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Urban scaling effects provide a means to formulate a general understanding of the processes that 

govern transportation system outcomes. Urban scaling analysis assumes that the quantity of 

interest follows a power-law distribution with respect to an urban area’s population. This 

distribution gives rise to a non-linear scaling exponent which then characterizes the scaling 

regime, either sublinear or super-linear where super-linear scaling reflects increasing returns with 

an increase in population while sublinear scaling represents economies of scale. This analysis 

approach has previously not been applied to the transportation system to study general features 

of urban transportation mode share, accessibility, and congestion. This work explores the effect 

of the selected geographic urban scale, population, and population density on the non-linear 

scaling exponent for these different transportation variables of interest. Notably, US 

transportation mode share exhibits remarkably general features which are sensitive to the urban 

scale, population, and population density. Single occupancy vehicle mode share follows a 

negative, sublinear scaling regime with respect to both population and population density. 

Transit mode share exhibits positive, sublinear scaling with respect to population and super-



 

 

linear scaling with respect to population density. Non-motorized transportation modes 

experience positive, sublinear scaling for both population and population density. These results 

are strengthened by relating the findings to measures of transportation accessibility and 

congestion which are also expected to influence the observed transportation mode share. Finally, 

locations with unique mode share characteristics are identified to corroborate these findings with 

expectations and explore the effects of regional geography on transportation mode share.
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1. Introduction 
Civil engineers, urban planners, and policymakers need to understand the urban environment 

through a complex system perspective to meet goals for sustainable development from the 

United Nations (1). Rapid urbanization can create economies of scale in urban areas (2). 

However, growth can also cause many negative externalities, depending on the local context, and 

the history of cities is filled with examples of unintended consequences arising from urban 

planning decisions (3). Understanding classic urban issues like housing affordability, inequality, 

and congestion requires developing a deeper knowledge of the complex systems that govern 

daily life in urban areas. This is especially critical given that the decisions made today have long-

lasting impacts on the urban form and future development while, simultaneously, emerging 

technologies, like autonomous vehicles, are poised to revolutionize the urban environment again. 

Complex systems theory is currently being expanded to encompass urban areas (4). This work 

will lay the foundation for addressing urban transportation issues, including congestion and 

mode share, by analyzing general features of the processes governing urban transportation. This 

information is critical to build a new paradigm for urban transportation that adapts concepts from 

ecology and population dynamics to understand the dynamics of urban transportation mode 

share.  

Previous research on urban transportation mode share has highlighted the complexity of mode 

choice behavior; the built environment, population characteristics, and policy decisions interact 

to influence mode share dynamics. Additionally, a circular relationship between supply and 

demand exists. These studies highlight the possibility of non-linear phenomenon for 

transportation mode share and have led to new advocates for a complex system perspective to 

study transportation, yet few studies have explicitly advanced this work for mode share. 

Understanding transportation mode share dynamics requires theoretical development that should 

be supported by identifying some of the paths and processes governing transportation mode 

choice. Urban scaling effects demonstrate how different urban features may change as 

population grows which could provide a measure of expected transportation mode share for 

planning purposes. Previous research has found scaling relationships exhibit remarkable 

universality and temporal stability for many urban indicators. The general nature of these scaling 

relationships should be explored, and urban scaling relationships could be used to develop a 

general ecological model for transportation mode share.  

Very little previous work has focused on applying urban scaling relationships to transportation 

system specific features, and the urban scaling effects of transportation commute mode share has 

previously not been studied. Additional measures of transportation system performance such as 

accessibility and congestion measures will also be analyzed for their urban scaling effects in this 

work. To develop this perspective, this thesis will identify appropriate geographic scales for 

analysis purposes, including the relationship between selected scales and model results. 

Additionally, this work will consider different behavior that arises from scaling relationships 

with respect to both population and population density. Finally, common features of areas with 

atypical transportation mode share will be explored. As a result of this work, both transportation 

planners and engineers will have a better understanding of urban transportation mode share for 

commute trips at the macroscopic level. This knowledge can be used to inform future research on 

mode share dynamics. 
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2. Literature Review 
An emerging paradigm for transportation researchers is the application of complexity theories to 

understand transportation system outcomes. Previous research on factors influencing transit 

ridership has considered ridership at both the metropolitan area and the stop level to identify 

patterns in overall ridership. Taylor et al. proffered some of the first work considering transit 

utilization by doing a comparative study across US metropolitan areas. They developed a transit 

ridership model that could simultaneously consider both the transit demand and the available 

transit supply to capture the circular relation between supply and demand for transit. They find 

that total transit ridership is a function of traveler characteristics, metropolitan area 

characteristics, service characteristics, and alternative transportation modes. Policy decisions at 

the metropolitan level account for one-quarter of the variation in transit utilization; most factors 

influencing transit ridership are beyond the control of system managers (5). Within metropolitan 

areas, Dill et al. considered the importance of built environment and transit service 

characteristics across three different metropolitan areas in Oregon to determine transit ridership 

at the stop level. In this study, the importance of individual characteristics and transit service 

depends on the scale of the metropolitan area considered (6). These findings indicate that urban 

transportation mode share is a complex phenomenon that depends on the scale of analysis; 

multiple outcomes are possible depending on a range of characteristics that evolve over time. 

Adopting new perspectives to capture this complexity is critical for future transportation 

research. 

In the existing literature, complex urban systems have been approached through the application 

of scaling relationships, complexity theory, and perspectives from ecology. The physicists 

Geoffrey West and Luis Bettencourt applied urban scaling laws to study the relationship between 

urban system characteristics and urban population size. Complexity theory uses domain 

knowledge and causal loop diagrams to study the evolution of complex systems. Finally, 

ecologists recently promoted a new paradigm that studies cities as ecological systems.  

2.1. Urban Scaling Laws 
Scaling laws mathematically relate quantities of interest through exponential relationships of the 

form: 

 𝑦 = α ∗ 𝑥β (1) 

In urban systems, scaling laws traditionally relate an area’s population (x) and an urban indicator 

of interest (y). This approach is not novel; since 1925, researchers have attempted to apply 

biological concepts to urban systems (7, 8). Interest in applying these concepts to urban systems 

has fluctuated over time, but recent interest is driven by transformative work from the Santa Fe 

Institute that applied these scaling relationships to urban systems. Researchers Bettencourt, West, 

et al.’s initial work sparked studies that explore scaling analysis for additional urban indicators, 

compare scaling effects across different geographic scales or independent variables, identify 

deviations from observed behavior, and develop theoretical foundations for this approach.  

West, Bettencourt, et al. have identified a wide range of scaling relationships including patents, 

wages, GDP, electrical consumption, crimes, employment, and road surface area that scale with 

an urban area’s population (9). Within the urban indicators the authors explore, they identify 

different categories of urban scaling relationships. Super-linear scaling (β > 1) occurs for items 

that have increasing returns with respect to population size, including items like patents. This 
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reflects the social agglomeration of cities which promotes innovation and creativity. Conversely, 

sublinear scaling (β < 1) occurs for material infrastructure, such as roadway surfaces, that has 

decreasing returns with population size. This feature indicates the economies of scale from 

shared infrastructure resources. Linear scaling (β = 1) arises for items associated with basic 

human needs, such as the total number of jobs, that is proportional to the total population within 

an area. In their original work, they employed primarily cross-sectional data from across the 

globe (9). The indicators and scaling relationships identified by these authors are robust across 

both time and space, indicating that there is some inherent degree of organization within 

complex urban areas (9).  

Other researchers have considered urban scaling for different socioeconomic indicators using 

new data sets. Scaling patterns of socioeconomic characteristics for cities with more than 

500,000 inhabitants in the Netherlands corroborated previous studies and documented additional 

cases of scaling relationships (9, 10). Other work has conducted a scaling analysis for the 

distribution of income and housing costs (11). Sarkar found that larger cities disproportionately 

tend to accrue high income earners who can afford the high housing costs. Smaller and medium 

sized cities display opposite trends, highlighting the complexity underlying these phenomena 

(11). Additional research has applied these methods to archaeological data relating the developed 

area of a city to total population; these scaling patterns are observed even in historical data (12). 

Overall, the current research has demonstrated these scaling patterns hold for many 

socioeconomic indicators. 

While many studies explored socioeconomic urban indicators, few authors have considered 

transportation system indicators for urban areas after Bettencourt, West, et al.’s initial work (9). 

The reviewed literature identified three additional studies that focused on transportation system 

metrics for urban scaling analysis. In the first work, Neal identified how urban scaling 

relationships could be applied to air passenger travel to determine the sustainability of demand 

for air passenger travel. This study found population growth correlated with an increased demand 

for air travel; however, business passengers experienced sublinear demand while leisure travelers 

experienced super-linear demand (13). Samaniego et al. applied a scaling analysis to urban 

passenger travel, including roadway lane miles and vehicle miles travelled (VMT) across 

different US metropolitan statistical areas. The authors also found that as population density 

increases, the distances travelled in each trip are also reduced (14). Other researchers applied 

scaling analysis to taxi rides to compute the “shareability” of trips in urban areas to estimate the 

potential sustainability impact of rideshare systems. The “shareability” metric exhibited scaling 

behavior across the different cities (15). While these studies have identified some scaling 

characteristics of the transportation system, additional work in this area remains to understand 

scaling effects for transportation mode share and other transportation system characteristics.  

Due to their relative simplicity, these urban scaling relationships have also been criticized by 

researchers for their dependence on the selected urban scale, which is often non-uniform across 

the globe. Arcaute, Batty, et al. have explored the importance of the chosen urban scale for 

scaling analysis (e.g. selecting a defined city boundary, the entire metropolitan area, or smaller 

neighborhoods) and note that the urban scale has a significant effect on the degree of scaling 

observed. Some major cities exhibit unexpected behavior after considering the scaling of their 

observed urban indicators. This indicates that there is an inherent degree of path dependency for 

urban evolution that a simple non-linear scaling analysis neglects to capture (16, 17). This is 

reflected in work from the Netherlands that compares scaling patterns at the municipality level 



9 

 

with scaling at higher levels of urban agglomeration to explore the effects of governance. For a 

comparable population, the municipality tends to fall above the expected urban indicator scaling 

relationship compared to a higher level of urban agglomeration. In the Netherlands, 

municipalities and government boundaries can reflect historical, political, and social differences 

which contribute to differences in  scaling behavior at a larger urban scale (10). This indicates 

that the appropriate urban boundary is dependent not only on the question of interest to 

researchers, but also the country and its institutional functions that can alter the observed 

behaviors.  

Additional work has attempted to determine the appropriate independent variables for scaling 

analysis: population or population density. In a scaling analysis on crime and property 

transactions in the United Kingdom, population density provided a better way to explain 

observed scaling effects across England and Wales (18, 19). Meanwhile, theoretical development 

has related the observed scaling exponents with respect to both population and population 

density (20). While there have been attempts to elucidate appropriate urban scales and 

independent variables, this remains an open research question whose answer depends on the 

geographic location and urban indicator of interest. This distinction highlights the complexity of 

urban systems despite their general characteristics. 

These relationships provide a way to understand the observed behaviors of the urban 

transportation system, but they do not provide a means for exploring unique community factors 

that explain deviations from expected behavior. Their simple and intuitive nature provides an 

interesting way to describe the urban system and identify organizational features of it. However, 

this cannot describe complex urban processes that underpin transportation system outcomes that 

need to be understood by planners and engineers to meet sustainable urban development goals. 

Acknowledging this limitation, West, Bettencourt, et al., have further developed their urban 

scaling theory to identify systemic deviations from observed scaling behavior. As part of their 

work, they have developed Scale Adjusted Metropolitan Indicators (SAMI) as a tool for policy 

analysis (21). Rather than using a simple per-capita measure for urban indicators, SAMIs can 

capture the performance of a city relative to its peers of a similar size. This removes the effects 

of non-linear behaviors, providing a more comprehensive method to identify and compare cities’ 

performance. Interestingly, their work finds that many smaller metropolitan statistical areas 

exhibit exceptional performance on urban indicators, even though they are not traditionally 

recognized. Their unique behavior is explained by specialized industries in these locations. Even 

with population changes, however, a city’s SAMI remains consistent, reflecting a long-term 

memory of local characteristics. This can make implementing urban change through policy 

difficult when these dynamics occur over very long time scales (21). 

As highlighted above, many empirical studies have identified scaling behavior, calculated the 

sensitivity of scaling with respect to the selected urban scale and independent variables, and 

captured unique community features of areas in a scaling analysis. These empirical studies have 

also been supported and informed by many developments in understanding the theoretical basis 

for urban scaling phenomenon. These theoretical works have included identifying the statistical 

basis for urban scaling (22), relating urban scaling to economic production functions (23), fractal 

analysis for cities (24), and network models (25). However, before these theoretical 

developments can be applied to the transportation system, additional work is still needed to 

identify the scaling behavior present in the transportation system.  



10 

 

Urban scaling relationships are a simple and intuitive way to understand expected changes in the 

urban system in response to changes in population. While these relationships do face challenges 

and limitations in their technical development to improve their accuracy and reliability, they are 

still critical to understand a simple function of the urban system. As these scaling relationships 

are better understood, developing an urban evolutionary theory will also become possible (26). 

