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Plug-in Electric Vehicles (PEVs) have the potential of reducing gasoline consumption 

and greenhouse gas emissions in the transportation sector. The net impacts of PEVs – including 

upstream emissions from electricity generation and the impact these vehicles place on the 

electricity grid – depend on both the amount of travel conducted by PEV and locations that those 

PEVs are charged. This dissertation investigates the vehicle use choices and charging decisions 

of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) for both 

home-based trip tours and long-distance trips using stated preference (SP) data. It presents a 

novel dynamic discrete choice modeling (DDCM) framework that explicitly accounts for the 

stochastic nature of the vehicle choice and charging decisions of PEV users: earlier choices on 

vehicle use and charging influence the utility of the future choices; the expectation of the future 

options influences those earlier decisions; and choices are made under uncertainty about actual 

energy consumption and availability of chargers.  



 
 

For home-based trip tours, my results show that BEV users are willing to pay $10-$24 to 

avoid having to deviate from the originally planned route, which indicates that “range anxiety” 

of BEV owners – the fear of being stranded in the middle of a trip – is not a crucial issue for 

home-based trips. Using charging infrastructure development to encourage BEV adoption might 

be more beneficial than reducing “range anxiety” among the current users, which could entail 

building charging stations at locations that have more public exposure, such as public parking 

garages in a city center. When BEVs are on long-distance trips, the cost of deviation is 

significantly higher: $244, which indicates that BEV owners are likely to be more cautious and 

view finding a charger off the route much more costly when they are on long-distance trips. 

Comparing the cost of deviation for home-based tours and long-distance trips, to support the 

existing users, the most cost-effective places to invest in charging infrastructure are inter-city 

corridors instead of in-city locations. By comparing the relative size of the coefficient estimates, 

in this dissertation, I also analyze the monetary value of increasing charging power, moving the 

charging stations closer to highway exits, and having amenities such as restrooms, restaurants, 

and Wi-Fi near the charging stations. 

The comparison between the DDCMs and SDCMs based on simpler decision heuristics 

shows that for home-based tours, DDCMs only offer a little better prediction rate with a 

significant cost when it comes to computation time and complexity of model development.  For 

the purpose of demand forecasting of a charging network or site selection for the charging 

facilities, the SDCMs based on simpler heuristics are recommended for home-based trip tours. 

For long-distance trips, the charging choices are largely decided by the state of charge (SOC) and 

deviation, and the characteristics of the charging stations only contribute to a small portion of 

predictive power. SDCMs outperform the DDCMs for the current sample. However, this could 



 
 

change in the future when the charging network is dense and the characteristics of the charging 

stations have higher prediction power.  

For both the home-based tours and long-distance trips, and for both vehicle choices and 

charging decisions, the decision patterns are likely to be heterogeneous among the PEV owners. 

The efforts related to the prediction of the future EV charging demand, the policy-making on 

battery and charging infrastructure development, and the planning/design of the charging 

network all need to consider these different preferences of the consumers. Due to the 

heterogeneity of users’ preferences, both increasing battery pack size and reducing station 

spacing can encourage current BEV owners to use their BEVs for long-distance trips, and one of 

the two does not substitute the other. Even if a lot of the BEV models offered by the market have 

500 miles of range, the density of the public charging network can still play an important role in 

enabling BEVs for long-distance trips, especially when the battery remains expensive.  

 

Keywords: PEV charging behavior, stated preference data, discrete choice modeling, DDCMs, 

heterogeneity, range anxiety 
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0 Read Me First  

To make it easier for the readers to find the information they are looking for in this long 

document, I want to provide a summary of each of the first nine chapters.  

Chapter 1 is on an introduction of the concepts related to plug-in electric vehicles 

(PEVs), what the general trend of PEV adoption is like, and what the charging facilities are. 

Chapter 2 states a broader goal of the dissertation and its merit. 

Chapter 3 describes the literature review on PEV charging behavior modeling and 

dynamic discrete choices models (DDCMs). 

Chapter 4 includes an overview of the research questions, the data source, and the details 

of the frameworks and estimations of the statistical models used in this dissertation.  

Chapter 5 includes the details of the survey design, the experiment design, and the data 

collection of the choice experiments for home-based trip tours. 

Chapter 6 includes three analyses based on the data from the survey described in Chapter 

5.  

Chapter 7 includes the details of the survey design, the experiment design, and the data 

collection of the choice experiments for long-distance trips.  

Chapter 8 includes two analyses based on the data from the survey described in Chapter 

7.  

Chapter 9 lists the main conclusions of this research work. 
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1 Background     

1.1 An introduction of Plug in Electric Vehicles (PEVs)  

Plug-in electric vehicles (PEVs) are vehicles that can be powered by electricity and can 

be recharged by plugging into an external source of electricity such as a wall socket.  There are 

two categories of PEVs: battery electric vehicles (BEVs) and plug-in hybrid electric vehicles 

(PHEVs). BEVs only have the electricity powertrain. PHEVs combine the electric powertrain 

with a conventional internal combustion engine. In this study, PEV only refers to private cars, 

but does not include plug-in electric trucks.  

1.1.1 Benefits of PEVs 

Compared to conventional internal combustion engine vehicles (ICEVs), PEVs have a 

few advantages. First, they can potentially reduce air pollution and greenhouse gas emissions in 

transportation sector because they do not emit harmful pollutants at the tailpipe during operation 

(1). When the source of the electricity that is used to recharge the batteries is clean, the operation 

of PEVs has significantly less GHG emission. Some cities with Chronic air pollution problems 

may also gain local clean air benefits by shifting the harmful emission to electric generation 

plants located outside the cities. The magnitude of the benefits of greenhouse gas emissions is 

influenced by the energy source. The life-circle emissions of PEVs come from vehicle 

manufacturing and the source of electricity. Another source of greenhouse gas emission of PEVs 

is during manufacturing. Therefore, the environmental benefits of PEVs largely depend on the 

source of electricity.  According to the full life cycle assessments of the environmental impact of 

PEVs, even though PEVs have a higher carbon footprint during production than ICEVs, when 

the electricity is from clean resources (including solar, wind, hydrogen, nuclear) PEVs have 
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significantly lower emissions than ICEVs (2,3).  When the PEVs are recharged from coal-fired 

plants, they usually produce slightly more greenhouse gas emissions than ICEVs, which causes 

the discrepancy of the benefits of PEVs according to countries and regions (4). Even when the 

energy source is not clean, it is meaningful to switch to electricity because focusing the change 

of the electricity source is a lot easier than the effort to reduce the usage of gasoline. Besides the 

environmental benefits of replacing gasoline with electricity, vehicle electrification can help 

reduce oil dependency in transportation sector, which is beneficial to national security (5).  

Compared to ICEVs, PEVs have lower operation cost because of the high energy 

efficiency of electric motors and the low cost of electricity. Electric motors are more efficient at 

converting stored energy into driving a vehicle. Typically, only 15% of the fuel energy content 

of gasoline engines is effectively used to move the vehicle or to power accessories, and the on-

board efficiencies of diesel engines can reach 20%. Electric drive vehicles, on the other hand, 

can  typically have on-board efficiencies of around 80% (6).  Assume the electricity consumption 

rate of a Nissan Leaf is 30 kWh/100 mi and the fuel economy of an ICEV is 30 mpg, when the 

electricity price is the national average $0.10 per kWh (the stable national average), the cost of 

an ICEV is 2-5 times of a PEV running on electricity for every miles they travel depending on 

the gasoline price. An analysis of PEVs shows that right now with the subsidies of the 

government to encourage PEV adoption, even when considering the high initial costs of PEVs, 

the life-cycle cost of PEVs is lower than ICEVs (7).  The maintenance cost is also lower than 

ICEVs because the electric motors usually break down less frequently than the mechanical 

systems in ICEVs. The net-cost of PEVs is generally more stable than ICEVs since the price of 

electricity barely changes over the years but the gasoline price could fluctuate greatly. 
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Another advantage of the PEVs is the convenience of skipping visits to gasoline stations 

and routine maintenance checks. PEVs usually offer better driving experiences when they are 

running on electricity because they usually have higher acceleration rate compared to ICEVs 

(e.g. The Tesla Roadster 2.5 Sport can accelerate from 0 to 60 mph in 3.7 seconds) and the noise 

is minimum in the vehicle when running on electricity. A vehicle-to-grid (V2G) system can offer 

the PEV owners the option to sell the stored electricity back to the grid, which can help improve 

the operation efficiency of the utilities during demand peaks (8,9).  

1.1.2 Disadvantages of PEVs 

The initial cost of PEVs are generally rather high compared to ICEVs due to the 

expensive lithium-ion battery packs, which remains as a major barrier of PEV adoption (10). But 

the battery price is dropping these years with the development of technology. According to the 

data collected by the Bloomberg New Energy Finance, the battery price dropped from 

$1000/Kwh in 2010 to around $400/Kwh in 2015. Tom Randall did a prediction of the battery 

cost in the following 15 years, as shown in Figure 2. This prediction though appears to be too 

optimistic, is backed up by the recent reports on the battery cost claimed by the industry: product 

chief of GM claimed that the company will only pay $145/Kwh of battery cost for the new 2017 

new EV model. If the battery price drops to $120/Kwh, the initial price of EV will be 

competitive with ICEV models (11).  

The electric ranges of PEVs are generally much lower than their gasoline counterparts 

and the time needed to recharge a battery is an order of magnitude greater than the time to refuel 

with petroleum fuel for a comparable range, which is another major barrier of broad BEV 

adoption. Tesla Model S (AWD - 90D) has the largest range among the BEV models available in 

the market till the year 2016: 294 mi. Range around 50mi ~100mi is rather common among 
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BEVs. The most popular BEV models are the Tesla Model S (rated range 149mi~294mi) and 

Nissan Leaf (rated range around 73mi-84 mi). The most popular PHEV model is the Chevrolet 

Volt with the rated electric range of 53mi, which is the highest among the PHEV models 

available in the market (Figure 1). The fear of the battery being fully depleted and becoming 

stranded in the middle of a trip is a major barrier to BEV adoption and usage, a condition 

described as “range anxiety” (12). To mitigate the effect of the limited range of BEVs, a lot of 

BEV adopters may keep the choice of choosing an ICEV for relatively long-distance travel, 

which is referred to as hybrid ownership of vehicles. PHEVs offer the potential to overcome 

these barriers, combining an internal combustion engine, an electric powertrain and onboard 

charging equipment, offering to reduce gasoline use and GHG emissions while retaining the 

ability to travel long distances and refuel quickly and conveniently (13-15). PHEVs are 

inherently less dependent on recharging infrastructure than are battery electric vehicles (BEVs) 

because they have an internal combustion engine. 
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Figure 1. Range of the PEV models available in US in 20161 

1.2 PEV adoption 

According to the Global EV Outlook 2017 report by the International Energy Agency, the 

PEV adoption in the world has been increasing rapidly.  The global PEV stock is increasing 

exponentially (Figure 2): since the global PEV stock crossed the one- million threshold in 2015, 

                                                           
1 Data source: US Department of Energy  http://www.fueleconomy.gov/feg/ws/index.shtml 

 

http://www.fueleconomy.gov/feg/ws/index.shtml
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it increased to more than two million vehicles till the end of 2016. By the end of the 2016, the 

market share of PEVs was over one percent, from 0.85% in 2015. The following six countries in 

the world have PEV market share more than one percent: Norway (28.8%), Netherlands (6.39%), 

Sweden (3.41%), France (1.46%), United Kingdom (1.41%), and China (1.37). China has 32% 

of the PEV stock in the world, ranking at the top of the portion of global PEV stock, following 

by United States (28%) (16). Several countries in the world share the political aspiration of 

ditching gasoline vehicles and replace them with EVs by 2025-2040, including Norway, India, 

France and Britain. Some other countries including China, Denmark, Germany, etc. have EV car 

sales target in place (17).   

 

 

Figure 2: Global PEV stock (16) 

Same with other countries in the world, American government offers great support for 

EV adoption by providing tax credits (both on federal and state level) for reducing the initial 

costs. and some states offer other incentives such as vehicle registration fee reductions, low-cost 

charging rates, access to high-occupancy vehicle lane and parking facilities, etc (18). The PEV 

sales in US has been increasing rapidly after hitting a speed bump in 2014(19). The market share 

http://money.cnn.com/2017/07/26/autos/countries-that-are-banning-gas-cars-for-electric/index.html
http://money.cnn.com/2017/07/26/autos/countries-that-are-banning-gas-cars-for-electric/index.html
http://money.cnn.com/2017/07/26/autos/countries-that-are-banning-gas-cars-for-electric/index.html
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of EVs increased to 1.20% in 2017 from 0.91% in 2016 (16). In the year 2018, PEV sales have 

been increasing rapidly with models with high range leading the race, such as the Tesla model 3 

and Chevrolet Bolt EV.  

 

Figure 3: PEV sales in US (19) 

1.3 Charging facilities  

1.3.1 PEV chargers  

Charging facility is indispensable for the operation of PEVs: they can increase the range 

of BEVs and increase the replacement of gasoline by electricity of PHEVs. PEV chargers that 

are used to recharge PEVs, also known as electric vehicle supply equipment (EVSEs) are 

classified as fast chargers and slow chargers according to the charging speed, as shown in table 

1. There are three levels of chargers corresponding to the maximum current/power: Level 1, 

Level 2 and Level 3. The PEVs also have a maximum current that can be accepted, which is 

referred to as maximum acceptance rate. The final charging current is the minimum current of 
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the maximum current that the charger can provide and the maximum current that the car can 

receive. 

TABLE 1: PEV chargers 

Category Level Current 

Type  

Voltage  Amps Power range   Most common power 

Slow 

Chargers 

Level 1 AC 120 volts 8 to 15 

amps 

<=1.9kW Most common 1.4kW 

Level 2 AC 240 volts 16-40 amps >3.7kW and 

<=19.2kW  

Most common 3.3kW or 

7.2kW 

 Fast 

Charger 

  

Level 3  AC     >20kW and 

≤43.5kW 

 

Level 3 DC Fast 

Charger 

(DCFC)  

   <200kW CHAdeMO 40kW-50kW 

Tesla Fast Charger 

90kW-135kW 

(50-120kW) 

 

Level 1 charger generally refers to plugging into household outlet. It can provide 2-5 

miles per hour and can top the range of PEVs in 12-24 hours depending on the range. They are 

mostly used to recharge at home or for workplace charging. Level 2 requires installation of 

dedicated standard electrical outlet. It can provide 10-25 miles of range per hour and can charge 

the PEVs to full range in 3-10 hours depending on the range. Level 2 chargers can be used to 

charge PEVs at home and are popularly used for public charging stations in the cities. DC fast 

chargers, also called Level 3 chargers, can deliver 80% charge within half an hour. (16) Today, 

most publicly available chargers using the CHAdeMO and CCS standards have an output of 50 

kilowatts or less; Tesla's Superchargers run at up to 135 kw. The DC chargers are currently 
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mostly used for long distance interstate trips along high ways. Very few DC fast chargers are 

available in the public charging network in cities. 170 miles for Tesla charging get be obtained in 

half an hour   

The PEV chargers are deployed at residential areas, work places, public charging 

facilities. The chargers include residential chargers, chargers at work place, public chargers, and 

residential chargers shared by PlugShare members. The Department of Energy has conducted 

two programs to deploy residential chargers and public charging PEV facilities. The EV Project 

partnered with city, regional and state governments, utilities, and other organizations in 18 cities 

to deploy about 12,500 Level 2 and more than 100 Level 3 charging units at workplaces and 

public areas (20).  Another project EV Everywhere worked on deploying charging stations at 

workplaces and some residential areas to increase the coverage of PEVs (21). According to the 

data collected by DOE, employees with access to workplace charging are 20 times more likely to 

purchase and EV and workplace charging is proving to be the most helpful promoter of PEVs 

through awareness and incentives (22). To the end of 2016, there are 35,089 slow chargers and 

5,384 fast chargers that are publicly accessible. The average number of PEVs served per station 

is high than most of other countries and similar to Norway, where PEV has the highest market 

share amongst PEV owning countries in the world. In US, PEV users use real-time charging 

network (such as ChargePoint) to locate and check the real-time availability of public chargers. 

Some PEV owners share their private chargers at the residential locations through platforms such 

as PlugShare.  

1.3.2 Charging choices of PEV users in US  

According to the EV project report, 60%-80% of all PEV charging is done at home, 30%-

40% is down at work if there is workplace charging available and only 3%-4% was done in 
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public by the last quarter of 2014. BEV drivers are charging only once per day on average-

significantly less frequent than PHEV drivers despite having no alternative power source besides 

electricity. Because the time to recharge is longer for Level 1 and Level 2 chargers, they are 

usually used when there are natural stops around the chargers, for example recharge the PEVs 

when the drivers are at work. It rarely happens when the drivers have to stop specifically for 

charging. Since DC fast chargers offer high recharging speed, drivers can stop for a reasonable 

short time (around half an hour) to gain 80% of range. Therefore, DC Fast charging is used as an 

alternative to home-charging for whom home charger is not an option and is usually used as a 

solution for long distance trips. Statistics show that Compared to PHEVs with no away-from 

home charging, the percentage of miles driven per day in EV mode is a lot higher (22).  

 

Figure 4： Where do PEV users charge currently (22) 
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2 Research Objective and Its Merit  

2.1 The objective 

The statistics on PEV charging choices by the EV Project show that the public charging 

facilities does not appear to be critical for the successful PEV operation. As addressed by some 

BMW board member Herbert Diess: “Very few people would use public charging …this public 

charging infrastructure is not really very important because people are charging their cars at 

home”. However, some believe that “A critical factor for successful PEV adoption is the 

development and use of charging infrastructure in non-residential location.” The charging 

choices of the PEV users need to be further explored to respond to these claims. There could be 

two opposing theories to explain why public charging infrastructures are not used frequently: (1) 

the demand is low for public charging infrastructure, as in PEV users prefer not to charge out of 

residential area or workplace; (2) or the supply charging infrastructures is too low. In an extreme 

case, when there is only one public charger in Seattle, the share of public charging is low even 

though it is fully utilized. Some BEV users might choose to drive an unlimited range alternative 

when they observe low supply of public chargers.  

The specific objectives of this project are to (1) use statistical modeling to gain 

understandings of how PEV users make decisions on which vehicle to use and where to charge 

for home-based trip tours and long-distance trips (2) develop interactive survey tools to elicit 

choice processes involving complex, interconnected decisions, and (3) develop and evaluate the 

dynamic discrete modeling framework with the consideration of heterogeneity and compare the 

model performance with static models based on simpler heuristics.  The dependent variables of 

the study include the PEV use and charging choices. PEV use refers to whether a PEV owner 
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chooses their PEV for a travel day, and PEV charging choices refer to the decision of whether to 

charge at each charging opportunity during the travel day.  The independent variables include the 

characteristics of the vehicle, the characteristics of the trips, and the characteristics of the 

charging opportunities along the trip.  

2.2 The merit of the study 

This research explores the influence of the characteristics of the trips of a travel day and 

the charging opportunities on vehicle use and charging choices, which is essential for the 

estimation of charging demand and energy demand (both gasoline demand and electricity 

demand), the estimation of emissions associated with electricity generation for charging and the 

consumption of gasoline, the extent to which charging infrastructure is utilized, and the strain the 

PEV charging places on the electric grid. The understanding of the charging behavior also helps 

the government to forecast the impacts of changes in tax levels and the tax revenues. Change of 

energy consumption level based on charging decision patterns.  

This study can help understand how PEV drivers make decisions about PEV use 

including choices related to vehicle usage and charging and help to understand further how these 

choices interact with the development of charging infrastructure, and how these interactions 

determine the overall environmental impacts of PEVs. This understanding will support the 

design of vehicles and acceptance of PEVs. It will also provide a foundation for identifying 

public policies that can effectively and efficiently guide a transition toward a more 

environmentally and economically sustainable transportation system. Governmental and non-

governmental organizations from national to local level: to forecast transport demand (in which 

case these models are integrated with traditional four-step models for transport demand), energy 

demand and emission levels, and to stimulate policy impacts on the demand.  
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Dynamic discrete choice model (DDCM) is a common analysis tool in a lot of areas such 

as economics and social science, but not in transportation due to the high computation costs. 

Another important contribution of this research is to discuss whether DDCM improves the 

prediction of PEV use and charging choices from static discrete choice models by considering 

the intertemporal payoffs and if so, whether the benefits justify its high estimation effort. In the 

research project, I will list out clearly the estimation methods of DDCM based on the materials 

in the other fields and publish my code for the estimation, which hopefully will benefit the 

broader applications of DDCM in transportation.  
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3 Literature Review     

3.1 The signs of the lack of charging behavior analysis  

A large and growing body of research established that PEVs could significantly reduce 

petroleum consumption and environmental pollution from automobiles (14, 15, 18). However, 

the time, location, rate and duration of PEV charging influences the amount of petroleum that 

can be displaced, the planning of charging infrastructures, the emission associated with 

electricity generation for charging, the extent to which charging infrastructure is utilized, and the 

strain that the charging places on the electric grid. Modeling of vehicle usage and charging 

demand is essential for the forecasting of charging demand, the estimation of energy 

consumption, the forecast of emission levels from electricity generation and gasoline 

consumption, and the load that PEVs place on the electric grid. Thus, it is critical to understand 

how PEV owners’ charging decisions are affected by the cost, speed, and availability of charging 

opportunities. Such knowledge enables the design of infrastructure systems so as to minimize the 

number of gasoline-fueled miles driven in PEVs. At the earlier stage of research on the charging 

demand of PEVs, aggregated methods, also called top-down methods are usually applied. These 

methods are all based on assumptions about the vehicle usage and charging behavior and 

sometimes descriptive analysis of the current situation.  

During the early stage of the development of PEV market, there are not enough users and 

not comprehensive data to analyze the PEV use and charging behavior. To evaluate the energy 

conservation potential and environmental impact of PEVs and forecast the demand of public 

charging infrastructure, earlier research efforts on these topics assumed some deterministic rules 

on when the PEVs will be used and when the PEVs will be charged.  
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The energy consumption of PHEVs and the amount of gasoline replaced by electricity 

depends on how often the vehicles are recharged. To assess the energy consumption and 

charging demand of PHEVs, early studies relied heavily on assumptions about the charging 

behavior of PHEV owners. For example, in some studies it was presumed that PHEVs were only 

charged at home (23, 24, 25). Based on the Daily travel distances for over a year of 255 

households in Seattle, Khan, .etc. found that for one-vehicle households, using PHEV with 40 

miles of range (also called PHEV40), 80% of their VMT will be electrified; for two-vehicle 

households, using a PHEV40, 50 to 70% of household miles can be electrified while meeting all 

trip-distance needs (24). Based on daily driving distances of 12 households in California, 

Williams found “20 miles of charge-depleting range would have been fully utilized on 81% of 

days driven, whereas 40 miles would not have been fully utilized on over half of travel days” 

(25).   Lin (2012) analyzed the energy demand under the assumption that PHEVs were plugged 

in whenever the CD range was depleted (26). Axsen and Kurani (2010) estimated the energy 

impacts of PHEVs assuming that PHEVs would be recharged whenever parked within 25 feet of 

an electrical outlet (27). What these models of charging behavior had in common was that they 

were generally simple and deterministic. Several authors have since shown that charging choices 

are heterogeneous across users and depend on much more than just an empty battery or an 

available plug (28-30). 

For BEVs, the question of petroleum displacement hinges not on the split between 

electricity and gasoline for a single vehicle since BEVs only consume electricity, but on the 

fraction of travel days that can be satisfied by a BEV. The calculation of gasoline consumption is 

usually based on common assumption that BEVs are only charged once-per-day mostly at home. 

Pearre, et.al used longitudinal GPS travel data to calculate the fraction of travel days that could 
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be fully satisfied by a BEV, versus those that would require adaption by foregoing travel or using 

a conventional vehicle. They employed common assumption of once-per-day charging (31). 

Recently, Don and Lin (2014) explored the potential for mid-trip charging to increase the 

feasibility of BEVs for covering days with larger travel distance. However, as with all other 

investigations, they relied on assumptions to define when charging infrastructure would be 

utilized (32). Wang, Lin and Chen (2010) found that even a small increase in uncontrolled 

charging could have a substantial impact on marginal electricity costs. These assumptions are all 

conservative (33). On the other end on the spectrum, Wu, Aliprantis, and Gkritza (2011) 

estimated an upper bound of power demand by PEVs by assuming uncontrolled, “opportunistic” 

charging at every stop (34). The basic assumptions of these analyses show the lack of empirical 

models on vehicle and charging choices of PEV owners.  

3.2 Charging choices and charging behavior modeling   

3.2.1 Descriptive analysis of charging choices  

Because of the short history of PEVs in the automobile market and the low adoption rate, 

the paucity of real-world data of PEV use and charging behavior makes the results quite limited 

(25). Even when real-world information is available, it is rare for the data to be sufficient to test 

the new technology and policy scenarios with the rapidly evolving market. So earlier research 

efforts on PEV charging behavior are mostly based on descriptive methods (36-38). Davies and 

Kurani reported results from a study of 40 vehicles for a one-week period during which the 

author identified a mean of one daily charge, including two participants that did not recharge at 

all (39). The EV project published aggregated data on the charging pattern of 2,900 Nissan Leaf 

BEVs (40) and 900 Chevrolet Volt PHEVs (41). They found that public charging does not have a 

high utilization rate so far: BEV drivers are recharging only once per day, on average-
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significantly less frequent than PHEV drivers-despite having no alternative power source besides 

electricity. Chevrolet Volts are most commonly recharged when the battery is below 10% state 

of charge (SOC), and that most charging events end with the SOC above 90%. In contrast, for 

Nissan Leafs, the SOC at the start of charging was more evenly distributed, and substantially 

fewer charging events ended with a full battery. They also revealed considerable heterogeneity in 

travel and charging behavior across PEV drivers. While some possible explanations have been 

proposed, they are not, on their own, sufficient to develop a model of drivers’ choices about 

charging that could be used to predict charging behavior and infrastructure utilization as the 

availability, speed, and cost of charging change over time. Zoepf, et.al. reported on a yearlong 

study of 125 instrumented PHEV prototypes. They found that charging events were spread 

throughout the day with a peak around 2pm-6pm, rather than occurring exclusively overnight. 

They also found that many vehicles charged infrequently, and that the actual fraction of miles 

powered by electricity was about 25% less than if all vehicles charged overnight (28).  

These descriptive analyses is important for researchers to have some insights about the 

PEV use and charging behavior, which is a great improvement from the deterministic charging 

rules commonly assumed in PEV impact assessments discussed in Chapter 3.1. However, these 

results essentially only show a picture of the status quo, which is of limited use to predict the 

future demand of electric vehicle use and charging choices because the market is evolving 

rapidly. Only statistical models offer sufficiently flexibility to information decision in a quickly 

changing context.  

3.2.2 Statistical modeling of charging choices   

Several studies applied statistical models to analyze the charging choices of PEV users 

with the consideration of the characteristics of trips and charging opportunities, the details 
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related to the models’ functional form, utility specification, preference heterogeneity and choice 

set is summarized in Table 2.  

Based on a year-long study of PHEVs instrumented for detailed data collection in the 

United States, Zoepf et al. developed a mixed logit model of charging choices, finding that 

current state of charge (SOC), completed trip distance, and dwell time all influenced the choice 

of whether to charge at the end of a trip (14). The results revealed heterogeneity in charging 

behavior across PHEV users, which has also been demonstrated using stated preference surveys 

(29, 30) and instrumented vehicle studies (21). Jabeen et al. analyzed the influence of charging 

cost, charging duration and time of day on people’s charging preferences among charging at 

home, work, and public recharging stations using both multinomial logit and mixed logit models 

(29). Using stated preference data from UK drivers, Daina estimated a multinomial logit model 

to determine the influence of SOC, price, trip purpose, distance and dwell time on charging 

choices (13). Using a mixed multinomial logistic regression model, Sun et al. examined the 

influence of SOC and VMT of the next travel day on the charging time choice (no charging, 

charging immediately after arrival at home or workplace, nighttime charging or charging at other 

times) (30). Daina & Polak estimated a hazard-based model to predict the durations between 

charging events and concluded that vehicle state of charge, cumulative average driving speed, 

and individual characteristics significantly influence charging rate (46).  These studies show that 

multiple factors influence the charging decisions of PEV drivers: the trip characteristics 

including trip distance, trip purpose, the destination and time of the day, and the characteristics 

of the charging opportunities including the price, dwell time at the station and the SOC of the 

PEVs.       

Both mixed logit regression models and latent class models help capture the 



20 
 

heterogeneity of decision-making. Earlier efforts to model the heterogeneity of charging 

preferences across PEV drivers mainly used mixed logit regression models and latent class logit 

models (13, 17, &18). In a mixed logit regression model, the random taste of coefficients 

(denoted as 𝛽) follows a continuous random distribution across the population. The estimation of 

the coefficients involves the assumption about the distribution of the distribution (most 

commonly choices include uniform distribution and normal distribution) and integration of the 

parameters over this defined distribution.  

𝑝𝑛𝑗 = ∫
𝑒𝛽𝑥𝑛𝑗

∑ 𝑒𝛽𝑥𝑛𝑘𝐾
𝑘=1

𝑓(𝛽|𝜃)                                                           (1) 

           Latent class models assume that all individuals can be grouped into a finite set of classes 

(Q classes). Here, taste heterogeneity is captured by allocating respondents to different classes in 

a probabilistic manner, allowing the probability of class membership to depend upon the 

respondents’ sociodemographic information. Each class has different taste coefficients, but 

within each class, the taste parameters are assumed to be homogeneous (24). 

Within class q, the conditional probability of charging by individual i in choice situation t 

is: 

 P(𝐶ℎ𝑎𝑟𝑔𝑒𝑖𝑡| 𝛽𝑞, class q) =  
𝑒𝛽𝑞𝑋𝑖𝑡

𝑒𝛽𝑞𝑋𝑖𝑡+1
    (2)  

 

where 𝛽𝑞is a vector of coefficients for class q, and 𝑋𝑖𝑡 is a vector of observed variables 

characterizing the choice faced by individual i in situation t.  

A class allocation model defines the probability that the respondent i falls into class q 

as 𝜋𝑖𝑞, which can be calculated using the multinomial logit equation:  
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 𝜋𝑖𝑞 =
eγ𝑞𝑍𝑖

∑ eγ𝑞𝑍𝑖
Q
q=1

    (3) 

where 𝛾𝑞is a vector of coefficients for the class allocation model and 𝑍𝑖 is a vector of observed 

socioeconomic variables used to predict class membership for respondent i. 

Then the charging probability for individual i under scenario t is given by: 

  

 P(Chargeit) = ∑ 𝜋𝑖𝑞
Q
q=1 ∙

𝑒𝛽𝑞𝑋𝑖𝑡

𝑒𝛽𝑞𝑋𝑖𝑡+1
 (4) 

Recent studies have found that latent class models generate richer patterns of 

heterogeneity, yielding better fitting models of revealed and stated PEV charging choices while 

providing an easy to interpret, intuitive segmentation of respondent types (43, 44). In contrast to 

mixed logit models that assume a continuous distribution of taste parameters, latent class models 

assume that individuals can be separated into finite sets of classes, with preference heterogeneity 

captured by allocating respondents to different classes based on sociodemographic information. 

Yu & MacKenzie analyzed the charging decisions of PHEV users based on the data of the 

instrumented pre-market Prius PHEVs in US using both mixed logit model and latent class logit 

model and found that the estimates of the latent class logit model fit the data better according to 

the Bayesian Inference Criteria (BIC).  They also found that the derived variable charge energy-

the percentage of range that the PHEVs can get by charging at a stop is a better predictor of 

charging activities than SOC itself (43). Wen et al. conducted a stated preference (SP) survey 

among BEV users and asked the respondents to make choices about charging at a stop 

characterized by SOC, distance to home, charging price, dwell time, power of the charger, and 
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gasoline price. They identified three modes of charging behavior among BEV drivers, also found 

that a latent class logit model provided a better fit to the data than a mixed logit model (44). 

Ge and MacKenzie conducted a SP survey among PHEV drivers (45), and similarly to 

Wen et al (45), they presented the respondents with charging station scenarios characterized by 

remaining range, distance to home, gasoline and charging price, dwell time and charging power 

and asked them to choose whether to charge or not if they were in that situation. They analyzed 

the data with latent class logit model and found two charging behavior patterns among the 

respondents: later adopters with primarily financial motivation of owning an EV tend to make 

decisions to minimize fuel cost, but earlier adopters with other motivations such as 

environmental concern and vehicle performance tend to place much more value on gasoline cost 

than charging cost, which is consistent with the concept of “gas anxiety”- the desire of PHEV 

users to avoid using gasoline.   

A new study came out recently modeled the charging mode (fast or normal) and location 

choice (home, work or public charging stations) using mixed logit model based on revealed 

preference data collected from 500 BEV users in Japan (49). It is concluded that charging mode 

choice and location choice are mainly determined by battery capacity, time of the day 

(midnight), SOC and number of past fast charging events. 

