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Dams provide immense societal benefits in the form of hydropower generation, flood control, 

and water supply. However, they also cause significant negative environmental impacts by 

altering the timing and magnitude of natural streamflow, limiting the transport of sediment, 

nutrients, and biota upstream and downstream, and altering aspects of water quality such as 

sediment concentration and water temperature. Dam development in developing regions has been 

increasing in the last 30 years and will continue to intensify in the coming decades. This is 

leading to rapid hydrologic transformations of developing river basins, with potentially dire 

consequences for local populations dependent on the natural river systems for food and 

livelihood. In-situ hydrologic observations in such regions are limiting, making satellite remote 

sensing the only viable option for studying the impacts of this rapid dam development.  This 



 

dissertation aims to advance our ability to study the impacts of reservoirs in data limited regions. 

First, a method for estimating reservoir outflow using purely remote sensing observations was 

developed and tested on reservoirs in the United States and Bangladesh. This method was then 

applied to ungauged reservoirs in the Mekong River Basin and their impact the river system was 

evaluated in terms of flow alteration and residence time.  It was found that smaller reservoirs on 

upper tributaries exerted a higher degree of flow alteration and residence time on the rivers they 

impound than larger, more downstream reservoirs. However, the reservoirs on larger rivers exert 

their impacts on significantly larger volumes of streamflow, so their contribution to the overall 

flow alteration and residence time of the river system was found to be more significant. Looking 

towards upcoming satellite missions, the applicability and usefulness of the Surface Water and 

Ocean Topography (SWOT) Mission for monitoring reservoir outflow and river discharge was 

tested using by generating synthetic observations based on the expected performance of the 

SWOT instrument. It was found that SWOT is expected to observe reservoir storage change with 

higher accuracy than methods from existing sensors in most cases. However, some reservoirs 

were unable to be accurately observed by simulated SWOT observations, indicating a 

cooperative multi-sensor approach may be useful. The performance of SWOT observations of 

river discharge was found to be satisfactory given there are currently no satellite sensors capable 

of estimating discharge. However, the dramatic differences between wet season and dry season 

discharge in monsoonal rivers proved difficult and some adjustments to the discharge estimation 

methods may be needed. Finally, impacts on river temperature downstream of major dam 

development in the 3S Basin, the largest tributary to the Mekong River, were observed using 

satellite remote sensing. Dam construction in the basin coincided with significant temperature 

decreases downstream, providing clear evidence of hydropower induced river cooling. The 



 

findings of this dissertation and the remote sensing methods employed here represent valuable 

steps towards understanding the hydrologic impacts of dams and predicting the impacts of 

further dam development in developing basins around the world.
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Chapter 1: Introduction 

1.1 STATE OF DAM DEVELOPMENT AROUND THE WORLD 

 Dams have been an essential element of human development throughout the last century. 

By controlling the flow of rivers and forming reservoirs, they allow us to deliver water where 

and when it is needed. Dams provide numerous societal benefits. The facilitate valuable 

hydroelectric power generation, the largest source of clean energy. By 2012, hydropower 

accounted for 16.2% of the world’s electricity generation (IEA 2016). Dams also provide 

protection from one of the most damaging natural disasters, floods, by storing the flood pulse 

and releasing it gradually over a safe period of time. This ability to store water and selectively 

release it at a later time makes dams invaluable for providing water for agricultural, industrial, 

and domestic uses.  

However, these benefits come with severe environmental costs as dams impose wide 

reaching modifications to hydrologic systems (Biemans et al. 2011; Y. N. Pokhrel et al. 2012; C. 

Vörösmarty et al. 2004). Dams disconnect rivers, limiting transport of sediment, nutrients, and 

biota, with damaging consequences to the upstream and downstream river ecosystems (Pringle 

2003; Graf 2006; Ligon, Dietrich, and Trush 1995)This disconnection lead to the capture of 

sediment in reservoirs. As much as 30% of the annual global sediment discharge is currently 

being trapped by reservoirs (C. Vörösmarty et al. 2004). Additionally, the altering of streamflow 

imposed by dams in order to mitigate floods or provide hydroelectricity, or water supply, 

disrupts the natural streamflow patterns of river systems, patterns that many river ecological 

systems have adapted to and depend on. Dams can also play a role in altering river water 

temperature, again disrupting downstream ecological systems. These impacts extend beyond the 
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aquatic environment. Sediment carries valuable nutrients, essential to floodplain agriculture. 

Additionally, fishing is a major source of nutrition and livelihood in many regions.  

Large scale dam development began in the United States and many other developed 

nations in first half of the 20th Century. By the later half of the 20th Century, dam building in 

these regions slowed as many of the most beneficial locations for dams had already been used 

and growing environmental concerns slowed the desire to further regulate river systems. Now, in 

the 21st Century, many developing regions are going through a similar period of rapid dam 

construction. One global study identified at least 3700 major dams that are either under 

construction now or planned for construction in the future in the hydropower sector alone, with a 

majority of these located in developing nations (Zarfl et al. 2014). Figure 1.1 shows a map of 

these dams along with a map of existing major dams (Lehner et al. 2011). Region specific 

datasets also reveal dramatic dam development in major basins such as the Amazon and the 

Mekong. These planned dams are not only numerous, they are increasingly ambitious in their 

size and as a result, their hydrologic impact. For example, the Grand Ethiopian Renaissance 

Dam, under construction in the Nile River Basin, will be large enough to store 1.5 times the 

annual flow of the Blue Nile River it will impound (Wheeler et al. 2016).  Similarly, there are 

plans in the next 20 years for the construction of 9 major dams on the main stem of the Mekong 

River in the lower Mekong River Basin, which is not currently impounded (WLE 2017). 