These simple scaling relationships can summarize characteristics of urban systems, including 

their structural features and possible constraints on overall development (26). As research moves 

towards a more comprehensive urban theory that better reflects urban development, including 

changes in the transportation system, knowledge of these scaling relationships and their 

implications for development is vital. 

2.2. Complexity Theory & System Dynamics 
Complexity theory and system dynamics have also been applied to understand the evolution of 

both urban form and the transportation system. These models are typically built using baseline 

domain knowledge of the system that determines the processes governing model behavior.  

These models have been employed in two forms: linked land use-transportation models or 

transportation-specific models. White, Engelen, and Uljee recently described how cities and 

regions could be modelled as complex systems in which land use, transportation, and other 

processes are linked. They primarily focused on cellular automaton models to understand 

changes in the built environment (4). 

System dynamics models were first considered for transportation applications by Abbas and Bell 

in 1994. This modelling framework employs feedback loops and other processes that influence 

the system’s dynamic behavior (27). Shepherd and Emberger still note the importance of this 

approach so engineers, planners, and policy-makers can understand the underlying system, along 

with highlighting research that has applied system dynamics (28). Transportation can be 

considered a system of systems consisting of autonomous agents (i.e. system users), adaptability, 

self-organization, dynamic behavior, feedback, non-linearities, and phase transitions (29). 

System dynamics approaches’ ability to simplify interpretation of complex systems into simpler 

components and interactions makes it particularly beneficial for scenario analysis and to identify 

policy strategies (30). Despite its application to dynamical systems, system dynamics is still most 

applicable to systems with predictable interactions that govern future behavior. Emerging 

processes that affect the system of interest cannot be captured or modelled using system 

dynamics (31). 

Twenty years after the introduction of system dynamics to transportation, Shepherd and 

Emberger classified over 50 studies that applied these principles. System dynamics approaches 

have been used for modelling uptake of alternative fuel vehicles, supply chain management, 

highway maintenance, policy, air travel, and other emerging, less studied, areas of transportation 

(32). Notably the authors identified one study that explored the major causal loops influencing 

bicycling uptake in Auckland, New Zealand (33). However, this study only considered one 

transportation mode; it did not attempt to capture multiple modal interactions. Other researchers 

have focused on applying system dynamics approaches to parking (34), de-carbonization of 

transport (30, 35), alternative fuel vehicle deployment (36), bus rapid transit ridership estimation 

(37), and land transportation systems in a port city (38). One researcher developed a system 

dynamics models for urban transportation mode share in Shanghai. However, this work was 
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limited since only two years of data were used for calibration and other limiting assumptions in 

the model development process (39).  

Overall, while there has been interest in system dynamics approaches for transportation, the 

relatively few studies that implement system dynamics methods have focused on highly specific 

transportation problems. These models are developed using baseline knowledge of the system 

and calibrated with data specific to localized scenarios for analysis. This approach precludes 

building a general understanding of the system that could have broad application beyond the 

specific context identified in these works.  

However, the system dynamics approach is similar to the approach outlined in the following 

section; both techniques focus on identifying relevant interactions and how their dynamics lead 

to the observed system behavior. Notably, system dynamics has been widely applied in 

ecological studies even though this approach reduces or ignores the individual heterogeneity of 

ecosystem components (40). Despite these similarities, the following section and model 

formulation outlines a more general framework for approaching a dynamic transportation system 

and learning about possible outcomes. 

2.3. Ecological Perspective 
The application of ecology to urban areas is not new; it was first introduced by Dimitrios 

Dendrinos and Henry Mullally in 1985 (41). These authors identified how ecological principles 

and theories could be applied to urban dynamics, and modern ecologists are still interested in an 

“ecology of cities” (42). However, few studies have framed urban problems using an ecological 

perspective. The following section details key concepts from population dynamics that could be 

applied to the urban transportation system.   

2.3.1. Population Dynamics Overview 

Population dynamics is the sub-field of ecology that studies factors influencing the total number 

of organisms in a population, including birth, death, immigration, and emigration of members. 

This area studies the interactions of four system components: the population(s) of interest, 

interactions between the population(s) and their environment, the spatial distribution of the 

population, and their dynamics. The following summary for non-ecologists is based on an 

overview of population dynamics by Maurice Solomon. This classic text provides an 

introduction to key terms within the literature (43). Additional work by Kareiva, Levin, and 

Hanski and Gilpin has been used to identify spatial effects in population dynamics (44–46). 

In population dynamics, a population is a group of organisms from one species. These groups are 

determined based on their separation from other groups of the same species by geography, 

topography, or other boundaries set by convenience for the observer. Characteristics of the 

population include features like the sex ratio, age composition, and size or density of the 

population. The biotic potential of the population is the maximum rate of increase possible under 

the most favorable conditions for growth. This value corresponds to the reproductive capacity of 

the species. Environmental resistance is the collection of factors that limit the overall growth rate 

below the biotic potential, including mortality and other conditions like predation. The overall 

number of individuals in a population is subject to both random events and recurring processes 

that can reduce or increase population levels.  

The life system of a population consists of the population and other relevant environmental 

factors that impact the population. Changes in the population are often attributed to several 
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factors simultaneously affecting the population; the key factor is responsible for the largest 

proportion of the fluctuation in the population level. Processes are the mechanisms by which 

these factors influence the population. These processes can be classified into three types: density-

dependent, inverse density, and density-independent. Density-dependent processes show a 

proportional increase in the effect on a population when the population has a higher density. For 

example, when a population has many members, their demand for food cannot be met, so, 

proportionally, more members of the population go hungry. While not every density-dependent 

process is regulatory, a density-dependent process is necessary to regulate a species’ population 

level since these processes reduce population size after reaching a critical threshold. 

Alternatively, there are also density-independent processes and inverse density relationships. In a 

density-independent process, the proportion of the population affected by a process is constant, 

regardless of the density of the population. These are typically processes that arise from external 

events; for example, the proportion of mosquitoes killed by swatting is constant across their 

population density. Inverse density relationships see a proportional increase in their effect at 

lower densities, providing the opposite reaction of a regulatory effect. For example, at lower 

densities there are more resources for species members which can spur an increase in 

reproduction. For these processes, the relationship is only valid for the range of observed values; 

these relationships cannot be used to predict future effects at different population densities.  

For a given area, a species’ abundance is determined by the total number of organisms. 

Abundance is a product of regulatory processes that reduce population levels at higher densities, 

the baseline growth rate, and other factors that limit the overall species’ growth.  Each 

population has a characteristic level of abundance that is determined by characteristics of the 

natural environment and resources available to the species. Density-dependent processes help to 

maintain, a stable, but moving, equilibrium population level based on external environmental 

factors.  

In addition to interacting with their environment, a population also interacts with other 

populations occupying their environment. These interactions influence the observed population 

and can be classified as favorable/unfavorable, direct/indirect, one-way/mutual (either the same 

or disparate), and density-independent/dependent, as before, based on the nature of the 

relationship between these two populations. Favorable and unfavorable relationships describe the 

net benefit or loss a species gains from the interaction with another species. Favorable inter-

species interactions result in a positive benefit for the species. Direct species interaction occurs 

when species interact directly with each other. In indirect interactions, the species still interact 

with each other, but their interactions occur through a common link species. Indirect interactions 

include two species with a common prey; while they have no direct interaction, prey availability 

will limit both species’ population growth. One-way or mutual relationships describes the extent 

of the interaction. In a one-way relationship, species A effects species B, but the converse is not 

true. In mutual relationships, both species affect each other. Both species experience a positive or 

negative effect due to their interactions in a same mutual relationships or different effects in a 

disparate mutual relationship (43). 

After describing the population, addressing spatial heterogeneity of the system is also critical. As 

Kareiva reports, acknowledging spatial interactions can fundamentally alter the dynamics of a 

population, and it is important to include them in any study (44). Hanski and Gilpin identify 

three distinct spatial scales for a study. The local scale is the spatial extent that captures 

individuals’ movements and interactions for daily, life-sustaining activities. The metapopulation 
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scale characterizes infrequent moves between local populations, often with a high risk for 

individuals. This level focuses on collections of populations of either the same or different 

species, also known as a metapopulation. The geographical scale describes the entire range for a 

species. While these are offered as discrete spatial scales, in reality, these levels of spatial 

heterogeneity form a continuum (45). This continuum is recognized by Kareiva; he focuses on 

how different population dynamics models represent spatial heterogeneity. Broadly, Kareiva 

identifies three types of population models that account for spatial heterogeneity: island models, 

stepping stone models, and continuum models. In the island model, heterogeneity is represented 

through environmental patches with unique internal dynamics where all patches are equally 

accessible to each other. The stepping stone model builds on this approach by assigning fixed 

spatial coordinates to the patches which provides a way to measure the potential for interactions 

across distinct spatial patches. Finally, the continuum model uses a continuous coordinate system 

to represent spatial interactions of populations. These different approaches to address spatial 

heterogeneity highlight the importance of considering different spatial scales for ecology. 

Ecological phenomenon occurs across multiple scales and can affect the observed system 

outcomes. Consequently, a researcher’s perceived system scale can alter the study results (46). 

3. Population Dynamics Applied to Transport 
Now, consider an ecosystem formulation of a transportation system. The following summary will 

explore population dynamics when users of transportation modes are selected as the population 

of interest. 

A population is a collection of individual species members that are separated by some boundary. 

The individual members and boundaries depend on the transportation mode in question. For 

some modes, the individual level and grouping structures are clear. For instance, transit as a 

population could be a collection of individual routes; these routes could then be grouped into 

distinct geographical areas at the level of interest. Similarly, automobiles could be broken down 

to the individual vehicle level and then grouped by their primary geographic domain. Other 

transportation modes are more complicated. Transportation Network Companies (e.g. Uber, 

Lyft), for example, should be considered at an individual vehicle level; however, the drivers 

cover a large geographical region that could create a large and diverse population. Ultimately 

developing and classifying the populations of interest and classifying them will depend on the 

research question of interest. At a metropolitan area or regional scale, the analysis should include 

common urban transportation modes, like driving and transit. On a neighborhood scale, more 

local transportation modes should also be included like cycling or walking. Interregional 

transportation, like airplanes, or long-distance bus or rail should realistically not be considered 

since they represent only a small portion of overall travel. These modes have basic needs, 

corresponding to the life system of organisms that must be met by the physical environment they 

are in for operation. This life system includes physical infrastructure (both road and storage 

space), demand, and monetary requirements. 

Population dynamics then focuses on changes in an ecosystem’s stable state through birth, death, 

emigration, and immigration that could be re-conceptualized for transportation. Birth could refer 

to either the introduction of new transportation modes in a region, such as those facilitated by 

new technologies, or it could also refer to the development and growth of existing transportation 

modes. This could come through the expansion of physical road infrastructure, developing new 

transit routes or lines, or expansion of transportation services like car-sharing. Death would be 
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characterized through either the removal of an entire service category, like the recent death of 

Pronto bikeshare in Seattle, or just the removal of existing services. This could include reducing 

overall road capacity or reducing service along transit lines. Immigration and emigration both 

explain changes to the overall population due to new individuals joining or leaving the 

population. For transportation modes, this could include repurposing existing road space from 

private cars to bikes or transit, overall changes in travel behavior at the individual level, or 

general population growth or decline which represents changes in the overall demand for the 

existing system. These processes arise from technological innovations that allow new mobility 

services and political decisions regarding physical infrastructure. Population dynamics can be 

applied to study many questions related to transportation system dynamics, such as how will 

autonomous vehicles change road capacity? Or how does transportation mode share respond to 

system investments? 

Processes are the mechanisms by which transportation system changes alter the mode share 

within a given area. Transportation system changes can include building infrastructure, new 

transportation services, the expansion of existing services, or repurposing existing infrastructure. 

An important characterization of processes in ecology is their performance at different 

population density levels. Unlike with animal populations, however, density can be used in 

several senses for the transportation system. Density can refer to the total number of individuals 

within a certain area, but it can also measure the number of activities or jobs within an area. 

Transportation processes are affected by density in several ways, including the density of users, 

activities, infrastructure, or service opportunities. 

The density of users correlates with transportation mode share, although density is typically only 

used as a proxy measure for other important built environment characteristics that affect travel 

behavior. Furthermore, mode share can also be altered by population demographics. Utility 

maximization is used to understand mode choice behavior, and transportation flow theory or 

network modelling could be used to relate these individual decisions to aggregate transportation 

mode share. This system knowledge can develop hypotheses about the processes that govern 

individual transportation modes’ behavior. For example, at low population densities, relatively 

few users try to utilize limited roadway capacity, so there are less incentives to use alternative 

transportation modes like transit. As density increases, individual utility for personal vehicles 

decreases which could make transit more lucrative. These principles also underlie transit-

oriented development which attempts to increase transit use by building high-density 

developments near transit lines that can incentivize more transit use. Economic and 

sociodemographic differences across urban space also play a role in the observed mode share.  

Density can also be extended to transportation systems or the built environment through 

infrastructure density (e.g. streets/area, bike lanes/area) or alternative measures of accessibility or 

options (e.g. destinations/area, bus routes/area). Since transportation is not a population in the 

traditional ecological sense, different measures of density could be of interest for processes 

affecting transportation modes. Other built environment characteristics like design, land use 

diversity, distance to transit, destination accessibility, and demand management could also help 

capture relevant processes affecting the transportation modes of interest (47). Identifying and 

defining these processes would be a key challenge for future work.  

