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There is a systemic inequity in terms of traffic safety between rural and urban areas throughout 

the nation. Rural, isolated, tribal, and indigenous (RITI) communities often need more funding to 

address transportation safety concerns. However, recent focus on technological improvements in 

urban areas risks widening this divide, leaving RITI communities further behind. This study aims 

at investigating solutions to address the problem. In particular, a framework is proposed to 

address the issue of traffic safety equity. Research efforts are made to follow this framework 

from outreach to data analysis and visualization. The outreach activities have resulted in data 

sharing agreements with one tribe in Washington State and paved the road for signing to 

agreement with another tribe. Descriptive analyses are conducted to gain basic understanding of 

the data, and crash frequency prediction models are also used to find significant contributing 



 

factors in crash occurrence. The results of this model are used to create an index of Crash 

Reduction Potential, and an online crash mapping application is developed to visualize the index.  
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Chapter 1. INTRODUCTION  

1.1 RESEARCH BACKGROUND 

Rural, isolated, tribal, and indigenous (RITI) communities are often overlooked for transportation 

improvements, which causes a certain disadvantage especially in terms of traffic safety. This is a 

major equity and public health concern, especially as technology continues to develop at 

impressive rates while implementation is primarily focused in urban or metropolitan areas, creating 

inequity in terms of transportation funding allocation. The technological nature of many urban 

transportation improvements creates an even greater divide between improvements in rural areas, 

where often relatively simple infrastructure improvements and proven countermeasures can have 

a significant impact. However, without the deserved attention, these RITI communities face their 

transportation issues, safety related and otherwise, with limited funding and other resource 

impediments such as personnel and expertise shortages. The Center for Safety Equity in 

Transportation states that “if you have a right to get there, you have a right to get there safely,” 

and the systemic disadvantage RITI communities face is directly at odds with this mentality as 

well as Vision Zero and Target Zero initiatives (Center for Safety Equity in Transportation, 2019). 

The cultural and environmental diversity found in RITI communities are two reasons why these 

areas deserve greater attention to traffic safety analysis.  

The Vision Zero program adopted in the United States and Washington State aims to 

eliminate traffic fatalities by 2030, yet there is a discrepancy between traffic safety improvements 

in RITI and urban communities. In 2000, Washington State became the first state in the United 

States to adopt formal policy aimed at reducing roadway fatalities to zero and was influenced by 

Sweden’s Vision Zero program, started in 1997. The program has been a significant point in the 
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conversation regarding traffic safety, with 42 cities adopting their own plans. This clearly suggests 

that the nation, as a whole, adequately recognizes the public health and economic challenge posed 

by traffic collisions. However, while there has undoubtedly been significant research and practical 

improvements in the realm of traffic safety to support the goals of Vision Zero, it is also clear that 

there is lacking attention to RITI community needs.  

Figure 1 depicts the trend of fatalities from 2005 - 2014 throughout Washington State 

(Washington Traffic Safety Commission, 2016). It is important to note that the overall trend is 

promising, but recent years have seen an increase in fatalities. Because of this increase, there exists 

a performance gap between reaching the goal of Target Zero and the current trend that is seen. 

While this is from the most recent Strategic Highway Safety Plan, more recent state fatality data 

suggests that the performance gap has continued to increase since 2014. 

 

Figure 1 Trend of Fatalities in Washington State 
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While the Strategic Highway Safety Plan does include notes on the need to focus on rural 

areas and includes statistics for American Indian and Alaska Native (AIAN) communities, only 

cursory statistics are provided to indicate this performance and there is limited discussion of 

solutions to mitigate crashes in rural areas specifically. Figure 2 depicts the difference in rural and 

urban crashes throughout the entire nation from 2007 – 2016. This figure shows a promising, 

primarily downward trend in fatality counts for both urban and rural crashes, with a faster decrease 

in rural fatalities. However, Figure 3 depicts the fatality rate per 100 million vehicle miles traveled 

(VMT) for urban and rural areas throughout the nation for the same time period (National Highway 

Traffic Safety Administration, 2018). Fatality rate per VMT is a more useful and intuitive measure 

and trend investigation as it provides an extra layer of context. While fatality counts may look very 

similar, the fact remains that in rural areas, roadway crashes result in a fatality more than twice as 

frequently as urban area crashes. The overall trend is still promising, but the stark difference of 

rural fatalities occurring at a rate of about 2.5 times that of urban fatalities has persisted from 2007 

through 2016. The evidence reinforces the disproportionate need for rural areas to receive attention 

and support to better address traffic safety. 

 

Figure 2 Fatality Counts in Rural and Urban Areas 
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Figure 3 Fatality Rates in Rural and Urban Areas 

1.2 RESEARCH OBJECTIVE 

This research, funded by the Center for Safety Equity in Transportation, serves to address some of 

the disparities between rural and urban transportation safety. The research does so by applying a 

framework of outreach, data collection, data management, and traffic safety analysis that is 

replicable. The outreach activities prioritize forming relationships with the underserved RITI 

populations and to better understand local challenges. The outreach was also meant to expand the 

data available to be used in the study, especially to include tribal traffic data to better quantify 

challenges on reservation roads as state data on AIAN crashes is known to be incomplete. Merging 

different sources of publicly available data with the tribal data is a crucial component of the 

framework. Even merging the state data can present a challenge, with crash data not often linked 

to the roadway characteristic data. Additionally, this study used different definitions of rurality 

which are needed to link to the crash data. Once merged, the goal was to analyze the crash 

frequency on rural state highways, which is one of the proposed applications of the framework. In 

summary, the research objective is a proof of concept of the proposed RITI traffic safety analysis 
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framework from outreach to analysis for safety performance. A part of this included investigating 

the data and results from different definitions of rural. 

1.3 PROBLEM STATEMENT 

The disadvantage facing RITI communities in terms of traffic safety is even more clear when 

looking at crash data in recent years. Again, to be more specific, the data especially highlight the 

challenge facing AIAN communities – according to the national Fatality Analysis Reporting 

System (FARS), the fatal crash rate among the AIAN community is higher than any other race in 

Washington State (National Center for Statistics and Analysis, 2015). This holds true when 

accounting for deaths both on and off tribal lands. Figure 4 shows the fatality rate per 100,000 

population for AIAN and non-AIAN races in Washington State using data from 2002 – 2011. Note 

that the fatality rate for AIANs is 4 times that of non-AIANs. A similar case is found when 

comparing pedestrian fatality rates per 100,000 population among AIANs and non-AIANs. Figure 

5 shows this comparison - note that the AIAN pedestrian fatality rate is nearly 5 times that of the 

overall non-AIAN pedestrian fatality rate. While this data is from 2002 – 2011, the rates are still 

very similar; the Washington Traffic Safety Committee reports that as of 2016, the AIAN 

pedestrian crash rate was 5 times that of the non-AIAN pedestrian crash rate. They also reported 

that as of 2016, the overall fatality rate for AIANs was 4.2 times that of the non-AIAN fatality rate 

(Washington Traffic Safety Commission, June 2018). While the national traffic fatality rate is 

lower than it was in 2002, the AIAN has seen virtually no change in the overall fatality rate; greater 

attention must be paid to RITI traffic safety issues. 
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Figure 4 Comparison of Fatality Rate for AIAN and non-AIAN in Washington State 

 

Figure 5 Comparison of Pedestrian Fatality rate for AIAN and non-AIAN in Washington State 

A particular concern of AIAN tribes in Washington are behavioral-related fatalities, such 

as crashes where occupants are unrestrained, traveling at high speeds or above the speed limit, or 

under the influence of drugs and/or alcohol. Pointedly, the fatality rate per 100,000 population of 

unrestrained occupants in AIAN crashes is 9 times that of all non-AIAN crashes combined for 
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years 2007-2016 in Washington (Washington Traffic Safety Commission, June 2018). It is also 

recognized that RITI communities may not have the resources to collect quality traffic safety data. 

AIAN communities are separate sovereign entities that are not required to collect or share all data 

with United States citizens or state departments, though the Centennial Accord in Washington 

State aimed to help facilitate more transparent communication. The baseline level of data available 

and the quality of these data varies by tribe and rural community and accessing these data to form 

a more uniform database is a multi-faceted problem that requires consistent and fulfilling outreach 

activities. The current lack of uniform data collection and quality control approaches impedes 

efforts to conduct thorough analysis and hinders ability to secure federal and state funding for 

transportation improvements. Any solution must be culturally sensitive and collaborative, allowing 

more efficient knowledge transfer and continuous management of a database system. The outreach 

activities conducted with AIAN communities and progress made can be modeled to repeat with 

other tribes as well as other rural communities throughout Washington State. 

1.4 SCOPE OF STUDY 

This study is meant to serve as a pilot for a new rural and tribal traffic safety data management, 

analysis, and visualization framework. Data was obtained for all of Washington State and for one 

tribe – the Confederated Tribes of the Colville Nation – which will be used in the pilot program. 