Ultimately, these developing regions are set to experience rapid hydrologic transformations with 

wide reaching environmental and societal impacts. Understanding these impacts will be critical 

for these regions in the coming decades. 
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Figure 1.1. Map of existing large dams from the GRanD Dam Database (Lehner et al. 2011) and 

planned/proposed hydropower dams (Zarfl et al. 2014) 

1.2 SATELLITE REMOTE SENSING OF RESERVOIRS 

Unfortunately, in-situ hydrologic observations in the developing regions where the recent 

dam construction activity is occurring are largely unavailable due to two primary factors. 

National agencies in these regions lack the capacity to routinely collect hydrologic information 

such as streamflow or water quality parameters such as sediment concentration or water 

temperature. Even when data is collected, there an unwillingness of agencies to share the data 

openly. This is especially true of transboundary river systems, where multiple nations or 

agencies are competing over limited water resources. This fundamental lack of in situ data is 

likely to persist or worsen in future (A. Gebregiorgis and Hossain 2014). Thus, observations 

from satellite remote sensing platforms are the only viable methods for understanding reservoir 

impacts.  
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Evaluating the hydrologic impacts of reservoirs begins with understanding the dynamics 

of the reservoirs themselves. The amount of water stored in a reservoir (reservoir storage) 

fluctuates throughout a typical year, in order to maximize the benefits the reservoir provides 

(flood control, hydropower, water supply, etc.). These storage change fluctuations reveal how the 

reservoir is interacting with the river system. For example, decreasing reservoir storage indicates 

that the amount of water input into the reservoir is less than the amount of water leaving the 

reservoir, suggesting that the reservoir is releasing more water than it is taking in. Estimating 

reservoir storage changes over time from satellite observations requires simultaneous estimates 

of water surface elevation changes and water surface area changes (Huilin Gao 2015). Methods 

for estimating these parameters independently from satellite observations have been well 

established.  

Nadir radar altimeters measuring water surface elevation, originally designed to measure 

sea surface heights, were first applied to lakes in 1994 (C. M. Birkett 1994).Since then, satellite 

radar altimeters have been used to monitor water height changes for a number of lakes and 

reservoirs around the world, for example, the Great Lakes (Morris and Gill 1994); Lake Chad 

(Coe and Birkett 2004; H. Gao et al. 2011); lakes and reservoirs in the United States, Brazil, and 

Nigeria (Okeowo et al. 2017); and a reservoir in the Amazon (D. E. Alsdorf, Rodríguez, and 

Lettenmaier 2007). A major limitation of satellite radar altimeters is their poor spatial coverage. 

Radar altimeters only measure water elevation directly beneath the satellite with footprints from 

3–5 km wide and a spacing between orbital tracks typically greater than 100km (Huilin Gao 

2015). As a result, they miss a large amount of surface waterbodies. Visible and infrared satellite 

imagery can be used to observe the water surface extent of reservoirs and estimate reservoir 

surface area. This technique has been applied to monitor numerous lakes and reservoirs (Huilin 
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Gao, Birkett, and Lettenmaier 2012; González-Jorge et al. 2018; S. Zhang, Gao, and Naz 2014). 

However, visible and infrared satellite imagery is blocked by clouds, meaning observation of 

reservoirs in cloudy conditions by visible sensors is impossible. Synthetic Aperture Radar 

(SAR), such as the instrument on board Sentinel-1, can be used to overcome this deficiency, as 

the radar signal used by these sensors penetrates clouds and can provide reservoir surface area in 

cloudy conditions (Huang et al. 2018). 

Standard methods for estimating storage change from satellite based observations of 

reservoir surface area and/or water surface elevation have several limitations that hinder their 

applicability to reservoir sin data limited regions, by requiring in-situ observations (J. Zhang et 

al. 2006; Smith and Pavelsky 2009), or nadir altimeter observations, which have poor spatial 

coverage (C. M. Birkett 2000; Duan and Bastiaanssen 2013). These limitations mean there are no 

suitable methods for estimating reservoir storage change using traditional approaches in 

ungauged river basins. Furthermore, current satellite based estimation of reservoir outflow is also 

limited, requiring in-situ observations (Muala et al. 2014) and thus cannot be applied to data 

limited developing regions. Monitoring the water quality impacts of reservoirs from satellite 

observations is also in its infancy. Suspended sediment concentration can be estimated from 

visible/infrared imagery, but requires in-situ observations for calibration (Umar, Rhoads, and 

Greenberg 2018). Thermal infrared imagery of rivers has been shown to accurately monitor river 

temperature, but despite this, its application to the thermal impacts of reservoirs has been limited 

(Dugdale 2016; Tavares et al. 2019). 

The upcoming Surface Water and Ocean Topography (SWOT) Mission, launching in 

2021, is expected to improve upon the surface water observing deficiencies of past and current 

satellite missions and greatly expand understanding of surface water dynamics (Biancamaria, 
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Lettenmaier, and Pavelsky 2016). For lakes and reservoirs, SWOT will observe water surface 

elevation and reservoir surface area, providing more direct estimates of reservoir storage change. 