The extent to which heterogeneity is represented in population dynamics will depend on the 

scope of the approach. If a small neighborhood is chosen as the boundary, heterogeneity could be 
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represented in high resolution. However, at a larger urban scale, representing environmental 

heterogeneity in high detail would be challenging due to data availability issues and 

computational limitations. Heterogeneity could be addressed through roadway or neighborhood 

classifications (e.g. urban vs. suburban) that would provide a way to address spatial differences 

without diluting the results. 

Table 1 Key Concepts of Population Dynamics. Table 1, below, summarizes key concepts from 

population dynamics and their application to the transportation system. 

Table 1 Key Concepts of Population Dynamics 

Population 

Dynamics 

Concept 

Definition Application in 

Transportation 

Notes 

Population A distinct 

collection of 

individuals from 

the same species. 

Number of users for each 

transportation mode within some 

geographic boundary. 

In ecology, animals are a member of one 

distinct species, leading to unique 

populations. However, individuals can 

choose different transportation modes 

depending on trip purpose, blurring 

population boundaries. 

Species A group of 

biologically 

similar 

individuals. 

The different modes of transportation 

available in the defined study area. 

 

Life System The population 

and other 

relevant 

environmental 

factors that 

influence the 

population. 

Transportation infrastructure 

availability, transportation costs, 

service characteristics, legal 

regulations, built environment 

(density), and other user 

characteristics affect observed 

population behavior. 

There are many factors that shape the 

transportation system, including politics. 

Changes in the life system for 

transportation are long-lasting compared 

to changes in an ecological system.  

Abundance The total number 

of population 

members at the 

defined spatial 

scale. 

The transportation mode share within 

a defined area. 

Again, users may belong to multiple 

populations, depending on trip purpose. 

Spatial Scale Extent of area 

within the 

geographic 

boundary of the 

population. 

Extent of area within the geographic 

boundary of the population. 

Using the metropolitan region as 

transportation’s spatial scale can capture 

regional commute patterns; however, for 

non-motorized modes, smaller spatial 

scales are more appropriate. 

Factor An entity that 

influences the 

population. 

Government agencies, user groups, 

and built environment characteristics 

that influence the population. 

Public agencies provide funding, 

maintenance, and set priorities for 

transportation infrastructure and the built 

environment. Private service providers, 

like technology companies, and user 

characteristics also influence mode 

choices.  

Key Factor The factor that is 

responsible for 

the largest 

proportion of 

population 

change. 

Currently unknown. Expected to be factors that are explained 

by density and overall service quality. 
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Process The mechanisms 

by which a factor 

causes a change 

in the population. 

Changes to the utility of specific 

transportation modes that arise from 

changes in the identified factors. 

Examples include a city investing in 

cycling infrastructure that encourages 

more cycling or neighborhood residents 

who block re-developments that would 

increase density and support transit. Some 

of these processes are still unknown. 

Organizing principles from transportation 

can identify possible outcomes from 

different actions. 

Density-

Dependent 

Process 

A process whose 

effect is 

proportionally 

increased at 

higher densities. 

After identifying relevant processes, 

its relation to density could be 

anticipated depending on the trip 

purpose. The elasticities of different 

trip purposes can be used to infer the 

relationship between a process and 

density. Inelastic demand, including 

work trips, is expected to be density 

independent, while elastic demand, 

like recreational trips, is expected to 

be affected by density. 

In the ecological sense, density refers to 

the population density which could 

correspond to congestion for 

transportation. However, these terms are 

less defined when they are ascribed to 

processes describing the interactions 

between transportation modes or other 

changes to the transportation system that 

affect other measures of density. 

Density-

Independent 

Process 

A process whose 

effect is 

proportionally 

constant, 

independent of 

density. 

Inverse-Density 

Relationship 

A process whose 

effect is 

proportionally 

increased at 

lower densities. 

Regulatory 

Process 

A process that 

regulates 

population 

levels, a density-

dependent 

process. 

Any process that limits a 

transportation mode share below a 

characteristics threshold for that 

mode and area. 

Density-dependent processes are a 

requirement for regulatory processes, but 

not every density-dependent process can 

provide regulatory effects. 

 

4. Motivation for Work & Research Questions 
The academic literature discussed urban scaling, complexity theory, system dynamics, and 

ecological theories for transportation systems, either through qualitative discussion (7, 8, 27, 29, 

32, 42) or limited quantitative and theoretical development (4, 9, 39–41). A detailed review of 

these approaches is provided in the literature review section. Despite their documented potential, 

few studies have applied these methods to transportation mode share and its dynamics; many 

studies focus on either limited transportation mode choices or other features of the urban system. 

As such, there is a dearth of knowledge to explain urban transportation mode share dynamics that 

considers the complex interactions of the urban system. While research has documented some 

system characteristics that effect transportation mode share (5, 6), additional theoretical 

development is needed to develop relationships that can be applied in an ecological model for 

transportation mode share. By capturing complex urban interactions, ecological models provide a 

new way to explain transportation mode share and highlight some possible paths for 

transportation system development to guide transportation planners, engineers, and policy 

makers.  

This work will address several important and inter-related research questions to build on 

previous work, outlined above. First, the urban scaling effects of transportation mode share will 
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be explored. This includes identifying how scaling relationships change at different geographic 

units of analysis, ranging from city boundaries to metropolitan areas. This will build on current 

work for urban scaling relationships that have not focused on mode share as an urban indicator 

(9, 16, 17). This work will identify appropriate geographic scales and independent variables to 

measure the urban scaling effects for transportation systems.  

The urban scaling relationships can estimate expected transportation system characteristics with 

respect to either population or population density. As with any statistical model, however, there 

will be deviations from the observed behavior. The scaling analysis results can be used to 

explore other common features of locations with unique transportation mode share 

characteristics after controlling for urban scaling effects  

The specific research questions to be answered are:  

• How does transportation mode share scale with urban area population? 

o How do these relationships change at different geographic units of analysis? 

o How do these relationships change when using total population or population 

density? 

While this work will initially focus on transit, non-motorized modes, and single occupancy 

vehicle (SOV) mode share, the developed methods could also be readily expanded to other 

transportation modes if more data for these modes becomes available.  

5. Methodology 
The analysis consisted of two steps. First, urban scaling relationships will be identified and 

developed with respect to urban transportation mode share for transit, single occupancy vehicles 

(SOV), and non-motorized transportation, along with jobs accessible by transit or walking and 

measures of transportation system congestion. These scaling relationships will be validated by 

applying the proposed analysis to existing data sets and comparing results with previous work 

that identified urban scaling effects for other urban characteristics (9). Finally, the results of 

these scaling relationships will be used to identify urban areas that exhibit unique characteristics 

with respect to transportation mode share.  

5.1. Urban Scaling Analysis 
Scaling relationships assume that two variables can be empirically related using an exponential 

equation, as seen above in Equation 1. The magnitude of the scaling exponent can be statistically 

estimated by taking the natural log of both sides of the equation to solve a linear model of the 

form: 

 ln(y) = c + β ∗ ln(x) (2) 

 c = β ∗ ln(α) 

Using this relationship, linear models can be estimated using statistical software, like R, for 

different urban scales to relate both population and population density to the commute mode 

share or transportation system variable of interest. This basic methodology was applied to both 

validate the analysis using previous work (9) and expand the analysis to transportation-specific 

data sets. 
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5.1.1. Comparison with Previous Work 

Bettencourt, West, et al. prompted initial interest in urban scaling relationships through their 

seminal work in 2007 (9). In this work, the authors estimated scaling exponents for different 

international data sets of various urban quantities. The quantities observed, data sources, and 

their current availability for US data sets are summarized below in Table 2. 

Table 2 Data sets Considered by Bettencourt, West, et al. 

Data set Source Current Availability and Quantities 

Identified 

Private R & D 

Employment 

US 2002 US Census Bureau (2002), Employment 

for NAICS Code 5417: Scientific 

Research and Development 

R & D Establishments US 1997 US Census Bureau (2002), 

Establishments for NAICS Code 5417: 

Scientific Research and Development 

Total Wages US 2002 Bureau of Economic Analysis 

(2000,2001,2002,2004,2006,2008,2010), 

Personal Income (thousands of dollars) 

New AIDS Cases US 2002-2003 Not Located 

Total Housing US 1990 Available through a historical archive 

only 

Total Employment US 2001 Bureau of Economic Analysis 

(2001,2002,2004,2006,2008,2010), 

Employment 

Gasoline Stations US 2001 Not Located 

Gasoline Sales US 2001 Not Located 

 

The supplemental information for Bettencourt, West, et al.’s work (48) offers additional 

information on the specific variables the authors selected and the data sources they used to form 

the basis of their analysis which were then chosen for comparison purposes. Despite this 

resource, it should be noted that some of the data sources might not be comparable as it was not 

always clear which variables the authors used from these data sets due to different names in the 

identified data sources. For instance, the US Census Bureau tracks employment and number of 

establishments in different industries including scientific research and development. NAICS 

code 5417 was identified by Bettencourt, West, et al., in the supplemental information for 

research and development statistics. However, it is unclear for which research and development 

variables he used this data, for instance is private research and development employment 

information taken from US census data, or a different source identified by Bettencourt and West 

as the US Census data does not specifically identify private employment in the research and 

development sector. Similarly, the Bureau of Economic Analysis offers information on total 

personal income which might not be directly comparable to total wages. For other data sources, 

the data was either removed or not found from the identified data sources after a preliminary 

search of the sources outlined by Bettencourt and West. 
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After identifying candidate data sets from Bettencourt, West, et al.’s work, the adopted scaling 

methodology was applied to these data sets for comparison purposes. This data is compared at 

the Core Based Statistical Area urban scale, which considers integrated metropolitan regions, 

based on the unit of analysis used by the authors, which can further be broken down into both 

metropolitan and micropolitan statistical areas. 

5.1.2. Transportation Data Identification and Processing 

The American Community Survey and US census provide a wealth of publicly available data 

including data for sociodemographic characteristics and commute mode choice characteristics 

that were identified for use in this analysis. Using national level data for the US allows for a 

range of variability in mode choice behavior at different population levels for an exploratory 

analysis of commute mode share. Table 3, below, summarizes key aspects of the data sets of 

interest, including specific variables of interest, the spatial units of analysis, and the time range 

for the data.  

Table 3 Mode Share Characteristics Data sets for Analysis 

Data Set Variables of 

Interest 

Location Spatial Units Time Source 

Transportation 

Mode Use 

(49)  

Total commute 

trips, SOV trips, 

transit trips, non-

motorized (bike 

and walk) trips 

US and 

Puerto Rico 

Census Tract 

and higher 

spatial units 

2005-2016 

yearly 

estimates 

Publicly 

available 

from ACS, 

Data Set 

B08301 

US Census 

(49) 

Population US and 

Puerto Rico 

Census Tract 

and higher 

spatial units 

2010, 

estimates 

for other 

years 

Public 

available 

from US 

Census 

Bureau, 

Data Set 

B01003 

 

After identifying initial data sources for analysis, the data sets were processed and combined 

using both GIS and MATLAB to identify mode share for the three transportation modes at 

different urban scales as defined by the US Census. While there were more mode choices 

available in the data set, these modes, including carpooling, taxis, and working from home, 

among other choices, were excluded from the analysis since they likely would not see sufficient 

variation within the data set. Both commute mode choice and population information were 

downloaded at the census tract level; to compare mode share information at different urban 

scales, the census tract data must be aggregated to higher level spatial units of analysis.  

The US census and American Community Surveys have six different urban scales they define for 

their surveys which were considered in this analysis to identify the effects of urban scale on the 

observed scaling patterns. These analysis units are Census Designated Places, Incorporated 
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Places, Urban Areas, Metropolitan Divisions, Core Based Statistical Areas, and Combined 

Statistical Areas which represent different degrees of urban agglomeration, from city 

administrative boundaries to larger metropolitan areas. Incorporated Places or Census 

Designated Places define the most basic urban geographical unit, such as the City of Seattle or 

the City of Bellevue, and larger urban scales, like Core Based Statistical Areas, consider 

agglomerations of these individual units, such as the Seattle-Bellevue metropolitan area. 

Considering these different geographic scales can identify how urban scaling behavior changes at 

different urban scales using commonly defined geographic boundaries. Shapefiles of these 

different urban scales were used to identify census tracts that fall within each location along with 

the total land area of each census tract within each urban scale. Using this information, analysis 

data sets for each urban scale were processed. Each of these data sets contains the unique 

geographic ID from the US Census, population and population density, and commute mode share 

information for single occupancy vehicles, transit, and non-motorized modes, the combined 

mode share for bike and walk trips. For each transportation mode and at each urban scale, the 

area-weighted average of the census tract mode share data was used to calculate the average 

mode share at each urban scale. In addition to recording the average mode share, the minimum 

and maximum mode share by census tracts was also recorded at each urban scale. This 

information will capture the variability of mode share across different census tracts.   

