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Soil moisture is a key component of the water cycle. The launch of the new-generation 

satellite mission, the NASA Soil Moisture Active/Passive (SMAP) mission, in 2015 opens up 

unprecedented opportunities for researchers to learn more about surface soil moisture behavior 

and to then improve hydrologic modeling. In this dissertation, various ways of extracting 

hydrologic information from the SMAP surface soil moisture data are explored and their ability 

to improve hydrologic modeling (both model results and process representation) is assessed. 

First, data assimilation techniques are applied to incorporate the SMAP data to update modeled 

soil moisture states. Then, rainfall correction techniques are applied to use SMAP to back-correct 

rainfall estimates from the Global Precipitation Measurement (GPM) mission. These updated soil 

moisture states and precipitation estimates are then combined to improve simulated streamflow. 

This work shows that SMAP soil moisture assimilation only slightly nudges rainfall and 

streamflow estimates in the correct direction. One main reason for the small hydrologic 

improvement is that the Kalman-filter-based soil moisture data assimilation techniques are only 



 

 

 

able to correct zero-mean random error in a hydrologic simulation system, but not the often more 

substantial systematic error. 

These findings motivate the last part of this dissertation, in which surface soil moisture 

dynamics are directly derived from SMAP via a data-driven, multivariate regression approach. 

The SMAP-derived dynamics include surface moisture decay rate, fraction of precipitation 

retained in the surface layer, and the dependency of the infiltration/runoff partition process on 

antecedent moisture level. These governing dynamics derived from SMAP are compared with 

those derived from a model-based global dataset, and inaccuracies in the model setup are pointed 

out, including slow surface moisture decay, small sensitivity of the infiltration/runoff partition 

process to the top-layer moisture, and lack of spatial variation in surface soil moisture dynamics. 

This work demonstrates the potential of using the extracted information from SMAP to evaluate 

and improve process representation in hydrologic models. 
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Chapter 1. INTRODUCTION 

1.1 BACKGROUND 

Soil moisture is a key component of the water cycle. Although it only comprises a small 

part of the global fresh water volume, soil moisture plays an important role in the complex water 

and energy exchanges near the land surface. Soil moisture participates in exchange processes at 

the land surface - atmosphere interface such as infiltration, vegetation water uptake, evaporation, 

and partitioning of incoming energy between sensible heat, latent heat and ground heat fluxes as 

well as reflected and emitted radiation. It also plays a role between the land surface and deeper 

layers, such as soil water drainage and groundwater recharge. Soil moisture also partly controls 

runoff generation both by partitioning precipitation into infiltration and surface runoff during 

rainfall events, and by determining the rate of subsurface flow [e.g. Freeze and Harlan, 1969; 

Western et al., 2002; Aubert et al., 2003]. A correct understanding of soil moisture dynamics is 

therefore crucial for hydrologic science and applications. 

 In 2015, a new soil moisture satellite mission, the NASA Soil Moisture Active Passive 

(SMAP) mission [Entekhabi et al., 2010], was launched. SMAP provides high-quality, near-real-

time surface soil moisture measurements with near-global coverage. The SMAP product contains 

unprecedentedly rich information about surface soil moisture. Together with the new-generation 

satellite precipitation measurements, the Global Precipitation Measurement (GPM) mission [Hou 

et al., 2014], there is great potential to extract land surface hydrology information from these 

datasets and to improve hydrologic modeling ability around the globe. This is especially 

promising for regions with scarce in-situ soil moisture measurements, rain gauges and 

streamflow measurement sites. 

 In recent decades, researchers have developed various approaches to extract information 

contained in large-scale soil moisture measurements (from either SMAP or previous-generation 

satellite soil moisture products), and to then improve model results directly or to improve the 

fundamental understanding of hydrologic processes. These approaches include: 

1) Soil moisture data assimilation (DA). This is the most direct way to incorporate soil 

moisture measurements into hydrologic modeling to subsequently improve streamflow 
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simulation. In DA, measurements are used to update modeled soil moisture states sequentially 

over time. The updated moisture states then, ideally, lead to improved streamflow simulation. A 

number of recent studies have applied Kalman-filter-based techniques, which is one of the most 

widely used data assimilation techniques, to assimilate remotely-sensed soil moisture data to 

improve simulated streamflow [e.g., Pauwels et al., 2002; Francois et al., 2003; Parajka et al., 

2006; Brocca et al., 2010; Wanders et al., 2014; Alvarez-Garreton et al., 2014; Kumar et al., 

2014; Lievens et al., 2015; Massari et al., 2015]. However, these studies found different levels of 

streamflow improvement in response to soil moisture assimilation, ranging from good 

improvement to no improvement or even degraded streamflow simulations. 

2) Rainfall correction. Since soil moisture responds directly to rainfall inputs, soil 

moisture measurements presumably contain information about antecedent rainfall events. This 

information can potentially be used to correct inaccurate rainfall estimates (for example, from 

satellite rainfall observation). Recent studies have explored techniques to back-calculate rainfall 

or to correct existing rainfall products using satellite soil moisture data with promising results 

[e.g., Crow et al., 2011; Chen et al., 2012; Brocca et al., 2013; Brocca et al., 2014; Brocca et al., 

2016; Koster et al., 2016; Koster et al., 2018]. Combining rainfall correction techniques with soil 

moisture state updating (as mentioned above), a so-called dual state/rainfall correction system 

was developed to use soil moisture measurements to simultaneously correct modeled states and 

rainfall estimates, with the goal of subsequently improving streamflow simulations [e.g., Crow 

and Ryu, 2009; Chen et al., 2014; Alvarez-Garreton et al., 2016]. 

3) Soil moisture dynamics extraction. A number of new studies have tried to extract 

surface soil moisture characteristics from SMAP, such as the soil moisture decay rate [e.g., 

Shellito et al., 2016; McColl et al., 2017b; Koster et al., 2017; Akbar et al., 2018; Shellito et al., 

2018] and soil moisture memory [McColl et al., 2017a]. These extracted soil moisture 

characteristics are potentially useful for better understanding hydrologic processes at coarse 

spatial resolution and improving continental-scale hydrologic modeling setups that have a spatial 

resolution commensurate with the resolution of SMAP. However, little research has been done to 

use the process understanding drawn from SMAP to improve hydrologic modeling setups. One 

exception is a recent study by Shellito et al. [2018], who compared the SMAP decay rates with 

the surface layer decay rates simulated by a land surface model. 
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1.2 OBJECTIVES AND RESEARCH QUESTIONS 

The overarching objective of this dissertation is to assess the ability to use the extracted 

hydrologic information from the SMAP surface soil moisture data to improve hydrologic 

modeling. At the beginning phase of my dissertation work, the primary research goal was to 

directly integrate the SMAP data to improve simulated streamflow results from a physically-

based land surface model using DA techniques (which comprises Chapter 2 and Chapter 3 of my 

dissertation). As the research went on, only slight streamflow improvement was achieved via 

such a direct data-model integration, and we found that the theory and assumptions behind the 

DA techniques limit their ability to reduce the often-large systematic bias existing in streamflow 

simulations. Instead, the reduction of such systematic errors relies on a better overall 

representation of hydrologic processes in a hydrologic model. Therefore, I shifted my research 

focus to directly extract information about soil moisture dynamics from SMAP and use this 

information to enhance our understanding of process representation in hydrologic models (which 

comprises Chapter 4 of my dissertation). These research questions and efforts are all built upon 

the literature reviewed above, and the overall research questions of this dissertation are 

summarized below. 

Research questions: 

 1) To what extent can the SMAP surface soil moisture data improve streamflow 

simulation via state updating data assimilation techniques, and why? 

 2) To what extent can the SMAP surface soil moisture data correct the GPM precipitation 

estimates, and why? 

 3) To what extend can the SMAP surface soil moisture data improve streamflow 

simulation via a dual state/rainfall correction system? 

 4) How can we extract soil moisture dynamics from the SMAP data and use this 

information to evaluate process representation in hydrologic models? 

 

 To address Question 1 (Chapter 2), a Kalman-filter-based state updating system is 

applied to SMAP in a regional-scale basin, and the improvement in performance of streamflow 

simulations is assessed. Detailed decomposition of data assimilation steps is examined to provide 

insights to the underlying factors that affect the streamflow performance. To address Questions 2 
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and 3 (Chapter 3), an existing dual state/rainfall correction system is extended and applied to the 

SMAP soil moisture and GPM precipitation data in a regional-scale basin, and the improvement 

of both precipitation estimates and streamflow simulations is assessed. The reasons for the level 

of improvement in precipitation and streamflow simulations are investigated. Finally, to address 

Question 4 (Chapter 4), a unified multivariate regression method is proposed and applied to the 

global SMAP data to derive the governing factors for surface soil moisture dynamics. The 

extracted dynamics are then compared to a model-based global surface soil moisture dataset to 

inform its modeling setup. 
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Chapter 2. A FRAMEWORK FOR DIAGNOSING FACTORS 

DEGRADING THE STREAMFLOW 

PERFORMANCE OF A SOIL MOISTURE DATA 

ASSIMILATION SYSTEM 

This chapter has been accepted for publication in its current form in the Journal of 

Hydrometeorology. © American Meteorological Society. Used with permission. The 

supplemental material for this chapter is provided in appendix A. 

 

Mao Y., W. T. Crow, and B. Nijssen (2018), A framework for diagnosing factors degrading the 

streamflow performance of a soil moisture data assimilation system, J. Hydrometeorol., 

accepted, doi:10.1175/JHM-D-18-0115.1. 

 

Abstract 

Data assimilation (DA) techniques have been widely applied to assimilate satellite-based 

soil moisture (SM) measurements into hydrologic models to improve streamflow simulations. 

However, past studies have reached mixed conclusions regarding the degree of runoff 

improvement achieved via SM state updating. In this study, a synthetic diagnostic framework is 

designed to 1) decompose the random error components in a hydrologic simulation, 2) quantify 

the error terms that originate from SM states, and 3) assess the effectiveness of SM DA to correct 

these random errors. The general framework is illustrated through a case study in which surface 

Soil Moisture Active Passive (SMAP) data is assimilated into a large-scale land surface model in 

the Arkansas-Red River basin. The case study includes systematic error in the simulated 

streamflow that imposes a first-order limit on DA performance. In addition, about 60% of the 

random runoff error originates directly from rainfall and cannot be corrected by SM DA. In 

particular, fast-response runoff dominates in much of the basin but is relatively unresponsive to 

state updating. Slow-response runoff is strongly controlled by the bottom-layer SM and therefore 

only modestly improved via the assimilation of surface measurements. Combined, the total runoff 

improvement in the synthetic analysis is small (<10% over the basin). Improvements in the real 

SMAP-assimilated case are further limited due to systematic error and other factors such as 
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inaccurate error assumptions and SMAP rescaling. Findings from the diagnostic framework 

suggest that SM DA alone is insufficient to substantially improve streamflow estimates in large 

basins. 

 

2.1 INTRODUCTION 

Soil moisture (SM) is a key component of the hydrologic cycle. For hydrologic prediction 

purposes, SM plays an important role in runoff generation both by partitioning infiltration and 

surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-

storm periods [e.g. Freeze and Harlan, 1969; Western et al., 2002; Aubert et al., 2003]. 

Therefore, improved estimation of SM states in hydrologic models is potentially beneficial for 

streamflow prediction. 

A number of studies have explored the potential to assimilate SM measurements into 

hydrologic models for runoff simulation improvement, either via synthetic twin experiments 

[e.g., Reichle et al., 2008; Crow and Ryu, 2009; Chen et al., 2011; Brocca et al., 2012] or the 

assimilation of real SM measurements, especially remotely sensed products [e.g., Pauwels et al., 

2002; Francois et al., 2003; Parajka et al., 2006; Brocca et al., 2010; Wanders et al., 2014; 

Alvarez-Garreton et al., 2014; Kumar et al., 2014; Lievens et al., 2015; Massari et al., 2015]. 

However, these studies disagree on the benefits of assimilating SM data for streamflow 

improvement. Some studies have found improved streamflow simulation with SM assimilation 

[e.g., Pauwels et al., 2002; Francois et al., 2003; Brocca et al., 2010; Brocca et al., 2012; 

Wanders et al., 2014; Massari et al., 2015], while others have shown limited improvement or 

degraded streamflow after SM assimilation, or improved streamflow only under certain 

conditions. For example, Parajka et al. [2006] found that runoff was not improved, and 

sometimes even degraded, after satellite SM assimilation; Reichle et al. [2008] found (at best) 

marginally-improved runoff in a synthetic study; Alvarez-Garreton et al. [2014] found varying 

levels of improvement when looking at specific flood events; Kumar et al. [2014] found 

marginal improvements via SM assimilation; Lievens et al. [2015] found improved peak flows 

but degraded flow at a daily scale; Chen et al. [2011] found moderate streamflow improvement 

in a synthetic experiment but generally no improvement in a real-data case; and Brocca et al. 
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[2012] found improved streamflow when assimilating root-zone SM products, but limited 

success when only assimilating surface SM. 

Multiple factors control the magnitude of runoff improvement, including hydrologic 

model structure, basin characteristics, data assimilation (DA) techniques, error assumptions and 

the type of SM data product assimilated (see Massari et al. [2015] and Brocca et al. [2010] for 

useful overviews of these factors). Some past studies have diagnosed performance limitations for 

their specific DA applications. For example, Chen et al. [2011] argued that the weak vertical 

coupling in the Soil and Water Assessment Tool (SWAT) limited the success of updating deeper 

layer SM (and subsequently subsurface flow) in a synthetic twin experiment, and systematic 

model bias uncorrectable by DA further limited the streamflow improvement in a real data case; 

Brocca et al. [2012] found much larger streamflow improvement via assimilating root-zone SM 

product than via assimilating surface SM. Other studies such as Reichle et al. [2008], Alvarez-

Garreton et al. [2014] and Massari et al. [2015] discussed the impact of error assumptions, 

rescaling techniques, study basins, seasonality and hydrologic conditions on streamflow results 

in their specific cases. All together, these studies pointed out key features that could impact 

runoff improvement. 

Despite this progress, the diagnostic methods used by these past studies are typically only 

relevant to their specific application, resulting in conclusions that are mostly qualitative. 

Motivated by a SM DA experiment which yielded no discernible improvement in runoff 

estimates (see below, especially Figure 2.1), we aim to design a formal diagnostic framework 

that draws upon synthetic experiments to decompose error terms in streamflow simulation and to 

provide quantitative understanding of limiting factors in a SM DA system. We formally identify 

a number of error source terms that occur in the runoff simulation (see Figure 2.2): 

1) error in meteorological forcing (primarily precipitation) which is partly reflected in 

SM states and subsequently in runoff, and partly contributes directly to runoff without going 

through antecedent states; 

2) SM state error caused by an incorrect model representation of SM response to forcing 

or an incorrect representation of the temporal evolution of SM; and 

3) additional runoff error caused by an incorrect model representation of runoff 

generation processes or streamflow routing. 
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Built upon this error decomposition, we design a synthetic DA diagnostic framework to 

address two challenges. First, we distinguish the systematic and random error components (each 

error term in Figure 2.2 consists of both components), since Kalman-filter-based DA techniques 

can only correct random error. Second, we further investigate the random error and distinguish 

the random error associated with SM state variables from other sources of random error. We 

present a framework that serves as a general diagnostic approach for SM DA problems, which is 

illustrated by a case study in the Arkansas-Red River basin with a semi-distributed hydrologic 

model. 

Most studies in hydrologic DA focus solely on deterministic analysis results. However, a 

probabilistic analysis can also be applied to gain additional insight into DA performance. For 

example, De Lannoy et al. [2006] used several ensemble verification metrics commonly used in 

meteorology to assess the ensemble representation of SM. Several other DA studies used 

ensemble verification metrics to verify or calibrate error assumptions [e.g., Pauwels and De 

Lannoy, 2009; Brocca et al., 2012; Alvarez-Garreton et al., 2014], but typically reported only 

deterministic results as the final DA performance metric. Throughout this study, we use 

ensemble metrics not only as a verification and model selection tool, but also to evaluate DA 

performance from a probabilistic perspective.  

The remainder of this paper is organized as follows. Section 2.2 describes our synthetic 

diagnostic framework as well as the study domain, hydrologic model, and data used for the case 

study. Section 2.3 presents results from our real-data and synthetic experiments and illustrates 

the usage of the latter to help diagnose the former. Section 2.4 contains our conclusions. 
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Figure 2.1. Streamflow time series at two example USGS gauges. Black line: USGS observed 

streamflow; red line: open-loop simulated streamflow; blue lines: DA-updated ensemble 

streamflow. PER, PSR and NENSK metrics based on the entire simulation period (March 2015 -

December 2017) are labeled in each subplot (see Section 2.2.6 and Supplemental Material 

Section A2 for a full description of evaluation metrics). 
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Figure 2.2. Illustration of error decomposition in a streamflow simulation system (see Section 2.1 

in the text for detailed explanation of each term). All error terms in the diagram consist of a 

systematic error component and a random error component. The red highlighted terms are the 

parts correctable by SM DA. The blue numbers/text describe random error decomposition results 

from the Arkansas-Red case study. 

 

2.2 METHODS AND DATA 

Sections 2.2.1, 2.2.2 and 2.2.3 describe the study domain, hydrologic modeling approach 

and data used in the case study, respectively, for both the real-data and synthetic experiments. 

DA techniques and our framework design are then described in Sections 2.2.4 and 2.2.5, 

respectively. Finally, evaluation metrics are presented in Section 2.2.6. 

2.2.1 Case study domain 

The Arkansas-Red River basin is located in the south-central United States and covers an 

area of approximately 605,000 km2 (Figure 2.3). The basin consists of two major sub-basins, the 

Arkansas River and the Red River, and represents a major tributary of the Mississippi River. 

Within the basin, there is a clear east-west climatic gradient (wetter in the east and drier in the 

west). Most of the basin experiences little snow cover in winter except for mountainous areas on 

its far western edge. Vegetation cover varies from deciduous forest in the east to wooded 

grassland, shrubs, crops and grassland in the west. 
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Figure 2.3. Illustration of error decomposition in a streamflow simulation system (see Section 2.1 

in the text for detailed 

 

2.2.2 Case study hydrologic modeling and meteorological forcing data 

a) Hydrologic model description 

Hydrologic model simulations are based on version 5 of the Variable Infiltration Capacity 

(VIC) model [Liang et al., 1994; Hamman et al., 2018]. The VIC model is a large-scale, semi-

distributed model that simulates various land surface processes including both water balance and 

energy balance components. The VIC model is typically implemented on a grid cell basis, with 

each grid cell further divided into tiles via statistical distributions to represent sub-grid 

heterogeneity in elevation and vegetation cover. Particularly relevant to SM DA for runoff 

improvement, the soil column in each grid cell tile is discretized into L vertical layers, with water 

within each layer draining into the lower layer via a non-linear gravity-driven drainage curve 

[Brooks and Corey, 1964]. The sum of water contained in the top (L - 1) soil layers determines 

the partitioning of rainfall or snowmelt into infiltration and overland runoff (i.e., fast-response 

runoff generated over saturated soil) by the variable infiltration capacity curve [Zhao et al., 1980; 

Wood et al., 1992]. Slow-response runoff generated as drainage from the deep soil is determined 

by the moisture level in the bottom layer via a non-linear recession curve [Todini, 1996; Nijssen 

et al., 2001]. 
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In this study, the Arkansas-Red River basin was modeled at a spatial resolution of 1/8º 

(3999 grid cells in total) with each grid cell further divided into multiple vegetation tiles. We did 

not consider heterogeneity in sub-grid elevation. All model parameters regarding vegetation 

cover and soil properties were taken from Maurer et al. [2002] and calibrated for large-basin 

streamflow. The soil column in each grid cell was divided into 3 vertical layers, with domain-

average thicknesses of 0.10 m, 0.40 m and 0.93 m, respectively. The VIC model was run at a 3-

hourly timestep in water balance mode. 

b) Meteorological forcing data 

The real-data experiment was conducted for March 2015 – December 2017, a period 

when NASA Soil Moisture Active/Passive (SMAP) [Entekhabi et al., 2010] SM retrieval data 

was available. The North American Land Data Assimilation System Phase 2 (NLDAS-2) 

meteorological data [Xia et al., 2009] was used to force the simulations. This dataset was chosen 

because of its temporal coverage, temporal resolution, and data quality. Hourly NLDAS-2 

meteorological variables required by VIC were aggregated to a 3-hourly timestep. NLDAS-2 

forcing data from 1979-2015 were used to spin up the VIC model. 

Since the SMAP retrievals are only available after mid-2015, we selected a longer ten-

year period (1980 – 1989) for the synthetic experiments in order to more robustly sample 

performance evaluation metrics. We used daily precipitation and maximum and minimum 

temperatures from one of the realizations of a 1/8o ensemble meteorology product [Newman et 

al., 2015]. This forcing dataset was used because it considered observation uncertainty, making it 

suitable for DA applications. Daily wind speed for this period was taken from a 1/8o gridded 

meteorological data product by Maurer et al. [2002]. Other meteorological forcing data required 

by VIC, which includes shortwave and longwave radiation, air pressure and humidity, were 

calculated using the MTCLIM algorithms and the Tennessee Valley Authority algorithm, and 

then disaggregated to a 3-hourly timestep following Bohn et al. [2013]. Prior to the synthetic 

simulation period, VIC was spun-up from 1949-1979 using the Maurer et al. [2002] forcing data. 

c) Streamflow routing 

For the real-data experiments, we routed grid cell runoff through the stream channel 

using the RVIC routing model [Hamman et al., 2017], which is a source-to-sink model based on 

the routing model typically used as a post-processor for VIC model runoff simulations [Lohmann 
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et al., 1996; 1998]. In the synthetic experiments, locally-generated runoff was evaluated without 

routing into stream channels. 