Furthermore, SWOT will provide estimates of river discharge, allowing for the impacts of 

reservoirs on streamflow to be more directly assessed. Given the potential of the SWOT mission, 

and the novelty of the interferometric SAR instrument it will employ, there is much interest in 

understanding the potential accuracy of its observations and its potential applicability to reservoir 

monitoring. Despite the improvement SWOT represents over current remote sensing platforms, 

there is still value in developing reservoir monitoring methods using traditional sensors, both for 

the long historical record of traditional sensors and for potential multi-sensor cooperation 

between traditional sensors and SWOT.  

1.3 RESEARCH OBJECTIVES 

The objectives of this dissertation are twofold, to develop and test satellite based methods that 

help better assess the impacts of reservoirs in developing regions, and to apply those methods to 

ungauged regions in order to provide a deeper understanding of the impacts of reservoirs in those 

regions. More specifically, the research objectives are as follows: 

1. Develop and test a method for estimating reservoir outflow, relying entirely on remotely 

sensed observations. 

2. Apply the reservoir outflow estimation method to reservoirs in the Mekong River Basin 

and use the resulting outflow to evaluate the impacts of reservoirs on downstream 

streamflow in terms of two measures of impact, residence time and flow alteration. 
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3. Evaluate the potential of the SWOT mission for estimating reservoir storage and outflow 

in the Mekong River Basin. Additionally, evaluate the capabilities of SWOT river 

discharge estimation in tropical monsoonal climates. 

4. Utilize satellite-based thermal infrared observations to understand the impacts of 

reservoirs on river temperature in the 3S Basin, a major tributary to the Mekong River. 

1.4 APPROACH 

This dissertation is organized as follows: 

 Chapter 2 introduces a mass balance approach for estimating reservoir outflow from only 

satellite based observations. This chapter also explores the role of several hydrologic controls in 

the mass balance approach. Chapter 3 applies the mass balance approach to 20 reservoirs in the 

Mekong River Basin and uses the resulting outflow estimates to evaluate the hydrologic impact 

of the reservoirs in terms of two factors, residence time and flow alteration. Chapter 4 evaluates 

the accuracy of SWOT storage change and outflow estimates for the same 20 Mekong Basin 

reservoirs by simulated SWOT observations of the reservoirs. Chapter 5 evaluates the accuracy 

of three different SWOT based discharge estimation approaches in the Ganges-Brahmaputra 

Delta. Chapter 6 uses satellite based thermal infrared observations to understand the impact of 

reservoirs in the 3S basin on downstream river temperature and evaluates the overall thermal 

impact of these reservoirs on the Mekong River.  
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Chapter 2: Understanding Reservoir Discharge as a Function of 

Hydrologic Controls 

Note: This chapter has been published mostly in its current form in Water Resources Research 

(M. Bonnema et al. 2016); Used with permission. 

 

Abstract: Growing population and increased demand for water is causing an increase in dam 

and reservoir construction in developing nations. When rivers cross international boundaries, the 

downstream stakeholders often have little knowledge of upstream reservoir operation practices. 

Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products 

can be used as a practical way to provide downstream stakeholders with the fundamentally 

elusive upstream information on reservoir outflow needed to make important and proactive water 

management decisions. This study uses a mass balance approach of three hydrologic controls to 

estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-

induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the 

importance of each of these hydrologic controls to the accuracy of outflow estimation. The 

hydrologic controls found to be unimportant could potentially be neglected from similar future 

studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse 

Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, 

forested region of Bangladesh. It was found that this mass balance method estimated the annual 

outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both 

reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior 

resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from 
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Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected 

by relatively low accuracy in summer and fall, when snow processes control runoff. 

Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation 

at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow 

being the most important control for the Kaptai Reservoir and storage change being the most 

important for Hungry Horse Reservoir. 

2.1 INTRODUCTION 

The estimation of reservoir outflow from satellite observations is an important first step towards 

understanding the impacts of reservoirs on streamflow. In this chapter, a combination of satellite 

altimetry and a satellite precipitation product was used to determine reservoir outflow (Figure 

2.1) through the use of a simple mass balance between hydrologic controls (2.1) where reservoir 

outflow (O) is balanced by changes in reservoir storage (ΔS), precipitation‐induced runoff 

flowing into the reservoir (I), and evaporative losses (E). Due to the revisit period of the satellite 

observations being longer than a week, the mass balance was resolved on approximately monthly 

time scales. 

 

 O = I − E − ΔS (2.1) 
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Figure 2.1. Schematic of mass balance between reservoir outflow (O), evaporation (E), changes 

in reservoir storage (ΔS), and runoff‐derived inflow (I) driven by precipitation (P). 

 The total change in reservoir storage can be estimated by combining radar altimetry 

measurements of reservoir surface elevation with remotely sensed reservoir surface area (Huilin 

Gao 2015). Initially designed for oceanic observations, radar altimetry has been used to 

accurately measure lake and reservoir elevations since the early 1980s (Corp. et al., n.d.; Mason 

et al., n.d.; C. M. Birkett 1995; J. Zhang et al. 2006; Lee et al. 2011). More recent efforts have 

combined altimetry with various methods of determining reservoir surface area. (C. M. Birkett 

2000) used TOPEX/POSEIDON altimetry measurements with NOAA/AVHRR radiometer 

images to develop a simultaneous time series of the elevation and water surface extent of Lake 

Chad. Additionally, (Huilin Gao, Birkett, and Lettenmaier 2012) used the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) along with satellite radar altimetry to estimate storage 

changes in 34 global reservoirs. Furthermore, (Yunus D. Salami 2012) combined altimeter 

measurements from multiple sources with existing storage‐elevation curves and validated their 

results with a mass balance similar to equation 1 (in their case, outflow was measured with a 

streamflow gauge and the equation was solved for storage change). A wide array of satellite 

altimeter missions, both current (JASON‐2, AltiKa, Sentinel‐1 & 2, Envisat) and future (JASON‐

3 and Sentinel‐3) can be leveraged for the estimation of storage changes (Lambin et al. 2010; 

Verron et al. 2015; D. E. Alsdorf, Rodríguez, and Lettenmaier 2007).  