Transportation system properties were also obtained from the University of Minnesota’s 

Accessibility Observatory (50) and Texas Transportation Institute’s Urban Mobility Scorecard 

(51). The University of Minnesota provides census-tract level counts of jobs accessible by both 

transit and walking within different travel time thresholds based on publicly available data sets 

including 2011 Origin-Destination Statistics from the Longitudinal Employer-Household 

Dynamics Study, Open Street Maps, and General Transit Feed Specification Data in the 50 

largest metro areas in the US (52). Texas Transportation Institute uses data from Inrix and the 

Federal Highway Administration to analyze traffic conditions across 471 metropolitan areas in 

the US to compile their congestion rankings (51). This data set includes variables characterizing 

the total number of auto commuters, vehicle miles travelled (VMT), and other measures of 

congestion and delay for the transportation system. Table 4, below, summarizes characteristics of 

these data sets.  

Table 4 Transportation System Characteristics Data sets for Analysis 

Data Set Variables of 

Interest 

Location Spatial 

Units 

Time Source 

Jobs Accessible 

by 

Transit/Walking 

(50) 

Total number of 

jobs accessible by 

transit/walking 

US Census 

Tract  

2014 Publicly 

available from 

University of 

Minnesota 

Congestion 

Index (51) 

Number of auto 

commuters, VMT 

(freeway and 

arterial streets), 

US Urbanized 

Areas 

2015 Public 

available from 

Texas 
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number of rush 

hours, percent 

congested travel, 

percent congested 

system, total 

delay 

Transportation 

Institute 

 

5.1.3. Transition Threshold Identification 

The preliminary urban scaling analysis was completed using all available data points at each 

urban scale. When including all data points in the urban scaling analysis some unexpected results 

emerged, including an expected increase in SOV mode share with an increase in population or 

population density at smaller urban scales. Given this unexpected result, it is possible that a 

different urban scaling relationship could be observed for locations above a certain population or 

population density threshold. Power laws are typically applied at the tails of the data distribution, 

so estimating these thresholds could provide a better understanding of the system behavior, 

particularly when there are a large number of data points (53). This possibility was explored by 

calculating how the calculated urban scaling exponent changed as different population and 

population density thresholds were considered.   

The importance of transition thresholds with respect to commute mode share was explored by 

iteratively removing data points from the urban scale data sets and exploring how the estimated 

scaling exponents change as a function of the chosen threshold. Preliminary analysis identified a 

plausible range of transition threshold values. The transition threshold value was identified by 

tracking the scaling behavior as the population transition threshold was increased by 1,000 

people and the population density transition threshold was increased by 100 people per square 

mile.  

5.2. Urban Area Identification 
As part of calculating scaling relationships, plots for each urban quantity of interest with respect 

to population or population density were generated along with lines highlighting the best fit 

model. On these plots, each data point represents a location within the US at each urban scale. 

While many of these points fall near the best fit model, other points are located away from this 

line.  

Outlying data points for each mode share class were identified by estimating confidence bands 

for the model results. Data points whose actual mode share value was greater than or less than 

two standard errors away from the model best fit were located and the relationship to the scaling 

model and deviation was also recorded. This information was used to classify outlying points 

into distinct scaling regimes in relation to the observed scaling patterns and identify common 

features of these points to further understand urban characteristics affecting transportation mode 

share. 

5.3. Summary of Analysis Steps 
In summary, the following five steps have been identified for completing the analysis: 
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1. Identify common urban scale definitions and data sources 

2. Complete data processing to aggregate mode share and population data from census tract 

to urban scale level 

3. Calculate scaling exponents at different urban scales and transportation modes for both 

population and population density 

4. Determine transition threshold effects for scaling exponents based on single occupancy 

vehicle mode share 

5. Identify urban areas that exhibit different mode share behavior than expected based on 

the scaling regimes previously identified 

6. Results and Analysis 
The following sections detail some of the results and analysis completed over the course of this 

work. Initially, the geographic extent of each of the selected urban scales was identified and 

compared to better understand the spatial extent of the different urban scales. The spatial extent 

ranges from standard political boundaries to larger urbanized areas and metropolitan regions. 

Next, basic descriptive statistics for different transportation modes at different urban scales were 

identified. After a basic understanding of the data was obtained, scaling analysis and transition 

threshold identification were completed considering both population and population density. The 

scaling methodology was also applied to data sets used in existing work for validation of these 

results (9). Finally, unique urban areas were identified based on the previously completed scaling 

analysis and these areas’ unique mode share was related to different characteristics of these 

areas.  

6.1. Description of Urban Scales 
The US Census Bureau and American Community Survey define six distinct urban units of 

analysis at the national level to define different levels of geographic urban scale. The smallest 

geographic scale includes distinct city boundaries, while larger scales aggregate these cities into 

urbanized regions. As the geographic scale increases, the built environment becomes more varied 

for each location; larger regions include dense, urban areas, suburbs, and could even include 

some rural fringe areas. This aggregation process contributes to reduced variability in the data at 

larger spatial scales. 

6.1.1. Census Designated Places and Incorporated Places 

Census Designated Places and Incorporated Places form the smallest spatial unit of analysis 

which corresponds to defined community boundaries. Incorporated Places are formed under 

individual state laws concerning boundaries and annexation and are formed to provide 

government services for a group of people within an area. These geographic units can typically 

be thought of as the distinct towns or cities that can form the basis for larger geographic scales 

(54). Census Designated Places provide a similar statistical function for the US Census by 

identifying communities of people that are not legally incorporated. Figure 1, below, illustrates 

both Incorporated Places and Census Designated Places for Washington State.  
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Figure 1 Census Designated Places and Incorporated Place for Washington State 

6.1.2. Urban Areas 

Urban Areas are designated by the US Census to capture census tracts or block groups with high-

density, their adjacent areas with supporting land use types, and low-density areas which connect 

higher density cores. With this definition, there are two types of Urban Areas. Urban Clusters 

contain at least 2,500 people but less than 50,000 people while Urbanized Areas contain more 

than 50,000 people. The US Census designates the remaining land areas in the US as rural (55). 

Figure 2, below, shows the Urban Areas for Washington State. These areas combine multiple 

Census Designated Places and Incorporated Places, reflective of the greater connectivity across 

these regions, but do not correspond to distinct political boundaries.  
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Figure 2 Urbanized Areas for Washington State 

6.1.3. Metropolitan Divisions 

The US Census identifies Metropolitan Divisions as groups of counties within Metropolitan 

Statistical Areas with a core population of at least 2.5 million people. These areas include a main 

county that has an employment center along with any additional counties that are connected 

through commute patterns (56). Due to their aggregate nature at the county level, these divisions 

represent a much larger spatial unit of analysis, seen in Figure 3. Furthermore, it is important to 

note that not every Metropolitan Statistical Area has an equivalent Metropolitan Division, which 

limits the sample size for this spatial scale. 
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Figure 3 Metropolitan Divisions for Washington State 

 

6.1.4. Core Based Statistical Areas 

Core Based Statistical Areas are groupings of counties that contain a core area of at least 10,000 

people and other areas that exhibit economic ties to the core area through commute behavior. 

This geographic description contains both metropolitan statistical areas and micropolitan 

statistical areas, depending on the core area population (57). Figure 4, below, shows all Core 

Based Statistical Areas for Washington State.  
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Figure 4 Core Based Statistical Areas for Washington State 

6.1.5. Combined Statistical Areas 

Combined Statistical Areas aggregate multiple Core Based Statistical Areas that have significant 

economic ties measured through employment interchange (57). Figure 5, below, shows the 

Combined Statistical Areas for Washington State. 
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Figure 5 Combined Statistical Areas for Washington State 

6.2. Descriptive Statistics 
Descriptive statistics for each variable of interest were collected across the different urban scales 

of interest. These statistics include the minimum, maximum, and average value for total 

population, population density (people/sq. mile), single occupancy vehicle mode share, transit 

mode share, and the mode share for non-motorized modes which includes cycling and walking. 

These descriptive statistics are summarized below in the following sections. The overall sample 

size for each urban scale is also summarized below. 

6.2.1. Sample Sizes 

Table 5, below, summarizes the sample sizes for the different urban scales in the US. The 

Incorporated Place urban scale has the largest sample size with over 19,000 communities in the 

US classified as an Incorporated Place. This makes sense because Incorporated Places are 

designated by political boundaries of cities, so each larger urban unit of analysis would be 

composed of multiple Incorporated Places. The large sample size for Census Designated Places 

can also be attributed to the large number of communities in the US that have some formal 

structure even if they have not been incorporated into a formal community. As the level of urban 

agglomeration grows, the sample size decreases due to multiple Incorporated Places or Census 

Designated Places combining to give rise to these larger urban units. Sample sizes for the 

University of Minnesota Accessibility Data and Texas Transportation Institute’s Congestion 
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Data are smaller as these values were only calculated by these agencies for a subset of US urban 

areas.  

Table 5 Sample Sizes for Different Urban Scales 

Urban Scale Sample Size 

Census Designated Place 9,787 

Incorporated Place 19,535 

Urban Area 3,573 

Metropolitan Division 31 

Combined Statistical Area 171 

Core Based Statistical Area 933 

University of Minnesota Accessibility Data 45 

Texas Transportation Institute Congestion 

Data 

101-160 

 

6.2.2. Population 

Table 6, below, summarizes basic descriptive statistics for total population at different urban 

scales. Generally, the values for the minimum, average, and maximum population values 

increase as the urban scale increases. This makes sense because larger urban spatial scales should 

include more individuals as they combine multiple smaller urban extents into a larger region. 

One notable exception are the population descriptive statistics for Metropolitan Divisions, 

although this is likely due to fewer areas being classified as a Metropolitan Division by the US 

Census.  

Table 6 Descriptive Statistics for Total Population (Number of People) 

Urban Scale Minimum Average Maximum 

Census 

Designated Place 0 2,442 348,080 

Incorporated 

Place 0 7,830 8,460,000 

Urban Area 0 56,990 17,789,200 

Metropolitan 

Division 259,358 2,740,870 14,281,660 

Combined 

Statistical Area 37,014 1,420,873 23,568,540 

Core Based 

Statistical Areas 13,034 321,687 20,031,440 

 

6.2.3. Population Density 
Descriptive statistics were also collected for population density values, expressed in terms of people per square mile, which are 

summarized below in  

Table 7. Population density values show a higher variability at smaller urban scales compared to 

more aggregate levels which could be explained through the higher level of resolution provided 
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for population density at smaller scales. Consider, for example, a metropolitan area that has a 

dense urban core, several medium density suburbs, and a sea of low-level density suburbs 

surrounding this inner core. At the aggregate metropolitan level, the overall density will be lower 

due to the inclusion of these low-density suburbs in the overall population density. This has the 

net effect of lowering the average and maximum population density values at larger urban scales. 

This same effect explains the higher average and maximum density values at smaller urban 

scales.   

 

Table 7 Descriptive Statistics for Population Density (People/Sq. Mile) 

Urban Scale Minimum Average Maximum 

Census 

Designated 

Place 0.00 496.32 21,117.83 

Incorporated 

Place 0.00 588.00 60,244.00 

Urban Area 0.00 477.06 7,020.01 

Metropolitan 

Division 374.90 1590.54 6,672.67 

Combined 

Statistical 

Area 5.21 222.83 1,701.18 

Core Based 

Statistical 

Areas 1.77 154.83 2,720.11 

 

6.2.4. Single Occupancy Vehicle Mode Share 

Table 8, below summarizes the overall mode share for single occupancy vehicles, expressed as a 

percentage. The observed maximum single occupancy vehicle mode share across different urban 

scales generally ranges between 85 and 92%, but there is significantly more variation in the 

average SOV mode share across these scales. At smaller urban scales, the average SOV mode 

share is between 16 and 24% while at the aggregate level, the average SOV mode share ranges 

between 67 and 78%. This could again be attributed to the same effects that are seen with respect 

to population density. These smaller urban scales see greater variation in the overall SOV mode 

share because they incorporate a wide range of places from dense, alternative-mode rich 

environments like downtown Manhattan to rural towns. Furthermore, it is possible that some of 

these smaller locations have relatively low populations which could bias the overall mode share 

estimates. Depending on who is surveyed, their responses could artificially lower SOV mode 

share in certain locations with a small population.    

Table 8 Descriptive Statistics for SOV Mode Share (%) 

Urban Scale Minimum Average Maximum 
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Census 

Designated 

Place 

0.0 16.2 90.9 

Incorporated 

Place 0.0 16.6 94.2 

Urban Area 0.0 23.3 84.7 

Metropolitan 

Division 25.9 67.0 84.4 

Combined 

Statistical 

Area 53.4 78.3 88.0 

Core Based 

Statistical 

Areas 13.5 77.8 91.9 

 

6.2.5. Transit Mode Share 

Table 9 summarizes basic descriptive statistics for transit mode share at different urban scales 

across the United States. Greater variability in the maximum transit mode share with respect to 

different urban scales can be observed in Table 9. While some Incorporated Places and Census 

Designated Places have high transit mode share, at larger urban scales, the observed maximum 

commute mode share for transit is less than 20%. It is likely that this difference can again be 

attributed to aggregation affects that arise from combining dense urban cores where transit 

ridership is likely to be highest with outlying suburbs that are more likely to be dependent on 

personal vehicles for transportation. This suspicion is partially confirmed by comparing the 

average transit mode share across the different urban scales. At all urban scales apart from the 

Metropolitan Division scale, the average commute transit mode share is less than 1% despite the 

differences observed in the maximum. This difference indicates that while the overall maximum 

transit utilization is less at larger urban scales, there is a net overall increase in transit mode share 

as larger urban scales are considered, a product of the different built environment types included 

in these scales. Conversely, while smaller urban scales can have some communities with very 

high transit utilization, most of these locations have very low transit ridership. One notable 

exception to the low average transit mode share is the Metropolitan Division urban scale. This 

value could be larger due to the small sample size for this urban scale which could feature only 

the Metropolitan Divisions that already have certain properties that support transit utilization, 

inflating the average value for this urban scale.  

