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The surf zone is the shallow nearshore region where waves break due to depth-limitations.

These breaking waves drive important nearshore processes, including alongshore and cross-

shore circulation, sediment transport, and air-sea gas and particle exchange. Measuring and

modeling such processes to gain better physical understanding of surf zone dynamics and

predict future coastal change is of great interest to the scientific community, as well as to

the global community that relies on the coastal region and resources for security, economic

stability, and recreation. Wave breaking in the surf zone is effected by bathymetry changes,

currents, tides and weather, all of which result in strong spatial and temporal gradients and

pose a challenge to measuring and modeling wave breaking. In this thesis, thermal infrared

imagery and line-scanning LIDAR are used to measure surf zone waves near the onset of

breaking. These remote sensing methods provide broad spatial coverage and high spatio-

temporal resolution, which enable investigation of breaking parameters and wave energy

dissipation at the onset of breaking, a time of rapid wave change that has been prohibitively

challenging to accurately measure in the field.

Over 4200 waves are analyzed from data collected at the USACE Field Research Facility



in Duck, NC, including over 2600 non-breaking waves, 414 spilling breakers, 110 plunging

breakers, and 1139 breakers whose initial type could not be determined. Wave height is

measured using a spatio-temporal method for wave tracking that preserves the true sea

surface elevation maximum and is robust to instances when the wave trough is beyond the

field of view of the LIDAR transect. Methods for estimating instantaneous wave speed are

refined by fitting a skewed-Gaussian function to each wave profile and tracking the fitted

wave form peak. Wave slope was estimated using a variety of fitting methods to the upper

20%, 50%, and 80% of the wave face. A linear fit to the upper 80% of the wave face provides

the strongest correlation with geometric wave slope defined relative to mean sea level, and

the maximum wave face slope achieved by the skewed-Gaussian fitted wave form is most

robust to the wave shape changes near the onset of breaking.

At the onset of spilling and plunging, critical breaking predictors are examined on a

wave-by-wave basis. We find that γ, the ratio of wave height to water depth, peaks near

the onset of breaking (0.7 < γb < 0.8 for plunging and 0.6 < γb < 0.7 for spilling) at values

consistent with solitary wave theory (γsol = 0.78) and critical γrms values previously observed

at Duck and other beaches. Direct estimates of wave face slope and wave phase speed also

peak at the onset of breaking. Wave face slope and γ are positively correlated and, when

used together, strongly predict breaking and breaker type. A support-vector machine model

is successfully used to identify or define the transition from non-breaking to breaking and

from spilling to plunging.

Finally, traditionally estimated wave energy flux gradients are compared with dissipation

rates estimated using the bore model and the roller model. This analysis is pursued primarily

on an ensemble-averaged basis, and the results are segregated by breaker type. We find that

plunging breakers lose energy at a rate 40% greater than that of spilling breakers within the

first 0.2 wavelengths after the onset of breaking. Following this interval, the rate of change of

wave energy flux is approximately equal for spilling and plunging breakers. The bore model



predicts maximum dissipation rate at the onset of breaking for both spilling and plunging

breakers. For plunging breakers, high dissipation rate is concentrated very near the onset

of breaking followed by a precipitous decrease, and for spilling breakers, the dissipation rate

decreases gradually. Due to multipath reflections that can artificially augment the roller

length, the roller model dissipation rates are inconclusive and require further research.
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Chapter 1

INTRODUCTION

1.1 Motivation

The nearshore is the region of transition between land and the continental shelf. It may

include a variety of land types, such as coastal plains, wetlands, estuaries, coastal cliffs, dunes,

and beaches. Nearshore regions are a mainstay of national and local economy and public

recreation, and are a subject of national security. At the same time, they are vulnerable to

the effects of dense human population, longterm erosion, extreme storms, and sea level rise

(Elko et al., 2014). Because the nearshore responds dynamically to its environmental and

anthropogenic pressures, it is a region of great interest to scientists and coastal citizens alike.

The surf zone is the shallow nearshore region where surface gravity waves are influenced

by the presence of the seafloor, become unstable, and break. In the surf zone, breaking

waves drive nearshore circulation, suspend sediment, and promote air-sea gas exchange.

Events such as strong rip currents, beach erosion, or storm-induced flooding and infrastruc-

ture damage provide impetus for predictive models of nearshore processes. To resolve these

processes, nearshore wave models must parameterize wave breaking using a chosen theory

and breaking criteria. Model predictions in regions where breaking initiates often diverge

from in situ measurements because wave breaking has large spatial and temporal variabil-

ity. Additionally, even though spilling and plunging breakers dissipate energy differently,

nearshore models do not incorporate breaker type in the parameterization of wave forcing.

Therefore, detailed observations of spilling and plunging breakers in the field are needed

to develop appropriate parameterizations of wave energy dissipation across the surf zone.

Close-range remote sensing instruments, specifically LIDAR and thermal infrared imagery,
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provide the spatio-temporal resolution to investigate the rapid changes that occur near the

onset of breaking and are sensitive to differences between spilling and plunging breakers.

This dissertation presents extensive methodology to combine data from a line-scanning

LIDAR and thermal infrared cameras to detect breaking, classify breaker type, and measure

key wave parameters. Analysis of these geometric and kinematic wave properties on a wave-

by-wave basis near the onset of breaking provide new ways to predict breaking and breaker

type in the field. Finally, a preliminary comparison of near onset dissipation rates for spilling

and plunging breakers is pursued.

1.2 Wave Energy Dissipation Models

In general, there are two types of wave models used in the nearshore: phase-averaged and

phase-resolved. Phase-averaged models, like the Simulating WAves Nearshore (SWAN)

model (Booij et al., 1997, 2008), propagate a wave spectrum onshore, using wave statis-

tics to define breaking criteria. The goal of phase-averaged models is to model the bulk

energy dissipation across the surf zone, not to replicate the details of wave breaking. This is

in contrast to phase-resolved models, like the Simulating WAves till SHore (SWASH) model

(Zijlema et al., 2011), which model the free surface directly to assess wave evolution and

breaking. Both types of models parameterize wave breaking-induced energy dissipation us-

ing the hydraulic jump or bore model (e.g., Thornton and Guza, 1983; Janssen and Battjes,

2007).

Phase-averaged numerical models use statistical measures of the wave field to initiate

breaking. The root-mean-squared wave height, water depth, and an empirical depth-limited

breaking criteria γ (often tuned for better model results) are used to determine the maximum

wave height supported at a given location in the surf zone. These parameters define the

fraction of breaking waves and the breaking wave height probability distribution, which are

used to scale the wave spectra as it propagates onshore. Phase-resolving, or wave-resolving,

numerical models initiate wave breaking using a critical speed at the crest or a critical

steepness of the wave face. Once exceeded, the breaking wave is modeled as a bore until
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another speed or steepness threshold is reached and the wave ceases to break. Generally,

these thresholds have been validated using laboratory breakers.

Essentially, phase-averaged models do not allow the total wave energy to be greater than

a certain value at a given depth, and phase-resolving models do not allow individual waves

to exceed a certain speed or steepness without breaking. As both model types employ the

bore model, neither accounts for differences in dissipation rate due to breaker type.

1.3 Significance of Breaker Type

Plunging waves form when the wave crest overshoots the toe of the wave, as seen in Figure

1.1, and forms a large air cavity, which collapses suddenly, submerging a bubble plume and

often resulting in a secondary, smaller splash-up. Spilling breakers evolve more gradually,

developing an aerated, bubbly roller that slides down the front face of the wave (Figure

1.1). The classification of the breaker only applies to its initial stages, because as the beach

slope and wave shape change throughout the breaking process, the breaker type changes

across the surf zone. Both spilling and plunging breakers eventually reach steady state,

evolving into a turbulent bore (Battjes, 1988). As breakers develop along this continuum

they dissipate wave energy at different rates. Quantifying the geometric, kinematic, and

energetic differences between breaker types in the surf zone is key to accurately modeling

important physical processes in this region.

The classification of spilling, plunging, collapsing, and surging exists along a continuum

and has been previously quantified in terms of a dimensionless surf similarity parameter,

called the Iribarren number, the ratio of beach slope to wave steepness, ξ0 = tan β/
√
H0/L0,

where β is the beach slope angle, H0 is the deep water wave height, and L0 is the deep water

wavelength (Galvin, 1968). H0 can be replaced by the breaking wave height, Hb, to define a

surf zone Iribarren number, ξb (Battjes, 1975). Using the surf zone Iribarren number,

ξb =
tan β√
Hb/L0

, (1.1)

Battjes (1975) found spilling breakers occur for ξb < 0.4, plunging for 0.4 < ξb < 2.0, and
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Figure 1.1: Position of water surface traced at equal time increments from films of (top)
spilling and (bottom) plunging breakers on laboratory beaches. Dashed horizontal line is the
still water level; arrows locate the defined breaking point. No vertical distortion. Breakpoint,
initial stages and steady state stages of breaking labeled as the wave breaks across the surf
zone. Image from Figure 1 of Galvin (1968).
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surging and collapsing for ξb > 2.0. In other words, for a given surf zone wave steepness,

spilling breakers are predicted for a shallowly sloped beach and plunging breakers are pre-

dicted for a steeply sloped beach. Collapsing and surging waves occur most frequently on

steep, rocky beaches (Wright and Short, 1984) and are not considered in this surf zone study.

1.4 Remote Sensing Fundamentals

Advancement and assessment of wave energy dissipation parameterizations based on breaker

type will depend on efforts to quantify and model the details of wave breaking over a range

of space and time scales. Remote sensing techniques, such as visible (Electro-Optical, EO)

imaging, thermal infrared (IR) imaging, and LIght Detection And Ranging (LIDAR) have

been used to provide wave-resolved spatial coverage of wave breaking.

In the ocean, observable infrared signals are a combination of the emission of the scene

objects and reflection of the background, in contrast to a visible band camera that sees only

reflected and transmitted light from the sky and solar disk. In EO imagery, active foam,

the foam generated at the crest while a wave is breaking, and residual foam, the foam left

behind in the wake of a breaking wave, both appear bright (Figure 1.2a) due to the diffuse

reflection of light off bubbles that make up foam. Thus it is difficult to use EO imagery

to isolate the actively breaking crest from residual foam left in the wake of the breaking

wave (Holman et al., 1993; Aarninkhof and Ruessink, 2004). In thermal IR imagery, foam

has a higher emissivity than foam-free water, making foam appear warmer than undisturbed

water of the same temperature (Niclòs et al., 2007; Branch et al., 2016), as indicated in

Figure 1.2b. Observations show that foam also appears to cool rapidly after it is formed and

breaking subsides (Fogelberg, 2003; Marmorino and Smith, 2005). IR imagery has been used

to study deep-water wave breaking (Jessup et al., 1997a) and microscale breaking (Jessup

et al., 1997b). Carini et al. (2015) recently employed a new IR technique, exploiting the

unique IR signature of active foam, to detect and characterize actively breaking crests and

estimate wave dissipation in the inner surf zone along a cross-shore profile.

LIDAR can be used to track the variation of wave shape and slope as it evolves. Brodie
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Figure 1.2: Comparison of simultaneous (a, left) visible and (b, right) infrared imagery of
breaking waves in the surf zone. Active and residual foam both appear bright in the visible,
while in the infrared, the breaking waves crests appear significantly brighter than the residual
foam. Images adapted from Branch et al. (2014).

et al. (2015) and Brodie et al. (2016) showed that LIDAR scanners can measure the wave

skewness and asymmetry at high spatial and temporal resolution, of O(1 cm) and O(0.5 s),

respectively. Measurements of the evolution of wave shape across the surf zone were made

from a LIDAR mounted on the shore at 8 m above the water surface, where LIDAR range

varied between 65 m and 150 m depending on field conditions (foam, wave heights, rain, fog,

sea spray). Figure 1.3 shows how LIDAR and IR data may be used in tandem to detect

breaking and estimate key wave parameters. For example, the estimated wave face slopes

(from top to bottom) in Figure 1.3 are 16◦, 24◦, 16◦, and 11◦. Recent studies using LIDAR

to measure swash reflections and steady spilling breakers in the surf zone provide robust

methodologies that are reviewed in Chapter 2 (Martins et al., 2016, 2017a, 2018).

1.5 Field Experiment Overview

The ROLLer EXperiment (ROLLEX) was conducted from 25 October 2016 to 10 November

2016 at the US Army Corps of Engineers (USACE) Field Research Facility (FRF) in Duck,

NC. The experiment objectives were to collect remote sensing data that can be used to
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Figure 1.3: (left column) 1 Hz sequence of thermal images from the FRF Coastal Research
Amphibious Buggy (CRAB), the lower part of each image. (right column) Simultaneous
LIDAR scans of the wave profile show the evolution of the breaker (aspect ratio is exagger-
ated). Yellow and green colors indicate increased reflection from breaking wave roller and
residual foam.
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identify breaking waves, classify breaker type, and track the evolution of breakers across the

surf zone. Breaking wave parameters would then be used to estimate wave energy dissipation

due to breaking.

The surf zone at the FRF is instrumented and maintained by the USACE, and as a result

of the many small and large-scale field experiments that have been conducted there over the

last few decades, the site characteristics are well known. The beach morphology here is

variable, but typically includes a shore-parallel sand bar or terrace, and can be punctuated

by rip current channels (Plant et al., 1999). Significant wave height, Hs, at the FRF is

commonly 0.2 - 1.0 m, increases to 2 - 3 m during storms, and sometimes reaches as high as

4 - 5 m (Birkemeier et al., 1985).

The FRF provides a significant amount of infrastructure including laboratories, fab-

rication facilities, a pier, an an imaging tower. The FRF is equipped to make detailed

bathymetry measurements using amphibious vehicles and two site surveys were conducted

during ROLLEX, on 03 November and 16 November 2016. These are used to define beach

slope, identify any barred or plateaued bathymetry, and estimate local water depth over the

course of the experiment. The FRF also maintains in situ instruments at 8-m and 3.5-m

water depth that were used to characterize incoming wave conditions.

For ROLLEX, we deployed four thermal infrared (IR) cameras from the FRF imaging

tower, two IR cameras and a line-scanning LIDAR from the FRF pier, and two in situ

acoustic Doppler profilers (ADPs). The pier is a 6 m wide steel and concrete structure that

extends approximately 560 m out from the dunes behind the beach and past the surf zone.

The FRF pier deck is 7 m above mean sea level and has power access points along its length.

The FRF tower is 43 m tall and is equipped with power and data connections in a small

enclosure at the top, which houses an existing video imaging monitoring station (Argus).

This thesis focuses primarily on data collected from two IR cameras and the line-scanning

LIDAR. One IR camera was mounted about 28 m above sea level on the FRF tower to provide

a surf zone-scale field of view (FOV). The other IR camera and the LIDAR provided a wave-

scale FOV from about 12 m above sea level. These two instruments were mounted to a mobile



9

platform that could be moved onshore or offshore throughout the experiment to maintain

coverage of the breakpoint and initial stages of breaking as wave conditions changed. See

Chapter 2 for a complete description of the field deployment and instrument specifications.

The wind and wave conditions recorded throughout ROLLEX are summarized in Figure

1.4. The intensity of green in the background of each panel represents how many of the

remote sensing instruments were operational, with the best observational coverage occuring

for 03 Nov to 09 Nov.

Figure 1.4: (a) Significant wave height, (b) peak wave period, (c) peak wave direction, (d)
wind direction, (e) wind speed, and (f) tidal elevation throughout ROLLEX as reported by
the FRF instruments in 3.5-m and 8-m water depth, the pier weather station, and the NOAA
tide gauge at the end of the pier.
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1.6 Thesis Outline

This thesis presents remote sensing methodologies for the study of surf zone waves near the

onset of breaking. Chapter 2 details the remote sensing data fusion methods for LIDAR

line-scans and thermal IR imagery. The methods are used to track, classify, and measure

breaking waves. The geometric and kinematic wave parameters estimated using the tech-

niques presented in Chapter 2 are analyzed in Chapter 3 to predict breaking and breaker

type and to describe the evolution of spilling and plunging breaker near the onset of break-

ing. Chapter 4 extends the methods and uses key wave parameters described in Chapter 3

to estimate breaker energetics, both wave energy flux and dissipation rates near the onset

of breaking. Chapter 5 summarizes the findings of this thesis, outlines remaining questions,

and proposes future research.
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Chapter 2

METHODS

2.1 Introduction

Nomenclature for breaking waves in the surf zone was developed during World War II, when

it was imperative that wave conditions were qualitatively understood in preparation for

amphibious landings (Galvin, 1968). The intuitive link between breaking wave type and

the safety of a beach landing is physically substantiated by our heuristic understanding of

breaker mechanics. Plunging breakers occur when the wave crest curls forward and impinges

the water surface. This impinging jet may cause a secondary, smaller splash-up and creates an

air cavity, which collapses, submerging a bubble plume (Basco, 1985). Spilling breakers also

exhibit a curling crest, but at a much smaller scale (Duncan, 2001). This initiates an aerated

roller that cascades down the front face of the wave (Basco, 1985). As they progress onshore,

both spilling and plunging breakers gradually develop into turbulent steady state bores

(Battjes, 1988). By their nature, spilling and plunging breakers dissipate energy differently

and thus contribute differently to nearshore processes, such as air-sea gas exchange, sediment

transport, and transient or steady coastal circulation. However, wave models used to predict

such natural phenomena typically do not account for breaker type or stage of breaking.