 

2.2.3 SMAP retrievals and USGS streamflow data 

The SMAP mission provides SM estimates for the top 5 centimeters of the soil column 

with a revisit time of 2-3 days, a resolution of 36 km, and a 50-hour data latency. Here, SMAP 

L3 Passive retrievals [O'Neill et al., 2016] were assimilated during the non-winter seasons 

(March to October). A few SMAP pixels with near-constant retrieval values, indicating an 

obvious quality flaw, were manually masked out. Daily streamflow data acquired at 8 USGS 

streamflow sites [USGS, 2018] were used for evaluation in the real-data experiment (see Figure 

2.3 and Table 2.1 for site locations). These 8 sites were selected due to their lack of human 

streamflow regulation and good rain gauge coverage (see Crow et al. [2017] for details). 

 

Table 2.1. List of basins evaluated in the study with their corresponding USGS gaged streamflow 

site information. 

Basin 

number 

USGS 

station no. 
USGS station name 

1 07144200 Little Arkansas River at Valley Center, KS 

2 07144780 Ninnescah River AB Cheney Re, KS 

3 07147800 Walnut River at Winfield, KS 

4 07152000 Chikaskia River near Blackwell, OK 

5 07177500 Bird Creek Near Sperry, OK 

6 07186000 Spring River near Wace, MO 

7 07196500 Illinois River near Tahlequah, OK 

8 07243500 Deep Fork near Beggs, OK 

 

2.2.4 Ensemble Kalman filter (EnKF) 

Our implementation of the standard Ensemble Kalman Filter (EnKF) is described in the 

Supplementary Materials (Section A1). In the following, we describe implementation details 

specific to our application. 

a) State vector, observation operator and ensemble size 
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Although SMAP only provides surface measurements, deeper layer SM updates are 

essential for successful runoff improvement because of their control on runoff generation 

processes in VIC (discussed further in Section 2.3.2). However, in the Lievens et al. [2015, 

2016] SM DA studies using VIC, the authors did not include the bottom-layer state in the 

Kalman filter to avoid unstable behavior. We will further examine this decision via the synthetic 

experiments in Section 2.3.3.a. However, unless otherwise noted, all DA results are based on the 

Lievens et al. [2015, 2016] approach whereby only the first and second soil layers are updated. 

Furthermore, temperature states were not updated in this study. 

Following Gruber et al. [2015], each pixel of observations was assimilated separately 

(i.e., 1D filtering) without consideration of spatially correlated errors. Gruber et al. [2015] found 

only limited performance enhancement when transitioning from a 1D to a 2D filter for the 

assimilation of remotely sensed SM. For the synthetic experiments, synthetic surface SM 

measurements were generated at the same spatial resolution as the VIC model setup and 

assimilated into each 1/8o VIC grid cell separately. In such a 1D filter, the measurement vector ỹ 

(Equation (A2) in Supplemental Material) reduces to a scalar: 

1

obsy SM=         (2.1) 

where SM1
obs is the synthetic observation of surface SM at 1/8o resolution. The state vector (x in 

Equations (A1) and (A2) in Supplemental Material) is simply a collection of SM states for the 

top two layers in all vegetation tiles within a grid cell. The observation operator (H in Equation 

(A2) in Supplemental Material) calculates the tile-averaged first-layer SM state as a map from 

the state space to the observation space. 

For the real-data experiment, SMAP retrievals were acquired at a coarser spatial 

resolution (36-km) than the VIC grid (1/8o), and the grid edges do not align. To resolve this 

spatial mismatch, every VIC grid cell is assigned to the nearest SMAP pixel. Then for each 

SMAP pixel, SMAP was assimilated to update all corresponding VIC grid cells via EnKF by 

augmenting the states from all those grid cells in the state vector. In this case, the measurement 

vector �̃� is still a scalar as in Equation (2.1), and the observation operator H calculates the areal-

averaged first-layer SM state from the multiple VIC grid cells. Unless otherwise stated, a 32-

member Monte Carlo ensemble was used to generate the EnKF. 

Although potential bias in SM states as well as in runoff can, in theory, develop in the 

EnKF result due to the interaction of zero-mean noise with model nonlinearities, we did not 
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implement bias correction schemes during EnKF (as in for example Ryu et al. [2009]) since 

including such a scheme did not improve filter performance in our case (results not shown). This 

decision does not significantly degrade our EnKF result because, as applied here, the random 

precipitation perturbations are relatively small and thus produce a correspondingly small EnKF 

propagation bias. 

b) Error assumptions 

Measurement errors were estimated to be in the range of 0.03 to 0.045 m3/m3 for the 

SMAP L3 retrievals, which is roughly consistent with those reported by SMAP validation studies 

[e.g., Colliander et al., 2017; Chan et al., 2017]. For each SMAP pixel (or the synthetic 1/8o 

measurements in the synthetic case), we linearly mapped its leaf area index (LAI) to the above 

error range, with larger error values corresponding to denser vegetation cover. A positive 

relationship between vegetation density and satellite-observed moisture error has been well 

documented [e.g., Crow et al., 2010]. Generally, eastern portions of the Arkansas-Red River 

basin have relatively larger measurement errors than western areas due to their denser vegetation 

cover. 

The EnKF method requires the generation of an ensemble to capture the error in model 

propagation. We perturbed precipitation forcing at a 3-hourly timestep with multiplicative 

random error. The multiplier was drawn from a log-normal distribution with mean one and a 

dimensionless standard deviation of 0.3, and high temporal autocorrelation (with the underlying 

normal random variable generated by a first-order autoregressive process with coefficient 0.9 [-

]). The log-normal precipitation error form has been used frequently [e.g., Ciach and Krajewski, 

1999; Nijssen and Lettenmaier, 2004; Chen et al., 2014]. The standard deviation used here is 

smaller than used in some other studies (e.g., Chen et al. [2014] used a standard deviation of 1 [-

]) to represent the good-quality, gauge-informed NLDAS-2 forcing dataset. Direct state 

perturbation was applied to all SM layers and kept constant over space without spatial or 

temporal autocorrelation (normally distributed with zero mean and a standard deviation of 0.5 

mm for all three layers). This state perturbation was tuned in the real-data case to ensure that the 

overall normalized variance of the filter innovation is approximately one, which, assuming the 

correct specification of measurement error, is a necessary condition for proper error levels in a 

filter (see Mehra [1971] and Crow and Bolten [2007]). The state perturbation was assumed to be 



19 

 

 

highly correlated between vegetation tiles and vertical layers (correlation coefficient = 0.9 [-]). 

These same model error statistics were also used for the synthetic experiments. 

c) SMAP rescaling 

The SMAP SM measurements were rescaled prior to their assimilation in the real data 

experiment. Specifically, we rescaled SMAP L3 to match the seasonal (31-day window) mean 

and long-term (the 3-year simulation period) standard deviation of the VIC-simulated surface-

layer SM time series. Such moment-matching rescaling is one of the standard techniques in DA 

[e.g., Chen et al., 2011; Brocca et al., 2012; Alvarez-Garreton et al., 2013]. The rescaling was 

applied to each SMAP pixel separately and to the ascending and descending retrievals separately. 

The same standard deviation ratio used for SM rescaling was also applied to rescale SMAP 

retrieval errors into the VIC model regime. 

 

2.2.5 Experimental design 

In this section we describe the real-data experiment followed by a set of synthetic 

experiments conducted to diagnose notable results from the real-data experiment. As motivated 

in the introduction, the synthetic experiments quantify the random error components in a 

simulation system only since these are the only components potentially correctable by the EnKF. 

a) Real-data experiment 

A so-called “open-loop” run serves as the baseline for modeling performance without any 

DA. Here the open-loop run was defined as a single, unperturbed VIC simulation. Deterministic 

modeling improvement using DA will be evaluated by comparing to the open-loop run. 

To evaluate DA performance probabilistically, we generated an ensemble of perturbed 

(but not updated) VIC simulations to serve as the baseline (hereafter called the “open-loop 

ensemble”). The error statistics of the perturbations added to the forcings and states in the open-

loop ensemble were the same as those applied in the DA procedure (see Section 2.2.4). The size 

of the open-loop ensemble was also kept the same as the DA ensemble (i.e., 32 members unless 

otherwise noted). 

The DA setup described in Section 2.2.4 was applied to assimilate SMAP retrievals into 

VIC. The final DA setup for the real-data experiment was informed by findings from the 

synthetic twin experiment (see Section 2.3.3). The runoff values after DA were routed to the 
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gauge locations and compared with streamflow observations. Streamflow improvement after DA 

was evaluated both deterministically and probabilistically. 

b) Synthetic experiments 

1) Open-loop, synthetic truth, and synthetic measurement generation 

In the synthetic experiments, one single perturbed VIC realization was chosen as the 

synthetic “truth” (following Crow and Reichle [2008] and Kumar et al. [2009]). Synthetic 

measurements were then generated by degrading the true first-layer SM by adding random 

observation errors (error statistics consistent with those described in Section 2.2.4). Synthetic 

measurements were generated at a 24-hour temporal interval which roughly matches the average 

length of SMAP data gaps. The synthetic open-loop runs were produced as in the real-data case 

described above. 

2) Synthetic perfect-state/forcing experiments 

We conducted two sets of model experiments to attribute the total random runoff error to 

individual error sources. 

i) In the “perfect-state” analysis, we substituted the true antecedent states (including all-

layer SM states, snow states and all other initial conditions) into the VIC model at a 24-hour 

interval and evaluated the error reduction of subsequent runoff simulations (relative to the open-

loop runoff). Any such error reduction is attributable to the improved specification of antecedent 

states, where the uncorrected portion of runoff error can be attributed directly to rainfall error. 

The former is potentially correctable by SM updating (highlighted in red in Figure 2.2), while the 

latter is not (the grey parts of Figure 2.2). To further decompose the error source from each 

individual SM layer, we conducted three additional perfect-single-state runs, where we 

substituted the true ith-layer SM (SMi) (where i = 1, 2 and 3) states into the VIC model while 

keeping all the other antecedent states the same as in the open-loop baseline. We performed this 

experiment separately for each of the three soil layers. 

ii) In the “perfect-forcing” analysis, we used the true precipitation forcing as input to the 

VIC model without inserting the true model states and evaluated the resulting error reduction in 

SM states. This error reduction in SM quantifies the part of the forcing error reflected in SM 

states and therefore potentially correctable by SM updating (Figure 2.2). SM error reduction was 

also calculated for each layer separately for additional interpretation. 

    3) Synthetic identical twin experiment 
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In addition, a standard synthetic identical twin experiment was conducted to quantify the 

overall effectiveness of SM DA to correct random error components linked directly to antecedent 

SM states. Specifically, we assimilated synthetic surface SM retrievals into VIC and evaluated 

the subsequent improvement in SM states and runoff fluxes relative to the open-loop baseline. 

The effect of some EnKF methodological choices will be investigated in more detail in Section 

2.3.3.a. 

 

2.2.6 Evaluation metrics 

We evaluated the improvement of SM states and local runoff fluxes in the synthetic 

experiment, and the improvement of routed streamflow in the real-data experiment. Runoff was 

aggregated to daily values after which we applied a logarithmic transformation: 

  log( 1)logRunoff runoff= +        (2.2) 

The logarithmic transformation reduces the dominant influence of a few large flood events on the 

evaluation metric and the "+ 1" in the transformation has the effect that zero runoff values 

remain zero after transformation. SM state was not log-transformed. 

We used percent root-mean-squared error reduction (PER) for deterministic evaluation. 

In addition, the Kling-Gupta efficiency (KGE) [Gupta et al. 2009] was calculated for streamflow 

to quantify the baseline performance. KGE describes overall performance by integrating the 

evaluation of correlation, variance, and bias, and ranges from negative infinity to 1 with values 

closer to 1 indicating better performance.  

In addition, two probabilistic metrics were used: percent continuous rank probability 

score reduction (PSR) and normalized ensemble skill (NENSK). PSR measures the reduction of 

continuous rank probability score (CRPS) which, in turn, measures the deviation of the 

cumulative distribution function (CDF) of an ensemble from that of a reference (i.e., observation 

in the real-data case or truth in the synthetic case) [Hersbach, 2000]. NENSK measures the 

ensemble-mean error normalized by ensemble spread: 

   
ENSK

NENSK
ENSP

=        (2.3) 

where the ensemble skill (ENSK) is the temporal mean of ensemble-mean squared error, and the 

ensemble spread (ENSP) is the temporal mean of ensemble variance [De Lannoy et al., 2006; 
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Brocca et al., 2012; Alvarez-Garreton et al., 2014]. In an ideal situation where an ensemble is a 

correct representation of analysis uncertainty, NENSK should be one [Talagrand et al., 1997; 

Wilks, 2011]. NENSK > 1 indicates an under-dispersed ensemble while NENSK < 1 indicates an 

over-dispersed ensemble. Note that NENSK is calculated based on the updated ensemble alone 

and is not compared to the open-loop baseline. See Supplemental Material (Section A2) for 

mathematical details concerning the above metrics. 

 

2.3 ARKANSAS-RED CASE STUDY RESULTS AND DISCUSSION 

 DA results for the real SMAP-assimilated case study will be presented in this section, 

followed by the diagnostic results from the synthetic framework. Note that we present the real-

data results first before the synthetic results (even if the former uses methodological choices 

informed by the latter) since we aim to use the synthetic framework as a tool to diagnose the 

streamflow improvement we see in the real-data case. Although the diagnostic conclusions we 

draw are case-specific, we use this case study as a demonstration of the usage of our general 

diagnostic framework. 

2.3.1 Open-loop streamflow simulation and SMAP assimilation performance 

To begin, we present the NLDAS-2 forced, open-loop baseline streamflow simulation 

evaluated against USGS observations at the 8 sub-basins. This open-loop streamflow 

performance is compared with the corresponding open-loop runoff performance from the 

synthetic case. Because synthetic runoff is evaluated at each grid cell, sub-basin median statistics 

are reported. Since the synthetic and the real-data experiments were conducted for different time 

periods, the comparison is primarily qualitative. The daily open-loop KGE results are shown in 

Table 2.2. For all sites, the real-data open-loop case performs comparably to or worse than the 

corresponding synthetic case. This discrepancy reflects the existence of systematic error in the 

real-data streamflow simulation, since the synthetic case is designed to only capture the random 

error components (see Introduction and Section 2.2.5). The systematic error is also visible from 

the open-loop time series at two example sites in Figure 2.1 at Little Arkansas River at Valley 
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Center, KS, and Deep Fork near Beggs, OK. For example, the red lines in both show simulated 

flow recessing too rapidly. 

The real-data DA results assimilated by SMAP are presented in Table 2.2 (the “real-data” 

columns). Note that this experiment was conducted using a DA setup that was informed by our 

synthetic twin experiment, with 32-member EnKF and no SM3 Kalman update (see Section 

2.3.3.a below for a complete discussion of these synthetic experiments). Overall the streamflow 

correction is small, with PER ranging from -2.0% to 7.0% and PSR close to zero across sub-

basins. The example time series in Figure 2.1 illustrate that DA often nudges the simulated flow 

in the correct direction, but is unable to substantially correct the inaccurate flow behavior. Since 

the streamflow ensemble produced by DA only accounts for random error, the existence of the 

systematic error partly results in an ensemble with too little dispersion and consequently a large 

NENSK (>20 at all sites). 

The systematic error we observe here is partly due to model parameterization error. 

Although the baseline VIC simulation could be improved by parameter calibration for each sub-

basin, we chose not to perform this additional calibration for the following reasons: 1) Maurer et 

al. [2002] calibrated the current VIC parameter set toward large-basin streamflow and this 

parameter set has been used widely in large-scale VIC applications; 2) although it is possible to 

calibrate individual unregulated small basins based on streamflow observations, it is challenging 

to generalize such a calibration scheme to a large domain due to flow regulation, low-quality 

meteorological forcing data and lack of streamflow observations. Therefore, we chose not to 

calibrate and to maintain the level of parameterization error we see here, so that the evaluation 

and investigation in this section is more relevant to large-scale DA applications where similar 

errors are likely to occur. 
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Table 2.2. Comparison of runoff metrics in the real-data and the synthetic experiments. NENSK 

is only shown for the real-data case. Baseflow index (calculated as the fraction of slow-response 

runoff in total runoff from the synthetic open-loop simulation) of each sub-basin is also shown. 
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2.3.2 Decomposition of random runoff error via synthetic perfect-state/forcing analysis 

As a first step to diagnose the above limited streamflow improvement via SM DA, in this 

section we decompose the random error components in the runoff simulations, identify their 

sources, and discuss the theoretical limitation of the error reduction using a set of perfect-

state/forcing synthetic experiments. 

a) Perfect-state analysis 

Results of the perfect-state experiments are shown in Figure 2.4. PER was calculated 

based on the runoff fluxes immediately after a state substitution and therefore reflects the runoff 

response to state substitution. Bluer shading in the figure indicates greater runoff improvement in 

response to the substitution of perfect antecedent state(s), thus indicating that more of the runoff 

error originates from the error in antecedent state(s). 

The first row in Figure 2.4 shows the runoff PER by substituting the true antecedent SM 

states for all layers (and all other VIC model states). In addition to total runoff, fast-response and 

slow-response runoff are analyzed separately. Total runoff displays a domain-median PER of 

38.4% relative to the open-loop baseline. The runoff error reduction primarily relies on slow-

response runoff, whose error is almost eliminated (99.5% domain-median PER). Conversely, 

fast-response runoff is only modestly improved (13.4% domain-median PER) even if all 

antecedent VIC states are known perfectly. 

This result suggests that only 38.4% of the total runoff error originates from antecedent 

states, while the remaining 61.6% is derived directly from precipitation forcing error (see “runoff 

error” box in the lower right side of Figure 2.2; the case-study error decomposition results are 

marked in blue on the diagram). Therefore, this error decomposition imposes a first-order upper 

limit for runoff improvement via SM updating. Further reduction of the runoff error that 

originates directly from the forcing requires additional techniques such as rainfall correction 

[e.g., Crow et al., 2011]. This upper limit is especially restrictive for fast-response runoff since 

86.6% of its error is attributed directly to within-storm rainfall forcing. 

We further evaluate the drastically different error decomposition of fast- versus slow-

response runoff by calculating the runoff PER from single-layer true state substitutions (rows 2 – 

4 in Figure 2.4). The (small) PER of fast-response runoff mainly comes from SM2. The lack of 

control of SM1 on fast-response runoff error reduction is due to the VIC model structure as well 
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as its parameterization: VIC combines the moisture amount in the top two layers to determine 

fast-response runoff. Since the second layer is typically much thicker than the first layer, it is 

dominant in controlling the overland runoff/infiltration partitioning process. In contrast, slow-

response runoff error originates almost entirely from the SM3 state alone, since VIC simulates 

slow-response runoff as a direct function of the SM3 state. The difference between fast- and 

slow-response runoff can also explain the spatial gradient in total runoff PER. The wetter and 

more vegetated areas in the eastern part of the basin are more dominated by subsurface flow, and 

thus runoff is more strongly linked to states. In contrast, drier areas in the western part of the 

domain rely more on surface-excess, fast-response runoff, and thus its runoff error primarily 

originates directly from forcing. 

b) Perfect-forcing analysis 

Figure 2.5 shows PER in SM when VIC is forced by the synthetic true precipitation. 

Domain-median PER of total SM (sum of all three layers) is reduced by 39.7%, which represents 

the random SM error that originates from uncertain forcing. The remaining 60.3% of SM error 

results from errors in the model representation of SM-related processes itself (see the lower left 

box in Figure 2.2). In contrast to the forcing error directly contributing to runoff as quantified 

above in Section 2.3.2.a, SM error identified here that arises from forcing error is potentially 

correctable by SM updating. We also note that surface-layer PER in response to perfect forcing 

is smaller than PER in deeper layers (Figure 2.5). This is likely due to the longer memory of 

deeper layer SM, whose error, over time, reflects the accumulated error in precipitation forcing. 

To summarize the perfect-state/forcing analysis, we find that, in our case study, 

approximately 60% of the random error in runoff directly originates from precipitation forcing 

and is thus uncorrectable by SM updating. In particular, fast-response runoff error is largely 

attributable to direct forcing error and therefore cannot be substantially corrected by SM DA, 

while slow-response runoff is strongly state-controlled and its error reduction relies largely on 

SM3 correction. The part of the precipitation error that is reflected in SM states is also quantified 

and is potentially correctable via SM DA. These case-specific conclusions serve to illustrate the 

usage of the general framework to decompose error sources and quantify theoretical limitations 

in the application of SM DA to enhance streamflow simulation. 
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Figure 2.4. Maps of percent error reduction (PER) of runoff for synthetic perfect-state analysis. 

The first row shows the PER when we substitute true antecedent states of all VIC states. The 

second through fourth rows show the PER when we only substitute the true SM1 state, SM2 state 

and SM3 state only, respectively. The columns show PER of total runoff fluxes, fast-response 

runoff and slow-response runoff, respectively. The number on each panel is the domain-median 

PER value. Blue shading indicates improved runoff accuracy and red shading indicates degraded 

runoff accuracy. 
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Figure 2.5. Maps of percent error reduction (PER) of SM for the synthetic perfect-state analysis. 

Each panel shows PER of the total SM (sum of all three layers), SM1, SM2 and SM3, 

respectively. The number on each panel is the domain-median PER value. Blue shading indicates 

improved SM accuracy and red shading indicates degraded SM accuracy. 
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2.3.3 Effectiveness of random error reduction via identical twin experiments and diagnosis of 

real-data performance 

The perfect-state/forcing analysis presented above demonstrates that, in our case study, 

constraining the VIC SM3 state is critical for reducing random error in runoff via SM DA. In this 

section, we will first examine factors determining SM3 DA performance in a smaller subdomain 

via a synthetic identical twin experiment. Then, we will present the synthetic DA performance 

for the entire domain. 

a) Small-domain investigation on SM3 DA performance 

We arbitrarily chose a smaller domain to further investigate DA performance (a box 

around the Little Arkansas sub-basin, see Figure 2.3, sub-basin 1). As mentioned in Section 

2.2.4, we examine the effect of including SM3 in the EnKF state vector, which was excluded by 

Lievens et al. [2015, 2016]. According to Kalman filter theory, we should be able to include any 

state variable in the state vector, even if it is only weakly correlated or uncorrelated with the 

available measurements. The EnKF algorithm should be able to correctly determine the level of 

correlation and use that information in the subsequent update. However, in practice SM3 

ensembles tend to be under-dispersed when we update SM3 as part of our EnKF (first row in 

Figure 2.6 which shows runoff at a single grid cell with NENSK of the updated ensemble greater 

than 1). Possible reasons for this include: 1) a finite ensemble size, which can result in an 

overestimate of the error correlation between the surface measurement and SM3, leading to an 

overconfident update; 2) nonlinearity of the model, which can result in a non-optimal update 

after propagation. These problems are analogous to three-dimensional atmospheric DA where 

state vectors are commonly “localized” to exclude states geographically far from observations 

[e.g., Anderson, 2007]. In our context, excluding SM3 from EnKF essentially applies “vertical 

localization” since we assume the SMAP surface measurements contain little information about 

SM3. 