Precipitation‐induced runoff flowing into a reservoir can also be estimated using satellite 

remote sensing of precipitation. This involves using a satellite precipitation product such as the 

Tropical Rainfall Measurement Mission (TRMM, now deactivated) or its successor, the Global 

Precipitation Mission (GPM), to provide an estimate of precipitation over the basin contributing 

to the reservoir (Huffman et al. 2007; Hou et al. 2014). This precipitation can then be fed into a 

runoff model of appropriate complexity to determine the runoff generated. 

Few studies have attempted to use satellite estimated volume changes to estimate 

reservoir outflow, which is an important geophysical variable for a wide variety of scientific 

investigations and applications. (Swenson and Wahr 2009) used satellite‐derived storage changes 

of a small lake downstream of Lake Victoria to estimate the outflow of Lake Victoria. This 

approach had high success at the monthly and seasonal time scales, but is specific to Lake 

Victoria or other systems with a small lake directly downstream of a large reservoir. (Muala et al. 

2014) used altimetry‐derived storage changes and in situ inflow measurements to estimate the 

discharge from Lake Nasser and Rosaries Reservoir in the Nile Basin. They were able to 

estimate outflow from Rosaries Reservoir to within 18% of observed outflow, while outflow 
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from Lake Nasser was more difficult to predict. It is clear that more investigation into satellite‐

based reservoir discharge estimation is needed. 

Improved knowledge of reservoir outflow provides a greater understanding of the human 

impacts on the terrestrial water cycle, compared to only reservoir storage. Reservoirs and 

irrigation water supply withdrawals have decreased annual global discharge into oceans by 2.1% 

and reservoirs have increased the residence time of surface water by 3 months (C. Vörösmarty 

and Sahagian 2000; Biemans et al. 2011). Both of these conclusions have huge implications for 

downstream ecosystem health, reservoir sedimentation, and water supply. However, a limitation 

of such global reservoir studies is the absence of observations of reservoir outflow. (Döll, 

Fiedler, and Zhang 2009) cites high uncertainties in reservoir operations (which are incidental to 

reservoir discharges) as a limitation of their global river flow impacts study. Reservoir discharge 

estimates could be used to refine or localize such studies to more accurately assess regionally 

specific reservoir impacts. 

Additionally, there is value in observing reservoir outflow, rather than reservoir storage 

change alone from a water management perspective. Knowledge of the amount of water flowing 

out of an upstream and transboundary reservoir provides downstream stakeholders with a more 

direct proxy of the amount of water flowing into their region, which has implications for 

downstream reservoir operations, flood forecasting, and water supply management. 

The goals of this study are twofold. First, this study presents a practical method tailored 

for operationalization of estimating reservoir outflow using the mass balance approach shown in 

equation 1 and Figure 1, and evaluates this method against observed outflow from two reservoirs 

in regions with different climates. Second, this study explores the sensitivity of the hydrologic 
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controls included in the mass balance approach for each reservoir and determines which, if any, 

controls can be reasonably ignored at monthly time scales to enable practical operations. 

2.2 STUDY REGION AND DATA 

The interaction between hydrologic controls is a function of climate, geography, and size and 

function of the reservoir. Here the role of climate and geography was explored while keeping 

function and size relatively constant. As such, this study examined two similarly sized 

hydropower reservoirs in contrasting climate and geographic settings, Hungry Horse Reservoir 

and Kaptai Reservoir. Hungry Horse is located in the Rocky Mountains of western Montana. It 

captures water from a 6067 km2 drainage area primarily made up of mountainous forest and has 

a total water storage capacity of 4.28 km3. Figure 2.2 shows a map of the watershed draining into 

the reservoir. There are no dams or other flow regulatory structures upstream of Hungry Horse 

Dam, but a significant portion of the basin builds up a snowpack in Winter that can act like a 

natural reservoir until spring snowmelt begins. Constructed from 1948 to 1953, the dam's 

principal function has been hydroelectric generation with secondary utility as a flood control 

structure. In contrast, Kaptai Reservoir is located on the Karnaphuli River in the Rangamati 

District of Bangladesh. It should be noted that there are no regulatory structures upstream of 

Kaptai Reservoir. A map of this reservoir's watershed is also shown in Figure 2.2. It has a 

maximum water storage capacity of 6.48 km3 and captures water from a 11,080 km2 area.  

Construction of Kaptai Dam finished in 1955 and its primary function to date has been 

hydropower generation. It is the only hydropower dam in Bangladesh. 
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Figure 2.2. Map of the drainage area contributing runoff to the reservoirs as well as the ground 

track of the Envisat altimeter for (right) Hungry Horse Reservoir and (left) Kaptai Reservoir. 