Specifically for wave-driven events that occur over shorter time scales, incorporating breaker

type and the evolution of the stages of breaking across the surf zone may help improve model

predictions. One way this can be achieved is by including key geometric wave properties

that correlate with breaker type and may be used to modify the parameterization of wave

energy dissipation. Thus motivated, we present the first of a two-part series addressing the

evolution of spilling and plunging breakers near the onset of breaking. The major of objective

of this chapter is to use remote sensing data fusion techniques for tracking, classifying, and
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measuring breaking waves in the surf zone. Chapter 3 uses these measurements to investigate

geometric predictors of breaking and breaker type.

Differences in geometric (e.g., wave asymmetry and roller slope), kinematic (e.g., phase

speed and orbital velocities), and dynamic (e.g., breaker-induced turbulence) wave properties

of spilling and plunging breakers have been measured in the laboratory (Adeyemo, 1968; Ting

and Kirby, 1995, 1996; Govender et al., 2002; Blenkinsopp and Chaplin, 2007; Mukaro et al.,

2013, among others) and modeled using various computational techniques (e.g., Grilli et al.,

1997; Chella et al., 2016; Derakhti et al., 2018), but few field measurements are available for

distinguishing breaker types and wave characteristics near the onset of breaking. Miller and

Zeigler (1964) described breaker types in the field based on time-averaged sea surface and

vertical velocity profiles separating them into symmetric, asymmetric, and very asymmetric

categories, but concluded differentiation was still subjective. Suhayda and Pettigrew (1977)

averaged ten plunging breakers, whose onset occurred at approximately the same location

in the surf zone, and observed that wave height and speed peaked near onset. Weishar

and Byrne (1978) found that the onset of plunging and non-plunging breakers occurred for

different wave height and water depth criteria and that the breaker classification of Galvin

(1968) or Battjes (1975), more commonly referred to as the Iribarren number, is insufficient

to discriminate between plunging and spilling breakers. Remote sensing methodologies have

greatly expanded out ability to detect the onset of breaking (Carini et al., 2015; Martins et al.,

2017b) and measure wave geometries, specifically details about the plunging jet (Robertson

et al., 2014) and spilling roller (Martins et al., 2018).

Remote sensing techniques that have been used to provide phase-resolved observations of

waves in the surf zone include visible (Electro-Optical, EO) imaging, thermal infrared (IR)

imaging, radar, and LIDAR (Holman and Haller, 2013). IR imagery has been used to study

deep-water wave breaking (Jessup et al., 1997a), microscale breaking (Jessup et al., 1997b),

and surf zone wave breaking (Carini et al., 2015). From the ocean surface, observable infrared

signals are a combination of the thermal emission of the scene objects and reflection of the

background, in contrast to the visible band, which consists of reflected light from the sun.
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In EO imagery, active foam (the foam generated while a wave is breaking) and residual foam

(the foam left behind in the wake of a breaking wave) both appear bright due to the diffuse

reflection of light off the bubbles that make up foam. Thus it is difficult to use EO imagery to

isolate actively breaking waves from the residual foam left in their wake (Holman et al., 1993;

Aarninkhof and Ruessink, 2004). In thermal IR wavelengths, foam has a higher emissivity

than foam-free water, making foam appear warmer (brighter) than undisturbed water of the

same temperature (Niclòs et al., 2007; Branch et al., 2016). Observations show that foam

also cools rapidly after it is formed and breaking subsides (Fogelberg, 2003; Marmorino and

Smith, 2005), making residual foam appear darker than undisturbed water in IR imagery.

By exploiting the unique IR signature of active foam, Carini et al. (2015) developed a new

IR technique to detect and characterize actively breaking waves and estimate wave energy

dissipation in the surf zone along a cross-shore profile. IR imagery also reveals differences

between spilling and plunging breakers through distinctive temperature patterns observed on

the back face of the wave. Using IR imagery in the laboratory, Watanabe and Mori (2008),

Handler et al. (2012), and Huang and Hwang (2015) observed an elongated, streaky pattern

of warm and cool fluid on the back of plunging breakers just before the onset of breaking.

Handler et al. (2012) posited that these streaks indicate coherent counter-rotating vortices

within the plunging breaker. This organized temperature structure was found to devolve into

a disorganized isotropic pattern as the plunging breakers transformed into turbulent bores

(Watanabe and Mori, 2008; Huang and Hwang, 2015).

LIDAR has recently been used to track the variation of wave parameters across the surf

zone. Brodie et al. (2015) measured the evolution of wave height across the surf zone at

spatial resolution of O(1 cm) from a LIDAR mounted on the shore at 8 m above the water

surface. An extensive LIDAR methodology for measuring waves across the surf zone has been

provided by Martins and collaborators, some of which are utilized in the present analysis.

Of particular relevance are their wave-tracking methods (Martins et al., 2016), computation

of wave phase speed (Martins et al., 2016, 2018), and direct estimation of the slope of the

aerated wave face, called the roller angle (Duncan, 1981; Martins et al., 2018).
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In the following sections we describe data fusion techniques for a large LIDAR and IR

data set. We detail methods to track individual waves, detect breaking, and classify the type

of breaking. Metrics for wave height, wave phase speed, and wave slope, are tested for non-

breaking and breaking waves. The difference in wave slope at the onset of breaking between

spilling and plunging breakers is provided to demonstrate the power of these methods.

2.2 Data Collection & Processing Methods

2.2.1 Field Experiment & Wave Conditions

A line-scanning LIDAR and thermal infrared (IR) cameras were deployed near the surf zone

to observe waves at the onset of breaking at the US Army Corps of Engineers Field Research

Facility (USACE FRF) in Duck, NC. Figure 2.1a shows the time series of tidal elevation

measured by a NOAA tide gauge at the end of the FRF pier (Station ID: 8651370) and the

LIDAR-derived mean sea level from the 9.6 hours of data collection spanning 07-08 November

2016. For the sampled time periods, the FRF AWAC (Acoustic Wave And Current profiler)

in 3.5 m water depth reported that significant wave height gradually increased from 2.0 m

to 2.5 m, peak wave period grew from 7.0 s to 14.5 s, and peak wave direction evolved from

75◦ to 85◦ relative to the shoreline, as shown in Figures 2.1b and 2.1c.

Figure 2.2a maps the positions and fields of view (FOV) of our instruments in the FRF

coordinate system. This local coordinate system has its origin at 36.1776◦ N and 75.7497◦

W, with the positive x-axis pointing offshore and aligned with the FRF pier, and the positive

y-axis pointing 17.7◦ from true north and aligned with the shoreline. The vertical z-axis is

referenced to the North American Vertical Datum of 1988 (NAVD88). Two IR cameras were

used in this study. One IR camera provided a surf zone-scale FOV from the FRF imaging

tower (Figure 2.3a). This tower IR camera was a DRS UC640-17 long-wavelength (8-14 µm),

uncooled VOx Microbolometer camera, with a 40◦ x 30◦ (H x V) FOV. It was mounted at a

height of 27.8 m, obliquely viewed the surf zone at approximately 75◦ incidence angle, and

continuously collected data at 5 Hz.
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Figure 2.1: (a) Tidal elevation (solid black) and LIDAR-derived mean sea level (gray circles)
for 07 and 08 Nov 2016. (b) Significant wave height (black dot) and peak wave period (black
square), and (c) peak wave direction relative to the shoreline recorded by the FRF AWAC
in 3.5 m water depth.
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Figure 2.2: (a) A map of the tower IR camera FOV and the onshore and offshore positions
of both the pier IR camera FOV and the LIDAR line-scan extent. The contours show
interpolated bathymetry for 07-08 November 2016. (b) The bathymetry surveys from 03
November (light gray solid line) and 16 November (dark gray solid line) and the interpolated
bathymetry (dashed gray line) are shown along the LIDAR transect range. For reference,
the location of the LIDAR line-scan from 07 November (black solid line) and 08 November
(dotted black line) are overlaid.



17

Figure 2.3: (a) The FRF imaging tower with the location of the tower IR camera labeled.
(b) The mobile pier platform positioned along the FRF pier and secured with guy lines, with
the pier IR camera and the LIDAR labeled.
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The second IR camera and a line-scanning LIDAR provided wave-scale observations from

the FRF pier. Both were mounted to a mobile pier platform, which consisted of a 6m-long

frame mounted at the top of a telescoping stand (Figure 2.3b). The platform was raised

to its maximum vertical position of z =13.2 m to allow for optimal data collection and

was stabilized by four guy lines attached to the pier. As the sea state evolved during the

experiment, the platform was moved to maintain coverage of the cross-shore region spanning

the onset of breaking, as marked in Figure 2.2a. The pier IR camera, identical to the tower

IR camera, viewed the sea surface at 45◦ incidence angle and collected data continuously at

10 Hz. The LIDAR, a Riegl VZ-400, collected line-scans at 5.2 Hz. It scanned 40◦ onshore

and 60◦ offshore of its position, yielding 30-40 m-long cross-shore line-scans, as shown in

Figure 2.2a. The alongshore position of the line scans varied with the tidal elevation, but

were located approximately 12 m north of the pier.

Bathymetric surveys of the study region were collected by the USACE using the LARC

(Lighter Amphibious Resupply Cargo) land-sea surveying vehicle (Forte et al., 2017; Forte

and Dopsovic, 2016) on 03 and 16 November 2016. These bathymetric surveys, shown in

Figure 2.2b, reveal the initial and final beach states (planar and single-barred, respectively)

at the location of the LIDAR cross-shore transects. To estimate a representative bathymetry

for 07-08 November 2016, we interpolated between the two surveys using a linear weighting

function based on the time between the data collection and each bathymetric survey. Ev-

idence supporting this linearly interpolated bathymetry is provided in Appendix A. This

interpolated bathymetry is shown in Figure 2.2a and 2.2b. The local beach slope was es-

timated using the interpolated bathymetry and ranged from 1:50 to 1:25 at the onshore

LIDAR position and 1:500 to 1:50 at the offshore LIDAR position.

2.2.2 Data Transformation to Field Coordinates

A total station was used to survey the 3D locations of both IR cameras, five reference points

with known FRF coordinates, and several ground control points (GCPs) across the beach

and swash zone. Given these 3D points in FRF coordinates and their corresponding 2D
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points in each IR image, a projective mapping was created for the tower IR camera (Holland

et al., 1997; Hartley and Zisserman, 2003). Because the FOV of the pier IR camera did not

capture any of the surveyed GCPs, a rectification was estimated using the surveyed camera

location and its tilt as measured by a surveying level placed on the camera housing. The

resulting approximate camera geometry was judged to be adequate since this camera was

only used to visually assess the breaker type.

For the LIDAR, we developed an adaptive method to register the data from the LI-

DAR coordinate system (x′, y′, z′) to the local FRF coordinate system (x, y, z) because the

orientation of the LIDAR varied slightly throughout the experiment. Each time the pier

platform was moved, we surveyed the LIDAR position and known FRF GCPs and used this

information to compute the LIDAR position in FRF coordinates, (x`, y`, z`). To determine

the orientation of the LIDAR, the following calculations are performed on each five-minute

LIDAR data file. First, the roll of the LIDAR is determined by fitting a line in the x′-z′

plane to all of the collected points. Since the LIDAR was deployed on its side, the roll angle

is computed as 90◦ − tan−1(m), where m is the slope of the fitted line. We rotate the data

points using this roll angle, which renders the linear fit horizontal. Over 07-08 November

2016 the mean and standard deviation of the data-derived roll were 88.5◦ and 0.3◦, respec-

tively. Next, the distance from the LIDAR to the sea surface is computed using the rectified

instrument position (x`, y`, z`) and the tidal elevation from the NOAA tide gauge (Station

ID: 8651370) located at the end of the pier, which reports mean sea level every six minutes.

The tilt is chosen as the angle which, when applied to the data, rotates the mean sea surface

line closest to the tidal elevation. Over 07-08 November the mean and standard deviation

of the data-derived tilt were 26.3◦ and 0.5◦, respectively. The azimuth of the instrument

was estimated using a plane fit to three surveyed points on the base of the LIDAR and was

found to be 0.08◦ and to vary less than 0.05◦ between deployments. Therefore, additional

azimuthal rotation was not implemented. Last, the LIDAR data was translated to the FRF

coordinate system by adding the instrument’s FRF position, (x`, y`, z`).

While this projection correction method is useful for situations where accurate orientation
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data is unavailable, due to the removal of any mean sea surface slope in the fitting process of

each data file, this method is not appropriate for measuring wave setup or set-down. However,

if the instrument is stationary throughout the experiment and the orientation calculations

are performed on a period of time when waves are small, then wave setup or set-down may

be estimated.

2.2.3 LIDAR Quality Control

The density of LIDAR returns depends on the instrument’s spatial resolution and the reflector

(i.e., the water surface) characteristics (Blenkinsopp et al., 2010; Brodie et al., 2015). When

there is sufficient breaking to produce foam that persists on the water surface or sufficient

surface roughness, the density of backscattered returns is high, and the LIDAR is able to

capture breaking and non-breaking wave profiles. When there is no breaking, or no persistent

foam, the smooth water surface specularly reflects the signal away and the density of returns

is low. Therefore, it is important to determine when the collected LIDAR data sufficiently

samples the sea surface to resolve detailed features of the wave profile.

We first interpolated the irregularly spaced LIDAR points to a uniform grid using an

appropriate and achievable spatial resolution. Operating in long-range mode, the LIDAR can

collect point-measurements at 42 kHz (when line-sampling at 5.2 Hz), yielding a theoretical

maximum of 8076.9 point-measurements per line and an angular resolution of 0.0124◦, for our

field setup. The corresponding spatial resolution at the water surface is shown in Figure 2.4a

as a function of cross-shore position. At 15 m onshore of the LIDAR, the spatial resolution

is 0.61 cm, and at 30 m offshore of the LIDAR, the spatial resolution is 1.4 cm. The highest

resolution, 0.36 cm, occurs at nadir. Based on this theoretical resolution curve, we uniformly

interpolated the LIDAR transects to 1 cm resolution.

To address variations in return density, we developed a quality control criterion to de-

termine when to accept or reject the LIDAR data based on an expected minimum sampling

rate. If five minutes of data were collected at the spatial resolution shown in Figure 2.4a

and binned every 10 cm, the resulting theoretical histogram of returns would match the
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Figure 2.4: (a) Spatial resolution of the LIDAR as a function of cross-shore position. LIDAR
located at cross-shore coordinate = 0. (b) Example histograms of LIDAR returns as a
function of cross-shore position demonstrating the LIDAR quality control method. The
theoretical returns curve (solid black line) and the minimum returns curve (dashed black
line) demonstrate perfect sampling and adequate sampling, respectively.
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solid black curve in Figure 2.4b. This histogram represents the maximum returns at 5.2 Hz

sampling, which we neither expect nor require. Instead, a minimum histogram of returns

was computed using 2 Hz sampling frequency (dashed black curve in Figure 2.4b), which

would allow resolution up to a 1 Hz Nyquist frequency. This minimum-returns curve can be

computed for any chosen spatial resolution, sample duration, and data-binning scheme. Any

time the density of measured returns falls below the minimum-returns curve, that part of

the cross-shore transect is excluded. For example, of the three overlaid histograms of LIDAR

signal returns in Figure 2.4b, we can use nearly all of the high return density data (dark

gray), only the onshore part of the medium return density data (medium gray), and none of

the low return density data (light gray).

2.3 Data Analysis Methods

2.3.1 Wave-tracking & Wave Parameter Estimation

Central to our methodology is the development of a spatial wave-tracking algorithm that uses

the full spatial and temporal resolution of the LIDAR. Our spatial peak-tracking method is

illustrated in Figure 2.5. The cross-shore profiles of sea surface elevation from 30 s of data

collection are plotted as a timestack in Figure 2.5a, where height is indicated by color. In

the timestack, waves travel from offshore (right) to onshore (left) as time progresses from

top to bottom. To initially identify each wave, we extract a time series from the offshore

edge of the timestack and define initial wave peaks (x0, t0) as local maxima, with a minimum

separation of 2 s between peaks and a minimum peak prominence of 0.25 m. Next, we

extract the cross-shore transect at t0 and choose the surface elevation maxima as the initial

spatial peak, (xpk, zpk). This wave peak is then tracked at every time step by searching for

surface elevation maxima in each sequential cross-shore transect (solid black lines in Figure

2.5a). The search is confined to the region between the location of the previous peak and a

shoreward position of twice the distance the wave would have moved if traveling according

to shallow water linear wave theory. Tracking continues at each time-step until we reach the
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onshore limit of the transect. Each wave may vary in how many instances it was tracked due

to variations in speed: faster waves travel farther between each time step and are therefore

tracked at fewer points over the full transect.