To examine this issue, we conducted a set of synthetic DA analyses in the small sub-

basin altering: 1) ensemble size and 2) the decision of whether or not to apply “vertical 

localization”, i.e., not including SM3 states in the Kalman state vector. For all these experiments, 

the assimilated synthetic measurements and the truth were kept unchanged as described in 

Section 2.2.5. In the synthetic truth, a weak vertical error correlation exists across layers 
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(because of the way we generated the open-loop baseline and the synthetic truth), but the goal is 

to examine how much benefit there is in updating SM3. 

Figure 2.7 to Figure 2.9 show maps of the DA performance for three different DA setups 

for the small domain. The first row (default) includes the SM3 state update in EnKF, and the 

second row excludes SM3 Kalman update. Figure 2.6 shows example time series at one grid cell 

for the same experiments. In the following we discuss the effect of each DA variation in detail: 

    1) The effect of ensemble size 

Comparing the columns in Figure 2.6 to Figure 2.9, a larger ensemble size clearly 

benefits the SM3 update both deterministically and probabilistically. Specifically, when using 

the default DA setup, substantial improvement in both PER and PSR is seen when the ensemble 

size increases from N = 16 to N = 64. NENSK also steadily drops closer to one with larger 

ensemble sizes (row 1 in Figure 2.9). Interestingly, the benefit of a larger ensemble size is much 

smaller when we do not update SM3 in DA (row 2 in Figure 2.6 to Figure 2.9). We will further 

discuss the reason for this below. 

    2) The effect of vertical localization (i.e., exclude SM3 update in EnKF) 

Excluding SM3 from Kalman update generally results in better SM3 estimates 

(comparing row 2 with row 1 in Figure 2.6 to Figure 2.9). This confirms our hypothesis that 

SM3, which is only weakly correlated with the surface measurement, is prone to overconfident 

Kalman updates, because the finite ensemble tends to overestimate the vertical correlation. The 

benefit of vertical localization is less significant for larger ensemble size, which again confirms 

that it is mainly the finite ensemble size that causes the overconfident SM3 update. Note that 

even without direct Kalman updating, SM3 is still moderately improved by approximately 20% 

in terms of PER and PSR due to its positive response to updating SM1 and SM2.   

In terms of PER and PSR, vertical localization still enhances SM3 performance when N 

grows to 32 but shows no extra benefit beyond that. However, for NENSK, SM3 localization 

continues to benefit when we increase N from 32 to 64 (Figure 2.9). In other words, the ensemble 

representation of SM3, quantified by NENSK, still suffers slightly from overconfident updates 

with N = 64. This conclusion is based on our ensemble evaluation and cannot be determined 

solely from a deterministic evaluation. 
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Figure 2.6. Example SM3 time series at one grid cell for the small-domain synthetic DA 

experiments (37.9375o N, 97.9375o W, which is located in the southwest part of the small 

domain). Black lines: synthetic truth; red lines: the open-loop analysis; light blue lines: the 

updated ensemble; blue lines: updated ensemble-mean. The 10-year PER, PSR and NENSK 

statistics of the updated ensemble are labeled in each subplot. The columns show ensemble sizes 

N = 16, 32 and 64, respectively; the rows show the default DA setup and no-Kalman-SM3-

update DA run, respectively. 
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Figure 2.7. Maps of percent error reduction (PER) of SM3 for the small-domain synthetic DA 

experiments. The number on top of each subplot is the domain-median PER value. The subplot 

panel layout is the same as in Figure 2.6. Blue shading refers to improved SM3 accuracy and red 

color shading refers to degraded SM3 accuracy. 
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Figure 2.8. Same as Figure 2.7, but for percent CRPS reduction (PSR) of SM3. 
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Figure 2.9. Same as Figure 2.7, but for NENSK of SM3. Lighter color (either purple or green) 

indicates a NENSK closer to one and, therefore, better ensemble representation. 

 

b) Whole-domain (Arkansas-Red) results from the synthetic twin experiment 

Based on the previous small-domain studies, our final DA-setup in the case study used 32 

ensemble members and no SM3 updating in order to balance DA performance and computational 

cost. We expect that these choices will provide an optimal EnKF analysis. Figure 2.10 and 

Figure 2.11 show PER and PSR results, respectively, of the whole-domain synthetic twin 

experiment. Both SM1 and SM2 states are effectively improved, with > 30% domain-median 

PER and approximately 30% PSR. The fact that the update of SM2 is only slightly less effective 

than that of SM1 suggests that SM1 and SM2 are highly coupled in the VIC model, and that the 

information contained in the surface measurement can be used effectively to update SM2. SM3 

states are moderately improved as well, with domain-median PER of 24.8% and PSR of 13.7%. 

PSR is in general smaller than PER, especially for SM3, possibly related to the challenge of a 

good ensemble representation in the bottom layer as discussed in Section 2.3.3.a. The 
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deterministic SM3 improvement shows a clear spatial pattern, with greater improvement in some 

sub-regions in the east and much less improvement in the west. In our case, the vertical coupling 

is much weaker in the west of the basin and stronger in some sub-regions in the east (see Figure 

2.10). This is consistent with Kumar et al. [2009] who found that the effectiveness of deeper 

layer SM updates via surface assimilation depends on the degree of vertical coupling between 

soil layers, which is, in turn, determined by the specific model used, model parameters, and 

climate. 

Even in the synthetic twin experiment containing no systematic error and assuming 

perfect statistical knowledge of errors, fast-response runoff is essentially unimproved across the 

entire domain. This is unsurprising, given the finding from the perfect-state analysis in Section 

2.3.2that most error in fast-response runoff does not originate from error in the antecedent states. 

Slow-response runoff, on the other hand, does show improvement, with a domain-median PER 

value of 20.0% and a value PSR of 13.0%. Combined, total runoff is on average slightly 

improved (domain-median PER of 7.8% and PSR of 7.1%) and shows the same spatial gradient 

noted before in the perfect-state experiments (i.e., slight improvement in the east and almost no 

improvement in the west). 
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Figure 2.10. Maps of percent error reduction (PER) of DA-updated SM states and daily runoff 

fluxes from the synthetic experiment. Domain-median PER values are labeled on each subplot. 
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Figure 2.11. Same as Figure 2.10 but for percent CRPS reduction (PSR). 

 

c) Diagnosing the real-data results using the synthetic experiments 

We further compare the results from the synthetic SM DA with those from the SMAP-

assimilated real-data experiment presented earlier in Section 2.3.1 at the 8 USGS sites (Table 

2.2, the “synthetic, total runoff” and “real-data” columns). In general, larger synthetic PER 

corresponds to larger real-data PER across sub-basins (this correspondence is less clear in PSR 

partly because real-data PSR is near-zero for most sub-basins). However, the real-data runoff 

improvement is much smaller than the synthetic improvement at all sub-basins because of 

significant systematic error existing in the real-data simulation case, which is not correctable by 

SM DA. SMAP data quality, SMAP rescaling, spatial grid-matching techniques, and incorrect 
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error assumptions may further affect the real-data case. While these factors are interesting 

research topics themselves, they have been investigated by previous studies (e.g., Massari et al., 

2015; Alvarez-Garreton et al., 2013) and are not the focus of this study. 

Finally, we examine the synthetic fast- and slow-response runoff separately for each sub-

basin (Table 2.2). For the two example sites shown in Figure 2.1, they have obviously different 

characteristics: in the Little Arkansas sub-basin there is stronger vertical coupling and therefore 

better synthetic performance, while in the Deep River sub-basin there is weaker vertical coupling 

and therefore poorer synthetic performance. The stronger vertical coupling at Little Arkansas is 

reflected in the real-data time series (Figure 2.1) which shows a baseflow recession more 

sensitive to the DA update than in the Deep sub-basin. This results in both a larger deterministic 

streamflow update and a larger ensemble spread that better covers the observation for the Little 

Arkansas. The flashy streamflow peaks are almost unaffected by DA at both sites because of the 

weak coupling between runoff and top layer SM. 

Assisted by the understanding gained from the synthetic framework, we are able to 

extend the small-sub-basin results to parts of our study domain where unregulated streamflow is 

unavailable for model evaluation. We do not expect successful streamflow improvement from 

SMAP assimilation in the western part of the Arkansas-Red Basin where fast-response runoff is 

dominant. 

 

2.4 CONCLUSIONS 

In this paper, we present a diagnostic framework that builds on a set of synthetic 

experiments to decompose the error terms in streamflow simulation and to provide quantified 

understanding of limiting factors in a SM DA system. Specifically, the synthetic framework 

captures the random error components in the simulation system, distinguishes the runoff error 

terms that originate from errors in SM states, and assesses the effectiveness of SM DA to correct 

them. 

The usage of the general framework is illustrated through a VIC case study in the 

Arkansas-Red River basin. A significant level of systematic error was found in the real-data 

experiment, which imposes a first-order limit on the extent to which SMAP assimilation can 

improve streamflow. We further found through the synthetic framework that approximately 60% 
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of the random runoff error in the basin comes directly from precipitation forcing rather than 

antecedent states and is therefore not correctable by SM DA. In particular, fast-response runoff 

has weak coupling with antecedent states and is insensitive to state updating. Slow-response 

runoff, which is a smaller component in total runoff in much of the basin, relies strongly on the 

bottom-layer SM for its correction. This critical layer is excluded from the EnKF state vector to 

avoid suboptimal filter results, and its improvement relies on its response to SM1 and SM2 

updating and is only moderately improved. Therefore, total runoff improvement is quite low - 

even in a synthetic twin experiment assuming purely random errors and a perfect statistical 

parameterization of these errors. Real SMAP assimilation exhibits even less successful 

streamflow improvement due to the additional presence of systematic error and other factors 

such as SMAP rescaling and inaccurate error assumptions. 

The results from our case study highlight that state correction alone is not sufficient to 

improve streamflow substantially. Although this conclusion is drawn from the specific case 

study, it likely holds for a generic streamflow simulation system, especially in large-scale basins, 

where systematic error and rainfall error are inevitable. Therefore, in addition to more 

sophisticated SM DA techniques, substantial streamflow improvement would only be possible if 

future research focuses on reducing these error components that are not correctable by SM DA. 

Systematic error reduction for large-scale basins is a challenging task but has its potential via, for 

example, innovative model parameterization techniques. For example, Mizukami et al. [2017] 

calibrated “transfer functions” instead of model parameters themselves, which can then be 

applied to distributed model parameterization. The increasing availability of large-scale, satellite-

observed distributed hydrologic datasets such as SMAP and Global Precipitation Mission (GPM) 

data [Hou et al., 2014] is especially promising for informing model representation. Crow et al. 

[2018], for example, diagnosed systematic coupling errors between antecedent states and runoff 

generation processes in land surface models using the SMAP data. As for rainfall error, a dual 

correction system has been developed in the past decade whereby SM measurements are used to 

simultaneously update antecedent SM states and correct rainfall estimates [e.g., Chen et al., 

2014; Alvarez-Garreton et al., 2016]. The findings from this study support the potential of such 

correction schemes. 
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Chapter 3. DUAL STATE/RAINFALL CORRECTION VIA SOIL 

MOISTURE ASSIMILATION FOR IMPROVED 

STREAMFLOW SIMULATION: EVALUATION 

OF A LARGE-SCALE IMPLEMENTATION WITH 

SMAP SATELLITE DATA 

This chapter is to be submitted to Hydrology and Earth System Sciences as 

Mao Y., W. T. Crow, and B. Nijssen (2018), Dual state/rainfall correction via soil moisture 

assimilation for improved streamflow simulation: Evaluation of a large-scale 

implementation with SMAP satellite data, Hydrology and Earth System Sciences, 

manuscript in preparation. 

The supplemental material for this chapter is provided in appendix B. 

 

Abstract 

Soil moisture (SM) measurements contain information about both pre-storm hydrologic 

states and within-storm rainfall estimates, both of which are essential for accurate streamflow 

simulation. In this study, an existing dual state/rainfall correction system is extended and 

implemented in a regional-scale basin with a semi-distributed land surface model. The latest Soil 

Moisture Active Passive (SMAP) satellite surface SM retrievals are assimilated to 

simultaneously correct antecedent SM states in the model and rainfall estimates from the latest 

Global Precipitation Measurement (GPM) mission. While the GPM rainfall is corrected slightly 

to moderately especially for larger events, the correction is smaller than reported in past studies 

because of the improved baseline quality of the new generation GPM satellite product. The 

streamflow is corrected slightly to moderately via dual correction across 8 Arkansas-Red 

subbasins, with larger correction at subbasins with poorer GPM rainfall and baseline streamflow 

simulation, and smaller correction at subbasins with better GPM rainfall and baseline streamflow 

quality. Overall, although the dual data assimilation scheme is able to nudge streamflow 

simulations toward the correct direction, it only corrects a relatively small portion of the total 

streamflow error. Systematic modeling error accounts for a large portion of the streamflow error, 
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which are uncorrectable by standard data assimilation techniques. These findings suggest that we 

may be approaching the limit of using SM data assimilation to correct random errors in 

streamflow simulation. More substantial streamflow correction would rely on future research 

effort on reducing systematic error and developing higher-quality satellite rainfall products. 

 

3.1 INTRODUCTION 

Accurate streamflow simulation is important for water resources management such as 

flood control and drought monitoring. Reliable streamflow simulation requires accurate soil 

moisture (SM) conditions since they control the partitioning of infiltration and surface runoff 

during rainfall events as well as longer-memory subsurface flow [Freeze and Harlan, 1969; 

Western et al., 2002; Aubert et al., 2003]. Good streamflow simulations also require realistic 

within-storm rainfall time series estimates. 

SM measurements, if available, contain information about both antecedent hydrologic 

states and preceding rainfall events. With the advance of in-situ and satellite-measured SM 

products, researchers have started to explore the potential of using SM measurements to improve 

both aspects. For example, a number of studies have attempted to assimilate SM measurements 

to improve antecedent SM states in hydrologic models via Kalman-filter-based techniques [e.g., 

Francois et al., 2003; Brocca et al., 2010, 2012; Wanders et al., 2014; Alvarez-Garreton et al., 

2014; Lievens et al., 2015, 2016; Massari et al., 2015; Mao et al., 2018]. Other studies explored 

approaches to use SM measurements to back-calculate rainfall or to correct existing rainfall 

products [e.g., Crow et al., 2011; Chen et al., 2012; Brocca et al., 2013; Brocca et al., 2014; 

Brocca et al., 2016; Koster et al., 2016]. 

In the recent decade, a so-called dual state/rainfall correction system has been developed 

that combines the state update and rainfall correction schemes with the goal of subsequently 

improving streamflow simulations [e.g., Crow and Ryu, 2009; Chen et al., 2014; Alvarez-

Garreton et al., 2016]. Specifically, SM measurements (typically from satellite observation) are 

used to simultaneously update model states and correct a rainfall product (also typically satellite-

observed). The updated antecedent states and corrected rainfall are then brought together as 

inputs into the hydrologic model to produce improved streamflow simulation (see Figure 3.1 for 

illustration of the dual correction system). These past studies in general found further-improved 



49 

 

 

streamflow performance via such a dual correction system compared to either the state-update-

only or the rainfall-correction-only scheme [Crow and Ryu, 2009; Chen et al., 2014; Alvarez-

Garreton et al., 2016], with the rainfall correction contributing more during high flow 

simulations and the state update during low flows [also see Massari et al., 2018]. 

While these past studies had encouraging findings, they applied the dual correction 

system only to catchment-scale, lumped hydrologic models. In this study, a semi-distributed land 

surface model, the Variable Infiltration Capacity (VIC) model, is implemented instead. The VIC 

model, compared to the previous lumped models, includes a more detailed representation of both 

energy and water balance processes [Liang et al., 1994; Hamman et al., 2018]. The macroscale 

grid-based VIC also better matches the spatial resolution of satellite SM measurements, and 

provides the potential for large-scale streamflow analysis. 

We also evaluate the performance of the dual correction method using the latest satellite 

SM and precipitation data products. The aforementioned dual correction studies used previous-

generation satellite products such as the Advanced Scatterometer (ASCAT) satellite SM data, the 

Soil Moisture Ocean Salinity (SMOS) satellite SM data and the Tropical Rainfall Measuring 

Mission (TRMM) precipitation data. Instead, we use data products from the more recent Global 

Precipitation Measurement (GPM) mission [Hou et al., 2014] and the NASA Soil Moisture 

Active Passive (SMAP) mission [Entekhabi et al., 2010]. Both the SMAP and GPM products 

provide real-time measurements over much of the global land surface, making them especially 

useful for regions with scarce in-situ rainfall and SM observations.  

The main objective of this study is to assess the effectiveness of such a dual correction 

system to improve streamflow simulations with the latest satellite SM and precipitation products. 

To address this main objective, we introduce a number of methodological advances. We extend 

the system to provide a probabilistic streamflow estimate via ensemble simulations (past studies 

focused solely on deterministic improvement), we update the rainfall correction scheme to take 

advantage of new features of the satellite data, and we investigate the potential cross-correlation 

of errors in the dual system and validate the theoretical correctness of the system design. These 

methodological contributions will be presented throughout the paper. 

The remainder of this paper is organized as follows. Section 3.2 describes the dual 

correction system and our novel methodological contributions, as well as the study domain, 
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hydrologic model and datasets used. Results are presented in Section 3.3. Section 3.4 discusses a 

few remaining issues and takeaways from the study, and Section 3.5 summarizes conclusion. 

 

 

Figure 3.1. The dual state/rainfall correction framework applied in this study. Satellite-based soil 

moisture (SM) data is integrated into two correction schemes: 1) a hydrologic model to correct 

modeled states (shown in the red box on the left), and 2) a rainfall correction algorithm to correct 

rainfall (shown in the blue box on the right). Finally, these two contributions are fused to 

improve streamflow simulations (shown in the black box at the bottom). 

 

3.2 METHODS 

3.2.1 Study domain 

The dual state/rainfall correction system is applied in the Arkansas-Red River basin 

(approximately 605,000 km2) located in the south-central United States (Figure 3.2). This basin 

consists of the Arkansas River and the Red River, both converging eastward into the Mississippi 

River. This domain has a strong climatic gradient (i.e., wetter in the east and drier in the west, 
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see Figure 3.2 for climatology-averaged precipitation). The basin experiences little snow cover in 

winter except for the mountainous areas along its western edge. Vegetation cover is denser in the 

east (deciduous forest) than in the west (wooded grassland, shrubs, crops and grassland). 

 

 

Figure 3.2. The Arkansas-Red River basin with climatology-averaged annual precipitation 

(calculated from NLDAS-2 precipitation data over 1979-2017). The pink shaded areas show the 

upstream subbasins of the 8 USGS streamflow sites evaluated in this study, with basin numbers 

labeled on the plot (see Table 3.3 for basin numbers and corresponding sites). 

 

Table 3.3. List of USGS streamflow sites used for verification. 

Basin number USGS station no. USGS station name Short name 

1 07144200 Little Arkansas River at Valley Center, KS L Arkansas 

2 07144780 Ninnescah River AB Cheney Re, KS Ninnescah 

3 07147800 Walnut River at Winfield, KS Walnut 

4 07152000 Chikaskia River near Blackwell, OK Chikaskia 

5 07177500 Bird Creek Near Sperry, OK Bird 

6 07186000 Spring River near Wace, MO Spring 

7 07196500 Illinois River near Tahlequah, OK Illinois 

8 07243500 Deep Fork near Beggs, OK Deep 
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3.2.2 Data 

3.2.2.1. SMAP satellite SM data 

The SMAP mission provides SM estimates for the top 5 centimeters of the soil column, 

with an average revisit time of 2-3 days, a resolution of 36 km and a 50-hour data latency. Both 

ascending (PM) and descending (AM) retrievals from the SMAP L3 Passive product [O'Neill et 

al., 2016] (data Version 4) from Mar 31, 2015 to December 31, 2017 were used in this study. A 

few SMAP pixels with obvious quality flaws (i.e., near-constant retrieval values) were manually 

masked out. The internal quality flags provided by the SMAP mission were not applied in this 

study to preserve the measurements in the east half of the domain, where the data quality of the 

entire region is flagged as unrecommended due to relatively heavy vegetation cover. The native 

36 km SMAP retrievals were used throughout the study without spatial remapping or temporal 

aggregation. 

3.2.2.2 GPM satellite precipitation data 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) Level 3 Version 05 Early 

Run precipitation data was used in this study [Huffman et al., 2018]. IMERG merges multiple 

satellite observations and provides a near-global, precipitation product with a spatial resolution 

of 0.1º [Huffman et al., 2015]. The Early Run product was used in this study, since its short 

latency (4 hours) makes it suitable for near-real-time assimilation applications. We aggregated 

the original 30-minute precipitation product to our 3-hourly modeling timestep and remapped it 

to the 1/8th model resolution. 

3.2.2.3. Other meteorological forcing data 

Other than precipitation, the VIC model requires air temperature, shortwave and 

longwave radiation, air pressure, vapor pressure and wind speed as forcing inputs. These 

variables were obtained from the 1/8th-gridded North American Land Data Assimilation System 

Phase 2 (NLDAS-2) meteorological forcing data product [Xia et al., 2009]. In this study, the 

original hourly NLDAS-2 meteorological variables were aggregated to the 3-hourly modeling 

timestep. 

3.2.2.4. Validation data 
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Daily streamflow data at 8 USGS streamflow sites in the study domain [USGS, 2018] 

were used to evaluate the streamflow time series from the dual correction system (see Figure 3.2 

and Table 3.3 for site locations). These 8 sites were selected for their lack of human regulation 

and their dense rain gauge coverage (see Crow et al. [2017] for details). We separately evaluated 

the rainfall correction scheme, in which the gauge-informed NLDAS-2 precipitation data was 

treated as the benchmark. 