All altimeter measurements of both reservoirs were taken by the satellite altimeter 

Envisat from 21 October 2002 to 4 October 2010 for Hungry Horse Reservoir and 29 October 

2002 to 12 October 2010 for Kaptai Reservoir on a 35 day repeat cycle. Envisat (Environmental 

Satellite) provided 18 Hz retracked data (∼350 m along‐track sampling) to estimate water 

elevation. Interested readers are referred to (Benveniste et al. 2002)for further details on remote 

sensing techniques and to (Siddique-E-Akbor et al. 2011) for an application over inland waters. 

The locations where the satellite ground tracks cross the reservoirs are shown in Figure 2.2. 

Daily precipitation estimates were provided by the 3B42v7 TRMM product (Huffman et al. 

2007) for the same time period. This TRMM product has been calibrated against rain gauge 

observations. These precipitation estimates were conservatively regridded to 0.5° resolution for 

use in the VIC hydrologic model (section 3.1.2). Digital Elevation Models (DEMs) of each 
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reservoir were obtained from the Shuttle Radar Topography Mission (SRTM), taken from when 

the reservoirs were at their lowest point observed by the mission (Farr and Kobrick 2000). 

Observed outflow for the Hungry Horse Reservoir was measured at USGS streamflow station 

#12362500, located directly downstream of Hungry Horse Dam. Outflow and river level 

measurements were available at a gauge station located immediately downstream of the Kaptai 

Dam and maintained by Bangladesh Water Development Board (BWDB). These data were made 

available as part of a 5 year Memorandum of Understanding between the Institute of Water 

Modeling (IWM)‐Bangladesh and University of Washington. 

2.3 METHODS 

2.3.1 Mass Balance 

In this study, reservoir outflow was calculated as the mass balance of all the inflow and outflow 

fluxes from the reservoir system, represented by precipitation‐induced reservoir inflow (I), 

changes in reservoir storage (ΔS), evaporation (E), and reservoir outflow (O) outlined in 

Equation 2.1. It was assumed that groundwater seepage would not be a major factor contributing 

to reservoir outflow and was ignored. 

 Two different hydrologic characterizations of reservoir inflow were used here, the curve 

number (CN) method and the Variable Infiltration Capacity (VIC) model (Woodward et al. 2003; 

Liang et al. 1994). Although ease of operation was a key goal of this study, the comparative use 

of a simple approach like CN and a more complex approach, using a macroscale hydrologic 

model like VIC, allowed the sensitivity of hydrologic process controls on outflow estimation 

accuracy to be explored. This is elaborated further in the following sections. 
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For the application of the CN method, the catchment of each reservoir was delineated from 30 m 

Digital Elevation Models (DEMs) obtained from the Shuttle Radar Topography Mission 

(SRTM). The resulting watershed delineations are shown in Figure 2.2. Soil type for the Hungry 

Horse Watershed was obtained from the NRCS Web Soil Survey. Soil data for the Kaptai basin 

were obtained from the Food and Agriculture Organization of the United Nations Harmonized 

World Soil Database v 1.2 (Fischer et al. 2008). Land cover of both basins at 1 km resolution 

was obtained from USGS Land Cover Characterization data (Loveland et al. 2000). From the soil 

type and land cover data, AMC II (antecedent moisture condition II, referring to average soil 

moisture) curve numbers for each 1 km grid cell of data were estimated using curve number 

lookup tables provided by the NRCS Conservation Engineering Division. The composite curve 

number (CN) of each basin was calculated as an area weighted average of each curve number. A 

dynamic curve number approach was used, where the CN alternates among AMC I (dry), AMC 

II (moderate), and AMC III (wet) conditions, depending on the rainfall (in inches) over the 

previous 5 days (P5): 

 𝐶𝑁 = {

𝐴𝑀𝐶 𝐼 0 < 𝑃5 ≤ 0.5
𝐴𝑀𝐶 𝐼𝐼 0.5 < 𝑃5 ≤ 1.1
𝐴𝑀𝐶 𝐼𝐼𝐼 𝑃5 > 1.1

} (2.2) 

A similar dynamic CN approach has been used in TRMM‐based flood monitoring 

applications (Hong et al. 2007). Once the curve number was known, the daily watershed runoff 

was estimated from TRMM precipitation data using standard curve number equations. 

The VIC hydrologic model is a gridded land surface model (LSM) that characterizes the 

land cover and soil types and solves energy and mass balance at each grid cell to determine 

evapotranspiration, interception, surface runoff, subsurface runoff, aerodynamic water fluxes, 

and snow. VIC models the land surface as flat grid cells. Subgrid heterogeneity in elevation and 
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soil and surface parameters are characterized by statistical distributions. All fluxes and model 

states are updated at a daily or subdaily time step and each grid cell is simulated independently. 

Water is only allowed to flow between cells after it has been routed into a channel, and once in 

the channel, it is not allowed to reenter the soil. The ARNO recession curve is used to 

characterize the soil moisture balance and the base flow of the lowest soil layer (Todini 1996). 

The generation of runoff is determined by the soil saturation excess, calculated by the Xinanjing 

variable infiltration curve (Zhao et al. 1980). The Penman‐Monteith equation is employed to 

calculate the evapotranspiration. Snow pack is modeled in a two‐layer approach, with the upper 

layer solved separately in the energy balance (Andreadis, Storck, and Lettenmaier 2009). The 

routing model is based on the model described in (LOHMANN, NOLTE-HOLUBE, and 

RASCHKE 1996). Interested readers are referred to (Liang et al. 1994) for a more detailed 

description of VIC. 