In addition to tracking the peak, we track the preceding and following troughs. Figure

2.5b and 2.5c show an example spatial profile of a breaking wave and its corresponding

time series, respectively. While surf zone waves have well-defined peaks, the troughs are

characteristically broad and flat (Munk, 1949; Komar and Gaughan, 1973), making the

trough location ambiguous, though the trough elevation is well-defined. Additionally, due to

the limited cross-shore extent of our line-scans, we often do not capture the full wavelength,

as is the case in Figure 2.5b, and thus cannot identify preceding and following troughs

simultaneous with a peak. Therefore, we extract the time series at the location of the tracked

peak and identify the trough elevations ztr−t (temporal minima) just before and after the

tracked peak, similar to Martins et al. (2017b). Wave period, T , is estimated as the time

between these preceding and following troughs, as shown in Figure 2.5c. Individual wave

heights are then computed as the difference in elevation between the spatially-tracked wave

peak and temporally-tracked preceding wave trough, H = zpk − ztr−t. Note that parameters

derived from the spatial profile will be denoted either with no additional subscript (as seen

in the definition of H) or with subscript x, and parameters derived from the time series will

always be denoted with subscript t.

Individual wave speed c is estimated from the tracked wave peaks as the slope of a 5-point

moving linear regression on the (tpk, xpk) values, following the methods of Tissier et al. (2015)

and Martins et al. (2018). This method is more robust than using the scan-to-scan velocity

of the tracked peak (4x/4t). However, the 5-point regression is still susceptible to peak

misidentification due to noise and rapid wave shape changes near the onset of breaking. To

overcome this issue, we fit each wave form with an idealized wave shape, here formalized as

a skewed-Gaussian curve, shown in Figure 2.5b. A skewed-Gaussian function,

f
(
x− µ
ω

)
= Aφ

(
x− µ
ω

)
Φ
(
α
(
x− µ
ω

))
+ ζ, (2.1)
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Figure 2.5: (a) A timestack showing five tracked waves. The color map represents sea surface
elevation relative to mean sea level (zMSL). The solid black lines show the progression of the
spatially-tracked wave peaks. (b) Spatial profile from an example breaking wave extracted
along the horizontal dashed line in (a). The interpolated LIDAR profile (solid black line)
and spatially-tracked peak (black dot) are plotted relative to zMSL (dashed blue line). The
wave profile is fitted with a skewed-Gaussian curve (dotted black line). c) Time series
extracted along the vertical dashed line in (a), with wave peak (dot) and preceding and
following troughs (open circles) from the “example wave” marked by closed and open circles,
respectively.



25

is the scaled product of a standard normal probability density function,

φ(r) =
1√
2π
e−

r2

2 , (2.2)

and its cumulative distribution function,

Φ(r) =
1

2

[
1 + erf

(
r√
2

)]
, (2.3)

where r is a dummy variable representing (x − µ)/ω. The skewed-Gaussian function (2.1)

was chosen to match the expected shape changes that are characteristic of a breaking wave

as it pitches forward prior to breaking. The wave shape function is fit to the measured

profile using a non-linear optimization of the peak location (µ), peak width (ω), horizontal

skewness (α), a scaling parameter (A) and a vertical offset (ζ). For the example breaking

wave in Figure 2.5b, µ=151.71, ω=7.95, α=6.72, A=3.56, ζ=0.47. To assess the goodness of

fit, we use a sample χ2 statistic,

χ2 = Σ

[
(z − zSG)2

σtot

]
, (2.4)

where σtot = σLIDAR + σinterp is the sum of instrument variance (assumed constant at 1

cm) and the mean absolute difference between the raw and interpolated LIDAR profiles

(〈|zraw − zinterp|〉). If the χ2 value is less than the critical value for a χ2 distribution with

45 degrees of freedom (conservative estimate from the 4501 cross-shore points included in

the analysis) at 95% confidence, we accept the fit. For our dataset, 92.7% of the skewed-

Gaussian fitted profiles pass the χ2 test. The fitted profiles provide sub-pixel tracking of the

wave peaks, (x̃pk, z̃pk), which yields a smoother estimate of wave speed, c̃, estimated using

the 5-point moving linear regression method. Additionally, we use the skewed-Gaussian

fitted wave speed and the wave period to estimate wavelength, L = c̃T . We do not estimate

wavelength directly because our cross-shore transects did not consistently capture a full

wavelength.

The water depth through which a wave travels is computed as the difference between the

measured mean sea level and the interpolated bathymetry at the location of the wave peak,
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h = zMSL − zbathy(xpk). Using zMSL as a reference level and following definitions proposed

by Kjeldsen et al. (1979), we estimate wave asymmetry, L′/L′′, and wave slope, η/L′, as

illustrated in Figure 2.5b. Three additional wave slope metrics are computed. First, we fit

a line to a portion of the wave face and use the fitted slope, m`. Section 2.4.3 compares

wave slope η/L′ to m` computed using the upper 20% of the wave face, the upper 50%, the

upper 80%, and the full wave face. For those waves nearing the onset of breaking, especially

plunging breakers, a quadratic fit to a portion of the wave face may be more appropriate.

Second, the maximum gradient achieved by the quadratic fit over the wave face is taken as the

quadratic fit wave slope, mq. Lastly, the maximum slope achieved by the skewed-Gaussian

over the wave face is mSG.

2.3.2 Breaker Detection & Classification Using IR Imagery

For each wave tracked in the LIDAR data, we use the corresponding surf zone-scale IR

imagery (from the imaging tower) to determine if the wave was breaking and the wave-

scale IR imagery (from the pier) to classify the type of breaker. Figure 2.6 outlines the

breaker detection and classification protocol. First, we determine candidate breakers using an

automated detection algorithm on the surf-zone scale IR imagery. The automated detection

algorithm, developed by Carini et al. (2015), determines a threshold based on the distribution

of pixel intensities and applies this threshold to isolate active breaking. Figure 2.7a presents

an example surf zone-scale IR image, with active breaking marked in red. The 3D LIDAR

transect is projected into 2D image coordinates and the corresponding binary values, breaking

or not-breaking, are extracted to create a breaking mask for each LIDAR transect, as shown

in Figure 2.7c. Following the protocol in Figure 2.6, if the automated detection algorithm

never indicates active breaking along the LIDAR transect for a given tracked wave, then

that wave is classified as non-breaking. For those instances where the automated detection

algorithm indicates active breaking along the LIDAR transect, the wave-scale IR imagery,

shown in Figure 2.7b, is manually reviewed to determine breaker type.

Any wave whose onset of breaking occurred offshore of the FOV of the wave-scale IR
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Figure 2.6: Flow chart describing the process of breaker type classification (“Type”) and
determination of the onset of breaking (“Stage”) using the surf zone-scale and wave-scale IR
imagery for each wave tracked in the LIDAR data.
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Figure 2.7: (a) An example image from the tower IR camera with identified breaking (and
the warm pier) indicated by red. The corresponding LIDAR transect (solid black curve) and
the pier IR camera FOV (dashed outline) are projected onto the image. The mobile pier
platform is on the pier, in the far right of the image. (b) The corresponding example image
from the pier IR camera with the LIDAR transect (black line) projected into the image. (c)
The corresponding example LIDAR transect is shown with active breaking highlighted in
red on the front face of the wave, and the FOV of the pier IR camera is marked by dashed
lines.
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camera and continued breaking throughout the FOV is classified as a breaker of undetermined

type. If the wave is not breaking when it enters the FOV, the wave-scale imagery is manually

reviewed at each time-step to determine the onset of breaking. Onset is defined as the

moment the wave crest begins to overturn. To illustrate onset for spilling and plunging

breakers, Figure 2.8 shows example images at pre-onset, onset, the frame following onset,

and a later time. Breaker classification is based on the IR signature of the back face of

the wave once it has progressed past onset to the breaking stage. For spilling breakers, the

propagating roller creates an unorganized texture in the IR imagery on the back face of the

wave, shown in Figure 2.8d. For plunging breakers, the straining of the fluid on the back face

of the wave as the crest curls over results in an organized streak pattern in the IR imagery,

shown in Figure 2.8h. Both spilling and plunging breakers evolve to a steady state over some

amount of time and space (Battjes, 1988; Basco, 1985), but the limited cross-shore extent of

our LIDAR transects precludes a full investigation of this transition.

2.4 Results

All wave parameters defined in Section 2.3.1 are computed and wave type is classified for each

wave profile measured across the LIDAR transect. Over the 9.6 hours of data analyzed, we

observed 2627 non-breaking waves, 1139 breakers of undetermined type, 414 spilling breakers,

and 110 plunging breakers, for a total of 4290 waves. Figure 2.9 shows the evolution of wave

height, wave speed, and wave slope for one example plunging breaker. The onset of breaking

is marked by the vertical line. Statistics computed from wave-by-wave results for each wave

parameter will be reported and discussed in the following sections.

2.4.1 Wave Height

To validate the wave heights estimated using the temporally-derived preceding wave troughs,

ztr−t, and the spatially-derived wave peaks zpk−x, we compare our results with those estimated

using traditional temporal methods. In this section, parameters derived from the spatial

profile will always be denoted with subscript −x, and parameters derived from the time
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Figure 2.8: Wave-scale IR images of a spilling (left column) and a plunging (right column)
breaker at various stages: (a,e) pre-onset, (b,f) onset, (c,g) one frame (approximately 0.2
s) after onset, and (d,h) breaking. The back face of a spilling breaker exhibits a uniformly
patchy texture in the IR imagery. In contrast, the back face of a plunging breaker is charac-
terized by an organized streak pattern in the IR imagery.
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Figure 2.9: The evolution of (a) H, (b) wave speed, and (c) wave face slope across the surf
zone for the example wave in Figure 2.5. Wave speed is reported for the interpolated LIDAR
profile (solid line), as well as the skewed-Gaussian fit (dotted line). Four wave slope metrics
are shown for comparison: linear fit m` (solid black line), quadratic fit mq (solid red line),
wave shape-based η/L′ (dashed red line), and skewed-Gaussian fit mSG (dotted black line).
The onset of breaking is indicated by the vertical line in each panel.
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series will always be denoted with subscript −t. Temporal peak-tracking methods sample

the cross-shore LIDAR transect at discrete locations and use these time series to identify,

track, and measure wave parameters (e.g., Martins et al., 2017b; Postacchini and Brocchini,

2014; Power et al., 2015). In effect, the LIDAR data are treated as a dense cross-shore array

of elevation gauges. For comparison purposes, we show temporally-derived troughs, peaks,

and wave heights for data sampled at a location mid-transect to ensure that both spatial

and temporal wave peaks and troughs can be identified.

In Figure 2.10a, we see large scatter between temporal ztr−t and spatial ztr−x, with a root-

mean-squared difference (rmsd) of 20 cm and a normalized rmsd (nrmsd) (normalized by the

variance of the spatially-derived parameter) of 2.2. The mean bias is -4.8 cm, indicating

that, on average, ztr−t is lower than ztr−x. These statistics suggest that the true trough

elevation computed with ztr−x is biased high and supports the use of the ztr−t for calculating

trough-to-peak wave height, H.

Figure 2.10: (a) Wave peak elevations and (b) wave trough elevations identified using the
temporal peak-tracking method versus the spatial peak-tracking method, with 1:1 line for
comparison. (c) Wave heights computed from the temporal peak-tracking method versus
wave heights computed from the spatial peak-tracking method (black dots) and the combined
spatio-temporal method (gray dots), with 1:1 line for comparison.

Comparing the spatially- and temporally-derived wave peak elevations in Figure 2.10b, we
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find that the scatter between zpk−x and zpk−t is small, with an rmsd of 7.1 cm and an nrmsd

of 0.25. Thus, the spatial peak-tracking methods agree well with the temporal methods.

In Figure 2.10b, all points lie on or to the right of the 1:1 line, which indicates that all

individual bias calculations (zpk−t − zpk−x) are zero or negative. The resulting mean bias is

-4.3 cm. A negative bias is expected because the spatially-derived zpk−x will always report

the maximum surface elevation, while the temporally-derived zpk−t may not always sample

this value. When the temporal peak-tracking method samples at relatively sparse cross-shore

locations (1-m spacing), the location through which the wave peak passed at a given time

may occur between sample locations. The resultant bias theoretically approaches zero as

the spacing between sampling points approaches zero. Benetazzo et al. (2017) quantified

a similar difference between temporal and spatial sampling protocols, reporting that rogue

waves are observed more frequently when searched for in space and time than when using

time series alone.

Figure 2.10c compares wave height metrics. The y-axis shows the temporally-derived

trough-to-peak wave height Ht = zpk−t− ztr−t, and the x-axis presents both the wave height

used in our analysis, H = zpk−x − ztr−t, and a fully-spatial wave height, Hx = zpk−x − ztr−x.

The rmsd (21 cm) for Hx relative to Ht is similar to that of ztr−x relative to ztr−t, but the

nrmsd (0.79) and mean bias (0.57 cm) are lower because of the close agreement between zpk−x

and zpk−t. The scatter and mean bias of H relative to Ht are small and almost identical

to that of zpk−x relative to zpk−t. Since using ztr−x severely limits our ability to calculate

H across the full transect, and there is a relatively small and predictable bias (-4 cm) in H

when ztr−t is used in conjunction with zpk−x, we conclude that H = zpk−x − ztr−t is a valid

metric of wave height.

2.4.2 Phase Speed

Figure 2.11 shows the broad distribution of wave speeds calculated using4x/4t (black bars)

and the narrower distribution of a smoothed version achieved by a 5-point moving regression

(blue curve) for all non-breaking waves tracked from the LIDAR spatial profiles. Limiting our
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comparison to non-breaking waves prevents natural wave speed variability due to breaking

from confounding the method evaluation. Even with the reduction in variance achieved

by the smoothed version, the wave speed c derived from the tracked LIDAR profile peaks

(xpk, tpk) is still noisy, as illustrated by the solid line in Figure 2.9b. However, the skewed-

Gaussian tracked peaks (x̃pk, t̃pk) provide a more smoothly varying wave speed estimate c̃

(dotted line in Figure 2.9b) via the same smoothing method. The overall variance of the wave

speed distributions is also reduced, as shown by the red curve in Figure 2.11. The mean,

mode, and standard deviation for c are 6.44 ms−1, 5.85 ms−1, and 2.23 ms−1, respectively. For

c̃, the mean and mode are not significantly different at 6.21 ms−1 and 5.75 ms−1, respectively,

and the standard deviation is slightly reduced to 1.72 ms−1.

Figure 2.11: Wave speed estimated discretely (black bars), c via the 5-point regression
method (blue curve) on peaks tracked in the interpolated LIDAR profiles (xpk, tpk), and c̃
from 5-point regression on the skewed-Gaussian fitted peaks (x̃pk, t̃pk).

Wave energy flux calculations require the mean energy transport velocity, called the group

speed. Given shallow water linear wave theory assumptions, the group speed is approximately
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equal to the individual wave phase speed. Dynamically, c represents the tracked peak speed,

or crest speed, while c̃ represents the wave form speed. Of the two metrics, c̃ is the better

metric to estimate phase speed. The ratio of crest speed and wave form speed (c/c̃) may be

of interest for predicting wave breaking, similar to the way the ratio of crest speed to phase

speed is used in models that resolve the free surface and water particle velocities (Zijlema

et al., 2011).

2.4.3 Wave Slope

Similar to wave phase speed, wave slope can vary greatly depending on the chosen metric and

the region of the wave face used to estimate slope. Of the four metrics defined in Section 2.3.1

and illustrated in Figure 2.9c, we will examine two here: the linear fit wave slope, m`, and

the geometric wave slope, η/L′. Figure 2.12 shows how linear fit wave slope, m`, correlates

to the geometric wave slope, η/L′, as a function of the portion of the wave face included in

the linear fit, and suggests a physical interpretation for this metric. The fitted region, for

example the upper 50% of the wave face, is defined as the region of the wave that spans

from xpk to the cross-shore location where z = zpk−0.5H. Figures 2.12a-2.12d compare η/L′

and linear fit slopes to the upper 20%, 50%, 80%, and 100% of the wave face, respectively,

and include estimates from breaking and unbroken waves. The upper 20% of the wave face

(Figure 2.12a) contains the steepest portions, of interest near the onset of breaking, but

those regions are also highly variable (largest rmsd and nrmsd). Using the upper 50% of

the wave face (Figure 2.12b) produces smaller bias and rmsd than the upper 20%, but the

density plot shows many instances where m` is almost twice η/L′. The opposite trend is

seen using the full wave face (Figure 2.12d). The cross-shore location of the wave trough is

typically far from the wave peak, which results in a small m` and a negative bias. Based on

the minimal scatter and bias reported in Figure 2.12c, we find that m` best estimates the

geometric wave slope η/L′ when the upper 80% of the wave face is included in the linear fit.

The fit to this region is least susceptible to variability due to small shape changes near the

crest and avoids bias due to curvature of the wave face near the trough.
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Figure 2.12: Density plots of the geometric wave slope, η/L′, versus the linear fit wave slope,
m`, as a function of the portion of the wave face included in the linear fit: (a) upper 20%,
(b) upper 50%, (c) upper 80%, and (d) full wave face. The color bar indicates how many
wave slope measurements reside in each bin, with a bin size of 0.01 for each variable. The
1:1 line is shown and the bias, rmsd, and nrmsd are reported in the upper left corner of each
panel.
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Table 2.1 reports characteristic percentiles of m` computed using the upper 80% of the

wave face and segregated by wave type. For spilling and plunging breakers, these statis-

tics include all stages: pre-onset, onset, and breaking. As expected, non-breaking waves

exhibit the smallest wave slopes, and plunging breakers exhibit the largest wave slopes.