However, these models consider each charging decision as an isolated case: the charging 

decisions at different locations by one individual are independent, which is apparently not the 

case.  

TABLE 2 Development of empirical literature on charging behavior of PEV users 



23 
 

Authors Data Source Output Independent 

Variables 

Heterogeneity odel  Ref. 

Zoepf, S., 

et al (2013) 

Instrumented 

pre-market Prius 

PHEVs in U.S. 

Charge or not at 

the end of a trip 

SOC, dwell 

time, day & 

time, location, 

last trip 

Yes. Consider 

the 

heterogeneity 

using 

continuous 

random variable 

Mixed logit (28) 

Jabeen, F., 

et al (2013) 

Stated 

preferences of 

Australian PEV 

owners 

Location and 

timing of 

charging 

Price, location, 

duration, time 

of day 

Yes. Consider 

the 

heterogeneity 

using 

continuous 

random variable 

Mixed logit (29) 

Sun, X., et 

al (2015) 

Instrumented 

PEVs (120-180 

km range) in 

Japan 

Timing of end-

of-day charging 

SOC, days 

until next trip, 

VMT next 

travel day, 

work day, 

night time, fast 

charging 

experience 

Yes. Consider 

the 

heterogeneity 

using 

continuous 

random variable 

Mixed logit (30) 

Sun, X., et 

al (2014) 

Instrumented 

PEVs (120-180 

km range) in 

Japan 

SOC at start of 

mid-trip fast-

charge events 

Charging 

station density, 

region, battery 

size, daily trips 

& VMT, 

speed, HVAC 

Not considered Stochastic 

frontier 

modeling 

(42) 

 

Yu, H. and 

MacKenzie, 

D. (2016) 

Instrumented 

pre-market Prius 

PHEVs in U.S. 

Charge or not at 

the end of a trip 

Charge energy 

(the energy 

that could be 

taken on 

during a stop) , 

day & time, 

location, last 

trip 

Compare two 

different ways 

of accounting 

for 

heterogeneity: 

mixed logit and 

latent class logit 

Mixed logit 

and 

 latent class 

logit 

(43) 

 

Wen, Y., et 

al (2016) 

Stated 

preferences of 

U.S. BEV 

owners 

Charge or not at 

a public charging 

station 

Recharging 

price at the 

station, 

electricity cost 

to get a full 

charge at 

home, dwell 

time, charging 

power  

Compare two 

different ways 

of accounting 

for 

heterogeneity: 

mixed logit and 

latent class logit 

Mixed logit 

and  

latent class 

logit 

(44) 

 

Ge,Y., et al 

(2016) 

Stated 

preferences of 

U.S. PHEV 

owners 

Charge or not at 

a public charging 

station 

Recharging 

price at the 

station, 

electricity cost 

to get a full 

charge at 

home, dwell 

time, charging 

power, 

gasoline price 

Using latent 

classes to 

account for the 

observed 

heterogeneity.  

latent class 

logit model 

(45) 
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Daina, N. 

and Polak, 

J. (2016) 

Instrumented 

Nissan Leaf 

vehicles and a 

questionnaire 

among the 

drivers 

Duration 

between 

charging events 

SOC, gender, 

age, range 

anxiety 

indicator, 

whether to use 

PEV to go to 

work/school 

This paper does 

not consider 

heterogeneity. 

Top-down 

approach.  

Hazard 

model  

(46) 

Ge, Y. and 

MacKenzie, 

D (2017) 

Stated 

preferences of  

U.S. PHEV 

owners 

Charge or not at 

all the charging 

opportunities of 

the whole travel 

day 

Recharging 

price at the 

station, 

electricity cost 

to get a full 

charge at 

home, dwell 

time, charging 

power, 

gasoline price, 

availability of 

chargers 

Using latent 

classes to 

account for the 

observed 

heterogeneity; 

Consider 

intertemporal 

tradeoff using 

DDCM 

framework.  

DDCM with 

observed 

heterogeneity 

(47) 

 

3.3 From charging behavior to charging demand modeling   

The summation of the decisions at the charging stations generates the charging demand, 

which is also called bottom-up approach. The benefit of this approach is that compared to top-

down approach (aggregate analyses), bottom-up methods allow the flexibility to do the 

counterfactual analysis: it can be used to predict the demand with the change of policy, 

infrastructure supply and market scenarios. The limitation of static models discussed in Section 

3.2.2 exposes more explicitly within the context of the generation of the charging demand 

because the static models assume the individual charging decisions are independent and they do 

not consider the decision of vehicle choice.  

The availability of public charging infrastructure intuitively appears to be a key enabler 

of Plug-in Electric Vehicle (PEV) adoption, increasing the operating radius of Battery-Electric 

Vehicles (BEVs), and increasing the fraction of electric powered miles in Plug-in Hybrid Electric 

Vehicles (PHEVs). The low utilization of public chargers (20) does not necessarily mean the 

demand of pubic charging is low because it could be due to the lack of public charging 
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opportunities. To mitigate the effect of the limited range of BEVs, a lot of BEV adopters may 

keep the choice of choosing an internal combustion engine vehicle (ICEV) for relatively long-

distance travel. When they observe the lack of public charging supply and the possibility of 

being stranded in the middle of the day, they could either choose to use their own ICEV/ PHEV 

or rent an ICEV vehicle (RENT) if they do not own one (48).  

For a travel day that needs to be completed by driving, PEV owners usually face two 

stages of decisions as presented by Figure 5: whether to use PEV for the day (stage 1 decision), 

and if so, whether to charge the PEV at the stops as the day progresses (stage 2 decision). The 

decisions of the two stages are inseparable intuitively: the vehicle choice influences whether they 

will face the charging decisions later, and the expectation of future charging opportunities 

influences the vehicle choice. Modeling the stage 2 decisions of charging choices alone may lead 

to underestimation of charging demand. The charging decisions at any two stops in the travel day 

are not independent either: the charging decision at one stop influences whether the vehicle 

needs to be charged at the following stops, and the expectation of future charging opportunities 

influences the charging decision at the current stop. This dependence between an earlier decision 

and a later one can be translated into the following according to the utility theory: a decision at 

an earlier stop may affect not only the current utility, but the expected utility later of the 

following stops; the value of the expected future utility may affect the decision at the current 

stop. The earlier studies discussed in section 3.2.2 cannot capture these inter-temporal payoffs.  
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Figure 5 Decision tree of PEV owners for a particular travel day  

Static models discussed in Chapter 3.2.2 only consider the Stage 2 decisions and assume 

the charging decisions at the stations are independent, which could lead to significant 

underestimation of the charging demand, especially with the rapidly evolving market of vehicle 

electrification. In a survey on the charging choices conducted by our lab in 2013 where the 

respondents were asked to make decisions on the characteristics of one individual charging 

station, the respondents’ feedback shows that their charging decisions are based on earlier or 

later stops, not just the current stop.  Dynamic discrete choice modeling (DDCM) can be used to 

model the vehicle choice and charging choices jointly under the uncertainty of energy 

consumption and the uncertainty of availability of chargers with the consideration of unobserved 

heterogeneity. The fundamental principle in DDCM analysis is that choices in any period are 
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assumed to be made in a dynamic programming framework such that the choices made will 

maximize the net present value of the current utility and expected future utility (49). A DDCM is 

more suitable when the utility of a decision maker’s choices depend on choices previously made, 

and when those earlier choices were made knowing that there would be uncertain future payoffs. 

At each time 𝑡, decision-maker 𝑖 with characteristics 𝑋𝑖 observes the state variables 𝑠𝑖𝑡 (e.g. the 

remaining range of the PEV) and chooses his action 𝑑𝑖𝑡
∗  (e.g. choose among BEV, PHEV, ICEV, 

and RENT; choose to charge or not) so as to maximize his expected net utility over the current 

period and all future periods, as shown in equation (5):  

𝑑𝑖𝑡
∗ (𝑆𝑖𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑑𝑖𝑡𝜖𝐷𝐸𝑡 [∑𝛽𝑗𝑈(𝑆𝑖,𝑡+𝑗 , 𝑑𝑖,𝑡+𝑗, 𝜃)

𝑇−𝑡

𝑗=0

]                                 (5) 

 

𝑈(𝑠𝑖,𝑡, 𝑑𝑖,𝑡, 𝜃) is the flow utility of decision-maker i at time period t, which depends on 

the structural parameters θ in addition to the choices 𝑑𝑖𝑡 and states 𝑠𝑖𝑡. Et represents the function 

that calculates the expected value of the intertemporal payoff from period t to the final period T. 

The earlier choices will influence the future utility because the current decision 𝑑𝑖𝑡 influences the 

future state variables 𝑠𝑖,𝑡+1 via a process captured by the state transition probability 

𝐹(𝑠𝑖,𝑡+1|𝑠𝑖,𝑡, 𝑑𝑖,𝑡). The expected future opportunities influence the earlier choices through the 

expected utility value. Parameter 𝛽 is a discount factor between 0 and 1, and the transition 

function represents the uncertainty of the future states (e.g. due to variability in in-use energy 

consumption and the uncertain availability of charging stations).  
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3.4 The concepts, estimation and applications of DDCM  

There are generally three types of DDCMs: (1) single agent problem (2) Equilibrium 

problem (3) dynamic games. Single agent problems assume the decision makers are independent 

from each other, take the classic bus engine replacement problem discussed by Rust as an 

example: the decision to replace or keep the engine of one bus is independent from the decision 

on other buses (51). The PEV charging problem in this study falls into this category because the 

vehicle choice and charging decisions are independent across individuals. Equilibrium problem 

solves problems that require the interactions between two sides: service providers and service 

receivers. For example, in an online freelance market, the bidders and the hirers both make 

decisions that maximize their utility and their decisions have impacts on each other (52). 

Dynamic games have multiple agents interacting with each other.  

DDCM of single agent problems has been widely used in economic analysis and social 

science (49). It models choices based on intertemporal tradeoffs, which has obvious benefits for 

a lot of economic problems. For durable goods such as bus engines, DDCM considers the 

intertemporal trade-offs between the current replacement cost and future maintenance cost, 

which is one classic problem analyzed by Rust (51). For storable goods such as ketchup, it 

considers the intertemporal trade-offs between savings from a low price today and high storage 

cost in the future (53). DDCM problems are also broadly applied in some social science topics 

such as job search problem (54) and reproductive choices (55). In transportation area, there are 

not a lot of applications until recently partly due to the massive computation cost (50). In 2013, 

Cirillo et al. used DDCM to analyze car ownership behavior with consideration of consumers’ 

expectations of future product characteristics (56, 57). DDCM is more suitable for vehicle 
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adoption topics than static discrete choice models because the car buyers are usually forward-

looking and the expectation about future market plays a great role in the decision making.  

In this chapter, I first explain in Section 3.4.1 some basic concepts related to dynamic 

discrete choice models and the basic model set-up of a single agent problem based on the 

notations demonstrated in the Rust model (51). Then I will talk about the estimation methods and 

the implications of certain departures from the basic assumption in the DDCM presented in the 

(51) addressed in the literature.  

3.4.1 Concepts and Framework of a single agent DDCM 

This study applies DDCM to model the vehicle choice and charging choices jointly under 

the uncertainty of energy consumption and the uncertainty of availability of chargers with the 

consideration of unobserved heterogeneity. The fundamental principle in DDCM analysis is that 

choices in any period are assumed to be made in a dynamic programming framework such that 

the choices made will maximize the net present value of the current utility and expected future 

utility (50). DDCM considers individual decision-maker as a forward-looking and rational agent. 

The agents are forward-looking because they make decisions with the consideration of the effect 

of their current choices on their future stream of utility. They are rational because the way in 

which they handle uncertainty about the future variables is by doing the best possible forecast 

using the information that is available at the time of decision.  A DDCM is more suitable when 

the utility of a decision maker’s choices depends on choices previously made, and when those 

earlier choices were made knowing that there would be uncertain future payoffs.  
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At decision period t, individual i chooses among J mutually exclusive alternatives to maximize 

the net utility, as in:  𝑑𝑖𝑡 = {𝑗: 𝑗𝜖𝐷 = {1,2, . . 𝐽}}. The expression 𝑑𝑖𝑡 = 𝑗 means that the respondent 

i choose alternative j at period t. Denote the choice indicator I as equation (6):  

I(𝑑𝑖𝑡 = j) = {
1,             𝑖𝑓 𝑑𝑖𝑡 = j
0,             𝑖𝑓 𝑑𝑖𝑡 ≠ j

                                                 (6) 

The utility at each period t depends on the vector of state variables denoted as 𝑆𝑖𝑡. 

𝑆𝑖𝑡 consists of two parts: a vector of state variables that are known to the researcher (𝑠𝑖𝑡) and the 

component of the state variables that are known to the decision-makers but are not observed by 

the researcher (denoted as 𝜀𝑖𝑡). The observable state variables can be time-varying variables or 

time-invariant variables, and they can be random variables that follow certain distributions or 

deterministic. 

𝑆𝑖𝑡 = {𝑠𝑖𝑡, 𝜀𝑖𝑡}                                                                       (7) 

𝜀𝑖𝑡 = (𝜀𝑖𝑡1, . . , 𝜀𝑖𝑡𝐽)
′
                                                                 (8) 

The agents choose the alternative to maximize his expected net utility over the current 

period and all future periods, as shown in equation (9):  

𝑑𝑖𝑡
∗ (𝑠𝑖𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑗𝜖𝐷𝐸𝑡 [∑𝛽𝜏−𝑡𝑈𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜀𝑖𝑡𝑗 , θ )

𝑇

𝜏=𝑡

]                              (9) 

 

In equation (9), 𝑈𝑖𝑡𝑗(𝑠𝑖𝜏) is the flow utility (also called the one-period payoff) of 

decision-maker i at time period t for respondent j, which depends on the structural parameters θ 

in addition to the alternative 𝑗, states 𝑠𝑖𝑡 and random error 𝜀𝑖𝑡𝑗. Et represents the function that 
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calculates the expected value of the intertemporal payoff from period t to the final period T. The 

expected future opportunities influence the earlier choices through the expected utility value. 

Parameter 𝛽 is a discount factor between 0 and 1, and the transition function represents the 

uncertainty of the future states (e.g. due to variability in in-use energy consumption and the 

uncertain availability of charging stations). The earlier choices will influence the future utility 

because the current decision 𝑑𝑖𝑡 influences the future state variables 𝑆𝑖,𝑡+1 via a process captured 

by the state transition probability 𝐹(𝑆𝑖,𝑡+1|𝑆𝑖,𝑡, 𝑑𝑖,𝑡, 𝛼). F is the agents’ belief about the transition 

of the future state variables based on the value of the state variables and the choice at the current 

period. 𝛼 here is the vector of parameters of the state transition function.  

𝑆𝑖,𝑡+1~𝐹(𝑆𝑖,𝑡+1|𝑆𝑖𝑡, 𝑑𝑖𝑡, 𝛼)                                                        (10) 

There is not a general class of DDCM models. In 1987, Rust first came up with the 

method of Nested Fixed Point Algorithm (NFPA) that can generate consistent estimates for the 

engine replacement problem, which was applied in multiple empirical analyses shortly after. 

Engine replacement problem is generally referred to as a classic example of DDCM and the later 

theoretical development and estimation methods can all be considered as the extensions from the 

framework discussed by Rust (Rust framework). Based on the Rust framework, a single-agent 

DDCM uses the following baseline assumptions for the convenience of estimation.  

Assumption 1(Additive Separability) The flow utility is additively separable between the 

observable and the unobserved state variables, and the unobserved state variables (random 

errors) are identically and independently distributed (IID) across the individuals and time period. 

𝑢𝑖𝑡𝑗(𝑠𝑖𝑡) is the systematic part of the utility of respondent i at time period t for choice 𝑗 and it 
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values depends on the state variable 𝑠𝑖𝑡. 𝜀𝑖𝑡𝑗 is the random error of respondent i at period t for 

alternative j. 

𝑈𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜀𝑖𝑡𝑗 , θ) = 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, θ) + 𝜀𝑖𝑡𝑗                                                           (11) 

Assumption 2 (Conditional Independence of future state vector s) Conditional on the decision at 

the current decision and observable state variables, next period observable variables do not 

depend on current unobserved state variable 𝜀𝑖𝑡. The unobservable state variables 𝜀𝑡 are 

independent and identically distributed across agents and decision periods. See equation (12).  

𝐹𝑠,𝜀(𝑠𝑖,𝑡+1, 𝜀𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, 𝜀𝑖𝑡, 𝛼) = 𝐹𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, )𝐹𝜀(𝜀𝑖,𝑡+1)                         (12) 

The intertemporal payoff function based on current and expected future utility is defined as 

value function 𝑉𝑖𝑡 (equation (13)).  

𝑉𝑖𝑡(𝑠𝑖,𝑡) = 𝐸𝑡 [∑𝛽𝜏−𝑡𝑈𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜀𝑖𝑡𝑗, θ)

𝑇𝑖

𝜏=𝑡

]                                                        (13) 

At each period t, the decision made at station t will make respondent i achieve the biggest 

expected utility, as shown in equation (14). The optimal choice can also be defined as dijt
∗ ≡

1{dit
∗ (st) = j}.  

𝑑𝑖𝑡
∗ (𝑠𝑖𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑗𝜖𝐷𝑉𝑖𝑡(𝑠𝑖,𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑗𝜖𝐷𝐸𝑡 [∑ 𝛽𝜏−𝑡𝑈𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜀𝑖𝑡𝑗, θ)

𝜏=𝑇𝑖

𝜏=𝑡

]                  (14) 

The summation of the utilities is broken into sub problems according to the principle of 

optimality: the remaining decisions only depend on the current state instead of the initial 

decisions and earlier states that result in the current state (58). Bellman’s curve of optimality uses 
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the principle of optimality and rewrites the value functions of respondent i at period t as an 

iterative process as shown by equation (15) (59). 

𝑉𝑖𝑡(𝑠𝑖𝑡 , 𝜃)  = max
𝑗𝜖𝐷

(𝑢𝑖𝑡𝑗(𝑠𝑖𝜏, 𝜃)+ 𝜀𝑖𝑡𝑗 + 𝛽∫𝑉𝑖,𝑡+1(𝑠𝑖,𝑡+1, 𝜃)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, 𝛼))              (15) 

Define the conditional value function of respondent 𝑖 at period t as the choice specific value 

function of alternative j denoted by 𝑣𝑖𝑡𝑗(𝑠𝑖𝑡). It can be calculated according to equation (16).  

           𝑣𝑖𝑡𝑗(𝑠𝑖𝑡) = 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃)+ 𝛽∫𝑉𝑖,𝑡+1(𝑠𝑖,𝑡+1, 𝜃)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, 𝛼)                                                 

= 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡 , 𝜃) + 𝛽∫ 𝑙𝑛∑exp{𝑣𝑖,𝑡+1,𝑗(𝑠𝑖,𝑡+1, 𝜃)}

ℎ𝜖𝐷

𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡 , 𝛼)              (16) 

According to random utility theory, the individual i chooses choice j in period t if and only 

if:  

𝑣𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃) + 𝜀𝑖𝑡𝑗 ≥ 𝑣𝑖𝑡𝑘(𝑠𝑖𝑡, 𝜃) + 𝜀𝑖𝑡𝑘      ∀ 𝑘 ≠ 𝑗                                                      (17) 

Therefore, the conditional probability of the choice j by respondent i at stop t based on 

the value of the state variables can be expressed as equation (18) under the following third 

assumption of Rust framework.  

Assumption 3: The distribution of the unobserved state variables 𝜀𝑖𝑡𝑗 is type-I extreme value 

distribution.  

𝑃𝑟(𝑑𝑖𝑡 = 𝑗| 𝑠𝑖𝑡) =
𝑒𝑣𝑖𝑗𝑡(𝑠𝑖𝑡,𝜃)

∑ 𝑒𝑣𝑖ℎ𝑡(𝑠𝑖𝑡,𝜃)ℎ𝜖𝐷

                                                         (18)  

The framework of a single agent DDCM is simple and straightforward enough, but the 

complexity of estimation and the high computational cost prove to be a long time struggle on the 
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road of further development of the theory and applications of the model. Rust first developed 

Nested Fixed Point Algorithm (NFPA) for the estimation of a single agent dynamic model (16), 

which generates consistent estimates but suffers from a dimension curse: in general, DDCM with 

high dimensions of state variables are usually intractable by NFPA (51). Two-Step method that 

came out later has relatively lower computation cost because the value functions do not need to 

be calculated based on the state transition distributions but simulated based on the conditional 

choice probabilities. Two-Step method offers consistent estimates with reasonable efficiency but 

it has higher requirement on the data: there should be enough repetition of the combination of 

state variables (60) to ensure enough accuracy of the conditional choice probability. In Section 

3.4.2 and 3.4.3, I will explain in detail how the NFPA and Two-Step method work and talk about 

the pros and cons, also the applications of these methods in empirical analyses. Then I will talk 

about the extended literatures on the consideration of heterogeneity.  

3.4.2 NFPA estimation and its applications 

Equation (16) describes the iteration of the choice-specific value functions, according to 

which, the value functions of a problem with limited time periods (a finite horizon problem) can 

be calculated using backwards induction, and those of a problem with infinite horizon can be 

calculated using fixed point algorithm (51). According to the two assumption of the Rust 

framework, the full likelihood includes the likelihood of the decisions on choice at each time 

period and the likelihood of the observable state variables. The full log-likelihood for the 

respondent i is shown in equation (19) and (20):  

𝑙𝑙𝑖(𝜃) =∑ln [𝑃𝑟(𝑠𝑖𝑡, 𝑑𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝛼, 𝜃)
𝐼(𝑑𝑖𝑡=1)

]

𝑇𝑖

𝑡=1

                                              (19) 
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𝑙𝑙𝑖(𝜃) =∑lnPr(𝑑𝑖𝑡|𝑠𝑖𝑡, θ)
𝐼(𝑑𝑖𝑡=1) +∑𝑙𝑛𝑃𝑟(𝑠𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝛼)

𝑇𝑖

𝑡=2

𝑇𝑖

𝑡=1

                              (20) 

The log-likelihood of the full sample is shown in equation (21).  

𝑙𝑙(𝜃) =∑𝑙𝑙𝑖(𝜃)                                                                

𝑁

𝑖=1

(21) 

The two assumptions of Rust Framework listed in Section 3.4.1 facilitate the transition 

from equation (19) to equation (20), which makes it possible to estimate the parameters in the 

state transition function 𝛼 (second term of equation (20)) and the structural parameters (first term 

of equation (20)) separately. Rust (51) proved that by estimating the state transition function 

variables and the structural variables separately, then adding a single Newton-Raphson iteration 

for the full likelihood optimization, the final estimators are asymptotically equivalent to the full 

likelihood estimator.  

To estimate the structural parameters, Rust came up with the NFPA. NFPA entails an 

inner loop that calculates the value function iteratively according to equation (also called 

dynamic programing problem) (16) and an outer loop that updates the structural parameters 

using the optimization algorithm of BHHH. Instead of computing the hessian, BHHH 

approximates the hessian using information matrix equality (61). Essentially, NFPA needs to 

calculate the value functions whenever 𝜃s are updated, which proves to be very costly especially 

with the increase of the dimension of the state variables (51). The time to calculate the value 

functions increases exponentially with the increase of the number of state variables. The 

application papers of NFPA usually try to control the number of the state variables (53-55) or 

condense the multiple state variables into an inclusive value if it is reasonable (62). In 
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transportation area, Lapparent and Gernicchiaro applied NFPA and studied the duration of 

vehicle ownership and distance driven considering the uncertainty of energy price and income 

(63).  

3.4.3 Two-Step method for the estimation of a single agent problem  

Two-Step method proposed by Hotz and Miller (60) avoids the computation of the value 

functions directly but approximates them through simulations. They noticed that the value 

functions can be represented as a function of the probability of the choice conditional on the 

value of the state variables (CCPs) because there is a one-to-one mapping relationship between 

the CCPs and the value functions according to equation (18). The estimates of the CCPs can be 

obtained either non-parametrically or parametrically based on the data. For example, when the 

combinations of all the state variables appear fairly frequently in the data, non-parametric 

estimates of the CCPs when the state variable vector is 𝑠′can be as shown in equation (20). The 

denominator of equation (22) is the totally number of observations with the state variables 𝑠′, 

and the numerator is the number of observations with state variable 𝑠′ and the choice j. However, 

when all the combinations of the state variables cannot be covered by the data or for some cases 

there are few observations, this method can be hard to implement. In this case, it is possible to 

use semi-parametric measures to account for the CCPs, but the convergence of the model can be 

challenged because the CCPs are not accurate.  

𝑝̂𝑗(𝑠𝑖𝑡 = 𝑠′) =
∑ ∑ I(𝑑𝑖𝑡 = j){𝑠𝑖𝑡 = 𝑠′}

𝑇𝑖
𝑡=1

𝑁
𝑖=1

∑ ∑ 1{𝑠𝑖𝑡 = 𝑠′}
𝑇𝑖
𝑡=1

𝑁
𝑖=1

                                         (22) 

Two-Step method approximates the value function by replacing the integration with 

simulations based on the CCPs given state vector as shown by equation (22) and state transition 
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probabilities 𝐹(𝑠𝑖,𝑡+1|𝑠𝑖,𝑡, 𝑑𝑖,𝑡) according to equation (23). In equation (23), 𝛾  is the Euler’s 

constant and the part of the utility  𝛾 − 𝑙𝑜𝑔 (𝑝̂ (𝑗′𝑚|𝑠′𝑚)) equals to the expectation of the error term 

(𝐸[𝜀𝑗|𝑗
′𝑚, 𝑠′𝑚]) under the assumption that the error terms of the utility are distributed according to Type 1 

extreme value. One simulation can be pictured as drawing a path of (𝑠𝑖,𝑡+1, 𝑑𝑖,𝑡+1)  for the future 

periods conditional on the current (𝑠𝑖,𝑡, 𝑑𝑖,𝑡): draw an outcome of 𝑠𝑖,𝑡+1 based on the transition 

probabilities 𝐹(𝑠𝑖,𝑡+1|𝑠𝑖,𝑡, 𝑑𝑖,𝑡), and then draw an outcome of 𝑑𝑖,𝑡+1 based on the simulated 𝑠𝑖,𝑡+1 

according to the CCPs. M is the total number of simulations (or paths) and the total number of 

periods simulated (T) for every path is to be decided by the researchers. Larger M and T result in 

smaller simulation errors and truncation errors.  

           𝑣̃𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃)

≈
1

𝑀
∑[𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃)
𝑚

+ 𝛽 [𝑢
𝑖,𝑡+1,𝑗′𝑚

(𝑠′𝑚𝑖,𝑡+1, 𝜃) + 𝛾

− log (𝑝̂ (𝑗′𝑚|𝑠′𝑚)) + 𝛽 [𝑢
𝑖,𝑡+2,𝑗′′𝑚

(𝑠′′𝑚𝑖,𝑡+1, 𝜃) + 𝛾 − log (𝑝̂ (𝑗
′′𝑚
|𝑠′′𝑚)) + 𝛽… ]]], 

Where   𝐸 [𝜀𝑗|𝑗
′𝑚, 𝑠′𝑚] = 𝛾 − 𝑙𝑜𝑔 (𝑝̂ (𝑗′𝑚|𝑠′𝑚)) 

(23) 

For some problems a decision can reset the state space to a known state that is 

independent from past choices, also called a renewable state. Take the engine replacement 

problem as an example, when the bus engine is replaced, the state, which is the mileage of the 

engine goes back to zero no matter what the sequence of choices made to the bus in earlier 

stages. This kind of problem is also called regenerative problem (51) and this quality is referred 
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to as finite dependence (64). For a regenerative problem, the simulation process can be 

simplified greatly because of the existence of the renewable state (equation (24)) (65). In 

equation (24), 𝑗0 is the decision that resets the state vectors.  

           𝑣̃𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃)

≈ 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃) + 𝛽𝛾

+ 𝛽∫ [−ln (𝑝̂(𝑗0|𝑠𝑖,𝑡+1)+ 𝑢𝑖,𝑡+1,𝑗0(𝑠𝑖,𝑡+1, 𝜃)] 𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, 𝛼)

+ 𝛽∫∫𝑉𝑖,𝑡+2(𝑠𝑖,𝑡+2, 𝜃) 𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+2|𝑑𝑖,𝑡+1 = 𝑗
0, 𝑠𝑖,𝑡+1)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡, 𝛼) 

(24) 

The calculation of the value functions is the only fundamental difference between the 

NFPA and the Two-Step method, however this one difference greatly improves the tractability of 

DDCMs because Two-Step method releases the NFPA from the dimension curse: even when the 

number of state variables is large, it can generate consistent estimates as long as the dataset is 

comprehensive enough (66).  Because of this development of estimation method of DDCM, 

several relatively more complex DDCM problems were estimated (67- 69). However, the 

simulation error of the Two-Step method generates simulation errors and truncation errors, so the 

estimates are not efficient. If the state-size is reasonable, the efficiency of the estimates can 

benefit from iterations of the full model using NFPA. Another drawback of the Two-Step 

method is that the CCPs are conditioned to the agents’ decisions under the conditions observed 

in the data, so even though it is completely sufficient to answer substantive questions on the 

structural parameters, it sometimes does not generate counterfactual predictions (65).   
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3.4.4 Departures from the Rust framework: DDCM with unobserved heterogeneity 

The Assumption 1 of Rust framework assumes that all the unobserved state variables are 

IID. However, a lot of problems are more complicated than that. For the bus replacement 

problem, different bus brands may have different maintenance and engine replacement fee, 

which will influence the engine replacement choices. Because of the computational cost and 

theoretical complexity of bringing in unobserved heterogeneity, earlier researchers dealt with 

heterogeneity by avoiding heterogeneous groups in the data set (51, 62). For example, Rust 

tested the within and between groups differences of buses of different brands and decided to only 

use part of the dataset that appears to be homogeneous. However, this is not always applicable 

considering the fact that most of the times the heterogeneity cannot be observed. Take the career 

choice problem by Keane and Wolpine (70) as an example, when observed state variables such 

as education and work experiences are considered in the model, the innate “capability” of the 

individuals cannot be observed but intuitively it will influence the career choices significantly. 

When there is preference heterogeneity in the decision making, the unobserved state variables 

are correlated across time periods, which are also referred to as persistent unobservables by 

Arcidiacono and Jones when these unobservables persist with time (71). Persistent unobservables 

cause the self-selection of the agents, which is referred to as “Dynamic Selection” problem (71). 

For example, when the brands of the buses are different, the set of buses in any period is not 

random anymore but self-selected because the brands with higher maintenance cost are less 

likelihood to have high mileage values.  

Econometrically, persistent unobservables cause the correlation of error terms, which 

makes the Assumption 1 of Rust framework unrealistic. The clean separation of the likelihoods 

shown in equation (20) is not correct anymore in this case. Then, the evaluation of the likelihood 
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and the estimation of the parameters are much more complicated than the DDCM problem 

without heterogeneity. The estimation method of the DDCM with the consideration of 

heterogeneity was developed not long ago by Arcidiacono and Jones (71). They built the 

estimation algorithm of DDCM with heterogeneity on top of the NFPA algorithm by Rust and 

the expectation-maximization algorithm (EM algorithm).  

Assume the unobserved state variable is 𝑐𝑖 that is drawn from a set of Q types:  𝑐𝑖 = 𝑞 ∈

{1,2, … , 𝑄}. Denote the percentage of agents with 𝑞 as 𝜋𝑞. 𝜋𝑞 is also commonly referred to as 

population probability. The probability of agent i having the unobserved state probability as 𝑐𝑖 =

𝑞 is 𝜋𝑖𝑞.  

𝜋𝑞=
∑ 𝜋𝑖𝑞
𝑁
𝑖=1

𝑁
                                                                                  (25) 

The utility of the respondent i at period t for alternative j now depends on the type 𝑐𝑖 

besides the state variable 𝑠𝑖𝑡 and random error vector 𝜀𝑖𝑡𝑗, as shown in equation (26).  

𝑈𝑖𝑡𝑗(𝑠𝑖𝑡, 𝑐𝑖 , 𝜃, 𝜀𝑖𝑡𝑗) = 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, 𝑐𝑖 , 𝜃) + 𝜀𝑖𝑡𝑗                                                 (26) 

The state transition can also depend on the class indicator 𝑐𝑖: 

𝑆𝑖,𝑡+1~𝐹(𝑆𝑖,𝑡+1|𝑆𝑖𝑡, 𝑑𝑖𝑡, 𝑐𝑖 , 𝛼). The state transitions are not directly observable from the data as in 

the Rust framework because they are functions of unobservable state variable 𝑐𝑖. This makes the 

estimation completely different from the Rust model using NFPA (51) because it precludes the 

possibility of estimating the parameters in the state transition function 𝛼 in the first step.  