Table 9 Descriptive Statistics for Transit Mode Share (%) 

Urban Scale Minimum Average Maximum 

Census 

Designated 

Place 0.0 0.7 33.0 

Incorporated 

Place 0.0 0.7 61.7 

Urban Area 0.0 0.3 16.8 
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Metropolitan 

Division 0.2 3.3 11.8 

Combined 

Statistical 

Area 0.0 0.5 5.3 

Core Based 

Statistical 

Areas 0.0 0.5 12.9 

 

6.2.6. Non-Motorized Mode Share 

Descriptive statistics for non-motorized mode share are summarized below in Table 10. Both 

transit and non-motorized mode share exhibit similar patterns in terms of their distribution of 

minimum, average, and maximum values across different urban scales. At smaller urban scales 

there is overall greater range between the observed minimum and maximum non-motorized 

transportation mode share, ranging from 39-49%. This is again suspected due to the disaggregate 

nature of the data which allows for greater variability in the observed values at smaller urban 

scales. Generally, as the geographic extent of the urban scale increases, the range between the 

observed maximum non-motorized transportation mode share decreases, also decreasing the 

range between the minimum and maximum mode share values. This again likely occurs due to 

the differences in built environment characteristics that are observed at larger urban scales, from 

dense urban cores to suburban development patterns. At an aggregate level, this reduces the 

overall non-motorized transportation mode share. One notable exception to this pattern is the 

maximum mode share at the Core Based Statistical Area urban scale, seen below in Table 10. 

Even though this urban scale reflects one of the largest levels of agglomeration, it still has a very 

high observed maximum non-motorized transportation mode share. This maximum value 

corresponds to Key West, Florida. While Florida is not traditionally thought of as a mecca for 

non-motorized transportation, Key West is recognized as having a high bike mode share among 

statistical areas of similar sizes, and the nice weather in Florida could also support walking or 

biking (58).  The observed average values for non-motorized mode share are much lower across 

all urban scales. Notably, however, at larger urban scales the average non-motorized mode share 

is larger than the average non-motorized mode share at smaller urban scales. This further 

illustrates the variability in the non-motorized transportation mode share across smaller urban 

scales. Furthermore, it also highlights the relative increase in utilization of non-motorized 

transportation at larger urban scales. This difference could be observed due to more investments 

in non-motorized transportation at larger urban scales or a larger presence of dense, urban areas 

that support non-motorized transportation.  

Table 10 Descriptive Statistics for Non-Motorized Mode Share (%) 

Urban Scale Minimum Average Maximum 

Census 

Designated 

Place 0.0 0.1 39.2 
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Incorporated 

Place 0.0 0.7 49.3 

Urban Area 0.0 1.2 46.2 

Metropolitan 

Division 0.6 2.3 6.9 

Combined 

Statistical 

Area 0.6 2.3 7.7 

Core Based 

Statistical 

Areas 0.0 2.7 44.6 

 

6.2.7. Comparison with Overall US Commute Mode Share 

The Bureau of Transportation Statistics also releases information on commute mode share across 

the United States with the most recent data available for 2015 (59). Figure 6, below, summarizes, 

the national level commute mode share for 2015.  

 

Figure 6 2015 US Commute Mode Share, Bureau of Transportation Statistics (59) 
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First, it is important to note that the previously identified mode share data relies on 2016 

American Community Survey data while the above figure uses 2015 American Community 

Survey data to calculate commute transportation mode share at the national level. Regardless, the 

SOV commute mode share at the national level is remarkably consistent with the SOV commute 

mode share at the Core Based Statistical Area urban scale (76.6 vs. 77.8%). While there are 

variations across metropolitan areas in this mode share, overall, the average metropolitan area 

seems to be representative of national trends related to automobile use for commute trips. The 

same is not observed with respect to transit. At the national level, the Bureau of Transportation 

Statistics finds that 5.2% of US residents take transit to work. Conversely, the average transit 

mode share in this data set was less than 1% across most urban scales. This difference could be 

explained through the greater variation in transit use across different urban areas which could 

lead to difficulties in comparing average transit use within different urban communities 

compared to the national level or using a different year of data for comparison. The Bureau of 

Transportation Statistics also finds a slightly higher estimate for bike and walk commute trips, a 

total of 3.4% of commute trips, compared to average non-motorized mode share across Core 

Based Statistical Areas, 2.7%. This minor difference could likely be attributed to the difference 

in the survey year or some challenges comparing community level data to national level data. 

Despite these small differences, the identified mode share at different urban scales largely agrees 

with national commute mode share data.  

6.2.8. Job Accessibility 

Table 11, below, summarizes descriptive statistics obtained from the University of Minnesota 

data for jobs accessible by transit and walking. The average number of jobs accessible by transit 

or walking takes the area-weighted average of jobs accessible by transit or walking at the census 

tract scale to aggregate this information to the metropolitan area scale. Generally, more jobs are 

accessible by transit compared to walking. This is as expected because for a given travel time 

threshold, using a faster travel mode will allow for a user to reach more opportunities.  

Table 11 Descriptive Statistics for Job Accessibility (Number of Jobs) 

 Variable Minimum Average Maximum 

Average Jobs 

Accessible by Transit  
172 1,874 10,643 

Average Jobs 

Accessible by Walking  
116 856 3,165 

 

6.2.9. Congestion 

Descriptive statistics describing the congestion data obtained from Texas Transportation Institute 

are summarized below in Table 12. These values are estimated at the Urbanized Area scale (60). 

Generally, a wide range of values is observed for different variables that characterize congestion 

and transportation system performance, reflective of the range of sizes considered for the 471 

urban areas in this report. Smaller locations have a fairly low number of auto commuters with 

corresponding lower VMT, number of rush hours, percent of time that the system is congested, 

and total annual hours of delay. Larger areas see a correspondingly higher volume of auto 
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commuters along with higher measures of congestion with the system being congested or 

congested travel occurring up between 50 and 60% of the time for the largest areas.  

Table 12 Descriptive Statistics for Congestion 

Variable Minimum Average Maximum 

Auto Commuters 

(Number of Auto 

Commuters) 

29,000 529,544 5,881,000 

Daily Freeway VMT 

(Miles) 
597,000 15,339,610 122,655,000 

Daily Arterial Street 

VMT (Miles) 
1,025,000 14,995,150 119,049,000 

Daily VMT (Miles) 1,635,000 30,334,760 240,652,000 

Number of Rush Hours 

(Hours) 
0 3 8 

Percent Congested 

Travel (%) 
2 27 59 

Percent Congested 

System (%) 
3 24 52 

Total Annual Hours of 

Delay (Hours) 
420,000 38,639,010 628,241,000 

 

6.3. Comparison with Previous Work 
After identifying candidate data sets from Bettencourt, West, et al.’s work, the adopted scaling 

methodology was applied to these data sets for comparison purposes. The estimated scaling 

exponents and the exponents calculated by the authors are summarized below in Table 13. For 

some data sources, multiple years were available which are also summarized below. This data is 

compared at the Core Based Statistical Area level, based on the unit of analysis used by the 

authors, which can further be broken down into both metropolitan and micropolitan statistical 

areas. Because of this distinction, the sample size used for this work is much larger than the 

sample size used in Bettencourt, West, et al.’s work since it is possible that the authors 

considered only Core Based Statistical Areas that were classified as metropolitan areas.  

Table 13 Comparison of Calculated Scaling Exponents with Previous Work for All Core Based Statistical Areas in the US 

This Work – Core Based Statistical Areas Bettencourt, West, et al.’s Work 

Data Year Beta 95% CI Adj. 

R2 

N Data Year Beta 95% CI Adj. 

R2 

N 

Personal 

Income 

2000 1.08 [1.07,1.09] 0.98 933       

 2001 1.07 [1.06,1.08] 0.98 933       

 2002 1.07 [1.06,1.08] 0.98 933 Total Wages 2002 1.12 [1.09,1.13] 0.96 361 

 2004 1.07 [1.06,1.08] 0.98 933       

 2006 1.07 [1.06,1.08] 0.98 933       

 2008 1.06 [1.05,1.07] 0.98 933       
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 2010 1.05 [1.04,1.06] 0.98 933       

Employment 2001 1.02 [1.02,1.03] 0.98 933 Employment 2001 1.01 [0.99,1.02] 0.98 331 

 2002 1.02 [1.01,1.03] 0.98 933       

 2004 1.02 [1.01,1.03] 0.98 933       

 2006 1.02 [1.01,1.03] 0.98 933       

 2008 1.02 [1.01,1.03] 0.98 933       

 2010 1.02 [1.01,1.03] 0.98 933       

R&D Firms 2002 0.87 [0.78,0.95] 0.68 201 R&D 

Establishments 

1997 1.19 [1.14,1.22] 0.77 287 

R&D 

Employment 

2002 1.10 [0.80,1.41] 0.73 21 Private R&D 

Employment 

2002 1.34 [1.29,1.39] 0.92 331 

 

Personal income scaling exponents are slightly lower than those estimated by Bettencourt, West, 

et al. This could be attributed to the difference in using total personal income versus total wages 

for the analysis or by including data for both metropolitan and micropolitan areas in the scaling 

analysis. Regardless of these minor differences, overall, personal income still exhibits a super-

linear scaling regime that is also noted by Bettencourt, West, et al. Even though the calculated 

values are slightly different, there is a good fit overall. It is interesting to note in the time series 

data for personal income an overall decrease in the scaling exponent over time which could 

possibly be attributed to the effects of the economic recession on overall income. Despite this 

minor change, scaling for personal income shows remarkable temporal stability.  

Employment scaling exponents are roughly the same as those calculated in Bettencourt, West, et 

al.’s work, as seen in Table 13, above. Again, employment scaling effects exhibits remarkable 

temporal stability. 

Research and development firms/establishments and employment do show significant departures 

from the exponents calculated by Bettencourt and West. This is likely attributable to different 

classifications of the variables used and different time periods considered. Furthermore, the US 

Census data on research and development firms and employment was somewhat limited, 

reducing the sample size compared to Bettencourt, West, et al.’s work which could also partially 

explain these observed differences. 

To reduce the sample sizes included in this analysis, the scaling exponents were calculated using 

only Core Based Statistical Areas that were classified as metropolitan areas by the Bureau of 

Economic Analysis. This distinction reduced the sample size so it was comparable to the total 

number of observations included in Bettencourt, West, et al.’s work, and these results are 

summarized below in Table 14. Removing micropolitan areas from the analysis set increased the 

estimated scaling coefficients, although the trends observed remain largely consistent with the 

previous analysis. 

Table 14 Comparison of Calculated Scaling Exponents with Previous Work for only Metropolitan - Metropolitan Statistical 

Areas in the US 

This Work – Metropolitan Areas Bettencourt, West, et al.’s Work 
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Data Year Beta 95% CI Adj. 

R2 

N Data Year Beta 95% CI Adj. 

R2 

N 

Personal 

Income 

2000 1.09 [1.07,1.10] 0.98 382       

 2001 1.08 [1.07,1.10] 0.98 382       

 2002 1.08 [1.07,1.09] 0.98 382 Total Wages 2002 1.12 [1.09,1.13] 0.96 361 

 2004 1.08 [1.06,1.09] 0.98 382       

 2006 1.08 [1.07,1.10] 0.98 382       

 2008 1.07 [1.06,1.09] 0.98 382       

 2010 1.06 [1.05,1.08] 0.98 382       

Employment 2001 1.03 [1.01,1.04] 0.98 382 Employment 2001 1.01 [0.99,1.02] 0.98 331 

 2002 1.02 [1.01,1.04] 0.98 382       

 2004 1.02 [1.01,1.03] 0.98 382       

 2006 1.02 [1.01,1.03] 0.98 382       

 2008 1.02 [1.01,1.03] 0.98 382       

 2010 1.02 [1.00,1.03] 0.98 382       

R&D Firms 2002 0.95 [0.85,1.05] 0.66 177 R&D 

Establishments 

1997 1.19 [1.14,1.22] 0.77 287 

R&D 

Employment 

2002 1.26 [0.80,1.71] 0.68 17 Private R&D 

Employment 

2002 1.34 [1.29,1.39] 0.92 331 

 

Overall, the results of the developed analysis methodology applied to the data sets used in 

Bettencourt, West, et al.’s original work largely agree with the results for scaling effects 

discovered by these authors. These similarities are especially prevalent when there is a higher 

degree of confidence in the overall comparability of the initial data sets, such as the identified 

data sets for personal income and employment in US metropolitan statistical areas. Furthermore, 

when data is available for multiple years, the calculated scaling exponents show remarkable 

temporal stability which agree with the authors’ assertion of the universality of these scaling 

patterns for urban areas (2). 

6.4. Transportation Scaling Analysis 
To begin understanding the scaling effects of transportation mode share, each mode share was 

plotted against both population and population density using all data from each urban scale. 