As equity is a major concern, the pilot focuses on rural and tribal traffic safety, though does include 

some characteristics for statewide crashes. The framework, outlined later, begins with outreach 

activities and ends with analysis and visualization results. The primary contributions of this study 

include the comparison of rural data definitions and analysis results, the tribal outreach activities 

culminating in quantitative tribal traffic safety analysis, and the presentation of the framework for 

future implementations and broader analysis. The analysis for this pilot focuses on overall 
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descriptive analyses and crash frequency modeling on state routes, as well as initial efforts to 

combine and compare tribal and state crash data where available. The outreach efforts served to 

understand local traditions, form relationships to build future work, and to understand how traffic 

collision data collection and management practices are utilized. The data acquisition and 

combination served to present a method which merges crash data for each year with other available 

data. The crash frequency regression analysis served to determine the significant contributing 

factors in rural traffic crashes in Washington State. The proposed visualization tools serve to help 

communicate the results in a digestible manner by mapping the crashes and obtaining a measure 

of Crash Reduction Potential (CRP) for each segment in the dataset.  
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Chapter 2. LITERATURE REVIEW 

2.1 TRAFFIC CRASH ANALYSIS METHODS 

While RITI communities are indeed disadvantaged from a transportation safety perspective, there 

has been growing amounts of research addressing some of the primary concerns. There are some 

unique challenges to overcome when performing rural crash data analyses, such as geospatial 

randomness, missing data or poor data quality, and in general lower data volume. There are also 

challenges in working with RITI communities in terms of effective communication, finding 

appropriate strategies to address concerns, and understanding local needs. Context and culturally 

sensitive solutions are the only acceptable solutions for any type of work but are especially 

important when working with RITI communities. 

Traditional traffic safety analysis is conducted using generalized regression models. The 

primary goal is often a crash frequency prediction or an injury severity prediction relying on police 

report data. A Poisson model has historically been employed as the fundamental generalized 

regression model for crash prediction. However, there are several known downfalls to this 

modeling technique, such as being unable to handle overdispersion and underdispersion, as well 

as not accounting for spatial or temporal characteristics. Additionally, the reliance on police reports 

alone presents a challenge despite the availability and difficulty in using other data sources – for 

instance, it has been found that police report crash datasets will often underreport the occurrence 

of non-injury or property damage only crashes (Yamamoto, Hashiji, & Shankar, 2008). There have 

also been noted inaccuracies in the true injury severity of a traffic crash, such as incidents of no 

reported injuries eventually requiring a hospital visit, or apparent serious injuries being discharged 

from the hospital early (McDonald, Davie, & Langley, 2009). Given these and other challenges 

faced by traditional traffic safety analysis methods, many other models have been developed or 
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applied for crash frequency prediction, crash severity prediction, and crash clearance time 

prediction. There has been some advancement in crash data sources used for analysis, but these 

are largely still at the cutting-edge and not always available, such as the linkage of police reports 

to hospital reports. Despite the challenges of relying on police report data, it is likely that data used 

in later RITI-focused projects will come from police reports given the access to at least some form 

of police report data in most RITI communities. This said, there have been a multitude of studies 

relying solely on police report data that have helped the industry better understand traffic crashes 

and their underlying causes, and with the deployment of increasingly accurate methods it is 

possible to better account for or even estimate errors from police reports. 

As stated, crash frequency modeling has historically been conducted using basic Poisson 

models in practice; this is often not suitable for more advanced analysis given that Poisson models 

rely on the basis that a sample mean is equal to its variance and thus cannot handle overdispersion, 

underdispersion, or a large amount of zero count data which is typical in crash data. The negative 

binomial model emerged as an option to handle overdispersed data, or data whose variance is 

greater than its mean. And while this modeling method is consistently used in practice, it has its 

own weaknesses such as the inability to handle underdispersion, which occurs when the crash 

count mean is greater than variance, and inaccuracies occurring when a low sample volume and 

mean exist (Lord & Mannering, 2010). These are characteristics that could be reasonable to expect 

when dealing with crash data, emphasizing the need for more advanced modeling techniques to be 

used in later projects related to RITI communities and data analysis. Overdispersion is handled by 

the negative binomial model and other common models, and is still relatively easy to interpret and 

execute, leading to its prevalence. One way to handle underdispersion of crash data has been the 

development of Conway-Maxwell-Poisson models (Lord, Geedipally, & Guikema, 2010). Other 
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advanced modeling methods that have been used for traffic crash analysis in order to address 

various challenges of prior models or otherwise improve accuracy include random-effects models 

(Shankar, Albin, Milton, & Mannering, 1998), spatial and temporal correlation models (Aguero-

Valverde & Jovanis, 2006; Wang & Abdel-Aty, 2006), random parameters count models (Wu, 

Sharma, Mannering, & Wang, 2013; Castro, Paleti, & Bhat, 2012), and several different neural 

networks (Zeng, et al., 2017; Abdelwahab & Abdel-Aty, 2001). In this pilot, relatively lightweight 

modeling approaches are used. This is to maintain ease of interpretability and to ensure that online 

access and processing can be handled by local computers that may not always have advanced 

capabilities. This is very intentional given the equity component of this research, which relies on 

the framework to be readily available and operable with minimal training. More detail regarding 

the methods used in this pilot are discussed in Chapter 3. 

2.2 RURAL AND TRIBAL RELATED CRASHES 

When comparing rural crashes to urban crashes, it is clear that the fatality rate on rural roads is 

higher than on urban roads even when controlling for crash severity (Muelleman, Wadman, Tran, 

Ullrich, & Anderson, 2007). This suggests that the distance to medical attention could be a factor 

diminishing the survivability of rural crashes. The scarcity and distance to medical resources is 

related to the spatial characteristics of rural areas. Given the many miles of rural roads with 

relatively low vehicle miles traveled (VMT), it is often necessary to consider spatial correlation 

when investigating rural crashes and their severity (Aguero-Valverde & Jovanis, 2008). Besides 

spatial characteristics, rural fatal crash rates are more heavily influenced by behavioral instances 

such as alcohol impairment, speeding, and overtake maneuvers (Kloeden, et al., 2001; Wu, et al., 

2014; Wu, et al., 2016). The National Highway Traffic Safety Administration (NHTSA) found 

seatbelt use was low in AIAN communities and funded programs to help address this, though it 
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continues to be a high contributing factor in serious injury and fatal crashes (Leaf & Solomon, 

2005). These behavioral instances are more difficult to directly address with traffic engineering 

solutions, though proper data management can lead to identifying locations suitable for crash 

modification factors determined to be suitable for use. Outreach programs can also be created to 

help educate communities about the unique issues they face, but this will likely be more successful 

if the instruction comes from members of the community itself which is potentially why the 

NHTSA program has seen a relatively small impact in AIAN communities (Hill & Myers, 2016). 

Local engagement and collaboration is a necessity and should incorporate local traditions and 

culture to be effective. Effective tribal crash reporting can help identify areas needing greater 

attention and safety improvements. The data can then also be used to more successfully obtain 

funding to implement the improvements identified through data analysis (National Academies of 

of Sciences, Engineering, and Medicine, 2014). 

Tribes do report some fatal crashes to the national Fatality Accident Reporting System 

(FARS) through agreements with the states and federal government, though this data is found to 

be significantly under the actual count of fatal crashes that occur on tribal roads (Ragland, Bigham, 

Oum, Chen, & Felschundneff, 2014). The underreporting could be due to several reasons, such as 

jurisdiction issues or available resources and training. Regardless of the cause, relying on FARS 

data is typically not sufficient enough for complete local analysis and is not sufficient for tribal 

use when applying for safety improvement funding. This project will fill this gap in the research 

by creating lasting relationships with Washington State tribes in order to achieve a higher level of 

local tribal traffic safety analysis. Besides the known high-risk factors for tribal crashes and recent 

push for programs supporting data-driven decision making, only some research has been 

completed to help realize the improved local data collection, management, and analysis. More 
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research is needed in order to gain a better understanding of the crashes that occur on tribal roads 

and to improve the overall traffic safety in tribal communities.  

Some efforts to improve local crash data collection and analysis have been completed in 

recent years. For instance, University of California – Berkeley researchers in their SafeTREC lab 

created a Tribal Traffic Safety Data tool. This tool uses their statewide crash data and overlays 

shapefiles from tribal lands and allows tribes to register and upload their own data. Importantly, 

this tool is only available to tribal members that have been verified, and the tool was created in 

collaboration with National Indian Justice Center (National Indian Justice Center, 2019). It was 

also emphasized that simply analyzing the current data is not sufficient enough, and that building 

connections and collaborating on the work is a crucial step towards action in improving traffic 

safety (Ragland, Bigham, Oum, Chen, & Felschundneff, 2014). 

Researchers at the University of Wyoming developed a methodology to work with tribes 

to address the rural nature of their crashes and lack of crash data. The primary goal of the method 

was to identify collision hot spots, and a secondary goal was to address gaps in crash data 

collection. A case study with the Wind River Indian Reservation was also included to showcase 

the success of the methodology. Notably, part of the implementation plan was listed as 

“communication, coordination, and cooperation,” though this seems to take prominence after the 

methodology is developed and implemented (Shinstine & Ksaibati, 2013). While the Wyoming 

project was successful, outreach activities should be prominent from the beginning in order to 

facilitate collaboration. 