The calculation of the value functions and conditional probability need to updated 

accordingly, see equation (27) and equation (28). 
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           𝑣𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃, 𝑐𝑖) = 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡, 𝜃, 𝑐𝑖)+ 𝛽∫𝑉𝑖,𝑡+1(𝑠𝑖,𝑡+1, 𝜃, 𝑐𝑖)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑗, 𝑠𝑖𝑡, 𝛼, 𝑐𝑖)                             

= 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡 , 𝜃, 𝑐𝑖) + 𝛽∫ 𝑙𝑛∑exp{𝑣𝑖,𝑡+1,𝑗(𝑠𝑖,𝑡+1, 𝜃, 𝑐𝑖)}

ℎ𝜖𝐷

𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑗, 𝑠𝑖𝑡 , 𝛼, 𝑐𝑖)  

          (27) 

𝑃𝑟(𝑑𝑖𝑡 = 𝑗| 𝑠𝑖𝑡 , 𝑐𝑖) =
𝑒𝑣𝑖𝑗𝑡(𝑠𝑖𝑡,𝜃,𝑐𝑖)

∑ 𝑒𝑣𝑖ℎ𝑡(𝑠𝑖𝑡,𝜃,𝑐𝑖)ℎ𝜖𝐷

                                                         (28) 

Then the full likelihood function is given by equation (29).  

𝑙𝑙𝑖(𝜃) = 𝑙𝑛∑𝜋𝑖𝑞∑𝑃𝑟(𝑠𝑖𝑡, 𝑑𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝑐𝑖 = 𝑞, 𝛼, 𝜃)
𝐼(𝑑𝑖𝑡=1)

𝑇𝑖

𝑡=1

𝑄

𝑞=1

         

=  𝑙𝑛∑𝜋𝑖𝑞∏𝑃𝑟(𝑑𝑖𝑡|𝑠𝑖𝑡, 𝑐𝑖 = 𝑞, 𝜃)
𝐼(𝑑𝑖𝑡=1) ∙ 𝑓(𝑠𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝑐𝑖 = 𝑞, 𝛼)

𝑇𝑖

𝑡=1

𝑄

𝑞=1

  

(29) 

The estimation of  𝛼 and 𝜃 based on equation (29) has a few challenges: (1) There are 

more parameters to estimate: for each type q, the parameters need to be estimated and 𝜋𝑖𝑞s need 

to be estimated too; (2) the value functions and the conditional probabilities are both functions of 

the unobserved state variable 𝑐𝑖. (3) The summation inside the function of ln precludes the 

possibility of sequential estimation of the state transitions and the choice probabilities.  

Arcidiacono and Jones (71) propose using NFPA in combination with EM algorithm (72) to 

estimate the parameters based on equation (29). EM algorithm facilitates the equivalence of the 

full likelihood shown in equation (30) and separates one difficult maximization problem into 
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separate smaller maximization problems. It re-introduces additive separability in the log 

likelihood for the choice probabilities and the state transition parameters and makes it possible to 

sequentially estimate the parameters again. 

 {𝜃, 𝛼̂} 

= 𝑎𝑟𝑔𝑚𝑎𝑥∑𝑙𝑛∑𝜋𝑖𝑞∏𝑃𝑟(𝑑𝑖𝑡|𝑠𝑖𝑡, 𝑐𝑖 = 𝑞, 𝜃, 𝛼)
𝐼(𝑑𝑖𝑡=1) ∙ 𝑓(𝑠𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝑐𝑖 = 𝑞, 𝛼)

𝑇𝑖

𝑡=1

𝑄

𝑞=1

𝑁

𝑖=1

 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∑∑∑𝜋𝑖𝑞

𝑄

𝑞=1

∙ ln[𝑃𝑟(𝑑𝑖𝑡|𝑠𝑖𝑡, 𝑐𝑖 = 𝑞, 𝜃, 𝛼̂)
𝐼(𝑑𝑖𝑡=1)]

𝑇𝑖

𝑡=1

𝑁

𝑖=1

                                                   

+ 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∑∑∑𝜋𝑖𝑞

𝑄

𝑞=1

∙ ln[𝑓(𝑠𝑖𝑡|𝑠𝑖,𝑡−1, 𝑑𝑖,𝑡−1, 𝑐𝑖 = 𝑞, 𝛼)]                                              

𝑇𝑖

𝑡=1

𝑁

𝑖=1

 

(30) 

Arcidiacono and Miller recently developed the algorithm based on Two-Step method and 

EM algorithm (65). The procedure is similar to the Arcidiacono and Miller (71) with two 

differences: the calculation of the value functions is based on simulation; and the CCPs 

conditional on the type 𝑐𝑖 need to be updated for each iteration.   

3.5 Summary 

The literature review shows that the modeling of vehicle uses and charging behavior of 

PEV users is of great importance for the assessment of the demand of public charging 

infrastructure, the demand forecasting of the energy consumption, and the evaluation of the 

environmental impact of driving. Earlier research papers on the charging behavior of both BEV 
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and PHEV collectively show that the following factors play a great role in the decision-making 

of whether to charge or not at a station: remaining range of the PEV, distance to home, charging 

price, gasoline price, dwell time and charger level. They also show evidence of preference 

heterogeneity of charging decisions. The static models used to analyze charging behavior 

(mainly mixed logit models and latent class logit models) assume the charging decision at one 

station is only influenced by the characteristics of the current station and independent from the 

earlier or later charging opportunities in the day. However, the decisions of vehicle choice and 

PEV charging fall into one dynamic process: the expectation of the future charging opportunities 

influences the charging decision at the current station, and the charging decisions at the earlier 

stations influence the SOC of the PEV at the current station, thus influence the charging choice 

at the current stop. The existence of charging opportunities during the day influences whether 

one wants to drive a PEV. DDCM can capture this evaluation of intertemporal tradeoff. Recent 

development of DDCM shows that there are methods that offer consistent and efficient estimates 

for DDCM with the consideration of heterogeneity.  
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4 Methodology         

4.1 Overview  

The analyses of the dissertation are based on the data from web-based interactive surveys 

where the respondents are firstly asked about their socio-demographic information and the 

specific information of vehicles they own, then presented with travel day scenarios characterized 

by planned distance and stops, gasoline price, charging price, charger level and the availability of 

chargers. In each scenario, the respondents were asked to choose from one of the vehicles they 

own or renting a car to complete the travel day, and if they choose to use their PEV, whether to 

charge their PEV at each stop as the day progresses.  

The data collections and analyses were conducted relatively independently for home-

based trip tours and long-distance trips. A home-based trip tour is a tour with multiple natural 

destinations, where the main activity is not charging. For example, a home-based trip tour could 

have three trips: (1) from home to workplace; (2) from workplace to shopping mall; and (3) from 

shopping mall to home. This tour has two destinations: the workplace and shopping mall, where 

the main activities are respectively work and shopping instead of charging. Therefore, on a 

home-based tour PEV users tend to charge on natural trip destinations instead of stopping 

specifically for charging. A long-distance trip is a road trip with only one final destination, for 

example a road trip from Seattle to San Francisco. On a long-distance trip, PEV drivers usually 

stop specifically for charging.  

Two of these surveys were respectively designed to simulate home-based trips and long-

distance trips (interstate trips), which will be described in detail in Chapter 5 and Chapter 7. The 

analyses are done respectively for home-based and long-distance trips since the characteristics of 



45 
 

the charging opportunities are different for these two situations. For long distance trips, the 

drivers stop specifically for charging and the time it takes to reach a full charge and the time to 

access the charging stations are likely to influence the charging choices. For home-based trips, 

recharging usually happens at natural stops of the travel day, therefore the dwell time at the 

natural stops is likely to influence the charging choices.  

The data from both surveys are analyzed using discrete choice models, including DDCMs 

with the consideration of heterogeneity using methods proposed by Arcidiacono and his 

coauthors (65,71). Both the vehicle choices and charging decisions are analyzed, and the 

DDCMs are compared with static discrete choice models (SDCMs) based on much simpler 

decision heuristics. In total, five analyses were presented in this dissertation. Specifically, based 

on the data collected from the choice experiment for home-based trip tours described in Chapter 

5, Chapter 6 presents three topics (Analysis 1-3), and based on the data collected from the choice 

experiment for long-distance trips described in Chapter 7, Chapter 8 presents two topics 

(Analysis 4-5).   

Analysis 1: Modeling vehicle choices and charging behavior of BEV owners jointly using 

DDCM for home-based trip tours;  

Analysis 2: Modeling charging choices of PHEV users using DDCM for home-based trip tours; 

Analysis 3: Comparison between DDCM and static models based on simple decision heuristics 

for home-based trips; 

Analysis 4: Modeling vehicle choice decisions of BEV owners for long-distance trips; 
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Analysis 5: Modeling charging choices of BEV drivers on a long-distance trip, and comparison 

between DDCM and static models based on simple decision heuristics.   

4.2 Data source 

The surveys were administrated to a sample of PEV drivers recruited trough their 

membership in the Electric Auto Association (EAA) and snowball sampling through social 

media platforms such as Facebook and other EV forums such as Plug-in America. Despite the 

fact that EAA members may differ from current or future mainstream PEV owners, the low 

adoption rate of PEVs in US (still less than one percent) makes it very costly to sample from the 

whole PEV owner population. There are several advantages to using EAA members as subjects, 

despite of the fact that they may differ from future mainstream PEV owners. First, EAA 

members tend to be highly interested in the technology and willing to participate in studies of 

this sort, even without tangible compensation. Second, because many of them have owned PEVs 

for longer than other owners, there is less risk that their charging behavior is shaped by a lack of 

familiarity with the technology. Third, EAA chapters are spread all around the country, 

providing high geography diversity. Fourth, a representative sample of all current PEV owners 

would not necessarily be more representative of mainstream consumers than a sample of EAA 

members because of the low adoption rate. Since the market share of PEVs is still below 1% in 

US, the current adopters are generally still the early adopters, a niche group with tastes and 

preferences substantially different than those of the majority. Developing a theory to explain 

PEV use and charging choices is important, despite any potential dissimilarity between the 

current and future PEV owners. The respondents of the study were all added to a prize draw to 

win an Apple iPad, or an Apple Watch, or a Microsoft Surface tablet of a $499 value.   
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Although stated preference (SP) data is considered inferior to revealed preference (RP) 

data that observe real-world choices, the collection of RP data is a huge challenge for a study like 

this because of the low adoption rate of PEVs (less than 1% in US) and as a consequence, the 

scarcity of data of individual level charging decisions. The dataset involved in this analysis needs 

to include the individual level data (the specific information of the vehicles and the socio-

demographic information of the respondents), the trip data (the distances between the stops, the 

duration at the stops), and the data on the characteristics of the charging opportunities (the 

power, price and availability of the chargers). A RP study of charging choices would require 

detailed data about the PEV, including its state of charge and its location, in order to identify the 

availability, price and power of the charging infrastructure.  For the goal of this research project, 

SP data have several advantages. (1) The SP approach avoids collecting a lot of data about the 

PEV including the state of charge and its location, which is essential for a RP study; (2)A RP 

study of charging behavior will reply on data of the charging infrastructure such as charging 

price, the availability of chargers and charger power at each charging stop visited. Quite apart 

from the practical challenges of obtaining and integrating charger data from multiple 

infrastructure providers, it would be effectively impossible to identify every single charging 

opportunity, since most PEVs can be charged from ordinary 110V wall outlets, in addition to 

dedicated EVSEs. (3) Even though the data about the charging opportunities, and PEV and the 

trips can be obtained, it is difficult to identify the effect of electricity price, gasoline price, and 

public charging price on charging choices because may or may not fluctuate significantly over 

the course of a RP study period. An important disadvantage of SP studies is the potential for 

hypothetical biases: the risk that respondents cannot or do not respond in a way that reflects how 

they would act in a real-world choice situation. The risk of hypothetical bias in the proposed 
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survey is expected to be small because the respondents will be asked about routine choices with 

which they are very familiar, rather than being asked to make decision about products or services 

that are not available or with which they have no experience. 

4.3 Modeling methods  

4.3.1 Conditional logit model  

Conditional logit model is one type of discrete choice model based on utility theory proposed by 

McFadden (1973) (79). It is a static discrete choice model (SDCM) because the decisions are 

made based on the current utility instead of the intertemporal payoffs: the fundamental 

assumption is that the choice made achieves the highest utility (equation (32)) 𝑈(𝑑𝑖𝑡, 𝑋𝑖𝑡, 𝜃) . 

𝑈(𝑑𝑖𝑡, 𝑋𝑖𝑡, 𝜃)  has systematic component 𝑢(𝑑𝑖𝑡, 𝑋𝑖𝑡, 𝜃) and a random component 𝜀𝑖𝑗𝑡, then under 

the assumption that the error terms are independently and identically Gumbel distributed 

(equation (31)), the probability of alternative j getting chosen is shown as equation (33) (79).  

𝑓(ε) = exp{−ε − 𝑒𝑥𝑝{−ε}}                                                              (31) 

𝑑𝑖𝑡
∗ = 𝑎𝑟𝑔𝑀𝑎𝑥𝑑𝑖𝑡𝜖𝐷𝑖𝑡𝑈(𝑑𝑖𝑡, 𝑋𝑖𝑡, 𝜃)                                                       (32) 

P(𝑑𝑖𝑡 = 𝑗) =
𝑒𝑢(𝑑𝑖𝑡=𝑗,𝑋𝑖𝑡,𝜃)

∑ 𝑒𝑢(𝑑𝑖𝑡=𝑘,𝑋𝑖𝑡,𝜃)
𝐷𝑖𝑡
𝑘=1

                                                        (33) 

4.3.2 Latent class logistic regression model 

 As discussed in Section 3.2.2, early efforts to model the heterogeneity of charging 

preferences across PEV drivers mostly used mixed logit regression models (13, 17, 18). In a 

mixed logit regression model, the random taste of coefficients (denoted as 𝛽) follows a 

continuous random distribution across the population.  
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           Latent class models, however, assume that all individuals can be grouped into a finite set 

of classes (Q classes). Here, taste heterogeneity is captured by allocating respondents to different 

classes in a probabilistic fashion that allows the probability of class membership to depend upon 

the respondents’ sociodemographic information. Different classes haave different taste 

coefficients, but within each class, the taste parameters are assumed to be homogeneous (24). For 

example, for the decision of chargin, within class q, the conditional probability of charging by 

individual i in choice situation t can be defined as equation (34). 𝛽𝑞 represents the coefficients 

for class q, and 𝑋𝑖𝑡 represents a the independent variables that influence the choice faced by 

individual i in situation t. Function (35) shows the probability of one individual falls into class q, 

which depends on multiple variables denoted by 𝑍𝑖.  

 P(𝐶ℎ𝑎𝑟𝑔𝑒𝑖𝑡| 𝛽𝑞, class q) =  
𝑒𝛽𝑞𝑋𝑖𝑡

𝑒𝛽𝑞𝑋𝑖𝑡+1
    (34)  

 𝜋𝑖𝑞 =
eγ𝑞𝑍𝑖

∑ eγ𝑞𝑍𝑖
Q
q=1

    (35) 

Then the charging probability for individual i under scenario t is given by equation (36).  

 P(Chargeit) = ∑ 𝜋𝑖𝑞
Q
q=1 ∙

𝑒𝛽𝑞𝑋𝑖𝑡

𝑒𝛽𝑞𝑋𝑖𝑡+1
 (36) 

4.3.3 DDCM 

4.3.3.1 DDCM model framework 

In this dissertation, DDCM is used to (1) jointly model BEV owners’ vehicle choices and 

charging choices for a home-based trip tour in the face of uncertain energy consumption and 

uncertain availability of chargers, (2) analyzing charging choices of PHEV drivers on a home-

based tour, and (3) analyzing charging choices of BEV users on a long-distance trip. The 

fundamental principle in DDCM analysis is that choices in any period are assumed to be made in 
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a dynamic programming framework such that the choices made will maximize the net present 

value of the current utility plus expected future utility (71). A DDCM is more suitable when the 

utility of a decision-maker’s choices depends on choices previously made, and when those earlier 

choices were made knowing that there would be uncertain future payoffs. At each decision 

period 𝑡, decision-maker 𝑖 with characteristics 𝑋𝑖 observes the state variables 𝑠𝑖𝑡 (factors that can 

influence the value of utility, and thus influence the choices, e.g. the remaining range of the 

BEV) and chooses his action 𝑑𝑖𝑡
∗  among choice set 𝐷𝑖𝑡 (e.g. choose among BEV, ICEV, and rent 

a car (RENT) for stage 1 decision; choose to charge or not for stage 2 decisions) so as to 

maximize his expected net utility over the current stop and all future stops, as shown in equation 

(37):  

𝑑𝑖𝑡
∗ (𝑠𝑖𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑑𝑖𝑡𝜖𝐷𝑖𝑡𝐸𝑡 [∑𝛽𝑗𝑈(𝑠𝑖,𝑡+𝑗 , 𝑑𝑖,𝑡+𝑗, 𝑋𝑖, 𝜃)

𝑇−𝑡

𝑗=0

]                                 (37) 

 

𝑈(𝑠𝑖𝑡, 𝑑𝑖𝑡, 𝑋𝑖, 𝜃) is the flow utility (the utility at one decision period) of decision-maker i 

at decision period t, which depends on the structural parameters 𝜃 in addition to the choices 𝑑𝑖𝑡 

and states 𝑠𝑖𝑡. Et represents the function that calculates the expected value of the intertemporal 

payoff from period t to the final period T. Parameter 𝛽 is a discount factor. The specification of 

the function Et  and the estimation of the model will be explained a later section.  

4.3.3.2 Value function derivation 

The intertemporal payoff function based on current and expected future utility is defined as 

value function 𝑉𝑖𝑡 (equation (38)).  
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𝑉𝑖𝑡(𝑠𝑖,𝑡) = 𝐸𝑡 [∑𝛽𝑗𝑈(𝑠𝑖,𝑡+𝑗, 𝑑𝑖,𝑡+𝑗, 𝜃)

𝑇−𝑡

𝑗=0

]                                                     (38) 

At each station t, the choice is assumed to be the one that makes respondent i achieve the 

biggest expected utility, as shown in equation (39). The optimal choice can be defined as 𝑑𝑖𝑗𝑡
∗ ≡

1{𝑑𝑖𝑡
∗ (𝑠𝑡) = 𝑗}. 

𝑑𝑖𝑡
∗ (𝑠𝑖𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑑𝑖𝑡𝜖𝐷𝑖𝑡𝑉𝑖𝑡(𝑠𝑖,𝑡) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑑𝑖𝑡𝜖𝐷𝑖𝑡𝐸𝑡 [∑𝛽𝑗𝑈(𝑠𝑖,𝑡+𝑗, 𝑑𝑖,𝑡+𝑗, 𝑋𝑖)

𝑇−𝑡

𝑗=0

]         (39) 

Bellman’s curve of optimality shows that the value function of respondent i at period t can 

be rewritten as equation (40).  

𝑉𝑖𝑡(𝑠𝑖,𝑡)  = max
𝑗𝜖𝐷𝑖𝑡

(𝑢𝑖𝑡𝑗(𝑠𝑖𝜏)+ 𝜀𝑖𝑡𝑗 + 𝛽∫𝑉𝑖,𝑡+1(𝑠𝑖,𝑡+1)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑑𝑖𝑡, 𝑠𝑖𝑡))              (40) 

The conditional value function of respondent 𝑖 at decision period t is defined as the choice 

specific value function of alternative j denoted by 𝑣𝑖𝑡𝑗(𝑠𝑖𝑡). It can be calculated according to 

equation (41).  

              𝑣𝑖𝑡𝑗(𝑠𝑖𝑡) = 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡)+𝛽∫𝑉𝑖,𝑡+1(𝑠𝑖,𝑡+1)𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑗, 𝑠𝑖𝑡)

= 𝑢𝑖𝑡𝑗(𝑠𝑖𝑡)+𝛽∫ 𝑙𝑛 ∑ exp{𝑣𝑖,𝑡+1,𝑗(𝑠𝑖,𝑡+1)}
ℎ𝜖𝐷𝑖,𝑡+1

𝑑𝐹𝑖𝑠(𝑠𝑖,𝑡+1|𝑗, 𝑠𝑖𝑡)                                      (41) 

According to random utility theory, individual i chooses choice j at decision period t if and 

only if:  

𝑣𝑖𝑡𝑗(𝑠𝑖𝑡) + 𝜀𝑖𝑡𝑗 ≥ 𝑣𝑖𝑡𝑘(𝑠𝑖𝑡) + 𝜀𝑖𝑡𝑘      ∀ 𝑘 ≠ 𝑗                                                 (42) 
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Similar to static conditional logit model described in section 4.3.1, the probability of 

choosing alternative j based on the value function can be calculated according to the following 

equation. 

P(𝑑𝑖𝑡 = 𝑗) =
𝑒𝑣𝑖𝑡𝑗(𝑠𝑖𝑡)

∑ 𝑒𝑣𝑖𝑡𝑘(𝑠𝑖𝑡)
𝐷𝑖𝑡=𝐽
𝑘=1

                                                        (43) 

4.3.3.3 Latent class model for DDCM 

To capture the heterogeneity of charging preferences among PEV drivers, the DDCM was 

extended into a latent class framework. Latent class models assume that all individuals can be 

separated into a finite set of classes (Q classes) and estimate a set of structural parameters for 

every class. Here, taste heterogeneity is captured by allocating respondents to different classes in 

a probabilistic manner, allowing the probability of class membership to be based on the choices 

made by the respondents.   

Under the assumption that the distribution of the error term 𝜀𝑖𝑡𝑗  is type-1 extreme value 

distribution, the probability of choosing choice j conditional on respondent i belonging to class q 

can be described by equation (25), where 𝐷𝑖𝑡 refers to the choice set of respondent i at time 

period t and ℎ denotes one specific element of the choice set 𝐷𝑖𝑡. 

𝑝𝑖𝑡(𝑑𝑖𝑡 = 𝑗| 𝑐𝑙𝑎𝑠𝑠 𝑞) =
𝑒𝑣𝑖𝑗𝑡𝑞(𝑠𝑖𝑡)

∑ 𝑒𝑣𝑖ℎ𝑡𝑞(𝑠𝑖𝑡)ℎ𝜖𝐷𝑖𝑡

                                                    (44) 

Denote the probability that respondent i belongs to class q as 𝜋𝑖,𝑞, then the probability of the 

alternative j being chosen for the respondent 𝑖 at period t is:  

𝑝𝑖𝑡(𝑑𝑖𝑡 = 𝑗) = ∑𝜋𝑖,𝑞 ∙
𝑒𝑣𝑖𝑗𝑡𝑞(𝑠𝑖𝑡)

∑ 𝑒𝑣𝑖ℎ𝑡𝑞(𝑠𝑖𝑡)ℎ𝜖𝐷𝑖𝑡

𝑄

𝑞=1

                                                   (45) 
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The population probability of class q, defined as the proportion of the individuals that belong 

to class q, is calcualted according to equation (46). 

𝜋𝑞 =
∑ 𝜋𝑖,𝑞
𝑁
𝑖=1

𝑁
                                                                    (46) 

The probability of respondent i being in class q (𝜋𝑖,𝑞) can then be calculated as the posterior 

probability based on the vehicle choice and charging decisions 𝑑𝑖𝑡 see equation (47). 

         𝜋𝑖𝑞  =
𝜋𝑞 × [∏ ∏ (Pr (𝑑𝑖𝑡 = 𝑗|𝑐𝑙𝑎𝑠𝑠 𝑞))𝐼(𝑑𝑖𝑡=𝑗)𝐽

𝑗=1
𝑇
𝑡=1 ]

∑ 𝜋𝑞 × [∏ ∏ (Pr(𝑑𝑖𝑡 = 𝑗|𝑐𝑙𝑎𝑠𝑠 𝑞))𝐼(𝑑𝑖𝑡=𝑗)𝑇
𝑡=1

𝐽
𝑗=1 ]𝑄

𝑞=1

                    (47)  

The log-likelihood of the decisions of one individual i can be calculated according to 

equation (48).  

𝑙𝑙𝑖(𝜃) =∑ ∑ln[𝑝𝑖𝑡(𝑑𝑖𝑡 = 𝑗)]
𝐼(𝑑𝑖𝑡=𝑗)

𝐽

𝑗=1

𝑇𝑖

𝑡=1
  

=∑ ∑ln [∑𝜋𝑖𝑞 ∙
𝑒𝑣𝑖𝑗𝑡𝑞(𝑠𝑖𝑡)

∑ 𝑒𝑣𝑖ℎ𝑡𝑞(𝑠𝑖𝑡)ℎ𝜖𝐷

𝑄

𝑞=1

]

𝐼(𝑑𝑖𝑡=𝑗)𝐽

𝑗=1

𝑇𝑖

𝑡=1
                         (48) 

The log-likelihood of the sample then can be calculated according to equation (49). 

𝐿𝐿𝑁(𝜃) =∑ 𝑙𝑙𝑖(𝜽)
𝑁

𝑖=1
                                                                  (49) 

 

4.3.3.4 Estimation of latent class DDCM 

The estimation of DDCM is rather complicated compared with static discrete choice 

models, which remains a barrier of its broad adoption (71). Rust first developed the Nested Fixed 
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Point Algorithm (NFPA) for the estimation of a single agent dynamic model (71), which 

generates consistent estimates but suffers from a dimensionality curse: in general, DDCMs with 

high dimensions of state variables are usually intractable by NFPA, especially for DDCMs with 

infinite horizon (50). The Two-Step method that came out later has relatively lower computation 

cost and eliminates the dimensionality curse because the value functions do not need to be 

calculated based on the state transition distributions, but rather can be simulated based on the 

conditional choice probabilities (71).  

I applied the finite mixture solution based on the EM algorithm (72) proposed by 

Arcidiacono and Jones to incorporate the heterogeneity of decision-making among BEV users 

(71) and the NFPA proposed by Rust (50) to calculate the value functions. Our application here 

is simpler in the sense that the problem has a finite horizon and four out of the six state variables 

are pre-determined, and for the two state variables that are uncertain (remaining range and 

availability of the chargers), their distributions are assumed to be known according to the 

questionnaire and the specifications of the experimental scenarios. On the other hand, our 

application is more complicated in the sense that state variables and transition functions of each 

respondent in each scenario is different from the rest. As such, the computation cost is higher for 

this problem.  

The DDCM with heterogeneity can then be estimated following these six steps according 

to the EM algorithm (28).  

Step 1: Initialization of structural parameters 

The first step is to make initial guesses of all the parameters to be estimated (𝜃1, 𝜋1).  
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Step 2:  Update the Value Functions  

      In this step, for each class the value functions are updated based on the parameters and 

the class population probability. For finite horizon problem like this, the decision in the last 

period T is static, so the conditional value function at T is the utility function, which means:  

𝑣𝑖𝑇𝑗(𝑠𝑖𝑇, 𝑐𝑙𝑎𝑠𝑠 𝑞) = 𝑢𝑖𝑇𝑗(𝑠𝑖𝑇)                                                        (50) 

Then the value function of all the earlier periods can be obtained through backwards 

recursion. For example, the conditional value function at T – 1 is then:  

𝑣𝑖,𝑇−1,𝑗(𝑠𝑖,𝑇−1, 𝑞) = 𝑢𝑖,𝑇−1,𝑗(𝑠𝑖𝜏, 𝑞) + 𝛽∫ 𝑙𝑛 ∑ exp{𝑣𝑖𝑇𝑗(𝑠𝑖𝑇 , 𝑞)}

ℎ𝜖𝐷𝑖𝑇

𝑑𝐹𝑖𝑠(𝑠𝑖𝑇|𝑗, 𝑠𝑖,𝑇−1)             (51) 

Step 3:  Update probability functions based on the new value functions 

𝑝𝑖𝑡(𝑑𝑖𝑡 = 𝑗) = ∑𝜋𝑖,𝑞 ∙
𝑒𝑣𝑖𝑗𝑡𝑞(𝑠𝑖𝑡)

∑ 𝑒𝑣𝑖ℎ𝑡𝑞(𝑠𝑖𝑡)ℎ𝜖𝐷𝑖𝑡

𝑄

𝑞=1

                                                   (52) 

Step 4:  Update Posteriors of class probability 

The posterior probability of respondent i in class q is calculated according to equation 

(53):  

 𝜋𝑖𝑞 =
𝜋𝑞[∏ (Pr (𝑑𝑖𝑡 = 𝑗|𝑐𝑙𝑎𝑠𝑠 𝑞))

𝐼(𝑑𝑖𝑡=𝑗)𝑇𝑖
𝑡=1 ]

∑ 𝜋𝑞[∏ (Pr(𝑑𝑖𝑡 = 𝑗|𝑐𝑙𝑎𝑠𝑠 𝑞))𝐼(𝑑𝑖𝑡=𝑗)
𝑇𝑖
𝑡=1 ]𝑄

𝑞=1

                               (53)  

Step 5:  Update the population probabilities 

The population probability of class q can be updated according to equation (54): 

𝜋𝑞 =
∑ 𝜋𝑖,𝑞
𝑁
𝑖=1

𝑁
                                                                    (54) 
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Step 6:  Maximization of the likelihood function 

θ = argmax
𝜃

∑∑∑𝜋𝑖𝑞 ∙ ln [
𝑒𝑣𝑖𝑗𝑡(𝑠𝑖𝑡,𝑞)

∑ 𝑒𝑣𝑖ℎ𝑡(𝑠𝑖𝑡,𝑞)ℎ𝜖𝐷𝑖𝑡

]

𝐼(𝑑𝑖𝑡=𝑗)

                         (55)

𝑄

𝑞=1

𝑇𝑖

𝑡=1

𝑁

𝑖=1

 

Step 7:  Repeat step 2- step 6 until all the parameters converge. 

Step 8:  Procedures to ensure robustness 

The standard errors based on the Hessian matrix of maximization function (equation 35) 

are biased downwards because the value functions are treated as known data in the 

maximization, but in fact they are calculated based on the values of the parameters (30). 

Therefore, for the DDCMs used in this study, we used bootstrap with 250 simulated samples to 

calculate the standard errors. Each simulated sample is obtained by randomly selecting 

respondents from the dataset with replacement and the standard error of each parameter is the 

standard deviation of the sampling distribution.  

When the optimization algorithm does not guarantee the global optimum, it is important 

to repeat the estimation steps with varied starting values and choose the one with the highest 

maximum likelihood.   
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5 Survey & Data for Home-Based Trip Tours   

5.1 Survey design for home-based tours 

This survey consisted of two parts: (1) a questionnaire on socio-demographic information 

and vehicle ownership; and (2) a travel day simulation section where the respondents were 

presented with travel days characterized by distance, charging opportunities and characteristics 

of charging opportunities such as charging price, level and availability of chargers. The scenarios 

of the travel day simulations are tailored to the respondents according the initial answers on the 

vehicle specification and socio-demographic information.  

5.1.1 Background information  

All the respondents of this survey were electric vehicle owners. The questionnaire asked 

them to report the following information: age, gender, education, household income, household 

size, home ZIP code, and the specific information of their vehicles in the household: the make, 

model, and year. For each of their electric vehicles, respondents were also asked for the 

maximum and minimum electric range on a full charge, in summer and in winter. Since this 

survey was conducted in summer, the average value of maximum summer range (𝑟𝑚𝑎𝑥) and 

minimum summer range (𝑟𝑚𝑖𝑛) is denoted as reported range (𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑), which was used to 

assign  the choice experiments to the respondents.  

𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =
1

2
(𝑟𝑚𝑖𝑛 + 𝑟𝑚𝑎𝑥)                                                               (56) 

5.1.2 Travel day simulation  

Each survey respondent was presented with eight scenarios featuring a tour characterized 

by the following variables: gasoline price, planned travel distances, planned stops, the dwell time 
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at the planned stops, and the characteristics of the charging opportunities at the planned stops 

(including charging price, charging power, and the availability). The scenarios were pre-designed 

by the researchers and customized to the respondents according to the individuals’ self-reported 

BEV ranges. For each scenario, the respondents were first asked to choose which vehicle to use, 

and if they chose a BEV, to make charging decisions at each planned stop. An interactive 

graphical interface and the experimental design of the scenarios are two key elements of the 

simulation design.  

5.1.2.1 Display of the scenarios 

In this section, each respondent was presented with 8 scenarios defined by me and 

customized according to the individuals’ PEV ranges. Considering it is intractable to present the 

respondents with complex scenarios that are plausible to every one of them without collecting a 

large set of information on their daily travel, instead of asking the respondents to make decisions 

for themselves, we ask them to give advice for individuals that are very similar to them: with the 

same background information. Hsee and Weber (74) refer to this advisee as a “vivid other”. 

Porman (75) found that when people are making decisions for others, they are more likely to 

“seek the ability to justify their choices”, while when in their own decision-making process, 

“people usually exhibit higher degrees of attribute prominence”. Therefore, at the beginning of 

the charging choice experiment part, the respondents will be first introduced to an imaginary 

individual - their vivid other (also called a digital avatar), as shown in FIGURE 6. The digital 

avatar is Jane if the respondent is female and John if the respondent is male. The digital avatars 

have similar socio-demographic information such as age, gender, income, and vehicle 

ownership.  
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FIGURE 6 Introducing Jane 

 

In each of the eight scenarios, the respondent was firstly presented with a specific home-

based tour (Figure 7) and asked to recommend a specific vehicle for the tour (Figure 8). The 

choice set of vehicles was the list that the respondent had previously said they own. The 

relationship between the initial state of charge (100% in Figure 8) and the range available (60 

miles) was based on the range reported by the respondent earlier in the questionnaire. If the 

respondent selected a BEV for the tour, they were then asked whether they would recommend 

charging at each stop with the tour progressed (Figures 9 – 11).  

