task effect observed for the control group, instead they kept similar values of TTC

across all drives with secondary tasks.

o Cognitive Workload. There was a general decreasing trend in cognitive workload
(DRT response time and miss rate) observed across all drivers as the study progressed.
There was an additional decrease in workload observed specifically in the treatment
participants for the fourth drive of exposure to the lane keeping system. However,
once the lane keeping system was removed, drivers in the treatment group tended to

have an increase in cognitive workload relative to their baseline measure.

e Fye Glance Behavior. Drivers in the control group did not have noticeable differences
in their measures of eye glance behavior (mean glance durations, 90* percentile glance
durations, and percent long glances) as the study progressed. However, drivers in the
treatment group appeared to have longer mean glance durations, longer 90" percentile
glance durations, and more long glances (i.e., over 2.0 seconds) off the road in the
drive after removing the lane keeping system as compared to their eye glance behavior
before exposure. Participants in both groups tended to have less total eyes-off-road
time per task in drive 7 as compared to drive 2. This suggests that drivers were able
to complete the tasks quicker after gaining experience with the tasks, and while the
control participants did not change their glance durations, the treatment participants

learned to complete the tasks by taking longer off road glances.

o [VIS Task Engagement. There was a time on task effect observed for secondary task

completion, where drivers completed more tasks per drive as the study progressed.
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However, there was an additional increase observed in the treatment group, where
these participants appeared to complete even more tasks relative to manual drivers.

The addition of the lane keeping system did not have any effect on task accuracy.

Trust: Behavioral Adaptations. The smallest degradations in lateral vehicle control
were observed in the low trust group after the lane keeping system was removed.
Changes in cognitive workload suggest that drivers with higher trust in the lane
keeping system had higher reliance on the system, as they tended to have increased
cognitive workload after the system was removed, as compared to while the system
was engaged. Meanwhile, participants in the low trust group tended to have similar
measures of cognitive workload regardless of whether the lane keeping system was

engaged or removed.

Trust: Risk Perception. Drivers with higher self-reported trust in the lane keeping
system were associated with riskier driving behaviors. Specifically, these high trust
drivers self-reported more moving violations and more crashes within the past five
years as compared to low trust drivers. Drivers in the high trust group also appeared
to have a larger proportion of long glances off road (i.e., greater than 2.0 seconds) as

compared to the lower trust group.

Gender Effects. There were no statistical differences between males and females with
regards to secondary task engagement, cognitive workload, eye glance behavior, or
lateral vehicle control. However, males were associated with lower values of TTC,

which is generally correlated with riskier driving.

Age Group FEffects. There were no statistical differences between the younger and
middle aged groups across any of the variables measured. However, older participants,
as compared to the younger age group, tended to complete less secondary tasks, have
higher cognitive workload (DRT response time and miss rate), have longer total eyes-

off-road time per task, and have higher values of TTC.
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8.2 Theoretical Constructs

Behavioral adaptations pertain to changes in behavior as a result of some exposure
or modification in a system, for example the lane keeping system used in this study. These
adaptations can have a positive impact, such as leading to an increase in awareness. In this
dissertation, positive effects of exposure to the lane keeping system were observed through
decreased cognitive workload and decreased lateral vehicle variations while the system was
engaged. However, behavioral adaptations can also have a negative impact, such as diverting
attention away from a safety critical task. In this dissertation, this included reduced car
following distances during exposure and increased eyes-off-road glances after removing the
lane keeping system.

Behavioral adaptations that are not intended by the designer are an essential consid-
eration in evaluating a systems effectiveness, particularly because they can undermine the
systems objectives. In the transportation domain, this often means observing users (e.g.,
drivers, pedestrians, etc.) interacting with the system. This dissertation developed a driving
simulator protocol that could capture a variety of behavioral adaptations, not only to a lane
keeping system, but one that could be further applied to other internal or external vehicle
systems. This variety of behavioral adaptations evaluated in this study included behaviors
relating to driving performance (i.e., SDLP and TTC), risk perception (i.e., secondary task
engagement and eyes-off-road durations), and cognitive workload. This dissertation balanced
participants based on age and gender, but this approach could also be used to balance on var-
ious driver trait characteristics, to understand how these influence behavioral adaptations.
Many systems, even beyond transportation, have shifted towards individualizing designs and
experiences, thus it is important to continue to consider a collective evaluation of behavioral
adaptations on an individual level.

Time is also an important construct, as behavioral adaptations may manifest differ-
ently during initial exposure (i.e., learning curve), habit formation after prolonged exposure,
and after removing the system (i.e., carryover effects). Previous literature suggests that habit
formation typically develops after about 66 days of routine (Lally et al., 2009). While this

driving study only included approximately 160 hours of exposure across three separate days,
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it is still relevant that behavioral adaptations across a variety of measures were observed.
Habit formation often presents as an asymptotic curve (Lally et al., 2009), and the trends
observed in this study began to taper as one would expect. While habit formation was likely
not captured in this study, the behavioral changes may be explained through malleable at-
tentional resource theory. Under malleable attentional resource theory, attentional resources
shrink as mental workload decreases (i.e., mental underload), which can explain the per-
formance decrements observed under increased automation (Young & Stanton, 2002). The
results from this dissertation support this notion, as drivers likely reduced their attentional
capacity as a result of exposure to the lane keeping system, and were therefore mentally
unprepared to regain full driving responsibilities after the lane keeping system was removed.
As drivers were not required to engage their full attentional resources during exposure, this
mental resource did not work as well when it was required after the system was removed.
These behavioral changes that continue to occur throughout exposure emphasize the impor-
tance of training and design considerations to account for this iterative interaction between

the driver and system.