Work to conduct analysis and improve crash reporting has also been completed. Tribes 

recognize the numerous issues impacting their traffic safety, and ways to improve crash reporting 

have been developed. Of the ideas to improve crash reporting, the most difficult to overcome 
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involves the political relationship between tribes and the state and national governments (Bailey 

& Huft, 2008). Other work has also showed that currently available data and processes can only 

provide a broad perspective on tribal traffic safety conditions, and that to obtain any substantial 

progress it is important to work with tribal communities at a much more localized level and in 

particular with tribes that have implemented programs to achieve the goal of reduced fatalities 

(Vichika, Carlson, & Schertz, 2015). Additionally, recent research has found geospatial 

information systems (GIS) to be particularly useful for tribal safety analysis, as a tool to both 

analyze and visualize crash data. Researchers from the University of Minnesota have successfully 

created tools based on GIS for hot spot identification, pedestrian crash analysis, and overall crash 

mapping (Horan, Hilton, Robertson, & Mbugua, 2018). 

The body of research has found several notable conclusions regarding tribal traffic safety, 

primarily focused on how crash data is lacking and working at the community level tends to yield 

more promising results. However, work to form relationships with tribes prior to conducting the 

safety research or creating the tools and methodologies has been lacking. In order to truly 

understand the needs of the tribal communities, it is important to form these connections first. The 

outreach activities conducted for this research will help establish connections and foster 

understanding for safety work that follows. This framework relies on the strong relationships in 

order to be implemented successfully and repeatedly, as opposed to a one-time analysis. 
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Chapter 3. TRAFFIC SAFETY EQUITY METHODS 

Previously, generalized regression models were introduced with the Poisson method being 

described in slightly more detail than other methods. This method is explored as part of this 

framework but not ultimately implemented due to violation of its assumptions. Other methods 

implemented as part of the framework in this study include the negative binomial model and the 

Empirical Bayes model to incorporate the results of the negative binomial in to more familiar, 

user-friendly terms. A Google Maps-based platform is used to visualize fatal and injury crashes in 

Washington State. 

3.1 POISSON REGRESSION 

The first method explored is a simple Poisson model. This model is classically used for count data, 

of which traffic collisions are a subset. This model was chosen given its prevalence. A Poisson 

model does have its weaknesses, such as typically being unable to handle overdispersion and 

underdispersion. Overdispersion occurs when the sample variance is greater than the sample mean, 

whereas underdispersion occurs when the sample variance is less than the sample mean. Both 

would violate a key assumption of the model, that the mean and variance are equal. The Poisson 

process outlines a discrete probability distribution for which the mean is constant in time. This is 

used in crash modeling because as a count model, it ensures that values cannot be negative. At a 

basic level, crashes can be assumed to occur at a relatively fixed time interval, which would make 

this model attractive. Equation 1 shows the typical probability mass function for a Poisson model. 

𝑃(𝑌 = 𝑦) =
𝜆𝑦𝑒−𝜆

𝑦!
   ...............................................................  (1) 
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Here,  is the distribution mean which must be equal to the distribution variance. However, as 

described in the following sections, the data collected for this pilot violates this condition, making 

the Poisson model inappropriate for use.  

3.2 NEGATIVE BINOMIAL REGRESSION 

The second method used is the negative binomial distribution model. While traffic collision data 

tends to be suitable for count models, Poisson models are not often suitable due to the assumption 

that the mean and variance are equal. The advantage of the negative binomial model is that it is 

able to handle overdispersion of the data, or when the variance is greater than the mean. As will 

be shown, this is the case with the data obtained for this pilot. The negative binomial is less suitable 

than other models when the sample size is low, but given that 5 years of data are collected, the 

sample size should be adequate. The negative binomial has some different characteristics than the 

Poisson model.  Equation 2 outlines how the negative binomial distribution variance is computed. 

𝑉𝑎𝑟(𝑌) = 𝐸(𝑉𝑎𝑟(𝑌|𝜆)) + 𝑉𝑎𝑟(𝐸(𝑌|𝜆)) = 𝐸(𝜆) + 𝑉𝑎𝑟(𝜆)  ……………..  (2) 

= 𝛼𝛽 + 𝛼𝛽2 = 𝜇 + 𝑘𝜇2; 

Where k is a dispersion parameter equal to 1/α and µ is the mean. In RStudio, where the models 

were implemented, the dispersion parameter k is known as theta. The negative binomial model is 

implemented twice: the first with the crash data and characteristics from the initial data merging 

process, and the second including an extra predictor in the form of degree of rurality. This is 

described in greater detail in Chapter 4.  

3.3 EMPIRICAL BAYES 

The final step in the crash frequency prediction module is the implementation of the Empirical 

Bayes method to obtain expected crash counts and Crash Reduction Potential based on the results 
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of the negative binomial model. The Bayesian approach specifies that there is a prior distribution 

describing model parameters. The prior distribution of model parameters are deemed the 

hyperparameters, and they are estimated from the observed data. In order to use the Empirical 

Bayes method to determine road segments with greater Crash Reduction Potential (CRP), the 

estimated crash count is considered along with the actual crash count at each location. The 

estimated crash count comes from a safety performance function (SPF), which the negative 

binomial serves as for this framework. Prior to estimating the CRP, the expected safety condition 

must be calculated. Equation 3 shows this process.  

𝜋𝑖 =  𝑤𝑖 ∗ 𝑆𝑃𝐹𝑖 + (1 − 𝑤𝑖)𝐾𝑖  …………………………....  (3) 

Where π is the expected safety condition of site i, wi is a weighting factor between 0 and 1, the 

SPF is the result from the negative binomial model, and Ki is the observed crash count for segment 

i. The weighting factor, wi, comes from the dispersion factor, which represents the variance of the 

SPF estimate and can be calculated with Equation 4.  

𝑤𝑖 =
1

1+𝑆𝑃𝐹 𝑘𝐿𝜆⁄
  ……………………………………………  (4) 

Where k is the dispersion parameter from the negative binomial model, or theta when working in 

RStudio’s MASS package, L is the length of the segment, and λ is a constant typically taken to be 

0 in practice. From the expected safety values, it is possible to rank locations to determine areas 

that may need greater attention. Another option, and one preferred in this pilot, is to calculate the 

Crash Reduction Potential, which can be used to determine road segments which are 

underperforming in terms of safety as a hot spot identification tool. The Crash Reduction Potential 

is calculated with Equation 5. 

𝐶𝑅𝑃 = (1 − 𝑤𝑖)(𝐾𝑖 − 𝑆𝑃𝐹𝑖)  ………………………………  (5) 
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Note that if the Ki, the observed crash counts, is much greater than the SPF, the estimated crash 

counts, the CRP will be larger. Additionally, if the weighting factor is closer to 1, the variance in 

the SPF estimation is higher, which results in a lower CRP. 

3.4 FRAMEWORK DESIGN 

The framework for RITI traffic crash analysis involves 6 broad steps, which can loosely be grouped 

into 3 categories. Figure 6 shows the 6 steps grouped into their 3 categories for implementation 

stages. The steps include outreach, data collection, data merging, descriptive analyses, prediction 

modeling, and results visualization. 

 

Figure 6 Framework Process Outline 

The first step, outreach, serves as the foundation for the entire process and is arguably the most 

important. It is important that the outreach occur in order to form collaborative relationships and 

it is important to maintain the relationships. The outreach step is one that is never truly complete, 

as it is necessary to maintain direct communication with the RITI communities. Once the 

connections have been made, data sharing agreements should be formed and data obtained. Part of 

this should entail in depth discussion about what the current state of data collection and 

management is for the community, and if there are any plans to alter these. This can also entail 

Gather

•Outreach – Connect with tribes, form research and data sharing agreements

•Collect – Gather and assess quality of tribal data; gather State data

Process

•Merge – Merge the multiple sources of collision data with roadway data

•Describe – Conduct descriptive analyses to gain broad insights

Produce

•Predict – Run crash prediction models for frequency and severity

•Compare – Relate the predictions to performance and compare between rural communities



23 

 

some knowledge transfer for best practices. Additionally, if a baseline data format or organization 

has been established, this needs to be communicated. Once the data has been gathered, is must be 

merged with the state data. The state data should be merged prior to merging local community data 

to ensure that some degree of uniformity is maintained. For Washington State, crash and road 

characteristic data is available in many packages from the Washington State Department of 

Transportation (WSDOT), or in some pre-merged data from HSIS which aims to provide quality 

traffic safety data. The roadway segment data can be merged to the county level using ESRI 

ArcGIS. There are 4 tables from HSIS which can be merged for crash frequency prediction: 

roadway characteristics, crash records, roadway grade, and roadway curvature. These can be 

merged using a variety of tools, such as Python and the pandas and sqlite3 libraries. Descriptive 

analyses can be conducted to gain baseline understanding and insights from the merged data. 