Undetermined-type breakers, breakers whose onset was not observed by the pier IR camera,

exhibit the next highest wave slopes, followed by spilling breakers.

Table 2.1: Percentiles for the linearly fit wave slope, m`, (in degrees) when fit to the upper
80% of the wave face.

Percentile 5th 25th 50th 75th 95th

Non-breaking waves 2.45◦ 4.56◦ 6.88◦ 10.12◦ 15.87◦

Undetermined type breakers 6.68◦ 12.08◦ 15.62◦ 19.13◦ 25.58◦

Spilling breakers 4.72◦ 8.34◦ 11.82◦ 15.73◦ 22.17◦

Plunging breakers 7.37◦ 12.84◦ 16.45◦ 20.50◦ 27.46◦

For breaking waves, m` can be more than twice the mean wave slopes previously used in

nearshore wave energy models. For example, other slopes used and observed include, 12.6◦

(Duncan, 1981), 6◦ (Dally and Brown, 1995; Reniers and Battjes, 1997), 2.9◦ (Ruessink

et al., 2001), and 4.6◦ (Carini et al., 2015). Some of the lower historical wave slopes were

tuned to provide good agreement between the modeled and estimated bulk wave energy flux

across the full surf zone for a range of wave conditions (Dally and Brown, 1995; Reniers and

Battjes, 1997; Ruessink et al., 2001). Others were estimated from sea surface time series

using assumptions of shallow water linear wave theory (Carini et al., 2015). The largest

historical wave slope, 12.6◦, was directly measured from photographs of spilling breakers in

the laboratory by (Duncan, 1981) and agrees well with the 50th percentile of m` for spilling

breakers (11.82◦). Our results support more recent wave slope estimates, made directly from

surf zone LIDAR profiles (Martins et al., 2018) or modeled and validated with laboratory

data (Haller and Catalan, 2009), which range from 10◦ to 30◦.
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While the linearly fit wave slope (fit to the upper 80% of the wave face) is a straightforward

and robust metric, it may not be appropriate for estimating slope for waves with large

concavity. Near the onset of plunging, a higher order fitting function, such as a parabolic fit to

the wave face, might better describe its curvature. The skewed-Gaussian wave-form fit is also

a promising tool for tracking the steepening of a wave prior to breaking. Chapter 3 focuses

on the evolution of wave parameters near the onset of breaking and includes analysis of the

maximum gradient of the skewed-Gaussian fit, mSG, and the quadratic fit wave slope, mq,

which are most appropriate for steep and nearly overturning spilling and plunging breakers.

2.5 Conclusions

This work presents detailed methodology for LIDAR and IR data fusion to track, measure,

and classify breaking waves in the surf zone. We compare existing and new wave metrics for

wave height, wave speed, and wave slope. A line-scanning LIDAR and two IR cameras were

used to collect data of surf zone breaking waves at the US Army Corps of Engineers Field

Research Facility (USACE FRF) in Duck, NC. The LIDAR and IR camera with wave-scale

field of view were mounted to a mobile platform that was moved throughout the experiment

to maintain coverage of the region where the onset of breaking occurred. This field de-

ployment necessitated the development of an adaptive rectification protocol for the LIDAR

data, and the resulting LIDAR data quality was objectively assessed based on wave analysis

requirements.

Utilizing the full spatial and temporal resolution of the LIDAR data, we developed a peak-

tracking algorithm that builds on techniques by Power et al. (2015), Martins et al. (2016),

and Martins et al. (2017a). We track over 4200 individual waves. The surf zone-scale IR

imagery is used to automatically identify candidate breakers using the thresholding detection

algorithm from Carini et al. (2015). Those candidate breakers are manually reviewed using

the higher resolution wave-scale IR imagery, and the breaker type is determined based on

the unique thermal signatures of spilling and plunging breakers. The back face of spilling

breakers exhibit an unorganized lacey pattern, while the back face of plunging breakers
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exhibit an organized streaky pattern. Using these data fusion methods we detect the onset

of breaking and classify breaker type for 524 spilling and plunging breakers.

Methods to automate the image-based wave classification, including machine learning

techniques, are being investigated (paper in preparation with Dan Buscombe). The frontal

nature of breaking waves and the repeated streaky or unorganized IR signatures associated

with different breaker types are features that machine-learning algorithms can exploit, and

unpublished results show that deep convolution neural networks classify breaker type from

IR imagery with high skill.

We compute metrics of wave height, wave speed, and wave slope, on a wave-by-wave

basis. Wave height, H, is calculated as the difference between the spatially-derived peak

elevation and the temporally-derived trough elevation. Extracting peak elevations from the

full spatial wave profiles guarantees that the true peak elevation of the wave is sampled,

and extracting trough elevations from the times series (collocated with the tracked wave

peaks) provides trough elevations even if the trough location is beyond the field of view of

the LIDAR transect at the time the peak is observed. We compare H to Ht (computed

using the time series alone) for context, and find good agreement with an rmsd of 7.1 cm,

an nrmsd of 0.25, and the mean bias is -4.3 cm (Ht ≤ H).

Computing wave speed with the LIDAR data, we find that variability is mitigated with

a 5-point moving linear regression of the tracked peaks (tpk, xpk) and provides a more robust

estimate of wave phase speed than discrete point-to-point differentiation, 4x/4t. The 5-

point regression methods reduces the variance of the estimated instantaneous wave speed,

c, from 8.7 m2s−2 (discrete method) to 4.4 m2s−2. We note that the instantaneous tracked

wave speed c can be quite variable, and a smoother metric would be beneficial for future

estimation of wave energy flux across the surf zone. The skewed-Gaussian method does not

significantly change the mean and mode of the wave speed distribution (Figure 2.11), but it

does further reduce the variance to 3.0 m2s−2.

Using a linear fit to the upper 80% of the wave face yields a robust estimate of wave slope

that correlates strongly with the geometric wave slope, η/L′ (Figure 2.5b). The resulting
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median wave slopes are 6.88◦ for non-breaking waves, 11.82◦ for spilling breakers, 15.62◦ for

breakers of undetermined type, and 16.45◦ for plunging breakers (Table 2.1), which agree

with recent surf zone LIDAR-based wave slope estimates by Martins et al. (2018). Plunging

breakers exhibit the steepest linear-fit wave slopes (27.5◦ at the 95th percentile), though a

quadratic fit or skewed-Gaussian fit wave slope may be more appropriate as the concavity

increases near the onset of breaking. In Chapter 3, we examine the evolution of wave slope

and other geometric and kinematic wave parameters through pre-onset, onset, and developing

breaking stages.
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Chapter 3

GEOMETRY & KINEMATICS

3.1 Introduction

Understanding the dynamics of breaking waves in the surf zone is vital to the progress of

nearshore wave and circulation models towards real-time operational use. The goal of wave

models in coastal regions is to capture relevant physical processes through explicit repre-

sentation or field-validated parameterizations. Phase-resolving models, such as Simulating

WAves till SHore or SWASH (Zijlema et al., 2011), are time-dependent and conserve mass

and momentum at a discrete level. In SWASH, the sea surface elevation is modeled in space

and time, which allows for breaking criteria, such as a critical wave speed or wave steepness,

to be assessed on a wave-by-wave basis and for wave shape changes to be tracked as break-

ers develop. Phase-averaged models, such as Simulating WAves Nearshore or SWAN (Booij

et al., 1997), operate using a spectral action balance equation. In SWAN, energy dissipation

due to wave breaking is parameterized using the Battjes and Janssen (1978) bore model,

which determines the portion of the wave height spectra that breaks using the breaker pa-

rameter γ = H/h, the ratio of wave height to water depth. Phase-resolving models are often

used for basic research about wave mechanics and as input for phase-averaged models, which

are larger scale and used for predictive and hind-cast projects.

Traditionally, γ is estimated as a bulk statistic, using the significant wave height, Hs,

or the root-mean-squared wave height, Hrms, and the mean water depth, h̄. For example,

Sallenger and Holman (1985) found 0.32 < γrms < 0.42 in the inner surf zone and 0.4 <

γrms < 0.8 seaward of a shore-parallel sandbar at Duck, NC, the site of this current study.

Both Sallenger and Holman (1985) and Raubenheimer et al. (1996) found that γ is not

correlated with offshore wave steepness, the ratio of deep water wave height to deep water
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wavelength H0/L0, but γ is positively correlated with local beach slope, β. Apotsos et al.

(2008) tested empirical and modeled formulations for bulk γ from Thornton and Guza (1983),

Battjes and Janssen (1978), Lippmann et al. (1996), Janssen and Battjes (2007), Baldock

et al. (1998), and Whitford (1988) against field data collected at three different sites (Duck,

NC, La Jolla, CA, and the Netherlands) and found that no universal value predicts breaking

on all beaches. After tuning γ to optimize model performance across the three beaches, mean

γ varied between 0.2 and 0.66 (Apotsos et al., 2008). When γ is modeled on a wave-by-wave

basis the range increases to include 0.6 < γ < 1.4 (Chella et al., 2015).

There are very few studies of γ for individual waves in the field. Suhayda and Petti-

grew (1977) analyzed 10 plunging breakers at Rockley Beach, Barbados, and found that γ

increased as the waves approached the breakpoint and decreased following the onset of break-

ing. At Virginia Beach, Weishar and Byrne (1978) tracked 116 waves and found γ = 0.78 on

average, but that there was a significant difference between γ for plunging and non-plunging

breakers.

This chapter analyzes γ on a wave-by-wave basis for a large dataset to investigate reasons

why γ varies widely across different beaches and even at a single beach. Given that γ is

often correlated with parameters used to predict breaker type, such as beach slope and wave

steepness, it is reasonable to suggest that γ varies with breaker type. To that end, the

relationships between γ, beach slope, wave steepness, and breaker type are investigated.

First, we briefly summarize the methods used to track and classify breakers in the surf

zone using LIDAR line-scans and IR imagery (see Chapter 2 for details). Second, results are

presented from spatial analysis of key wave parameters near the onset of breaking, specifically,

the breaker parameter γ = H/h, wave face slope, and wave phase speed. Third, the predictive

capabilities of γ, wave face slope, and the Miche steepness criteria are explored. Last, we

conclude with a discussion of the implications of our results for nearshore wave models.
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3.2 Methods

3.2.1 Field Experiment

A detailed account of the field experiment setup and instruments can be found in Chapter

2. Briefly, LIDAR and thermal infrared (IR) remote sensing data of surf zone breaking

waves were collected on 07-08 November 2016 at the US Army Corps of Engineers Field

Research Facility (USACE FRF) in Duck, NC. A line-scanning LIDAR and an IR camera

were deployed on a mobile platform on the FRF pier that was repositioned as needed to

maintain observation of the region in which breaking initiated. 3.1 illustrates the bathymetry

for the cross-shore extent of the data collected when the platform was positioned at x = 148

m on 07 November (referred to as the onshore transect) and moved to x = 190 m on 08

November (referred to as the offshore transect). The LIDAR scanned 30-40 m in the cross-

shore direction at 5.2 Hz, from approximately 13 m above mean sea level. The IR camera

was deployed at the same height, collected frames at 10 Hz, and viewed the sea surface at

a 45◦ incidence angle. To capture a surf zone-scale field of view, a second IR camera was

mounted 27.8 m above mean sea level on the FRF imaging tower, pointed offshore. This

camera sampled at 5 Hz and viewed the sea surface at a 75◦ incidence angle. All fields of view

overlapped to facilitate data fusion, and each data source was transformed to the local FRF

coordinate system (positive x offshore, positive y northward along-shoreline, positive z up

and referenced to NAVD88). Data was collected during two rising-high tide intervals. For the

first sampling period (07 Nov), the FRF AWAC (Acoustic Wave And Current profiler) in 3.5

m water depth reported that the significant wave height was 2.0 m and the peak wave period

was 7.5 s. For the second sampling period (08 Nov), the significant wave height increased to

2.3 m and the peak wave period lengthened to 14.5 s. Bathymetry surveys were conducted

on 03 and 16 November, and a time-weighted interpolated bathymetry was computed for

07-08 November, shown in Figure 3.1. The validity and implications of the interpolated

bathymetry are discussed in Appendix A and in Section 3.2.3 below, respectively.
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Figure 3.1: Time-weighted interpolated bathymetry (solid gray line) used for analysis of the
data on 07-08 November. The LIDAR and IR camera deployed from the FRF pier collected
data that spanned x=135-175 m (solid black line) on 07 November and x=175-215 m (dashed
black line) on 08 November.

3.2.2 Breaker Classification

An automated breaker detection algorithm Carini et al. (2015) is used on the surf zone-scale

IR imagery to identify candidate breakers traveling along the LIDAR transect. For each

candidate breaker, the wave-scale IR imagery is then used to manually determine the onset

of breaking and classify breaker type. For spilling breakers, the onset of breaking is defined as

the moment active foam is first detected on the wave face. For plunging breakers, the onset

of breaking is defined as the moment the wave crest begins to overturn. The breaker type

is classified based on the unique thermal signatures of spilling and plunging breakers, shown

in Figure 3.2. Along the back face of the wave, spilling breakers exhibit an unorganized

patchy texture, while plunging breakers exhibit an organized streaky pattern. If the onset

of breaking occurred offshore of the wave-scale IR camera’s FOV, then the breaker type is

classified as undetermined.

3.2.3 Wave Parameter Estimation

From the LIDAR line-scans, over 4200 individual waves are tracked using the spatial peak-

tracking method described in Chapter 2. Figure 3.3a shows a sequence of three wave profiles
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Figure 3.2: Unique thermal IR signatures of (a) spilling breakers and (b) plunging breakers,
shown by the wave-scale IR imagery used to classify breaker type.

from an example breaking wave. The profiles have been centered on mean sea level, and

the tracked peaks are marked. The active foam identified in the surf zone-scale IR imagery

is overlaid in gray on the front face of each wave profile. Additionally, each LIDAR wave

profile is fit with a skewed-Gaussian (SG) function to provide peak locations that are robust

to sea spray and rapid wave shape changes.

Wave height is computed as the difference in elevation between the spatially-tracked wave

peak and temporally-tracked wave trough, H = zpk − ztr. The water depth through which

a wave travels is computed as the difference between the measured mean sea level and the

interpolated bathymetry at the location of the wave peak, h = zMSL − zbathy(xpk). Using

H and h, we estimate instantaneous breaker parameter γ = H/h (Figure 3.3b). Several

metrics of wave face slope are presented in Chapter 2. In the current analysis, we focus on

the quadratic-fit wave slope, θq, defined as the maximum slope achieved along the wave face

by the parabola fitted to the upper 80% of the wave face (Figures 3.3a and 3.3c). This wave

slope metric is particularly useful for waves near the onset of breaking whose wave face may

display some degree of concavity. Wave slope may also be estimated as the maximum slope

achieved by the SG fitted profiles along the upper 80% of the wave face, θSG (Figure 3.3c).

As detailed in Chapter 2, the SG fitted profile peaks provide a more robust estimate of wave
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Figure 3.3: (a) Three LIDAR profiles (black curves) from a tracked breaking wave, with
skewed-Gaussian fitted wave profiles (red curves) overlaid. The wave progresses from right
to left as indicated by the wave speed arrow and the profiles have been centered on mean
sea level, zMSL (light blue dashed line). Wave slope θ is illustrated by an angle and a
representative quadratic fit to one wave face (dark blue curve). Example tracked (b) γ, (c)
wave slope, and (d) wave speed estimated from the LIDAR profiles (solid black line) and
the SG fitted profiles (dotted black line). These parameters correspond to the same example
wave shown in (a). The vertical line represents the breakpoint.
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speed than using the raw LIDAR-tracked wave peaks. Therefore, the instantaneous wave

speed presented in this analysis is defined from the SG profiles and denoted c̃ (Figures 3.3d

and 3.3h). Wavelength is estimated as L = c̃T , where T is the trough-to-trough wave period

from the time series extracted at the location of the tracked wave peak.

We note that the interpolated bathymetry has a significant impact on h, and thus also

on γ. Appendix A shows that the time-weighted interpolated bathymetry agrees reasonably

with the depth profiles estimated by inverting solitary wave theory using the measured wave

speeds. The depth-inversion from solitary wave theory is not taken as our bathymetry,

because we do not want to introduce a dependence between γ and measured wave speeds for

our analysis.

3.3 Results

3.3.1 γ Distributions & Cross-shore Statistics

As a first order assessment of γ, Figure 3.4 presents a hierarchy of γ histograms. Each

histogram is normalized by its population total and scaled by the bin width to create a

probability distribution function (PDF) of γ, and all γ PDFs are well-fit by a Gaussian

distribution. Figure 3.4a shows the γ-distribution for all tracked waves (N = 4290), with a

mean and standard deviation of 0.49 and 0.27, respectively. The next tier segregates waves

into three categories: non-breaking waves (Figure 3.4b), onset-observed breakers (Figure

3.4c), and breakers of undetermined type (Figure 3.4d). The γ-distribution for non-breaking

waves (N = 2627) closely resembles that for all waves, but exhibits a smaller mean γ of 0.40.