The model has since been updated to model additional processes to improve its 

performance in a wide range of basins. Of particular importance to this study is the inclusion of 

frozen soil parameterizations (Cherkauer and Lettenmaier 1999) and snow accumulation and 

ablation algorithms and updates to cold land processes (Cherkauer, Bowling, and Lettenmaier 

2003). (Haddeland, Lettenmaier, and Skaugen 2006) used VIC to study the effects of irrigation 

on the Colorado and Mekong River basins, demonstrating that VIC can be applied to both 

mountainous basins in the central United States and tropical monsoon basins in Southeast Asia. 

(Zhu and Lettenmaier 2007) utilized VIC to study long‐term climate trends in the North 

American monsoon system. (Hamlet and Lettenmaier 1999) studied climate change and ENSO 

effects on the snow‐dominated Columbia River Basin using a VIC hydrologic model. An 
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important limitation of VIC is its inability to model groundwater. (Wenger et al. 2010) reports 

high errors from VIC modeling in basins with strong groundwater influences. 

Here a modified 0.5° resolution VIC model with a daily time step, based on the one used 

in (Zhou et al. 2016) to study reservoir contributions to global surface water storage variations, 

was used with the Sheffield global meteorological data set as forcing (Sheffield, Goteti, and 

Wood 2006). The Sheffield data were regridded to 0.5° resolution for use in the model, using a 

first‐order conservative remapping approach. This model was calibrated against streamflow 

observations around the world (Zhou et al. 2016). The precipitation component of the Sheffield 

data set was replaced with TRMM 3B42v7 precipitation data for both the Hungry Horse and 

Kaptai basins. The routing model employed by this VIC model used 0.5° resolution river 

network data from (Wu et al. 2011). 

A standard energy balance method (Chow, Maidment, and Mays 1988) was used to 

estimate evaporation from both reservoirs. The average evaporation of each calendar day of the 

year was used in the mass balance (i.e., the evaporation values on 1 January for all years were 

averaged to find the typical evaporation on 1 January). The required climatological data for the 

evaporation estimates of Kaptai Reservoir were provided by the NCDC (National Climatic Data 

Center) station at Rangamati near Kaptai Lake. Daily evaporation was estimated for the time 

period of the study using climatological data available from 2011 to 2014. For the Hungry Horse 

Reservoir, daily evaporation was estimated using a historical record of climate data, from 1948 

to 1972. This climatic approach was favored over a more localized weather‐scale approach, 

because this study aimed to explore the feasibility for operational applications around the world, 

requiring minimal input data. 
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The storage change of both reservoirs was estimated as follows. First, the relationship 

between reservoir water surface elevation and surface area was derived from 30 m resolution 

DEMs provided by SRTM. The SRTM observations used were those taken when the reservoirs 

were at their lowest (base water surface elevation), so that the largest portion of reservoir 

bathymetry was observed. Landsat images over the reservoirs were used to get a better 

understanding of the minimum reservoir extent. This allowed for knowledge of the bathymetry 

of the reservoir above this base water surface elevation. From this bathymetry, a relationship 

between water surface elevation and surface area was determined by classifying the elevation 

data into 1 m elevation bands and calculating the surface area of each band. A power law 

function was fitted to the lower elevation‐area data of each reservoir to provide an estimate of the 

elevation area relationship below the water surface elevation at the time the SRTM overpassed 

the region (during 11–21 February 2000). These curves are shown in Figure 2.3. This allowed for 

the calculation of storage volume change using only one type of satellite measurement 

(elevation) instead of two (elevation and surface area). 

 

Figure 2.3. Area‐Elevation curves for (left) the Kaptai Reservoir and the (right) Hungry Horse 

Reservoir. Note that the datums of both elevation measurements are the same and that Hungry 

Horse Reservoir is approximately 1000 m higher in elevation than Kaptai Reservoir. 

These storage‐elevation curves were then used, along with radar altimeter measurements 

of water surface elevation, to derive a time series of water storage changes by approximating the 
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volume of water between two elevations as the average area multiplied by the difference in 

elevation: 

 Δ𝑆 = 𝐴𝑎𝑣𝑔 ∗ Δℎ =
(𝐴2+𝐴1)

2
∗ (ℎ2 − ℎ1) (2.3) 

Where Aavg is the average of surface area at two elevations, Δh is the difference in elevation 

(between water levels 1 and 2), h1,2 are the elevation measurements at water levels 1 and 2, 

respectively, A1,2 are the surface areas corresponding to h1 and h2 and ΔS is the change in 

reservoir storage between the time when h1 and h2 were observed. 

These changes in reservoir storage provide the ΔS in the mass balance (Equation 2.1) for 

estimating reservoir discharge. A time series of the estimated storage changes for both reservoirs 

is shown in Figure 2.4 along with the precipitation into each basin. 
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Figure 2.4. Precipitation and reservoir storage change for (top) Kaptai Reservoir and (bottom) 

Hungry Horse Reservoir. Precipitation is summed over the 35 day period between satellite 

overpasses. Storage change is the difference between the total amounts of water in the reservoir 

between two consecutive satellite overpasses, every 35 days. 
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 This approach is similar to the approach used by (J. Zhang et al. 2006) to measure water 

storage in Lake Dongting in China. They reported a correlation coefficient (R) of 0.96 between 

in situ observations and altimetry‐based storage fluctuations. (Yunus D. Salami 2012) applied a 

similar technique to Kainji Reservoir in Nigeria and found an R2 of 0.93 between in situ and 

altimetry‐based storage changes. 