Before plotting, the data was transformed by taking the log of both values such that linear 

models could be fit to the data to estimate the scaling exponents. During this step, any locations 

that had zero people or zero percent mode share for a mode were removed from the data as these 

locations could not be transformed. The behavior of single occupancy vehicle mode share was 

initially considered as this transportation mode was expected to have the most consistent 

behavior across regions with respect to both population and population density. After identifying 

the urban scales that exhibited promise for single occupancy vehicle mode share, the behavior of 

public transit and non-motorized modes was also considered. These results are discussed in detail 

in the following sections.  
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Below, Figure 7 illustrates the urban scaling effects for single occupancy vehicle mode share 

with respect to total population across different urban scales. Overall, during this initial analysis, 

both Census Designated Places and Incorporated Places show the strongest linear relationships 

for the calculated scaling exponent. While Urban Areas do show some linearity, this feature is 

not as pronounced as for smaller urban scales. Core Based Statistical Areas also exhibit a 

somewhat linear trend, although there is again more scatter in the data compared to smaller urban 

scales. Notably, smaller urban scales exhibit an unexpected positive scaling relationship that is 

not observed at larger urban scales. As population increases in these locations, the percent mode 

share for single occupancy vehicles also increases. This goes against common transportation 

engineering principles in which an increase in population encourages decreased single 

occupancy vehicle mode share because there is a corresponding increase in congestion. This 

feature could be observed in the data at smaller urban scales because of significant variation in 

single occupancy vehicle mode share at small urban scales with a low overall population. It 

could also arise because of considering scaling effects with respect to population; many large 

American cities still have a high single occupancy vehicle mode share since their development 

pattern is more supportive of this mode. 
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Figure 7 Scaling Analysis Results for SOV Mode Share with Respect to Population at Each Urban Scale 

While population was initially considered as part of these urban scaling relationships, it is 

suspected that population density has an even more significant role in urban scaling relationships 

for transportation mode share. The built environment has a strong influence on overall 

transportation mode share; dense urban areas are more supportive of alternative transportation 

modes and should exhibit less single occupancy vehicle trips. The same preliminary scaling 

analysis was also completed with respect to population density, and the results at each urban 

scale can be seen below in Figure 8. Overall, the results are largely consistent with the results for 

urban scaling with respect to population.  
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Figure 8 Scaling Analysis Results for SOV Mode Share with Respect to Population Density at Each Urban Scale 

Several trends were identified during the initial scaling analysis. First, the observed scaling 

relationship varies depending on the urban scale in question in terms of both directionality and 

goodness of fit, and this result is consistent with respect to both population and population 

density. The overall linearity is strongest at smaller urban scales. Interestingly though, at these 

smaller scales, positive scaling is observed in which an increase in population or population 

density increases the observed single occupancy vehicle mode share. This counter-intuitive result 

is not seen at larger urban scales. 

Based on the initial analysis, two additional research directions were identified. First, the 

importance of these transition thresholds was considered for the Incorporated Place urban scale. 
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Possible reasons for the unexpected positive scaling relationship for single occupancy vehicle 

mode share were explored, and different thresholds were used to examine how the observed 

scaling relationship changes with respect to the chosen threshold at this scale. Second, the urban 

scaling effects at the Core Based Statistical Area urban scale was also investigated further. This 

scale was used in previous work as the urban unit of analysis. Additionally, transportation is a 

regional problem which makes understanding urban scaling effects at the metropolitan area level 

even more critical.  

6.5. Transition Thresholds 
At the Incorporated Place urban scale, a positive scaling relationship is observed for single 

occupancy vehicle mode share with respect to both population and population density. This 

positive scaling likely arises due to the significant variation in observed single occupancy vehicle 

mode share at low population levels, seen below in Figure 9 for the Incorporated Place urban 

scale. The Incorporated Place data set contains records of each urban area in the United States, 

over 19,000 municipalities. Many of these locations are smaller towns and cities that have either 

low population or population density, yet they still have significant variation in their observed 

SOV transportation mode share. This variation could arise from estimation methods employed 

by the census, data errors, or reflect different values of these communities that decrease their 

relative reliance on single occupancy vehicles. However, the large number of points with small 

population or population density with a widely varying transportation mode share combine to 

give rise to the observed positive scaling relationship. This can be seen below in Figure 9 where 

there is a vertical cluster of data points at low population or population density values which 

contributes to the positive scaling relationships after applying a log transformation to the data. At 

higher population or population density levels, there appears to be a negative relationship 

between these values and observed SOV mode share. As such, it is likely not appropriate to 

include all data points in the urban scaling analysis at smaller geographic scales. Instead, 

thresholds for population and population density should be identified at these smaller urban 

scales to reduce this variation and develop ranges in which this scaling phenomenon holds.  
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Figure 9 SOV Mode Share Data Distribution for Incorporated Place 

To understand the geographic distribution of points with low population or population density 

and low SOV mode share, the data was segmented using both the 25th and 50th percentile values 

for each of these categories. Using these values, Incorporated Places that fell below the 25th and 

50th percentile in each of these categories were identified and plotted using GIS. These points 

were predominantly small communities in rural areas. Other notable features of the data which 

could influence the results include a preference among different states to include different types 

of Incorporated Places in the census data set. For instance, states like Maine and California only 

included Incorporated Places that were classified as cities whereas other states also included 

towns or even smaller geographic units such as boroughs. This could bias some of the observed 

results. However, since these smaller communities’ results were removed from the exploratory 

transition threshold identification, discussed below, it is not expected to interfere with the overall 

findings for urban scaling relationships. Based on this understanding, ranges of possible 

transition thresholds were identified for both population and population density to determine the 

specific population and population density values at which this transition occurs. Selected 

scaling analyses for SOV mode share at different possible transition thresholds and a summary of 

the scaling coefficient estimates at each tested transition threshold are summarized below in 

Figure 10 for both population (left) and population density (right). 

Increasing both the population and population density threshold generally decreases the 

coefficient for the scaling estimate. When no transition threshold is considered, the observed 

scaling relationship for SOV mode share is positive with respect to both population and 

population density at the Incorporated Place urban scale. As the tested transition threshold for 

population and population density increase, removing areas with low population or population 

density, the magnitude of the coefficient estimate defining the scaling relationship behavior 

decreases. At a certain transition threshold, this coefficient estimate becomes negative, 
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corresponding to a negative scaling regime where increasing population or population density 

decreases single occupancy vehicle mode share. 

Population density scaling coefficient estimates, seen in the bottom right figure of Figure 10, 

shows a smooth decreasing trend while there is more variation in the observed overall decreasing 

trend with respect to population, seen in the bottom left figure of Figure 10. This difference 

could arise due to the importance of population density in supporting alternative transportation 

choices. This effect is particularly notable as the observed scaling parameter estimates for 

population density have a wider range compared to those with respect to population. This 

difference could also be observed due to the different magnitudes characterizing population and 

population density. It is possible that adding even 100 people more per square mile significantly 

affects the observed behavior while adding only 1,000 people across a city represents a smaller 

net increase that could lead to less variation in the observed coefficient estimates for population. 

Based on these results, the transition population threshold for SOV mode share is 39,000 people, 

and the transition population density threshold for SOV mode share is 2,000 people per square 

mile at the Incorporated Place urban scale.  
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Figure 10 Incorporated Place Scaling Transition Threshold Analysis Summary for SOV Mode Share 
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Observed scaling effects for transit with respect to both population and population density, seen 

below in Figure 11 at different threshold estimates, exhibits considerably more variability in the 

coefficient estimates. Despite the variability, these coefficient estimates are consistently positive 

indicating that as population or population density increases, so does transit mode share which 

should be expected. More interestingly, transit ridership exhibits a super-linear scaling regime (β 

> 1) with respect to population density and a sublinear scaling regime (β < 1) with respect to 

population. This difference could be explained through the different observed relationship 

between population and population density for transit ridership. As locations densify, these areas 

are better able to support transit through establishing a larger ridership base which provides more 

opportunities to invest in transit and improve service quality. This self-reinforcing cycle that 

typically faces transit systems explains the super-linear scaling with respect to population 

density. Conversely, as overall population increases, economies of scale can arise for public 

transportation. Total population does not characterize the development pattern of an urban area 

(e.g. sprawling vs. compact, homogenous vs. heterogenous land use, etc.) that is better reflected 

in a measure like population density. If a city has higher population but lacks density, supporting 

transit as a transportation mode choice becomes more difficult. Furthermore, population by itself 

cannot characterize transit performance which needs high-density urban areas to support its use. 

For two cities with different population levels, similar levels of transit service can be provided 

through less investments in transit service in the larger city because bus or rail transit can carry 

large quantities of individuals before reaching capacity. As such, a larger city might not provide 

as much transit service, relative to a smaller city, while still providing enough facilities to meet 

overall demand. This relationship could suppress overall growth in transit solely with respect to 

population.  

 

Figure 11 Incorporated Place Scaling Transition Thresholds for Transit Mode Share 

Finally, the relationship between population and population density and non-motorized 

transportation modes (the total mode share of bike and walk commute trips) was considered. The 
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thresholds and estimated scaling exponents for both population and population density can be 

seen below in Figure 12. 

 

Figure 12 Incorporated Place Scaling Transition Thresholds for Non-Motorized Mode Share 

The estimated scaling exponents for non-motorized transportation mode share is positive again 

indicating an overall increase in utilization in these modes as population or population density 

increases. However, there is still significant variation in these coefficient estimates depending on 

the chosen threshold. This difference could arise due to the importance of other built 

environment characteristics on non-motorized transportation that is not captured purely by 

looking at population or population density. Generally, the calculated scaling exponent is higher 

for non-motorized transportation with respect to population density which could again be 

explained by the importance of density in supporting alternative transportation choices. For both 

population and population density, non-motorized transportation mode share exhibits a sublinear 

(β < 1) scaling regime.  

6.6. Core Based Statistical Area Scaling Effects 
Previous work by Bettencourt, West, et al., examined urban scaling effects at the Core Based 

Statistical Area scale (9). Since transportation exists to move people throughout a region rather 

than just isolated municipalities, the urban scaling effects for transportation mode share was also 

considered at the Core Based Statistical Area urban scale. These results are summarized below in 

Figure 13. Specific coefficient estimates for each transportation mode and their scaling regime 

are also summarized below in Table 15. 
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Figure 13 Urban Scaling Analysis Results for Core Based Statistical Area Urban Scale 

An initial scaling analysis for the Core Based Statistical Area urban scale highlights some 

consistencies with expected behavior and both some consistencies and differences with the 

observed scaling phenomenon at the Incorporated Place urban scale. When all data points are 

included in the analysis, single occupancy vehicle mode share exhibits negative, sublinear 

scaling. While this behavior is as expected, it is observed at the more aggregate level without 

applying a transition threshold to the data set. Interestingly, transit ridership exhibits a positive, 

sublinear scaling pattern with respect to both population and population density, while non-

motorized modes exhibits a negative, sublinear scaling regime for both population and 

population density, seen below in Table 15. These features were not observed at the Incorporated 

Place urban scale. It is unclear why these scaling patterns emerge when considering metropolitan 
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areas, however, it could be a feature of the more aggregate nature of metropolitan areas. By 

including a mix of dense urban areas with suburban surroundings, more moderate scaling effects 

for both transit and non-motorized modes could be observed. 

Table 15 Core Based Statistical Area Scaling Analysis Results 

Variable Beta Scaling Regime 

SOV Mode Share 

– Population  
-0.019 

Negative, 

Sublinear 

SOV Mode Share 

– Population 

Density 

-0.008 Negative, 

Sublinear 

Transit – 

Population  
0.341 

Positive, 

Sublinear 

Transit – 

Population Density 
0.300 

Positive, 

Sublinear 

NM – Population  -0.010 
Negative, 

Sublinear 

NM – Population 

Density 
-0.194 

Negative, 

Sublinear 

 

As seen with the Incorporated Place urban scale, the observed scaling regime can change as 

different transition thresholds are applied. These transition thresholds were also investigated for 

the Core Based Statistical Area urban scale to see if the observed scaling regimes for transit and 

non-motorized modes would change. As discussed when the descriptive statistics are considered, 

the variability and range for both population and population density are different depending on 

the urban scale under consideration. While it is possible to apply the same identified transition 

thresholds to different urban scales, it is not necessarily appropriate or should be expected to give 

similar results. Even though the identified thresholds for the Incorporated Place urban scale 

could not be used directly, these same methods were applied to investigate transition thresholds 

for Core Based Statistical Areas. 

Figure 14, below, shows the range of calculated scaling exponents for different considered 

population or population density thresholds for Core Based Statistical Areas. It is important to 

note that the Core Based Statistical Area data set forms a smaller data set overall compared to the 

Incorporated Place data set. Applying transition thresholds to the Incorporated Place data set 

generally left sufficient points in the data set to reliably analyze the data for scaling effects. 