8.3 Contributions

As autonomous vehicle systems become increasingly more prevalent, gaps in consis-
tency across systems will continue to expand, as functionality and limitations often differ
across manufacturers. This is further confounded by the relatively slow turn over of the
vehicle fleet (i.e., 10-15 years per vehicle), thus leading to a mixed equipage fleet. Concerns
relating to trust, misuse, disuse, and skill atrophy will also increase as the human operator
continues to adapt to their changing role as a driver. This is relevant as it introduces the po-
tential for negative transfer effects of learning, as drivers move from one [semi-|autonomous
system to another, from a vehicle with automation to one with little to none, or instances
when automation is not equipped to respond to a given situation. This unfamiliarity with
system characteristics and misplaced trust may lead to misinterpretations and misapplica-
tions that may undermine safety.

Although the implementation of autonomous systems into the vehicle fleet has been

long anticipated, there has been a recent influx in the availability of semi-autonomous sys-
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tems. This sudden increase in market share has led to new concerns that have not yet been
explored in the literature. One major limitation in the literature is that there is a general
disregard for exploring active lane keeping systems alone. The majority of the research eval-
uates ACC and some studies have begun to explore ACC in conjunction with lane keeping
assistance. However, there are several vehicle manufacturers that offer lane keeping systems
that can be activated independently of other ADASs. Hence, there is a gap in knowledge
pertaining to how drivers will interact with these systems; this was the premise for selecting
a lane keeping system as the autonomous system intervention for this dissertation. There
further exists a lack of knowledge relating to the unintended safety consequences that may
occur due to prolonged exposure or by removing or modifying these autonomous systems.
Therefore, this dissertation developed a methodology for measuring and quantifying multiple
dimensions of behavioral adaptations in a controlled driving simulator setting. The findings
from this study have been disseminated into three academic journal articles and presented

at lectern sessions at three conferences.

8.3.1 Publications

The results relating to changes in driving performance (SDLP and TTC) and cognitive
workload (DRT miss rate and response time) between between baseline, semi-automated, and
post semi-automated driving conditions were aggregated to evaluate behavioral changes that
directly effect the driving task. That is, behavioral adaptations that may indicate improper
reliance on systems or that lead to skill atrophy. These findings have been submitted to
Human Factors (Miller & Boyle, submitted a).

The results focusing on eye glance behavior and IVIS task engagement were used col-
lectively to evaluate changes in driver attention allocation due to exposure and withdrawal
of the lane keeping system. As drivers adapt to using automation, it is likely that they will
learn to rely more on the automation in order to compensate for secondary task involve-
ment. This becomes a concern as misplaced trust compels drivers to push these systems
beyond their design limits. Consideration of this shift in attention allocation away from the
driving task should be mediated by system feedback to minimize safety critical events. This

manuscript is currently being prepared for submission to Transportation Research Part F':
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Traffic Psychology and Behaviour (Miller & Boyle, in preparation).

Driver’s trust in an autonomous system can provide insights on their interaction with
the system, such as when or if they will choose to intervene. All measures of behavioral
adaptations (i.e., driving performance, cognitive workload, and eye glance behavior) were
aggregated to examine the relationship between self-reported trust, behavioral adaptations,
and inherent risk propensity. These findings have been submitted to IEEE Transactions on
Intelligent Transportation Systems (Miller & Boyle, submitted b).

A general overview of the experimental design and findings relating to behavioral
adaptations and influences of trust was presented at the doctoral student research in trans-
portation safety session at the Transportation Research Board 97th Annual Meeting (Miller
& Boyle, 2018a). This session was a hybrid session, meaning that it included a 3 minute
presentation followed by a poster session. At that session, this dissertation won the Best
Doctoral Student Research Award from the Safety Data, Analysis and Evaluation Committee
(ANB20) and from the Statistical Methods Committee (ABJ80).

A subset of 18 drivers (9 treatment, 9 control) were used in a deeper evaluation of
IVIS task performance and cognitive workload (DRT miss rate and response time). In this
analysis, changes in cognitive workload measures within easy and hard tasks were evaluated
in an effort to understand how exposure and withdrawal of the lane keeping system may
effect performance in different types of secondary tasks. These findings were presented and
published in the Proceedings of the Human Factors and Ergonomics Society 61st Annual
Meeting (Miller & Boyle, 2017). This paper received the HFES Surface Transportation
Technical Group Best Student Paper Award.