2.3.2 Hydrologic Controls 

The importance of the hydrologic controls (I, E, and ΔS) to the estimation of reservoir outflow 

was assessed based on the outflow accuracy from different combinations of controls in the mass 

balance. The combinations explored here were IES, IS, ES, and S. Near monthly (35 day), 

reservoir outflow was calculated using the mass balance described in section 3.1 for each of 

these combinations of hydrologic controls. By comparing the accuracy of estimated outflow 

between each combination, the relative impact each control had on the mass balance was 

estimated. 

2.3.3 Inflow Error Assessment 

Of the three hydrologic controls described in section 3.2, the method of estimating inflow into 

the reservoir using the VIC hydrologic model is considerably more complex than the estimation 

of evaporation, storage change, or inflow with the curve number method. This study explores 

how precipitation errors propagate through the VIC model in order to gain a better understanding 

of the sources of error in the resulting reservoir outflow estimate. Because of the varying 

availability of precipitation data, the method for exploring inflow errors was different for each 

basin. 
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 Daily precipitation from a rain gage in the Kaptai basin, located on Kaptai Reservoir, was 

compared to daily precipitation from the 0.25° TRMM grid cell containing the gage to 

understand how accurate TRMM precipitation estimates were, compared to trusted, ground‐

based precipitation measurements. TRMM precipitation over the Kaptai basin was also 

compared with the Sheffield global data set precipitation. Then, both TRMM and Sheffield 

precipitation were used as forcings in the VIC model of the basin. The resulting runoffs (which 

served as inflow into the reservoir) were also compared, to provide as sense of how error in 

precipitation propagates through the VIC model. 

 The TRMM precipitation data were compared to precipitation from the PRISM data set 

(PRISM Climate Group, Oregon State University. The PRISM data were conservatively 

regridded to match the 0.25° resolution of the TRMM precipitation data. These two precipitation 

data sets were then used to force the VIC model of the Hungry Horse Basin and the resulting 

runoffs (inflows into the reservoir) were compared. Because snow processes play an important 

role in the hydrology of this basin, the snow water equivalent (SWE) outputs from each VIC 

model run were compared. 

 

2.4 RESULTS 

Hydrographs comparing the mass balance estimated outflow for various combinations of 

hydrologic controls with observed outflow for the Kaptai Reservoir are shown in  

Figure 2.5, for both the CN method and the VIC model. Similar comparison hydrographs for the 

Hungry Horse Reservoir are shown in Figure 2.6. Outflow is presented as the total volume of 

water that passed through the reservoir every 35 days between satellite overpasses. The 

corresponding error statistics are shown in Table 2.1 for Kaptai Reservoir and Table 2.2 for 
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Hungry Horse. These statistics are the root‐mean‐squared error (RMSE), relative root‐mean‐

squared error (RRMSE), relative bias, and the Nash‐Sutcliffe model efficiency coefficient 

(NSE). It should be noted that Winter refers to December, January, and February; Spring refers 

to March, April, and May; Summer refers to June, July, and August; and Fall refers to 

September, October, and November. The annual discharge was also estimated for each reservoir 

for 2003–2009. The years 2002 and 2010 were excluded from this portion of the analysis 

because the period of study used at monthly time scales does not include the entirety of 2002 or 

2010. A comparison between this estimated annual outflow and observed annual outflow is given 

in Table 2.3 as a percent difference between estimated and observed outflow. Here negative 

percent difference indicates that the estimate was an under prediction of the observed. Table 2.3 

also provides RMSE, RRMSE, relative bias, and NSE for the annual outflow estimates. The 

annual estimates were examined in conjunction with yearly precipitation totals, but no clear 

correlation between accuracy and bias of the estimates and precipitation amount was found. 
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Table 2.1. Error Statistics for Kaptai Reservoir Discharge Estimations Including Different 

Hydrologic Controls, Changes in Storage (S), Runoff Inflow (I), and Evaporation (E) 

Overall 

 

I,S,E 

(CN) 

I,S 

(CN) 

I,S,E 

(VIC) 

I,S 

(VIC) 
E,S S 

RMSE [km3] 1.39 1.32 0.78 0.80 1.72 1.70 

RRMSE [%] 83.2 79.3 46.8 47.8 103.4 101.7 

Relative Bias 

[%] -67.89 

-

63.20 -1.15 6.2 -86.78 -84.13 

NSE -1.50 -1.27 0.22 0.19 -2.87 -2.74 

Winter 

RMSE [km3] 0.89 0.83 0.60 0.57 0.94 0.88 

RRMSE [%] 82.2 76.9 54.4 52.0 86.8 81.4 

Relative Bias 

[%] -68.31 

-

62.23 

-

20.55 

-

14.60 -72.96 -66.98 

NSE -1.29 -1.01 0.03 0.09 -1.56 -1.25 

Spring 

RMSE [km3] 0.90 0.85 0.82 0.80 0.98 0.93 

RRMSE [%] 65.5 61.5 59.7 57.2 70.9 67.3 

Relative Bias 

[%] -55.46 

-

50.36 

-

26.89 

-

22.04 -63.49 -58.83 

NSE -0.49 -0.32 -0.20 -0.13 -0.75 -0.58 

Summer 

RMSE [km3] 1.59 1.52 0.93 0.97 2.15 2.13 

RRMSE [%] 80.6 77.0 46.5 49.0 108.6 107.6 

Relative Bias 

[%] -66.37 

-

61.86 8.21 14.29 -98.46 -97.46 

NSE -2.10 -1.83 -0.05 -0.14 -4.63 -4.53 

Fall 

RMSE [km3] 1.91 1.85 0.72 0.85 2.52 2.50 

RRMSE [%] 81.5 76.0 30.9 35.0 103.8 102.9 

Relative Bias 

[%] -76.27 

-

68.90 16.99 25.07 -99.52 -98.67 

NSE -9.34 -8.53 -0.48 -0.83 -14.98 -14.69 
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Table 2.2. Error Statistics for Hungry Horse Reservoir Discharge Estimations Including 