 

3.2.3 Hydrologic modeling 

 We used Version 5.0.1 of the VIC model (doi:10.5281/zenodo.267178) with a 

modification to the calculation of drainage between soil layers (https://github.com/UW-

Hydro/VIC/releases/tag/Mao_etal_stateDA_May2018). VIC is a large-scale, semi-distributed 

model that simulates various land surface processes. In this study, the VIC model was 

implemented in the Arkansas-Red River basin at a 1/8º spatial resolution (3999 grid cells in 

total), with each grid cell further divided into multiple vegetation tiles via statistical distributions. 

Each grid cell was simulated by VIC separately using a soil column discretized into 3 vertical 

layers (with domain-average thicknesses of 0.10 m, 0.40 m and 0.93 m, respectively). Runoff can 

be generated by fast-response surface runoff and by slow-response runoff from the bottom soil 

layer. All vegetation cover and soil property parameters in the model were taken from Maurer et 

al. [2002], which were calibrated against streamflow observations at the most downstream outlet 

of the combined Arkansas and Red River basins. The simulation period was from March 2015 to 

December 2017 when both the SMAP and GPM products are available. The VIC model was 

spun-up by running the period 1979-2015 twice. 

The local runoff simulated by VIC at each grid cell was routed through the stream 

channels using the RVIC routing model [Hamman et al., 2017]. RVIC is an adapted version of 

the routing model developed by Lohmann et al. [1996, 1998]. 

 

3.2.4 The dual correction system 

In this section, we describe the components of the dual correction system. First, we 

describe our methodological updates to the rainfall correction scheme, followed by a description 
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of the state update scheme. Next, we present how the two schemes are fused to produce the final 

ensemble streamflow analysis. 

3.2.4.1. The SMART rainfall correction scheme updates and adaption 

The Soil Moisture Analysis Rainfall Tool (SMART) rainfall correction algorithm [Crow 

et al., 2009; 2011; Chen et al., 2012] is based on sequential assimilation of SM measurements 

into a simple Antecedent Precipitation Index (API) model: 

1t t tAPI API P −= +        (3.1) 

where t is a timestep index; P is the original IMERG precipitation observation; γ is a loss 

coefficient. Here SMAP was rescaled to the API regime through cumulative distribution function 

(CDF) matching over the 2.5-year simulation period prior to assimilation. We implemented a 3-

hourly version of SMART (instead of the daily version in past studies) to receive the 3-hourly 

IMERG rainfall input and both the ascending (PM) and descending (AM) SMAP retrievals at the 

correct time of day. We also extended the ensemble Kalman filter (EnKF) version of SMART 

introduced by Crow et al. [2011] to an ensemble Kalman smoother (EnKS), in which the API 

increment, δ, is not only calculated at timesteps when SMAP is available, but also back-filled 

during measurement gaps (see Supplemental Material Section B1 for mathematical details of 

SMART EnKS). 

 The SMART algorithm then uses the API increment δ to estimate the rainfall correction 

amount via a simple linear relation. Here we implemented an ensemble version of rainfall 

correction that produces an ensemble of corrected rainfall estimates (instead of a single 

deterministic rainfall time series as in the past SMART studies): 

, ,

(j) (j) (j)

corr t pert t tP P = +        (3.2) 

where the superscript (j) denotes the jth ensemble member; Pcorr is the corrected precipitation; 

Ppert is the original IMERG precipitation perturbed in the EnKS algorithm; 𝜆 is a scaling factor 

that can either be calibrated or set to a prescribed constant. In this study we only applied rainfall 

correction at timesteps when the original IMERG rainfall observation is non-zero, while the 

zero-rainfall timesteps remain unchanged. This modification was designed to mitigate the 

degradation introduced by SMART at low-rainfall timesteps, and is particularly suitable for 

IMERG correction due to its enhanced rain/no rain detection quality compared to the previous 

generations of satellite precipitation products [Gebregiorgis et al., 2018]. We will discuss the 
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impact of this modification further in Section 3.3.1. Finally, negative Pcorr values resulted from 

Equation (3.2) are reset to zero, and the final corrected precipitation time series is 

(multiplicatively) rescaled to be unbiased over the entire simulation period against the original 

IMERG observation. 

In this study, the 0.1o IMERG was first remapped to the coarser 36-km SMAP resolution 

such that the SMART algorithm was run at each of the 36-km pixels individually. The corrected 

36-km rainfall was then downscaled to its native 0.1o resolution while maintaining the original 

finer-grid IMERG spatial pattern, and further regridded to the VIC 1/8o modeling resolution. An 

ensemble size of M = 32 was applied. The API loss coefficient (γ in Equation (3.1)) was 

manually tuned to a constant 0.98 [3 hours-1] such that the un-corrected API time series has high 

correlation with SMAP retrievals, which ensures that the API model roughly captures the 

dynamics of SMAP. We experimented two approaches for estimating the 𝜆 parameter in 

Equation (3.2): 1) calibrating a temporally constant 𝜆 at each SMAP pixel separately to optimize 

the rainfall correlation with the NLDAS-2 benchmark rainfall, and 2) setting 𝜆 to a spatial 

constant of 0.1, which is applicable for any region that may not have a good rain gauge coverage. 

The impact of the two 𝜆 choices will be further discussed in Section 3.3.1. 

In our SMART EnKS, the original IMERG precipitation was multiplicatively perturbed 

by log-normally distributed noise with mean one and standard deviation of one. SMAP 

measurement error ranges from 0.03 to 0.045 m3/m3 across domain. This range was estimated 

from the SMAP errors reported by the ground validation studies [e.g., Colliander et al., 2017; 

Chan et al., 2017], and the error for each pixel was linearly mapped from its leaf area index 

(LAI) value into the range with denser vegetation cover corresponding to larger SMAP error. 

The API state was directly perturbed by zero-mean Gaussian noise with variance 0.3 mm2 over 

the entire domain such that the normalized filter innovation has variance of approximately one 

(which is a necessary condition for proper error assumptions in a Kalman filter; see Mehra 

[1971] and Crow and Bolten [2007]). See Supplemental Material Section B1 for mathematical 

details of these error assumptions. 

 

3.2.4.2. State updating via EnKF 

As illustrated in Figure 3.1 (the red box on the left), the SMAP SM retrievals were also 

assimilated into the VIC model to update model states using the EnKF method. Since the 
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standard EnKF technique has been widely used in many hydrologic state update studies [e.g., 

Francois et al., 2003; Brocca et al., 2010, 2012; Wanders et al., 2014; Alvarez-Garreton et al., 

2014; Lievens et al., 2015, 2016; Massari et al., 2015; Mao et al., 2018], we only briefly describe 

the specific implementation in this study. 

 The EnKF implementation in this study mostly follows Mao et al. [2018] with slight 

modifications. EnKF was implemented as a 1D filter for each 36-km SMAP pixel separately. 

Each SMAP pixel was assimilated to update the SM states of multiple underlying finer 1/8o VIC 

grid cells. Therefore, the state vector is a stack of SM states of the top two layers in all 

vegetation tiles within all these grid cells. Note that the bottom-layer SM state was not updated 

during EnKF (following Lievens et al. [2015; 2016] and Mao et al. [2018]), although it does 

respond to the update of the upper two layers through drainage. The observation operator in 

EnKF maps the state vector to surface SM measurement by averaging the first-layer SM states 

from the multiple VIC grid cells underlying a single SMAP pixel. An ensemble size of 32 was 

used, and the resulting ensemble of updated states was preserved to produce probabilistic 

estimate of states. 

 The SMAP retrievals were rescaled to match the 2.5-year mean and standard deviation of 

the VIC-simulated surface-layer SM time series prior to assimilation. The error assumptions of 

IMERG precipitation and unscaled SMAP retrievals were assumed to be the same as in SMART 

(described in Section 3.2.4.1). The VIC SM states were directly perturbed (to represent model 

structure/parameterization error) by zero-mean Gaussian noise with standard deviation of 0.5 

mm for all VIC soil layers across the study domain (following Mao et al. [2018]). Although VIC 

modelling errors are likely to contain some spatial auto-correlation, consideration of the spatial 

error correlation in our case did not result in better filter performance (results not shown; this 

finding is consistent with Gruber et al. [2015] who showed limited benefit of a 2D filter with 

auto-correlated spatial error over a 1D filter with spatially white error). Therefore, modeling 

errors were assumed to be spatially white and corrected via a 1D EnKF analysis. We will further 

discuss this choice in Section 3.4. 

 

3.2.4.3. Fusing the state update and the rainfall correction schemes 

After carrying out the state update scheme and the rainfall correction scheme separately, 

the updated model states and the corrected rainfall forcing were fused to produce final 
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streamflow results (see the black box in the bottom of Figure 3.1 for illustration). We first 

randomly paired ensemble members of corrected rainfall and updated VIC states, and an 

arbitrary number of pairs were selected to produce the final streamflow ensemble. Here 32 pairs 

were selected to balance the computational cost and statistical stability. For each pair, the VIC 

model was re-run with the updated states inserted sequentially over time and forced by the 

corrected rainfall. Other meteorological forcings were kept unchanged, i.e., from NLDAS-2. The 

grid-cell-based runoff output from VIC for each pair was then routed to the 8 USGS gauge 

locations, resulting in an ensemble of streamflow time series for evaluation. To separate the 

contribution of the state update and rainfall correction to the final streamflow improvement, two 

additional sets of streamflow simulations were carried out. The first is “state-updated 

streamflow”, where VIC was re-run with the updated state ensemble only but forced by the 

original IMERG precipitation. The resulting streamflow reflects only the impact of state 

updating. The second is “rainfall-corrected streamflow”, where VIC was forced by the corrected 

rainfall ensemble but without inserting the EnKF-updated states. The resulting streamflow 

therefore reflects only the effect of rainfall correction. 

One potential issue with the merging of the two schemes is that, since the state update 

scheme and the rainfall correction scheme are informed by the same SM measurement data, 

cross-correlated error exists in the two schemes. Such cross-correlated error could potentially be 

amplified when fusing the two schemes together, degrading the streamflow results. In fact, 

Massari et al. [2018] intentionally avoided combining the state and rainfall correction schemes 

due to this legitimate concern. To formally investigate this issue, we performed a set of synthetic 

experiments where we compared the following two scenarios: 1) a single set of synthetically 

generated SM measurements were assimilated into the state and rainfall correction schemes, 

which mimics the real dual correction system; 2) two SM measurements with mutually 

independent error were assimilated separately into the two schemes, which is rid of any potential 

error cross-correlation in the system. The results show that the two scenarios achieve very 

similar streamflow correction performance. This validated that it is safe to assimilate a single SM 

measurement product into both schemes without significantly degrading the final streamflow 

performance (see Supplemental Material Section B2 for more details on the cross-correlated 

error experiments). 
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3.2.5 Evaluation strategies and metrics  

We evaluated the rainfall correction results in addition to the dual-corrected streamflow 

results. Both deterministic and probabilistic metrics were applied for the two evaluations. 

The 1/8th gridded, gauge-informed NLDAS-2 precipitation data was remapped to the 36 

km SMART resolution as the benchmark for evaluating rainfall. For all metrics, all precipitation 

datasets were aggregated to multiple temporal accumulation periods (the native 3-hour period 

without aggregation; 1-day; 3-day) for evaluation. Deterministically, the ensemble-mean 

SMART-corrected rainfall was compared to the original IMERG precipitation (remapped to 36 

km), and its improvement was evaluated in terms of 1) correlation coefficient (r) of time series; 

2) Percent error reduction (PER) in terms of the root-mean-squared error (RMSE) compared to 

the original IMERG precipitation; 3) Categorical skill metrics, including false alarm ratio (FAR), 

probability of detection (POD) and threat score (TS) [Wilks, 2011; Crow et al., 2011; Chen et al., 

2012; Brocca et al., 2016]. Probabilistically, normalized ensemble skill (NENSK) was 

calculated, which measures the ensemble-mean error normalized by ensemble spread: 

   
ENSK

NENSK
ENSP

=        (3.3) 

where the ensemble skill (ENSK) is calculated as the temporal mean of ensemble-mean squared 

error, and the ensemble spread (ENSP) is calculated as the temporal mean of ensemble variance 

[De Lannoy et al., 2006; Brocca et al., 2012; Alvarez-Garreton et al., 2014; Mao et al., 2018]. 

Ideally, if an ensemble time series correctly represent the uncertainty of analysis, NENSK should 

be 1 [Talagrand et al., 1997; Wilks, 2011]. NENSK > 1 indicates an under-dispersed ensemble 

while NENSK < 1 indicates an over-dispersed ensemble. Note that NENSK is calculated based 

on the ensemble after correction alone as a verification of uncertainty representation, and is not 

compared to the baseline. 

The dual-corrected streamflow was evaluated at the 8 USGS sites. Deterministically, the 

ensemble-median corrected streamflow was compared to the baseline streamflow (or the so-

called “open-loop” streamflow, which is simply the single VIC simulation forced by IMERG 

precipitation without any correction) in terms of 1) PER; and 2) the Kling-Gupta efficiency 

(KGE) [Gupta et al. 2009] which combines the performance of correlation, variance and bias. 

Ensemble-median instead of ensemble-mean streamflow was used to give more stable evaluation 
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results in the case of a skewed streamflow ensemble caused by model nonlinearity. The 

probabilistic metric NENSK was also calculated for streamflow ensemble. 

 

3.3 RESULTS 

The rainfall improvement realized via SMART will be evaluated first. Next, the 

streamflow improvement from the dual correction system will be discussed. 

3.3.1 SMART rainfall correction 

3.3.1.1. The impact of SMART methodological choices 

The impact of the λ parameter on SMART rainfall correction results is first shown in 

Figure 3.3 by comparing the first two columns, where Column 1 shows the improvement of 

correlation coefficient r after SMART correction with λ tuned at each pixel to optimize r (with 

respect to the NLDAS-2 benchmark), and Column 2 shows that with domain-constant λ = 0.1. 

Overall the r improvement is relatively small even with optimal λ, which we will further discuss 

in Section 3.3.1.2 below. Simply setting λ = 0.1 results in slightly smaller correlation 

improvement compared to the optimal λ case for all temporal accumulation periods (3-hour, 1-

day and 3-day), especially for locations in the east and west ends of the domain. The central part 

of the domain is not obviously impacted by setting λ = 0.1. In general, these reductions are small, 

and since it is a more generally applicable case, we present all the results hereafter (including 

rainfall correction and dual streamflow correction results) with λ = 0.1. 

Figure 3.3 also compares the impact of implementing the smoother version of SMART 

(Column 2) with the EnKF version (Column 3). Note that for EnKF, both δ and P in Equation 

(3.2) were aggregated to 3-day windows prior to correction to ensure SM data availability in 

every correction window. EnKF results in less r improvement overall, which confirms the 

benefit of applying SMART using a smoothing approach. 

Finally, the impact of our modification of only correcting rainfall at non-zero IMERG 

timesteps is demonstrated by the domain-median categorical metrics (Figure 3.4). If all timesteps 

are corrected (Figure 3.4 Column 1), FAR is largely degraded (by 0.1 – 0.4) at low rainfall 

thresholds especially with shorter accumulation periods (3-hour and 1-day; see Figure 3.4a). This 
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is likely due to the issue of SMART misinterpreting SM retrieval noise as small rainfall 

correction [Chen et al., 2014]. POD is improved at these low thresholds (Figure 3.4b), but is not 

able to compensate the large FAR degradation. Therefore, TS, which accounts for both false 

alarms and missed events, is also obviously degraded at low thresholds (by as large as 0.2 at 3-

hourly). In contrast, when applying our tactic of only correcting rainfall at non-zero IMERG 

timesteps (Figure 3.4 Column 2), such FAR degradation is significantly mitigated (note that the 

y-axes in the two columns in Figure 3.4 are different). While it does sacrifice POD at low 

thresholds (Figure 3.4e), the overall TS is improved over most of the thresholds, especially at 

higher thresholds, for 1-day and 3-day aggregation. As mentioned in Section 3.2.4.1, the success 

of this SMART modification is likely due to the improved rain/no rain detection quality of the 

baseline IMERG precipitation product compared to its predecessors. Researchers found that the 

IMERG product exhibits definite improvement in terms of miss-rain, false-rain and hit rate 

compared to TRMM TMPA-RT over the Continental U.S. [Gebregiorgis et al., 2018]. Given the 

good baseline rainfall quality, SMART’s tendency to mis-correct low events degrades, rather 

than helps, rainfall estimates. 

 

3.3.1.2. Rainfall correction evaluation 

 Besides correlation and categorical metrics, PER exhibits slight to moderate 

improvement after correction, with a domain-median of ~8% error reduction at 1-day and 3-day 

accumulation periods (Figure 3.5 Column 1). The positive PER is consistent with the positive 

(although small) improvement of the categorical metrics at high-event thresholds (Figure 3.4 

Column 2), since PER is more sensitive to high rainfall values. 3-hourly PER is less successful 

(Figure 3.5a), suggesting that the deterministic correction is more effective at an accumulation 

period that more closely matches the SMAP retrieval interval. Similarly, correlation and 

categorical results also show better correction at 1-day and 3-day than at 3-hour accumulation 

periods (Figure 3.3 Column 2 and Figure 3.4 Column 2). 

 Overall, SMART improves the IMERG rainfall product in terms of various deterministic 

metrics, especially at larger events. However, the magnitude of rainfall improvement we find 

here is generally smaller than that found in previous SMART studies, especially in terms of 

correlation r (improved over much of the domain with median improvement of 0.01 to 0.02). The 

relatively smaller improvement seen here is likely due to the improved accuracy of the baseline 
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IMERG precipitation product. Table 3.4 summarizes the past SMART studies in literature, 

including the baseline and benchmark rainfall products, the SM product assimilated, baseline 

correlation r and its improvement, and baseline RMSE and its reduction (PER). It is clear that, 

over the past decade, the quality of baseline rainfall product has been significantly enhanced, 

from TRMM 3B40-RT used in Crow et al. [2009] and Crow et al. [2011] with r = ~ 0.5, to 

TRMM 3B42-RT used in Brocca et al. [2016] with r = ~ 0.6 – 0.7, to IMERG used in our study 

with r over 0.8. A direct TRMM-IMERG intercomparison study also confirmed the improved 

accuracy of IMERG over the Continental U.S. in terms of correlation, RMSE, bias and 

categorical metrics [Gebregiorgis et al., 2018]. The marginal value of SMART is known to 

decrease as a function of increased baseline rainfall accuracy [Crow et al., 2011]. This trend is 

clearly demonstrated from the SMART studies in Table 3.4. Although SMAP presumably 

provides more reliably SM measurements as well relative to the older satellite SM products used 

in previous SMART applications, its benefit does not appear large enough to outweigh this trend. 

Another consideration is that the correlation achieved by SMART may be approaching that of 

the NLDAS-2 benchmark (which does not have perfect accuracy), which may make our SMART 

evaluation less accurate. 

Finally, NENSK shown in Figure 3.5 (Column 2) gives insight to the probabilistic 

representation of the SMART ensemble. At a 3-hour timestep, NENSK is less than one for most 

of the domain, indicating an over-dispersed ensemble on average. However, when evaluating at 

1-day and 3-day accumulation periods, NENSK is closer to one, indicating a better 

representation of the uncertainty of rainfall estimates. As we aggregate over longer accumulation 

windows (e.g., 3-day), NENSK becomes slightly > 1 (i.e., under-dispersed ensemble), since the 

SMART algorithm only assumes random rainfall error but not systematic bias, and therefore 

slightly underestimates the uncertainty range over longer-term periods. 

In summary, SMART is able to use the SMAP retrievals to correct IMERG rainfall at 

relatively larger events, with slight to moderate deterministic improvement. Correction at low 

events is less successful and degraded slightly. Overall, correction is more effective when 

rainfall estimates are temporally aggregated to periods that better match SMAP retrieval intervals 

(1-day to 3-day accumulation periods), while the raw 3-hourly correction is less successful. 

Similarly, the ensemble estimates represent the rainfall uncertainty better at 1-day to 3-day 

accumulation periods than at 3-hourly timestep. 
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Figure 3.3. Maps of correlation coefficient improvement after SMART rainfall correction. Each 

column shows the following SMART experiments, respectively: EnKS with λ tuned to optimize 

correlation coefficient with regards to the NLDAS-2 benchmark (a, b, c); EnKS with constant λ 

= 0.1 (d, e, f); EnKF with constant λ = 0.1 (g, h, i). Each row shows results based on different 

temporal accumulation period: 3-hourly, 1-day and 3-day aggregation, respectively. The number 

on the lower left corner of each subplot shows the domain-median correlation improvement. 
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Figure 3.4. Change in categorical metrics (FAR, POD and TS) before and after SMART 

correction for 3-hourly, 1-day and 3-day accumulation periods. Metrics at different event 

thresholds are shown on the x axis. The left column (a, b, c) is for SMART with rainfall 

corrected at all timesteps; the right column (d, e, f) is for SMART with rainfall corrected only at 

non-zero timesteps. Note that the y-axis range is different for the two columns. 
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Figure 3.5. Maps of SMART rainfall correction results (with λ = 0.1, EnKS, and rainfall 

corrected only at non-zero timesteps). Each column shows the following metrics, respectively: 

percent RMSE reduction (PER) (a, b, c), and ensemble NENSK (d, e, f). Each row shows results 

based on different temporal accumulation period: 3-hourly, 1-day and 3-days, respectively. The 

number on the lower left corner of each subplot shows the domain-median statistic. 

 

Table 3.4. Review of SMART rainfall correction results in literature along with the results in this 

study. 

Literature 

 

 

Baseline 

rainfall 

product 

Benchmark 

rainfall 

product 

SM 

product 

Domain Accumulation 

period 

Baseline 

correlation 

r 

r 

improvement 

Baseline 

RMSE 

(mm) 

PER 

Crow et al. 

[2009] 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E Southern 

Great Plain 

3-day ~ 0.5 ~ + 0.2 13.0 ~ 

30% 

    CONUS 3-day ~ 0.55 ~ + 0.05 11.8 ~ 

15% 

Crow et al. 