Standard Deviation of Lateral Position is an important measure when considering
lateral control. However, another application is to consider severity of the deviation, such
as lane departure events. A subset of the data pertaining to one straight segment in drives
2 (before exposure) and drives 7 (after withdrawal) per participant was extracted. A model
was fit with a first order autoregressive covariance structure on the time series data with
a binary response variable indicating if it was a lane departure. A comparison between
interpreting effects of exposure and withdrawal of a lane keeping system on SDLP versus

lane departure events was presented at the 8th International Conference on Information
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Society and Technology (Miller & Boyle, 2018b).

8.4 Limitations

A study limitation was the time frame that data was collected (three days of driving
in a one-week period). Given time and resources, a study that was conducted over one
month or even one year may show larger effects in behavioral adaptations and correlates
with trust. Behavioral adaptations were observed in this study, and these adaptations of
drivers to autonomous vehicle systems may undermine the safety benefits that automation
affords. However, it is also possible that the performance degradations observed in this study
may also be capturing the learning curve to time sharing the various study tasks. Thus, a
longer-term study could provide more insight on habit formation and trust due to exposure
rather than time sharing effects.

Drivers in this study were told immediately prior to the drive that the lane keeping
system would be either on or off. Hence, they may appear to maintain reasonable per-
formance, but in the real world, if such feedback is not provided, their performance may
actually worsen to an unacceptable threshold. In general, these findings are limited in terms
of unexpected handover and there may be even more such concerns as automation within
the vehicle increases. It is important to understand how these behavioral adaptations may
manifest in order to design systems and training programs to minimize adverse adaptations.

There are trade-offs associated with conducting a study in a driving simulator versus
on road. One of the benefits that the laboratory setting affords, is that independent variables
can be controlled and manipulated. Thus, endogeneity becomes less of a problem and sta-
tistical models become more insightful on predicting associations. Additionally, drivers can
be asked to do tasks while driving the simulator that may be considered unsafe to request
study participants to complete on the road (e.g., secondary distracting tasks). Such tasks
and experimental designs could make a study difficult to receive IRB approval. That being
said, utility for safe driving is likely different for many drivers in a simulator as compared
to on road. Although driving simulators are a commonly accepted method for transporta-
tion safety research, this dissertation tried to account for this potential limitation to real

world application in the methods. Specifically, the majority of the analyzes were based on
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within-subject differences. Thus, a change in performance from one point in time to the
next point in time provides insight on behavioral adaptations, focusing on the magnitude of
change rather than quantifying performance at one point in time.

The performance degradations observed after withdrawing the automation suggests
that drivers began to rely on the lane keeping system for support and experienced adverse
effects when the system was removed. This study provided drivers with approximately 80
minutes of exposure to a lane keeping system (4 drives x 20 minutes each). Even in this
relatively short time period, behavioral adaptations were observed. This dissertation also
showed the importance of understanding trust based on individual user characteristics. By
identifying the associations between trust and behavioral adaptations over time, vehicle
systems and educational programs can be tailored for individual operator differences. This

will help drivers be able to appropriately trust and engage with the automation.
8.5 Future Research

The results of this study suggest that behavioral adaptations occur as drivers gain ex-
perience to lane keeping assistance systems, and likely the broader range of [semi-]autonomous
systems. This dissertation developed a methodology for measuring and quantifying behav-
ioral adaptations. However, further manipulation of the driving demands, training, in-vehicle
system designs, infrastructure design, or interaction with other autonomous systems could
provide further insight on these behavioral adaptations.

Recall the figure presented in Chapter 2, on the human information processing model
for takeover (see Figure 8.1). Future research should consider the implications of various
contexts, perception limitations, cognitive precesses that effect decision making, and how

this affects the drivers’ action to takeover vehicle control.
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Figure 8.1: Future Research Relating to the Human Information Processing Model for
Takeover, Adapted from J. D. Lee and See (2004) and J. D. Lee et al. (2017)

More specifically, future research should consider different environmental contexts,
such as increased vehicle traffic, increased multi-modal traffic or the presence of various con-
trolled and uncontrolled intersections. For example, vehicles in the adjacent oncoming lane
would have provided a consequence for lane deviation and thus could effect these results.
The role of human perception is also an important consideration, as autonomous systems
that aid in perception limitations could diminish these adverse behavioral adaptations. For
example, systems that provide alerts for system limitations across modalities based on the
intensity of the situation, or systems that provide continuous controller status of the automa-
tions intent (e.g., planning to change lanes) could effect ones decision to takeover control or
performance during handover. One of the benefits of automation is the aiding it can afford
to vulnerable driving groups (e.g., inexperienced, elderly, or impaired drivers), and specific
systems targeting these various groups should be considered in future research. Addition-
ally, many vehicle manufacturers are shifting towards patching software updates remotely,
via cloud connections (Azizian et al., 2017). As a result, systems can change with none to
minimal training. Thus, future research should consider training methods for new or up-
dated systems, as this likely has an impact on the cognitive process for deciding how or when

to takeover control. It is also important to consider a broader range of autonomous vehicle
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systems, as it is likely different systems or different exposure time will effect the action of
distributing control between manual or automated assistance. Additionally, future research
should also consider sudden events (e.g., abrupt lead vehicle braking, work zones, etc.) and

measure the reaction time of the driver responding to the sudden event.
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