Conversely, at some of the selected, higher population or population density thresholds for Core 

Based Statistical Areas, there were very few points remaining in the data set for analysis. This 

distinction can explain the increased variability observed for Core Based Statistical Areas when 

higher population or population density thresholds are considered. 
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Figure 14 Core Based Statistical Area Transition Thresholds 

Overall, single occupancy vehicle mode share exhibited a consistent negative, sublinear scaling 

relationship across most transition thresholds for both population and population density. This 

difference compared to Incorporated Places could emerge because at the regional level, there is 

enough support for alternative transportation modes that the net effect suppresses single 

occupancy vehicle commute trips. Transit generally exhibited super-linear scaling with respect to 

population density and sublinear scaling with respect to population when there was a sufficient 

sample size for the data set. This confirms results from the Incorporated Place scaling effects 

with respect to transit mode share. However, transit mode share scaled sub-linearly with respect 

to both population and population density at the Core Based Statistical Area scale when no 

transition threshold was considered. Scaling exponents for non-motorized modes with respect to 
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population density and population were consistently sublinear which also matches previous 

results from the Incorporated Place data set. Again, this result differs from the observed scaling 

regimes for Core Based Statistical Areas when no transition threshold is applied. 

6.7. Scaling Relationships for Other Transportation System Characteristics 
The University of Minnesota provides data for the number of jobs accessible by transit or 

walking during commute periods for the 50 largest metro areas in the US in 2014. This data is at 

the census tract level and was aggregated to the Core Based Statistical Areas. 2014 population 

data for the Core Based Statistical Areas was also included to measure population and population 

density for urban scaling analysis.  

Texas Transportation Institute also provides congestion information through their Urban 

Mobility Scorecard. This data was provided at the Urban Area level, which was the scale used to 

calculate population density from the population information provided in the data set (60). 

Generally, these urban scaling relationships showed strong linearity and good model fits with 

respect to population or population density, as applicable. Results of these models are 

summarized below in Table 16. 

Table 16 Urban Scaling Relationships for Other Transportation System Characteristics 

Variable (Units) Beta 

Scaling 

Regime N 

Average Jobs Accessible by Transit (Number 

of Jobs)-Population 
0.7487556 

Sublinear 
45 

Average Jobs Accessible by Transit (Number 

of Jobs)-Population Density 
1.20319 

Super-linear 
45 

Average Jobs Accessible by Walking 

(Number of Jobs)-Population 
0.503577 

Sublinear 
45 

Average Jobs Accessible by Walking 

(Number of Jobs)-Population Density 
1.0169807 

Super-linear 
45 

Auto Commuters (Number of Auto 

Commuters)-Population 
0.9377308 

Sublinear 
160 

Auto Commuters (Number of Auto 

Commuters)-Population Density 
1.4827908 

Super-linear 
157 

Daily Freeway VMT (Miles per Day)-

Population 
1.0969773 

Super-linear 
101 

Daily Freeway VMT (Miles per Day)-

Population Density 
0.7687391 

Sublinear 
100 

Daily Arterial Street VMT (Miles per Day)-

Population 
0.9629613 

Sublinear 
101 

Daily Arterial Street VMT (Miles per Day)-

Population Density 
0.8082108 

Sublinear 
100 

Daily VMT (Miles per Day)-Population 1.0157056 Super-linear 101 

Daily VMT (Miles per Day)-Population 

Density 
0.7808908 

Sublinear 
100 
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Number of Rush Hours (Hours per Day)-

Population 
0.4117777 

Sublinear 
101 

Number of Rush Hours (Hours per Day)-

Population Density 
0.8129255 

Sublinear 
100 

Percent Time Congested Travel (%)-

Population 
0.2732195 

Sublinear 
101 

Percent Time Congested Travel (%)-

Population 
0.5661895 

Sublinear 
100 

Percent Time Congested System (%)-

Population 
0.1867701 

Sublinear 
101 

Percent Time Congested System (%)-

Population Density 
0.4892689 

Sublinear 
100 

Total Annual Delay (Hours per Year)-

Population 
1.2876923 

Super-linear 
160 

Total Annual Delay (Hours per Year)-

Population Density 
1.8793974 

Super-linear 
157 

 

Jobs accessible by transit showed the same scaling patterns as total transit mode share; scaling 

with respect to population was sublinear while scaling with respect to population density was 

super-linear. This indicates that these differences can likely be attributed to different 

transportation system characteristics. Density is widely recognized as supporting transit demand 

since it cluster activities and people together. As such, it is expected that there should be a super-

linear scaling relationship with respect to population density. Conversely, total population likely 

exhibits sublinear scaling with transit mode share and jobs accessible by transit because 

population by itself does not identify the spatial organization of an urban area. Additionally, 

transit vehicles can carry multiple people and generate economies of scale that can lead to the 

observed sublinear scaling phenomenon.  

Interestingly, jobs accessible by walking with respect to population density illustrated 

approximately linear or slightly super-linear scaling relationship which was not observed for 

walking mode share. It is suspected that the overall walking and biking mode share scales sub-

linearly because there is a finite limit to the distance most people are willing to use a non-

motorized mode for a commute trip, irrespective of the overall density of areas. Conversely, in 

denser areas, more jobs should be accessible by walking since for a given trip distance, there are 

more activities packed into the area, thus this result is as expected. 

The total number of auto commuters exhibits sublinear scaling behavior with respect to 

population and super-linear scaling with respect to population density in the TTI data set. Auto 

commuters should reasonably scale sub-linearly with respect to population because as overall 

population increases there will be increased congestion and more carpool or other mode choice 

opportunities. Similarly, it is expected that increasing population density will also increase the 

number of auto commuter in a super-linear form because there are more individuals within an 

area. 
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Number of rush hours, percent time for congested system, and percent time for congested travel 

all exhibit sublinear scaling behavior with respect to population and population density in the 

TTI data set. This is reflective of the finite nature of road resources regardless of a region’s 

population. As population increases and there is increasing demand for a transportation system’s 

resources, congestion can arise which also encourages changes in behavior for some groups of 

individuals. These behavioral changes that arise as a response to system congestion give rise to 

this sublinear scaling phenomenon. 

Conversely, the total annual hours of delay exhibits super-linear scaling with respect to 

population and population density. As population or population density increases, so does 

congestion and delay for the network. While measures of congestion in terms of percentage of 

the time congested or the number of rush hours exhibits sublinear scaling, when the total is 

considered, super-linear scaling is observed. This difference could arise from differences in the 

type of delay measurement. Adding another vehicle to the road network or adding another 

individual to an area has a small effect on the overall congestion each day, hence the sublinear 

scaling. However, the marginal cost for these individuals is high which contributes to the super-

linear scaling for the total annual hours of delay. This difference could also be observed due to 

differences in the way these variables are measured during the data collection process. 

VMT exhibits an approximately linear scaling relationship for population, particularly with 

regards to total VMT. This intuitively makes sense because travel acts as a derived demand. As 

population increases, an individual’s demand for travel remains which supports linear scaling 

with respect to population. With respect to population density, sublinear scaling is observed for 

total VMT. This also makes sense because increased density typically reflects a mixed-use built 

environment which facilitates shorter trips overall and alternative mode choices. Patterns for 

freeway VMT and arterial VMT are also similar to those observed for total VMT.  

6.8. Urban Area Identification 
While transportation is a technical discipline, public perception, personal experience, and 

common knowledge contribute to an overall understanding of transportation mode share. New 

York City is still recognized as an American public transit mecca while cities like Los Angeles 

are enthralled with the auto. Cities like Portland, OR, and Davis, CA, are widely recognized as 

bicycling hotspots. Urban scaling analysis provides a mechanism to explore how these locations’ 

mode share is shaped through different policies or other unique characteristics that give rise to 

their recognition for these modes. Furthermore, urban scaling analysis can further contextualize 

the types of locations that exhibit certain scaling patterns with respect to transportation mode 

share to identify plausible urban transitions for both planners and engineers.  

Core Based Statistical Areas that did not fit within the calculated scaling relationship for a given 

mode and population or population density were identified based on confidence bands 

surrounding the scaling relationship. After calculating these relationships, locations whose mode 

share was greater than two standard errors from the predicted value were identified for all modes 

with respect to both population and population density. Using these identified locations, 

locations that were outliers with respect to multiple transportation modes (e.g. high SOV use, 

low transit use) were also identified and unique characteristics connecting these locations were 
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also identified. Figure 15, below, shows an example of the best fit scaling relationship (red) and 

the identified confidence bands (blue) for SOV mode share with respect to population and 

population density. Points that fell outside these confidence bands were identified and compared. 

 

Figure 15 Identified Confidence Bands for SOV Mode Share with Respect to Population and Population Density 

After identifying locations that exhibited atypical behavior with respect to the calculated urban 

scaling relationships for a transportation mode, these locations were compared to identify places 

that exhibit unique behavior across multiple transportation modes.  

First, cities that were outliers with respect to SOV, transit, and non-motorized mode shares were 

identified. For locations that were outliers with respect to all transportation modes, there are 

eight different ways to classify these locations for their identified scaling regime. Two of these 

classes, the classes with the largest number of observations and the most intuitive interpretation 

are discussed below. First, the locations that had lower than expected SOV mode share and 

higher than expected transit and non-motorized mode use with respect to population density are 

summarized below in Figure 16. In the following figure, the Core Based Statistical Areas, 

colored blue, have higher than expected transit and non-motorized mode share with lower than 

expected SOV mode share. Conversely, the areas colored red have higher than expected SOV 

mode share with lower than expected transit and non-motorized transportation mode share. 
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Figure 16 Unique Areas with Respect to SOV, Transit, and Non-Motorized Mode Share

Overwhelmingly, the locations that have lower than expected SOV mode share with a 

corresponding increase in transit and non-motorized mode share are clustered in coastal areas, 

vacation destinations, or major metropolitan areas that have been previously identified, such as 

New York City and Portland. This reflects the commonly held perception that cities like New 

York City and Portland have atypical transportation behaviors, although it is interesting to note 

that cities like Phoenix, AZ, also fall into this category. This distinction could arise due to their 

relative population densities which could give Phoenix a higher allowable SOV mode share yet 

still fall outside of the boundaries of this scaling behavior. Transit and non-motorized modes 

could further be facilitated through nice weather and recent installation of a light rail transit 

system in Phoenix. 

Conversely, cities with a higher than expected SOV mode share with lower than expected transit 

and non-motorized mode use are clustered predominantly in the southeast US, seen in red on 

Figure 16. This fulfills the commonly held perception that cities and locations in places like the 

southeast and the Midwest are overly car-dependent. It is interesting to note, however, that some 

cities in these geographic areas can overcome these perceptions to fall in the previously 

discussed scaling regime with lower than expected SOV mode share, such as Elizabeth City, NC. 

This ability does not appear to work in reverse, however; metropolitan areas that are traditionally 

located in areas that are supportive of public transit and non-motorized transportation modes do 

not exhibit a higher level of SOV use than expected.  

These patterns are highlighted again when only outliers with respect to both SOV and transit or 

outliers with respect to both SOV and non-motorized modes are considered, seen below in 

Figure 17 and Figure 18. Notably, other major US cities appear on these figures, such as 

Chicago, IL. While Chicago might not support non-motorized transportation as efficiently as a 

location like New York City through different development patterns, the L train and Metra still 

facilitate transit use which reduce SOV use more than expected for a city of similar population 

density. Interestingly, Los Angeles is also identified as location with higher than expected non-
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motorized mode share. For a major urban area, Los Angeles’ auto-dependence might be notable, 

particularly comparable to a city like New York, but that does not mean it is uncapable of 

supporting non-motorized transportation options. 

 

Figure 17 Unique Areas with Respect to SOV and Transit Mode Share 

 

Figure 18 Unique Areas with Respect to SOV and Non-Motorized Mode Share 

Using standard geographical regions defined by the US census (61), distinct geographic clusters 

can also be observed in the scaling relationships for both transit and non-motorized modes with 

respect to population density at the Incorporated Place scale. Figure 19, below, identifies 

regional differences in an Incorporated Place’s relation to the estimated scaling relationships. 

Locations in the Southern and Midwestern US tend to fall slightly above the observed scaling 

relationship for both transit and non-motorized modes. Locations in the West exhibit better 

agreement with the estimated scaling relationship, and Northeastern cities tend to fall near the 

scaling relationship or slightly below. However, cities in both geographic regions exhibit more 

variation in the data across their region. Despite the observed correlation to geography, the high 
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number of points in each of these regional groups could obscure other patterns in the data or 

mask the variability within some regions to further explain the observed behavior. 

 

 

Figure 19 Transit and Non-Motorized Urban Scaling Effects with Respect to Population Density

7. Discussion 
The results and analysis highlighted several important findings addressing how transportation 

mode share scales with urban area population and identifying community factors that explain 

differences in transportation mode share. First, the methodology applied in this thesis was 

corroborated based on previous work; these methods reproduced results from Bettencourt, West, 

et al. when applied to their same data sets (2). This indicates the key findings, discussed below, 

are valid. Notably, the observed scaling behavior changes depending on the geographic scale and 

using population or population density in the analysis, but some general scaling features are still 

observed.  

Urban scaling effects for SOV mode share with respect to population and population density 

exhibit a negative, sublinear scaling regime. Intuitively, as a city grows or adds density, 

congestion and parking demand increase making driving more difficult. As density increases, 

there are also more opportunities within a shorter distance that can support transit or non-

motorized modes. These principles are further reflected in the sublinear scaling patterns 

characterizing some measures of transportation system congestion. The total number of auto 

commuters, number of rush hours, percent time for congested system, and percent time for 

congested travel all exhibit sublinear scaling behavior with respect to population in the Texas 

Transportation Institute data set. This reflects the finite nature of road resources regardless of a 

region’s population. Increasing demand for a transportation system’s resources creates 

congestion that encourages changes in behavior for some individuals; these behavioral changes 
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lead to the sublinear scaling phenomenon. Conversely, the total annual hours of delay exhibits 

super-linear scaling with respect to population and population density. Adding another vehicle to 

the road network has a small effect on the overall congestion, hence the sublinear scaling. 