[2011] 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E CONUS 3-day ~ 0.55 ~ + 0.1 13.1 ~ 

20% 
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Chen et al. 

[2012] 

Princeton 

Global 

Forcing 

Dataset 

CPC rain 

gauge analysis 

SMMR, 

SMM/I, 

ERS 

Global 10-day ~ 0.35 ~ + 0.15 - - 

Brocca et al. 

[2016] 

TRMM 

3B42RT 

AWAP rain 

gauge product 

SMOS Australia 1-day 0.62 +0.01 5.6 7% 

     5-day 0.71 +0.05 14.0 14% 

This study IMERG 

Early Run 

NLDAS-2 SMAP L3 

Passive 

Arkansas-

Red 

1-day 0.80 +0.02 6.1 8% 

     3-day 0.82 +0.02 11.0 8% 

 

3.3.2 Streamflow from the dual correction system 

The final daily streamflow performance from the dual correction system are listed in 

Table 3.5 (the “dual” columns) for each subbasin, both in terms of deterministic ensemble-

median performance and probabilistic NENSK verification. Overall, we see small to moderate 

streamflow improvement after dual correction with large variability across subbasins. 

Specifically, PER ranges from approximately 6% to 34% and KGE improvement ranges from 

slightly negative to +0.95 across all subbasins. If using the open-loop KGE (listed in Table 3.5) 

as a measure of baseline streamflow performance, we observe that at subbasins with better 

baseline performance (i.e., Ninnescah, Walnut and Chikaskia, all with positive baseline KGE), 

the relative improvement after the dual correction is generally smaller. In other words, the dual 

correction system is more effective when the baseline model performance is poor. 

Table 3.5 also lists the streamflow improvement from each of the correction schemes 

alone (the “state update only” and “rainfall correction only” columns) to further interpret the 

correction results. For the better-baseline subbasins (the three with positive KGE as mentioned 

above, as well as Little Arkansas with slightly negative baseline KGE), the contribution of state 

updating in general outweighs that of rainfall correction. Conversely, for the rest of the worse-

baseline subbasins (Bird, Spring, Illinois and Deep, all with relatively large negative baseline 

KGE), the majority of the improvement is attributed to SMART rainfall correction scheme. To 

further understand the interrelationship between model baseline performance, rainfall forcing 

error and correction performance, we forced the VIC model by the NLDAS-2 benchmark rainfall 

(without state update) and assessed the subsequent streamflow improvement (listed in Table 3.5 
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“NLDAS2-forced” columns). This quantifies the maximum potential streamflow improvement 

achievable by rainfall correction. While almost all subbasins show an obvious streamflow 

improvement simply by switching to the NLDAS-2 rainfall forcing, the improvement magnitude 

has a strikingly clear negative correlation with basement performance. In particular, the four 

worse-baseline subbasins exhibit large streamflow improvement, with PER over 65% and KGE 

improvement that brings the negative baseline KGE to much closer to zero or positive. This 

result suggests that the worse baseline at these subbasins is largely caused by the bad IMERG 

rainfall forcing. While state update is still beneficial at these subbasins (through direct correction 

of random error of model structure/parameterization that reflects in SM states, and through 

correcting the part of rainfall error that is reflected in SM states), the SMART rainfall correction 

scheme is particularly necessary. 

In contrast to the worse-baseline subbasins, the better-baseline subbasins demonstrate a 

reduced capability of streamflow improvement via rainfall correction, and therefore rely more on 

the state update scheme for enhancing streamflow. In particular, the best-baseline subbasin, 

Chikaskia, experiences degraded streamflow KGE and slightly positive PER when forced by the 

NLDAS-2 rainfall. This seems inconsistent with the slightly positive KGE and bigger PER 

contributed by SMART at this basin (Table 3.5). One possible reason is that at this subbasin 

NLDAS-2 benchmark rainfall is not obviously better than the IMERG baseline. Therefore, 

switching to NLDAS-2 rainfall forcing does not benefit streamflow, but SMART is still able to 

extract information from SMAP to slightly correct IMERG. 

It is worth noting that the dual correction scheme presented in this study is designed to 

only correct the random error existing in the simulation system, but not the systematic error or 

overall bias. Figure 3.6 shows example time series of the baseline (prior to the ingestion of any 

SMART or state correction), USGS-observed and dual-corrected streamflow at three subbasins 

with various levels of baseline performance. It is clear from the time series that, although the 

dual system often nudges the simulated streamflow toward the correct direction (especially at 

high-flow periods) and results in overall improved evaluation statistics, obvious systematic error 

(in the model structure/parameterization as well as rainfall forcing) exists that drives the 

streamflow simulation away from the observed behavior. Such systematic error, although 

difficult to quantify exactly, cannot be corrected by the means introduced here. The NENSK 

statistic partly reflects such systematic error. NENSK is significantly above one at most 
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subbasins, indicating an under-dispersed ensemble on average. In other words, at most subbasins 

the ensemble spread created by the dual system only represents the random uncertainty around 

the open-loop baseline, but not the systematic error which accounts for much of the total error. 

The level of systematic error is tied closely to the quality of hydrologic model 

parameters, often estimated through calibration. The VIC parameters used in this study were 

taken from Maurer et al. [2002] and derived at large-scale watershed outlets. To further examine 

the effect of systematic error on data assimilation, we calibrated the model parameters for the 8 

subbasins using streamflow acquired from USGS (Table 3.3). Specifically, VIC parameters that 

control infiltration, soil conductivity and baseflow generation as well as the recession rate of the 

grid-cell-scale unit hydrograph in RVIC were calibrated using the MOCOM multi-objective 

autocalibration method [Yapo et al., 1998]. Basin-constant parameters were calibrated toward 

USGS streamflow time series during 2015 to 2017, forced by the baseline IMERG precipitation, 

to optimize daily KGE and monthly bias. Only a subset of the 8 subbasins were able to achieve 

better-than-baseline streamflow results via this traditional calibration method, mainly due to the 

large IMERG forcing error at some subbasins that makes the calibration scheme not able to find 

a reasonable parameterization. Here, we show three example subbasins with relatively good 

calibration outcome as demonstration (see Figure 3.7). The Chikaskia subbasin, whose baseline 

performance improves from the original daily KGE of 0.67 to 0.78 after calibration, experiences 

slightly decreased streamflow improvement compared to before calibration, with smaller PER 

(from 15.0% to 10.7%) and slightly smaller KGE improvement (from +0.07 to +0.01). Visually 

from the time series, the open-loop streamflow behavior is slightly improved through calibration 

(e.g., at the beginning of April 2017), and the difference in the correction amount before and 

after calibration is relatively small (comparing Figure 3.6a and Figure 3.7a). NENSK for 

Chikaskia goes up slightly away from one (i.e., more under-dispersed). The baseline simulation 

of the second subbasin, the Deep Fork, improves from KGE = -0.77 to 0.08, which is clear from 

the visual time series as well (comparing Figure 3.6b and Figure 3.7b). The dual correction with 

calibrated parameters shows slightly bigger PER and smaller KGE improvement than before. 

NENSK again becomes slightly worse (more under-dispersed) after calibration. The third basin, 

the Illinois River, again experiences slightly smaller PER and KGE improvement and worse 

NENSK after calibration (comparing Figure 3.6c and Figure 3.7c). These results suggest that a 

better model parameterization (and therefore better baseline simulation) typically results in 
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similar or smaller added value of dual correction. This means that the dual system is able to 

nudge streamflow relatively effectively (or slightly more effectively) even when model 

parameterization is poor. However, it is also clear that the portion of error corrected by the dual 

system is typically smaller than that achievable by a better model parameterization. 

 

Table 3.5. Daily streamflow results from the dual correction system at the 8 USGS subbasins. In 

addition to the deterministic KGE improvement, PER and probabilistic NENSK results from the 

dual system (“dual” columns), the table also lists the open-loop streamflow KGE (“open-loop 

KGE” column), KGE improvement and PER as a result of state update or rainfall correction 

scheme alone (“state update only” and “rainfall correction only” columns, respectively), and 

KGE improvement and PER when forced by the NLDAS-2 benchmark precipitation without 

state update (“NLDAS-2 forced” column). 

 Open-loop 

KGE 

KGE improvement PER NENSK 

  Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual 

L Arkansas -0.12 +0.17 +0.23 -0.01 +0.57 7.3% 10.8% 1.2% 40.0% 1.98 

Ninnescah 0.25 +0.15 +0.06 +0.16 +0.20 14.0% 5.5% 13.7% 30.4% 0.35 

Walnut 0.54 -0.02 -0.03 +0.03 -0.23 5.8% 5.7% 2.8% 23.3% 2.70 

Chikaskia 0.67 +0.07 +0.05 +0.02 -0.45 15.0% 11.1% 6.6% 2.2% 1.96 

Bird -1.49 +0.95 +0.58 0.63 +0.95 33.5% 17.0% 25.8% 68.9% 2.01 

Spring -3.64 +0.83 +0.65 +0.33 +3.93 13.2% 8.7% 7.0% 83.4% 13.11 

Illinois -1.91 +0.50 +0.36 +0.26 +2.72 17.6% 7.4% 12.9% 81.8% 13.78 

Deep -0.77 +0.49 +0.39 +0.37 +1.55 20.8% 13.1% 21.2% 68.3% 2.34 
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Figure 3.6. Example time series of streamflow results from the dual correction system. Black 

line: USGS observed streamflow; magenta line: baseline VIC simulation; light blue lines: 

ensemble updated streamflow results; solid blue line: ensemble-mean updated streamflow. Only 

part of the simulation period is shown for clear display. Statistics shown on each panel are based 

on the entire simulation period (approximately 2.5 years). 
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Figure 3.7. Time series of simulated baseline, corrected and observed streamflow at three 

example subbasin outlets with calibrated model parameters. All lines and notations are the same 

as in Figure 3.6. 
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3.4 DISCUSSION 

With the VIC implementation of the dual correction system in this study, there is 

potential to correct streamflow at large-scale stream outlets. While the infrastructure for large-

scale system has already been developed here with distributed hydrologic model and satellite 

data, only streamflow at small subbasins was evaluated due to the availability of unregulated 

streamflow observations. More research is needed to investigate the impact of error spatial 

correlation on downstream streamflow performance before applying the system to large-scale 

river outlets. Specifically, while the 1D filter with spatially white noise (as applied in this study) 

may be appropriate for small-basin correction, ignoring the spatial structure of errors could 

potentially have a more profound impact on the correction performance of large river outlets 

with a large number of grid cells routed and aggregated. Some past studies have investigated 

issues related to spatial patterns of error in hydrologic data assimilation. For example, Reichle 

and Koster [2003] investigated the impact of spatial error correlation in the model SM states on 

its assimilation performance; Gruber et al. [2015] examined the impact of a 2D filter with 

spatially auto-correlated error versus a 1D filter on SM updating quality; Pan et al. [2009] and 

Pan and Wood [2009; 2010] evaluated the surface SM assimilation performance with VIC by 

comparing a 1D filter, a 2D filter and a multiscale autoregressive filtering approach, as well as 

with precipitation ensemble generated with consideration of spatial and temporal uncertainty 

structure. However, these studies focus on the performance of SM simulations alone. Direct 

assessment of the impact of spatial error patterns on the routed streamflow assimilation results is 

needed. Also, evaluation of the probabilistic representation of ensemble streamflow at large river 

outlets is necessary, especially since the ignorance of spatial error patterns may potentially cause 

noises to be canceled out at large outlets, causing incorrect probabilistic streamflow estimates. 

We would also like to discuss a few takeaways based on the findings from this study. We 

have shown that the dual correction approach is able to correctly nudge streamflow simulation a 

little, especially during relatively high flow events in area with poor IMERG data. However, the 

magnitude of correction is generally small. There are two main reasons for the small correction 

we see. First, the latest generation of satellite rainfall products (e.g., IMERG) has significantly 

improved quality compared to its predecessors, which makes it a much more difficult task to 

correct rainfall using SM measurements and therefore limits the level of rainfall correction. 
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Second, the dual approach, or any other Kalman-filter based data assimilation approaches, is 

designed to only correct the zero-mean random error component in the total streamflow error, 

but not the systematic error or bias. But we have shown that systematic error, typically originated 

from inaccurate model structure and/or parameterization and large rainfall bias, can account for a 

big portion of the total error. The existence of systematic error is particularly problematic from a 

probabilistic perspective, since the ensemble streamflow produced by the dual system only 

represents random error, therefore largely underestimates simulation uncertainty. 

 Given the above considerations, we may be approaching the limit of using data 

assimilation techniques to correct random streamflow errors. This insight provides a few 

guidelines for future research focus that aims to further improve streamflow simulation systems: 

1) More sophisticated data assimilation techniques, though may help a little, is not very 

likely to substantially reduce streamflow error further, since they only deal with the random error 

components in the system which in many cases only account for a relatively small portion of the 

total error; 

2) Instead, approaches to reduce systematic errors in streamflow simulation are needed. 

To date this is still a challenging task in large-scale hydrologic modeling, since calibration is 

difficult to perform with limited streamflow data and large number of distributed parameters. 

With the availability of the globally observed, distributed and near-real-time SMAP and IMERG 

products, more creative methods need to be developed to extract useful information from the big 

volume of observed data. For example, characteristics of SM dynamics and its response to 

rainfall can be directly extracted from the datasets themselves, which can potentially inform 

hydrologic model structure/parameterization. These areas of research are less studied but has the 

potential to improve hydrologic modeling beyond correcting random errors; 

3) it is worthwhile to continue to develop future generation of higher-quality, near-real-

time rainfall products, since rainfall plays a very important role in streamflow simulations and its 

error is not easily and substantially reduced by the current correction methods that use SM 

measurement information. 
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3.5 CONCLUSION 

In this paper, we applied a dual state/rainfall correction data assimilation system in the 

Arkansas-Red River basin. Built upon the dual system developed in past studies, we have made 

several methodological advances. First, we implemented the dual correction system with a more 

complexed, semi-distributed land surface model, the VIC model, and applied it in a regional-

scale basin. Second, the latest satellite products, the SMAP SM product and the IMERG rainfall 

product, were incorporated into the system. Third, the existing dual correction algorithm was 

updated to better suit the new satellite data, and also to produce an ensemble streamflow product 

that gives probabilistic estimates. 

 Our results show that, overall, IMERG rainfall (evaluated toward the gauge-informed 

NLDAS-2 benchmark over the entire Arkansas-Red domain) and streamflow (evaluated toward 

8 USGS streamflow sites) were improved to some extent but not substantially via dual 

correction. For rainfall, the slight-to-moderate improvement is primarily from the correction of 

larger events via SMART, while smaller event estimates are slightly degraded. Rainfall 

correction is more effective at daily to multi-daily time scale than at 3-hourly scale. The 

ensemble produced by the correction scheme represents the rainfall uncertainty relatively well at 

daily to multi-daily scale. For streamflow, the dual correction is able to reduce the random errors 

in simulated streamflow across the 8 test subbasins, ranging from slight to moderate error 

reduction. The subset of subbasins with worse baseline performance, mainly due to worse 

IMERG rainfall quality, exhibit larger relative improvement via dual correction, and the 

correction is mainly contributed by the SMART rainfall correction scheme. The other subbasins 

with relatively better IMERG and baseline streamflow performance show less improvement via 

dual correction, and the improvement is more primarily attributed to state updating. The 

ensemble streamflow produced by the system largely underestimates the error uncertainty, 

because the dual system only accounts for the random error components in the system, but not 

the systematic error (e.g., resulted from incorrect model structure and parameterization). We 

have also demonstrated that model parameterization error that commonly exists in large-scale 

distributed models in general does not degrade (and sometimes actually benefits) the 

performance of the dual correction scheme. 
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Based on the findings from this study, we might be reaching the limit of using SM data 

assimilation techniques to reduce random errors in simulated streamflow. More sophisticated 

data assimilation techniques may improve the correction results a little further, but more 

substantial streamflow reduction would require future research efforts on reducing systematic 

modeling error via, e.g., innovative ways of achieving better model representation, as well as 

higher-quality satellite rainfall products. 
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Chapter 4. A UNIFIED DATA-DRIVEN METHOD TO DERIVE 

HYDROLOGIC DYNAMICS FROM GLOBAL 

SMAP SURFACE SOIL MOISTURE AND GPM 

PRECIPITATION DATA 

This chapter is to be submitted to Water Resources Research as 

Mao Y., W. T. Crow, and B. Nijssen (2018), A unified data-driven method to derive hydrologic 

dynamics from global SMAP surface soil moisture and GPM precipitation data, Water 

Resources Research, manuscript in preparation. 

The supplemental material for this chapter is provided in appendix C. 

 

Abstract 

The new satellite-observed Soil Moisture Active Passive (SMAP) and the Global 

Precipitation Measurement (GPM) datasets contain rich information about land surface 

hydrologic processes. In this study, a unified regression method is proposed and applied to these 

global datasets to quantify factors governing surface soil moisture (SSM) dynamics. Two simple 

forms of regressors are implemented: 1) the linear regressors of SSM itself and precipitation 

input, and 2) the two linear regressors with an additional interaction term. Results of the 

coefficients fitted on the 3-year global SMAP and GPM data show that the unified regression 

method is able to reproduce or mimic the SSM characteristics found by several recent studies, 

including the SSM exponential decay rate, the fraction of precipitation retained in surface soil 

layer, and the effective depth of hydrologic storage. Additionally, including the interaction 

regressor provides an innovative approach to derive the sensitivity of infiltration/runoff partition 

process to antecedent SSM level without the need for streamflow observation data. The 

regression results from the satellite data are also compared with a model-based global dataset, 

providing insight into the suitability of model structure and parameterization. Compared to the 

satellite data, the physically-based model retains moisture longer in the top layer, shows less 

sensitivity of the runoff/infiltration partition process to the top-layer soil moisture, and exhibits 

less spatial variation in SSM dynamics. This study demonstrates that data-driven methods are 
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capable of deriving hydrologic dynamics purely from the SMAP data and that these derived 

dynamics are useful in evaluating process representations in hydrologic models. 

 

4.1 INTRODUCTION 

 A new generation of earth observing satellites have been developed and become available 

in recent years. Particularly relevant to hydrologic science, the NASA Soil Moisture Active 

Passive (SMAP) mission [Entekhabi et al., 2010] and the Global Precipitation Measurement 

(GPM) mission [Hou et al., 2014] provide land surface soil moisture (SSM) and precipitation 

observations, respectively, with near global coverage. These satellite datasets have presumably 

higher data quality than their predecessors and contain rich information about land surface 

hydrologic processes. For example, the SSM evolution during no-precipitation periods is 

primarily a result of SSM drying processes, mainly controlled by evaporation and drainage to 

deeper layers. Also, the SSM response to precipitation events reflects the magnitude of land 

surface processes including canopy interception of rainfall and surface runoff. 

 Since the launch of GPM in 2014 and SMAP in 2015, multiple years of their retrievals 

have become available. There has been an emerging number of new studies that have attempted 

to extract hydrologic information from SMAP at continental to global scale, some of them 

combined with GPM. For example, McColl et al. [2017a] calculated global SSM distribution and 

SSM memory, defined as the fraction of precipitation input flux that enters the SSM storage and 

remains there after a time interval. McColl et al. [2017b] extracted SSM drydown periods and 

calculated an average SSM decay e-folding time scale. Koster et al. [2017] estimated a non-

linear SSM loss function, defined as the SSM decay rate as a function of SSM level itself, and 

applied the loss function to perform real-time SSM nowcasting and forecasting. Akbar et al. 

[2018a] also estimated a non-linear SSM loss function from SMAP, and further classified the 

shape of the loss function across the Continental United States (CONUS). Shellito et al. [2016] 

and Shellito et al. [2018] calculated SSM drydown rate from SMAP, and compared it with in-situ 

measurements and model simulated SSM, respectively. Akbar et al. [2018b] estimated an 

effective storage depth from SMAP. Koster et al. [2018] inferred rainfall from SMAP and further 

estimated basin-scale streamflow with regression analysis on streamflow observation data. These 
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recent studies have demonstrated the potential for improving our process-level understanding of 

hydrologic dynamics via straightforward data-driven analysis of SMAP and GPM data. 

 One shortcoming of these studies is that they typically selected a certain hydrologic 

characteristic (e.g., SSM drydown or precipitation fraction retained) and a pre-assumed way of 

quantifying it (e.g., SSM exponential decay time scale; a multi-stage SSM loss function). While 

these approaches are able to extract a single fixed aspect of hydrologic information contained in 

SMAP, they require a priori assumptions about the SSM evolution or response to precipitation 

inputs, and they usually make subjective decisions in pre-processing the SMAP data (e.g., 

extracting SSM decay periods; separating rain versus no-rain periods). While these a priori 

assumptions result in directly interpretable results, they also prevent the potential opportunity to 

discover a full range of more complex, often interrelated factors that govern the land surface 

hydrologic dynamics. To overcome this shortcoming, we propose a unified regression method to 

the global SMAP and GPM data with the goal of deriving the dominating factors that govern 

SSM dynamics. We aim to place our results in the context of recent SMAP studies (mentioned 

above) and to provide new insights into the interaction between factors governing SSM 

dynamics. We focus on simple linear regressors of SSM itself and precipitation as well as their 

interaction, but the proposed regression method itself is very flexible and can be expanded to 

include any other form of governing terms such as nonlinear or categorical variables as well as 

additional data sources (e.g., air temperature). 

In addition to providing a greater knowledge of land surface processes, deriving the 

governing hydrologic dynamics from satellite data is also potentially useful for informing large-

scale hydrologic model development. Recent studies that assimilated SSM from SMAP to update 

modeled states [e.g., Mao et al., 2018a, 2018b] pointed out that data assimilation techniques, as a 

commonly used approach to combine modeled and observed information, only correct random 

errors and are insufficient to substantially improve modeling accuracy of hydrologic variables. 

Instead, improving structural representation of hydrologic processes in models is necessary. 