The mean γ for breakers whose onset was observed (N = 524) is 0.67, the largest mean γ

for this tier, and the mean γ for undetermined type breakers (N = 1139) is slightly lower at

0.60. Investigating only those waves whose onset was observed in the wave-scale IR imagery

(Figures 3.4e and 3.4f), we find that the mean γ is smaller for spilling breakers (N = 413)

than for plunging breakers (N = 111), with values of 0.65 and 0.75, respectively.

Next, we examine the cross-shore evolution of the bin-averaged wave-by-wave γ for
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Figure 3.4: Hierarchy of normalized histograms P(γ) for (a) all waves, (b) non-breaking
waves, (c) onset-observed breakers (includes both spilling and plunging), (d) undetermined
type breakers, (e) spilling breakers, and (f) plunging breakers. Mean and standard deviation
of the fitted Gaussian distribution (thin black curve) are reported within each subplot.
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each breaker type and compare with the traditional statistically-defined γs = Hs/h and

γrms = Hrms/h, where Hs and Hrms are the significant and root-mean-squared wave heights,

respectively. Figure 3.5 shows bin-averaged γ as a function of cross-shore position for non-

breaking, spilling, plunging, and undetermined type breakers. For spilling and plunging

breakers, only data from the onset and developing stages of breaking are included (pre-onset

excluded). The standard deviation of each population was relatively constant, therefore only

representative standard deviation bars are shown for clarity. γs and γrms were calculated

every two meters using the sea surface elevation time series and water depth at each location.

Figure 3.5: Bin-averaged γ, with representative standard deviation bars, as a function of
cross-shore location for non-breaking waves γN (light gray), spilling breakers γS (blue), plung-
ing breakers γP (red), and undetermined type breakers γU (black). γrms (circles) and γs
(squares) estimated every two meters along the sample transects.

The onshore and offshore transects in Figure 3.5 show different cross-shore evolution of

γ. For the onshore transect, γP for plunging breakers are approximately equal to γs near

160 m< x <170 m (γP ≈ 0.75) and decreases slightly as breakers approach the shoreline

(γP < 0.70). Undetermined type breaker γU and γS gradually increase from about 0.58
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to 0.62, following γrms. For the offshore transect, γP is greater than γs across the entire

transect, peaking at 0.82 and decreasing shoreward to about 0.70. γS and γU again exhibit

similar behavior, this time matching γs, rather than γrms, at values between 0.65 and 0.68.

For non-breaking waves, γN lies below all other estimates and is approximately constant at

0.40 from the offshore to onshore transect until x <155 m, when γN increases slightly to

0.47.

In nearshore wave models, the critical γ value derived from solitary wave theory, γsol =

0.78, is often employed to trigger breaking in the surf zone. Non-breaking waves, spilling

breakers, and undetermined type breakers all maintain a mean γ less than γsol across the surf

zone, though the distributions of γ for spilling and undetermined type breakers do contain

some values above this limit for the offshore transect. Bin-averaged γP exceeds γsol for

x >198 m and briefly at x=165 m. While the cross-shore, bin-averaged γS and γP mirror

the type of information included in nearshore wave models, averaging based on cross-shore

position obscures maximum γ values that may be achieved near the onset of breaking.

3.3.2 Evolution of γ, θ, and c Near the Onset of Breaking

To examine the evolution of γ about the breakpoint for spilling and plunging breakers we

create ensemble-averaged wave profiles. Figure 3.6, shows wave-by-wave γ as a function of

cross-shore position (see example in Figure 3.3c), centered on the location of the onset of

breaking, xb, and normalized by the wavelength, L. The shaded bands represent 95% of the

raw data, which is bin-averaged and displayed with 95% confidence intervals on the mean.

The data presented in Figure 3.6a was collected on 07 November at x = 135− 175 m during

a rising tide from zMSL =0.15 m to zMSL =0.65 m over a beach slope 0.02 < β < 0.04,

with Hs = 1.8 m and Tp = 7.3 s. The data in Figure 3.6b was collected on 08 November

at x = 185 − 220 m during a rising tide from zMSL =0.06 m to zMSL=0.63 m over a beach

slope 0 < β < 0.02, with Hs = 2.2 m and Tp = 14.0 s. It should be noted that the shorter

normalized cross-shore extent of measurements for 08 Nov than 07 Nov is mostly due to the

longer wave periods (longer wavelengths) observed on that day.
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Regardless of breaker type or location of the transect within the surf zone, γ increases to a

maximum or peak at the onset of breaking. For the onshore transect, γ reaches a maximum

of 0.63 for spilling breakers and 0.73 for plunging breakers at the onset of breaking. For

spilling breakers, this peak γ is maintained as the breakers develop. For plunging breakers, γ

is more variable during breaker development, because the tracked wave heights are variable

due to the drastic shape changes, secondary plunging events, and splash up that are typical

of plunging breakers. However, γP does gradually approach γS within one wavelength of the

breakpoint. Using a two-sided t-test, we find that γS and γP are statistically different at

the 95% confidence level within one-half wavelength (in both directions) of the breakpoint.

For the offshore transect, γ peaks at 0.71 for spilling breakers and 0.81 for plunging breakers

at the onset of breaking and then decreases as breaking develops. Based on the two-sided

t-test at 95% confidence level, γS and γP are only statistically different within one-quarter

wavelength of the breakpoint.

The onshore and offshore γ values for spilling breakers are statistically different (same

t-test as noted above) across the full normalized transect. The onshore and offshore γ values

for plunging breakers are statistically different, but not as strongly as the spilling breakers.

γP is most different between onshore and offshore transects within one-quarter wavelength of

the breakpoint. Overall, the range of γ observed for both spilling and plunging breakers (gray

shaded regions in Figure 3.6) includes values greater than γsol = 0.78, even though ensemble-

averaged γ only exceeds γsol for plunging waves observed along the offshore transect.

Other geometric and kinematic wave parameters of interest near the onset of breaking

include wave face slope and phase speed. Figure 3.7 presents wave slope estimated using

the quadratic-fitting method, θq, for spilling and plunging breakers in the same manner as

Figure 3.6. For the onshore transect (Figure 3.7a), θq increases to a peak just after the

onset of breaking, with plunging breakers achieving steeper slopes than spilling breakers (θq

equals 30◦ and 22◦, respectively). Spilling breakers maintain their maximum wave slope

as they develop, while plunging breaker wave slope initially decreases and then becomes

highly variable. The differences observed within one-quarter wavelength of the breakpoint
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Figure 3.6: Evolution of γ for spilling (black lines) and plunging (white lines) breakers as
a function of normalized cross-shore position relative to the breakpoint for data collected
on (a) 07 Nov and (b) 08 Nov. See text for full description of wave conditions. Positive
(x−xb)/L indicates before the onset of breaking and negative (x−xb)/L indicates after the
onset of breaking. The shaded regions represent 95% of the data, and the solid lines are the
bin-averaged values with 95% confidence intervals.

are statistically significant at the 95% confidence level, based on a two-sided t-test. Unlike

γ, θq exhibits similar evolution for the onshore and offshore (Figure 3.7b) transects, though

spilling breakers achieve slightly steeper wave slope just after onset (θq = 25.5◦).

Finally, we examine the evolution of wave speed about the breakpoint. Figure 3.8 presents

wave speed, c̃, estimated using the skewed-Gaussian fitted profiles as a function of normalized

cross-shore coordinate. Wave speed peaks just after the onset of breaking for both spilling

and plunging breakers. Using a two-sided t-test at 95% confidence level, we find that there

is no statistically significant difference between spilling c̃ and plunging c̃ for the onshore

or offshore transects. However, for a given breaker type, c̃ is statistically different within

approximately one-third wavelength of the breakpoint for the onshore and offshore transects.

For the onshore transect, the peak c̃ lies between 6.8 m s−1 and 7.2 m s−1. For the offshore

transect, the maximum wave speed increases to 7.3 m s−1 < c̃ <7.6 m s−1.
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Figure 3.7: Evolution of quadratic-fit wave face slope, θq, for spilling (black line) and plunging
(white line) breakers observed on (a) 07 November and (b) 08 November. Same x-axis scaling
and data representation as in Figure 3.6.

Figure 3.8: Evolution of the wave speed, c̃ (m s−1), for spilling (black line) and plunging
(white line) breakers observed on (a) 07 November and (b) 08 November. Same x-axis scaling
and data representation as in Figure 3.6.
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3.4 Discussion

3.4.1 Predicting Breaking & Breaker Type

Combining the information from Figures 3.6 and 3.7, we investigate the relationship between

the steepening of the wave slope and the increase in γ that occurs as waves shoal to their

breakpoint. Within the γ and θq parameter space, we define the 2D probability of observing a

non-breaking or breaking wave as the relative prevalence of non-breaking and breaking wave

observations at each (θq, γ) value pair, shown in Figure 3.9a. Non-breaking waves occupy the

region of small θq and low γ, and breaking waves are most prevalent for large θq and high γ.

Figure 3.9: Probability (color) of (a) wave breaking (as opposed to not breaking) and that
the breaker is (b) a plunging breaker (as opposed to a spilling breaker) for a given (θq, γ)
pair. Point size is scaled by number of observations. The crosses mark the Support Vector
Machine (SVM) modeling results that identify the transition between non-breaking and
breaking observations or spilling and plunging observations. The black line in (a) is a linear
fit to the support vector points: γ = −0.049θq + 1.41.

A transition region, where there is roughly equal probability of observing a non-breaking

or breaking wave, spans a parameter space where 10◦ < θq < 20◦ and 0.45 < γ < 0.8.

Support Vector Machine (SVM) modeling is a form of machine-learning that can be used
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Table 3.1: Linear regression model for predicting breaking: y x1 + x2 + x1x2, Number of
observations: 348, Error degrees of freedom: 345, Root Mean Squared Error: 0.329, Critical
t-value at 95% and 99% confidence levels: 1.645 and 2.326

Predictor Estimate SE t-stat p-value

θq 0.013 0.002 7.0 1.27e-11

γ -0.079 0.058 -1.4 0.18

θqγ 0.013 0.003 4.2 3.70e-05

to define a binary classification based on a low or moderate number of predictors. Here,

we use γ and θq as two predictors of the binary classifications of non-breaking or breaking.

Non-breaking is defined as Nbrk/Ntot < 0.5, and breaking is defined as Nbrk/Ntot ≥ 0.5. SVM

modeling can also include a weighting function, here computed as the product of Nbrk/Ntot

and the number of samples for each bin. Only bins containing at least 10 samples are included

in the SVM model. The resulting transition region (support vector), marked by crosses in

Figure 3.9a, is then fit with a line, using a robust fitting method that excludes outliers.

For the transition from non-breaking to breaking, the linear fit yields γ = −0.049θq + 1.41.

The 95% confidence bounds on the slope and intercept are (-0.067, -0.031) and (1.13, 1.69),

respectively.

Finally, to assess the predictive power of γ, θq, and the combination of the two parameters,

a multivariate linear regression is performed of the type y x1 + x2 + x1x2, where x1 is θq

and x2 is γ. Table 3.1 shows that, based on both the p-value and t-test, θq alone is most

predictive of breaking. The product of θq and γ is also a significant predictor, but γ alone is

not a significant predictor of breaking.

Using only the breaking wave data, Figure 3.9b reports the probability of observing a

spilling or plunging breaker for a given (θq,γ) pair. Spilling breakers mostly occupy the

smaller wave face slopes and lower γ values, and plunging breakers occupy the larger wave

face slopes and higher γ values.



56

Table 3.2: Linear regression model for predicting breaker type: y x1 + x2 + x1x2, Number of
observations: 161, Error degrees of freedom: 158, Root Mean Squared Error: 0.246, Critical
t-value at 95% and 99% confidence levels: 1.645 and 2.326

Predictor Estimate SE t-stat p-value

θq 0.002 0.004 0.59 0.56

γ -0.327 0.083 -4.0 1.11e-04

θqγ 0.031 0.005 6.0 1.16e-08

While the classification of spilling and plunging is discrete, breaker type is defined along

a continuum as evidenced by the overlap of the regimes where there is equal likelihood of

observing a spilling or plunging breaker. This transition occurs for 22◦ < θq < 28◦ and

0.50 < γ < 0.85. Defining spilling as Nplunge/Nbrk < 0.5 and plunging as Nplunge/Nbrk ≥

0.5, SVM modeling is performed using bins containing at least five samples. The resulting

transition region (support vector) is marked by crosses in Figure 3.9b. While it appears

reasonable to distinguish spilling from plunging breakers by drawing a nearly vertical line

through the support vector points, they are not well-fit by a line. Again, a multivariate

linear analysis is performed to assess the predictive power of γ, θq, and the combination of

the two parameters. Table 3.2 shows that the combination of θq and γ is the most predictive

of breaking. γ alone is also a significant predictor, but θq alone is not a significant predictor

of breaking.

In addition to the direct measurement of wave face slope, we estimate a local wave steep-

ness, H/L, to test the Miche criteria, which predicts breaking at a critical steepness when

Hb/Lb ≥ 1/7 tanh(kbhb) (Miche, 1944). To our knowledge, this is the first field verification of

the Miche breaking criteria for depth-limited breaking in the surf zone. Figure 3.10 shows a

density plot of H/L versus tanh(kh), created using parameter estimates from every instant

each non-breaking wave was tracked. The values at the onset of breaking for each spilling and

plunging breaker are overlaid and a linear fit to each breaker type is computed. The slopes
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of the linear fit to onset spilling and plunging breakers are 0.111 and 0.124, respectively,

and are smaller than the Miche steepness limit of 0.143. The density map of non-breaking

waves confirms that 99.0% of non-breaking waves fall below the steepness limit from Miche,

95.5% fall below the limit estimated from onset plunging breakers, and 90.5% fall below

the limit estimated from onset spilling breakers. We note that L and k are both estimated

from measured c̃ and T , and thus introduce correlation between the independent and depen-

dent axes. Nevertheless, this correlation does not overwhelm the signal, as evidenced by the

non-breaking waves, which lie well below the Miche limit and cover a range of values.

Figure 3.10: Density plot (grayscale) of the Miche steepness Hb/Lb versus tanh(kbhb) for
non-breaking waves. The values at the onset of breaking for each individual spilling (blue
circles) and plunging (red triangles) breaker are overlaid. The Miche limit with slope of 1/7
(black solid line), a linear fit to the onset spilling breaker points (blue dotted line), and a
linear fit to the onset plunging breaker points (red dotted line) are shown for comparison.



58

3.4.2 Implications for Modeling Wave Breaking Using γ

Previous experiments at Duck, NC, have reported a critical breaker parameter of 0.4 < γs <

0.8 (Sallenger and Holman, 1985), where γs is calculated using the significant wave height

from time series data and does not distinguish between breaking and non-breaking waves.

The distributions of spatially-tracked γ (Figure 3.4) compare reasonably to this range for

every subset of the data. The mean γ values increase as expected from 0.40 for non-breaking

waves, to 0.60 for undetermined type breakers, to 0.65 for spilling breakers, and finally to

0.75 for plunging breakers. On average, we find that γ for plunging breakers is 15% larger

than for spilling breakers.

A wide range of γs has been reported from field experiments at other beaches, 0.2 <

γs < 1.2 (Apotsos et al., 2008), and a consistent correlation has been found between local

beach slope, β, and γs, where γs increases with increasing beach steepness (Sallenger and

Holman, 1985; Raubenheimer et al., 1996). We find 0.65 < γs < 0.70 for the offshore transect

where 0 < β < 0.02 and 0.70 < γs < 0.75 for the onshore transect where 0.02 < β < 0.04.

These γs values are greater than what is predicted based on the γs-β dependency shown in

Figure 7 of Raubenheimer et al. (1996) or Sallenger and Holman (1985). However, we do see

different patterns of γ evolution for the offshore and onshore transects that are most likely

attributable to differences in local beach slope.

For the onshore transect (Figure 3.6a), the bathymetry monotonically decreases and the

transect is close to the shoreline (x ≈ 100 m). After the breakpoint, H and h decrease in such

a way as to maintain relatively constant γ values for both spilling and plunging breakers.

For the offshore transect (Figure 3.6b), the bathymetry plateaus, therefore h changes very

little. Following the onset of breaking, H decreases but h remains constant, so γ decreases

as the spilling and plunging breakers develop. The increase and decrease of γ about the

breakpoint was also observed in a study of 10 surf zone breakers by Suhayda and Pettigrew

(1977), but has not been confirmed more robustly in the field until now. Interestingly, the

breakpoint observed by Suhayda and Pettigrew (1977) occurred just before a plateau of the
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bathymetry and the measurements spanned a similar spatial scale (30-40 m).