Finally, the data can be used in the prediction models and also used in visualization tools such as 

maps and hot spot identification. Figure 7 shows another more detailed version of the framework 

that includes coordination with state agencies for improved data sharing and transportation 

improvement funding applications, which is a further goal of the project. The functions in the 

safety analysis module are proposed to be broken into two methods: crash severity prediction and 

crash frequency prediction. These are further defined as to relate to either local roads or to 

highways. The results are processed into a comprehensible and visual format and then distributed 

to the relevant parties. Currently, data does not come into the system in real time, but could in the 

future if outreach activities continue and relationships are developed further. It is also not yet stored 

on server supporting the Digital Roadway Interactive Visualization and Evaluation Network 

(DRIVE Net) developed by the Smart Transportation Applications and Research Laboratory 
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(STAR Lab), but could be in the future and it is proposed that tribal communities would maintain 

ownership of their data and control access to it. 

 

Figure 7 Detailed Framework for RITI Traffic Safety 
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Chapter 4. OUTREACH AND DATA COLLECTION EFFORTS 

4.1 OUTREACH EFFORTS 

To achieve the goal of this research, it was necessary to conduct outreach activities and to connect 

with Washington tribes and their leaders. In order to do so effectively, respectfully, and sustainably 

a meeting with tribal leaders at the University of Washington was organized. This served to build 

a profile of the AIAN communities in Washington State and identify key members to contact, in 

addition to learning more about the AIAN culture and current issues. 

Mr. Iisaaksiichaa Ross Braine, director of the Intellectual House, an AIAN community 

center on the UW-Seattle campus, was the primary stakeholder at the meeting. He shared 

instruction, advice, and strategies for effectively communicating the project goals and purpose to 

other stakeholders that may be interested. He indicated that he wanted the project to succeed, was 

excited that this project was in place, and acknowledged traffic safety is an important public health 

issue that tribes are facing. Because of this, he was instrumental in connecting the researchers with 

tribal leaders in the transportation industry. Without this initial meeting, the researchers may not 

have been able to connect with the most interested parties and tribes, and future meetings would 

likely not have been as successful.  

Advice given included emphasizing collaboration and commitment for continuous work 

with the tribes, as well as clearly communicating flexibility and willingness to follow tribes’ 

wishes surrounding data privacy and ownership. Additionally, this meeting was crucial to the 

project development because it granted insight to ethical, cultural, and legal considerations that 

may be unique to tribal research, and thus require special attention. For instance, necessary steps 

to pursue a research agreement and what to expect from such an agreement was discussed. 

Researchers should expect to form the relationships with stakeholders and present their case prior 
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to applying for a research agreement in order to facilitate and expedite the process. Some tribes 

may not be willing to enter into such an agreement for a variety of reasons, though with the help 

of the Director of the Intellectual House, some potentially interested tribes were identified. In fact, 

one of the key outcomes of this preparatory meeting was progress made to pinpoint which tribes 

might have the greatest initial interest in collaborating, and which stakeholders are already doing 

similar work or have implemented tribal safety plans. 

Figure 8 shows the 29 federally recognized tribes in Washington State, each with its own 

characteristics, including varying sizes, organization, and resources. Each orange zone represents 

a reservation or tribal area. Clearly, their size varies quite substantially, and this is often reflected 

in their organization and available resources, which could impact their willingness to enter into a 

research agreement and share crash data. Table 1 lists these tribes, their size, whether they have a 

Tribal Transportation Plan in place, and the most recent year this plan was submitted. The Federal 

Highway Administration (FHWA) has a tribal traffic safety committee that has supported the 

adoption of Tribal Transportation Plans to help tribes successfully apply for grants. They have a 

publicly available list of tribes throughout the nation that have adopted plans. However, it is 

important to note that even if a tribe has not submitted a Tribal Transportation Plan to the FHWA, 

they can still apply for grants and may even have well-structured traffic safety committees or plans 

independently. If a tribe is known to have their own plans but has not submitted a Tribal 

Transportation Plan, this will be noted with a double-asterisk (**). This effort was conducted 

independently from the preparatory meeting and outreach activities but did reinforce what was 

learned from that meeting. 
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Figure 8 Washington Tribes Map 
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Table 1 List of Washington Tribes 

 
 
Tribe Name 

 
Enrolled 

Members 

 
 

Size (acres) 

Tribal 
Transportation 

Plan 

 
Year 

Enacted 

The Confederated Tribes of the Chehalis 
Reservation 

833 4,438 Yes 2016 

The Confederated Tribes of the Colville 
Reservation 

9,365 1.4 million Yes** - 

Cowlitz Indian Tribe 4,149 152 No - 

Hoh Indian Tribe 102 443 No - 

Jamestown S'Klallam Tribe 548 13.5 (1000+ 
owned 
outside 

reservation) 

Yes 2016 

Kalispel Indian Community of the Kalispel 
Reservation 

470 292 Yes 2016 

Lower Elwha Tribal Community 776 1,000 No - 

Lummi Tribe of the Lummi Reservation 4,483 13,000 Yes** 2015 

Makah Indian Tribe of the Makah Indian 
Reservation 

1,500 30,000 Yes 2011 

Muckleshoot Indian Tribe 3,606 3,920 Yes 2016 

Nisqually Indian Tribe 650 1,000 Yes 2011 

Nooksack Indian Tribe 2,000 2,720 No - 

Port Gamble S'Klallam Tribe 1,234 1,303 No - 

Puyallup Tribe of the Puyallup Reservation 4,000 18,270 Yes 2015 

Quileute Tribe of the Quileute Reservation 2,000 1,000 No - 

Quinault Indian Nation 2,453 208,150 No - 

Samish Indian Nation 1,200 200 No - 

Sauk-Suiattle Indian Tribe 200 23 No - 

Shoalwater Bay Indian Tribe of the Shoalwater 
Bay Indian Reservation  

237 665 Yes 2017 

Skokomish Indian Tribe 796 5,000 Yes 2014 

Snoqualmie Indian Tribe 650 N/A No - 

Spokane Tribe of the Spokane Reservation 2,153 154,000 Yes** 2015 

Squaxin Island Tribe of the Squaxin Island 
Reservation 

650 1,715 Yes 2016 

Stillaguamish Tribe of Indians of Washington 237 64 Yes 2015 

Suquamish Indian Tribe of the Port Madison 
Reservation 

890 7,657 No - 

Swinomish Indian Tribal Community 778 8,155 Yes 2017 

Tulalip Tribes of Washington 4,800 22,567 No - 

Upper Skagit Indian Tribe 504 84 Yes 2014 

Confederated Tribes and Bands of the Yakama 
Nation 

8,870 1,371,918 Yes** 2017 
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To turn the preparatory procedures into action, the researchers contacted the stakeholders 

that were recommended by the Director of the Intellectual House. This included emailing the 

people of interest to introduce the project and express interest in collaborating for a successful 

solution. There was a response from some but not all those who were contacted. This was expected 

based on the information given by the Director of the Intellectual House. Despite this, many did 

remember the initial email if the researchers were eventually able to meet and speak with them in 

person. It was important to have face-to-face meetings whenever possible in order to have more 

success and form stronger relationships. In person meetings are inherently more personal and fluid, 

which is invaluable when forming new relationships. From the initial preparatory meeting at the 

Intellectual House, the researchers were invited to attend the Tribal Leadership Summit, during 

which it would be possible to speak to some tribal leaders and gain connections to tribal 

transportation planners. Attending the event led to being invited to another conference, and from 

there several other connections and conferences were introduced. This was one way to mark 

progress of the project, as participation in conferences would increase from attendance, to 

sponsorship, to presentation. The conferences that were participated in included the 

aforementioned Tribal Leadership Summit, the Affiliated Tribes of Northwest Indians Conference, 

the Bureau of Indian Affairs Northwest Tribal Transportation Symposium, site visits. These events 

are discussed in detail in the following sections, including the level of participation and specific 

outcomes of each. 

4.1.1 Tribal Leadership Summit – 2018 

The researchers were invited to attend and present a poster during the annual Tribal Leadership 

Summit on May 11, 2018, where leaders from throughout Washington would convene to discuss 

tribal issues, projects, and future strategies with University leaders. The Tribal Leadership Summit 
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took place at the Intellectual House on the University of Washington campus, which is a 

longhouse-style building that serves as a learning and gathering place for AIAN members of the 

University of Washington. The event was hosted by the Director of the Intellectual House, who 

knew specific stakeholders that would be interested in the project. While there was no 

transportation-centric discussion at the Summit, the researchers were able to speak with many 

tribal leaders and were subsequently invited to another, larger conference that would have a 

transportation section. The communications strategies learned from the Director were 

implemented in the presentation poster and proved vital. The Director made sure to introduce the 

researchers to key attendees and included an overview of the research in the Summit agenda and 

pamphlets. This was accomplished from the initial meeting with the Director of the Intellectual 

House, proving the importance of such a connection. In discussions with attendees, the researchers 

made sure to emphasize collaboration, tribal data ownership, and wishing to help the cultural 

heritage survive – focusing on traffic safety as a public health issue helped to root the research in 

some other relevant topics that were discussed at the Summit. Figures 9 shows the format of the 

Summit with several of the event organizers and tribal board members. 
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Figure 9 Tribal Leadership Summit 2018 

4.1.2 Affiliated Tribes of Northwest Indians Conference - 2018 

The second conference attended was the quarterly Affiliated Tribes of Northwest Indians (ATNI) 