However, the marginal cost for these individuals is high which could increase the total annual 

hours of delay in a super-linear scaling pattern. This could explain some of the different observed 

scaling behavior for measures of congestion. 

Transit mode share with respect to population density exhibits super-linear scaling patterns while 

transit with respect to population follows sublinear patterns at both geographic scales. This 

difference can be explained through the different relationship between population and population 

density on transit ridership. Density is widely recognized as supporting transit demand since it 

clusters activities and people together. Increasing ridership provides more opportunities to invest 

in transit to improve service quality. This self-reinforcing cycle that challenges transit systems 

explains the super-linear scaling with respect to population density. Conversely, as total 

population increases, economies of scale arise for public transportation. Transit vehicles carry 

multiple passengers that generate economies of scale for the service leading to sublinear scaling.  

Additionally, the total population cannot characterize the development pattern of an urban area 

(e.g. sprawling vs. compact, homogenous vs. heterogeneous land use) that are captured by 

population density. If a city has a high population but lacks density, supporting transit becomes 

more difficult. Jobs accessible by transit showed the same scaling patterns as total transit mode 

share; scaling with respect to population was sublinear while scaling with respect to population 

density was super-linear. This indicates that these differences can be attributed to characteristics 

of the transportation system and confirms the relationships observed for transit mode share.  

Finally, non-motorized mode share exhibits a sublinear scaling pattern with respect to both 

population and population density. The sublinear scaling regime indicates that an increase in 

population or population density will also increase the non-motorized mode share. However, this 

growth in mode share occurs more slowly compared to population or population density growth. 

This can be attributed to the spatial constraints placed on non-motorized trips. For most 

individuals, there are finite time or distance limits for walk or bike commute trips that limit their 

overall mode share. The calculated scaling exponent is higher for non-motorized transportation 

with respect to population density that can be explained by the importance of density in 

supporting alternative transportation choices. Interestingly, jobs accessible by walking with 

respect to population density exhibited an approximately linear or a slightly super-linear scaling 

relationship which was not observed for non-motorized mode share. Density is correlated with 

the number of jobs in an area, so this result is as expected even though it differs from observed 

mode share scaling. 

Despite the observed general features, this work clearly illustrated the importance of geographic 

scale in determining scaling relationships. At smaller spatial extents, there is more variability in 

the data set due to the higher resolution of the data. Conversely, observed values for all variables 

are more consistent as the spatial scale expands. These characteristics contribute to the 

differences in observed scaling effects across urban scales.  
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When urban scaling exponents for SOV mode share are calculated using the entire Incorporated 

Place data set, the scaling exponent indicates a positive, sublinear scaling relationship. At a 

certain threshold, a negative sublinear scaling relationship is observed which is consistent with 

scaling results for Core Based Statistical Areas. This transition occurs at specific thresholds for 

both population and population density; only larger Incorporated Places remain in the data set 

above this threshold. This transition was not observed for SOV mode share at the Core Based 

Statistical Area scale. Mode share values at the Core Based Statistical Area scale were more 

aggregated which reduced their variability across population or population density levels. At the 

Incorporated Place scale, there is more variability in the SOV mode share data at low population 

or population density levels that contributes to the observed transition effects. Other geographic 

scales did not show a clear linear trend with respect to mode share. This difference could arise 

from either small sample sizes or lack of an intrinsic relation between population or population 

density at these urban scales and mode share.  

Previous research has criticized urban scaling for its dependence on urban scale (16, 17), and this 

analysis highlighted the challenges in selecting the appropriate geographic scale for an urban 

scaling analysis. The results of this study depended on the selected geographical scale. Core 

Based Statistical Areas were used in previous work, saw consistent results across different 

thresholds, and captured the integrated nature of urban areas. At smaller geographic scales, like 

the Incorporated Place scale, urban scaling analysis is conducted across different types of places, 

from rural towns, to suburbs of major cities and their urban core. The different community types 

contribute to the observed variability in mode share and the observed transition effects. Using a 

larger urban scale smoothes these variations and allows for a more general pattern to be 

observed. Critics of urban scaling analysis are correct; the selected urban scale can have a strong 

influence on the observed results and should be considered further in future work.   

While there are general features for urban transportation mode share in the US, not every Core 

Based Statistical Area neatly fits these observed schemes. In popular culture, large coastal cities, 

like New York City and Portland, OR, are known for their unique transportation mode share 

characteristics that are also reflected in this analysis. Both New York City and Portland exhibit 

atypical behavior for a city of their population density level with lower than expected SOV mode 

share and higher than expected transit and non-motorized mode shares. Generally, coastal areas 

and parts of the US that are rich with natural features have lower than expected SOV mode share 

and higher than expected transit and non-motorized mode shares. This reflects both investments 

in alternative transportation options and active lifestyles that are led by many residents in these 

areas. Interestingly, this behavior is even noted for cities like Los Angeles and Phoenix despite 

their reputation for car-dependence. Conversely, the southeastern US and Midwest generally 

have higher than expected SOV mode share and lower non-motorized and transit use overall. 

This distinction reflects the different development patterns and individual preferences across the 

US. Many of these areas tend to be more rural, sprawling, and conservative compared to coastal 

areas that leads to an auto-centric culture which further suppresses alternative transportation 

modes. This geographic distribution of modal preferences also leads to distinct health outcomes. 

The southeastern US typically has higher risk for negative health outcomes, including increased 

risk of diabetes, hypertension, and obesity that is correlated with observed lower physical 
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activity levels (62). Interestingly, the geographic division of unique locations is largely a one-

sided phenomenon. While some areas in the southeast or Midwest do exhibit low SOV mode 

share, coastal areas and major metropolitan areas do not exhibit higher than expected SOV mode 

share which is prevalent across the southeastern US and Midwest.  

8. Conclusions 
Amid rapid changes to the transportation system, civil engineers, urban planners, and policy 

makers need new methods to understand the complex urban environment. Urban scaling 

analysis, complexity theory, system dynamics, and principles from ecology all have the potential 

to transform the current understanding of urban transportation. However, before these methods 

can be applied, additional quantitative development is needed to understand existing processes 

governing urban transportation mode share. Scaling analysis was selected to understand urban 

transportation mode share due to its relative simplicity and its ability to capture general features 

of a system which is vital for future model development. This analysis approach assumes that a 

quantity of interest, in this study transportation mode share, can be related to an urban area’s 

population through a non-linear scaling exponent, β. This exponent defines the scaling regime; 

sublinear scaling occurs for β < 1 and super-linear scaling for β > 1. Furthermore, these distinct 

scaling regimes can be related to fundamental behavior in an urban system. Sublinear scaling 

reflects economies of scale for material infrastructure while super-linear scaling captures an 

increasing return on investment when individuals are concentrated in one location that is often 

associated with creative development. 

Previously, urban scaling analysis has not been applied to transportation mode share. This 

analysis addresses several important questions including the importance of the selected 

geographic scale, the nature of the observed scaling relationship with respect to both population 

and population density, and identification of communities with atypical behavior. The results of 

this work will aid planners and engineers in understanding general features of the transportation 

system and important processes that govern transportation mode share. This knowledge can lead 

to future development of ecological models that can describe the dynamics of transportation 

mode share. 

This work found the selected geographic scale does matter when analyzing transportation mode 

share. At smaller geographic scales, the variability in the data obscures the relationship to 

transportation mode share because wildly different areas are considered; smaller geographic 

scales compare the mode share of rural towns and small suburbs based on their population or 

population density. The transportation mode options available at smaller urban scales strongly 

depends on the built environment of these locations, so this grouping leads to higher variability 

in the regression results. The variability contributes to the transition effects when different 

population and population density thresholds are considered for the Incorporated Place data set. 

As the threshold value increases, the scaling exponent for single occupancy vehicle mode share 

decreases, transitioning from a positive, sublinear scaling regime to a negative sublinear scaling 

regime.  
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Considering these differences, identifying the appropriate geographic scale for urban scaling 

analysis remains a key challenge to apply these results to engineering, planning, or policy 

decisions for transportation. Previous research has questioned the generalizability of urban 

scaling analyses due to their dependence on the analysis scale that is noted to have affected the 

results of this study. As planners or engineers consider these results, they should exercise caution 

in their interpretation to ensure that they are being applied in a manner consistent with their 

development and in conjunction with other variables to analyze decisions. While these 

relationships can provide a baseline estimate for transportation system behavior, a lack of 

national data on built environment characteristics limits their potential to explain differences 

from typical behavior. 

Despite the issues comparing across urban scales, general scaling regimes for urban 

transportation mode share and system outcomes with population or population density are 

observed. SOV mode share exhibits a negative, sublinear scaling pattern in which SOV mode 

share decreases with increasing population or population density. This decrease reflects an 

increase in transportation system congestion with respect to population that causes individuals to 

change modes or carpool. Transit exhibits super-linear scaling with population density and 

sublinear scaling with population. This distinction captures the different roles population and 

population density play in the transportation system. Increasing population density supports 

transit through making more jobs and opportunities accessible. Additionally, as ridership 

increases, more funds and investments are available for transit, creating a self-reinforcing cycle 

which is reflected in the super-linear scaling regime. Conversely, increasing population may not 

necessarily support transit use due to the development pattern of the area. Furthermore, transit 

vehicles generate economics of scale by serving many passengers. These factors explain transit’s 

sublinear scaling with respect to population. Finally, non-motorized transportation options 

exhibit positive, sublinear scaling with respect to both population and population density. While 

increasing density or population can positively increase non-motorized modes by clustering 

activities, most people have a small limit for total distance or time travelled that limits non-

motorized modes’ overall growth to a sublinear regime.  

General scaling regimes are observed with respect to both population and population density, 

however, these effects are not consistent for transit mode share. This distinction highlights the 

importance of both population and population density for modelling transportation mode share 

dynamics. Since population density has a recognized correlation with transportation system 

characteristics, density should be included as a key variable for future analysis. However, 

considering the effects of total population could also provide valuable information in future 

work.  

While general patterns of behavior are observed for urban transportation mode share, it is also 

possible to identify cities and urban areas that do have unique mode share characteristics. 

Interestingly, while many classic locations that support non-motorized or transit modes were 

identified as scaling outliers, such as New York City, some locations that are prototypically auto-

oriented were also identified as having unique transportation mode share characteristics. This 

includes places like Los Angeles which had a higher than expected non-motorized mode share 
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despite its reputation for its love affair with the automobile. This analysis also identified many 

southeastern and Midwestern metropolitan areas as locations with higher than expected SOV 

mode share and reduced transit or non-motorized mode shares. This was as expected due to the 

development patterns of these areas, and this behavior is further correlated with decreased 

physical activity levels and increased health risks in the southeastern US. 

Overall, this work provides a new method to conceptualize urban transportation mode share at 

the aggregate level and addresses some key questions for transportation system applications. The 

key results of this work were as expected and agree with common transportation engineering 

principles which, together, lends to the validity and usefulness of the work for future research 

applications.  

9. Contributions of Work 
This work has developed new avenues of exploration for urban scaling effects for transportation 

systems. Previous work has identified urban scaling relationships for measures characterizing the 

social and economic productivity of cities and the extent to which the urban scale changes these 

observed relationships. However, no previous work has focused exclusively on urban 

transportation system indicators such as mode share, job accessibility, and measures of total 

system congestion.  

Transportation system characteristics are unique compared to other social and economic urban 

indicators due to the importance of the urban environment and population density in determining 

system outcomes. This work explored urban scaling effects for transportation system indicators 

with respect to both population and population density and observed notably different results for 

scaling behavior. In addition to identifying the observed scaling relationship for population and 

population density, this relationship was also analyzed as the urban scale of interest changed. As 

the urban scale increases from individual Incorporated Places to larger Core Based Statistical 

Areas, the behavior of the observed urban scaling relationships also changes for both population 

and population density. This change reflects the importance of the overall spatial extent in 

determining transportation system performance. For mode share characteristics, the observed 

scaling patterns could also be related to other observed urban scaling patterns for transportation 

system performance indicators, including the number of jobs accessible by transit or non-

motorized modes and congestion indicators. 

This work has taken an initial, important step in developing a more comprehensive 

understanding of urban transportation mode share at the aggregate level. Previous work has 

identified important characteristics in determining transportation mode share but has not 

explored some of the observed differences in mode share in seemingly comparable locations. By 

exploring general behavior for transportation mode share, some of these differences can be 

understood by identifying locations in the US that do not exhibit expected behavior. 

Furthermore, these relationships can also be used by cities to identify performance targets for 

transportation mode share given their current system state or to better identify policies and 

investments that can induce change in the commute mode share. Finally, to develop an 

ecological model of the transportation system which can explore mode share dynamics at the 
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population level, identification of the processes and boundaries important for governing 

transportation mode share must be understood. This work provides an important first step in 

developing these relationships by identifying influential urban scales for exploring changes in 

transportation mode share and exploring the relationship to both population and population 

density. The lessons learned from this study can be applied to future development of a system-

based model for urban transportation mode share evolution to expand current knowledge and 

improve directed transportation system investments. 
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