The presentation of information and solicitation of choices was designed to make the 

information tractable while reflecting the structure of the choice process in a real tour. The 

information in the graphical interface was displayed item by item using animation, which gives 
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the respondents time to absorb the information. If the respondent chose to use a BEV for the 

presented tour, the survey tool stepped through stop by stop and asks the respondent to make 

charging decisions. As the tool stepped through the tour, additional information was revealed, 

namely the actual remaining range and whether there was a charger available upon arriving at 

each stop. In-use energy consumption on each individual trip was drawn from a distribution 

based on the respondent’s reported maximum and minimum ranges. As such, the amount of 

range “consumed” on a given trip could be greater or less than the nominal length of that trip, 

and the respondent would not know for sure how much range would be consumed until the end 

of that trip. Similarly, the probability that at least one charger is available was displayed for all 

the following stations, but whether a plug was available for use at a given stop was not revealed 

until the respondent arrived at that stop in the simulation; plug availability was based on the 

probabilities shown to the respondents beforehand (e.g. “available on 3 out of 5 visits”).  

It was entirely possible in some cases for respondents to fail to complete a tour according 

to their original plan on this survey instrument. For example, if they selected a BEV for a tour 

with a trip length exceeding their BEV’s range, or failed to charge when necessary, they received 

a message saying “There isn’t enough electric range to get to the next charging station! Please 

continue with the next scenario!” and were taken to the next scenario. Not being able to finish a 

home-based trip tour according to the original plan could mean several possibilities: (1) Jane/Joe 

has to make a mid-trip stop specially for refueling the vehicle; (2) Jane/Joe can adjust their 

driving behavior to conserve energy to make it to the next stop; (3) Jane/Joe is stranded in the 

middle of the trip; etc. Without specifying this in the survey tool, we leave it to the respondents 

to interpret the situation and during the modeling process, we evaluate the negative utility of 

having to deviate from the original plan instead of being stranded in the middle of a trip.  
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 Interested readers are welcomed to check out a demonstration of the SP scenario at this 

link: https://www.youtube.com/watch?v=JmALZPjUQ9U.   

 

FIGURE 7 Screenshot 1 of the survey tool: Display of Jane’s travel day 

https://www.youtube.com/watch?v=JmALZPjUQ9U
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FIGURE 8 Screenshot 2 of the survey tool: vehicle choice for the travel day  
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FIGURE 9 Screenshot 3 of the survey tool: Charging decision of the first stop 
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FIGURE 10 Screenshot 4 of the survey tool: Charging decision of the second stop 
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FIGURE 11 Screenshot 5 of the survey tool: Indicate Jane made it home 

 

FIGURE 12 Screenshot 6 of the survey tool: When there is not enough electric range to get to the 

next charging station or home  

When the remaining range of the vehicle is not enough for getting to the next station or 

home, the respondents are told that “There is not enough electric range to get to the next 

charging station” and then continue with the next scenario.  

5.1.2.2 Design of the scenarios 

(1) D-optimal design  

The first step of the experiment design is to identify the factors that can influence the 

dependent variables interested. A factor is an experimentally adjustable variable. In this study, 
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the factors include the gasoline price, the planned distance of the travel day, the charging price, 

charging power and availability of the chargers. Factors have levels, e.g. the levels of the 

gasoline price could be $2.5, $3.5 and $4.5. The details of the factors are shown in the following 

subsections of this chapter.  

In an experiment design, each factor usually has multiple levels. A treatment is made up 

of a combination of factors. A full factorial design with r replications consists of N factors: 𝑥𝑛 ∈

(𝑥1, … , 𝑥𝑁). If the number of levels of variable 𝑥𝑛 is 𝑙𝑛, then the total number of treatments of 

the full factorial design with r replications is: ∏ 𝑙𝑛
𝑁
𝑖=1 . Compared to the simple method of 

changing one variable at a time, factorial design allows one to detect interactions between 

treatment factors and if there is no interaction, it allows one to efficiently use all experimental 

units to assess the effects of each individual factor (76). 

If there are many factors with multiple levels, the size of an experiment with factorial 

design grows rapidly. The practical solution is to include a proportion instead of all of the full 

factorial design scenarios. The goal of an experiment design is to identify the sources of variation 

of the vehicle choice decisions and charging decisions, which enables efficient estimates of the 

parameters for the later estimation of the models (76). The efficiency of the estimates can be 

measured by the asymptotic variance-covariance matrix: the square roots of the diagonal values 

of the variance-covariance matrix are the standard errors of the estimates.  The inverse of the 

Fisher’s information matrix generates the estimators of the asymptotic variances, as shown by 

equation (57).  Fisher information matrix is generated according to the second derivatives of the 

log-likelihood (𝑙(𝜃)).  

𝑉𝑎𝑟(𝜃𝑀𝐿) = [𝐼(𝜃𝑀𝐿)]
−1
                                                             (57) 
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𝐼(𝜃) = −
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑙(𝜃)                                                      (58) 

D-optimal design uses the optimality criterion that results in minimizing the generalized 

variances of the parameters estimated by maximizing the determinant of the information matrix 

(77). Fedorov (76) exchange algorithm offers the optimization algorithm to select the best subset 

of the full factorial scenarios. The basic idea of Fedorov exchange algorithm is to find the subset 

of scenarios that has the highest determinant of the population Fisher’s information matrix. The 

algorithm starts with an initial optimal design, then for each iteration, choose a better one (higher 

determinant) from the candidate poll of the experiments. The goal of Fedorov exchange 

algorithm is to generate a list of experiments that will increase the determinant of the Fisher’s 

information matrix then when the determinant stops increasing according to a pre-determined 

threshold, the design is chosen as the final list of experiments.    

For this study, the experiment scenarios are generated based on the function optFederov 

in the R package AlgDesign (78). The function takes the input of the full list of factorial 

experiments and the number of trials that need to be generated (nTrials). It generates a fixed 

number of scenarios (nTrials) that have the highest determinant of the Fisher’s information 

matrix.  

(2) Experimental design for home-based tour  

Eight scenarios are customized to the respondents according to the range of the PEV they 

own: the planned distances of home-based tour scenarios are around the range of the PEVs, as 

shown in TABLE 3. When they have multiple PEVs, the scenarios are tailored according to the 

PEV with the largest electric range. In each scenario, the respondents choose from their own cars 

to drive for the travel day. When the respondent only owns PEVs, the choice of “rent a car” is 
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included into the choice set. The survey respondents were instructed to assume other factors 

(such as the cost and availability of parking) are affected by the decision of whether or not to 

charge. The attributes and levels characterizing the choice situations are listed in TABLE 3. The 

scenarios generated from the design are randomly assigned to the respondents based on their 

range group.  

TABLE 3 Attributes and Their Levels of the Experiments for home-based trips  

Attributes  Variable  Description Attribute levels 

Charging 

price($/h)   

𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 The recharging price at the 

station 

Free, $0.50/h; $1.00/h; $1.50/h; $2.00/h; 

$5.00/h 

Charging 

power(kW)   

𝑃𝑜𝑤𝑒𝑟 The maximum charging 

speed at the station 

1.9kW; 6.6kW 

Dwell time(h)  𝑡𝑑𝑤𝑒𝑙𝑙 The time duration for which 

the respondent will stay at 

this station 

0.25h; 0.50h; 1h; 2h; 4h; 8h 

Planned distance of 

the travel day (mi)  

L The distance of the whole 

travel day 

Reported range - 40mi; 

Reported range - 20mi; 

Reported range - 10mi; 

Reported range - 5mi; 

Reported range; 

Reported range + 5mi; 

Reported range + 10mi; 

Reported range + 20mi; 

Reported range + 40mi.  

Gasoline price ($)  𝑝𝑔𝑎𝑠 Gasoline price $2.50/gallon; $3.00/gallon; $3.50/gallon; 

$4.00/gallon; $4.50/gallon 

Availability  A% The chance that there is a 

plug available at a charging 

station   

20%, available 1 out of 5 visits; 

40%, available 2 out of 5 visits;  

60%, available 3 out of 5 visits; 

80%, available 4 out of 5 visits; 

100%, always available. 

  

For each scenario, at the beginning of the travel day, the state of charge (SOC) is assumed to be 

100%, which is justified because most people charge their EVs whenever they get home.  

Remaining range refers to  the amount of electric range left for the PEV when respondent i 

arrives at one station t. The survey tool measures the remaining range at each station by 

estimating the energy consumption of each trip based on the specific information of the vehicle 
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reported by the respondents. In real life, the range consumed of a fixed distance of driving is 

uncertain due to driving habits, traffic condition and weather conditions, etc. This uncertainty of 

the range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑) for distance l is considered by generating a random number 

according to the maximum and minimum range reported by the respondents, see equation (34).  

      𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑙 + 𝑙 ∗ 𝛼 ∗ 𝜌𝑖                                                            (59) 

Random variable 𝛼 is generated from a triangular distribution with maximum value of 1, 

minimum value of -1 and median value as 0. 𝜌𝑖 is defined as the uncertainty factor based on the 

reported maximum (𝑟𝑚𝑎𝑥) and minimum summer (𝑟𝑚𝑖𝑛) full range, as shown by equation (35).   

𝜌𝑖 =
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛
𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

                                                         (60) 

When the respondents do not own any ICEV, the option “rent a car” is presented to for the 

scenarios. The rental cost (𝑐𝑟𝑒𝑛𝑡𝑎𝑙) is a randomly generated value from $30 to $100 from a 

uniform distribution. 
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FIGURE 13 Screenshot 7 of the survey tool: No charger available at the current station 

To account for the uncertainty of the availability of chargers at different stops, Bernoulli 

random numbers are generated according to the variable “Availability (A%)” in the experiment 

design. When there is no charger available according to the Bernoulli random number, the 

respondents are told all the chargers are occupied at this station currently, and then precedes to 

the next station. 

5.2 Data for home-based tours  

The survey on home-based tours was conducted during June to July 2016. The respondents 

were recruited mostly through the Electric Auto Association (EAA) and Plug-in America, whose 

members are usually enthusiastic about electric vehicle technology and related research, and 
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willing to participate into the survey without any extrinsic incentives. There were in total 1014 

PEV respondents, 916 of whom completed the full survey. The descriptive analysis of the sample 

is shown in Table 4. 81% of the respondents were male. The reported household income among 

the respondents is higher than average, with around 44% of respondents reporting a household 

income over $140,000. More than 50% of the survey respondents have at least Bachelor’s 

degree. 878 of the respondents have BEVs and 276 own PHEVs. More than 54% of the 

respondents have BEV and ICEV, and 21% of the respondents just have BEV alone in their 

households, which shows that most BEV owners keep the choice of using an range unlimited 

alternative.  
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TABLE 4 Description of the Sample 

Variable Category 
Sample 
Frequenc
y 

Sample 
Percentage  

Variable Category 
Sample 
Frequency 

Sample 
Percentage  

Age 

18-24 36 3% 

Household 
Income 

<$19,999 71 7% 

25-44 277 26% 
$20,000-
$39,999 

72 7% 

45-55 314 29% 
$40,000-
$59,999 

96 9% 

55-65 283 26% 
$60,000-
$79,999 

77 7% 

65+ 164 15% 
$80,000-
$99,999 

109 10% 

Prefer not to 
answer 0 0% 

$100,000-
$119,999 

93 9% 

Gender 

Male 867 81% 
$120,000-
$139,999 

70 7% 

Female 190 18% 
$140,000-
$159,999 

54 5% 

Prefer not to 
answer 17 2% 

$160,000-
$179,999 

231 22% 

Education 

Less than High 
School 

39 4% 
$180,000-
$199,999 

45 4% 

High School / GED 35 3% >$200,000 141 13% 

Some College 120 11% 

Vehicle 
Ownership 

BEV only  219 21% 
2-Year College 
Degree (Associates) 

75 7% PHEV only  68 6% 
4-Year College 
Degree (BA, BS) 

410 38% BEV & ICEV 570 54% 

Master’s Degree 264 25% BEV &PHEV 38 4% 

Doctoral Degree 126 12% PHEV & ICEV 119 11% 
Professional 
Degree (MD, JD) 

5 0% 
BEV, PHEV & 
ICEV 51 5% 

 

The distributions of the ranges of BEVs and PHEVs of the respondents are shown in Figure 14 

and Figure 15 respectively. The most common BEV models are Nissan Leaf with rated range 

from 60 miles to 80 miles and Tesla models with range around 250 miles. The most common 

PHEV model among the respondents is Chevrolet Volt with range around 40 miles.  
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Figure 14: The distribution of ranges of the BEVs reported by the respondents 
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Figure 15: The distribution of ranges of the PHEVs reported by the respondents 

Define the excess range as the value of reported range subtracted by the planned distance of the 

travel day. The distribution of the excess range is shown in the Figure 16.  

 

Figure 16: The distribution of the excess range  
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6 Analyses of Home-Based Trip Tours   

6.1 Analysis 1: Modeling vehicle choices and charging behavior of BEV owners jointly using 

DDCMs  

Summary 

The net impacts of battery electric vehicles (BEVs) – including upstream emissions from 

electricity generation and the impact these vehicles place on the electricity grid – depend on both 

the amount of travel conducted by BEV and the times and locations that those BEVs are charged. 

It is therefore important to understand how BEV owners make decisions on which vehicle to use 

for a tour and when to charge. This paper presents a novel dynamic discrete choice model 

(DDCM) framework that jointly models the vehicle choice of BEV owners for a home-based 

travel tour and subsequent charging choices along the tour. The framework explicitly accounts 

for the stochastic nature of these decisions: earlier choices on vehicle use and charging influence 

the utility of the future choices; the expectation of the future options influences those earlier 

decisions; and choices are made under uncertainty about actual energy consumption and 

availability of chargers. This is a marked departure from prior work on charging behavior 

modeling, which has largely treated the sequential choices as independent. The model is fitted 

with data collected through an interactive web-based stated preference survey of BEV users. The 

final model identifies two decision-making patterns among BEV users: for Class 1, the 

respondents are willing to pay $10 in charging costs to avoid having to deviate from a planned 

tour (e.g, to make a mid-trip stop specially for refueling, slowing down to reduce energy 

consumption). Respondents in Class 2 are willing to pay $24. These results indicate for home-

based trip tours, range anxiety – the fear of being stranded in the middle of a trip – is not a huge 

issue for BEV owners and encouraging BEV adoption is the key of infrastructure development.  
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This analysis was submitted to 2018 TRB annual meeting for presentation and the long abstract 

of it was included in the conference compendium.  

6.1.1 Introduction  

BEVs offer the potential to reduce gasoline consumption and local air pollution by 

replacing gasoline with electricity. The market share of BEVs has increased rapidly since the 

technology’s mainstream debut in 2011, but range limitation remains a significant disadvantage. 

The BEV models available in the market offer a limited range compared with their gasoline 

counterparts; most BEV models have range significantly smaller than 300 miles. Range anxiety – 

BEV drivers’ fear of being stranded in the middle of a trip before reaching the destination or a 

suitable charging point – is still an important barrier to the broader adoption of BEVs even 

though it can be mitigated with the increase of driving experience.  

Public charging infrastructure, which helps increasing the operating radius of BEVs, is 

proved to be an important enabler of BEV adoption. The U.S. Department of Energy and a lot of 

state authorities have engaged a lot of effort on expanding public electric vehicle charging 

network. Understanding the charging decisions at the public charging stations and usage 

behavior of BEV owners is important for several reasons. First, the mix of generation sources 

supplied to the electric grid varies over time and space and depends on the time-varying 

electricity demand, so charging a BEV at different times or locations may result in different net 

emissions. Second, the degree of stress that BEVs place on electricity grid depends on whether 

they exacerbate existing demand peaks or fill in periods of lower demand. Third, the amount of 

petroleum demand displaced by a BEV and the corresponding emission and energy security 

effects depend on the number and length of trips for which the BEV displaces ICEV travel. 
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This paper focuses on two key types of decisions that a BEV owner must make for any 

given home-based trip tour with planned stops, as illustrated in Figure 1. First, they must decide 

whether to use their BEV or an alternative vehicle for the tour (stage 1 decision). If they elect to 

use their BEV, they must choose whether to charge the BEV at each opportunity as the travel day 

progresses (stage 2 decisions). The decisions of the two stages are inseparable intuitively: the 

vehicle choice influences whether they will need to charger their vehicles later, and the 

expectation of future charging needs and opportunities influences the vehicle choice. The 

charging decisions at the stops in the travel day are similarly connected: the charging decision at 

one earlier stop influences whether the vehicle needs to be charged at the following stops, and 

the expectation of future charging opportunities influences the charging decision at the current 

stop. This dependence between earlier decisions and later ones can be expressed in terms of 

utility theory: a decision at an earlier stop may affect not only the current utility but also the 

expected utility of the following stops; the value of the expected future utility may affect the 

decision at the current stop. The modeling method we use for this problem, dynamic discrete 

choice model (DDCM), intuitively can better describe these decisions based on intertemporal 

payoffs than traditional static discrete choice models.  
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Figure 16: Decision process of BEV users 

The analysis of this paper is based on data from a web-based interactive survey in which 

respondents were first asked about their socio-demographic information and the specific vehicles 

they own, then presented with home-based trip tour scenarios characterized by planned distances 

and stops, gasoline prices, and the characteristics of charging opportunities at the planned stops, 

including prices, charging levels (i.e. power), and reliability of plug availability. In each 

scenario, the respondents were asked whether they would choose to use their BEV for this travel 

day based on the charging opportunities and the gasoline price, then if so, whether to charge their 

BEV at each stop as the day progresses. Actual energy consumption and plug availability were 

revealed as the simulated tour proceeded.  
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6.1.2 DDCM model specification 

6.1.2.1 Input Data of DDCM 

The model incorporates the two decision stages in every scenario: vehicle choice (the stage 1 

model) and then charging choices (the stage 2 model).  The data can be expressed as equation 

(5), in which i denotes the respondents and N is the total number of respondents. The decision 

period t of individual i in this case represents the stops with “0” being the origin of the trip tour 

(home), “1” being the first stop, and 𝑇𝑖 being the destination of the trip tour (also home). 𝑑𝑖𝑡 is 

the decision of respondent i at decision period t (vehicle choice or charging decision at stop i ).  

                                  𝐷𝑎𝑡𝑎 = {𝑑𝑖𝑡 , 𝑠𝑖𝑡, 𝑖: 1,2…𝑁; 𝑡: 0,1, … . 𝑇𝑖}                                                    (61) 

At every period t, each individual chooses among J mutually exclusive alternatives to maximize 

the net utility, as in:  𝑑𝑖𝑡 = {𝑗: 𝑗𝜖𝐷𝑖𝑡 = {1,2, . . 𝐽}}. The expression 𝑑𝑖𝑡 = 𝑗 means that the 

respondent i chooses alternative j at period t. Denote the choice indicator I as equation (6):  

I(𝑑𝑖𝑡 = j) = {
1,             𝑖𝑓 𝑑𝑖𝑡 = j
0,             𝑖𝑓 𝑑𝑖𝑡 ≠ j

                                                 (62) 

For the stage 1 model, the choice set includes these three possible modes: BEV, ICEV, and 

RENT. The choice set is different for each respondent, depending on their self-reported vehicle 

holdings. For the stage 2 model, the choice set is the binary choice of charging or not. Denote 

𝑑𝑖𝑡 = 1 if the respondent chooses to charge, 𝑑𝑖𝑡 = 0 if they choose not to charge.  

6.1.2.2 State Variables  

State variables refer to factors that can influence the value of utility, and thus influence the 

choices. The vector of state variables of decision period t of respondent i is denoted as 𝑠𝑖𝑡. The 

model here is specified as a DDCM of a forward-looking economic agent with six state 
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variables. Four state variables are deterministic values of the characteristics of the future 

charging opportunities, including charging price, gasoline price, charging power, and dwell time 

at each stop. Two of the six state variables are non-deterministic, including the remaining range 

and the availability of the chargers. Conditional on the remaining range and the decision at the 

current stop t, the remaining range at the next stop t+1 is can be uncertain due to the uncertainty 

of energy consumption for the fixed distance between stop t and t+1. This nuance can be 

captured by the transition function, 𝐹(𝑠𝑖,𝑡+1|𝑠𝑖𝑡, 𝑑𝑖𝑡),  the cumulative distribution function of 

state variable 𝑠𝑖,𝑡+1 conditional on the current state sit and the decision at the current stop 𝑑𝑖𝑡. 

The transition functions model the individuals’ beliefs about the remaining range and the 

availability of chargers of the future stations. The following three sub-sections will explain the 

state variables and their transition functions in detail. 

(1) State variable: remaining range (𝑟𝑟𝑖𝑡) 

The remaining range upon arriving at stop t+1 (𝑟𝑟𝑖,𝑡+1) equals the remaining range upon 

arriving at stop t (𝑟𝑟𝑖𝑡 ) plus the range obtained at the stop t (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑡), minus the range 

consumed on the way from stop t to stop t+1 (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡 ), as expressed by the following 

equation:  

𝑟𝑟𝑖,𝑡+1 = 𝑟𝑟𝑖,𝑡 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 − 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡                                              (63) 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑) is the maximum electric range increase the BEV can get during the 

specified dwell time if the owner chooses to charge. It is zero if the owner chooses not to charge. 

If the dwell time (𝑡𝑑𝑤𝑒𝑙𝑙) is sufficient for the BEV to reach a full charge (𝑟𝑓𝑢𝑙𝑙), the range 

obtained is the difference between the full range and the remaining range (𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔). 
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Otherwise, the range obtained depends on the charging power (Power) and dwell time (𝑡𝑑𝑤𝑒𝑙𝑙), 

see equation (64). 

                                   𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 = {
𝑀𝑖𝑛 {

𝑃𝑜𝑤𝑒𝑟∗𝑡𝑑𝑤𝑒𝑙𝑙

𝐸𝐶𝑅
,    𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑖,𝑡} , 𝑖𝑓 𝑑𝑖𝑡 = 1

0,                                                           𝑖𝑓 𝑑𝑖𝑡 = 0
                          (64)  

(ECR: Average electricity consumption rate in kWh / mile) 

The range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ) for a fixed distance is uncertain due to factors such as road 

and traffic conditions, which create variation in actual per-mile energy consumption. Variability 

in range consumed leads to uncertainty of the remaining range upon arriving at subsequent 

charging stations. The distribution 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡) models the BEV users’ belief of range 

consumed for driving the distance from station t to station t+1:  𝑙𝑖,𝑡.  The triangular distribution 

density can be shown in the following graph:  

 

Density of 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡) 
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According to equations (63), the only uncertain component of the 𝑟𝑟𝑖,𝑡+1  is range consumed 

𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡 . Thus, the density function of the state variable remaining range 𝑟𝑟𝑖,𝑡+1  is also a 

triangular distribution.  

The probability density function 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡) can then be expressed as: 

𝑔 (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡 , 𝜌𝑖)

=

{
 
 
 
 

 
 
 
 

0,                                                 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 < (1 − 𝜌𝑖)𝑙𝑖,𝑡

[𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 − 𝑙𝑖,𝑡(1 − 𝜌𝑖)]

𝜌𝑖
2𝑙𝑖,𝑡

2 ,             (1 − 𝜌𝑖)𝑙𝑖,𝑡 < 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 < 𝑙𝑖,𝑡

1

𝜌𝑖𝑙𝑖,𝑡
,                                                                    𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 = 𝑙𝑖,𝑡  

2[𝑙𝑖,𝑡(1 + 𝜌𝑖) − 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ]

𝜌𝑖
2𝑙𝑖,𝑡

2 ,             𝑙𝑖,𝑡 < 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 < 𝑙𝑖,𝑡(1 + 𝜌𝑖)

0,                                                   𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 > (1 + 𝜌𝑖)𝑙𝑖,𝑡  

            (65) 

According to equations (63), the only uncertain component of the 𝑟𝑟𝑖,𝑡+1  is range consumed 

𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 . Therefore, the density function of the state variable remaining range 𝑟𝑟𝑖,𝑡+1  is also 

a triangular distribution with the density function as shown by equation (65): 

 

𝑓(𝑟𝑟𝑖,𝑡+1 |di,t, si,t, 𝑙𝑖,𝑡, 𝜌𝑖) = 

{
 
 
 
 

 
 
 
 
0,                                                                                             𝑟𝑟𝑡+1 < 𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙(1 + 𝜌𝑖)
[𝑟𝑟𝑡+1 − 𝑟𝑟𝑡 − 𝑟𝑜 + 𝑙(1 + 𝜌𝑖)]

𝜌𝑖2𝑙2
,             𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙(1 + 𝜌𝑖) <  𝑟𝑟𝑡+1 < 𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙

1

𝜌𝑖𝑙
,                                                                                                       𝑟𝑟𝑡+1 = 𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙

[𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙(1 − 𝜌𝑖) − 𝑟𝑟𝑡+1]

𝜌𝑖2𝑙2
,             𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙 <  𝑟𝑟𝑡+1 < 𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙(1 − 𝜌𝑖)

0,                                                                                             𝑟𝑟𝑡+1 > 𝑟𝑟𝑡 + 𝑟𝑜 − 𝑙(1 − 𝜌𝑖)

               (65) 
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(Note that some subscripts are deleted to simplify the equation. 𝑟𝑟𝑡+1 is 𝑟𝑟𝑖,𝑡+1; 𝑟𝑟𝑡 is 𝑟𝑟𝑖,𝑡; 𝑟𝑜 

is 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡; 𝑙 is 𝑙𝑖,𝑡.) 

(2) State variable: Charger availability (𝑎𝑖,𝑡) 

The availability variable has five levels in the scenarios A%= {20%, 40%, 60%, 80%, 

100%}. The distribution of the availability of the chargers at stop t for respondent i is assumed to 

follow a Bernoulli distribution with the success probability of 𝐴%𝑖𝑡. So the probability mass 

function for availability at stop t is:  

𝑘(𝑎𝑖,𝑡) = {
𝐴%𝑖𝑡 ,            𝑎𝑖𝑡 = 1
1 − 𝐴%𝑖𝑡  ,    𝑎𝑖𝑡 = 0

                                                          (66) 

The availability of chargers between the stations is assumed to be independent, which means the 

value of 𝑎𝑖,𝑡+1 is independent of 𝑎𝑖𝑡. Then the transition function of availability could be 

expressed as equation (67).  

𝑘(𝑎𝑖,𝑡+1|𝑎𝑖𝑡) = 𝑘(𝑎𝑖,𝑡+1) = {
𝐴%𝑖,𝑡+1 ,            𝑎𝑖,𝑡+1 = 1

1 − 𝐴%𝑖,𝑡+1 ,    𝑎𝑖,𝑡+1 = 0
                           (67) 

(3) Deterministic state variables  

The four deterministic state variables are charging price, dwell time, gasoline price and 

charging power. They are used to derive the following variables nnstead being included directly 

in the utility functions,: a continuous variable on charging cost  𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ; a dummy variable 

called deviation (𝐷𝐸𝑉) that represents whether the traveler can get to the next stop or has to 

deviate from the original tour plan (𝐷𝐸𝑉 = 0 when the agent can get to the next station with the 

remaining range and 𝐷𝐸𝑉 = 1 when the agent needs to deviate from the plan and find charging 

stations other than those at planned stops on the tour).  
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The gasoline costs of the ICEVs (𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣) are also calculated according to the fuel 

economy of the car and the planned travel distance of the tour and are assumed to be 

deterministic in the present model.  

Charging cost 

Plug time (𝑡𝑝𝑙𝑢𝑔) is the time duration which the BEV stays plugged in to the charger.  We 

assume that once a BEV is plugged in, it will remain plugged until it is fully charged, or it is time 

for the driver to depart. If the car cannot reach a full battery during the dwell time, plug time will 

be equal to the dwell time. Otherwise, plug time is equal to the time needed for the BEV to 

become fully charged. It is calculated as equation (68).  

𝑡𝑝𝑙𝑢𝑔𝑖𝑡
= 𝑀𝑖𝑛 {𝑡𝑑𝑤𝑒𝑙𝑙𝑖𝑡,

(𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑−𝑟𝑟𝑖𝑡)×𝐸𝐶𝑅

𝑃𝑜𝑤𝑒𝑟
}                                          (68) 

Charging cost (𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡
) is calcualated according to the plug time:  

𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡
= 𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑡𝑝𝑙𝑢𝑔𝑖𝑡

                                                (69) 

  

Deviation (DEV) 

DEV is a dummy variable showing whether the driver has to deviate from the original trip 

plan (e.g, make a mid-trip stop specially for refueling the vehicle) to get to the next planned stop 

with a charging opportunity. Note that not being able to reach the next planned stop with the 

remaining range does not necessarily mean the traveler will be stranded in the middle of the trip, 

but he/she has to deviate from the original travel plan, for example by finding chargers out of the 

planned stops or driving with a lower speed to conserve energy.  
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DEV can be calculated according to equation (70). This value varies according to the 

charging decision. If the respondents choose to charge, it is written as DEVcharge,i,t. If the 

respondents choose not to charge, it is written as DEVnot charge,i,t. 

𝐷𝐸𝑉𝑖𝑡 = {
1,        𝑖𝑓 𝑟𝑟𝑖,𝑡+1 < 0

0,        𝑖𝑓 𝑟𝑟𝑖,𝑡+1 ≥ 0
                                                  (70) 

Gasoline cost of ICEV 

For the ICEVs, the gasoline cost is calculated according to the fuel economy (mpg) of the 

respondent’s gasoline car, the gasoline price (𝑝𝑔𝑎𝑠) provided by the scenario, and the planned 

distance (𝐿) of the travel day. 

𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣 =
𝐿

𝑚𝑝𝑔
∗ 𝑝𝑔𝑎𝑠                                                      (71) 

6.1.2.3 Flow utility 

The flow utilities of the two-stage decisons are defined separately.  

Stage 1 model (vehicle choice):  

The utility of ICEVs is defined as equation (72); for the choice of “rent a car”, the 

coefficients of rental cost and gasoline cost are estimated, as shown in equation (73); for BEV, 

the alternative specific constant (𝐴𝑆𝐶𝑏𝑒𝑣) is estimated, as shown in equation (74). 

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣 + 𝜀𝑖𝑐𝑒𝑣𝑖                                                         (72) 

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
  + 𝜀𝑟𝑒𝑛𝑡𝑖                                          (73) 

𝑢𝑏𝑒𝑣𝑖 = 𝐴𝑆𝐶𝑏𝑒𝑣 + 𝜀𝑏𝑒𝑣𝑖                                                                      (74) 
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The flow utility of BEV at this stage only includes an alternative specific constant, which might 

appear odd to some readers. However, this is a reasonable specification because when the 

respondents decide whether to use their BEV for the travel day, they also consider the expected 

utility of charging at future stops, which will be reflected by the specification of the stage 2 

model.  Since gasoline and rental costs are treated as deterministic, they are treated as though 

they are all incurred at the time of the first stage decision. 

Stage 2 model (charging choices): 

For the charging choices of BEV drivers, the coefficients of charging cost and deviation 

are estimated, as shown by equation (75) and equation (76). The utility of the charging choice 

depends on the financial cost of charging (zero when drivers choose not to charge) and the cost 

of having to deviate from the planned travel itinerary. The alternative specific constant for 

charging captures the general inconvenience of charging, such as the effort of plugging in the 

car. A DDCM considering the charging cost at home of BEVs was also estimated, but the results 

showed that the charging cost at home is not a statistically significant predicter of the vehicle and 

charging choices and deleting it does not cause significant change of the other estimates. 

Therefore, we decided on the more parsimonious model specification, as shown here.  