Midyear Conference from May 21-24, 2018 in Yakama Nation at the Legends Casino Hotel. In 

addition to attending this conference, part of the CSET funding was used to become a silver 

sponsor of the event, allowing the logo to be displayed and project announced to the entire 

conference. This generated greater interest in the project with more people stopping by the poster 

after the announcement. Sponsorship was deemed crucial because it showed commitment to 

American Indian goals, community, and growth in the Northwest. There were many attendees at 

this conference, with several well-attended presentations on several key tribal issues. One of the 

breakout topics was concerned with traffic transportation planning and safety, during which the 
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Tribal Transportation Planning Organization (TTPO) held its quarterly meeting. Prior to, during, 

and following this meeting, the researchers met and interviewed tribal transportation leaders from 

different tribes in Washington State. There were leaders from 4 tribes that were especially 

interested, and one expressed interest in collaborating immediately. This began the process of 

applying for access to the crash data this tribe had collected. The tribe had received funding from 

the Washington Traffic Safety Commission to help support their own initiative of mapping fatal 

and serious injury crashes in the last decade. The result of this process was similar to the ultimate 

goal of CSET projects, and deemed a great place to start, but the process itself was not ideal 

because it was not sustainable and replicable. Figure 3 shows the researchers in attendance at the 

2018 ATNI Conference. Following this conference, the interested tribal transportation leaders 

scheduled a phone conference to further discuss the project and invite the researchers to the Bureau 

of Indian Affairs Northwest Tribal Transportation Symposium, during which TTPO would have 

another meeting. The phone conference served to discuss the research plan in more detail and how 

it aligned with their own goals. Ultimately, the tribal planners were interested in continuing the 

discussion with a focus on basic data management, analysis, and visualization. Some interest was 

also expressed for DRIVE Net, a visualization platform created by the University of Washington 

STAR Lab with the support of WSDOT and Pacific Northwest Transportation Consortium 

(PacTrans), USDOT University Transportation Center for Federal Region 10. The link to WSDOT 

was seen as potentially useful given that WSDOT could possibly grant some funding for safety 

improvements. Figure 10 shows the researchers Dr. Ziqiang Zeng, Christopher Gottsacker, and 

Kris Henrickson with Tulalip Tribes board member and Vice President of ATNI Theresa Sheldon. 
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Figure 10 Researchers at ATNI 2018 with Theresa Sheldon, Vice President of ATNI 

4.1.3 Bureau of Indian Affairs Northwest Tribal Transportation Symposium – 2019 

The Bureau of Indian Affairs (BIA) held a tribal transportation conference in Spokane, WA in 

February 2019. The event consisted of networking, keynote addresses, and presentations by 

various tribal leaders and national traffic safety experts that work closely with tribes. The TTPO 

held another meeting as a part of this conference, which included a presentation by the tribe that 

had previously expressed interest in collaborating immediately (and with whom a research 

agreement was in the process of being written). The researchers gave their own presentation 

immediately following. The succession of one tribal safety project after another generated 

increased interest in the capabilities of the STAR Lab research team and in the DRIVE Net 

platform to analyze and visualize results. Subsequently, a site visit was organized for the tribal 
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leaders to have a greater understanding of the technology used in the Lab, and how analysis models 

can be implemented and scaled to fit their own needs. The meeting site visit also helped the 

researchers understand the challenges facing the tribe and why they had to manually map serious 

injury and fatal crashes. It seems there is some resistance and challenges regarding the link between 

different departments, so that updates and information for a crash may not be transferred to each 

dataset. This presents a notable problem to solve and is one that the research team may be able to 

approach later. While this outreach project has been completed, it is crucial to note that outreach 

activities should never cease in order to maintain a trusting and mutually beneficial relationship 

with the tribes in Washington State. This conference presentation was primarily intended to 

showcase progress made in other related CSET projects, but new connections were made, and 

current relationships strengthened, thus continuing the impacts of this outreach project. 

4.1.4 Tribal Leadership Summit – 2019 

After the success of the Tribal Leadership Summit in 2018 the organizers invited the research team 

to attend in 2019 as well. However, at this year’s Summit, tribal traffic safety was set to be a 

primary topic. Because of the success of the 2018 Summit, the organizers asked the team to present 

to the roundtable regarding the project and progress that had been made, and what was needed to 

further the research. This was one of the first examples of the outreach activities becoming 

successful, as tribal leaders were beginning to reach out as the reputation grew. This continued 

after the 2019 Tribal Leadership Summit as members of the Tulalip Tribes reached out following 

the event to inquire more about the project and set up a site visit to their reservation and meet with 

their planning department head, the chief of police, and other interested parties. This was another 

major point of progress for the project and illustrates the importance of continued outreach 

activities. 
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4.2 DATA COLLECTION 

4.2.1 Tribal Traffic Safety Data 

Using all these opportunities, communications, and follow ups, our research team was able to 

connect with leaders from 23 federally recognized tribes in Washington and ultimately established 

positive connections with twelve tribes, including the Confederated Tribes of the Colville 

Reservation (Colville), Spokane Tribe of Indians (Spokane), Muckleshoot Tribe (Muckleshoot), 

Swinomish Indian Tribal Community (Swinomish), the Confederated Bands and Tribes of the 

Yakama Nation (Yakama), Makah Tribe (Makah), Quinault Indian Nation (Quinault), Skokomish 

Indian Tribe (Skokomish), Puyallup Tribe (Puyallup), Lummi Nation (Lummi), Tulalip Tribes 

(Tulalip), and Sauk-Suiattle Indian Tribe (Sauk-Suiattle). Five of these tribes, i.e., Colville, 

Tulalip, Spokane, Muckleshoot, and Swinomish, have established strong connections with our 

research team. Ultimately, a formal research agreement with Colville has been signed, setting up 

an example of success for us to work with other tribes for safety data collection and analysis. There 

have also been promising meetings with Tulalip, with the hope that the Center for Safety Equity 

in Transportation will also enter research agreements with this tribe. 

 Two traffic collision datasets were obtained from Colville – Dataset A and Dataset B. 

These were similar, though Dataset A followed the standard police report more closely than 

Dataset B. However, Dataset B included GPS coordinates for collisions. In both datasets, only 

serious injury and fatal crashes were included. The outreach activities and relationship with 

Colville traffic safety leaders allowed to know more about the datasets. For instance, Dataset A 

was an output from the police report database with personal identifying information removed. 

Dataset B was manually created by the tribal traffic safety leaders, notably Nicole Ahlem, the 

Traffic Safety Coordinator in the Colville Tribal Public Safety department. Ms. Ahlem manually 
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went to each location of serious and fatal collisions in recent years and recorded the GPS location 

with a smartphone app, along with some of the relevant information from the reports. 

 Dataset A contains 175 serious injury or fatality records for 2007 – 2018, with 144 traffic 

incidents. Dataset A includes fields such as incident severity; date; time; weather if known; 

location description; roadway jurisdiction (state route, county, residential) if known; whether the 

record is for a driver, passenger, or pedestrian; age; gender; race; seatbelt use; impairment; 

speeding; crash description; crash type; vehicle type; injury description; and number of people in 

the vehicle. Dataset B includes 170 serious injury or fatality records for 2007 – 2018, with 150 

traffic incidents. Dataset B includes fields such as incident severity, date, time, gender, 

impairment, speeding, seatbelt use, collision comments, latitude, and longitude. The police records 

notably contain more descriptive and open-ended input fields than would typically be found in a 

state crash report, at least compared to the number of other fields. These datasets could be 

combined to a certain extent, however some of the records in each were unable to be matched and 

thus cannot be included. After merging the data, 138 complete unique records were included in 

the dataset. Of the merged data, 10 were from 2018 and were removed for comparative analyses, 

leaving 128 complete records for years 2007 – 2017. 54 incidents occurred on state routes, which 

is the analysis roadway for this research. 20 of these are also included in the state dataset, but 

notably none of the fatal incidents reported by Colville are contained in the WSDOT data. The 

Colville Reservation is located within Ferry and Okanogan counties. Roadway characteristic data 

was not able to be obtained from the Confederated Tribes of the Colville Reservation, but through 

outreach it was learned that GIS shapefiles for roadway inventory are in the process of being 

created. This is one reason that state routes were chosen as the roadway type for this research, but 

if the GIS data becomes available it could potentially be more detailed than what is publicly 
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available through the Washington State local roads database. Also, because the data available does 

not include non-injury collisions, it is not as straightforward to model crash frequency or crash 

severity, as the models would be skewed. Data for years 20013 – 2017 was used from the state 

dataset which is discussed in the next section; there were 24 crashes on state routes recorded by 

the Confederated Tribes of the Colville Reservation for this same time period. Four of these were 

included in the statewide database, but again none of these were fatal crashes. Unfortunately, due 

to the low sample count of state route crashes that occurred, it was not possible to use the negative 

binomial model on the tribal data alone. Despite the small data volume, it is still eye-opening to 

have more information regarding the degree of underreporting. The 20 state route serious injury 

and fatal crashes over a 5 year period are just a small piece of information yet it changes some of 

the statistics for the state and region. Of the 24 crashes recorded, 8 involved a victim not wearing 

a seatbelt; 12 involved an impaired actor; and 8 involved high speed. There are more crashes that 

have these fields as unknown.  