The variation of γ with breaker type is reasonable and expected based on evidence in the

literature. Sallenger and Holman (1985) and Raubenheimer et al. (1996) found γ to vary

with local beach slope, but to be independent of offshore wave steepness. Here, Figure 3.6

shows that local beach slope influences the evolution of γ about the onset of breaking, and

Figure 3.9 shows that γ is correlated with local wave slope. Since local beach slope and

wave steepness (or wave slope) are predictors of breaker type (Galvin, 1968), it follows that

γ would vary with breaker type. Therefore, our results suggest that for a beach exhibiting

mixed breaker types, parameterizing wave energy dissipation due to breaking using a single γ

value does not accurately represent the breaking dynamics (Figure 3.6). For instance, based

on the critical γ for SWAN of 0.78 (derived from solitary wave theory), if all waves become

spilling breakers, the predicted breakpoint would be onshore of the measured breakpoint,

for which γ = 0.63 − 0.71. However, the predicted breakpoint would be fairly accurate if

all waves become plunging breakers, whose measured breakpoint occurs for γ = 0.73− 0.81.

For mixed breaker type wave conditions, using a single critical γ would yield wave breaking

patterns that are either too concentrated or too evenly distributed across the surf zone, which

has consequences for wave-driven circulation and sediment transport predictions.

3.4.3 Implications for Modeling Wave Breaking Using Wave Face Slope

Wave face slope follows a similar pattern of evolution about the breakpoint. These trends are

indicative of wave shape changes that spilling and plunging breakers undergo as they develop

into steady state bores. The shape of a spilling breaker, even at the onset of breaking, is

similar to that of the steady state bore into which it is developing, which may account for

the relatively constant wave slope following onset. In contrast, plunging breakers undergo a

dramatic shape change as they transition to steady state bores, which is consistent with the

highly variable wave slope following onset. SWASH, a phase-resolved nearshore wave model,

determines the onset of breaking by using a critical local surface steepness threshold of 0.6,

which is roughly equivalent to a wave slope of 30◦. To our knowledge, this limit has not been
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field-tested. This steepness criteria for breaking matches the critical wave slope we estimate

for plunging breakers (θq = 30◦), though spilling breakers exhibit lower wave slope at the

breakpoint (22◦ < θq < 25.5◦).

3.4.4 Implications for Modeling Wave Breaking Using Wave Speed

Measured wave speed, c̃, also peaks near the onset of breaking. While we are not able

to evaluate breaking criteria based on the ratio of wave phase speed to fluid velocities at

the crest used in phase-resolved wave models (we do not resolve fluid velocities) (Smit et al.,

2014), we can compare measured c̃ to various theoretical wave speeds used in phase-averaged

wave models. Two commonly employed theories for wave phase speed in the surf zone are

shallow water linear wave theory, clin =
√
gh, and solitary wave theory csol =

√
g(H + h).

Figures 3.11a and 3.11b show that c̃ is under-predicted by clin, and Figures 3.11c and 3.11d

show that c̃ is over-predicted by csol. On average, c̃/clin = 1.23 for spilling and plunging

breakers combined, which is further from a ratio of one than the mean c̃/csol = 0.95. This

agrees with laboratory and field studies of the surf zone, which found that solitary and shock

wave speed predictions generally agree with measured wave speeds and out-perform shallow

water linear wave theory and bore theory (Postacchini and Brocchini, 2014; Tissier et al.,

2011).

3.5 Conclusions

Using cross-shore LIDAR line-scans and IR imagery, we track and classify over 4200 waves

to evaluate the conditions for the onset of wave breaking in the surf zone. This remote

sensing data fusion enables the segregation of waves into non-breaking, spilling, plunging,

and undetermined type breaker classes. The spatial and temporal resolution of the LIDAR

allows for direct computation of γ, wave face slope, and wave phase speed at every instant

each wave is tracked across the surf zone.

We find that mean γ calculated from all the observed waves agrees with previous in

situ time-series estimations of γ at Duck, NC. When further segregated by breaker type
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Figure 3.11: Evolution of the ratio of wave speeds, (a,b) c̃/clin and (c,d) c̃/csol, for spilling
(black line) and plunging (white line) breakers observed on (a,c) 07 November and (b,d) 08
November.
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and examined as a function of cross-shore position, plunging breakers exhibit larger γ than

spilling breakers. This suggests that the variability in γ reported from other field observations

(0.4< γ <1.2) may be due in part to variability in the dominant breaker type at each study

site.

Using a normalized cross-shore coordinate, the evolution of γ, θq, and c̃ was examined

about the breakpoint for spilling and plunging breakers. Both γ and θq increase to a maxi-

mum near the onset of breaking, with plunging breakers achieving 15% higher γ and 18-36%

steeper wave slopes than spilling breakers. There is no statistically significant difference

between wave speed c̃ for spilling and plunging breakers, and both breaker types exhibit an

increased wave speed at the onset of breaking. On average, c̃ is better described by solitary

wave theory than shallow water linear wave theory. On average, csol is biased low, with

c̃/csol=0.95, and clin is biased high, with c̃/clin=1.23.

We robustly characterize the γ and wave slope θq parameter space for the surf zone.

The likelihood of observing non-breaking versus breaking waves or spilling versus plunging

breakers based on γ and θq is useful for determining appropriate breaking limits for nearshore

wave models and also helps describe the continuum of breaker type. The transition from non-

breaking to breaking estimated using γ and wave face slope (γ = −0.049θq + 1.41) could be

incorporated into nearshore models to improve the parameterization of wave breaking. While

a similar equation for the transition from spilling to plunging is not statistically supported

by this dataset, there is a discernible relationship between γ and θq with respect to breaker

type that may be defined with the inclusion of more data. If wave face slope is not resolved

by the model, we suggest utilizing the relationship between wave slope (fit to the upper 80%

of the wave face) and the ratio of the sea surface elevation to the modified wavelength, the

wavelength shoreward of the wave crest, presented in Figure 2.12. We note that further

investigation or assumptions would be required to relate the modified wavelength to the full

wavelength, which is typically computed in nearshore wave models.

As a final extension, we test a shallow water Miche steepness criteria for the onset of

breaking and find that it underestimates the breaking rates for most plunging and spilling
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breakers. However, 99.0% of non-breaking waves fall below the Miche limit, and 90.5% of

non-breaking waves fall below the most conservative Miche-type breaking limit derived from

the spilling breaker data. Bulk statistics or critical values near the onset of breaking are still

helpful especially if the modeled beach is known to be dominated by one type of breaker.

If processes forced on shorter time and spatial scales are of interest, then an accurate, local

critical γ or critical wave steepness (from wave face slope or the Miche criteria) is important.

Ultimately, these geometric and kinematic differences at the onset of spilling and plunging

breakers imply a difference in the wave energy dissipation rates. This topic will be explored

in future research.
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Chapter 4

ENERGETICS

4.1 Introduction

Spilling and plunging breakers transform and dissipate energy differently across the surf zone

(Ting and Kirby, 1995, 1996), which affects the spatial and temporal distribution of wave

forcing responsible for generating alongshore and cross-shore currents, suspending sediment,

and enhancing air-sea gas exchange. However, most nearshore wave models parameterize

wave energy dissipation based on the steady state hydraulic jump or bore-type breaker (e.g.,

Thornton and Guza, 1983; Battjes and Janssen, 1978). Therefore, they do not account for

differences in energy dissipation rate due to breaker type (i.e., spilling versus plunging) or

due to different breaker dynamics during the initial stages of breaking, prior to the wave

achieving steady state. This chapter uses a subset of the LIDAR-IR-tracked breaking waves

to attempt to quantify the differences in wave energy dissipation rate between spilling and

plunging breakers during the initial stages of breaking.

4.1.1 Wave Energy Balance

Assuming straight and parallel bathymetry and shore-normal wave propagation, the cross-

shore gradient of wave energy flux, F , is balanced by dissipation due to breaking εbreak,

dissipation due to bottom friction εbot, and reflection R following

(1−R)
∂F
∂x

= εbreak + εbot. (4.1)

The dissipation due to bottom friction is much smaller than that due to breaking (Thornton

and Guza, 1983) and is neglected. Reflection depends on beach steepness, tidal elevation,

and wavelength, and has been reported to range from 3% to 18% of the incoming wave energy
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at our study site (Elgar et al., 1994). Wave energy flux is defined as,

F = Ecg, (4.2)

where wave energy, E, is estimated according to linear theory as a function of water density

ρ, gravitational acceleration g, and the root-mean-squared wave height across the surf zone

Hrms,

E =
1

8
ρgH2

rms, (4.3)

and group speed cg may be approximated by phase speed c under shallow water linear wave

theory assumptions. Energy may also be written in terms of the significant wave height,

Hs =
√

2Hrms, as

E =
1

16
ρgH2

s . (4.4)

In situ estimation of wave energy dissipation typically requires an array of instruments

that measure wave height across the surf zone, along with an estimate of wave phase speed,

which is most commonly made using water depth based on shallow water linear wave theory,

clin =
√
gh (Thornton and Guza, 1986; Elgar et al., 1994; Madsen et al., 1997; Ruessink

et al., 2001; Feddersen, 2012). The wave energy dissipation rate is discretely computed as

the wave energy flux gradient between instrument positions,

4F
4x

=
F(xi)−F(xi−1)

xi − xi−1
. (4.5)

Nearshore wave models can be verified by assessing the wave energy balance across the surf

zone, using data collected in intermediate or deep water to estimate the incoming energy

flux and data collected within the inner surf zone to estimate the energy flux after break-

ing. However, this comparison does not resolve spatial or temporal patterns of wave energy

dissipation that occur on a scale less than the instrument spacing, which is typically greater

than 10 m. Remote sensing technologies provide broad spatial coverage and high spatial

and temporal resolution, which enable the investigation of such patterns by decreasing the

distance between sampling locations xi − xi−1.
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Evaluation of the right hand side of equation 4.1, depend on the chosen formulation of

εbreak. We will test two common parameterizations of energy dissipation due to breaking,

the bore model and the roller model.

Hydraulic Bore Model

The most common model for εbreak in equation 4.1 is a hydraulic jump or bore. In a hydraulic

bore, (schematic shown in Figure 4.1) energy is lost in the turbulent motions of a hydraulic

jump, which implies the direct transformation of wave motion into turbulent motion. The

decrease of wave energy throughout the propagation of a turbulent bore occurs simultane-

ously with the decrease in total momentum flux. In other words, for a breaking wave that

has reached a steady state bore phase, wave forcing is occurring instantaneously, at the same

time and place as the breaking.

Figure 4.1: Diagram of a steady state breaking wave bore indicating the instantaneous wave
height (H) and bore height fraction (B) used to parameterize the bore energy dissipation
(from Thornton and Guza (1983)).

Following Le Mehaute (1962), the energy dissipation rate of a breaking wave is estimated

from a bore or hydraulic jump of equivalent height (Stoker, 2011),

εbore =
1

4
ρg

(h2 − h1)3

h1h2
Q. (4.6)
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In equation 4.6, h1 and h2 are the water depth ahead of and behind the bore, respectively

(as in Figure 4.1), and Q is the volume discharge per unit area across the bore. The volume

discharge may be estimated under steady conditions as Q = ch/L, where c is the wave

speed, h is the mean water depth, and L is the wavelength. In the numerator of equation

4.6, the distance h2 − h1 represents the peak-to-trough wave height H. For the hydraulic

bore model, wave height is modulated by a coefficient B, a calibration factor of order 1,

conceptualized as the fraction of the wave face covered by the turbulent bore, as shown in

Figure 4.1 (Le Mehaute, 1962). Using these substitutions and the assumption that h1h2 ≈ h2,

we estimate the average energy dissipation per unit area in a breaking wave as,

εbore =
1

4
Bρg

1

T

H3

h
. (4.7)

As stated, equation 4.7 is deterministic and represents the average energy dissipation per

unit area in a single breaking wave. However, nearshore wave models propagate a spectrum

of waves onshore and the energy dissipated when some proportion of that spectrum breaks,

for a given water depth, must be estimated statistically. To that end, wave height and wave

period statistics, as well as a predictor of the fraction of waves that break, Qb, are used in

the wave-averaged dissipation rate:

εbore =
1

4
Bρg

1

T̄
Qb
H3

rms

h
. (4.8)

There are several parameterizations for Qb at a given location (or water depth) (including

Baldock et al., 1998; Ruessink et al., 2003; Janssen and Battjes, 2007), all of which are a

function of the breaker parameter γ = Hb/h, where Hb is the wave height at the onset of

breaking. The differences lie in the critical value of γ and the distribution of wave heights

and breaking wave heights based on Hrms and Hb (such as the Rayleigh distribution proposed

by Thornton and Guza (1983)). A thorough testing of several parameterizations by Apotsos

et al. (2008) found that no one parameterization out-performs the others and γ must be

tuned to each field site.
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4.1.2 Wave Roller Model

Numerical models (Iafrati, 2011) and field measurements (Feddersen, 2012) have found that

the majority of the energy dissipation from a spilling breaker is concentrated above trough

level, very near the water surface, as a result of the shear between the down-flowing roller and

the up-wave face orbital flow of the fluid beneath it. The wave roller model, developed in the

laboratory by Duncan (1981), balances the shear stress, τ , along the breaking boundary, Lr,

with the tangential component of the weight of the aerated breaking region of cross-sectional

area A on the underlying wave face,

τLr = ρ′gA sin θ. (4.9)

Here, θ is the slope of the breaking wave face and ρ′ is the density of the aerated roller. In

Duncan (1981), the roller density is ρ′/ρ = 0.61, but this ratio ranges from 0.4 to 0.87 in the

literature.

A diagram of the roller is shown in Figure 4.2. Duncan (1981) found the geometry of the

breaking region to be self-similar by showing that the aspect ratio, the ratio of its thickness

to its length, was constant for all observed breakers,

thickness

length
=
A/Lr

Lr

=
A

L2
r

= 0.11± 0.01. (4.10)

This observation allows A to be eliminated from (4.9). The Duncan (1981) wave roller param-

eterization provides a framework for estimating energy dissipation due to spilling breakers

on a wave-by-wave basis using roller length, wave slope and density of the breaking region.

However, the relationship between A and Lr and the ratio of ρ′ to ρ in the field remain

unknown, mainly because they are extremely difficult to measure. Therefore, we form a gen-

eral roller model that makes no assumptions about these relationships. The average energy

dissipation per unit area given by the roller model is,

εroller = CrρgL
2
r

sin θ

T̄
, (4.11)

where Cr = (ρ′/ρ)(A/L2
r) and T̄ is the average wave period.
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Figure 4.2: A schematic of the idealized wave roller (from Duncan (1981)). The roller cross-
sectional area A, roller length Lr, and wave slope θ are indicated.

The wave roller model has been tested in the laboratory and the field for steady state

spilling breakers. Haller and Catalan (2009) used the D81 wave energy dissipation formula

to predict wave height from camera-based roller length estimates and compared the results

to measured wave height across a freshwater laboratory surf zone. Results were promising

over the limited range of waves produced, and although no direct estimate of wave energy

dissipation was made, the authors suggested that the D81 parameterization could be used to

estimate wave dissipation in the field. Since then, the wave roller model has been successfully

tested in the field to estimate total wave energy dissipation along a cross-shore transect

(Carini et al., 2015), map average dissipation rates over a 2D area (Dı́az et al., 2017), and

estimate wave-by-wave energy dissipation for steady state spilling breakers (Martins et al.,

2018).

4.2 Methods

4.2.1 Data Description & Noise Reduction

A subset of 72 spilling and 35 plunging breakers, each observed for at least 0.3T s following

the onset of breaking, are selected for analysis and comparison of wave energy flux and

dissipation rates. The distribution of tracked wave heights and wave periods for these 107

breakers are comparable, as shown in Figure 4.3.



70

Figure 4.3: Histograms of (a,b) tracked wave height and (c,d) tracked wave period for (a,c)
72 spilling and (b,d) 35 plunging breakers.

Because estimating the wave energy flux gradient requires differencing, an operation

that amplifies noise in a dataset, a smoothing protocol is implemented on all tracked wave

parameters. For wave height, wave period, wave face slope, and wave speed, a 10-point

smoothing (loess) is performed for each tracked wave. The loess filter performs a local

quadratic (nonlinear) least-squares regression on the data (Schlax and Chelton, 1992), which

retains the pattern of evolution of the tracked parameter while reducing its variance. On

averaged, the 10-point window spans 5 m. An example of the loess filtered wave height is

shown in Figure 4.4.

4.2.2 Estimating Wave Energy Dissipation Rate

Dissipation rates are estimated using the linear formulation of the wave energy flux gradient

based on wave height and wave form speed (as discussed in Section 2.4.2), the bore model, and

the roller model. For the linear formulation, the wave energy E is estimated from equation 4.4

because our measured wave heights near the onset of breaking are more statistically similar to

Hs than to Hrms. All estimates are made using smoothed parameter values and calculated

at or between (for gradients) every location that the wave peak is tracked. Equation 4.4

is evaluated using individual trough-to-peak wave height, H. The wave energy flux F is
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Figure 4.4: Example result from loess filtering the tracked wave height for a plunging breaker.

estimated from equation 4.2 using E and c, and the wave energy flux gradient is estimated

from equation 4.5 using F and the skewed-Gaussian peak locations x̃pk. For the bore model,

equation 4.7 is evaluated using H, T , h, and B = 1. For the roller model, equation 4.11 is

evaluated using Lr, θq, and T , with values for A/L2
r and ρ′/ρ from Duncan (1981).