Since dominant hydrologic processes may be drastically different at various spatial scales, 

satellite SM data provides direct hydrologic information at a coarse resolution that is 

commensurate with the resolution of continental-scale distributed hydrologic models. This 

makes it possible to use the hydrologic dynamics derived from SMAP and GPM to evaluate and 

enhance the structure and parameterization of large-scale hydrologic models. A recent study by 
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Shellito et al. [2018] provided an excellent example on this topic, where they compared the SSM 

drying rates observed by SMAP and simulated by the Noah land surface model and discussed 

their different sensitivity to factors such as potential evaporation, vegetation and soil texture. In 

this study, we generalize the SMAP-versus-model comparison to the results of our regression 

model. 

 The following sections are organized as follows. Section 4.2 describes the details of data 

used, data quality control and the analysis method. Results derived from the satellite 

observations and model simulations are shown in Section 4.3. Section 4.4 discusses our results in 

the context of past literature and highlights our contributions. Section 4.5 concludes with our 

findings. 

 

4.2 METHODS 

4.2.1 Data and quality control 

4.2.1.1. SMAP satellite SSM data 

 The SMAP mission was launched in March 31, 2015 and provides SSM in the top 5 cm 

of soil column. In this study, we combined the ascending (PM) and descending (AM) retrievals 

from the SMAP L3 Passive product [O'Neill et al., 2016] (data Version 4), which has a spatial 

resolution of 36 km and a typical revisit time ranging from 12 hours (with ascending and 

descending retrievals available in a single day) to 2-3 days, depending on location and time of 

year. Three full years of SMAP data, from April 2015 to March 2018, were used in our analysis. 

 A few quality control steps were applied to the raw SMAP retrievals prior to analysis. 

First, a few SMAP pixels with constant retrieval values, which indicates obvious quality flaw, 

were masked out. Then the internal quality flags provided by the SMAP mission were applied 

and only data points with “recommended” quality were retained. Figure 4.1 shows a map of the 

number of SMAP retrievals after applying quality control. Regions are masked out by the quality 

flag including Amazon, boreal forest regions in North America and Eurasia, eastern United 

States, southeastern China, and part of central Africa, western Europe, Southeast Asia, Middle 

East and Australia. The SMAP internal quality flags are relatively conservative and mask out a 

relatively large number of retrievals. Nevertheless, we applied these flags to ensure high quality 
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of data used in our analysis. Finally to mitigate systematic error between the AM and PM 

retrievals, we mapped the ascending (PM) data to the descending (AM) regime via a seasonal 

cumulative distribution function (CDF) matching approach, since AM retrievals are generally 

more accurate than PM retrievals [Chan et al., 2018]. 

 The SMAP data were directly analyzed at their native 36 km spatial resolution. The 

original SMAP volumetric moisture content [m3/m3] was converted to a moisture depth [mm] by 

multiplying the nominal SMAP detecting depth of 50 mm. While the unit conversion does not 

affect the conclusions from the regression analysis, it facilitates interpretation of the results. 

 

 

Figure 4.1. Total number of SMAP retrievals during April 2015 to March 2018 after quality 

control. Four example locations where time series are presented are labeled on the map (A: 

eastern India; B: western United States; C: western Sahara; D: Tarim Basin in western China). 

 

4.2.1.2. GPM satellite precipitation data 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) Level 3 Version 05 Final 

Run precipitation data was used [Hoffman, 2017], which combines various satellite observations 

and provides 30-minute cumulative precipitation products at 0.1º spatial resolution [Huffman et 

al., 2015]. The Final Run product used in this study further includes monthly gauge analysis. We 

regridded the original 0.1º precipitation data to the 36 km SMAP resolution. We further 

converted the IMERG data from UTC to local solar time (LST) to match the SMAP time zone. 
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IMERG data at high-latitude Arctic regions (latitude > 60o) are only available during relatively 

short warm seasons and these pixels were excluded from our analysis. We also excluded pixels 

where less than 10% of the timesteps of the IMERG precipitation (12-hour accumulated) is 

nonzero, which are mainly located in the eastern Sahara Desert and the Arabian Peninsula. These 

pixels were excluded from our analysis because the infrequent precipitation leads to a low signal-

to-noise ratio which often results in unstable regression fitting (see Section 4.2.2 for further 

discussion). These pixels also correspond to regions with very arid sandy soils where SMAP 

presumably has low accuracy. 

4.2.1.3. Modeled SSM and precipitation data 

 The Global Land Data Assimilation System (GLDAS) gridded precipitation and 

simulated SSM data products by the Variable Infiltration Capacity (VIC) land surface model 

[Rodell et al., 2004] were obtained and analyzed in this study. Both precipitation and SSM data 

from GLDAS-VIC are at 1º spatial resolution and 3-hourly timestep. Note that the GLDAS-VIC 

SSM variable [mm] is the simulated soil moisture in the top 10-cm of the soils, about twice the 

depth of the SMAP observations. GLDAS-VIC SSM was temporally resampled to have the same 

time-varying data intervals as SMAP to eliminate any impact of sampling frequency on analysis 

results during model-observation comparison. High-latitude Arctic regions and some pixels in 

Sahara and Arabian Peninsula were also excluded from the regression analysis for GLDAS-VIC 

as for IMERG to be consistent and comparable with the SMAP/IMERG analysis. No spatial 

regridding was applied to the GLDAS data and the regression analysis was conducted at its 

native 1º resolution. 

4.2.1.4. Climatic aridity index data 

 The distribution of the regression results over different aridity regions was examined in 

this study. Long-term-averaged climatology precipitation and air temperature data was obtained 

and calculated from GLDAS-VIC over 1979 to 2017. Potential evapotranspiration (PET) was 

then estimated for each pixel location by a simple temperature-based method [Malmstrom, 1969; 

Dingman, 2002]: 

 40.9m aPET e=        (4.1) 

where PETm [mm/month] is the estimated monthly climatic PET; ea
* [kPa] is saturated vapor 

pressure for each month of year, which is calculated from the GLDAS monthly climatic air 

temperature, T [ºC], via [Dingman, 2002]: 
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    (4.2). 

Finally, the aridity index, 
𝑃𝐸𝑇

𝑃
 [-], was calculated for each pixel location, where PET [mm/year] is 

the annual average PET, and P is the GLDAS long-term-averaged annual precipitation. 

 

4.2.2 Regression analysis for SSM dynamics 

 The goal of the regression analysis is to quantify empirically the governing processes 

controlling the SSM dynamics. In our case, SSM dynamics at each pixel location are represented 

by the SSM changing rate in a discrete form: 

   
dSSM SSM

dt t





       (4.3) 

where dt and Δt [day] are the derivative and discrete form of timestep, respectively; dSSM and 

ΔSSM [mm] are derivative and discrete form of SSM change, respectively, within the timestep. 

𝛥𝑆𝑆𝑀

𝛥𝑡
 is the dependent variable (i.e., regression target) in the regression. Given the available data 

(i.e., SSM and precipitation), the simplest independent variables for a multivariate regression are 

the linear forms of the SSM state variable itself and the precipitation flux, in which case the 

regression problem can be written as: 

 Regression Form I:  1 2 =  +  +
ΔSSM P

SSM ε
Δt Δt

   (4.4) 

where P [mm] is the cumulative precipitation flux input during Δt; ε [mm/day] is the regression 

residual; β1 [day-1] and β2 [-] are the coefficients to be fitted. The bold terms indicate a column 

vector that contains all the available data points constructed from a time series. Specifically, 

Equation (4.4) can be written in a more explicit format as: 
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where the subscript k is the timestep index, and n is the total number of data points. In other 

words, each data point in the regression is formulated as: 

  1
1 1 2

1 1

k k k
k k

k k k k

SSM SSM P
SSM

t t t t
  −

−

− −

−
=  +  +

− −
    (4.6) 

Here we used SSM at the beginning of a timestep as the independent variable and 
1

k

k

t

k t

t t

P P
−=

=  . 

The time interval, Δt = tk – tk-1, is not constant due to the time-varying nature of SMAP data 

intervals (Δt ranges from 12 hours to 5 days, see the description of data quality control below), 

and the regression results reflect the coefficients over averaged Δt. Overall, we do not find 

significant impact of the time-varying Δt on regression results (see Section C3 in Supplemental 

Material for detailed examination). 

 A direct extension of the Form I of regression (Equation (4.4)) is to add an interaction 

term between SSM and P: 

Regression Form II:  1 2 3  =  +  +   +
ΔSSM P P

SSM SSM ε
Δt Δt Δt

 (4.7) 

where γ1 [hour-1], γ2 [-] and γ3 [mm-1] are again coefficients to be fitted. Different symbols are 

used to distinguish the regression coefficients from those in Regression Form I. The interaction 

term is the dot product of the matrix SSM and 
𝐏

𝚫𝐭
, that is: 
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 In this study, the regression analysis was conducted for the 3-year data at each pixel 

location individually, i.e., 36-km pixels for the satellite data and 1o pixels for the modeled 

GLDAS-VIC data. For both the satellite data (SMAP and IMERG) and the modeled data 

(GLDAS-VIC resampled to SMAP data interval), only adjacent SSM data points with Δt no 

longer than 5 days were included. To ensure statistical stability of the regression results, pixels 

where the total number of constructed data points in regression, n, is smaller than 100 are 

excluded from the analysis. In addition, columns of the independent variables are sometimes 

highly correlated, resulting in the collinear problem and therefore highly unstable fitted 

coefficients. Collinearity tends to occur for satellite data especially at locations with very few 

precipitation events (for example, Sahara in Africa; see Figure C1 in Supplemental Material for 

the pairwise scatter plot of Regression Form II variables at an example pixel in Sahara with 

collinearity). To mitigate this issue, we dropped the SSM·P interaction column (in Form II only) 

and/or the P column in the following situations: 1) drop both the P and the SSM·P columns if P 

and 
𝚫𝐒𝐒𝐌

𝚫𝐭
 are not positively correlated, which indicates a very low signal-to-noise ratio in the 

precipitation data; 2) if any column pair has a correlation coefficient ≥ 0.98, drop the latter 

column. These criteria were empirically selected and adopted such that unstable regression 

fittings (e.g., very large fitted values for γ3) were mitigated. The coefficients for the dropped 

columns were set to zero when being displayed. 

 As mentioned in the introduction, in this study we focus on the two regression forms with 

linear and interaction terms of SSM and precipitation. As the first application of this unified 

regression approach to discover governing hydrologic processes from the SMAP dataset, we 

refrained from more complicated regressors but focus on interpreting the regression results and 

its linkage and innovation compared with recent studies (see Sections 4.3 and 4.4 below). 
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However, this regression method itself is very flexible, and can be expanded to include any other 

regressors such as higher-order polynomial terms, other nonlinear terms, categorical terms, 

additional variables, and interaction between any of them. If a large number of terms are 

included, regularization of the coefficients needs to be applied (e.g., Lasso or Ridge 

regularization) to avoid overfitting. Regularization techniques can also be treated as a way of 

selecting the governing factors for SSM dynamics. For example, in a recent study, Brunton et al. 

[2016] proposed to use the Lasso regularization, which tends to shrink a subset of regression 

coefficients to zero, as a way of determining the governing equations of a dynamic system. No 

regularization was applied to the two regression forms in this study due to the small number of 

regressors. 

 Finally, to evaluate the goodness of fit of the multivariate regression, we calculated the 

regression R2 from a 5-fold cross-validation (i.e., out-of-sample) experiment. While the out-of-

sample experiment was applied to calculate R2, the fitted coefficient results shown in Section 4.3 

are based on the entire 3-year data. Details on model evaluation and R2 results from both 

regression forms are described in Section C2 in Supplemental Material. 

 

4.3 RESULTS 

 In this section, the regression results from the SMAP and IMERG data will first be 

presented in Section 4.3.1, focusing on the interpretation of the fitted coefficients from the 

regression analysis. A comparison of satellite-based and model-based results will be presented in 

Section 4.3.2. 

4.3.1 Regression results from the SMAP and IMERG data 

4.3.1.1. SSM decay rate - β1 or γ1 

 In both regression forms, the β1 (in Regression Form I as in Equation (4.4)) or γ1 (in 

Regression Form II as in Equation (4.7)) coefficient [day-1] is directly related to the SSM loss 

function commonly defined in past studies [e.g., Koster et al., 2017; Akbar et al., 2018a] which 

characterizes SSM decay rate as a function of SSM level itself: 

   ( ) ( )
SSM

L SSM f SSM
t


= − =


     (4.9) 
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In our case, we essentially assumed a linear loss function where β1 or γ1 is the negative slope. 

Since a linear loss function is equivalent to an exponential decay of SSM, another more intuitive 

interpretation is that 𝜏 = −
1

β1
 or  −

1

γ1
 [day] is the exponential SSM decay e-folding time scale 

[McColl et al., 2017b]. Figure 4.2 shows the converted coefficient τ [day] from the fitting of both 

regression forms. The τ results from the two regression forms have very similar magnitude and 

spatial distribution, indicating that the fitted SSM decay coefficient τ is insensitive to the 

additional interaction term (SSM·P) in the regression, and that τ is stable regardless of the 

regression form. Therefore, we do not distinguish in the discussion between τ converted from β1 

or γ1. Overall, more arid regions exhibit smaller τ, in other words faster SSM decay, as 

summarized in Figure 4.2b and Figure 4.2d. This trend is also evident in the spatial distribution 

of τ in Figure 4.2a and Figure 4.2c, with smaller τ in regions such as the Sahel and southern 

Africa, Australia, southwestern United States, the northwestern China/Mongolia region and 

southwestern South America. 

To further illustrate the ability of τ to characterize the SSM decay process, we back-

calculated the SSM dynamics, as well as the SSM time series itself, using the fitted coefficients. 

The back-calculated, or “predicted”, SSM time series at selected locations are shown in Figure 

4.3 (left column), which illustrates the part of SSM dynamics that are captured by the fitted 

regression model. For all example locations ranging from humid to arid climates, the predicted 

SSM time series (from either regression form) is able to capture the rapid SSM decay period 

immediately following precipitation events. However, after the initial decay period, the SMAP 

retrievals tend to flatten toward a near-constant minimum baseline (likely residual soil moisture) 

without further precipitation input, while the predicted SSM dries out to zero. While it is possible 

that SMAP has an artificial and incorrect minimum detection threshold, the regression forms 

applied in our study likely only capture part of the SSM decay dynamics. Specifically, the 

regressions only include the linear form of the SSM loss function and omit the non-linear 

behavior of the SSM loss function in Equation (4.9). Typically, SSM decay is non-linear with a 

much-slower SSM decay rate when SSM is low. While it is straightforward to expand the 

regression method to include non-linear regressors to depict more complex SSM loss functions, 

we refrain from doing so since the linear SSM coefficients can be interpreted more directly. By 
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retaining only the linear part of the SSM loss function, we focus on the processes that are 

responsible for the largest soil moisture changes immediately following rainfall events. 

 

 

Figure 4.2. The exponential SSM decay e-folding time scale, 𝜏 [day], fitted from the 

SMAP/IMERG satellite data. The upper and lower panels show 𝜏 results from Regression Form I 

and Regression Form II, respectively. 𝜏 = −
1

β1
 in Regression Form I and 𝜏 = −

1

γ1
 in Regression 

Form II. The right column (Panel b and d) summarizes 𝜏 from the two regression forms as a 

function of the aridity index. In these panels, the solid lines are the median coefficient of all pixel 

locations at an aridity level, and the shaded areas show the 25th and 75th quantiles. The histogram 

on the top shows the pixel count for different values of the aridity index. 
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Figure 4.3. Time series of the original SMAP or GLDAS SSM (black dots), predicted SSM from 

Regression Form I (orange lines) and predicted SSM from Regression Form II (green lines) at 

example pixel locations. The left column shows the time series of SMAP/IMERG and the 

corresponding predictions, and the right column shows the time series of GLDAS-VIC and the 

corresponding predictions. Each row shows the time series for a single pixel location (see Figure 

4.1 for the map of these locations). Precipitation data is displayed in grey bars on each subplot 

based on IMERG (left) or GLDAS (right) inputs. The fitted coefficients from both regression 

forms are labeled on each subplot. 

 

4.3.1.2. Precipitation fraction retained – β2 
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 If considering the top 5 cm of soil, as detected by SMAP, as the control volume, the 

dimensionless coefficient β2 in Regression Form I (Equation (4.4)) can be interpreted as the 

fraction of precipitation input during Δt that is added to and retained in the control volume at the 

end of Δt. As mentioned in the introduction, β2 is a quantity that combines various land surface 

processes including canopy interception, surface runoff and water drainage to deeper soil layers, 

and it is not possible to separate these processes by examining β2 alone. Figure 4.4 shows the 

map of the fitted β2. More arid regions exhibit generally higher β2 values, for example, higher β2 

values in the Sahara and southern Africa than in central Africa, higher β2 values in western China 

than the rest of Asia, and higher β2 values in the southwestern United Stated than in the central 

United States. This climatic trend of β2 is also summarized in Figure 4.4b. 

  

 

 

Figure 4.4. The fitted precipitation fraction retained in the top 5 cm of soil, β2 (in Regression 

Form I), fitted from the SMAP/IMERG satellite data. Panel a shows the map of fitted β2 and 

Panel b summarize it over aridity index (same format as Figure 4.2b and Figure 4.2d). 

 

4.3.1.3. Sensitivity of precipitation fraction retained to SMM level - γ3 

 Compared to Regression Form I, an additional interaction regressor, SSM·P, is included 

in Regression Form II (see Equation (4.7)). The combined term, (𝛾2 + 𝛾3 ∙ 𝑆𝑆𝑀), is analogous to 

the single β2 [-] coefficient in Regression Form I which lumps all land surface processes that 

determine the fraction of precipitation retained in the top layer. However, the additional 

interaction term allows the precipitation fraction retained to vary as a function of SSM, while β2 

[-] in Regression Form I averages the fraction at all SSM levels and does not consider its 
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variation with SSM. The coefficient γ3 [-/mm] can therefore be interpreted as the sensitivity of 

precipitation fraction retained to SSM level, or more specifically the change in the fraction per 1 

mm change of SSM. Figure 4.5 (lower panels) shows that the fitted γ3 coefficient is negative over 

the entire globe, meaning that precipitation fraction retained tends to be lower with higher SSM 

level. 

Only those processes that affect the precipitation fraction retained and that vary with 

SSM are reflected in γ3. For example, canopy interception affects the precipitation fraction 

retained but does not vary with SSM and is therefore not reflected in γ3. In contrast, surface 

runoff is reflected in γ3, because it is dependent on SSM level. For surface runoff generated via 

the infiltration-excess mechanism, the infiltration capacity of soil is likely smaller when surface-

layer soil is wetter. For surface runoff generated via the saturation-excess mechanism, runoff is 

in theory only generated when soil is saturated and therefore not a function of SSM level at point 

scale. But over a large-scale pixel (e.g., a 36-km SMAP pixel), usually only a fraction of the 

pixel area is saturated and generating runoff, and this saturation area is likely to increase when 

the pixel-averaged SSM increases. Therefore, via either mechanism, more surface runoff tends to 

be generated (and thus smaller precipitation fraction retained) when SSM is higher and its 

sensitivity to the SSM level is reflected in the γ3 coefficient. Finally, part of the precipitation 

infiltrates into the surface soil and leaves the surface layer via drainage or soil evaporation. We 

argue that this loss of infiltrated precipitation during Δt is reflected in γ1 in the next timestep 

instead of in γ3, since the SSM·P regressor uses the SSM value at the beginning of Δt (explicit 

numerical differentiation in Equation (4.8)). As a result, the timestep-beginning SSM does not 

affect the infiltrated precipitation loss during Δt. In summary, γ3 only reflects the sensitivity of 

surface runoff to antecedent SSM, while canopy interception is lumped into γ2 and the loss of 

infiltrated precipitation is reflected in γ1. 

To further illustrate the effect of this sensitivity on SSM dynamics, we compared the 

back-calculated SSM time series from the two regression forms (Figure 4.3, left column). In 

Figure 4.3a (time series for a pixel in eastern India), for example, the inclusion of γ3 results in 

different SSM behavior especially during high-rainfall seasons. Specifically, when a rainfall 

event happens when the surface soil is wet (e.g., in August 2016 and July 2017), the predicted 

SSM from Regression Form II (green line) increases less than that from Regression Form I 

(orange line). Conversely, when a rainfall event happens when the surface soil is dry (e.g., 
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February 2016, May 2016 and May 2017), the green line goes up more rapidly than the orange 

line. In other words, by including a negative γ3 in Regression Form II, less precipitation 

infiltrates into the SSM storage, and therefore more surface runoff occurs, when the antecedent 

SSM is wet; conversely, more precipitation infiltrates and less surface runoff occurs when the 

antecedent SSM is dry. The failure to capture this dynamic of infiltration/runoff partition as in 

Regression Form I results in a generally less accurate SSM response to precipitation input, and 

therefore also less accurate surface runoff, especially the “flashiness” of the time series. 

The spatial distribution of γ3 as shown in Figure 4.5c and summarized in Figure 4.5d 

shows generally larger negative values in more arid regions, indicating higher sensitivity of 

infiltration/runoff partition to antecedent SSM. Although γ3 is generally smaller in humid 

regions, a small error in the response of SSM to precipitation accumulates over frequent 

precipitation events in these regions, and the accumulated error persists due to the slower SSM 

decay (see Section 4.3.1.1). Therefore, even a small γ3 difference can have a significant and 

longer-term effect on SSM evolution in humid regions (e.g., the time series in eastern India 

shown in Figure 4.3a). The R2 of regression (Figure C2 in Supplemental Material) also show that 

Regression Form II has a bigger R2 increase compared to Regression Form I in these humid 

regions, suggesting that the SSM·P term plays an important role in SSM dynamics in these 

regions. In contrast, arid regions with larger γ3 values typically experience less precipitation 

input and more rapid SSM decays. Therefore, although the consideration of γ3 affects the SSM 

response to rainfall events and thus the SSM peaks in these arid regions, the difference between 

with or without γ3 fades faster over time (e.g., Figure 4.3c, Figure 4.3e and Figure 4.3g). In 

summary, including the  SSM·P interaction term is important for correctly describing the SSM 

response to rainfall inputs in both humid and arid regions, and is essential to accurately capture 

the long-term SSM evolution in humid regions. 