4.2.2 Washington State Data 

Two different sources of data were used for Washington State crashes and roadway inventories. 

The first source of data is WSDOT. Geographic information system shapefiles were obtained 

through the WSDOT open data portal in order to determine the roadway segments of state routes 

in each county. Roadway characteristic data was also available in separate shapefiles from the 

open data portal, but these were not utilized due to the disconnected nature of the reference 

segments between each file. Instead, data was also requested from the Highway System 

Information System (HSIS) for designated state routes in Washington State from 2007 to 2017.  

The HSIS data included collision records, road characteristic data, roadway curvature data, 

and roadway grade data for each segment and each year from 2007 – 2017. The road characteristic 
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data includes many fields that would otherwise be difficult to merge from the WSDOT open data 

portal, such as lane width, speed limit, number of lanes, shoulder types, shoulder widths, and 

surface type. In order to merge the yearly HSIS roadway data to the crash data, the pandas and 

sqlite3 libraries in Python were used. Database tables were created for each year first, and these 

were merged into a final table. The table was exported to a .csv format which was then imported 

into an R script for cleaning and analysis. The HSIS data are not without their own limitations, 

however. A slightly more specific view was available due to the four data tables being available 

for each year under investigation, but for any number of reasons they do not necessarily share the 

same segment definitions year-to-year. One reason for this could be changes to route designation 

or if a route was altered. Regardless, this results in blank rows for some years for AADT and total 

crash count per segment. It was found that while using the HSIS data, merging data for years 2013 

– 2017 was more reliable, with much fewer blank rows than the entire dataset due to these changes 

in segment definition. The entire range from 2007 – 2017 could not be used as crash records from 

WSDOT showed collisions occurring during years and at mileposts that were returned as NA in 

the merged HSIS database. Upon inspection of the database with merged data from 2007 – 2017, 

it was clear that there was a major disconnect beginning in year 2013. This also works in favor of 

using the Empirical Bayes method, as various temporal and spatial effects can come into play when 

a long range of years is used, and Empirical Bayes cannot easily handle these effects. Thus, the 

data merging program was rerun for years 2013 – 2017 with much more stable and reliable results. 

In sum, there were 48,157 collisions on 18,700 road segments designated as rural by WSDOT for 

the years 2013 – 2017. This data does not include severity codes so it was not possible to directly 

compare the results with the tribal data that was collected. For analysis, only one year of AADT 
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and road segment definition is able to be utilized. Because the most recent information available 

via the open data portal from WSDOT is from 2014, this is the year of the AADT data used. 

4.2.3 Defining Rural 

One contribution of this study is the comparison of traffic crash analysis results under different 

definitions of what constitutes a rural roadway or area. The data from HSIS include a field to 

denote if a segment is rural or urban, and many of the segments are blank as well. WSDOT has a 

similar shapefile in their open data portal, which is the same data applied to the HSIS dataset. 

However, the methodology for determining what makes a segment rural or urban is difficult to 

uncover. The HSIS Washington guidebook lists population ranges under a rural-urban 

classification chart, shown below in Table 2 (Nujjetty, Mohamedshah, & Council, 2014). 

Table 2 HSIS Rural-Urban Classification Table 

WSDOT Urban/Rural Classification System 

Population Group 

0 Unknown 

1 250,000+ 

2 100,000 - 249,999 

3 50,000 - 99,999 

4 25,000 - 49,999 

5 10,000 - 24,999 

6 5,000 - 9,999 

7 2,500 - 4,999 

8 < 2,500 

9 Other rural areas 

 

A major disadvantage to this is the lack of indication at what population level an area is 

designated as rural. Indeed, population alone would not be a great method to determine rurality. It 

might be assumed that the rural and urban designation comes from WSDOT and their functional 

classification system, which has been phasing out the process of using jurisdiction boundaries to 
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label roadways as rural or urban and instead to label based on mobility and access (Washington 

Department of Transportation, 2013). However, this shift is not complete and so the WSDOT 

classification of urban and rural may not be consistent, making it potentially unreliable or at the 

very least not representative of communities necessarily. The classification is more useful at the 

microscopic level, in terms of classifying some roadways in a rural town as arterials despite 

potentially having significantly less traffic and conditions than an urban arterial. The determination 

of urban and rural by WSDOT is not necessarily meant to capture the context of an area; even if a 

rural town has arterials, the local population could be considered rural if, for instance, there is no 

emergency medical facility for a very large distance. Additionally, binary classification as urban 

or rural alone could strip away local characteristics; this thesis contends that there is a degree of 

urbanity and rurality that is worth an attempt to include in traffic safety analysis. There are 

numerous factors that could be included in the determination of what constitutes a rural area. Still, 

this classification will be considered in analysis described in the next chapter to serve as a baseline 

for what is easily available data. 

 As alluded to previously, some classifications rely on jurisdictional boundaries for urban 

and rural classifications. The most common boundary to use is perhaps the county boundary. This 

is due to the accessibility of data at the county level. The Washington State Office of Financial 

Management has created one such list of rural counties, with classification based on population 

density and county size (Washington State Office of Financial Management, 2019). Table 3 

displays the counties in Washington State that are classified as rural under this definition. Crash 

data for these counties was obtained from WSDOT. 
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Table 3 Office of Financial Management Designated Rural Counties in Washington State 

Counties with population density < 100 persons per square mile or counties 
smaller than two hundred twenty-five square miles as of April 1, 2018 

Adams (10.40) Grant (36.33) Pacific (22.97) 

Asotin (35.24) Grays Harbor (38.70) Pend Oreille (9.67) 

Chelan (26.64) Island (402.30) San Juan (96.66) 

Clallam (43.22) Jefferson (17.51) Skagit (73.08) 

Columbia (4.78) Kittitas (19.85) Skamania (7.18) 

Cowlitz (92.12) Klickitat (11.75) Stevens (18.17) 

Douglas (23.15) Lewis (32.62) Wahkiakum (15.57) 

Ferry (3.53) Lincoln (4.68) Walla Walla (48.66) 

Franklin (74.50) Mason (66.73) Whitman (22.79) 

Garfield (3.11) Okanogan (8.07) Yakima (59.25) 

 

The Washington State Department of Health (DOH) has outlined other definitions in use, 

such as the Rural-Urban Continuity Codes (RUCCs), which are used in this research, and the 

Rural-Urban Commuting Area Codes (RUCAs). RUCCs were first developed by the United States 

Department of Agriculture (USDA) and include 9 levels of rurality; 3 of these are grouped as 

metropolitan areas while 6 are grouped into non-metropolitan categories. RUCCs provide degree 

of rurality at the county level while RUCAs provide rural and urban status and relationships at the 

zip code level and census tract level (Hailu & Wasserman, 2016). However, inspection found 

RUCA codes to be less ideal due to local anomalies – areas known to be urban in nature and even 

within 1 mile of emergency hospitals can be classified as rural given the reliance on the inflow and 

egress travel volumes. This could be due to RUCAs being relatively newly developed and could 

be useful in future analysis. RUCCs still accomplish the goal of considering degrees of rurality by 

recognizing some urban areas are more urban than others, while some rural areas are more rural 

than others, and it is not necessarily a binary distinction. Being at the county level also makes it 

easier to merge this data with the roadway and crash data that were obtained. The use of RUCCs 

was also influenced by their promotion by the DOH, because traffic safety is ultimately a public 
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health issue, especially when considering rural-urban disparity. The RUCC levels are outlined in 

Table 4 and the RUCC classification for each of the rural counties identified by the Office of 

Financial Management (OFM) are shown in Table 5. Note that not all these counties are 

characterized as rural and that there are counties classified as urban in both of these definitions 

that are included in the HSIS rural dataset. In total, rural traffic crash frequency prediction will be 

conducted incorporating definitions from WSDOT/HSIS and USDA. 

Table 4 USDA Rural Urban Continuum Codes Definitions 

Metropolitan Counties 

Code Description 

1 Counties in metro areas of 1 million population or more 

2 Counties in metro areas of 250,000 to 1 million population 

3 Counties in metro areas of fewer than 250,000 population 

Nonmetropolitan Counties 

4 Urban population of 20,000 or more, adjacent to a metro area 

5 Urban population of 20,000 or more, not adjacent to a metro area 

6 Urban population of 2,500 to 19,999, adjacent to a metro area 

7 Urban population of 2,500 to 19,999, not adjacent to a metro area 

8 Completely rural or less than 2,500 urban population, adjacent to a metro area 

9 Completely rural or less than 2,500 urban population, not adjacent to a metro area 

 

Table 5 Rural Urban Continuum Codes for Office of Financial Management Designated 

Rural Counties 

County Name (RUCC) 

Adams (6) Grant (5) Pacific (7) 

Asotin (3) Grays Harbor (4) Pend Oreille (2) 

Chelan (3) Island (4) San Juan (9) 

Clallam (5) Jefferson (6) Skagit (3) 

Columbia (3) Kittitas (4) Skamania (1) 

Cowlitz (3) Klickitat (6) Stevens (2) 

Douglas (3) Lewis (4) Wahkiakum (8) 

Ferry (9) Lincoln (8) Walla Walla (3) 

Franklin (2) Mason (4) Whitman (4) 

Garfield (8) Okanogan (6) Yakima (3) 
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Chapter 5. RITI TRAFFIC CRASH DATA ANALYSIS 

5.1 DESCRIPTIVE ANALYSES 

5.1.1 Tribal Data 

While the tribal data was not able to be included in the crash frequency prediction modeling, it is 

still valuable to investigate descriptive statistics and relevant information. For instance, on all 

roads, including both state route and local roads, from 2013 – 2017, there were 67 crashes 

recorded. Information about these crashes can be found in Table 6. 