To compare between spilling and plunging breaker types, we ensemble-average the wave

energy flux and dissipation rate estimates. The spatial extent of each tracked wave is cen-

tered on the location of the peak at the onset of breaking and normalized by the individual

wavelength: x′ = (x − xb)/L. The wave energy flux and dissipation rates are normalized

by their value at the onset of breaking for each wave, for example, F ′ = F(x′)/F(0). Af-

ter normalization, energetic quantities for each breaker type are bin-averaged using bins

x′ = −0.5 : 0.02 : 0.5 (negative x′ indicates after the onset of breaking).

4.3 Results

4.3.1 Wave Energy Flux

The general pattern of evolution of wave energy flux is consistent, regardless of breaker type.

Figure 4.5 shows the normalized wave energy flux, F ′, for individual spilling and plunging

breakers, as well as the ensemble average for each breaker type. Individual F ′ profiles for
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plunging breakers exhibit more variability than spilling breakers. However, the ensemble-

averaged profiles show that F ′ decreases steadily after the onset breaking (x′ < 0) for both

spilling and plunging breakers. Prior to breaking (x′ > 0), F ′ increases, which seemingly

disobeys conservation laws. This will be discussed in Section 4.4.

Figure 4.5: Individual (grey) and bin-averaged (black) normalized wave energy flux for (a)
72 spilling breakers and (b) 35 plunging breakers as a function of normalized distance from
the onset of breaking (negative x′ indicates after onset of breaking). Error bars extend one
standard deviation from the mean.

Comparing the evolution of F ′ for spilling and plunging breakers in Figure 4.6a confirms

that plunging breakers lose energy at a greater rate than spilling breakers just after the onset

of breaking. A two-sided t-test confirms that the difference between ensemble-averaged

spilling and plunging F ′ profiles is statistically significant for −0.1 ≥ x′ > −0.2. The

general trends and range of statistically significant difference for spilling and plunging F ′

are consistent even when the mean wave form speed is used in equation 4.2 instead of the

tracked wave form speed, as shown in Figure 4.6b. However, the rate of change of wave

energy flux, or the dissipation rate, is effected by the choice of wave speed metric.

To estimate this dissipation rate, we fit a line to F ′ over sequential intervals of x′. The

slopes of these lines correspond to the fraction of normalized wave energy flux lost per

wavelength L. Tables 4.1 and 4.2 report the fitted slopes and their 95% confidence intervals
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Figure 4.6: Bin-averaged normalized wave energy flux, estimated using (a) tracked wave
speed c̃ and (b) mean wave speed 〈c̃〉, for spilling (blue) and plunging (red) breakers as a
function of normalized distance from the onset of breaking (negative x′ indicates after onset
of breaking). Error bars extend one standard deviation from the mean. The squares along
the top axis report when the mean wave energy flux from spilling and plunging breakers is
significantly different (filled square) and not significantly different (open square), according
to a two-sided t-test.

for wave energy flux calculated using tracked wave form speeds and mean wave form speeds,

respectively.

Table 4.1 shows that the dissipation rate is greatest for −0.03 ≥ x′ > −0.2. Over this

interval, wave energy flux decreases by about 21% every 0.1L for spilling breakers and by

about 30% every 0.1L for plunging breakers. For −0.2 ≥ x′ > −0.3, the rate of change of

wave energy flux is approximately equal for spilling and plunging breakers, with wave energy

flux decreasing about 14% per 0.1L.

Overall, the dissipation rates are lower when estimated using mean wave form speed. For

−0.03 ≥ x′ > −0.2, Table 4.2 shows that the rate of change of F ′(〈c̃〉) for spilling breakers is

13% per 0.1L, which is 38% smaller than when the tracked wave form speed is used. Plunging

breakers lose 24% per 0.1L over this interval, which is 20% smaller than the dissipation rate

estimated using the tracked wave form speed.

Next, instead of estimating wave energy flux gradients from the ensemble-averaged profile,
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x′ Spilling Plunging

0.01 ≥ x′ > −0.03 -0.05 (-8.4, 8.3) -0.02 (-3.3, 3.2)

−0.03 ≥ x′ > −0.2 2.1 (1.8, 2.4) 3.0 (2.7, 3.2)

−0.2 ≥ x′ > −0.3 1.4 (0.4, 2.3) 1.4 (0.2, 2.6)

Table 4.1: Rate of change of normalized wave energy flux (∂F ′(c̃)/∂x′) for various ranges of
x′ estimated using tracked wave speed, c̃, for spilling and plunging breakers. Mean values
reported with 95% confidence interval in parentheses.

x′ Spilling Plunging

0.01 ≥ x′ > −0.03 0.05 (-5.1, 5.3) -0.2 (-3.7, 4.1)

−0.03 ≥ x′ > −0.2 1.3 (1.0, 1.6) 2.4 (2.0, 2.9)

−0.2 ≥ x′ > −0.3 1.8 (1.1, 2.4) 0.5 (-2.2, 3.2)

Table 4.2: Rate of change of normalized wave energy flux (∂F ′(〈c̃〉)/∂x′) for various ranges
of x′ estimated using mean wave speed, 〈c̃〉, for spilling and plunging breakers. Mean values
reported with 95% confidence interval in parentheses.
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we do so for each individual breaker. Figure 4.7 plots the normalized dissipation rate from

0 > x′ > −0.2 for each spilling and plunging breaker as a function of the predictors γ and θ.

Our observations from Section 3.4.1 are confirmed by these 108 individual breakers; as γ and

θ increase, the breaker type transitions from spilling (marked by circles) to plunging (marked

by triangles), with some overlap along the continuum. Most of the plunging breakers exhibit

higher initial normalized dissipation rates than the spilling breakers. However, there is no

strong correlation between increased γ and θ and increased dissipation rate.

Figure 4.7: Normalized dissipation rate (colorbar), or wave energy flux gradient, estimated
over the first 0.2L from the onset of breaking for individual spilling (circles) and plunging
(triangles) breakers, plotted as a function of θ and γ.
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4.3.2 Dissipation Rate Models

Dissipation rate estimated using the bore model (equation 4.7) and the roller model (equation

4.11) are presented in the same manner as wave energy flux, normalized by their values

at onset and bin-averaged for each breaker type. Figure 4.8 shows results from the bore

model. Relative to the dissipation rate at onset, spilling breakers maintain an elevated

dissipation rate for a greater fraction of a wavelength than plunging breakers. However, the

non-normalized mean dissipation rate at onset is 1159.8 W m−2 for plunging breakers and

865.6 W m−2 for spilling breakers. So on average, the bore model estimates that plunging

breakers have 38% larger dissipate rates than spilling breakers near the onset. The evolution

of normalized, ensemble-averaged εbore for 0 ≥ x′ > −0.3 shows that the bore model predicts

spilling breakers dissipate energy more gradually than plunging breakers near the onset of

breaking. The statistical significance of these difference are again recorded along the top

axis of Figure 4.8 from a two-sided t-test.

Figure 4.8: Bin-averaged normalized dissipation rate estimated using the bore model for
spilling (blue) and plunging (red) breakers as a function of x′. Error bars and t-test results
are presented in the same format as Figure 4.6.
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Figure 4.9 shows results from the roller model when evaluated using A/L2
r = 0.11 and

ρ′/ρ = 0.61 from Duncan (1981). There is only one small region of statistically signif-

icant difference, −0.25 ≤ x′ ≤ −0.27, between the normalized, ensemble-averaged εroller

for spilling and plunging breakers. The lack of statistical difference is attributed to the

large variability between individual εroller profiles as indicated by the large error bars on the

ensemble-averaged curves. Non-normalized mean εroller at the onset of breaking is 882.5 W

m−2 for spilling breakers and 911.5 W m−2 for plunging breakers, which is only a 3.3% dif-

ference. For spilling breakers, the roller predicted dissipation rate gradually decreases with

relatively small scale variability from x′ = 0 to x′ = −0.5. No such pattern emerges for

plunging breakers, whose normalized, ensemble-averaged εroller exhibits high variability with

multiple, relatively large increases and decreases from x′ = 0 to x′ = −0.27.

Figure 4.9: Bin-averaged normalized dissipation rate estimated using the roller model for
spilling (blue) and plunging (red) breakers as a function of x′. Error bars and t-test results
are presented in the same format as Figure 4.6.
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4.4 Discussion

4.4.1 Case Study: Model Comparison

To compare the magnitudes in addition to the evolution of dissipation rate near the onset

of breaking, we choose one spilling and one plunging wave of approximately equal wave

height breaking in similar water depth. The dissipation rate estimates from the bore model

and the roller model (evaluated using A/L2
r and ρ′/ρ from Duncan (1981)) are compared to

the best estimate of true dissipation rate calculated via equation 4.5. Based on the results

for wave energy flux (Figure 4.6), equation 4.5 is evaluated using the tracked wave speed c̃

and the mean wave speed 〈c̃〉. We cannot make this comparison on an ensemble-averaged

basis because the averaging aliases the impact the observed wave height and wave period

distributions, making a wave energy balance untenable.

Figure 4.10 shows the dissipation rate comparison and the relevant wave parameters as

a function of normalized distance from the onset of breaking for the chosen spilling and

plunging breakers. Note that while it appears the plunging breaker was observed over a

shorter distance than the spilling breaker, this is an artifact of the x-axis normalization,

as the plunging breaker exhibited a longer average wavelength. In fact, the spilling and

plunging breakers were observed for similar real-world distances (27 m and 21 m, respectively)

following the onset of breaking.

For the spilling breaker, the roller model produces a gradual increase, followed by a

gradual decrease in dissipation rate, which mimics 4F/4x (regardless of wave speed met-

ric used). The maximum value of εroller is half that of 4F(c̃)/4x, but agrees well with

4F(〈c̃〉)/4x. Unlike 4F/4x, εroller does not decrease to zero, but plateaus around 500 W

m−2 for x′ < −0.3. The bore model does not capture the gradual ramp up of dissipation

rate. Instead, εbore is nearly at its maximum at the onset of breaking. It increases slightly

to a peak of 1500 W m−2 at x′ = −0.04 and then gradually decreases, plateauing at a value

slightly higher than εroller at about 650 W m−2 for x′ < −0.3.

For the plunging breaker, neither the bore model nor the roller model replicate the
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Figure 4.10: Comparison of dissipation rate estimates plotted as a function of x′ for (a) a
spilling breaker and (c) a plunging breaker. The wave parameters used to estimate ∂F/∂x,
εbore, and εroller are also plotted for (b) the spilling breaker and (d) the plunger breaker. The
with line color in (b,d) corresponds to the applicable y-axis.
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shape or magnitude of the dissipation rate estimated from 4F(c̃)/4x. In the span of

−0.01 > x′ > −0.03, 4F(c̃)/4x jumps to a maximum value of 2700 W m−2. It then

decreases to 950 W m−2 by x′ = −0.07, drops to 0 W m−2 at x′ = −0.125, and finally

rebounds to an average value of about 450 W m−2 for −0.15 > x′ > −0.25. Based on

the evolution of H and c̃ in Figure 4.10d, the variability in 4F(c̃)/4x is dominated by

similar variability in measured wave form speed. This is further supported by the much

smoother evolution of 4F(〈c̃〉)/4x, estimated using mean wave form speed. The roller

model estimates higher dissipation rate than the bore model and exhibits some variability as

the breaker develops, though not in the same way as 4F(c̃)/4x. The bore model behaves

very similarly for the plunging breaker as observed for the spilling breaker, except it has

much smaller magnitude, with a maximum of about 530 W m−2.

For 0 > x′ > −0.03 both estimates of 4F/4x are negative, indicating that there was

some other source of energy convergence as the wave crest begins to overturn. This increase

in wave energy flux (or corresponding negative wave energy flux gradient, relative to the

normalized x-coordinate) was also seen in Figure 4.6 for both spilling and plunging breakers.

Prior to the onset of breaking, the wave energy flux should be constant. However, because this

analysis was performed along a cross-shore transect, it is possible that energy convergence

in the alongshore direction, which is not accounted for, is responsible for the increasing wave

energy flux. Ultimately, the observations described here, especially for the individual spilling

and plunging breakers, are inconclusive as the variability cannot be definitively ascribed to

a single cause. To truly compare dissipation rate models and the wave energy flux gradient,

the energy contributions from both the x and y directions must be resolved.

4.4.2 Variability & Limitations of the Roller Model

The roller model is likely not appropriate for plunging breakers near the onset of breaking,

because they do not produce a roller until steady state is achieved. However, if the large

region of active foam produced just after onset (by the impinging jet, collapsing air cavity,

splash up, secondary plunging, etc.) is measured as a proxy roller length, εroller could compare
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favorably with ∂F/∂x. This will be further examined for the example plunging breaker in

the next section. For now, we investigate multipath IR reflections as a possible explanation

for roller length variability, especially for steep plunging breakers, that would contaminate

the normalized and ensemble-averaged εroller.

Our hypothesis is that increased pixel intensities in the IR imagery due to multipath

reflection along steep plunging wave faces (Branch et al., 2014) are falsely identified as active

breaking by the automatic breaker detection algorithm. If active breaking is automatically

detected prior to the onset of breaking due to steep wave face slope or if the region of active

foam is overestimated due to multipath reflections at the toe of the roller, Lr will be biased

high and εroller is subject to errors of O(L2
r). We can use ensemble-averaged wave profiles of

the automated detection of active foam to further investigate.

The following analysis was completed on the same 72 spilling and 35 plunging breakers

included in the normalized and ensemble-averaged εroller profiles. The vertical coordinates

of individual wave profiles are centered on ztr and normalized by H, z′ = (z − ztr)/H.

The horizontal coordinates of individual wave profiles are centered on xpk and normalized

by L = c̃T , x′ = (x − xpk)/L. Using the normalized profiles, we compute the ensemble-

averaged profiles for spilling and plunging breakers at pre-onset (−0.05 < t′ < 0), onset

(0 < t′ < 0.05), post-onset (0.1 < t′ < 0.2), and developing (0.2 < t′ < 0.3) breaking stages,

where t′ = (t − tb)/T . The ensemble-averaged profiles with 95% confidence interval are

shown in Figure 4.11. Overlain on the profiles at each stage of breaking is the corresponding

probability of the presence of active foam (foam produced by breaking). The probability

of the presence of active foam along the wave face is calculated by averaging the masks of

breaking from individual wave profiles, as presented in Figure 2.7c.

As expected, the probability of the presence of active foam is near zero along the front

face of the pre-onset profiles (Figures 4.11a and 4.11e). The very low, non-zero active foam

probabilities observed near the peak of pre-onset spilling and plunging ensemble-averaged

profiles are caused by variations in the data, such as sea spray at the crest or IR multipath

reflections off the pre-onset wave faces (Branch et al., 2014). Since the active foam probability
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Figure 4.11: Ensemble-averaged wave profiles (black curves) with 95% confidence intervals
(gray bands) for (a) pre-onset spilling, (b) onset spilling, (c) post-onset spilling, (d) devel-
oping spilling breaker, (e) pre-onset plunging, (f) onset plunging, (g) post-onset plunging,
and (h) developing plunging breaker. The colors on the front face of the wave indicate the
probability of the presence of active foam or aerated roller.
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for pre-onset ensemble-averaged profiles has a mean of 0.05 and a standard deviation of 0.13,

these variations are not deemed meaningful.

The effect of IR multipath reflections is much more pronounced for onset plunging break-

ers. The onset of plunging is manually determined by inspecting the wave-scale IR imagery

for the moment the crest begins to overturn. This means that at onset, there is no active

foam along the front face of the wave. However, Figure 4.11f shows very high probabilities

of roller presence along the front face of the onset plunging ensemble-averaged wave profile.

While not all plunging waves were reviewed again, several of those that were confirmed that

the automated detection algorithm was triggered by multipath reflection from the steep wave

face slope (25◦-45◦, Figure 3.9b). These results are supported laboratory measurements by

Branch et al. (2014), who found multipath IR reflections were common for steep breakers in

imagery collected at large incidence angle, as was the case for the FRF tower-mounted IR

camera. For developing plunging breakers (Figure 4.11h), splash up and secondary plunging

events (Basco, 1985) produce active foam along a highly variable and turbulent front wave

face, and false extension of the roller due to multipath is not likely an issue.

For spilling breakers, onset is defined as the moment active foam appears near the peak

(Figure 4.11b). In Figures 4.11c and 4.11d, the foam roller gradually extends down the front

face of the wave (Basco, 1985). Despite the growth of the roller, the probability of roller

presence remains relatively low at 0.5. This implies that there is considerable variability in

roller evolution across spilling breakers. Multipath reflections may contribute to roller length

variability for spilling breakers, though to a lesser extent than plunging breakers due to their

shallower wave slopes (5◦-25◦, Figure 3.9b).

4.4.3 Parameterizing Plunging Breakers

Neither the bore nor roller models can capture the rapid and concentrated dissipation of

energy seen for plunging breakers. However, other parameterizations have been developed

specifically for plunging breakers. Estimates of the wave energy dissipation due to air entrain-

ment in a plunging breaker vary widely, from 4%-9% of the total wave energy (Blenkinsopp
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and Chaplin, 2007) to 30%-50% of the total wave energy (Lamarre and Melville, 1991).