𝑈𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃4 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑏𝑒𝑣,𝑡

+ 𝜃5 ∗ 𝐷𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 + 𝐴𝑆𝐶𝑏𝑒𝑣𝑐ℎ𝑎𝑟𝑔𝑒 + 𝜀𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑡
      (75) 

𝑢𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃5 ∗ 𝐷𝐸𝑉𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 + 𝜀𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑡

                          (76) 
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6.1.3 Results  

6.1.3.1 Model results 

Models with different number of classes and different model specifications were tested 

and the model with the smallest BIC value was chosen, as shown in Table 5 

TABLE 5: Results of the DDCM for vehicle choice and charging choice  

  Class 1 Class 2 

Coefficient p-value  Coefficient p-value  

ASC-BEV 1.6526 <0.01 1.5145            0.25  

𝜃1 (gas cost-ICEV)($) -0.0017            0.82  -0.0066 <0.01 

𝜃2 (rental cost-RENT) ($) -0.0195 <0.01 -0.0213            0.36  

𝜃3  (gas price*distance-RENT)($*mile) 0.0002            0.77  -0.0005 <0.01 

𝜃4 (charging cost-BEV)($) -0.1376 <0.01 -0.1178 <0.01 

𝜃5 (Deviation - BEV) (0,1) -1.4140 <0.01 -2.7855 <0.01 

Membership Probability  42.7% 57.3% 

Years of using an EV 3.1 2.2 

Environmental concern 0.31 0.21 

Performance preference  0.09 0.05 

Total log-likelihood (𝐿𝐿𝐷𝐷𝐶𝑀) -5937.34 

stage 1 log-likelihood (𝐿𝐿𝐷𝐷𝐶𝑀−𝑠𝑡𝑎𝑔𝑒 1) -1753.32 

Stage 2 log-likelihood (𝐿𝐿𝐷𝐷𝐶𝑀−𝑠𝑡𝑎𝑔𝑒 2) -4184.02 

 

Two classes of decision-making patterns are found. The alternative specific constants 

(ASC-BEV) show that for the respondents in both classes, BEV is the default choice when 

charging costs are zero and there is no risk of having to deviate from the planned tour. The 

probability of choosing BEV is negatively correlated with charging cost and the possibility of 

deviation from the original plan in the middle of the travel tour. The probability of choosing 

ICEV is negatively correlated with gasoline cost though it is not statistically significant for class 
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1. The probability of choosing RENT is negatively associated with the rental price though it is 

not statistically significant for class 2.  

Comparing the relationship between the coefficients of the variable deviation (DEV, 𝜃5) 

and BEV charging cost (𝜃4), those in class 1 are willing to pay about $10 to charge the vehicle to 

avoid having to deviate from the planned tour, while those in class 2 are willing to pay about 

$24. This shows the negative utility of having to deviate from the original plan is respectively 

$10 and $24 for class 1 and class 2. One might expect the negative utility of being stranded to be 

a lot larger than the negative utility of deviation, since getting stranded in the middle of a trip is 

very expensive in terms of cost, time, convenience, and reliability. This could mean that the 

survey respondents are confident that they can find mid-trip chargers away from their planned 

stops when it is necessary, and the negative utility of stopping specially for charging in the 

middle of the trip is respectively $10 and $24. It is also possible that experienced BEV users 

might be able to reduce their energy consumption rate by adjusting their driving behavior, thus 

extend their remaining range to get to the next stop with charging opportunities. Comparing the 

social demographic information of the two classes, class 1 on average has longer history of using 

BEVs compared with class 2, and a higher percentage of the respondents in class 1 stated that 

their motivation for purchasing/leasing a BEV included concerns about the environment and a 

preference for BEVs’ performance characteristics. This could mean that for earlier BEV users 

with more driving experience, the negative utility of deviation is a lot smaller than relatively 

newer adopters because they are more familiar with the charging network and more confident 

about the vehicle performance. Hence, more driving experience will help relieve range anxiety 

and the relatively more recent BEV users are likely to change their preference with the gain of 

more experience with driving BEV. However, it is also possible that the earlier BEV adopters are 
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inherently different from the relatively recent BEV adopters: they might be more tolerant and 

more optimistic about electric vehicles, so even when the recent BEV adopters gain more driving 

experience, their preference will not change greatly.  

6.1.3.2 Sensitivity Analysis 

The final model shows that one of the major considerations of BEV users when they 

make decisions on the vehicle to use and the charging choices for a home-based trip tour is 

whether they can get to the next stop without having to deviate from the planned route (e.g, 

having to make a mid-trip stop for refueling), which can be influenced by both the reliability of 

the chargers (indicated by the availability of chargers specified in the experiment design) and the 

energy consumption from the current stop to the next.  The availability of the chargers is 

included in the model as a state variable with known Bernoulli distribution with the parameter as 

presented in the scenarios. Its influence on vehicle choice and charging decisions does not show 

directly in the model results because it is not estimated as a structural parameter, but its effects 

can be calculated based on the model. For the current sample, with other variables being fixed, 

the increase of the availability of all the chargers from 20% to 100% results in an increase of 

more than 12% in BEV use and an 11% increase in VMT that is driven by BEVs instead of 

ICEVs (Figure 17).   
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Figure 17 Sensitivity of the availability of the chargers (0-100%) 

Based on the current sample and the travel day scenarios presented to the respondents, 

when the charging price at all the stations increases from zero to five dollars per hour while other 

characteristics of the scenarios stay the same, the number of BEV trips drops by about 17 percent 

and the VMT displacement by BEVs drops by about 21 percent (Figure 18).  

 

Figure 18 Sensitivity of charging price  
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Even though charging cost and the variable deviation are statistically significant 

predictors of the vehicle choice and charging decisions of BEV owners, the size of the effects 

appears to be limited when it comes the change of number of BEV trips and BEV trip distance.  

This could mean that for this sample, the BEV users are not particularly sensitive to charging 

price and the availability of the chargers for home-based tours. The possible explanations are: (1) 

finding mid-trip chargers is inconvenient, but not very costly; (2) Experienced BEV drivers can 

gain extra mileage by adjusting their driving techniques (hypermiling) and the cost (the negative 

utility) of doing so is not high; (3) when there is no charger available at a stop when they arrive, 

BEV users are willing to wait for the chargers to be available; (4) BEV users are not sensitive to 

the charging cost of one trip because in the long run, BEVs help save fuel cost from using 

gasoline; (5) we cannot exclude the possibility of hypothetical bias, especially respondents’ usual 

tours are significantly shorter than the range of their vehicles; (6) the BEV owners in this sample 

were self-selected into participation in this survey. They could be more optimistic and 

enthusiastic about EV technology than general public or the population of BEV owners, 

therefore favor BEVs when facing the scenarios.   

6.1.4 Conclusions  

This paper applied DDCM with a finite horizon to model vehicle choice and charging 

decisions for a home-based trip tour jointly with the consideration of heterogeneity. It accounts 

for the dependence between an earlier decision and a later one: a decision at an earlier stop may 

affect not only the current utility but also the expected utility of the following stops, and the 

value of the expected future utility may affect the decision at the current stop. The final model 

highlights the heterogeneity among BEV users when it comes to vehicle choice and charging 

decisions for a home-based travel day. BEV owners who have a longer history of using an EV 
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are willing to pay about $10 to avoid having to deviate from their original plan (e.g, make mid-

trip stops specially for refueling), whereas the relatively newer adopters are willing to pay $24. 

Even though charging cost and deviation from the original plan are significant predictors of the 

vehicle choice and charging decisions, the analysis shows that the BEV owners in this sample are 

not very sensitive to charging price and the availability of the chargers: increasing the 

availability of chargers from 20% to 100% only attracts 12% more of BEV use, and a price drop 

from $5/h to free only increase BEV trips by 17%. We speculate that for BEV owners, range 

anxiety is not a serious issue, and it is also possible that more driving experience helps relieve 

range anxiety. Therefore, the design of EV charging facilities should try to relieve “range anxiety 

anxiety” (the fear of potential BEV adopters for having range anxiety if they own a BEV) among 

potential BEV adopters. BEV owners are not particularly sensitive to the fuel cost at a public 

charging station of one trip because BEVs help save fuel cost in the long run since most charging 

happens at home. Although, we are aware that this analysis can potentially suffer from self-

selection bias and hypothetical bias. A similar analysis based on reveal-preference data from a 

more representative sample will help confirm these conclusions.  

6.2 Analysis 2: Modeling PHEV charging choices using DDCMs 

Summary 

Having both an internal combustion engine and an electric powertrain, PHEVs are 

supposed to be less dependent on public charging opportunities than BEVs. However, evidences 

show that PHEVs plug in more often thanks BEVs. This phenomenon is described as “gas 

anxiety” of PHEV users by the media, meaning a strong desire to avoid using gasoline. An 

earlier research effort of mine investigated the existence of gas anxiety among PHEV owners 

empirically and found that PHEV owners who are earlier adopters and whose motivation of 
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owning an EV is not primarily financial value gasoline cost much more heavily than charging 

cost (45). This study aims to test empirically whether “gas anxiety” exits among PHEV owners 

and its role on charging decision-making for home-based tours using DDCM. The modeling 

results are mostly consistent with my previous study on the influence of gas anxiety on the 

charging choices of PHEV users based on a survey conducted in 2013 (45), however, the 

proportion of the gas anxiety group decreased. This could be an indication that earlier adopters 

might have certain qualities, e.g. strong environmental values, that make them try to avoid using 

gasoline. With the market moving forward, the proportions of earlier adopters become smaller, 

and a bigger proportion of PHEV users make their charging decisions with the goal of 

minimizing the total cost. Thus, the future public chargers might need to be priced competitively 

with the gasoline on per mile basis in order to encourage the usage of public charging. This 

analysis was submitted to 2017 TRB annual meeting for presentation and the long abstract of it 

was included in the conference compendium. 

6.2.1 Introduction 

Vehicle electrification has potential to reduce oil dependence and environmental impacts 

of automobiles. The major barriers of BEV adoption include the high cost of batteries which 

transfers to high initial cost and its range limitation compared to its petroleum-powered 

counterparts. PHEVs offer the potential to overcome these barriers by combining an internal 

combustion engine, an electric powertrain and onboard charging equipment. They offer to reduce 

gasoline use and GHG emissions while retaining the ability to travel long distances and refuel 

quickly and conveniently. PHEVs users are not likely to have range anxiety2 since PHEVs are 

                                                           
2 Range anxiety: the fear of being stranded in the middle of a trip because the battery is depleted 

(7). 
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inherently less dependent on recharging infrastructure. However, data shows that PHEV drivers 

for whom plugging in is optional recharge more often than BEV drivers for whom plugging in is 

mandatory (23). This surprising result has led to the popular concept in the media among PHEV 

owners , “gas anxiety” , which describes the apparent desire of PHEV drivers to avoid using 

gasoline (45).  

In an earlier research project done by the authors, based on a web-based stated preference 

survey conducted in 2013, we tested empirical evidence of gas anxiety using a latent class logit 

model. The results reveal two classes of decision making patterns among the survey respondents: 

(1) those who are more recent adopters and whose primary motivation of owning an EV is 

financial savings tend to make decisions that minimizes the cost (2) those who are relatively 

earlier adopters and whose motivation of EV usages is not only financial tend to value gasoline 

cost much more heavily than recharging cost, which is consistent with the concept of "gas 

anxiety". The allocation model results show that, class 2 is a big portion of the PHEV drivers 

surveyed (66%). However, our data cannot answer which one of these two groups is more 

representative of the future PHEV users. (45).  

This study serves as a continuum of the research on the role of gas anxiety on charging 

decision making of PHEV drivers. The new survey collect data from choice ea home-based trip 

tour instead of one individual trip. The choice experiment in the survey that (46) is based on 

asked the respondents to make charging choices based on the characteristics of one charging 

station presented in the scenario. One comment we got a lot from the last survey is that PHEV 

users’ charging choices will not solely depend on the characteristics of one station as presented, 

but also on the following charging opportunities.  
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In the new choice experiment for this study, instead of asking the respondents to make 

their charging choices based on the specific information at one station, the respondents will be 

firstly presented with a travel day and then the respondents will be asked whether they choose to 

use their PEV on this particular travel day in certain scenarios, and if so, whether to charge their 

PHEVs at each stop of the travel day as the day progresses. The graphic display and the step-by-

step appearance of information is also expected to reduce the hypothetical bias resulted from 

comprehension burden.   

This study uses DDCM framework to analyze the charging choices of PHEV users. 

DDCMs assume that choices made in earlier periods affect the potential payoffs of the following 

decision periods, and the earlier choices are assumed to be made based on the expected future 

utility. This approach could potentially better represent the decision processes of PHEV drivers, 

who are likely to consider the future charging opportunities in a travel day when deciding 

whether to drive or charge a PHEV earlier.  

6.2.2 DDCM model specification  

(1) Derivation of the variables   

I derived variables that represent the amount of energy obtained (how much energy can 

be attained at this station) and the costs (including the gasoline costs and electricity costs) based 

on the characteristics of the scenarios characterized by variables including charging price, 

charging power, gas price, remaining range and distance to destination. In this section, I explain 

how the following four variables were derived: percentage of range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑(%)), 

charging cost at the stop (𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), electricity cost at home (𝑐ℎ𝑜𝑚𝑒), and gasoline cost to finish 

the trip (𝑐𝑔𝑎𝑠). Table 3 defines the variables we use in our analysis.  
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Percentage of potential range obtained  

The energy that can potentially be obtained from recharging is measured as the range 

obtained at the station (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑). If the dwell time (𝑡𝑑𝑤𝑒𝑙𝑙) is sufficient for the PHEV to reach a 

full charge (𝑟𝑓𝑢𝑙𝑙), the range obtained is the difference between the full range and the remaining 

range (𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔). Otherwise, the range obtained is a function of the charging power (P) and 

dwell time (𝑡𝑑𝑤𝑒𝑙𝑙): 

 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 = 𝑀𝑖𝑛 {
𝑃∗𝑡𝑑𝑤𝑒𝑙𝑙

𝐸𝐶𝑅
, 𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔} (77) 

(ECR: Electricity consumption rate) 

 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑(%) =
𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑

𝑟𝑓𝑢𝑙𝑙
× 100% (78) 

Costs 

When a PHEV driver decides to recharge, we hypothesize that three costs could enter 

consideration: (1) the cost of charging at this stop: 𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔; (2) the cost of charging at home at 

the end of the travel day, 𝑐ℎ𝑜𝑚𝑒_𝑐ℎ𝑎𝑟𝑔𝑒; and (3) the cost of gasoline if the battery of the PHEV is 

depleted before arriving home, 𝑐𝑔𝑎𝑠. The calculations of these variables are listed below.    

(1) Charging cost at this stop (𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) 

Plug time (𝑡𝑝𝑙𝑢𝑔) is the time duration that the PHEV stays plugged on the charger.  We 

assume that once a PHEV is plugged in, it will remain plugged till it is fully charged or it is time 

for the driver to depart. Therefore, if the car cannot reach a full battery during the dwell time, 

plug time is equal to the dwell time. Otherwise plug time is equal to the time needed for the 

PHEV to become fully charged. It is calculated as equation (79).  
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 𝑡𝑝𝑙𝑢𝑔= 𝑀𝑖𝑛 {𝑡𝑑𝑤𝑒𝑙𝑙,
(𝑟𝑓𝑢𝑙𝑙−𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)×𝐸𝐶𝑅

𝑃
} (79) 

Plug time is used to calculate the charging cost at the stop, which is the charging cost if 

the PHEV driver chooses to charge at a charging station:  

 𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= 𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑡𝑝𝑙𝑢𝑔 (80) 

 

(2) Electricity cost at home (𝑐ℎ𝑜𝑚𝑒) 

𝑐ℎ𝑜𝑚𝑒 is the amount of money that will be paid to get the PHEV back to a fully charged 

state after the travel day. It depends on PHEV driver’s decision of whether to charge at this 

station or not. Based on the charging decision, the remaining range when the driver leaves the 

station (𝑟𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑜𝑝) can be calculated as: 

 𝑟𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑜𝑝 = {
𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑                                            𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑒                    

𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔                                                    𝑖𝑓 𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒            
 (81) 

If the electric range after a stop is less than the distance to home, the remaining electric 

range of the PHEV when it gets home (𝑟ℎ𝑜𝑚𝑒) will be zero. Otherwise, if the electric range after a 

stop (𝑟𝑎𝑓𝑡𝑒𝑟_𝑠𝑡𝑜𝑝) is enough for the driver to get home using electricity, the range remaining when 

the driver arrives home 𝑟ℎ𝑜𝑚𝑒can be calculated as range after stop minus the distance to home 

(dhome).  

 𝑟ℎ𝑜𝑚𝑒= 𝑚𝑎𝑥(0, 𝑟𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑜𝑝 − 𝑑ℎ𝑜𝑚𝑒) (82) 

Then the electricity cost at home (𝑐ℎ𝑜𝑚𝑒) can be calculated as:  

 𝑐ℎ𝑜𝑚𝑒 = (𝑟𝑓𝑢𝑙𝑙 −  𝑟ℎ𝑜𝑚𝑒) ×   𝐸𝐶𝑅 × 𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (83) 
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(ECR: Electricity consumption rate) 

Electricity cost at home (chome) depends on the charging decisions at the stop. If the 

respondents choose to charge, it is denoted as  chome_charge.  For the choice of not to charge, the 

electricity cost at home can be written as chome_not charge. 

(3) Gasoline cost (𝑐𝑔𝑎𝑠) 

The gasoline cost is:  

 𝑐𝑔𝑎𝑠 = 𝑚𝑎𝑥 (0,   
𝑑ℎ𝑜𝑚𝑒−𝑟𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑜𝑝

𝑚𝑝𝑔
× 𝑝𝑔𝑎𝑠) (84) 

Gasoline cost depends on the respondents’ charging decisions at the stop. If a PHEV 

driver chooses to charge, it can be written as cgas_charge. If the PHEV driver chooses not to 

charge, it can be written as cgas_ not charge. 

(2) State variable: the remaining range  

The remaining range upon arriving at stop t+1 (𝑟𝑟𝑖,𝑡+1) equals the remaining range upon 

arriving at stop t (𝑟𝑟𝑖𝑡 ) plus the range obtained at the stop t (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑡), minus the range 

consumed on the way from stop t to stop t+1 (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡 ), as expressed by the following 

equation:  

𝑟𝑟𝑖,𝑡+1 = 𝑟𝑟𝑖,𝑡 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 − 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡                                             (85) 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑) is the maximum electric range increase the PHEV can get during the 

specified dwell time if the owner chooses to charge. It is zero if the owner chooses not to charge. 

If the dwell time (𝑡𝑑𝑤𝑒𝑙𝑙) is sufficient for the PHEV to reach a full charge (𝑟𝑓𝑢𝑙𝑙), the range 

obtained is the difference between the full range and the remaining range (𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔). 
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Otherwise, the range obtained depends on the charging power (Power) and dwell time (𝑡𝑑𝑤𝑒𝑙𝑙), 

see equation (86). 

                                   𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 = {
𝑀𝑖𝑛 {

𝑃𝑜𝑤𝑒𝑟∗𝑡𝑑𝑤𝑒𝑙𝑙

𝐸𝐶𝑅
,    𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑖,𝑡} , 𝑖𝑓 𝑑𝑖𝑡 = 1

0,                                                           𝑖𝑓 𝑑𝑖𝑡 = 0
                          (86)  

(ECR: Average electricity consumption rate in kWh / mile) 

The range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ) for a certain distance is uncertain due to factors such as road 

and traffic conditions, which create variation in actual per-mile energy consumption. Variability 

in range consumed leads to uncertainty of the remaining range upon arriving at subsequent 

charging stations. The distribution 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡) models the PHEV users’ belief of range 

consumed for driving the distance from station t to station t+1:  𝑙𝑖,𝑡.  According to equations 

(85), the only uncertain component of the 𝑟𝑟𝑖,𝑡+1  is range consumed 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡 . Thus, the 

density function of the state variable remaining range 𝑟𝑟𝑖,𝑡+1  is also a triangular distribution. 

According to equations (85), the only uncertain component of the 𝑟𝑟𝑖,𝑡+1  is range consumed 

𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 .  

(3) State variable: Charger availability (𝑎𝑖,𝑡) 

There are five levels of the availability variables in the scenarios A%= {20%, 40%, 60%, 

80%, 100%}. The distribution of the availability of the chargers at stop t for respondent i is 

assumed to be Bernoulli distribution with the success probability of 𝐴%𝑖𝑡. So the probability 

mass function for availability at stop t is:  

𝑘(𝑎𝑖,𝑡) = {
𝐴%𝑖𝑡 ,            𝑎𝑖𝑡 = 1
1 − 𝐴%𝑖𝑡  ,    𝑎𝑖𝑡 = 0

                                                          (86) 
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Charger availability between the stations is assumed to be independent, which means the value 

of 𝑎𝑖,𝑡+1 is independent from 𝑎𝑖𝑡. The transition function of availability could be expressed as 

equation (87).  

𝑘(𝑎𝑖,𝑡+1|𝑎𝑖𝑡) = 𝑘(𝑎𝑖,𝑡+1) = {
𝐴%𝑖,𝑡+1 ,            𝑎𝑖,𝑡+1 = 1

1 − 𝐴%𝑖,𝑡+1 ,    𝑎𝑖,𝑡+1 = 0
                           (87) 

(4) Utility functions  

In the chosen model, four variables were used to predict class membership: gender, 

income, the years of owing an EV (continuous), and whether the respondent identified financial 

benefits as their only motivation for buying a PHEV (yes or no).  The first three variables were 

from the questionnaire and the last was derived from an open-ended question on the motivation 

of the respondents choosing to use electric vehicles. The utility functions of the class allocation 

model are as following:  

Utility of the class allocation model for Class 1: 

𝑈𝑐𝑙𝑎𝑠𝑠 1,𝑖 = 𝛾
0
+ 𝛾

1
∙ 𝑀𝑎𝑙𝑒𝑖 + 𝛾

2
∙ 𝐻𝑖𝑔ℎ𝐼𝑛𝑐𝑜𝑚𝑒

𝑖
+ 𝛾

3
∙ 𝑌𝑒𝑎𝑟𝑠 𝑜𝑓 𝐸𝑉 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

𝑖
+ 𝛾

4
∙ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝑖
+  𝜀1𝑖    (88) 

Utility of the class allocation model for Class 2: 

𝑈𝑐𝑙𝑎𝑠𝑠 2 =  𝜀2𝑖 

Within class 1, the utility of charging at the given station conditional on respondent i being in 

Class 1 for is: 

𝑈𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 | 𝑐𝑙𝑎𝑠𝑠 1 = 𝜃0,𝑐𝑙𝑎𝑠𝑠 1 + 𝜃1,𝑐𝑙𝑎𝑠𝑠 1 ∙ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑,𝑖𝑡(%) + 𝜃2,𝑐𝑙𝑎𝑠𝑠 1 ∙𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖𝑡 + 𝜃3,𝑐𝑙𝑎𝑠𝑠 1 ∙𝐶ℎ𝑜𝑚𝑒𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃4,𝑐𝑙𝑎𝑠𝑠 1

∙𝐶𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃5,𝑐𝑙𝑎𝑠𝑠 1 ∙ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡 +  𝜀𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑐𝑙𝑎𝑠𝑠1                                                                                                              (89) 

Within class 1, the utility of not charging at this station for respondent i is:  
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𝑈𝑛𝑜𝑡  𝑐ℎ𝑎𝑟𝑔𝑒,𝑖| 𝑐𝑙𝑎𝑠𝑠 1 = 𝜃3,𝑐𝑙𝑎𝑠𝑠 1 ∙ 𝐶ℎ𝑜𝑚𝑒𝑛𝑜𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃4,𝑐𝑙𝑎𝑠𝑠 1 ∙𝐶𝑔𝑎𝑠𝑛𝑜𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 +  𝜀𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑐𝑙𝑎𝑠𝑠 1                             (90) 

Within class 2, the conditional utility of charging at this station for respondent i: 

𝑈𝑐ℎ𝑎𝑟𝑔𝑒,𝑖  | 𝑐𝑙𝑎𝑠𝑠 2 = 𝜃0,𝑐𝑙𝑎𝑠𝑠 2 + 𝜃1,𝑐𝑙𝑎𝑠𝑠 2 ∙ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑,𝑖𝑡(%) + 𝜃2,𝑐𝑙𝑎𝑠𝑠 2 ∙ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖𝑡 + 𝜃3,𝑐𝑙𝑎𝑠𝑠 2 ∙𝐶ℎ𝑜𝑚𝑒𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃4,𝑐𝑙𝑎𝑠𝑠 2

∙𝐶𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃5,𝑐𝑙𝑎𝑠𝑠 2 ∙ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡 +  𝜀𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑐𝑙𝑎𝑠𝑠 2                                                                                                      (91) 

Within class 2, the conditional utility of not charging at this station for respondent i:  

𝑈𝑛𝑜𝑡  𝑐ℎ𝑎𝑟𝑔𝑒,𝑖| 𝑐𝑙𝑎𝑠𝑠 2 = 𝜃3,𝑐𝑙𝑎𝑠𝑠 2 ∙ 𝐶ℎ𝑜𝑚𝑒𝑛𝑜𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 + 𝜃4,𝑐𝑙𝑎𝑠𝑠 2 ∙𝐶𝑔𝑎𝑠𝑛𝑜𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖𝑡 +  𝜀𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑐𝑙𝑎𝑠𝑠 2                       (92) 

6.2.3 Results 

The results of the DDCM for PHEV charging choices are listed in TABLE 6.  
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TABLE6 Results of the DDCMs of PHEV charging behavior 

DDCM (𝜷 = 𝟎) Class 1 Class 2 

Est. Std. err t-test p-value Est. Std. err t-test p-value 

Intercept 0.30 0.9 0.33 0.74 0.22 0.07 3.14 <0.01 

percentage of range obtained 2.65 0.69 3.84 <0.01 3.06 1.22 2.51 0.01 

charging cost at this stop  -0.96 0.36 -2.67 <0.01 -0.82 0.31 -2.65 <0.01 

electricity cost at home  -0.67 0.33 -2.03 0.04 -0.92 0.38 -2.42 0.02 

gasoline cost  -1.05 0.41 -2.56 0.01 -1.86 0.55 -3.38 <0.01 

availability  0.35 0.22 1.59 0.11 0.41 0.25 1.64 0.10 

Class allocation model 

Class 1 Class 2 

Est. Std. err t-test p-value Est. Std. err t-test p-value 

Intercept 0.66 0.21 3.14 <0.01 - - - - 

Male 0.21 0.39 0.54 0.59 - - - - 

High income -0.62 0.35 -1.77 0.08 - - - - 

Years of owning/leasing EV -0.85 0.31 -2.74 <0.01 - - - - 

Financial benefits as the motivation  0.86 0.51 1.69 0.09 - - - - 

membership probability 0.46 0.54 

Log-likelihood  -3665.68 

 

DDCM (𝜷 = 𝟎. 𝟗𝟗) 

Class 1 Class 2 

Est. Std. err t-test p-value Est. Std. err t-test p-value 

Intercept -0.21 0.35 -0.60 0.55 0.21 0.06 3.50 <0.01 

percentage of range obtained 1.25 0.6 2.08 0.04 2.69 1.31 2.05 0.04 

charging cost at this stop  -0.66 0.29 -2.28 0.02 -0.66 0.26 -2.54 0.01 

electricity cost at home  -0.81 0.36 -2.25 0.02 -0.73 0.36 -2.03 0.04 

gasoline cost  -0.82 0.43 -1.91 0.06 -1.12 0.49 -2.29 0.02 

availability  1.32 0.35 3.77 <0.01 1.09 0.31 3.52 <0.01 

Class allocation model Class 1 Class 2 
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Est. Std. err t-test p-value Est. Std. err t-test p-value 

Intercept 1.21 0.35 3.46 <0.01 - - - - 

Male 0.43 0.34 1.26 0.22 - - - - 

High income -0.32 0.26 -1.23 0.22 - - - - 

Years of owning/leasing EV -0.56 0.29 -1.93 0.06 - - - - 

Financial benefits as the motivation  0.67 0.51 1.31 0.19 - - - - 

membership probability 0.39 0.66 

Log-likelihood  -3628.31 

 

The DDCM was estimated twice with two different 𝛽 values: 𝛽 = 0 and 𝛽 = 0.99. When 

𝛽 = 0 the DDCM degraded to static discrete choice model, as in the charging decision is made 

only based on the characteristics of the current stations. The results show that when   𝛽 = 0, the 

model generates two classes of respondents: those with lower income and shorter EV ownership 

tend to evaluate the gasoline cost and charging cost similarly (class 1, the cost-minimizing 

group) and those with relatively higher income and longer EV ownership tend to weight gasoline 

cost more heavily (the gas anxiety group). This result is consistent with the conclusions of my 

earlier study (23). When 𝛽 = 0.99, in the class allocation model, only the variable “years of 

owning/leasing EV” is borderline significant with p-value of 0.06. Those with longer EV usages 

still show heavier evaluation of the gasoline cost than charging cost (about 1.7 times), but 

respondents with relatively shorter EV ownership (class 1) also weigh the gasoline cost more 

heavily than charging cost (about 1.2 times). With the increase of availability, the probability of 

charging at the station increases.  

Comparing the DDCM (𝛽 = 0) based on the survey conducted in 2016 with the latent 

class model results based on the survey conducted in 2013(23), the proportion of class 1 
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increases by 12% whereas the group with gas anxiety (class 2) drops. This could mean that with 

the market moving forward, the proportion of those with gas anxiety decreases because the 

proportion of earlier adopters with higher environment values drops. This could mean that future 

public chargers need to be priced competitively with the gasoline on per mile basis to encourage 

the usage of public charging.  

6.2.4 Conclusions  

An earlier research paper that I worked on indicated two classes of decision-making 

patterns among PHEV users (23): (1) a cost- minimizing group who value gasoline cost and 

recharging cost approximately equally, and (2) a gas anxiety group who value gasoline cost 

much more heavily than recharging cost. Respondents in Class 2 (gas anxiety group) expressed a 

willingness to recharge, even if using gasoline would cost approximately four times as much as 

the cost of the gasoline avoided. While Class 2 (gas anxiety group) represents the majority of our 

sample, more recent PHEV adopters are more likely to be in Class 1 (cost-minimizing group). 

This work serve as a continuation of the earlier study (23). Here I used the dynamic discrete 

choice modeling to capture PHEV charging choice decision pattern based on the data collected 

from the choice experiment on the home-based tours. The results of the DDCM show great 

consistency with (23): relatively earlier adopters value (class 2) gasoline cost a lot more heavily 

than charging cost whereas relatively more recent adopters (class 1) tend to arbitrage the cost. 

My results also suggest the proportion of the PHEV users who make decision to minimize the 

costs is bigger than the sample collected for the earlier study (23), which could be a sign that in 

the future, public charging should be priced competitively with gasoline cost on a per-mile basis 

in order to attract PHEV users.  

6.3 Analysis 3: Calculated choices or quick decisions? Comparison of DDCMs with SDCMs 
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based on simple heuristics 

Summary 

The impact of PEVs on the electricity grid and gasoline displacement depends on the 

distance of the trips that can be covered by electricity. It is therefore important to understand 

how PEV owners make decisions on which vehicles to use and when to charge, which can be 

influenced by multiple factors including the characteristics of the trips and charging 

opportunities. Complicating such analyses is the intertemporal dependence of choices: when 

using a PEV, decisions about charging depend on both prior choices and expectations about the 

future charging opportunities; and decisions on which vehicle to use depend on opportunities for 

charging. Based on the data from the stated preference survey among PEV owners described in 

Chapter 5, this paper compares two approaches to modeling PEV owners’ choices of vehicle 

choice for a home-based tour and charging choices at the subsequent stops: static discrete choice 

modeling which treats all choices as independent; and dynamic discrete choice modeling 

(DDCM) which explicitly accounts for the intertemporal payoffs associated with vehicle use and 

charging choices under uncertainty. The results indicate both models can help to understand how 

PEV users make decisions about which vehicle to use for a travel day and can inform charging 

demand forecasting of PEV users. The DDCM based on the intertemporal payoffs offers slightly 

better correct prediction rate. However, this improved predictive power comes at the cost of 

considerably higher computational time and a much more involved process for model 

development and estimation that may be substantially less accessible to many potential users. 

This analysis was submitted to 2019 TRB annual meeting for presentation and the long abstract 

of it was included in the conference compendium. 
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6.3.1 Introduction  

Plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) that only run 

on electricity and plug-in hybrid electric vehicles (PHEVs) that combine an internal combustion 

engine and an electric powertrain, offer the potential to reduce gasoline consumption and local 

air pollution by replacing gasoline with electricity. Public charging infrastructure, which can help 

increase the operating radius of PEVs, is proved to be an important enabler of electric vehicle 

adoption. Understanding the charging and use pattern of PEV owners is important for several 

reasons. First, the amount of petroleum demand displaced by a PEV, and the corresponding 

emission and energy security effects, depend on the number and length of trips for which the 

PEV displaces internal combustion engine vehicle (ICEV) travel. Second, the mix of generation 

sources supplied to the electric grid varies over time and space and depends on the time-varying 

electricity demand, so charging a PEV at different times or locations may result in different net 

emissions impacts. Third, the degree of stress that PEVs place on electricity grid depends on 

whether they exacerbate existing demand peaks or fill in periods of lower demand.  

This paper focuses on two key types of decisions that a PEV owner must make for any 

home-based trip tour with planned natural stops (for example workplace, grocery store, etc.). 

First, they must decide whether to use their PEV or an alternative for the tour (stage 1 decision). 

If they elect to use their PEV, they must choose whether or not to charge the PEV at each 

opportunity as the travel day progresses (stage 2 decisions). The decisions of the two stages are 

inseparable intuitively: the vehicle choice influences whether they will face the charging 

decisions later, and the expectation of future charging needs and opportunities influences the 

vehicle choice. The charging decisions at any two stops in the travel day are similarly connected: 

the charging decision at one stop influences whether the vehicle needs to be charged at the 
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following stops, and the expectation of future charging opportunities influences the charging 

decision at the current stop. This dependence between earlier decisions and later ones can be 

expressed in terms of utility theory: a decision at an earlier stop may affect not only the current 

utility but also the utility of the following stops; the value of the expected future utility may 

affect the decision at the current stop.  