 Finally, we would like to point out that the γ2 [-] coefficient in Regression Form II 

represents the precipitation fraction retained when SSM is zero (see Figure 4.5, upper panels). 

This is a mathematical extrapolation of the precipitation fraction, and the SSM = 0 situation may 

or may not happen in reality. Since the precipitation fraction retained typically decreases with 

increasing SSM, γ2 is the maximum potential precipitation fraction retained at a certain location. 

The coefficient γ2 therefore reflects a property of fixed land surface conditions as a function of 

soil texture, vegetation cover, topography, etc., as opposed to time-varying properties that 
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depend on meteorological conditions. Although not the focus of this study, γ2 can potentially be 

used to derive these land surface properties in future studies, and this task is only possible by 

including the SSM·P interaction term. Although β2 and γ2 are both regression coefficients for 
𝐏

𝚫𝐭
 

in the two regression forms, β2 is the average precipitation fraction retained over the observed 

SSM dynamic range, while γ2 is the maximum possible fraction under the hypothetical situation 

of SSM = 0. The fitted values for γ2 (Figure 4.5, upper panels) thus show a larger magnitude and 

different spatial pattern than those for β2 (Figure 4.4). 

 

    

 

Figure 4.5. The γ2 [-] (upper panels) and γ3 [-/mm] (lower panels) coefficients in Regression 

Form II fitted from the SMAP/IMERG satellite data. The coefficient γ2 represents the 

precipitation fraction retained when SSM is zero, while γ3 represents the sensitivity of this 

fraction to SSM level. The right column (Panels b and d) summarize γ2 and γ3, respectively, as a 

function of the  aridity index (same format as Figure 4.2b and Figure 4.2d). 
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4.3.2 Regression results from the modeled GLDAS-VIC data in comparison with the 

SMAP/IMERG data 

 The same regression analysis was carried out for the model-based GLDAS-VIC SSM and 

the corresponding GLDAS precipitation. The top soil layer in the GLDAS-VIC implementation 

is 10 cm, which is slightly thicker than the 5 cm detection depth of SMAP (we will discuss the 

implication of this difference below). As mentioned in Section 4.2.1, SSM at each 1o GLDAS-

VIC pixel was subsampled to have the same data gaps as the nearest SMAP pixel, such that the 

impact of sampling frequency is eliminated when comparing GLDAS-VIC with SMAP results. 

Based on the coefficient interpretation discussed in Section 4.3.1, here we focus on the 

observation/model comparison on the SSM decay time scale (τ), the overall precipitation fraction 

retained (β2 in Regression Form I) and the sensitivity of this fraction to SSM level (γ3 in 

Regression Form II). 

4.3.2.1. SSM decay time scale τ 

 The GLDAS-VIC SSM decay time scale, τ, is significantly slower than that from 

SMAP/IMERG over most of the globe (comparing Figure 4.6a with Figure 4.2c; also 

summarized in Figure 4.6b). This result is consistent with a recent study by Shellito et al. [2018] 

who found the SSM drying rates from the Noah land surface model to be approximately double 

compared to that from SMAP during the initial drying period after a precipitation event.  There 

are several possible reasons for the difference between the SMAP-observed and modeled SSM 

decay rates. First, the GLDAS-VIC surface soil layer is slightly deeper than the SMAP detection 

depth, and the larger moisture volume represented by a deeper soil layer typically decays more 

slowly due to slower averaged evaporation rate (although Shellito et al. [2018] claimed, via 

additional modeling work, that the difference in depth between SMAP and their Noah model was 

not the major cause for the drying rate difference). Second, Shellito et al. [2016] found that 

SMAP dries down faster than observed from in-situ SSM probes and concluded that the actual 

SMAP sensing depth may be shallower than 5 cm. Third, the VIC model 

structure/parameterization may be inaccurate, such as a hydraulic conductivity that is too low or 

insufficient vegetation water uptake, which results in SSM drainage that is too slow or too little 

evapotranspiration. 
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As summarized in Figure 4.6b, the difference between τ derived from SMAP and the 

modeled GLDAS-VIC is relatively small in humid regions, but τ from GLDAS-VIC tends to 

increase with aridity while τ from SMAP tends to decrease with aridity. This opposite climatic 

pattern of τ suggests that, in addition to the systematic bias of the modeled SSM decay rate by 

GLDAS-VIC, the model representation of SSM decay processes in GLDAS-VIC may vary 

incorrectly across different climatic regions. This difference in climatic pattern of τ can also be 

seen from the example time series in Figure 4.3. At the more humid location in eastern India, for 

example, the GLDAS SSM decays only slightly more slowly than the SMAP SSM, and visually 

the time series behave quite similarly (Figure 4.3a and Figure 4.3b). However, at the more arid 

location in western United States, the GLDAS-VIC SSM decays much more slowly than SMAP, 

resulting in a visually striking difference in the behavior of the two time series (Figure 4.3c and 

Figure 4.3d). 

4.3.2.2. Overall precipitation fraction retained 

 The fitted overall β2 [-] (in Regression Form I) from GLDAS-VIC is in general larger 

than that from SMAP/IMERG (comparing Figure 4.7a with Figure 4.4a). Since β2 is a lumped 

quantification of total precipitation retained, the comparison result here indicates that there is 

systematic bias in the model representation of processes including canopy interception and 

surface runoff generation. As summarized in Figure 4.7b, the model-derived β2 is larger than 

SMAP-derived β2 especially in humid, energy-limited regions, suggesting inaccurate model 

representation of the above processes in these regions. In arid regions, the difference between 

model-derived and SMAP-derived β2 is smaller. 

4.3.2.3. Sensitivity of precipitation fraction retained to SSM level 

The γ3 coefficient [-/mm] derived from GLDAS-VIC (Figure 4.8a) has an overall smaller 

magnitude than the one derived from SMAP and its spatial distribution is more uniform (Figure 

4.5c). More specifically, Figure 4.8b shows that the magnitude of the SMAP-derived γ3 increases 

with aridity index, while the GLDAS-derived γ3 remains at a low level. 

 As discussed in Section 4.3.1.3 above, the γ3 coefficient reflects the sensitivity of the 

infiltration/runoff partition process to antecedent SSM level. In VIC, the infiltration/runoff 

partition process is mainly controlled by the variable infiltration curve. The infiltration curve 

determines the infiltration/runoff partition based on the saturation area fraction, which is 

estimated from the pixel-averaged soil moisture saturation level. Our satellite/model comparison 
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of γ3 here suggests that the surface runoff generation process in the VIC setup in GLDAS is 

overall too insensitive to SSM (this conclusion is consistent with Crow et al. [2018]), especially 

in arid regions. From the model structure perspective, since VIC uses the saturation level of the 

top (l-1) layers of soil (where l is the total number of vertical layers; l = 3 in the GLDAS-VIC 

setup) to determine the infiltration/runoff partition, the thicker deeper layers, instead of the thin 

top layer, typically dominates the runoff/infiltration partition [Mao et al., 2018a]. Our γ3 results 

suggest that more weight should be given to the top layer saturation level when partitioning 

precipitation into infiltration and runoff. From the model parameterization perspective, the 

variable infiltration curve parameter, binfilt, which determines the infiltration rate as a function 

of soil saturation, was set to be a global constant of 0.2 in the current version of GLDAS-VIC. 

Our γ3 results suggest that a spatially varying binfilt parameter may result in better representation 

of infiltration/runoff partition. 

 

In summary, we demonstrate the potential of using the SSM governing dynamics derived 

from SMAP to evaluate large-scale hydrologic model setup. Although the derived governing 

SSM dynamics do not necessarily allow us to derive a specific parameter or parameter value in 

the hydrologic model, it provides guidance to the direction of model improvement that would 

better represent the dominating SSM dynamics in land surface models. 

 

 

Figure 4.6. The left panel shows the exponential SSM decay e-folding time scale, 𝜏 [day], fitted 

for the modeled GLDAS-VIC data (Regression Form II). The right panel summarizes the 

GLDAS-fitted 𝜏 over aridity index (blue) and compared with the SMAP-fitted 𝜏 (orange). The 

format of the right panel is the same as Figure 4.2b and Figure 4.2d. 
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Figure 4.7. Same as Figure 4.6, but for precipitation fraction retained, β2. 

 

 

Figure 4.8. Same as Figure 4.6, but for the sensitivity of the precipitation fraction retained to 

SSM level, γ3. 

 

4.4 DISCUSSION 

 In Section 4.3.1 we demonstrate the ability of the unified regression method to derive 

multiple governing SSM dynamics from the SMAP data. In this section we further discuss our 

findings in the context of recent literature and highlight our contributions. 

4.4.1 Comparison of the derived dynamics from SMAP with findings in literature 

1) SSM decay time scale (τ) 
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While our calculated τ coefficient is related to several recent studies that quantified SSM 

drying behavior using a non-linear loss function [e.g., Shellito et al., 2016; Koster et al., 2017; 

Akbar et al., 2018a; Shellito et al., 2018], it is most directly related to the study by McColl et al. 

[2017b] where the authors extracted SSM drydown periods and calculated an averaged 

exponential decay time scale. Figure C7 in Supplemental Material shows that our fitted τ 

coefficient from SMAP reproduces the results from McColl et al. [2017b] with similar τ 

magnitude and spatial patterns. However, our unified regression method does not require that 

SSM drydown sequences be extracted first and is able to fully use the time series of data even 

during precipitation events. 

2) Precipitation fraction retained (β2) 

The β2 coefficient is directly related to the soil moisture memory calculated from SMAP 

by McColl et al. [2017a], defined as the average proportion of precipitation falling on a soil layer 

that is still present in the soil layer after a certain period of time. Our fitted β2 agrees with the 

spatial pattern found by McColl et al. [2017a], including higher values in the Sahara, western 

China, the Arabian Peninsula and western United States (see Figure C8 in Supplemental 

Material). 

Our fitted β2 is also related to the study by Akbar et al. [2018b], who calculated an 

effective depth, Δz, over CONUS by calibrating the following simple water balance model 

against the SMAP retrievals: 

1 ( )t
t t

P
SSM SSM t L SSM t

z
+ = +  − 


    (4.10) 

where L(SSM) is the SSM loss function. Comparing this water balance model with our 

Regression Form I (see Equations (4.4) and (4.6)), the Δz value in their study is mathematically 

equivalent to  
1

𝛽2
 (except that they assumed a non-linear SSM loss function as opposed to the 

linear loss function used in this study). We plotted our fitted  
1

𝛽2
 values in CONUS (Figure C9 in 

Supplemental Material) and observe a similar east-west gradient as Δz in Akbar et al. [2018b]. 

Our  
1

𝛽2
 is generally larger than Δz from Akbar et al. [2018b] possibly due to our linear 

simplification of the loss function as well as different parameter optimization techniques. While 

Akbar et al. [2018b] argued that Δz represents the depth of an active hydrologic control volume, 

they did not consider important land surface processes including surface runoff and other parts of 
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the precipitation fluxes that never enter the land surface, such as canopy interception. In contrast, 

our interpretation of β2 implicitly accounts for all these land surface processes. 

4.4.2 Summary of the advantages of the unified regression method 

 As described above, in this study a single regression analysis is able to derive multiple 

SSM characteristics from SMAP simultaneously and reproduce or mimic findings from several 

recent stand-alone studies. This provides a unified approach to resolve various SSM dynamic 

terms from the SMAP data. In addition, the regression approach does not require a priori and 

somewhat subjective data pre-processing (e.g., extraction of SSM drydown periods) and can be 

applied directly to the original time series. Information contained in the time series data can also 

be extracted regardless of rain/no rain conditions. 

 The unified regression approach also facilitates the interpretation and distinction of 

multiple SSM dynamic processes. For example, Section 4.3.1 clearly shows that the SSM decay 

time scale, τ, represents a fundamentally different type of hydrologic process than is represented 

by the precipitation fraction retained, β2. The former represents SSM loss processes while the 

latter represents SSM’s response to precipitation input, and they correspond to two different 

coefficients in the regression equations. This process distinction is not clear when the individual 

coefficients are examined separately. For example, in the study by McColl et al. [2017b], they 

compared their calculated SSM exponential decay time scale τ with the soil moisture memory 

calculated by a previous study [McColl et al., 2017a], and discussed that the differences in the 

spatial patterns of the two variables were mainly due to differences in the treatment of drainage 

fluxes. However, we are able to point out through the unified regression approach that τ (as 

calculated by McColl et al. [2017b]) and soil moisture memory (as defined by McColl et al. 

[2017a] and equivalent to β2) cannot be compared directly. 

 Finally, our regression approach is capable of resolving interrelated land surface 

dynamics, notably the sensitivity of the infiltration/runoff partition to the SSM level as depicted 

by γ3. This coefficient reflects the coupling strength between pre-storm soil moisture and surface 

runoff (i.e., to what extent antecedent soil moisture affects runoff generation). Understanding this 

coupling is one of the key goals of land surface hydrologic science and is essential for 

applications such as flood forecast, drought monitoring and hydrologic data assimilation. 

Recently studies, for example Crow et al. [2018], have started to explore the potential for 
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understanding this coupling by examining the relationship between SMAP-observed pre-storm 

soil moisture and during-storm streamflow observations. However, estimating this coupling 

strength remains challenging for basins without streamflow observations. Although limited to 

surface soil storage and surface runoff only, the γ3 coefficient presented here provides an 

innovative way to derive this coupling strength over large-scale ungauged locations without the 

need for streamflow observations. 

 

4.5 CONCLUSIONS 

 We proposed a multivariate regression method that quantifies the governing factors that 

control SSM dynamics. We focus on two simple forms of regressors: the linear regressors of 

SSM and precipitation input (Regression Form I), and these two linear regressors with an 

additional interaction term (Regression Form II). This approach unifies various governing 

processes into a single regression analysis without the need of a priori data pre-processing. By 

examining the coefficients fitted on the 3-year global SMAP and IMERG datasets, we are able to 

reproduce or mimic the SSM characteristics found by several previous studies, notably the SSM 

exponential decay rate [McColl et al., 2017b], SSM memory defined by the fraction of 

precipitation retained in the top layer soil [McColl et al., 2017a], and an effective depth of 

hydrologic storage [Akbar et al., 2018b]. Additionally, including the SSM·P interaction term in 

the regression analysis provides a new approach to deriving the sensitivity of the 

infiltration/runoff partition process to antecedent SSM level in large-scale ungauged regions 

without the need for streamflow observations. 

The analysis results derived from SMAP/IMERG are also compared with those derived 

from the model-based GLDAS-VIC dataset, which suggests that the GLDAS-VIC setup shows 

SSM decay that is too slow (through drainage and/or evaporation), and the runoff/infiltration 

partition shows too little sensitivity to top-layer soil moisture. This conclusion is only made 

possible by including the SSM·P interaction term in regression. These results provide guidance 

to the direction of model development that would better capture the dominating SSM dynamics. 

The satellite-model comparison also points out the inaccuracy of the spatial distribution of these 

land surface processes in different climatic regions. 
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 A direct extension of the presented regression analysis would be to include additional 

regressors to derive more comprehensive governing processes for SSM. As illustrated in this 

study, adding the SSM·P term in addition to the two linear regressors of SSM and precipitation 

allows us to resolve interesting new processes. Other potential regressor terms to add include: 1) 

higher-order polynomial SSM terms that will help capture non-linear SSM decay behaviors (as 

extracted by stand-alone approaches in previous studies such as in Akbar et al. [2018a] and 

Koster et al. [2017]), 2) binary SSM-threshold term which will take into account the non-linear 

processes due to SSM saturation, and 3) additional data sources such as air temperature, which 

would make it possible to separate out energy-driven processes such as evaporation. Care needs 

to be taken to avoid overfitting the noisy data when including a larger number of regressors. 

Interpreting the fitted coefficients from these more complicated regressors is also more 

challenging and we refrained from using them in this initial study to highlight the usage and 

interpretation of the unified regression methodology. 

Another potential direction of future research is to derive soil properties from the 

resolved SSM dynamics at the resolution of the SMAP measurements, which are of similar 

resolution as continental- to global-scale hydrologic model implementation. Deriving soil 

properties at this resolution circumvents the difficulty that it is not straightforward to upscale 

point-scale soil measurements to pixel-averaged values due to unobserved, complex 

soil/vegetation heterogeneity. Our comparison of the regression coefficients based on SMAP 

observations and on GLDAS-VIC provided insights into soil properties that determine 

runoff/infiltration partitioning, but additional soil property parameters can potentially be 

developed. It is also potentially possible for future research to investigate human impacts on 

SSM dynamics. Water source/sink due to human activities, such as irrigation and pumping, could 

be included as input in the regression model to improve the accuracy of the analysis. In regions 

where such data is unavailable, it may be possible to derive human activity signals from the 

derived SSM dynamics. 
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Chapter 5. CONCLUSIONS AND FUTURE WORK 

RECOMMENDATIONS 

5.1 CONCLUSIONS 

In this dissertation, I examine various ways of extracting hydrologic information from the 

SMAP surface soil moisture data and assess its ability to improve hydrologic modeling. This 

works is motivated by the four main research questions described in Chapter 1: 1) To what extent 

can the SMAP surface soil moisture data improve streamflow simulation via state updating data 

assimilation techniques, and why? 2) To what extent can the SMAP surface soil moisture data 

correct the GPM precipitation estimates, and why? 3) To what extend can the SMAP surface soil 

moisture data improve streamflow simulation via a dual state/rainfall correction system? And 4) 

How can we extract soil moisture dynamics from the SMAP data and use this information to 

evaluate process representation in hydrologic models? 

 Chapter 2 concludes that state updating alone is not sufficient to substantially improve 

large-scale streamflow simulations. The main reasons include that, at least in our case study 

using the Variable Infiltration Capacity (VIC) model, fast-response surface runoff is not 

primarily coupled with antecedent states, and slow-response subsurface runoff is controlled by 

the deeper-layer soil moisture that is not well corrected via the assimilation of surface 

measurements (Question 1). Chapter 3 further includes the rainfall correction scheme that uses 

SMAP to correct the GPM rainfall estimates and finds only a slight rainfall correction, mainly 

because of the improved baseline quality of the new-generation GPM satellite product (Question 

2). Combining the corrected rainfall with updated soil moisture states, the dual state/rainfall 

correction system leads to slight to moderate improvement in simulated streamflow (Question 3). 

Chapter 2 and Chapter 3 together point out that, while soil moisture data assimilation (DA) 

techniques are able to nudge the hydrologic variables (i.e., antecedent soil moisture states, the 

rainfall estimates and the subsequent streamflow simulations) toward the correct direction, these 

methods only correct the zero-mean random errors in a hydrologic simulation system, but not the 

often larger systematic error. Therefore, substantial improvement of streamflow simulation is not 

possible via DA techniques alone, but will rely on reduction of systematic errors (Question 3). 
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 These findings from Chapter 2 and Chapter 3 serve as a strong motivation for the work 

conducted in Chapter 4, where the surface soil moisture dynamics are extracted from SMAP and 

are compared with a model-based global soil moisture dataset to inform its 

structure/parameterization inaccuracy. To do so, a unified multivariate regression method is 

proposed to extract the governing factors for surface soil moisture dynamics from data. This 

unified regression method is able to mimic several SMAP characteristics (such as soil moisture 

decay rate and soil moisture memory) extracted separately from recent studies, and it 

additionally provides a new approach to derive the dependency of the infiltration/runoff partition 

process on antecedent surface soil moisture level without the need for streamflow observation 

data (Question 4). The SMAP/model comparison results suggest that the hydrologic model 

examined retains moisture longer in the top soil layer, shows less sensitivity of the 

infiltration/runoff partition process to the top-layer moisture, and exhibits less spatial variation in 

surface soil moisture dynamics (Question 4). 

5.2 FUTURE WORK RECOMMENDATIONS 

 The work in this dissertation demonstrates that extracting information from the new-

generation satellite data products (e.g., SMAP) is promising for better understanding land surface 

hydrologic processes, as well as for informing hydrologic models and model implementations. 

Although the more traditional soil moisture DA approaches that use satellite soil moisture 

estimates are able to provide some improvement to the simulated hydrologic variables (e.g., soil 

moisture states, rainfall estimates, streamflow), we may be approaching the limit of using such 

methods to correct the random error components in a hydrologic modeling system. Therefore, it 

would be more beneficial to focus future research effort on extracting hydrologic behaviors from 

satellite data and using them to derive improved model structure/parameterization. While 

Chapter 4 in this dissertation gives an initial illustration toward this research direction, additional 

data-driven approaches need to be developed to more directly link the findings from satellite data 

with hydrologic modeling setup. Furthermore, the findings from this dissertation also stress the 

benefit and potential of continuing to upgrade the earth-observing satellites themselves, such that 

an even more accurate depiction of the land surface processes would be possible. 
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APPENDIX A 

A framework for diagnosing factors degrading the streamflow performance of a soil 

moisture data assimilation system – Supplemental Material 

 

This appendix includes the supplemental materials from chapter 2. This material has been 

accepted for publication in its current form in the Journal of Hydrometeorology. © American 

Meteorological Society. Used with permission. 

 

Mao Y., W. T. Crow, and B. Nijssen (2018), A framework for diagnosing factors degrading the 

streamflow performance of a soil moisture data assimilation system, Journal of 

Hydrometeorology, accepted, doi:10.1175/JHM-D-18-0115.1. 

 

A1. Mathematical details of ensemble Kalman filter (EnKF) 

The ensemble Kalman filter (EnKF) method is one of the most commonly used data 

assimilation (DA) techniques in hydrology. EnKF was first introduced by Evensen [1994] and 

has subsequently been applied to a large number of land DA applications [e.g., Crow and Ryu, 

2009; Chen et al., 2014; Massari et al., 2015]. It represents model error by an ensemble of model 

run replicates, which are combined with measurements sequentially to update model states. 

Specifically, the EnKF method is based on a propagation model and a measurement model: 

 1 ( , )k k k kx f x u + = +        (A1) 

 k ky Hx v= +         (A2) 

where subscript k is a discrete time index; x is a column vector of model states to update (the 

column vector length is the total number of state variables to update); u is model meteorological 

forcing; f() is a land surface model that propagates states to the next timestep; ω lumps together 

modeling errors during propagation from various sources including forcing data error, model 

structure error and parameterization error; y  is measurement data, in our context surface SM 

measurements; H is an observation operator that relates model states x to measurements y ; and ν 

is measurement error. 