This large range was investigated by Iafrati (2011), who found through numerical modeling

that the energy transferred from a plunging wave into the potential energy accumulated in

bubbles accounted for various percentages of the total wave energy according to the wave

steepness σ = ka = H0/2L0: 10%-15% for σ = 0.50, 20%-25% for σ = 0.60, 30%-35% for

σ = 0.65. The Iafrati (2011) numerical simulation of plunging breakers provides guidance

about the relative importance of air entrainment to wave energy dissipation, but has not yet

been tested in the laboratory or field.

Drazen et al. (2008) and Iafrati (2011) use inertial scaling and treat the plunging wave

crest as a projectile traveling a ballistic trajectory to model energy dissipation. Figure 4.12

schematically shows how Iafrati (2011) scales the area of the air cavity submerged by the

plunging wave A0 as,

A0 ∝ H ·Bp = H · [(uc − ut)− (uc − ut)0.32]
√

2H, (4.12)

where H is the trough to crest height of the plunging breaker at the point of maximum wave

steepness, Bp is the width of the air cavity, and uc and ut are the speed of the wave crest and

wave toe, respectively. The subscript 0.32 references the crest and toe speeds of the steepest

non-breaking waves observed in the model. This parameterization could not be tested here,

but it could provide an estimate of the energy lost to air entrainment by way of the work

needed to submerge an air cavity of size A0 against the force of buoyancy (Lamarre and

Melville, 1991).

4.5 Conclusions

Using the LIDAR and IR-derived wave parameters defined in Chapter 2 and analyzed in

Chapter 3, wave energy fluxes and dissipation rates are estimated for spilling and plunging

breakers near the onset of breaking. A subset of spilling and plunging breakers are used

in this analysis. Those chosen were observed for at least 0.3 wave periods following the

onset of breaking and exhibited a mean wave height of 1.8-2 m. The effect of wavelength
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Figure 4.12: Schematic of a plunging breaker (from Iafrati (2011)), where Bp is the width
of the air cavity, H is the trough to crest height of the plunging breaker at the point of
maximum wave steepness, and the dashed outline is the trajectory of the plunging wave
crest.

variation was accounted for by normalizing the distance since breaking by the wavelength,

x′ = (x− xb)/L.

The normalized and ensemble-averaged wave energy flux, estimated using wave height

and wave speed, shows that plunging breakers dissipate energy at a greater rate than spilling

breakers near the onset of breaking, regardless of whether a mean wave speed or a tracked

wave speed is used in the estimate. The wave energy flux exhibits its greatest rate of change

for −0.03 ≥ x′ > −0.2 for both breaker types, and the normalized wave energy flux gradient,

estimated using the tracked wave form speed, is 40% greater for plunging breakers than

for spilling breakers over this interval. The ensemble-averaged and individual breaker results

from Figures 4.6 and 4.7 confirm that plunging and spilling breakers are energetically different

during the initial stages of breaking. Therefore, if the different dynamics of the initial stages

of breaking are not somehow incorporated into wave models, the initial increased dissipation

for plunging breakers will be missed.

The bore model estimates wave energy dissipation rate using the wave height, water

depth, mean wave period, and B, the fraction of wave height covered by the bore (set to 1).

The bore model predicts maximum dissipation rate at the onset of breaking for both spilling
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and plunging breakers. However, high dissipation rate for plunging breakers is concentrated

very near the onset of breaking, with a quick drop off to lower dissipation rates starting at

x′ = −0.05. Whereas, the dissipation rate for spilling breakers gradually decreases as the

breaker develops, decreasing to 50% of the onset dissipation rate by x′ = −0.39.

The roller model is also used to estimate wave energy dissipation rate for spilling and

plunging breakers based on roller length, wave slope, mean wave period, and a constant

that represents both the roller geometry and its density relative to that of sea water. Using

the roller model, no statistically significant difference is found between dissipation rates for

spilling and plunging breakers. The most likely explanation and source of error for the

roller model is the effect of multipath reflection on the automated roller detection algorithm.

Multipath IR reflections along a steeply sloped wave face amplify the thermal radiation

received by the IR camera and either result in a roller identified in the absence of foam (just

prior to onset) or a roller of artificially increased length (just after onset). The ensemble-

averaged wave profiles of the probability of active foam strongly suggest that the former

occurs for plunging breakers and the latter for both breaker types. These data limitations

prohibit any substantial conclusions about wave energy dissipation rates estimated using the

roller model.
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Chapter 5

CONCLUSION

The application of this thesis is two fold: it makes a substantial contribution to the de-

velopment of surf zone remote sensing methods and it provides geometric, kinematic, and

energetic measurements of spilling and plunging breakers near the onset of breaking that are

useful for improving nearshore wave models. The surf zone is a challenging environment in

which to make measurements, and the data collected are invariably complicated by technol-

ogy limitations or natural variability. The methods for fusing IR and LIDAR data to classify

breaker type is vital to all of the results presented here, and the detailed account of the

challenges of this dataset and our proposed solutions are useful for others using IR, LIDAR,

or similar remote sensing technologies in the surf zone. The wave parameters analyzed, γ,

wave slope, and wave speed, are commonly employed as breaking criteria in nearshore wave

models. For phase-averaged models concerned with long timescale or large spatial scale pro-

cesses, the bulk statistics and critical values of γ near the onset of breaking are useful. For

phase-resolved models focused on short time and spatial scales processes, the local critical

values of γ, wave slope, and wave speed are applicable. Potential avenues of future research

using this data are discussed later in this chapter.

5.1 Main Findings

Chapter 2 presents detailed LIDAR-IR data fusion methodology to track individual waves,

classify breaker type, and measure wave parameters in the surf zone. Utilizing the full spatial

and temporal resolution of the LIDAR data, we track over 4200 waves. The surf zone-scale IR

imagery is used to automatically identify candidate breakers, and the wave-scale IR imagery

is manually reviewed to determined the moment of onset and classify breaker type. In IR,
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an unorganized textured thermal signature on the back face of breaking waves indicates

spilling type and an organized streaky thermal pattern indicates plunging type. In total,

524 spilling and plunging breakers are measured. Wave height is calculated as the difference

between the spatially-derived peak elevation and the temporally-derived trough elevation,

which guarantees that the true peak elevation of the wave is sampled and provides trough

elevation even if its location is beyond the instrument field of view. Fitting the wave profiles

with a skewed-Gaussian curve and using the fitted wave peaks to estimate instantaneous

tracked wave speed produces a smoothly varying wave speed metric that is robust to noise

due to spray or rapid wave shape changes. This wave speed metric is the best possible

approximation (given the current dataset) of the wave phase speed. Four metrics of wave

face slope are examined. When fitting a wave slope, the most robust estimate is achieved by

using the upper 80% of the wave face. As expected, plunging breakers exhibit the steepest

linear-fit wave slopes, though the quadratic fit or skewed-Gaussian fit wave slope may be

more appropriate as the concavity increases near the onset of breaking.

Chapter 3 presents analysis of three key breaking wave parameters on a wave-by-wave

basis: γ (the ratio of wave height to water depth), wave face slope, and wave phase speed.

The range of γ calculated on a wave-by-wave basis agrees with previous in situ time-series

estimations of γ at Duck, NC. Across the surf zone, we find that plunging breakers exhibit

larger γ than spilling breakers, which suggests that the reported variability in γ (0.4< γ <1.2)

from other field observations could be attributed to natural variability in the dominant

breaker type at a given beach. γ, wave slope, and wave speed all reach their maximum value

at or just after the onset of breaking. Plunging breakers exhibit 15% larger γ values and

18-36% steeper wave slopes than spilling breakers, but there is no statistically significant

difference for wave speed. Together, γ and wave slope are strong predictors of breaking and

breaker type. We also test the Miche steepness criteria for the onset of breaking in shallow

water and find that there is a clear separation between breaking and non-breaking waves,

with 99% of non-breaking waves falling below the Miche limit. However, the strict Miche

limit applies only for some of the observed plunging breakers, and would underestimate the
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breaking rates for most plunging and spilling breakers.

Chapter 4 presents a comparison of the wave energy flux gradient with dissipation rates

from the bore model and roller model. For plunging breakers, the ensemble-averaged wave

energy flux decreases at a rate up to 1.4 times that of spilling breakers within 0.2 wavelengths

of the onset of breaking. When investigated on a wave-by-wave basis, plunging breakers again

exhibit larger dissipation rates than spilling breakers, though the dissipation rates do not

show correlation with the γ-θ parameter space used to predict breaking and breaker type.

For plunging breakers, the ensemble-averaged bore model estimates high dissipation rates

concentrated very near the onset of breaking followed by a sharp decline, while for spilling

breakers, the dissipation rate gradually decreases from its maximum value at onset as the

breakers develop. There is no statistically significant difference in the ensemble-averaged

roller model dissipation rates for spilling and plunging breakers. The influence of multipath

IR reflections on roller length estimates is the most likely cause of the large uncertainty in

roller-based dissipation estimates. When analyzing a single breaker of each type, neither the

bore nor the roller model capture the pattern of dissipation rate within 0.2 wavelengths of

the onset for the plunging breaker.

5.2 Future Directions

5.2.1 Automated Breaker Type Classification

One of the strengths of this work is the volume of waves analyzed. However, this only

represents about 10 hours out of almost two weeks worth of data. There are legitimate reasons

for limiting the dataset. First, all necessary instruments (two IR cameras and one LIDAR)

must be operational at the same time. This was not always the case as systems inevitably

malfunction and must be fixed during a field experiment. Second, the wave conditions must

include frequent breaking. This produces foam, which serves as a diffuse reflector for the

LIDAR. In order to achieve dense returns along the cross-shore transect, sufficient foam

must persist on the sea surface. Third, it is time-consuming to manually review the onset of
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breaking and classify breaker types.

The first two limitations can only be addressed with a new field experiment or different

instrumentation. However, there are remedies for the third limitation, and methods for

handling and processing large datasets are an area of active research. Motivated by the

need for automated breaker classification and encouraged by the distinct IR signatures of

spilling and plunging breakers, Buscombe and Carini (2019) trained a deep convolution

neural network (DCNN) to predict breaker type based on the wave-scale IR imagery. This

work is part of only a handful of studies that used deep learning on geophysical imagery,

and the first to address surf zone hydrodynamics. Processing over 400,000 images at 1 Hz,

the DCNN model classifies breaker type (one type per image) with accuracies (F1 scores) of

0.97, 0.81, and 0.74, for non-breaking, spilling, and plunging waves, respectively. This result

demonstrates the the DCNN is sensitive to subtle variations of IR image tone, contrast,

saturation, and texture that collectively indicate a changing dynamic state, while being

robust to variation in lighting, significant textural variation within a given breaker type,

and a small training set of images. In analyzing the results, we found that the frequency

of occurrence of plunging classifications increases as significant wave height and peak wave

period increase, as shown in Figure 5.1. The opposite trend is seen for spilling classifications.

This motivates one area of continued research: using the DCNN results to investigate

the continuum of breaker type. Breaking waves exist along a continuum between spilling

and plunging (and collapsing and surging). For each image classified, the DCNN ascribes a

probability for each class, where each probability can vary between 0 and 1, and the three

classes do not sum to one. An example is shown in Figure 5.2.

We hypothesize that those waves whose DCNN classification is not dominated by any one

class, but instead more evenly split between spilling and plunging, are examples of waves that

exist along the continuum between spilling and plunging. To prove this hypothesis, we need

to show that the DCNN classification probabilities produce consistent trends with respect to

the breaker type continuum. While the human eye and brain are capable of recognizing an

“in-between” spilling and plunging type breaking in the imagery, for an objective analysis, we
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Figure 5.1: Fraction of images with spilling and plunging waves as a function of significant
wave height (circles) and peak wave period (stars). [Figure created by Dan Buscombe using
data provided by Roxanne J Carini.]
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Figure 5.2: Two examples of DCNN classification results (predictive probabilities listed in
bottom right corner of each image) for breakers that appear to exist somewhere along the
continuum between spilling and plunging classes.

must define the breaker type continuum based on measurable wave parameters. One option

would be to use the γ and wave slope relationships presented in this thesis to parameterize

the breaker continuum.

5.2.2 3D Sea Surface Reconstruction & EO-IR Data Fusion Applications

Stereo imaging methods rely on feature matching across image pairs, and most stereo image

processing software were developed for EO imagery, which typically have O(10-100 Megapix-

els). Our IR cameras have 640x480 (307,200) pixels, and both commercial software Photo-

Scan and the Waves Acquisition Stereo System (WASS) by Benetazzo (2006) failed to identify

enough matched features for sea surface reconstruction due to this coarse resolution. How-

ever, stereo EO imagery collected during ROLLEX and preliminary work by Ladner and

Palmsten (2017) shows successful reconstruction of a region of the sea surface that overlaps

the wave-scale IR imagery FOV (Figure 5.3).

Stereo reconstruction of the sea surface would expand the dataset by capturing more

instances of waves at onset of breaking (not limited to the alongshore location of the LIDAR
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Figure 5.3: 3D sea surface reconstruction from stereo pair of EO cameras deployed alongside
the IR cameras on the FRF pier during ROLLEX (Ladner and Palmsten, 2017).

transect). It could also be used to investigate along-crest variability in wave height, wave

slope, roller length, and wave speed, for a more robust examination of breaking criteria.

Combining EO and IR imagery may provide a solution for the multipath IR errors in

roller identification. The thresholding methods from Carini et al. (2015) would first be used

on the IR imagery to segregate active foam and regions of high reflectance from residual

foam and undisturbed sea surface. Then, the collocated EO imagery along the wave face is

used to separate the roller (bright, white) from the steep wave face (dark). We note that

for certain positions of the sun relative to the EO camera, reflections from steep wave slopes

may still pose a problem for roller isolation.

5.2.3 Wave Energy Dissipation Rate

Chapter 4 presents wave energy flux measurements that confirm that plunging breakers

dissipate energy at a greater rate than spilling breakers in the early stages of breaking.

Neither the bore nor the roller model capture these differences. Chapter 4 proposed a
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plunging wave model that parameterizes the energy lost to air entrainment at the onset of

plunging breaking using the work needed to submerge an air cavity of size A0 against the

buoyancy force (Lamarre and Melville, 1991; Drazen et al., 2008; Iafrati, 2011). While the

LIDAR data presented here is insufficient to resolve the plunge distance, Bp in Figure 4.12,

recent multibeam LIDAR observations of plunging breakers demonstrate robust visualization

of the plunging air cavity (Brodie et al., 2018). The area of this air cavity could also be

estimated via the parametric cubic curve fitting (Longuet-Higgins, 1982) as pursued by

Brodie et al. (2018).

Another next step of this research would be to expand the cross-shore extent of LIDAR

coverage, similar to the coverage demonstrated by Martins et al. (2016), in order to guarantee

the observation of a wave from the onset of breaking, thorough development, to steady state.

In this way, we could quantify the time or space, relative to wave period or wavelength,

required for a spilling or plunging breaker to evolve into a steady state bore. We found that

0.15 T after the onset marks a distinct transition in the character of energy dissipation for

both spilling and plunging breakers, but the waves are not observed long enough to know

if a second transition occurs. This information would help answer questions such as: How

much energy does a wave lose during its onset stage relative to its steady state stage? Given

that the bore model is applied universally, what are the consequences of not including or

including onset dynamics when modeling wave forcing across the full surf zone? How might

the bore model be modified to improve predictions of nearshore processes that are sensitive

to the temporal and spatial patterns in wave forcing, such as transient rip currents?
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Appendix A

BATHYMETRY VALIDATION

Using LIDAR-derived wave phase speeds for non-breaking waves, so as to avoid any

speed-altering effects of breaking, water depth at the study site was derived by inverting the

relationships of shallow water linear wave theory:

clin =
√
ghMSL, (A.1)

solitary wave theory:

csol =
√
g(hMSL +H), (A.2)

and shock wave theory:

cshock = −2(ghMSL)1/2 + 2(ghtr)
1/2 +

(
ghpk
2htr

(htr + hpk)

)1/2

. (A.3)

Figure A.1 shows that the bin-averaged depths inverted from solitary and shock wave theo-

ries agree well with the interpolated bathymetry at both the onshore and offshore locations

of the pier instruments, while shallow water linear wave theory predicts depths more than 1

m deeper. This is consistent with work by Postacchini and Brocchini (2014); Tissier et al.

(2011), and Martins et al. (2018), which show that solitary wave and shock wave theories

produce similar results and out-perform linear wave theory for predicting wave speed in the

surf zone. The solitary wave and shock wave theory depth-inversion calculations strongly

support the use of the date-weighted interpolated bathymetry for the offshore LIDAR tran-

sect, where little change is observed from 03 to 16 November. For the onshore transect,

where much larger changes are observed between the survey dates, the difference between

the interpolated and solitary wave theory-inverted bathymetry ranges from about 10 cm to

40 cm.
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Figure A.1: Cross-shore transect of the surveyed bathymetry from 03 November (dashed
gray) and 16 November (dot-dashed gray) and the time-weighted, linearly interpolated
bathymetry (solid black) for data collection time period. Bin-averaged depth-inversion re-
sults using solitary wave theory (red), shock wave theory (blue) and shallow water linear
wave theory (black) with 95% confidence intervals.
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