A dynamic discrete choice model (DDCM) explicitly accounts for these intertemporal 

payoffs under the assumption that the choice decision maximizes the expected net-utility, instead 

of the single utility at the current period, making it fundamentally different from a static discrete 

choice model (SDCM). The authors have applied DDCM to the modeling of vehicle use and 

charging choices of PEV in an earlier study and presented the detailed model specification and 

estimation of DDCM with the consideration of heterogeneity (2). In this article, we compare the 

results of these DDCMs with those of SDCMs based on several much simpler decision heuristics 

to test whether the vehicle use and charging choices of PEV users are better described by the 

DDCMs than the SDCMs; in short, do respondents appear to make calculated choices based on 

the expected net-utility, or quick decisions based on much simpler heuristics? 

The literature shows that multiple factors influence the charging decisions of PEV owners 

and that derived variables based on SOC, such as potential range obtained at a station might be a 

better predictor of charging choices than SOC itself. The literature stresses the heterogeneity of 

decision-making among PEV users and latent class logit models perform better than mixed logit 

models. Since the goal of this paper is to compare two different modeling approaches based on 

different hypotheses, to make it easier to display the results and convey the message, we assume 

homogeneity. 
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For the decisions on vehicle use (stage 1 decision), we compare the SDCMs based on 

four simple heuristics (Heuristic 1-4) and two DDCMs with different model specifications. For 

the charging choices (stage 2 decisions), we compare the SDCMs based on two simple heuristics 

(Heuristic 5-6) with the two DDCMs, (see Table 7). The model specification of the DDCMs and 

the simple heuristics on charging decisions (Heuristic 5-6) are informed by earlier studies on 

charging behavior modeling of BEVs and PHEVs (43-45,47). The goodness of fit and the correct 

prediction rates of these models are compared.  

TABLE 7 Description and specification of the models 

Model  Dependent Variable  Systematic Component of the Utility functions  

Heuristic 1: BEV is chosen if 

the travel day can be completed 

without public charging. 

Stage 1: vehicle 

choice  

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝜃4 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑏𝑒𝑣,𝑖 + 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝜃12 ∗ 𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖+𝐴𝑆𝐶𝑝ℎ𝑒𝑣       

Heuristic 2: BEV is chosen if 

the travel day can be completed 

with 100% certainty. 

Stage 1: vehicle 

choice 

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝜃5 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒%𝑏𝑒𝑣,𝑖 + 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝜃12 ∗ 𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖+𝐴𝑆𝐶𝑝ℎ𝑒𝑣        

Heuristic 3: BEV is chosen if 

the travel day can be completed 

with 100% certainty with a 

reasonable cost. 

Stage 1: vehicle 

choice 

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝜃5 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒%𝑏𝑒𝑣,𝑖 + 𝜃6 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑏𝑒𝑣,100%,𝑖
+ 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝜃12 ∗ 𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖+𝐴𝑆𝐶𝑝ℎ𝑒𝑣        

Heuristic 4: BEV is chosen 

according to the expected 

probability of getting stranded 

based on the uncertainty of the 

energy consumption and the 

availability of the chargers. 

Stage 1: vehicle 

choice 

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝜃7 ∗ 𝑅𝑖𝑠𝑘𝑏𝑒𝑣,𝑖 + 𝜃8 ∗ 𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑏𝑒𝑣,𝑚𝑛,𝑖 + 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝜃12 ∗ 𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖+𝐴𝑆𝐶𝑝ℎ𝑒𝑣         

Heuristic 5: charging decision 

depends on the current charging 

cost, gasoline cost (for PHEV 

only), and whether the car can 

get to the next charging 

opportunity without deviation 

from the original stop plan, i.e. 

one does not have to make 

stops specifically for charging 

the vehicle. 

Stage 2： charging 

choice 

𝑢𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃9 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑏𝑒𝑣,𝑡

+ 𝜃10 ∗ 𝐷𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡

+ 𝐴𝑆𝐶𝑏𝑒𝑣_𝑐ℎ𝑎𝑟𝑔𝑒  
𝑢𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡

= 𝜃10 ∗ 𝐷𝐸𝑉𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡  

𝑢𝑝ℎ𝑒𝑣,𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃13 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑝ℎ𝑒𝑣,𝑡

+ 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 
+ 𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 

𝑢𝑝ℎ𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡      

     

Heuristic 6: on top of the 

variables included in heuristic 

5, the potential electric range 

Stage 2: charging 

choice 

𝑢𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃9 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑏𝑒𝑣,𝑡

+ 𝜃10 ∗ 𝐷𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡

+ 𝜃11 ∗ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 + 𝐴𝑆𝐶𝑏𝑒𝑣_𝑐ℎ𝑎𝑟𝑔𝑒  

𝑢𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃10 ∗ 𝐷𝐸𝑉𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡  
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can be obtained at a station also 

influences charging choices. 

𝑢𝑝ℎ𝑒𝑣,𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃13 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑝ℎ𝑒𝑣,𝑡

+ 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 
+ 𝜃15 ∗ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 + 𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 

𝑢𝑝ℎ𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡      

    

DDCM 1 

For stage 1 decision, decision 

of whether to use PEV depends 

on the expected net-utility of 

the future periods.  

For stage 2 decision, charging 

choices depend on the current 

costs plus the expected net-

utility of the future charging 

opportunities.  

Stage 1 & stage 2 

jointly 

Stage 1:  

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝐴𝑆𝐶𝑝ℎ𝑒𝑣       

Stage 2:  

𝑢𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃9 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑏𝑒𝑣,𝑡

+ 𝜃10 ∗ 𝐷𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡

+ 𝐴𝑆𝐶𝑏𝑒𝑣_𝑐ℎ𝑎𝑟𝑔𝑒  
𝑢𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡

= 𝜃10 ∗ 𝐷𝐸𝑉𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡  

𝑢𝑝ℎ𝑒𝑣,𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃13 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑝ℎ𝑒𝑣,𝑡

+ 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 
+ 𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 

𝑢𝑝ℎ𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡      

 

DDCM 2 

On top of the variables 

included in DDCM 1, the 

vehicle choice and charging 

decisions are also influenced by 

the potential electric range can 

be obtained at each charging 

opportunity.  

Stage 1 & stage 2 

jointly 

Stage 1:  

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣;  

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝐿 ∗ 𝑝𝑔𝑎𝑠𝑖
 

𝑢𝑏𝑒𝑣𝑖 = 𝐴𝑆𝐶𝑏𝑒𝑣       

𝑢𝑝ℎ𝑒𝑣𝑖 = 𝐴𝑆𝐶𝑝ℎ𝑒𝑣       

Stage 2:  

𝑢𝑏𝑒𝑣 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃9 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑏𝑒𝑣,𝑡

+ 𝜃10 ∗ 𝐷𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡

+ 𝜃11 ∗ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 + 𝐴𝑆𝐶𝑏𝑒𝑣_𝑐ℎ𝑎𝑟𝑔𝑒  

𝑢𝑏𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃10 ∗ 𝐷𝐸𝑉𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡  

𝑢𝑝ℎ𝑒𝑣,𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃13 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑝ℎ𝑒𝑣,𝑡

+ 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡 
+ 𝜃15 ∗ 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 + 𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 

𝑢𝑝ℎ𝑒𝑣,𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,𝑡
= 𝜃14 ∗ 𝑐𝑔𝑎𝑠𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖,𝑡      

    

6.3.2 Specifications of the models  

6.3.2.1 Specifications of the DDCMs 

(1) State variables (𝑠𝑖,𝑡) and transition functions (𝐹𝑖𝑠) 

DDCM 1 assumes a forward-looking economic agent with six state variables, two among 

which model the individuals’ beliefs about the remaining range (remaining range (𝑟𝑟𝑖,𝑡)) and the 

availability of chargers of the future stations (charger availability (𝑎𝑖,𝑡)), and the rest four are 

deterministic state variables.  
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Remaining range (𝑟𝑟𝑖,𝑡) 

The remaining range upon arriving at station t+1 (𝑟𝑟𝑖,𝑡+1) equals the remaining range at 

station t (𝑟𝑟𝑖,𝑡 ) plus the range obtained at the station t (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡), minus the range consumed on 

the way from station t to station t+1 (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ), as expressed by the following equation:  

𝑟𝑟𝑖,𝑡+1 = 𝑟𝑟𝑖,𝑡 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 − 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡                                              (93) 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑) is the maximum electric range increase the PEV can get at the 

station during the specified dwell time if the owner chooses to charge. It is zero if the owner 

chooses not to charge. If the dwell time (𝑡𝑑𝑤𝑒𝑙𝑙) is sufficient for the PEV to reach a full charge 

(𝑟𝑓𝑢𝑙𝑙), the range obtained is the difference between the full range and the remaining range 

(𝑟𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔). Otherwise, the range obtained depends on the charging power (Power) and dwell 

time (𝑡𝑑𝑤𝑒𝑙𝑙), see equation (94). 

                                   𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡 = {
𝑀𝑖𝑛 {

𝑃𝑜𝑤𝑒𝑟∗𝑡𝑑𝑤𝑒𝑙𝑙

𝐸𝐶𝑅
,    𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑖,𝑡} , 𝑖𝑓 𝑑𝑖𝑡 = 1

0,                                                           𝑖𝑓 𝑑𝑖𝑡 = 0
                          (94)  

(ECR: Average electricity consumption rate in kWh / mile) 

The distribution of range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ) for driving the distance from station t 

to station t+1:  𝑙𝑖,𝑡 is assumed to be a triangular distribution (𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡)) based on the 

uncertainty factor 𝜌𝑖 ) described in the following graph: 
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Density of 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖,𝑡) 

According to equation (93), the only uncertain component of 𝑟𝑟𝑖,𝑡+1  is 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 . So 

the distribution of the state variable remaining range  𝑟𝑟𝑖,𝑡+1  conditional on 𝑟𝑟𝑖,𝑡 and 𝑑𝑖𝑡 is also a 

triangular distribution. 

Charger availability (𝑎𝑖,𝑡) 

There are five levels of the availability variables in the scenarios A%= {20%, 40%, 60%, 

80%, 100%}, as shown in Table 3. The distribution of the availability of the chargers at station t 

for respondent i is assumed to be Bernoulli distribution with the success probability of 𝐴%𝑖,𝑡. So 

the probability mass function for availability at station t is:  

𝑘(𝑎𝑖,𝑡) = {
𝐴%𝑖,𝑡,            𝑎𝑖,𝑡 = 1

1 − 𝐴%𝑖,𝑡 ,    𝑎𝑖,𝑡 = 0
                                                          (95) 

Charger availability between the stations is assumed to be independent from each other, 

which means the value of 𝑎𝑖,𝑡+1 is independent of 𝑎𝑖,𝑡. Then the transition function of availability 

could be expressed as equation (96).  
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𝑘(𝑎𝑖,𝑡+1|𝑎𝑖,𝑡) = 𝑘(𝑎𝑖,𝑡+1) = {
𝐴%𝑖,𝑡+1 ,            𝑎𝑖,𝑡+1 = 1

1 − 𝐴%𝑖,𝑡+1 ,    𝑎𝑖,𝑡+1 = 0
                           (96) 

Deterministic state variables  

The four deterministic state variables are the charging price, the dwell time, the gasoline 

price and the charging power. Instead of using these state variables directly in the utility 

functions, they are used to derive the following variables: continuous variables on charging cost  

𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔, gasoline cost of PHEVs 𝑐𝑔𝑎𝑠,𝑝ℎ𝑒𝑣𝑖,𝑡 , gasoline cost of ICEVs 𝑐𝑔𝑎𝑠,𝑖𝑐𝑒𝑣𝑖
); and a dummy 

variable called deviation (𝐷𝐸𝑉) that represents whether the BEV can get to the next stop or has 

to deviate from the original tour plan (𝐷𝐸𝑉 = 0 when the BEV can get to the next station with 

the remaining range and 𝐷𝐸𝑉 = 1 when the BEV driver needs to deviate from the plan and find 

charging stations other than those at planned stops on the tour).  

Charging cost of PEV (𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑡
)  

Plug time (𝑡𝑝𝑙𝑢𝑔) is the time duration that the PEV stays plugged in to the charger.  We 

assume that once a PEV is plugged in, it will remain plugged until it is fully charged or it is time 

for the driver to depart. So, if the car cannot reach a full battery during the dwell time, plug time 

will be equal to the dwell time. Otherwise plug time is equal to the time needed for the PEV to 

become fully charged. It is calculated as equation (97).  

𝑡𝑝𝑙𝑢𝑔𝑖,𝑡
= 𝑀𝑖𝑛 {𝑡𝑑𝑤𝑒𝑙𝑙𝑖,𝑡,

(𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑−𝑟𝑟𝑖,𝑡)×𝐸𝐶𝑅

𝑃𝑜𝑤𝑒𝑟
}                                          (97) 

Plug time is used to measure the charging cost at the stop, which is defined as the total 

charging cost if an individual chooses to charge at station t:  

𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑡
= 𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑡𝑝𝑙𝑢𝑔𝑖,𝑡

                                                (98) 
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Deviation of BEV (DEV)  

DEV is a dummy variable showing whether the driver can get to the next stop (i.e. the 

next charging opportunity) with the remaining range. Note that the being unable to reach the next 

planned stop does not necessarily mean the traveler will be stranded in the middle of the trip, but 

she will have to deviate from the original travel plan, for example by finding chargers out of the 

planned tour or driving with a lower speed to conserve energy.  

DEV can be calculated according to equation (99). This value varies according to the 

charging decision. If the respondents choose to charge, it can be written as DEVcharge,i,t. If the 

respondents choose not to charge, it can be written as DEVnot charge,i,t. 

𝐷𝐸𝑉𝑖,𝑡 = {
1,        𝑖𝑓 𝑟𝑟𝑖,𝑡+1 < 0

0,        𝑖𝑓 𝑟𝑟𝑖,𝑡+1 ≥ 0
                                                  (99) 

Gasoline cost of PHEV (𝑐𝑔𝑎𝑠,𝑝ℎ𝑒𝑣𝑖,𝑡
) 

The gasoline cost is calculated based on the remaining range and also the distance to 

travel to the next station, see equation (100). 

𝑐𝑔𝑎𝑠,𝑝ℎ𝑒𝑣𝑖,𝑡 = 𝑚𝑎𝑥 (0,   
𝑙𝑖,𝑡−(𝑟𝑟𝑖,𝑡+𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖,𝑡)

𝑚𝑝𝑔
× 𝑝𝑔𝑎𝑠)                            (100)  

The gasoline cost of the PHEV here is denoted as cgas_charge when the respondent chooses 

to charge. For the choice of not to charge, the gasoline cost of the PHEV can be written as 

cgas_ not charge. 
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Gasoline cost of ICEV (𝑐𝑔𝑎𝑠,𝑖𝑐𝑒𝑣𝑖
) 

For ICEVs, the gasoline cost is calculated based on the fuel economy (mpg) of the 

gasoline car, the gasoline price (𝑝𝑔𝑎𝑠) of the scenario, and the planned distance (𝐿) of the travel 

day. 

𝑐𝑔𝑎𝑠,𝑖𝑐𝑒𝑣𝑖
=

𝐿

𝑚𝑝𝑔
∗ 𝑝𝑔𝑎𝑠                                                             (101) 

(2) Model specification of the DDCM 1and DDCM 2 

The flow utilities of the two stages of DDCMs are defined independently, see Table (1).  

For both DDCM1 and DDCM 2, the utility functions of ICEV and RENT consider the gasoline 

cost and rental cost. For DDCM 1, For BEVs, the charging cost and DEV are included and for 

PHEVs, the charging cost and gasoline cost are included. DDCM2 adds in one more variable 

range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑) . 

6.3.2.2 Specifications of the SDCMs 

The systematic components of the utility functions of all the SDCMs are listed in Table 1. 

For the four heuristics on stage 1 decision on vehicle choice, the utility functions for ICEV, RENT, 

and PHEV stay the same: for ICEVs, we consider the gasoline cost (𝑐𝑔𝑎𝑠,𝑖𝑐𝑒𝑣𝑖
); for RENT, we 

consider the rental cost and the indicator of gasoline cost (planned distance L multiplied by 

gasoline price  𝑝𝑔𝑎𝑠𝑖
); and for PHEV, we consider the excess range (𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖 ), as in the 

difference between the range of the vehicle and the planned tour length (equation 102).  

𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖 = 𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 − 𝐿                                                          (102) 
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For heuristics 1-4, the utility functions of the BEV change according to the hypotheses of 

the models. For heuristic 1, the hypothesis is that the BEVs will be chosen if the travel day can 

be completed without public charging, so the variable 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑏𝑒𝑣,𝑖 is used as a predictor.  

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑏𝑒𝑣,𝑖 = {
1,     𝑖𝑓 𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 ≥ 𝐿

0,    𝑖𝑓 𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 < 𝐿
                                             (103) 

For heuristic 2, the hypothesis is that the BEVs will be chosen if the travel day can be 

completed with 100% certainty (variable 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒%𝑏𝑒𝑣,𝑖), which means either the range of the 

vehicle is large enough to cover the planned distance of the travel day (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑏𝑒𝑣,𝑖 = 1) or 

the potential range gained at a stop where there is always a charger available is enough for the 

BEV to finish the trip tour. For heuristic 3, we added the charging price at the stop where there is 

always a charger available.  

For heuristic 4, the hypothesis is that BEV is chosen according to the expected 

probability of getting stranded (𝑅𝑖𝑠𝑘𝑏𝑒𝑣,𝑖) based on the distribution of the energy consumption 

and the availability of the chargers. The assumptions on the distributions of the energy 

consumption and the availability of chargers are previously specified in section 5.1.2. 

For the two heuristics on stage 2 decisions about charging choices, heuristic 5 assumes 

the charging decisions of BEV users depend on the charging cost and whether the driver needs to 

deviate from the originally planned tour to get to the next stop; and charging decisions of PHEV 

users depend on the charging and gasoline costs to get to the next stop. Heuristic 6 hypothesizes 

that the potential range obtained at the charging stations also influences the charging decisions. 

The utility functions can be found in the Table 7.   
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6.3.3 Results 

To compare the models and avoid overfitting, 60% of the respondents are grouped into a 

training set for estimating the models, and 40% of the respondents are grouped into a test set for 

model evaluation. All the models involved in this research paper are trained based on the same 

training set and evaluated based on the same test set.  

The results on the stage1 decisions (shown in TABLE 8) consistently indicate that the 

gasoline cost of ICEV and RENT do not have a significant influence on the vehicle choice for 

the home-based tours. The probability of choosing rental car is significantly negatively 

associated with the rental cost. All the costs are significantly negatively correlated with the 

probability of the relative mode and the potential range obtained at a station is positively 

correlated with the choice of using a BEV or PHEV. The ability to complete the tour without 

public charging or complete the tour with 100% certainty is positively correlated with the 

probability of choosing BEV. All these results are consistent with intuition and the estimates 

tend to be robust across different models. These results based on the training set (60% of the 

whole sample) are consistent with the estimates of the model based on the whole dataset. 

TABLE 8 Models results of vehicle choice (stage 1) 

Mode Variables NULL 
Heuristi
c 1 

Heuristi
c 2 

Heuristi
c 3 

Heuristi
c 4 

DDCM 1 DDCM 2 

ICEV Gasoline cost (𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣  , 𝜃1)  -0.001 0.001 -0.001 -0.001 -0.008 0.002 

RENT 
Rental cost (𝐶𝑟𝑒𝑛𝑡𝑎𝑙 , 𝜃2)  -0.028*** -0.025*** -0.025*** -0.026*** -0.026*** -0.026*** 

Gasoline cost (𝐿 ∗ 𝑝𝑔𝑎𝑠, 𝜃3)  0.516 0.377 0.291 0.246 0.451 0.398 

BEV 

Complete (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑏𝑒𝑣 , 𝜃4)  2.089***           

Complete100% (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒%𝑏𝑒𝑣, 𝜃5)    1.966*** 2.062***       

Charging price at 100% station 

(𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑏𝑒𝑣,100%, 𝜃6) 
     -0.045***       

Risk of getting stranded-C (𝑅𝑖𝑠𝑘𝑏𝑒𝑣, 𝜃7)        -3.555***     

Minimum charging price 

(𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑏𝑒𝑣,𝑚𝑖𝑛, 𝜃8) 
       -0.174***     

Deviation (𝐷𝐸𝑉, 𝜃9)          -3.419*** -3.250*** 

Charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑏𝑒𝑣
, 𝜃10)          -0.061*** -0.121*** 
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Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑏𝑒𝑣 , 𝜃11)            0.025*** 

PHEV 

Excess range (𝑟𝑒𝑥𝑐𝑒𝑠𝑠𝑝ℎ𝑒𝑣,𝑖 , 𝜃12)  0.012*** 0.010*** 0.010*** 0.012***     

Charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑝𝑗𝑒𝑣
, 𝜃13)          -0.124*** -0.200*** 

Gasoline cost (𝐶𝑔𝑎𝑠𝑝ℎ𝑒𝑣 , 𝜃14)          -0.247*** -0.211*** 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑝ℎ𝑒𝑣 , 𝜃15)            0.040*** 

  

𝐴𝑆𝐶𝐵𝐸𝑉 1.803*** 2.901*** 0.320*** 0.286*** 2.434*** 2.073*** 2.120*** 

𝐴𝑆𝐶𝑃𝐻𝐸𝑉 1.897*** 2.068*** 2.053*** 2.042*** 2.034*** 1.839*** 1.788*** 

𝐴𝑆𝐶𝐵𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒          -0.306*** -0.826*** 

𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒          -0.247*** -0.857*** 

N 4298 4298 4298 4298 4298 4298 4298 

Log-Likelihood of Mode Choices -1870 -1651 -1612 -1609 -1556 -1508 -1503 

Correct Prediction Rate 81.2% 85.8% 86.6% 86.7% 87.0% 87.1% 86.8% 

AUC (BEV) 0.546 0.739 0.764 0.760 0.802 0.817 0.813 

* p-value <0.1; **  p-value<0.05;  *** p-value<0.01 

These models are evaluated according to their prediction accuracy of the test set. When 

the vehicle that was chosen has the highest predicted probability in the model, we count that as a 

correct prediction. The correct prediction rate of each model is listed in TABLE 8. Comparing 

the goodness of fit of the simple heuristics and the dynamic models, the DDCMs offer higher 

log-likelihood and slightly better correct prediction rates. However, the improvement seems 

trivial considering the static models all have high correct prediction rate. The plot of the 

predicted probability of choosing BEV and the actual frequency (Figure 19) and the receiver 

operating characteristic (ROC) curve (Figure 20) show that heuristic 4 provides very similar 

prediction accuracy to DDCM 1. A ROC curve shows the relationship between the sensitivity 

(true positive rate) and the specificity (true negative rate) based on different discrimination 

threshold of a prediction model. Every point on the graph represents the corresponding true 

positive rate and true negative rate based on one threshold point between zero and one. 

Therefore, when the area under the curve is larger, as in when the curve is closer to the upper left 

corner of the graph, it means the model offers better prediction power. 
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FIGURE 19 Predicted probability and actual frequency of choosing BEV 

 (note that the size of the circles means the number of observations in that bin) 
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FIGURE 20 Comparison of the Roc curves of choosing to charge 

 

 

The results of the models on charging choices (shown in TABLE 9) consistently show 

that for BEVs, the respondents express a willingness to pay extra (more than $20) to avoid 

having to deviate from their original plan based on the relative sizes of the coefficients on the 

charging cost and deviation variables. The estimates are consistent for both the DDCMs and 

SDCMs. For PHEVs, gasoline cost is valued more heavily than charging cost (1.1 to 2.8 times) 

according to the estimates of the coefficients.  This is consistent with the results of our earlier 

study (23).  
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TABLE 9 Model results of charging choices (stage 2 decisions) 

Mode Variables NULL Heuristic 5 DDCM 1 Heuristic 6 DDCM 2 

BEV 

Deviation (𝐷𝐸𝑉, 𝜃9)  2.769*** -3.419*** 2.619*** -3.250*** 

Charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑏𝑒𝑣
, 𝜃10)  -0.016** -0.061*** -0.131*** -0.121*** 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑏𝑒𝑣 , 𝜃11)      0.037*** 0.025*** 

PHEV 

Charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑝ℎ𝑒𝑣
, 𝜃13)  -0.343*** -0.124*** -0.445*** -0.200*** 

Gasoline cost (𝐶𝑔𝑎𝑠𝑝ℎ𝑒𝑣 , 𝜃14)  -0.947*** -0.247*** -0.793*** -0.211*** 

Range obtained (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑝ℎ𝑒𝑣 , 𝜃15)      0.038*** 0.040*** 

  
𝐴𝑆𝐶𝐵𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 0.244*** -0.064 -0.306*** -0.897*** -0.826*** 

𝐴𝑆𝐶𝑃𝐻𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 -0.344*** -0.238* -0.247** -0.779*** -0.857*** 

N 6447 6447 6447 6447 6447 

Log-Likelihood of Mode Choices -2848 -2542 -2388 -2402 -2330 

Correct Prediction Rate 56.6% 62.4% 69.2% 70.6% 72.3% 

AUC 0.551 0.712 0.766 0.787 0.793 

* p-value <0.1; ** p-value<0.05;  *** p-value<0.01 

To assess the rate of correct predictions, we define that the predicted choice is to charge 

when the probability of charging according to the model is greater than 0.5; otherwise the 

predicted choice is not to charge. According to this criterion, the correct prediction rate of each 

model for the test set is listed in Table 9. The results show that the correct prediction rate of 

DDCM is only slightly better. The comparison plots (Figure 21) and the ROC curves (Figure 22) 

show that the DDCMs based on expected net-utility produce a lot fewer predicted probabilities 

close to 0.5.  
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FIGURE 21: Predicted probability and actual frequency of charging 

 (note that the size of the circles means the number of observations in that bin) 

 
FIGURE 22: Comparison of the ROC curves of choosing to charge 

6.3.4 Conclusions 

Previously published approaches to modeling the charging behavior of PEV drivers 

include various versions of static conditional logit models and a new addition – DDCMs. This 

study compares the two: static discrete choice models based on simple decision heuristics and 

dynamic discrete choice models based on intertemporal payoffs, to find out for home-based trip 

tours whether the decisions of vehicle use and charging choices of PEVs are quick decisions or 
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relatively calculated choices. The model results show that the DDCMs offer slightly better 

goodness of fit and higher within-sample prediction accuracy, but this improved predictive 

power comes at a significant cost.  For one, the computational time to estimate a DDCM is 

considerably higher than that needed to estimate a static model: The DDCMs each takes 

approximately 5 hours to converge under parallel computing on a computer with eight cores, 

whereas each SDCM takes a few seconds. Second, the process for model development and 

estimation of a DDCM is considerably more involved, requiring customized coding to 

implement the intertemporal payoffs, and efficient parameter estimation.  Third, the DDCM 

entails a complicated theoretical model that may be substantially less accessible to many 

potential users.  
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7 Survey & Data for Long-Distance Trips  

7.1 Focus group discussion on the use of BEV for long-distance trips  

To inform the design of the survey on long-distance trips by BEVs and the modeling 

strategies, a focus group discussion was conducted among ten BEV owners that were recruited 

though online forums. The goal of this discussion was to understand first what factors BEV 

owners consider when they make the decisions on which vehicle to use for a long-distance trip, 

then how they make the decisions on where to charge their cars on a long-distance trip using 

BEVs. The guiding questions to elicit these included the following five: (1) What do you 

consider when you decide on the vehicle to use for a long-distance travel day; (2) Do you plan 

your charging stops before a long-distance trip using a BEV? If so, how? (3) Do you use any EV 

trip planners or apps to plan your charging stops? And if so, how would you describe your 

experience with them? (4) What are the biggest concerns that you have for driving your BEV for 

long-distance trips? (5) What is the most important enabler for long-distance trips by BEVs: 

bigger battery packs, more reliable charging stations, higher charging power, or charging stations 

in more places?    

Nine of these ten respondents owned either a Tesla or Chevrolet Bolt EV – both with range 

over 200 miles. One respondent owned a Nissan Leaf with the range of around 80 miles. The 

interview took the form of a one-hour online video interview, where the respondents called in to 

a Zoom conference from their personal device. These respondents were from different states: 

Washington, California and Florida and nine of them have experience of using their BEVs for 

long-distance trips. Since these respondents were self-selected into this focus group and most of 

them are quite active on the online forums as observed by the author, they are likely to be EV 
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enthusiasts and take pride of owning BEV and using BEV instead of gasoline cars, their results 

of this discussion probably does not generalize well to the broader population of BEV users. 

Even though these respondents are more likely to use BEV for long-distance trips than the 

population, the goal of this focus group discussion is on the decision processes that will inform 

the model specification instead of the generalization of the user preferences. The model 

parameters, which eventually represent the preference, will be estimated later by the discrete 

choice models based on the survey data. We were able to gain the following insights that inform 

the design of the survey and the choice experiments. 

(1) Considerations of vehicle choice for long-distance trips  

The first consideration of whether to choose a BEV for long-distance trips is to see 

whether the trip distance is significantly longer than the vehicle range, and if so whether there 

are enough chargers along the route, which both directly reflect whether one will run into the 

problem of battery deprivation. Time constraint also plays a role: whether there is enough time 

during the day for both driving and charging can influence the decision on vehicle choice. The 

possibility of combining charging with other activities (such as lunch and rest) is likely to make 

BEVs more attractive for long-distance trips. It is important to incorporate other necessary 

activities during refueling so there is no need to stop specifically for other purposes such as using 

the restroom and having lunch. If the charging rate matches the time they want to stay at a 

station, they are more likely to use BEVs for the trip.  Some respondents mentioned that the 

destination chargers are important for long-distance BEV trips. When asked about the concerns 

of using BEV for long-distance trips, they also mentioned that the reliability of the information 

on the online charging networks (such as PlugShare) is important as wrong information on the 

condition of the chargers could lead to a huge delay and uncertainty. Since none of the 
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respondents mentioned the availability of the chargers at a station and the charging price, I asked 

the following two subsequent questions: (1) How often do you run into a situation where the 

chargers are all being used, and you have to wait? And (2) Is charging price an important 

consideration when it comes to vehicle choice? Interestingly, I was told that the currently, these 

two are not important factors as they seldom need wait at charging stations. The cost is not a big 

issue because in the long run, using BEVs shows less cost than gasoline cars on an annual basis 

and Tesla users can use the Super chargers for free.  

To sum it up, when deciding whether to use BEVs for a long-distance trip, BEV owners 

currently consider the distance of the trip relative to the vehicle range, whether there are enough 

chargers along the trip, whether there are facilities at the charging stations, and whether there are 

chargers at the destinations.  

(2) When and where to charge on a long-distance BEV trip? 

All the respondents mentioned that they plan their long-distance trips based on mid-trip 

chargers, meal plans and destinations chargers.  The most common platform for trip planning is 

PlugShare in combination with Google Maps, and Tesla users have their own trip planning 

application based on the Supercharger network. They do not always stick to their plan with 

charging as the energy consumption is uncertain, but they can often reduce range consumption 

rate by changing their driving behavior, such as slowing down, or turning off the heater, etc. The 

fact that they plan their charging locations beforehand indicates that the decision of whether to 

charge at a particular location can also be correlated with the characteristics of the other stations.  

This focus group discussion shows that the following characteristics of long-distance 

trips needs to be considered for the choice experiment: distance from original to destination, 
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spacings between stations, number of charging stations, destination charging facilities, and the 

characteristics of each charging station, including time to access, charging price, power and the 

amenities at the stations (whether restaurants, restroom, and WiFi are available at the stations.).  

7.2 Survey design for long-distance tours 

The survey on using BEV for long-distance trips took the form of an online survey 

administrated through a custom-built web-based survey tool. It included three sections: (1) one 

questionnaire section on the socio-demographic information about the subjects and the detailed 

vehicle information of the vehicles owned by the respondents; (2) another questionnaire section 

on the risk-taking propensity and environmental values of the subjects; (3) a stated choice 

experiment section where the respondents were first presented with long-distance trip scenarios 

characterized by planned travel distance and characteristics of charging stations along the way 

including charging price, charger level, the time that it takes to access  the charging station, and 

the facilities near the charging station. Then they were asked to give advice on the vehicle to 

drive for each scenario and whether to charge at each station in each scenario.  

7.2.1 Background information  

All the respondents of this survey were reported being electric vehicle owners. The 

questionnaire asked them to report the following information: age, gender, education, household 

income, household size, home ZIP code, and the specific information of their vehicles in the 

household: the make, model, and year. For each of their electric vehicles, respondents were also 

asked for the maximum and minimum electric range on a full charge, in summer and in winter. 