In a standard EnKF, an ensemble size of N model replicates is propagated and updated 

sequentially over time in the following way: 
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    1) An ensemble of initial model states is first generated by perturbing the initial deterministic 

model states to represent initial state error; 

    2) For each ensemble member, the land surface model is run until the next measurement time 

with perturbed meteorological forcing to represent forcing error. Model states are directly 

perturbed as well to represent random errors from model structure and parameterization; 

    3) Once an observation time is reached, the Kalman gain K is calculated as: 

  1( )T T

k k kK P H HP H R −=  +       (A3) 

where R is the measurement error variance, and the forecast state error covariance matrix Pk is 

estimated by sampling across the propagated ensemble states: 

 
( ) ( )

1

1
ˆ ˆ ˆ ˆ( )( )

1

N
j j T

k k k k k

j

P x x x x
N

− − − −

=

= − −
−
      (A4) 

where ( )ˆ j

kx−  is the propagated state vector at time k for the jth ensemble member, and ˆ
kx −  is the 

mean of ( )ˆ j

kx−  across all ensemble members; 

    4) Following the calculation of K, each ensemble member of states is individually updated as: 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ( )j j j j

k k k k k kx x K y v y+ − −= +  + −      (A5) 

where ( )ˆ j

ky−  is the simulated measurement at time k for the jth ensemble member, i.e., 

( ) ( )ˆ x̂j j

k ky H− −= ; ( )j

kv  is random noise added to represent measurement error whose error statistic 

is consistent with R in Equation (A3). 

 

A2. Mathematical details of the evaluation metrics used in the study 

    1) Percent error reduction (PER) 

PER is defined as the percent reduction in the root-mean-squared error (RMSE) 

compared to the open-loop baseline: 

  1 100a

open

RMSE
PER

RMSE

 
= −  
  

       (A6) 

where the subscripts open and a denote the open-loop and DA analysis runs, respectively. 

2) Kling-Gupta efficiency (KGE) 

The Kling-Gupta efficiency (KGE) [Gupta et al. 2009] combines the performance in 

terms of correlation, variance and bias: 
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2 2 21 ( 1) ( 1) ( 1)KGE r  = − − + − + −     (A7) 

where r is the correlation coefficient between simulated and observed streamflow; α is the ratio 

of their standard deviations; and β is the ratio of their means. KGE ranges from negative infinity 

to 1 with values closer to 1 indicating better performance. 

    3) Percent continuous rank probability score reduction (PSR) 

Continuous rank probability score (CRPS) measures the deviation of the cumulative 

distribution function (CDF) of an ensemble from that of a reference (observation in the real-data 

case or truth in the synthetic case) [Hersbach, 2000]. If we assume the reference has zero 

uncertainty, then its CDF (denoted by 𝐹𝑡
𝑟(𝑠) where t denotes timestep and r denotes observation) 

is a unit step function: 

  
0, s y

(s)
1, y

r

to

t r

t

F
s

 
= 



        (A8) 

where 𝑦𝑡
𝑟 is the reference variable value and s is a random variable. CRPS is then calculated as 

the temporal mean of the CDF deviation from the reference: 

  
2

1

1
[ (s) (s)]

n
a r

t t

t

CRPS F F ds
n



−
=

= −       (A9) 

where 𝐹𝑡
𝑎(𝑠) denotes the CDF of an analysis ensemble at time t, and n is the total length of the 

time series. In practice, the continuous CDF of an analysis, 𝐹𝑡
𝑎(𝑠), is empirically estimated by 

the finite ensemble. Note that CRPS penalizes both a deviation of the ensemble mean from the 

observation and a large ensemble spread. A smaller (i.e., closer-to-zero) CRPS value indicates 

better ensemble performance. 

Analogous to PER, the percent CRPS reduction (PSR) quantifies the percent reduction in 

CRPS of a DA analysis compared to the open-loop baseline (note that here the baseline is the 

open-loop ensemble instead of the deterministic open-loop run): 

  1 100a

open

CRPS
PSR

CRPS

 
= −  
  

       (A10) 

4) Normalized ensemble skill (NENSK) 

NENSK measures the ensemble-mean error normalized by ensemble spread: 

  
ENSK

NENSK
ENSP

=         (A11) 
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where the ensemble skill (ENSK) and ensemble spread (ENSP) are calculated as: 

  
2

1

1
(y y )

n
a o

t t

t

ENSK
n =

= −        (A12) 

  
,(j) 2

1

1
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n
a a

t t

t

ENSP
n =

= −        (A13) 

where �̅�𝑡
𝑎 denotes the ensemble-mean value at timestep t, and 𝑦𝑡

𝑎,(𝑗)
 denotes the value of the jth 

ensemble member. In an ideal situation where an ensemble is a correct representation of analysis 

uncertainty, the observed or true condition looks like one of the realizations of the ensemble 

[Anderson, 1996; Wilks, 2011] and therefore NENSK should be approximately one [Talagrand 

et al., 1997; Wilks, 2011] (NENSK > 1 indicates an under-dispersed ensemble while NENSK < 1 

indicates an over-dispersed ensemble). This metric has been used to verify ensemble hydrologic 

variables [e.g., De Lannoy et al., 2006; Brocca et al., 2012; Alvarez-Garreton et al., 2014]. 
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APPENDIX B 

Dual state/rainfall correction via soil moisture assimilation for improved streamflow 

simulation: Evaluation of a large-scale implementation with SMAP satellite data – 

Supplemental Material 

 

This appendix includes the supplemental materials from chapter 3. 

 

B1. The ensemble Kalman smoother (EnKS) version of the Soil Moisture Analysis Rainfall 

Tool (SMART) 

 The Soil Moisture Analysis Rainfall Tool (SMART) is a rainfall correction scheme 

developed and updated by Crow et al. [2009; 2011] and Chen et al. [2012]. It is based on 

sequential assimilation of soil moisture (SM) measurements into a simple Antecedent 

Precipitation Index (API) model to obtain SM increments, and then linearly relates these 

increments to rainfall accumulation errors. In the study we extended the ensemble Kalman filter 

(EnKF) version of SMART developed by Crow et al. [2011] to an ensemble Kalman smoother 

(EnKS) version with probabilistic rainfall estimates. 

Following Crow et al. [2009; 2011], the API model is used to capture the response of 

moisture storage (represented by the API state) to rainfall input: 

   
1t t tAPI API P −= +        (B1) 

where t is a timestep index; P is the original uncorrected precipitation observation and γ is a loss 

coefficient (dimensionless) that accounts for storage loss through evaporation, drainage, etc. In 

the ensemble version of SMART [Crow et al., 2011], Equation (B1) is converted to:   

   
1

(j) (j) (j) (j)

t t t t tAPI API P  −= + +       (B2) 

where the superscript (j) denotes the jth ensemble member; η is multiplicative noise with mean 1 

added to the observed precipitation to represent random precipitation forcing error; and ω is 

zero-mean Gaussian noise to represent random API model structure and parameterization error. 

The API state can be related directly to SM content via rescaling [Crow et al., 2009]. The 

rescaled SM measurement, θ, can therefore be assimilated to update the API states via the 

standard EnKS technique both at the measurement timestep and during the data gap before the 

measurement timestep. Mathematically, if two adjacent measurements come in at time k and 
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time m with m – k ≥ 1, then the measurement at time m is used to calculate the gain K and API 

increment δ for each timestep i at timestep m as well as during the gap (i.e., k < i ≤ m): 

   im
i

m m

T
K

T R
=

+
        (B3) 

and 

   ( )(j) (j) (j) (j) (j)

i i i i m m mAPI API K API  + − −= − =  + −    (B4) 

where K is the Kalman gain; Tim is the covariance matrix between API states at time i and m; R is 

the measurement error variance for the rescaled SM measurements; the superscript (j) denotes 

the jth ensemble member; the superscripts “-” and “+” denote API states before and after an 

update, respectively; к is zero-mean Gaussian noise added to represent the random SM 

measurement error. Tim is calculated as: 

   
1

1
( ) ( )

1

M
(j) (j)

im i i m m

j

T API API API API
M

− − − −

=

= −  −
−
    (B5) 

where M is the ensemble size; tAPI −
 is the ensemble-mean API states before update. 

The SMART algorithm then uses ensemble-mean API increment δ to estimate the rainfall 

correction amount via a simple linear relation. We extended this relation to produce an ensemble 

of corrected rainfall time series (instead of the single rainfall estimates in past studies) where 

each ensemble member of the perturbed rainfall time series is corrected by the corresponding 

member of δ.: 

   [ ] [ ] [ ](j) (j) (j) (j)

corr l l lP P  = +       (B6) 

where “[ ]” denotes temporally aggregated P or δ (in the SMART study in this paper, this 

window was set to the 3-hour native SMART timestep without aggregation); l is the new time 

index for the aggregated windows; 𝜆 is a scaling factor that can either be calibrated or set to a 

prescribed constant. Finally, negative Pcorr resulted from Equation (B6) are reset to zero, and the 

final corrected precipitation time series is (multiplicatively) rescaled to be unbiased over the 

entire simulation period toward the original precipitation observation time series. 
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B2. Investigation of cross-correlation of errors in the dual system 

B2.1. Background and methods 

It is well known that correlated errors in different parts of a Kalman filter result in sub-

optimal filter outputs. Therefore, in the original paper detailing the dual state/rainfall correction 

system, Crow and Ryu [2009] advised that the corrected rainfall (informed by the SM 

measurements) should not be fed back into the state EnKF correction scheme into which the 

same SM measurements are assimilated. Instead, corrected rainfall and states should be 

combined via an offline model simulation (see Figure 3.1 and Section 3.2.4.3 in the main 

manuscript). Later studies that applied the dual correction system all followed this general 

guideline [e.g., Chen et al., 2014; Alvarez-Garreton et al., 2016]. However, although this 

guideline helps avoid first-order error correlation in the system, it does not completely eliminate 

the possibility of error cross-correlation. Specifically, the corrected rainfall and the updated 

states are informed by the same SM measurement, thus they potentially inherit the same error 

from the SM measurement. When fusing the two schemes together, such inherited error could 

potentially be amplified, degrading streamflow performance or cause a probabilistic estimate 

(based on an implicit assumption of independent errors) to be biased or have inaccurate 

uncertainty spread. In other words, it is possible that the current system still suffers from some 

second-order issue of overusing the information of SM measurements. Massari et al. [2018] 

intentionally avoided combining the state update scheme and the rainfall correction scheme in 

their study due to this legitimate concern. 

To further investigate this issue, we designed a set of synthetic experiments and applied 

in an arbitrary small domain within the Arkansas-Red (a box around the Little Arkansas 

subbasin, see Table 3.3 and Figure 3.2 in the main manuscript for its location). Synthetic 

measurements, instead of the real SMAP measurements, were generated and assimilated into the 

dual correction system so that we have complete control over all the error statistics and 

correlation, which is impossible in a real-data case. Specifically, a single perturbed VIC 

realization (with perturbed forcing and states) was treated as the synthetic “truth”. Synthetic 

measurement can then be generated at daily interval by degrading the true surface-layer SM by 

adding random measurement errors. Precipitation perturbation was assumed to be temporally 

auto-correlated (first-order autoregressive noise with parameter ϕ = 0.9), and all the other error 
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assumptions and dual correction setup were consistent with those described in Section 3.2.4 in 

the main manuscript. 

We generated two sets of synthetic measurements based on the same truth with the same 

measurement error statistics but mutually independent realizations of errors. Then, two scenarios 

of dual correction were designed and carried out (see Figure B1 for illustration): 

Scenario 1: the same set of synthetic SM measurement were assimilated into both the state 

update and the rainfall correction schemes. This scenario mimics the issue in the real-data dual 

system with error cross-correlation in the two schemes and potentially degraded streamflow; 

Scenario 2: two sets of synthetic SM measurements (with mutually independent errors) were 

assimilated into the two schemes separately. This scenario completely avoids the issue of error 

cross-correlation. 

The final runoff performance from the dual correction system were evaluated toward the 

truth, and the runoff performance from the two scenarios was compared. Differences in the 

performance of the two scenarios would indicate degradation caused by error cross-correlation. 

For these synthetic experiments, runoff was evaluated locally at each grid cell without routing, 

since we know the true condition locally. 

B2.2. Results 

Deterministic and probabilistic results from the two scenarios were compared in Figures 

B2 and B3. Clearly, runoff results show only very little difference between the two scenarios in 

terms of both PER and NENSK (see Section 3.2.5 in the main manuscript for details of the two 

metrics). This is true for both the total runoff and the fast- and slow-response runoff components 

separately. This suggests that the streamflow performance is not noticeably degraded by 

assimilating the same SM retrievals to both the state update and rainfall correction schemes. 

Although the cross-correlated error theoretically exists in the system, they are not big enough to 

cause problematic streamflow results. In other words, we are not over-using the information 

contained in SM retrievals in the system. This is true both from a deterministic sense and in 

terms of probabilistic representation. We also experimented the case where the synthetic 

measurements were assumed to have temporally auto-correlated errors instead of white errors, 

which in theory creates bigger risk of degradation in the subsequent streamflow, but drew similar 

conclusions as above (results not shown). 
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The synthetic results in this section validates that we can safely assimilate the SMAP 

retrievals into both schemes of the dual correction system without significantly degrading the 

final streamflow performance. 

 

 

Figure B1. Illustration of the synthetic experiments for investigating error cross-correlation. 
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Figure B2. Percent RMSE reduction (PER) of synthetic daily runoff results from the error cross-

correlation experiment. Blue color indicates runoff improvement after dual correction while red 

color indicates degraded runoff. The two columns show the results from the two assimilation 

scenarios described in Section B2. The three rows show results of total runoff, fast-response 

runoff and slow-response runoff, respectively. The number on top of each subplot indicates the 

domain-median PER. 

 

 

Figure B3. Same as Figure B2 but for NENSK. Lighter color (either green or purple) indicates 

closer-to-one (thus better) NENSK. 
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APPENDIX C 

A unified data-driven method to derive hydrologic dynamics from global SMAP surface 

soil moisture and GPM precipitation data - Supplemental Material 

 

This appendix includes the supplemental materials from chapter 4. 

 

C1. Collinearity between regressors 

 In a multivariate regression analysis, the problem of collinearity occurs when columns of 

the regressors are highly correlated. Collinearity causes unstable results in fitted coefficients, 

making the coefficients uninterpretable. Section 4.2.2 in the main manuscript discusses the 

collinearity problem in the context of the unified regression method proposed in the study. 

Figure C1 here demonstrates the pairwise scatter plot of Regression Form II at an example pixel 

in the Sahara Desert where collinearity occurs. 

 

C2. Regression model evaluation 

C2.1. Methodology 

To evaluate the goodness of fit of the multivariate regression, we calculated the 

regression R2 from a 5-fold cross-validation (i.e., out-of-sample) experiment. Specifically, for 

each pixel the constructed data points (including the 
𝛥𝑆𝑆𝑀

𝛥𝑡
 and the corresponding independent 

variables) were randomly shuffled and divided into 5 subsets of identical size. To ensure that 

model evaluation is performed on an independent set of data used in fitting, each of the 5 subsets 

was left out in turn, and the regression was performed on the rest of the data while R2 was 

calculated on the left-out subset. The mean R2 of the 5-fold cross-validation was calculated and 

reported at each pixel. This cross-validation model evaluation strategy was applied to both 

regression forms and both the satellite analysis and the model-based analysis. Note that the 

cross-validation was only applied to calculate R2, while the fitted coefficient results shown in the 

paper are based on the entire 3-year data. 

C2.2. Results from the SMAP/IMERG satellite data 

 The cross-validated R2 was calculated and shown in Figure C2 for both regression forms. 

R2 in the majority of the measured globe is significantly greater than zero for both regression 
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forms, indicating that the simple regressors account for at least part of the surface soil moisture 

(SSM) dynamics. R2 is generally larger in humid regions and smaller in arid regions, which is 

consistent with the predicted time series shown in Figure 4.3 in the main manuscript with 

visually more accurate back-calculated SSM at an example humid location (Figure 4.3a, eastern 

India) than at example arid locations (Figure 4.3c, Figure 4.3e and Figure 4.3g). Although R2 is 

not close to 1 anywhere around the globe, we emphasize that the goal of the regression study is 

to quantify the governing factors for SSM dynamics, rather than accurately simulate the detailed 

behaviors. While only linear regressors are included in this study, the resulting R2 shows that the 

simplified representation of governing factors is able to capture a significant part of SSM 

behavior. 

R2 is around zero in the eastern part of the Sahara Desert. Precipitation is very low in this 

region, providing little forcing that drives SSM change. As a result, the signal-to-noise ratio of  

𝛥𝑆𝑆𝑀

𝛥𝑡
 observed by SMAP is very low, resulting in approximately zero R2. Similarly, R2 is 

relatively lower (although above zero) in other low precipitation regions (e.g, the majority of 

Australia, western Sahara) than in high precipitation regions (e.g., Sahel and southern Africa, 

central and western United States, India, central South America). 

In general, Regression Form II displays higher out-of-sample R2 than Form I (Figure C2) 

in most regions, especially the high-precipitation regions as mentioned above, suggesting that 

adding the SSM·P interaction term as a regressor improves the goodness of fit of describing 

SSM dynamics. In other words, SSM·P is a non-negligible contributor to SSM dynamics in these 

regions. 

C2.3. Results from the GLDAS-VIC modeled data 

R2 of GLDAS-based regression is shown in Figure C3. It exhibits significantly larger R2 

than that of SMAP/IMERG over most of the globe (Figure C2), since there is no measurement 

error in either SSM or precipitation input in the modeled case. Similar to the satellite data case, 

Regression Form II achieves a better goodness of fit due to the additional interaction term 

SSM·P. 

 

C3. Impact of SMAP data intervals on regression results 

 In the paper, the modeled GLDAS-VIC SSM data was subsampled to have the same 

time-varying data gaps as SMAP retrievals to ensure a fair comparison between satellite data and 
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modeled data. Here we examined the effect of the irregular SMAP intervals (typically ranging 

from 12 hours to 2-3 days) on fitted regression coefficients utilizing the GLDAS-VIC modeled 

data for which we have control on the SSM data interval. 

 Figures C4, C5 and C6 show the SSM decay time scale τ, the overall precipitation 

fraction retained (i.e., β2 in Regression Form I), and the sensitivity of the precipitation fraction 

retained to SSM level (i.e., γ3 in Regression Form II), respectively, derived from the GLDAS-

VIC data with 12-hour interval. The temporally-uniform 12-hour interval was used since it is the 

lower limit of SMAP retrieval interval. Comparing these three figures to the corresponding 

figures used in the paper from GLDAS-VIC data subsampled to the SMAP interval (Figure 4.6, 

Figure 4.7 and Figure 4.8 in the main manuscript), we observe similar magnitude and spatial 

distribution SSM decay time scale τ with the two intervals. β2 from the 12-hourly data is different 

than that from the SMAP-frequency data in some regions, for example the Sahara Desert exhibits 

higher β2 values based on the 12-hourly data and the Tibet Plateau exhibits lower β2 values based 

on the 12-hourly data, but the difference is not visually obvious in most other regions. Finally, 

the γ3 coefficient also displays similar magnitude and spatial distribution from the 12-hourly 

SSM data compared to the SMAP-frequency data. 

 In summary, although small impact exists (especially on β2), overall the 12-hourly to 2- 

to 3-day irregular SMAP data interval does not have significant effect on the resulting fitted 

coefficients from the regression analysis. 

 

C4. Comparison of the regression results with literature 

 In the main manuscript, a few fitted coefficients from the SMAP regression analysis, 

including the SSM decay time scale, τ, and the precipitation fraction retained, β2, are compared 

with related findings from recent studies. Figures C7, C8 and C9 show the maps of these fitted 

coefficients (or their converted forms) in a colormap that is directly comparable with figures in 

literature. Specifically, Figure C7 shows our fitted τ in a similar colormap as Figure 2 in McColl 

et al. [2017b] for their exponential decay e-folding time scale extracted from SMAP. Figure C8 

shows our fitted β2 in a similar colormap as Figure 2b in McColl et al. [2017a] for their soil 

moisture memory. Figure C9 shows 
1

𝛽2
 in the Continental United States (CONUS) in a similar 

colormap as Figure 6 in Akbar et al. [2018b] for their effective depth Δz. All these figures and 
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their comparison with literature are discussed in more detail in Section 4.4 in the main 

manuscript. 

 

 

Figure C1. Pairwise scatter plot of the dependent variable and regressors constructed in 

Regression Form II from SMAP/IMERG data at an example pixel (23.98oN, 23.71oE) in Sahara 

with collinearity. 
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Figure C2. Average R2 of the 5-fold cross-validation experiment for the regression of SMAP and 

IMERG satellite data. The upper and lower panels show the R2 maps of the Regression Form I 

and Form II, respectively. 
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Figure C3. Same as Figure S2 but for modeled GLDAS-VIC data. 

 

 

Figure C4. The exponential SSM decay e-folding time scale, 𝜏 [day], fitted for the modeled 

GLDAS-VIC data with 12-hour data interval (Regression Form II). 
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Figure C5. The fitted precipitation fraction retained in the top soil layer, β2 (in Regression Form 

I), fitted from the modeled GLDAS-VIC data with 12-hour data interval. 

 

 

Figure C6. The γ3 [-/mm] coefficient in Regression Form II, representing the sensitivity of the 

precipitation fraction retained to SSM level, fitted from the modeled GLDAS-VIC data with 12-

hour data interval. 
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Figure C7. The τ coefficient fitted in this study (from Regression Form II), plotted in a similar 

colormap as Figure 2 in McColl et al. [2017b] for their SMAP exponential decay time scale. 

 

 

Figure C8. The β2 coefficient fitted in this study (from Regression Form I) plotted in a similar 

colormap as Figure 2b in McColl et al. [2017a] for their soil moisture memory. 
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Figure C9. The 
1

𝛽2
 coefficient fitted in this study (from Regression Form I) in the Continental 

United States (CONUS) plotted in a similar colormap as Figure 6 in Akbar et al. [2018b] for 

their Δz. 
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