Table 6 Description of Tribal Crash Data, All Roads 2013 – 2017 

Total 
Crashes 

Serious 
Injury # Injured Fatal # Fatalities Impaired 

No 
Seatbelt Speeding 

67 44 59 23 26 37 33 32 

 

It is importation to note that these data cannot be interpreted to be constant for all tribal areas, and 

that there are roadway characteristics associated with each crash as well that could be contributing 

factors. These data measures can also not be compared to the state data as the state data did not 

include severity measures or factors such as impairment, seatbelt use, or speeding. These are more 

often included in crash severity prediction and thus these data are only summarized here; another 

application of the framework is crash severity prediction which would involve the same 

information to be requested for the state data as well. 

5.1.2 State Data 

The data obtained from HSIS can be investigated for means and variances as opposed to severity 

measures. Table 7 shows some of these relevant statistics about the crash data that was 

investigated in this pilot. 
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Table 7 HSIS Data Description 

HSIS Data 

Number 
of 

Collisions 
Number of 
Segments 

Average 
Crashes per 

Segment Variance 

Max 
Crashes per 

Segment 

48157 18700 2.575 26.944 171 

 

From this information, it is clear that the variance of the data is much higher than the mean, 

exhibiting overdispersion and evidence that using the Poisson model for crash frequency 

prediction would be inappropriate. Results for one Poisson model are still shown in the next 

section to further examine the extent to which a negative binomial model is a better fit for the 

data. In addition, Figure 11 shows the distribution of the number of crashes per segment in the 

dataset. As one would expect, there are many zero values and otherwise low count values. 

However, there still are a significant amount of crashes on the segments, and some with 

relatively high counts, meaning that models such as a zero-inflated negative binomial might not 

be appropriate. Thus, the negative binomial model was chosen for other modeling as well. 
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Figure 11 Distribution of HSIS Data 

5.2 TRAFFIC CRASH MODELING ANALYSIS 

First, results for the Poisson and Negative Binomial models are presented for the HSIS data with 

state route segments labeled as rural under the WSDOT functional classification system. Second, 

results were compiled for the rural-designated segments but with RUCCs included as an 

independent variable. This was done to determine if this was a significant contributing factor that 
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would result in a better fit. Tribal crashes that were not already included in the state dataset were 

added, though it is important to recall that these were only serious injury and fatal collisions. As 

more tribal data is obtained it could be possible to run a negative binomial model on solely tribal 

data to determine if there are a separate set of significant contributing factors. No other counties 

were included because it is impossible to determine which data from tribal crashes are recorded 

in the HSIS dataset for other counties. This is a step that will need to occur whenever new tribal 

data is obtained. 

5.2.1 Results for Highway Safety Information System Rural-Designated Segments 

HSIS was used to gather a baseline understanding of what could be the most readily available 

statewide data, with the built-in designation for each segment as rural or urban. Despite the 

descriptive statistics above, a Poisson model was run to show how results can vary under the 

assumption of equal mean and variance. The Poisson model results are not used to determine 

expected safety and crash reduction potential due to the violation of this condition. Nevertheless, 

Table 8 shows the Poisson results for the HSIS rural segment designation with all factors 

considered.  
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Table 8 Poisson Model Results 

term estimate std.error statistic p.value 

(Intercept) -10.4921 63.5162 -0.1652 0.8688 

lshl_typConcrete 1.0169 0.0486 20.9218 0.0000 

lshl_typOther -0.0902 0.1663 -0.5425 0.5874 

lshl_typStructure 0.0394 0.0607 0.6493 0.5161 

lshl_typUnknown -0.8410 0.1175 -7.1578 0.0000 

med_typeConcrete -0.0577 0.0686 -0.8414 0.4001 

med_typeOther -0.3033 0.0265 -11.4484 0.0000 

med_typeUnknown 0.2982 0.0406 7.3379 0.0000 

rshl_typOther 0.1004 0.1668 0.6016 0.5474 

rshl_typStructure -0.1729 0.0614 -2.8181 0.0048 

surf_typAsphalt 4.7717 63.5162 0.0751 0.9401 

surf_typConcrete 4.8308 63.5162 0.0761 0.9394 

surf_typOther 4.2833 63.5168 0.0674 0.9462 

spd_limt 0.0026 0.0006 4.6113 0.0000 

lanewid 0.0115 0.0034 3.3883 0.0007 

no_lanes -0.0889 0.0080 -11.0966 0.0000 

lshldwid -0.0184 0.0029 -6.2850 0.0000 

rshldwid -0.0072 0.0028 -2.5906 0.0096 

medwid 0.0003 0.0001 6.8287 0.0000 

avg_grad -0.0132 0.0028 -4.6725 0.0000 

curv_count 0.0283 0.0022 12.9806 0.0000 

max_deg_curv 0.0060 0.0009 6.5228 0.0000 

log_length 0.5896 0.0040 147.5929 0.0000 

log_aadt 0.8816 0.0068 130.2826 0.0000 

AIC 81744    

 

The significant predictors are in bold and italics in the above table. There are many that do make 

intuitive sense, but perhaps most striking is the intercept not being significant, which is something 

that should be expected. The AIC is also included for reference when completing the negative 

binomial model. Table 9 shows the results for the negative binomial model when initially run with 

all predictors included except for RUCC. The negative binomial models were created and run 

using the MASS package in RStudio, using the natural log link function. 
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Table 9 Initial Negative Binomial Model Results 

term estimate std.error statistic p.value 

(Intercept) -26.0166 114739.8 -0.00023 0.999819 

lshl_typConcrete 0.8873 0.15495 5.72649 1.03E-08 

lshl_typOther -0.14457 0.221364 -0.65307 0.513711 

lshl_typStructure -0.01537 0.09698 -0.15844 0.874106 

lshl_typUnknown -0.86035 0.16245 -5.29605 1.18E-07 

med_typeConcrete -0.46471 0.19505 -2.38253 0.01719 

med_typeOther -0.54456 0.06274 -8.68012 3.95E-18 

med_typeUnknown 0.34595 0.0841 4.11353 3.90E-05 

rshl_typOther 0.105544 0.222293 0.474799 0.63493 

rshl_typStructure -0.20136 0.09789 -2.05686 0.0397 

surf_typAsphalt 19.70612 114739.8 0.000172 0.999863 

surf_typConcrete 19.62159 114739.8 0.000171 0.999864 

surf_typOther 19.47519 114739.8 0.00017 0.999865 

spd_limt 0.00403 0.00101 4.00922 6.09E-05 

lanewid 0.01539 0.00526 2.92678 0.00342 

no_lanes -0.01321 0.019663 -0.67162 0.501826 

lshldwid -0.01481 0.00557 -2.66016 0.00781 

rshldwid 0.002559 0.005228 0.489389 0.624566 

medwid 0.00027 0.00015 1.79538 0.07259 

avg_grad -0.01727 0.00585 -2.95405 0.00314 

curv_count 0.05674 0.00604 9.38861 6.08E-21 

max_deg_curv 0.00687 0.00169 4.06612 4.78E-05 

log_length 0.49816 0.00778 64.0037 0 

log_aadt 0.88671 0.01291 68.6574 0 

AIC 65320    

 

Again, the intercept is not found to be significant, but the AIC is much lower than the Poisson 

model. This is a measure of the comparative goodness of fit between the two models, with a lower 

AIC signifying a better fit. This is one other reason why the negative binomial was chosen. Table 

10 shows the results of the negative binomial model when it is run with only the significant 

predictors from the previous model definition. For simplicity, only the final iteration is shown 

here. The negative binomial model is specified in Equation 6. 

ln(µ) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛  …………….  (6) 
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Table 10 Final Negative Binomial Results for Rural Segments 

term estimate std.error statistic p.value 

(Intercept) -4.2160 0.0731 57.7049 0.0000 

spd_limt -0.0059 0.0009 -6.5992 0.0000 

avg_grad -0.0129 0.0060 -2.1646 0.0304 

curv_count 0.0576 0.0062 9.3314 0.0000 

max_deg_curv 0.0054 0.0017 3.1762 0.0015 

log_length 0.4966 0.0076 65.4050 0.0000 

log_aadt 0.7339 0.0094 77.8293 0.0000 

AIC 66006    

 

The dispersion parameter for this model is 1.0362 and the dispersion parameter standard error is 

0.0200. A t-statistic can be found by dividing the dispersion parameter by its standard error, 

resulting in 51.8849. With 5 degrees of freedom, this is significant at the 0.05 level and thus 

adequately accounts for the overdispersion in the data and is an appropriate model. The final 

predictors that were found to be significant include the speed limit of a segment, the average grade, 

the amount of curves in a segment, the maximum degree of curvature if there is a curve, the log of 

the length of the segment, and the log of the annual average daily traffic. The log was taken of 

these last two predictors in order to reduce the range and skew the results. The AIC is slightly 

higher than the initial model, but the results do make better intuitive sense and the AIC values are 

fairly similar. The speed limit was found to have a decreasing impact. This implies that a higher 

speed limit reduces the overall number of crashes on a segment, which may seem counterintuitive. 