Since this survey was conducted in summer, the average value of maximum summer range 

(𝑟𝑚𝑎𝑥) and minimum summer range (𝑟𝑚𝑖𝑛) is denoted as reported range (𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑), which was 

used to assign  the choice experiments to the respondents.  
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𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =
1

2
(𝑟𝑚𝑖𝑛 + 𝑟𝑚𝑎𝑥)                                                               (104) 

To capture the risk-taking propensity and environmental values of the respondents when 

it comes to transportation, ten Likert-scale questions on respondents’ attitude towards taking 

risks and ten Likert-scale questions on the respondents’ environmental values were included in 

the questionnaire. The questions were selected according to the literature (80). The ten 6-level 

Likert-scale questions on risk-taking propensity are: (1) I don’t mind taking the latest possible 

public transport connection to the airport; (2) I would go on a two-week vacation in a foreign 

country without booking ahead; (3) I would drive my EV without planning out the charging on 

the way; (4) I start earlier if I assume that there will be congestion on my route; (5) If I don't 

know the way I just start into the general direction and search my way step by step; (6) I start 

earlier if I have to drive an unfamiliar route; (7) I try to be at the airport at the latest possible 

time; (8) Reoccurring rituals give me a feeling of control and security; (9) I prefer to organize 

my holidays spontaneously; (10) I prefer a clearly structured, repetitive daily schedule. The ten 

6-level Likert-scale questions on environmental values are: (1) I worry about environment 

problems; (2) Too much attention is paid to environmental problems; (3) Environmental 

problems are exaggerated; (4) The risk of the greenhouse effect is exaggerated; (5) I am 

optimistic regarding the state and future of our environment; (6) Environmental pollution affects 

my health; (7) Environmental problems have consequences for my life; (8) I can see with my 

own eyes that the environment is deteriorating; (9) Environmental problems are a risk for the 

future of our children; (10) Environmental protection costs too much. 
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7.2.2 Travel day simulation  

Each respondent was presented with eight scenarios featuring a trip characterized by the 

following variables: gasoline price, planned travel distances, charging stations along the trip, the 

characteristics of the charger at the destination, and the characteristics of the charging stations 

long the trip including charging price, charging power, how long it takes to drive to the charging 

station from the highway, and what facilities are available at this charging station. The scenarios 

were defined by the researchers and customized to the respondents according to the individuals’ 

self-reported BEV ranges and the design of the scenarios are described in detail in section 7.2.2.1 

and 7.2.2.2. For each scenario, the respondents were asked to choose which vehicle to use, and if 

they chose a BEV, to make charging decisions at each charging station. 

The reported range was used later in the survey to distribute the scenarios: when the 

report range is over 200 miles, then the scenarios customized to the respondents were based on 

their own BEV, however, when the range of the BEV is lower than 200 miles, the respondents 

were randomly assigned an imaginary BEV with a range from 250 miles to 400 miles and they 

were asked to make decisions based on this imaginary vehicle instead of their own BEV. The 

reasoning of doing this is to avoid asking the respondents to make decisions based on their own 

BEVs that are not practical for long-distance trips. The choice set of vehicles for respondents 

who had a BEV with range over 200 miles included all their own vehicles, and if they did not 

own a gasoline alternative, a rental car option with the rental price being specified in the scenario 

was provided. For respondents who did not own a BEV with range over 200 miles, the choice set 

of vehicles included an imaginary long-range vehicle with range being specified in the scenario 

and the other vehicles they own, and if they do not have a gasoline alternative, a rental car option 

was also included.  
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An interactive graphical interface and the experimental design of the scenarios are two 

key elements of the simulation design, which are described in the following two sections 

respectively. 

7.2.2.1 Display of the scenarios 

In this section, each respondent was presented with 8 scenarios pre-designed and 

customized according to the individuals’ PEV ranges. Considering it is intractable to present the 

respondents with complex scenarios that are plausible to every one of them without collecting a 

large set of information on their daily travel, instead of asking the respondents to make decisions 

for themselves, we ask them to give advice for individuals that are very similar to them: with the 

same background information. The reasoning is the same as described in section 5.1.2.1.   
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FIGURE 23 Introducing Jane 

Before starting the choice experiment, the respondents were shown an example of the 

long-distance trip that shows the key elements of the display of a scenario, as shown in FIGURE 

24. The items of information were displayed one by one in order to give the respondents time to 

absorb the information. Then the respondents could start the choice experiments by clicking the 

button ‘Ready for Simulation’.  
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FIGURE 24 Long-distance trip scenario example 

 

In each of the eight scenarios, the respondent was firstly presented with a specific long-

distance trip and asked to recommend a specific vehicle for the tour (Figure 25). The choice set 

of vehicles was the list that the respondent had previously said they own if one of their cars was 

a BEV with range over 200 miles. Otherwise, the low-range BEV was replaced with an 

imaginary BEV with the range of a random number between 250 to 400 miles specified in the 

scenario by the researchers. If the respondent selected a BEV for this long-distance trip scenario, 

they were then asked whether they would recommend charging at each station with the tour 

progressed (Figures 26) and if so, how much range they want to get from the station (Figure 27).  
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The presentation of information and solicitation of choices was designed to make the 

information tractable while reflecting the structure of the choice process in a real tour. If the 

respondent chose to use a BEV for the presented long-distance trip scenario, the survey tool 

stepped through station by station and asks the respondent to make charging decisions. As the 

tool stepped through the tour, additional information on the actual remaining range was revealed. 

In-use energy consumption on each individual trip was drawn from a distribution based on the 

respondent’s reported maximum and minimum ranges. As such, the amount of range 

“consumed” on a given trip could be greater or less than the nominal length of that trip, and the 

respondent would not know for sure how much range would be consumed until the end of that 

trip.  



133 
 

 

FIGURE 25 Vehicle choice 
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FIGURE 26 Charging choice 
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FIGURE 27: The remaining range after charging 
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FIGURE 28 Screenshot 5 of the survey tool: Indicate Jane made it to her destination 

Similar to the home-based tours, it was entirely possible in some cases for respondents to 

fail to complete a long-distance trip scenario according to their original plan on this survey 
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instrument. For example, if they selected not to charge at the station when the remaining range of 

the BEV was 100 miles and the distance until the next charging station was 98 miles, because of 

the uncertainty of energy consumption, the actual range consumed for the 98 miles drive could 

be more than 100 miles. This in real life, could be due to the change of driving behavior, weather 

conditions, traffic situation, or topography, etc. In the survey  tool, this translates into a randomly 

generated number from a triangular distribution based on the maximum and minimum range of 

the BEVs provided by the respondents: if the full range of the vehicle is relatively stable, for 

example always is 300 miles, then the range consumed for a 98 miles drive is 98 miles; if the 

maximum and minimum range  differ by a lot (250 miles and 300 miles), then the range 

consumed for a trip of fixed distance could vary greatly. Therefore, an uncertainty factor was 

constructed, as previously described in section 5.1.2.2 (𝜌𝑖 =
𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛

2×𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑
).  If the remaining range 

is lower than the distance to the next station or the trip destination (adjust according to the 

uncertainty factor), received a message saying “There isn’t enough electric range to get to the 

next charging station! Please continue with the next scenario!” and were taken to the next 

scenario. Not being able to reach the next station does not mean that one is stranded in real life, 

but there could be a few possibilities: (1) One has to make a mid-trip stop specially for refueling 

the vehicle; (2) One can adjust their driving behavior to conserve energy to make it to the next 

stop; (3) One has to turn down the heater/air conditioner to conserve energy; etc. Without 

specifying this in the survey tool, we leave it to the respondents to interpret the situation and 

during the modeling process, we evaluate the negative utility of having to deviate from the 

original plan instead of being stranded in the middle of a trip.  

 Interested readers are welcomed to check out a demonstration of the SP scenario at this 

link: http://ec2-34-216-252-211.us-west-2.compute.amazonaws.com/.   

http://ec2-34-216-252-211.us-west-2.compute.amazonaws.com/
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FIGURE 29 Screenshot 6 of the survey tool: When there is not enough electric range to get to the 

next charging station or home  
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7.2.2.2 Experimental design for long-distance tours 
 

The first step of the experiment design is to identify the factors that can influence the 

dependent variables of interest. The focus group discussion shows that the following factors are 

important variables that influence BEV owners’ choice of whether to use their BEVs for a long-

distance trip and where to charge the vehicles: the vehicle range, the distance of the long-

distance trip, the number of charging stations and the spacings between the stations,  the chargers 

at the destinations, and the characteristics of the charging stations long the trip: charging price, 

charging power, and the time it takes to access the charging station. The full list of attributes and 

levels are listed in Table 10.  

TABLE 10 Attributes and Their Levels of the Experiments for long distance trips  

Attributes  Variable  Description Attribute levels 

Number of charging 

stations  
𝑁𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠 The number of accessible 

charging stations on the 

way from the origin to the 

destination 

2; 4; 6; 8. 

Gasoline price ($)  𝑝𝑔𝑎𝑠 Gasoline price $2.50/gallon; $3.50/gallon; $4.50/gallon 

Charging price($/h)   𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 The recharging price at 

the station 

Free; $0.5/kWh; $1.00/kWh;  

Charging 

power(kW)   

𝑃𝑜𝑤𝑒𝑟 The maximum charging 

speed at the station 

50 kW; 100 kW; 150 kW; 300kW 

Access time of the 

charging station 

(min) 

𝑡𝑎𝑐𝑐𝑒𝑠𝑠 How many minutes of 

extra driving it takes to 

get to the charging station 

5 minutes; 15 minutes; 30 minutes 

Amenities 𝐴 The amenities available 

at the station  

3 levels: 

(1) No amenities 

(2) Restroom only 

(3) Cafeteria/restaurants, WiFi and 

restroom 

Destination chargers  The level of chargers at 

the destination 

3 levels: Level 1; Level 2; DCFC; 

 

 

The levels of gasoline price, charging price and level of destination chargers are based on 

the distribution or the possible range of these variables in real life. Because of the limitations of 

the experiment tool and in order to reduce the response burden, I applied two simplifications: the 
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distance of the long-distance trip is assumed to be fixed as 800 miles, the number of charging 

stations are of four levels: 2, 4, 6, and 8. The spacings between the stations are relatively even 

but are perturbed by a random number from -20% to 20%. For example, the example shown in 

Figure 29 of section 7.2.2.1, has two charging stations and the distances of each trip leg are 

respectively 265, 236 and 305 miles. Chargers with the power of 150 kW is not available in the 

market right now but will be deployed in some places in the US in the near future. Chargers with 

300kW are to be development in the future but it is included in the experiment to even though it 

could be far away from reality. I choose to use the access time instead of the distance to the 

chargers to avoid confusion related to the travel time due to the different of traffic situations in 

different areas.  

Similar to the experiment design of the home-based tours described in section 5.1.2.2, I 

used D-optimal design to select the best subset of the scenarios. For this study, the experiment 

scenarios are generated based on the function optFederov in the R package AlgDesign (78). The 

function takes the input of the full list of factorial experiments and the number of trials that need 

to be generated (nTrials). It generates a fixed number of scenarios (nTrials) that have the highest 

determinant of the Fisher’s information matrix. The design is blocked according to the high 

vehicle range group (for respondents with BEVs with range over 200 miles) and low vehicle 

range group. For the respondents who do not own a high range vehicle (low vehicle range 

group), instead of asking them to make suggestions based on their own vehicles, I provided a 

hypothetical BEV with range being a random number from 200 miles to 400 miles to replace the 

original vehicle.  

For each scenario, at the beginning of the travel day, the state of charge (SOC) is 

assumed to be 100%, which is justified because most people charge their EVs whenever they get 
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home.  Remaining range is the amount of electric range left for the PEV when respondent i 

arrives at one station t. The survey tool calculates the remaining range at each station by 

estimating the energy consumption of each trip based on the vehicle specific information 

reported by the respondents. In real life, the range consumed of a certain distance of driving is 

uncertain due to driving habits, traffic condition and weather conditions, etc. This uncertainty of 

the range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑) for distance l is considered by generating a random number 

according to the maximum and minimum range reported by the respondents, see equation (105).  

      𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑙 + 𝑙 ∗ 𝛼 ∗ 𝜌𝑖                                                            (105) 

Random variable 𝛼 is generated based on triangular distribution with maximum value of 1, 

minimum value of -1 and median value as 0. 𝜌𝑖 is defined as the uncertainty factor based on the 

reported maximum (𝑟𝑚𝑎𝑥) and minimum summer (𝑟𝑚𝑖𝑛) full range, as shown by equation (106).   

𝜌𝑖 =
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛
2 × 𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

                                                         (106) 

When the respondents do not own an ICEV, the option “rent a car” is presented to for the 

scenarios. The rental cost (𝑐𝑟𝑒𝑛𝑡𝑎𝑙) is a random value from $30 to $100. 

7.3 Data for long-distance trips  

 

The survey on long-distance tours was conducted during September to October 2018. The 

respondents were recruited mostly through the Electric Auto Association (EAA) and Plug-in 

America, whose members are generally enthusiastic about electric vehicle technology and related 

research, and willing to participate into the survey without any extrinsic incentives. There were 

in total 309 PEV respondents, 267 of whom completed the full survey. A descriptive analysis of 
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the sample is shown in Table 2. 80% of the respondents were male. The reported household 

income among the respondents is higher than average, with around 39% of respondents reporting 

a household income over $140,000. More than 69% of the respondents have at least Bachelor’s 

degree. Among the respondents who completed the survey, 117 of the respondents own high 

range BEVs (BEVs with more than 200 miles of range) and 150 of the respondents do not own 

high range vehicles. The respondents were from different regions in the US with majority from 

the east and west coasts, which reflects the distribution of the PEV owners in the country. 

TABLE 11 Description of the Sample 

Variabl
e 

Category Sample 
Frequency 

Sample 
Percentage  

Variable Category Sample 
Frequency 

Sample 
Percentage  

Age 18-24 6 2% Household 
Income 

<$19,999 15 5% 

25-44 72 24% $20,000-
$39,999 

18 6% 

45-55 85 28% $40,000-
$59,999 

33 11% 

55-65 88 29% $60,000-
$79,999 

30 10% 

65+ 51 17% $80,000-
$99,999 

27 9% 

Male 242 80% $100,000-
$119,999 

27 9% 

Gender Female 60 20% $120,000-
$139,999 

18 6% 

Educati
on 

High School or less 18 6% $140,000-
$159,999 

24 8% 

Some College 40 13% $160,000-
$179,999 

63 21% 

2-Year College 
Degree (Associates) 

37 12% $180,000-
$199,999 

18 6% 

4-Year College 
Degree (BA, BS) 

96 31% >$200,000 27 9% 

Master’s Degree 80 26% PEV 
ownership 

High range 
(>=200 mi) 

117 44% 

Doctoral Degree 37 12% Low range 
(<200 mi) 

150 56% 
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Figure 30 Geographic distribution of the respondents 

The attitudinal variables, particularly those on the environmental values and risk-taking 

propensity are likely to be significant predictors of whether to use BEVs for long-distance trips 

and whether to charge at the charging stations. Ten Likert-scale questions are included in the 

questionnaire section on social demographic information to capture the environmental values and 

risk-taking propensity respectively. It is not practical to include the results of each question in the 

models. Therefore, I used factor analysis to reduce the dimensionality and extract the latent 

factors to use for the models. The factor analysis was conducted in R, using the fa function from 

psych package. To increase the robustness, I explored the data with multiple factor analysis 
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models using different rotation and factor extraction methods. The scree plots indicate that the 

number of latent factors should be between 2-4. I chose the model with 2 latent factors as the 

questions are essentially of two dimensions: the environmental values and the risk-taking 

propensity score. The loadings of the questions on the two factors are shown in TABLE 12. The 

cumulative variance explained by the two factors is 0.34. 

 

Figure 31 Number of factors for the attitudinal variables  
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TABLE 12 The loadings of the factors  

Questions Factor 1 - 
environmental values  

Factor 2 - risk-taking 
propensity 

(1) I don’t mind taking the latest possible public transport 
connection to the airport;  

-0.174 0.193 

(2) I would go on a two-week vacation in a foreign country 
without booking ahead; 

-0.113 0.486 

(3) I would drive my EV without planning out the charging 
on the way;  

0.042 0.226 

(4) I start earlier if I assume that there will be congestion 
on my route;  

-0.132 -0.416 

(5) If I don't know the way I just start into the general 
direction and search my way step by step; 

0.062 0.484 

(6) I start earlier if I have to drive an unfamiliar route;  -0.074 -0.522 

(7) I try to be at the airport at the latest possible time;  0.094 0.461 

(8) Reoccurring rituals give me a feeling of control and 
security; 

0.042 -0.336 

(9) I prefer to organize my holidays spontaneously; -0.084 0.546 

(10) I prefer a clearly structured, repetitive daily schedule 0.074 -0.452 

(1) I worry about environment problems;  0.557 0.025 

(2) Too much attention is paid to environmental problems;  -0.841 -0.007 

(3) Environmental problems are exaggerated;  -0.807 0.130 

(4) The risk of the greenhouse effect is exaggerated;  -0.783 0.168 

(5) I am optimistic regarding the state and future of our 
environment; 

-0.479 -0.012 

(6) Environmental pollution affects my health; 0.342 0.131 

(7) Environmental problems have consequences for my 
life;  

0.502 0.101 

(8) I can see with my own eyes that the environment is 
deteriorating;  

0.743 0.051 

(9) Environmental problems are a risk for the future of our 
children;  

0.844 -0.013 

(10) Environmental protection costs too much -0.777 -0.001 
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8 Analyses of Long-Distance BEV Trips 

8.1 Analysis 4: Vehicle choices for long-distance trips  

Summary 

Enabling BEV for long-distance trips is not only important for improving the mobility 

quality of current BEV owners, but also essential for boosting mainstream adoption of BEVs as 

DCFCs allow BEVs to be used for nearly all trips, catapulting the BEV from commuter-car 

status to the primary household vehicle. Therefore, it is important to study how BEV users make 

decisions on whether to choose their BEVs for a long-distance trip. The data for this paper are 

from a stated choice experiment where the respondents were first presented with long-distance 

trip scenarios characterized by planned distances, gasoline price, number of charging stations, 

and the characteristics of each charging stations, and then asked to give advice on vehicle 

choices and if a BEV was chosen, whether to choose to charge at each station as the trip 

progressed. The results of the latent class regression model on the vehicle choices for long-

distance trips show that gasoline cost of the ICEVs, the relative distance of the trip compared to 

the range, the relative maximum spacing compared to the vehicle range, and the destination 

chargers are all important enablers of long-distance BEV trips. Both increasing vehicle range and 

the density of the charging network are important for encouraging BEV owners to use their 

BEVs for long-distance trips – one does not substitute another.  

8.1.1 Introduction 

Even though BEV stock has been increasing rapidly in the US, it still takes only a small 

proportion of the vehicle ownership. Using BEV for long-distance is still a rare case among the 

BEV users and this topic has not been studied empirically – the only few “case studies” that are 

available now are some unofficial blog posts by some dedicated BEV enthusiast who have one or 
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a few experiences of using BEVs for road trips. However, with more high range BEV models 

entering the market and more DCFCs being deployed nationwide, this is likely to change. 

Enabling BEV for long-distance trips is not only important for improving the mobility quality of 

the current BEV owners, but also essential for boosting mainstream adoption of BEVs (81, 82). 

The National Research Council and Transportation Research Board (83) see DCFC on long-

distance travel corridors as occupying a small but important niche, serving relatively few 

charging events but being critical in those cases. By enabling rapidly recharging in the middle of 

a trip, DCFCs are essential for the transition of BEVs from commuter-cars to primary household 

vehicles by allowing BEVs to be used for nearly all trips (83). The design of DCFC charging 

network is intrinsically tied to the behaviors and choices of individual vehicle owners since a 

system cannot be optimized effectively without a clear understanding of the users’ preferences, 

and “an understanding of fast charging station choice behavior is of paramount important in 

knowing how EV users trade off the relevant fast charging infrastructure to accelerate EV market 

growth” (83). The two important questions about the users’ preferences when it comes to using 

BEV for long-distance trips are (1) Will someone use their BEV or an alternative vehicle for a 

long-distance trip, given charging opportunities along the way? (2) When using their BEV, when 

and where do they choose to charge? In this section, I aim to answer the first question.  

The only research work on BEV for long-distance trip (84) reported four focus group 

discussions. The respondents of these discussions were mostly not EV owners. It was found that 

the following aspects might be relevant to BEV use for long-distance trips: (1) the range of the 

vehicle; (2) the density of the charging stations grid, and (3) the attractiveness of the places 

where the charging stations are located: a service area and a simple parking lot off the highway 

could be significantly different. The focus group discussion among BEV owners I conducted also 
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shows that when deciding whether to use BEVs for a long-distance trip, BEV owners currently 

consider the distance of the trip relative to the vehicle range, whether there are enough chargers 

along the trip, whether there are facilities at the charging stations, and also whether there are 

chargers at the destinations, as described in detail in section 7.1.  

For home-based trip tours, the vehicle choice decisions and charging choices are estimated 

jointly (see section 6.1). However, for long-distance trips, according to the focus group 

discussion, the decision processes are different for the two stages: the vehicle choice decisions 

mainly depend on the trip level characteristics, such as the distance of the trip relative to the 

vehicle range, and the distances between charging stations relative to the vehicle range. The 

detailed characteristics of the charging stations are only considered for charging choices, but not 

for the vehicle choice decisions. In this section, based on the data collected from the choice 

experiment on long-distance BEV trips, I built latent class logistic regression models to 

understand how BEV owners make decisions on which vehicle to use for a long-distance trip 

given trip characteristics, vehicle specifications, and the characteristics of the charging stations 

along the trip.  

8.1.2 Variables and model specification  
 

Latent class logistic regression model is used for this analysis. The model framework is 

described in detail in section 4.3.2. 

8.1.2.1 Variables for the main model  

The focus group discussion shows that when deciding whether to use a BEV for a long-

distance trip, BEV owners currently consider the distance of the trip relative to the vehicle range, 

whether there are enough chargers along the trip, and whether there are chargers at the 
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destinations. Therefore, the following factors of the BEVs and the trips are considered for the 

model:  

(1) the relative distance of the trip (𝐿/𝑟𝑓𝑢𝑙𝑙): the distance of the long-distance trip (L) divided 

by the full range of the BEV (𝑟𝑓𝑢𝑙𝑙); 

(2) the relative size of the biggest station spacing (Max_Spacing/𝑟𝑓𝑢𝑙𝑙): the largest distance 

from one station to the following station (Max_Spacing) divided by the full range of the 

BEV (𝑟𝑓𝑢𝑙𝑙);  

(3) the furthest restroom break (𝑙𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚𝑠): the largest distance from one station with 

restroom to the next on the trip route;  

(4) whether there will be restaurants near the stations (𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑠 ): it is a dummy 

variable with 1 representing there are restaurants near the stations, and 0 otherwise; 

(5) the type of the destination chargers (𝐷𝑒𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑟): there are three different destination 

charger types: L1 (1.4 kW), L2 (6.6kW), and DCFC (50 kW).  

For ICEVs and RENT options, the gasoline cost is calculated according to the fuel 

economy (mpg) of the respondent’s gasoline car (average fuel economy as 25 mpg for the rental 

cars), the gasoline price (𝑝𝑔𝑎𝑠) specified in choice experiment scenario, and the planned distance 

(𝐿) of the travel day. 

𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣 =
𝐿

𝑚𝑝𝑔
∗ 𝑝𝑔𝑎𝑠                                                      (107) 
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8.1.2.2 Variables for class allocation model  

The variables included in the class allocation model are the age, household income, years 

of EV ownership, and the environmental value factor and risk-taking propensity factor obtained 

from section 7.3.  

8.1.2.3 Model specifications  

The utility functions of ICEVs and RENT are based on the costs, as shown by equation 

(108) and (109). The utility function of BEVs are based on the focus group discussion as 

described earlier in section 8.1.1. The reference level of the type of the destination chargers 

(𝐷𝑒𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑟) is L1, which is assumed to be always available.  

𝑢𝑖𝑐𝑒𝑣𝑖 = 𝜃1 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑖𝑐𝑒𝑣 + 𝜀𝑖𝑐𝑒𝑣𝑖                                                    (108) 

𝑢𝑟𝑒𝑛𝑡𝑖 = 𝜃2 ∗ 𝐶𝑟𝑒𝑛𝑡𝑎𝑙𝑖 + 𝜃3 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡𝑖,𝑟𝑒𝑛𝑡 +  𝜀𝑟𝑒𝑛𝑡𝑖                                    (109) 

𝑢𝑏𝑒𝑣𝑖 = 𝜃4 ∗
𝐿

𝑟𝑓𝑢𝑙𝑙
+ 𝜃5 ∗

MaxSpacing

𝑟𝑓𝑢𝑙𝑙
+ 𝜃6 ∗ 𝑙𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚𝑠 + 𝜃7 ∗ 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑠 + 

𝜃8 ∗ 𝐷𝑒𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑟(𝐿2) + 𝜃9 ∗ 𝐷𝑒𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑟(𝐷𝐶𝐹𝐶) + 𝐴𝑆𝐶_𝐵𝐸𝑉 +  𝜀𝑟𝑒𝑛𝑡𝑖       (120) 

8.1.3 Results 

8.1.3.1 Overview of the results 

I estimated a series of latent class models with different number of latent classes and 

chose the one with the best goodness of fit according to the BIC values. The final model, as 

shown in TABLE 13, identifies three latent classes. The Null deviance of the model is 1082 and 

residual deviance is 493. The pseudo R-squared of this model on vehicle choice is 0.54. 

According to the membership probabilities, the overall share of class 1-3 are respectively 

11%, 31% and 58%. The alternative specific constants for BEV (ASC_BEV) show with all the 
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other variables being zero, the default modes of class 2 and class 3 are both BEVs and the default 

mode for class 1 is ICEV or RENT. The estimates of the class allocation model show that the 

years of ownership and environmental value factor are significant predictors of the class 

membership. Those with more experience of driving an EV (higher years of EV ownership) are 

more likely to fall into class 2 and class 3. They are more likely to choose BEVs for a long-

distance trip with other variables being zero than more recently EV adopters. Those with high 

environmental values are more likely to fall into class 3 and more likely to use BEVs as the 

default choice for their long-distance trips.  

TABLE 13 Model results of BEV owners’ vehicle choice for long-distance trips  

 Class 1 Class 2 Class 3 

Main model Est. P-value Est. P-value Est. P-value 

ICEV: gas cost ($)𝜃1 -0.017 0.000 -0.017 0.000 -0.040 0.000 

RENT: cost ($)𝜃2 -0.014 0.395 -0.015 0.179 0.059 0.010 

RENT: gas cost ($)𝜃3 -0.020 0.012 -0.012 0.021 -0.075 0.000 

BEV: relative distance (
𝐿

𝑟𝑓𝑢𝑙𝑙
) 𝜃4  

-0.443 0.352 -0.585 0.019 -1.659 0.002 

BEV: relative max spacing (
MaxSpacing

𝑟𝑓𝑢𝑙𝑙
) 𝜃5 

-2.142 0.037 -6.013 0.000 -9.342 0.000 

BEV: furthest restroom break (miles) 𝑙𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚𝑠 𝜃6 0.002 0.315 -0.001 0.197 0.002 0.271 

BEV: Restaurants  𝜃7 0.163 0.801 -0.396 0.240 0.197 0.688 

BEV: Des charger (Level 2) 𝜃8 0.946 0.071 1.015 0.000 -0.748 0.141 

BEV: Des charger (DCFC) 𝜃9 0.358 0.546 1.068 0.001 1.428 0.039 

BEV: ASC_BEV -2.691 0.071 4.637 0.000 11.184 0.000 

Membership probability  11% 31% 58% 

Class allocation model  Est. P-value Est. P-value Est. P-value 

Age - - 0.01 0.83 0.01 0.60 

Household income level  - - -0.01 0.95 -0.01 0.86 

Years of EV ownership - - 0.03 0.00 0.05 0.00 

Environmental value factor - - 0.21 0.41 0.66 0.02 

Risk taking propensity factor - - -0.09 0.82 0.09 0.83 
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8.1.3.2 Effects of gasoline price 

All the three classes show that both gasoline cost of ICEV and RENT are significant 

predictors of vehicle choice, which is quite different from the results of the models on home-

based tour. This could be due to the fact that the gasoline cost for long-distance tours are 

significantly higher than home-based tours: gasoline price change from $2.50 to $4.00 might not 

lead to a big change in gasoline cost for a 30 miles trip, but rather large for an 800 miles trip for 

some BEV owners. The effect size of gasoline price on BEV owners’ decision on the vehicle to 

use for a long-distance trip is heterogeneous among the three classes. When the maximum 

spacing of charging stations is 100 miles and the fuel economy of the ICEV is 20 miles per 

gallon, the impact of gasoline price on the probability of a BEV being chosen for an 800 miles 

road trip is displayed in Figure 32 for the three classes respectively. It shows that when the 

charging network is dense, the effect size of gasoline price on the probability of BEV being 

chosen is little for both class 2 and class 3. Increasing gasoline price can help encourage those in 

class 1 to use BEVs for long-distance trips.  

 

Figure 32  The influence of gasoline price on the probability of choosing BEV for long-distance trips  
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8.1.3.3 Effects of range and charging network 

For all three classes, the relative distance and relative maximum spacing are significant 

predictors of the BEV owners’ vehicle choice. Relative distance, as specified as the trip distance 

divided by the vehicle range, directly reflects the minimum number of charging events needed 

for this trip and indicates the importance of battery size, whereas relative max spacing, as 

specified as the maximum spacing between two consecutive stations, indicates the importance of 

the density of the charging network. Both increasing the battery size and increasing the number 

of charging stations can help enable BEV long-distance trips, as shown both by the model and by 

the focus group discussion, however, the relative significance of these two factors are different 

for the three classes. Comparing the relationship of the coefficients of the relative distance and 

relative maximum spacing, those in class 2 value the station density more heavily than those in 

the other two classes.  

Based on the final model, for imaginary individuals that own an ICEV with the fuel 

economy of 20 miles per hour and a BEV, the impact of maximum charging station spacing and 

BEV range on the probability of using BEV for an 800 miles trip when the gasoline price is $3 

per gallon can be found in Figure 33. For those in class 1, the probability of using BEV can only 

be increased to a little over 0.20 when the vehicle range is 500 miles and maximum spacing 

between charging stations is less than 100 miles. According to the class allocation model, these 

BEV owners are relatively newer adopters with lower environmental values. BEV owners in 

class 3 are relatively earlier adopters than class 1 and class 2 and who have the highest 

environmental values. The impact of the density of charging network on BEV owners in class 2 

is highest among the three groups. For class 2, when the range of the BEV is 300 miles and the 

charging station spacings are smaller than 150 miles, the probability of the BEV being chosen for 
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the trip is over 90%, same with when the BEV range is 500 miles and the charging station 

spacings are smaller than 350 miles.  

 

Figure 33 The influence of BEV range and maximum station spacing on the probability of choosing BEV 

for a long-distance trip  

The EV market and infrastructure development need to consider the heterogeneity of the 

consumers. A vehicle with 500 miles of range might be particularly attractive to some potential 

EV adopters, like those in class 3, whereas other consumers might think it is necessary and 

enjoyable to take a break while charging after 300 miles (4 hours) of driving so having 500 miles 

in the pack might be a type waste, especially considering the high cost of EV batteries. Even if 

the battery technology develops rapidly in the future and the majority BEV models have 500 

miles of range or more, it is important to know that the density of the public charging network 

can still play an important role in encouraging BEV use for long-distance trips.  
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8.1.3.4 Effects of amenities and destination chargers 

All the three classes show that the variable furthest restroom break (the longest distance 

from one station with a restroom to the next on the trip route) and restaurants (whether there is a 

restaurant around at least one charging station) are not significant predictors of the vehicle 

choices for BEV owners’ long-distance trips. Destination chargers are rather important for those 

in class 2 and class 3, which shows that in order to encourage the BEV use for long-distance 

trips, it is necessary to install Level 2 or Level 3 chargers at the popular destinations or long-

distance trips, for example hotels. Having Level 2 chargers and DCFCs installed are also likely 

to help attract customs for the hotels or businesses. 

8.1.4 Conclusions and discussions  

This analysis identifies a latent class logistic regression model for understanding BEV 

owner’s vehicle choice for long-distance trips. It shows that the gasoline cost of the ICEVs, the 

relative distance of the trip compared to the range, the relative maximum spacing compared to 

the vehicle range, and the destination chargers are all important enablers of long-distance BEV 

trips. Therefore, the possible measures to encourage BEV owners to choose their BEV for long-

distance trips include the increase of gasoline price, bigger battery pack size, more public 

charging stations, and more coverage of Level 2 or DCFC charging stations at the hotels at the 

popular destination of long-distance trips. The model highlights the heterogeneity of the vehicle 

choice decision among BEV owners, which is important for both the EV market and the planners 

of charging infrastructure. Even if the battery technology develops rapidly in the future and the 

majority BEV models have 500 miles of range or more, it is important to know that the density 

of the public charging network can still play an important role of encourage vehicle use for long-

distance trips. This model on the consumers’ preference could be useful for the decision-makers 
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in network design and planning of the charging facilities and investment of DCFC charging 

facilities. 