A likely reason is that segments with higher speed limits are likely associated with better visibility 

and curvature conditions. Rural highways with higher speeds could also have greater safety 

features incorporated into their design. It is also possible that there were many crashes on segments 

with lower speed limit when previous segments had high speed limits; this change could result in 

high speed crashes being recorded in lower speed limit segments. The average grade was found to 

have a decreasing impact on crash frequency as well, meaning that with increased grade the crash 
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frequency is slightly reduced. This could be due to a large amount of crashes occurring on flat or 

zero grade segments, of which there are many more than high grade segments. It is also possible 

that crashes are more likely to occur immediately prior to or following a change in grade, or similar 

to the speed limit could be the result of graded segments having some safety features in place 

already. These are two contributing factors that deserve greater investigation to determine their 

true impact. The remaining significant factors all had increasing impacts, meaning that crash 

frequency increases as their value increases. As expected, length and average annual daily traffic 

have the largest coefficients, as these are most directly associated with the risk and exposure 

associated with any one segment. 

5.2.2 Results When Considering Rural-Urban Continuum Codes 

Using the same set of data from the HSIS, the county of the collision could be retrieved from 

each crash record. Thus, it was also possible to link each segment to its Rural-Urban Continuum 

Code. The negative binomial model was run with the new set of predictors, including the RUCC. 

The results of the final model with only significant predictors chosen to be in the model 

definition are shown in Table 11. This model had a dispersion parameter of 1.1051 and a 

dispersion parameter standard error of 0.0218. A t-statistic can be found by dividing the 

dispersion parameter by its standard error, resulting in 50.6975. With 7 degrees of freedom, this 

is well beyond a significance at the 0.05 level, meaning that this model appropriately accounts 

for the overdispersion present and is suitable. 
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Table 11 Negative Binomial Results When Including RUCC 

term estimate std.error statistic p.value 

(Intercept) -4.3987 0.0965 45.5671 0.0000 

rucc -0.0887 0.0051 17.4436 0.0000 

lanewid 0.0097 0.0037 2.6464 0.0081 

no_lanes -0.1891 0.0116 16.2333 0.0000 

avg_grad -0.0188 0.0059 -3.1913 0.0014 

curv_count 0.0619 0.0060 10.2493 0.0000 

max_deg_curv 0.0055 0.0017 3.2930 0.0010 

log_length 0.4997 0.0076 65.7805 0.0000 

log_aadt 0.7979 0.0120 66.2400 0.0000 

AIC 65450    

 

These results show that the AIC is lower than when RUCC is considered, meaning it is a better fit 

for the data. The number of lanes and lane width are also found to be significant when including 

RUCC as a predictor. These results suggest that adding a degree of rurality to analysis can help 

improve the results of a model when predicting traffic crash frequency on rural roadways. Speed 

limit was not found to be a significant predictor when RUCC was considered, which perhaps can 

signify the previous results regarding speed limit vary depending on model specification – more 

research is needed to determine the effect of speed limit on crash frequency on rural highways. 

Lane width has an increasing impact on crash frequency suggests increasing lane width is related 

to an increase in crash frequency; this is counterintuitive to urban areas as often times narrow lane 

width is considered less desirable in practice. These results could come from a very high amount 

of roadway segments with one lane width (12 feet) and some segments being recorded with 

increasingly wider lane widths and very few narrow lanes. The number of lanes was found to be 

significant with a negative impact, meaning that crash frequency decreases as more lanes are 

added. This could be intuitively true but could also be influenced by the number of segments that 

included only 2 lanes, with some segments having more lanes but very few having only 1 lane. 

The grade, curve count, maximum degree of curvature, length, and average annual daily traffic are 
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all reported as having the same sign and relatively similar coefficient values compared to the 

negative binomial model without considerations for RUCC. The RUCC predictor has a decreasing 

impact, suggesting that crash frequency decreases with an increase in rurality. This could be due 

to more rural areas having lower average annual daily traffic, reducing the exposure of a segment. 

These results do not investigate the severity of crashes with different levels or rurality. 

5.3 EMPIRICAL BAYES METHOD 

With the negative binomial model completed with only significant predictors, it is possible to use 

the Empirical Bayes method to convert the results to more actionable items. One such item is an 

index of expected safety, and another is an index of Crash Reduction Potential (CRP). Both of 

these could be used to help determine where more focus should be applied and perhaps more 

funding allocated to address concerns. Table 12 shows the summary of the expected safety as 

determined from Equation 3 compared to the summary of the actual data. It can be noted that the 

expected safety is mostly accurate, though tends to underestimate the number of crashes when the 

number of crashes exceeds the mean.  

Table 12 Summary of Results for Expected Safety and Actual Safety 

Expected Safety 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

0.024 0.495 1.010 2.575 2.692 158.635 

Actual Safety 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

0 0 1 2.575 3 171 

 

The CRP could also be calculated using the results of the negative binomial model, following 

Equation 5. These results can be plotted to show the index of crashes and the Crash Reduction 

Potential. Figure 12 shows such a plot with red indicating a CRP greater than 3 and Blue indicating 

a CRP greater than 1. This could be used to identify crash hot spots that potentially have the 
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greatest ability to have increased safety based on the negative binomial and Empirical Bayes 

results. There are a total of 2,569 road segments with a CRP greater than 1.0, with 1,191 road 

segments having a CRP greater than 3.0. A CRP of 1.0 represents approximately the 86th 

percentile, while a CRP of 3.0 represents approximately the 94th percentile. These are both the 

upper end of percentiles, and often times in transportation engineering the 85th percentile is used 

as a starting point of estimates – thus, the use of 1.0 as a cutoff in this example. It would be 

relatively straightforward to alter the results of this analysis framework component to fit the needs 

of the user. 
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Figure 12 Crash Reduction Potential per Road Segment Index 

5.4 TRAFFIC CRASH VISUALIZATION 

Other tools are developed as a part of this framework to help communities gain a better 

understanding of their crashes. One such tool developed has been a crash mapping tool based on 

the familiar Google Maps interface that allows for data to be uploaded if it has coordinates. The 

model proposed here includes serious injury and fatal collisions throughout the state on the rural 
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segments. The interface allows users to filter to years and severity, and allows a user to focus on 

one selected area to gain better insights. The user can also select specific crashes or groups of 

crashes to understand the factors that were recorded with each crash and proportions of fatal to 

serious injury if selecting a group of crashes. Figure 13 shows a screenshot of the interface when 

viewing a larger portion of the mapping application. Figure 14 shows a screenshot of the 

application when selecting a specific crash to view its characteristics. Tribal data was not included 

in this demo. 

 

Figure 13 Year and Crash Severity Options in the Google Maps Crash Visualization Application 
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Figure 14 Crash Detail View in the Google Maps Crash Visualization Application 
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Chapter 6. CONCLUSION 

This research is an important step towards better understanding rural, isolated, tribal, and 

indigenous community traffic safety issues by presenting a simple and lightweight framework. The 

proposed framework begins with outreach activities, and follows to data aggregation, data 

merging, data descriptive analyses, crash prediction analyses, and finally visualization of some 

pertinent results. While other research has focused on rural and tribal traffic safety, there is a lack 

of research initiatives aimed at forming lasting collaborative relationships with the RITI 

communities. The outreach portion of the framework is not merely a step to follow but a paradigm 

to maintain during the process. By connecting first with local tribal liaisons at the University of 

Washington Intellectual House, it was possible to gain a better understanding of the community 

and learn how to successfully communicate the project and form connections. This proved vital 

and traffic crash data was obtained in part from the Confederated Tribes of the Colville Reservation 

after entering a formal research agreement. The inclusion of this data and being able to determine 

the degree of underreporting from just one region of Washington State is significant, even if the 

data could not be included in crash frequency prediction models. Another aspect of this framework 

was the inclusion of a degree of rurality in the prediction models, which allowed for a greater 

context to be considered and resulted in a better fitting model. The results show that significant 

contributing factors to rural crashes include the degree of rurality, the lane width, the number of 

lanes, the average grade, the number of curves, the maximum degree of curvature, the log of length, 

and the log of annual average daily traffic. Being able to map the crashes was an important 

consideration learned from collaborating with tribal transportation leaders, and an application to 

rank the road segments according the expected safety and Crash Reduction Potential is also 

proposed as a method to aid in transportation improvement proposals. While the issue of traffic 
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safety inequity cannot be solved overnight, it is one that can be addressed through thoughtful 

collaborations with RITI communities and efficient solutions.  
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