8.2 Analysis 5: Charging choices for long-distance trips   

Summary 

Understanding BEV users’ preferences and decision mechanisms of charging choices are not 

only important for the design and planning of DCFC network, but also for the decision-making 

in DCFC investment. The data for this analysis are from a stated choice experiment where the 

respondents were first presented with long-distance trip scenarios characterized by planned 

distances, gasoline price, number of charging stations, and the characteristics of each charging 

stations, and then asked to give advice on vehicle choices and if a BEV was chosen, whether to 

choose to charge at each station as the trip progressed. The charging choices are analyzed using 

both static discrete choice models and dynamic discrete choices models that account for the 

intertemporal payoff. The results show that battery state of charge (SOC) and whether the 

vehicle can reach the next station with the remaining range without deviating from the original 

plan (Deviation) are the primary factors contributing to the charging decisions. The 

characteristics of the charging stations, including charging cost, charging time, the time it takes 

to get to the station, and the amenities near the station are significant predictors, but contribute 

little to the model’s predictive power. This is likely because when the charging network is not 

dense enough, BEV drivers tend to act in a ‘survival mode’ when they make charging decisions 

with the priority of making it to the destination and the considerations of the charging station 

characteristics only happen when the charging network is dense enough. The comparison of the 

SDCMs and DDCMs shows that SDCMs fit the model better than the more complicated 

DDCMs. This result might change when the density of charging network is higher, and the BEV 
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users can not only make it to the destination reliably, but also can compare charging stations 

along the way based on the price, accessibility, etc (the “thrival mode”).  By comparing the 

relative size of the coefficient estimates, I also showed the monetary value of Deviation, 

charging power, moving the charging stations closer to highway exits, and having amenities such 

as restrooms, restaurants, and WiFi near the charging stations. The negative cost of deviating 

from the original plan is $244 for long-distance trips, much higher than it for home-based trips 

($24).  

8.2.1 Overview  

In the literature, relatively little charging behavior research has focused specifically on fast 

charging, although it is increasingly understood that fast charging represents a distinctive use 

case. One exception is work by Sun, Yamamoto, and Morikawa (30, 42), who have approached 

the problem in two different ways. One of their approaches was to model the state of charge at 

the beginning of charging activities (30). However, this suffers the same weakness as approaches 

based on hazard models (46, 85), namely that modeling the start of charging in a continuous 

variable space (i.e. time or SOC) does not reflect the physical reality that drivers can only choose 

to charge at those distinct times when they encounter a charging station. Their second approach 

was using mixed logistic regression model to study drivers’ choices from among sets of feasible 

fast-charging stations, given information on SOC, detour distance, and cost, among other factors 

(86). By focusing on charging choices among discrete charging stations, this latter approach 

more accurately reflects the manner in which drivers encounter charging opportunities in the real 

world. However, this study is focused on one specific scenario where only one mid-trip charge is 

needed, which does not apply to long-distance trips where multiple chargers are needed.  
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As indicated by the choice experiment, I treat the charging choice at each charging station as 

a binary variable, but the choices between two stations could be dependent, as in the charging 

decision can also be influenced by the characteristics of the future charging choices. DDCM 

assumes that the decisions are made based on not only the current utility but also the expected 

utility at the future decision period. In this analysis, I estimate and compare a series of discrete 

choices model based on a series of decision heuristics, from simple to more complex. The 

following static discrete choice models (SDCM1) based on conditional logistic regression model 

framework are tested:  

Heuristic 1 (SDCM1): the decision of charging only depends on the state of charge, as how 

much energy is left in the battery pack; 

Heuristic 2 (SDCM2): the decision of charging depends on state of charge, and also whether 

the driver can get to the next station without deviating from the original route plan; 

Heuristic 3 (SDCM3): the decision of charging depends on the state of charge, whether the 

driver can get to the next station without deviating from the original route plan and the time since 

the last stop, as in the time in car since the most recent stop; 

Heuristic 4 (SDCM4): Besides the variables considered by SDCM3, BEV drivers also 

consider the characteristics of the charging stations, such as the charging cost, the charging time, 

the time it takes to access the station, and the amenities at the charging station.  

These four SDCMs based on simple heuristics are compared with four DDCMs. DDCMs 

assume that the charging decision at one station does not only depend on the characteristics of 

this current station but also the characteristics of the following stations: as in the decision-makers 

are forward-looking. In this analysis, the first three of the four DDCMs assume that BEV drivers 
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consider the characteristics of the next one station, next two stations, and next three stations 

respectively, and the fourth DDCM assumes that the characteristics of all and only the future 

stations in one plan unit are considered. The plan unit at station t refers to the collection of the 

stations that can be reached without charging based on the average energy consumption rate. For 

example, when the current remaining range of the vehicle is 100 miles, and there are four 

charging stations along the next 100 miles of the planned route, then the plan unit at the station t 

includes all these four stations and the driver is assumed to consider the characteristics of these 

four and only these four future stations when deciding whether to charge at the current station.  

The comparison of the SDCMs and the DDCMs show whether the BEV drivers are forward-

looking when making decisions on charging, and the comparisons among the four DDCMs show 

how forward-looking they are: how many future stations they are likely to consider. The results 

of this analysis can inform the decision-making and support the analyses on planning of intercity 

charging infrastructure network.  

8.2.2 Specifications of the models 

The model frameworks and estimation processes of the SDCMs and DDCMs are 

described in detail in section 4.3.2 and section 4.3.3. The following two sub-sections are on the 

variables and the model specifications.  

8.2.2.1 Variables and specification of the static discrete choice models (SDCMs) 

(1) State of Charge (𝑆𝑂𝐶𝑡) 

𝑆𝑂𝐶𝑡 indicates the state of charge at station t, which equals to the remaining range divided 

by the full range of the BEV. It does not only influence the amount of energy the vehicle can 

gain at a charging station but also the charging speed, as shown in Figure 34. After reaching 
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80%, the charging speed decreases significantly: the time for charging from SOC of 20%  to 

SOC of 80% is about the same from 80% to a full charge. The distribution of SOC at the 

beginning of the charging events from our experiment also shows that that most drivers choose 

to charge at a relatively lower SOC level (Figure 35).  

 

Figure 34: charging curve for Tesla Model S (87) 
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Figure 35: The percentage of charging with the change of the remaining range 

(2) Time since last charge (𝐻𝑜𝑢𝑟𝑠𝑡) 

Time since last charge shows the time since the last stop for charging. It could be a 

significant predictor of charging choices since it reflects whether the driver has the need to stop 

for a break while charging at the same time. During the focus group discussion, a few 

respondents also mentioned that sometimes the primary goal of stopping at a charging station is 

to rest, and they choose to add some range to their cars at the same time if possible.  

(4) Deviation (𝐷𝐸𝑉𝑡) 

Deviation shows whether BEV drivers need to deviate from the original plan if they choose 

not to charge. It is calculated according to relationship between the remaining range of the 

vehicle upon arriving at one station and the distance to the next charging opportunity. When the 

remaining range is larger than the distance to the next charging station, DEV equals to one, 

otherwise it is 0.  

In real life, Deviation from the original plan on a long-distance trip does not necessarily 

mean that BEV drivers are stranded in the middle of trip. Instead, it could mean that the BEV 

driver needs to change his/her driving behavior to reduce energy consumption in order to reach 

the next charging opportunity or having to find a charger off the original trip route. In the survey 

tool, when the remaining range of the vehicle is not enough to reach the next charging station, 

we indicated that this experiment is over by showing the respondents “There isn’t enough 

electric range to get to the next charging station! Please continue with the next scenario!”. 

Different respondents with different EV experience level are likely to have different 

interpretations of Deviation. Instead of specifying the meaning of it, we leave it to the 
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respondents’ understanding and imagination and try to capture the average effect of all of these 

different possibilities in the modeling process.  

(5) Charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡
) 

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡
 is calculated as the charging cost to reach to a full range, which is decided by the 

remaining range upon arriving at station t (𝑟𝑟𝑡), the full range of the vehicle (𝑟𝑓𝑢𝑙𝑙), the energy 

consumption rate (ECR) of the BEVs, and the charging price specified in the choice experiment 

scenario (𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡
), as shown by equation 121.  

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡
= (𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑡) × 𝐸𝐶𝑅 × 𝑝𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡                                     (121) 

(ECR: Average electricity consumption rate in kWh / mile) 

(6) Charging time (𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡
) 

𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 is calculated as the charging time to reach to a full range at a station. It is 

calculated based on the full range, the remaining range, the energy consumption rate, and the 

charging power at station t (𝑃𝑜𝑤𝑒𝑟𝑡).  

𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = (𝑟𝑓𝑢𝑙𝑙 − 𝑟𝑟𝑡) ×
𝐸𝐶𝑅

𝑃𝑜𝑤𝑒𝑟𝑡
                                              (122) 

(ECR: Average electricity consumption rate in kWh / mile) 

Besides these six variables, the following variables specified in the scenarios are 

also included in the models: the time to access the charging stations (Access time) and the 

amenities at the stations – whether there is a restroom, restaurant, and WiFi.  The utility of 

charging at station t is then the linear combination of these variables, and the system 

component of the utility of not to charge at station t only includes deviation (𝐷𝐸𝑉𝑖𝑡 ).  
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𝑢𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡
= 𝜃0 + 𝜃1 ∗ 𝑆𝑂𝐶𝑖𝑡 + 𝜃3 ∗ 𝐻𝑜𝑢𝑟𝑠 + 𝜃4 ∗ 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡

+ 

𝜃5 ∗ 𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡
+ 𝜃6 ∗ 𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑡 + 𝜃7 ∗ 𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚𝑖𝑡 + 𝜃8 ∗ 𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑚𝑜𝑟𝑒𝑖𝑡 +  𝜀𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡

            (123) 

𝑢𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡
= 𝜃2 ∗ 𝐷𝐸𝑉𝑖𝑡 + 𝜀𝑛𝑜𝑡 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑡

                                                                                                                                          (124) 

8.2.2.2 Variables and specification of the DDCMs 

The derived variables in section 8.2.2.1 are also included in the DDCMs. The 

essential difference between the DDCMs and the SDCMs for the charging choices is that on 

top of the current utility specified according these variables, the decision is also based on 

the utilities of the future stations. Since the energy consumption, as in the values of the 

remaining range are not certain in the future stations, the future utilities, which are based 

on the remaining range at the future stations, cannot be known for sure, but the expected 

future utilities can be calculated based on an assumption about the distribution of energy 

consumption.  

The remaining range upon arriving at stop t+1 (𝑟𝑟𝑖,𝑡+1) equals the remaining range upon 

arriving at stop t (𝑟𝑟𝑖𝑡 ) plus the range obtained at the stop t (𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑡), minus the range 

consumed on the way from stop t to stop t+1 (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡 ), as expressed in the following 

equation. For this analysis, 𝑟𝑟𝑖𝑡 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑡 is assumed to be equal to the full range, as in the 

whenever the drivers stop for charging, the vehicles are charged to a full range.  

𝑟𝑟𝑖,𝑡+1 = 𝑟𝑟𝑖𝑡 + 𝑟𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑡 − 𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖𝑡                                              (125) 

The range consumed (𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 ) for a certain distance is uncertain due to factors such as 

road and traffic conditions, which create variation in actual per-mile energy consumption. 

Variability in range consumed leads to uncertainty of the remaining range upon arriving at 

subsequent charging stations. The distribution 𝑔(𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖,𝑡 |𝑙𝑖𝑡) models the BEV users’ belief 
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about the range consumed for driving the distance from station t to station t+1:  𝑙𝑖𝑡 and it is 

assumed to dependent on the BEV’s uncertain factor of energy consumption (𝜌𝑖) as described in  

section 7.2.2.2. When the maximum range and minimum range reported by the respondent differ 

greatly, then the uncertain factor 𝜌𝑖 is bigger. When the maximum range and minimum range 

reported by the respondents are equal to each other, then it is assumed that the range 

consumption for a certain distance is rather consistent for this vehicle, as in 𝜌𝑖 equals 0. In this 

case, the energy consumption for the given distance 𝑙𝑖𝑡 is equal to 𝑙𝑖𝑡.  

As explained in 8.2.1, the expected future utility of station t is calculated according to 

different number of future stations for the four DDCMs: DDCM1 only considers the next station, 

DDCM2 considers the following two stations, DDCM3 considers the future three stations, 

whereas DDCM4 considers all the stations that the vehicle is likely to be able to reach without 

charging, as in the plan unit of the current station.  

8.2.3 Results 

8.2.3.1 General overview of the estimates 

The results of the four models based on static conditional logistic regression model (SDCM 

1-4) and four dynamic discrete choice models (DDCM 1-4) are shown in Table 14. These models 

consistently show that the following variables are significant predictors of charging choices of 

BEV drivers on a long-distance trip and the directions of the effect is consistent with intuition: 

(1) when the state of charge of the battery (SOC) is lower, the driver is more likely to choose to 

charge; (2) whether the driver can get to the next station without deviating from the originally 

planned (Deviation) is negatively associated with the probability of charging; (3) charging cost at 

a the station is negatively correlated with the probability of charging; (4) charging time at the 

station is negatively correlated with charging; (5) Access time, as in the time it takes to get to a 
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station, is negatively correlated with charging; (6) the amenities at the station, specifically 

restrooms, dining facilities, and also WiFi can increase the probability of charging . The 

reference level of the variable Amenity is no amenity at all. Having a restroom alone does not 

significantly influence the charging choices of the BEV drivers.  Time since the last charge, as in 

how long the driver has been driving since the last charging activity, is not significantly 

associated with the charging decisions.  

TABLE 14 Results of the models on charging choices   

Variables NULL SDCM1 SDCM2 SDCM3 SDCM4 DDCM1 DDCM2 DDCM3 DDCM4 

(Intercept)                  𝜃0 2.983*** 3.126*** 0.318** 0.879*** 2.034*** 1.588*** 1.307*** 1.640*** 1.032*** 

SOC (%)                      𝜃1  -7.560*** -3.043*** -3.561*** -4.584*** -3.039*** -3.021*** -3.246*** -3.122*** 

Deviation                     𝜃2 
(DEV)  

 
 

-2.466*** -2.474*** -2.440*** -1.676*** -1.622*** -1.424*** -1.628*** 

Time since last charge 

(h)             𝜃3 

(𝐻𝑜𝑢𝑟𝑠) 

 
  

-0.143 -0.069 -0.050 -0.062 -0.061 -0.051 

Charging cost ($)         𝜃4 

(𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) 

 
   

-0.010*** -0.010*** -0.011*** -0.012*** -0.010*** 

Charging time (h)         𝜃5 

(𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) 

 
   

-0.242** -0.229** -0.218*** -0.267*** -0.232*** 

Access time 

(min)                          𝜃6 

(𝑇𝑎𝑐𝑐𝑒𝑠𝑠) 

 
   

-0.025*** -0.023*** -0.022*** -0.024*** -0.028*** 

Amenity: restroom only 𝜃7 

(𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚) 

 
   

0.049 0.046 0.045 0.043 0.047 

Amenity: restroom, dining 

& WIFI                        𝜃8 

(𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑚𝑜𝑟𝑒) 

 
   

0.213** 0.214*** 0.223*** 0.275*** 0.209*** 

Log-likelihood -4518 -3079 -2739 -2636 -2557.5 -2690 -2712 -2669 -2602 

Pseudo R-squared _ 0.319 0.394 0.417 0.434 0.405 0.400 0.409 0.424 

N 6355 6355 6355 6355 6355 6355 6355 6355 6355 

AIC 9036 6160 5482 5278 5133 5398 5442 5356 5222 

BIC 9036 6162 5486 5283 5149 5414 5458 5372 5238 

**  p-value<0.05;  *** p-value<0.01 

8.2.3.2 The effect size – contribution to prediction power  
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Figure 36: The Pseudo R-squared of the SDCMs and DDCMs on charging choices 

The improvement of the goodness of fit of the static models (from SDCM 1-4) indicates the 

relative effect size of these predictors. The Pseudo R-squared of the model with only SOC as the 

predictor (SDCM1) is 0.319. Adding the other variables increases the likelihood, AIC, BIC, and 

pseudo R-squared, but not by a lot, see Figure 36. The inclusion of DEV in the model shows that 

greatest improvement of goodness of fit compared with the inclusion of any other variables, 

whereas adding the characteristics of the charging stations (charging cost, charging time, access 

time, and amenity) only results in the increase of Pseudo R-squared by 0.017 even though they 

are all significant predictors of the charging choices. This shows that for this sample, charging 

decisions largely depend on the trip characteristics: how much range left in the vehicle and 

whether the vehicle can reach the next station without deviating from the original route plan. The 

focus group discussion also shows that these two factors are the primary variables that influence 

the charging choices. The characteristics of the charging stations are important, but not critical. 

When the charging network is rather sparse, the primary consideration of BEV drivers’ charging 
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choices is likely to remain as the SOC and DEV: whether the car needs to charge badly, and 

whether the car can get to the next station. I call this the “survival mode” of charging decision. 

Only when the charging network is dense enough, as in when there are a lot of stations with 

similar SOC and DEV values, will the characteristics of the charging choices have larger effect 

size. I call this the “thrival mode” of the charging decisions on a long-distance trip, where there 

are redundant DCFCs and the BEV users do not need to prioritize only the SOC and whether the 

car can reach the next station, but also compare the charging cost, the charging time, the access 

time, and the amenities at the stations. I like this analogy to help understand this phenomenon: I 

am on a desert and have to choose one between two different paths, one of which has 

significantly better view than the other at the destination. The view is not likely to influence my 

choice when I know I only have enough water to travel for 2 miles whereas the destination with 

the better view is 5 miles away. It is only when I have enough water to reach either of the two 

destinations, will I include the view in my decision process.  

8.2.3.3 Comparing the SDCMs and DDCMs 

Adding another layer of complexity by assuming that the charging decision is made based 

on not only the current but also the future charging stations, the DDCMs (DDCM 1-4) bring 

down the goodness of fit, as shown in Table 13. This is not surprising. DDCMs assume that the 

individuals make tradeoffs between the current utility and the future expected utility, for 

example, someone may consider not to charge at the current station but to charge at the next 

station when he/she observes that the next station is closer to the freeway, or has a charger with 

higher charging power, or cheaper, or has a restaurant nearby. When the characteristics of the 

charging stations do not contribute a lot to the prediction power of the model, as in when the 

individuals prioritize the state of charge and remaining range over the characteristics of the 
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charging stations, it makes sense that the model based on the intertemporal payoff does not fit 

the data as well. However, this is likely to be different for a denser charging network. When 

there are sufficient and even redundant charging stations in the network and BEV users do not 

worry about getting stranded, they are more likely to compare the cost, charging time, access 

time and amenities among all the viable stations and it is possible that DDCM performs better 

than SDCM in this case.  The comparisons among the four DDCMs also show that DDCM4 

based on the concept of the plan unit (the collection of future stations that can be reached without 

charging) offers the best model fit, though this needs to be further studied when the charging 

stations are more ubiquitous.  

8.2.3.4 The monetary value of deviation 

Deviation from the original plan does not necessarily mean that the driver will get stranded. 

It could mean that he/she needs to adjust the driving behavior and be careful with energy 

consumption or has to find a charger off the route. Comparing the relationship of the coefficient 

estimates of DEV and charging cost of SDCM 4, it is shown that the on a long-distance BEV 

trips, the drivers are willing to pay $244 to avoid having to deviate from the originally planned 

route. This is a lot higher than the cost of deviation detected for home-based trips, which is $24. 

My speculation is that for home-based tools, the respondents are confident about finding public 

chargers outside of the destinations and the cost of having to make a mid-trip stop to charge is 

not very high. Whereas on a long-distance trip, it might be rather difficult or costly to find a 

charger off the route. It is also likely that BEV owners tend to be more cautious and conservative 

when they are on long-distance trips.  
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8.2.3.5 The monetary value of charging time, access time and amenities 

According to the relationship between the coefficient estimates of charging cost and 

charging time, $12 of charging cost decrease has the same effect on the utility with the charging 

time being reduced by half an hour, which is equivalent to increasing the charging power by 28 

kW. When increasing charging power from 50kW to 150kW, BEV owners are willing to pay 

$22.4 more to gain 200 miles of range (assuming the energy consumption rate of the BEV is 0.35 

kWh/miles). Similarly, according to the relationship between the coefficient estimates of 

charging cost and access time, $25 of charging cost increase has the same effect on the utility 

function of charging with moving the charging station 10 minutes further off the highway. BEV 

users are also willing to pay around $20 more to stop at a charging station with amenities such as 

restroom, dining facilities and WiFi instead of charging station without any amenities. These 

could potentially be informative for charging infrastructure planners and DCFC investors.  

TABLE 15 The willingness to pay of relevant variables according to the SDCM4 

Variables Willingness-to-pay  

charging time(h) $24  

Deviating from the original plan $244  

Access time(h) $150  

Charging stations with restrooms  $5  

Charging stations with restrooms, dining options and WiFi $21  

 

8.2.3.6 Heterogeneity  

I estimated multiple latent class models with different number of classes and same model 

specification with SDCM 4 to capture the heterogeneity of the charging decision patterns and 

then decided on four classes. which has the best goodness of fit. The results are shown in 

TABLE 16.  This model fits the data a lot better than SDCM 4. 
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TABLE 16 Latent class model of BEV charging choices on a long-distance trip 

Variables  Class 1 Class 2 Class 3 Class 4 

Main model Est. P-value Est. P-value Est. P-value Est. P-value 

(Intercept)   𝜃0 

9.506 0.000 1.622 0.083 1.634 0.025 -1.693 0.183 

SOC (%)    𝜃1 

-13.042 0.000 -8.878 0.000 -4.271 0.000 4.179 0.010 

Deviation            𝜃2 

(DEV)  -1.641 0.000 0.077 0.720 0.727 0.000 0.069 0.815 

Time since last charge (h)   𝜃3 

(𝐻𝑜𝑢𝑟𝑠) 0.142 0.744 3.455 0.000 3.921 0.000 0.326 0.561 

Charging cost ($)   𝜃4 

(𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) -0.002 0.637 -0.013 0.001 -0.017 0.000 -0.0003 0.955 

Charging time (h)    𝜃5 

(𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) -0.638 0.073 0.668 0.059 -1.090 0.000 -0.124 0.769 

Access time (min)      𝜃6 

(𝑇𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) -0.023 0.314 0.005 0.825 -0.043 0.003 -0.070 0.008 

Amenity: restroom only 𝜃7 

(𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑟𝑒𝑠𝑡𝑟𝑜𝑜𝑚) -0.643 0.071 -0.370 0.276 0.142 0.514 0.313 0.426 

Amenity: restroom, dining & WIFI   𝜃8 

(𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑚𝑜𝑟𝑒) 0.120 0.726 -0.652 0.062 0.694 0.001 -0.147 0.725 

Membership probability  19% 29% 37% 15% 

Class allocation model  Est. P-value Est. P-value Est. P-value Est. P-value 

(Intercept) - - 2.81 0.18 1.14 0.58 -0.26 0.91 

Age - - -0.06 0.84 0.00 0.94 0.01 0.86 

Household income  - - 0.24 0.62 0.12 0.30 0.09 0.49 

Years of EV ownership  - - -0.12 0.38 -0.13 0.19 -0.13 0.28 

Environmental value factor  - - 0.16 0.79 -0.22 0.67 -0.04 0.95 

Risk-taking propensity factor  - - -0.42 0.43 -0.58 0.24 -0.15 0.80 

 

The four classes identify rather different decision mechanisms and the class allocation model 

does not show significant predictors that can help identify the characteristics of the group. Class 

1 indicates that charging decisions solely depend on the battery state of charge (SOC) and 

whether the car can reach the next station without having to deviate from the original route plan. 

On top of these two variables, class 3 identifies a group of BEV users that also consider the 

characteristics of the charging stations, which is the highest share of the sample and probably 

what contributes the most to the estimates of SDCM 4. Class 2 identifies a group of BEV users 

who mostly only consider SOC, the time since last charging stop (as in the time in car), and the 
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charging cost. Class 4 indicates some BEV users make their charging decisions based on only the 

SOC and the access time of the charging stations.  

8.2.4 Conclusions & discussions 

 

In this Chapter, I modeled the charging behavior of BEV drivers on a long-distance trip 

using both static and dynamic discrete choice models with different model specifications. The 

models consistently show that the following factors are significant predicter of the charging 

choices: (1) battery state of charge SOC, (2) whether the vehicle can reach the next station with 

the remaining range without deviation from the original plan, e.g, being stranded, having to find 

chargers off the route, or having to slow down to reduce energy consumption, etc),  denoted as 

DEV; (3) charging cost and charging time at the station; (4) the access time of the station; (5) the 

amenities at the station. The latent class model also highlighted the heterogeneity of the decision-

making patterns of BEV drivers’ charging choices on a long-distance trip and shows that the 

driving time since last charging stop is also a significant factor for a subset of the BEV drivers.  

SOC and DEV are shown to contribute to the majority of the predictive power of the 

model, whereas the characteristics of the charging stations, though are significant predictors, 

offer only a little improvement of the goodness of fit of the model. This is likely because when 

the charging network is not dense enough, BEV drivers are likely to act in a ‘survival mode’ 

when they make charging decisions: try to get to the destination. Considerations of the 

characteristics of the charging stations will only happen when there are enough or redundant 

charging stations. The comparison of the SDCMs and DDCMs shows that SDCMs fit the model 

better than the more complicated DDCMs. This result might change when the density of 

charging network is higher, and the BEV users can not only make it to the destination reliably, 
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but also can compare charging stations along way based on the price, accessibility, etc (the 

“thrival mode”).  

 By comparing the relative size of the coefficient estimates, I also showed the monetary 

value of the cost of DEV, the monetary value of charging power increase, the monetary value of 

moving the charging station closer to the exist of the highway, and the monetary value of having 

amenities such as restrooms, restaurants, and WiFi. These can potentially inform the decision-

making of planners or investors of the DCFC network.  

  



173 
 

9 Conclusions   

In this dissertation, I have strived to (1) use statistical modeling to gain understandings of 

how PEV users make decisions on which vehicle to use and where to charge for home-based trip 

tours and long-distance trips, (2) develop interactive survey tools to elicit choice processes 

involving complex, interconnected decisions, and (3) develop and evaluate the dynamic discrete 

modeling framework with the consideration of heterogeneity and compare the model 

performance with static models based on simpler heuristics.  The studies of the decisions on 

home-based tours and long-distance trips were carried out relatively independently considering 

that the charging activities of home-based trip tours usually happen at the natural trip destination, 

whereas for long-distance trips, PEV drivers usually stop specifically for charging.  

My results show that for home-based tours, the primary predictors of vehicle choices and 

charging decisions of BEV owners include charging cost and deviation (whether one needs to 

deviate from a planned tour with the remaining range, e.g., to make a mid-trip stop specially for 

refueling). I identified two decision patterns of BEV owners on the vehicle choice and charging 

decisions using DDCMs: BEV owners in class 1 are willing to pay $10 in charging costs to avoid 

having to deviate from a planned tour, whereas those in class 2 are willing to pay $24. This 

shows that Level 1 or Level 2 chargers at frequent destinations (workplaces, shopping centers, 

etc.) can help encourage BEV use, but using fast chargers off the route for a mid-trip charge is 

also a practical option for some BEV users on home-based trip tours. When it is too costly to 

build charging facilities at some popular trip destinations, having fast chargers along the route 

can also encourage BEV owners to use their BEVs for home-based trips. These results also show 

“Range anxiety” is not a huge issue for current BEV owners on home-based tours. Using 

charging infrastructure development to encourage BEV adoption might be more beneficial than 
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reducing “range anxiety” among the current users, which could entail building charging stations 

at locations that attract the attention of potential adopters, such as public parking garages in a 

city center.  

Interestingly, when BEVs are on long-distance trips, the cost of deviation is significantly 

higher: $244, which indicates that BEV owners are likely to be more cautious and view finding a 

charger off the route much more costly when they are on long-distance trips. Comparing the cost 

of deviation for home-based tours and long-distance trips, my analyses suggest that to support 

the existing users, the most cost-effective places to invest in charging infrastructure are inter-city 

corridors instead of in-city locations. My results also show that the following measures can help 

attract BEV owners to charge their vehicles at a certain station: (1) move charging station closer 

to highway exit. BEV owners are willing to pay $25 more to charge at a station 10 minutes 

closer to the highway exit; (2) provide amenities at the charging station. BEV users are also 

willing to pay around $20 more to stop at a charging station with amenities such as restroom, 

dining facilities and Wi-Fi instead of charging station without any amenities; (3) increase 

charging power. When increasing charging power from 50kW to 150kW, BEV owners are 

willing to pay $22.4 more to gain 200 miles of range. These values can enter the equation of the 

cost-benefit analysis for investing in charging facilities. Sometimes tradeoffs might need to be 

made, for example, moving the charging station closer to high way exit might mean less 

amenities at the station because the station might need to be further away from a commercial 

area. Even though charging cost, amenities, etc. have significant influence on the charging 

decisions, deviation and SOC contribute to the most prediction power for the current BEV users. 

When the charging network is still sparse, whether the BEV has enough range to get to the next 

station is still the primary focus of the decision-making. However, this could change in the future 



175 
 

when the charging network is denser and multiple charging stations have similar DEV and SOC 

levels. 

For long-distance trips, the primary predictors of whether a BEV is chosen include the 

gasoline cost, the trip distance relative to the vehicle range, station spacings relative to vehicle 

range. Both increasing battery pack size and reducing station spacing can encourage current BEV 

owners to use their BEVs for long-distance trips, and one of the two does not substitute the other 

due to the heterogeneity of the user preferences. Even if a lot of the BEV models offered by the 

market have 500 miles of range, the density of the public charging network can still play an 

important role in enabling BEVs for long-distance trips, especially when the battery remains 

expensive. Offering charging opportunity at the destinations (e.g., hotels) can also encourage 

BEV use for long-distance trips.  

For both the vehicle choice and charging decisions of PEVs on home-based trip tours, I 

compared the DDCMs with a series of SDCMs based on simpler decision heuristics and found 

that though DDCMs offer slightly better prediction rate, this improved predictive power comes at 

a significant cost when it comes to computation time and complexity of model development.  For 

the purpose of demand forecasting of a charging network or site selection for the charging 

facilities, the SDCMs based on simpler heuristics are recommended. For the charging decisions 

of BEV drivers on long-distance trips, my comparison between the SDCMs and DDCMs shows 

that the SDCMs outperform the DDCMs for the current sample. However, this could change in 

the future when the charging network is dense.  

For both home-based tours and long-distance trips, respondents with longer history of 

using electric vehicles tend to behave more optimistically: BEV owners who are relatively earlier 
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adopters value deviating from the original route much less heavily than more recent adopters, 

and earlier PHEV adopters are willing to pay more to avoid using gasoline. This discrepancy 

could have two possible explanations: either earlier adopters have innate qualities that make 

them different from more recent adopters (e.g., more enthusiastic about new technology, or 

higher environmental values), or their preferences changed over time as they became more 

familiar with the charging network or the vehicle performance with the increase of experience of 

using an EV. Which of these two is true is important for learning the future evolvement of the 

PEV owners’ preferences since if their preferences change with the accumulation of PEV using 

experience, the current new adopters will become more optimistic in the future. Unfortunately, 

there is no way to test this based on the data I have.  

For both the home-based tours and long-distance trips, and for both vehicle choices and 

charging decisions, the decision patterns are likely to be heterogeneous among PEV users. The 

efforts related to the prediction of the future EV charging demand, the policy-making on battery 

and charging infrastructure development, and the planning/design of the charging network all 

need to consider these different preferences of the consumers.  
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10 Limitations and Future Research  

SP data used in this research work allowed me to test the effects of various factors, such 

as gasoline price, charging price, in a way that is hard to achieve using RP data as in reality these 

variables do not usually have great variations in a short period of time. It is a suitable approach 

also because it allows me to collect information on PEV users’ choices for scenarios that do not 

exist in real life but are likely to be true in the future: for example, when the charging power is as 

high as 200 kWh, or when the charging network is relatively dense. However, it also shows one 

great limitation of this work: the hypothetical bias. One future research direction is to study these 

PEV use decisions using RP data when the market penetration of PEVs are higher and the 

charging network is more mature. The modeling frameworks used here can be adapted directly 

for RP studies with some changes of the model specifications. However, the greatest challenge 

with a study on RP data might be the data source since both the trip information and the charging 

activities are necessary for the analysis.  

Another limitation of this work is that the two samples are likely to be self-selected PEV 

enthusiasts, who may differ from those of other PEV owners today. However, given the early 

stage of the PEV market, even the best sample of PEV owners today would likely be 

unrepresentative of future mainstream owners. A study based on a more representative sample in 

the future could be of merit. A cross-sectional study or a study based on panel data can also help 

understand why earlier adopters behave differently than more recent adopters. A focus group 

discussion with a group of experienced PEV users and newer PEV adopters can also help 

understand to what extent driving experience can help alleviate “range anxiety”.  
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