Different Hydrologic Controls, Changes in Storage (S), Runoff Inflow (I), and Evaporation (E) 

Overall 

 

I,S,E 

(CN) 

I,S 

(CN) 

I,S,E 

(VIC) 
I,S (VIC) E,S S 

RMSE [km3] 0.27 0.27 0.20 0.20 0.27 0.27 

RRMSE [%] 86.0 86.4 62.7 64.3 86.4 86.8 

Relative Bias 

[%] -28.07 -24.43 15.23 17.68 -28.58 -24.69 

NSE -1.02 -1.04 -0.08 -0.13 -1.05 -1.06 

Winter 

RMSE [km3] 0.10 0.10 0.09 0.09 0.11 0.11 

RRMSE [%] 44.0 42.1 39.8 39.2 48.6 46.7 

Relative Bias 

[%] -21.75 -20.04 8.83 10.80 -21.96 -20.09 

NSE 0.14 0.22 0.30 0.32 -0.05 0.03 

Spring 

RMSE [km3] 0.27 0.27 0.20 0.20 0.27 0.27 

RRMSE [%] 88.7 88.6 67.9 66.8 88.6 88.5 

Relative Bias 

[%] -40.87 -38.98 -7.47 -3.74 -42.61 -40.72 

NSE -0.30 -0.30 0.24 0.26 -0.30 -0.29 

Summer 

RMSE [km3] 0.42 0.42 0.23 0.23 0.42 0.42 

RRMSE [%] 88.9 89.0 48.1 48.4 89.2 89.3 

Relative Bias 

[%] -50.90 -46.58 4.11 2.34 -51.72 -47.41 

NSE -5.22 -5.24 -0.82 -0.85 -5.27 -5.28 

Fall 

RMSE [km3] 0.16 0.17 0.22 0.24 0.16 0.17 

RRMSE [%] 66.5 70.4 92.1 99.7 66.1 70.0 

Relative Bias 

[%] 26.20 32.22 69.17 78.72 27.50 34.65 

NSE -1.67 -1.99 -4.12 -5.00 -1.64 -1.96 
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Table 2.3. Percent difference between observed and estimated annual total flows. A negative 

percent difference represents an under prediction in the estimate. 

Percent Difference by year [%] Overall Error 

Year 2003 2004 2005 2006 2007 2008 2009 RMS

E 

[km3] 

RRMS

E [%] 

Rel. Bias 

[%] 

NSE 

Kaptai 

(VIC) -17.8 -25.9 -13.9 -13.5 28.0 15.8 16.0 3.66 20.4 -5.98 0.30 

Kaptai 

(CN) -68.5 -67.1 -79.1 -68.1 -51.2 -63.0 -74.4 12.73 71.1 -68.01 -7.47 

Hungry 

Horse 

(VIC) 29.9 22.7 -7.7 48.0 -15.0 5.2 23.6 0.75 26.4 14.99 -1.63 

Hungry 

Horse 

(CN) -12.3 -31.6 -60.4 19.7 -29.4 -35.8 -19.1 0.98 34.2 -23.75 -3.41 

 

2.4.1 Kaptai Reservoir 

Using the CN method to provide inflow, the I, E,S estimated outflow had an overall RRMSE of 

83.2% and an NSE of −1.50 at the monthly time scale across all seasons. Replacing the inflow 

estimation method with the VIC model, the I,E,S estimated outflow improved, with an overall 

RRMSE of 46.8% and an NSE of 0.22. Removing the evaporation component from these 

monthly estimates slightly increased the accuracy of outflow estimates using CN‐derived inflow 

and slightly decreased the accuracy of outflow estimates using VIC‐derived inflow. The two 

estimates that exclude inflow showed considerably lower accuracy than both inflow methods and 

large negative biases. Monthly outflow predictions made using CN‐derived inflow during the dry 

season (Winter and Spring) exhibited small gains in accuracy over predictions made without 

inflow. Predictions utilizing VIC inflow showed larger gains in accuracy in the Winter months. 

The I,S outflow estimate using VIC was the most accurate dry season estimate, with the I,E,S 

estimate using VIC performing only slightly worse. Including CN‐based inflow in the mass 

balance resulted in larger increases in accuracy in the wet season than the dry season. Replacing 
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CN‐derived inflow with VIC modeled inflow provided another significant improvement in 

outflow estimation accuracy, with the lowest seasonal RRMSE occurring in the Fall. Similar to 

the dry season, the E,S and S outflow estimates were considerably less accurate compared to 

other estimates in the Fall. The NSE of the VIC I,E,S outflow estimation for each season ranged 

from 0.03 to −0.48, while the NSE for the overall estimate was 0.22. This indicates that the mass 

balance estimate utilizing VIC modeled inflow was a better predictor of monthly outflow than 

the average monthly outflow from 2002 to 2010 would be, while seasonal average outflow 

would be a more accurate predictor of monthly outflow than the mass balance estimate. 

The difference between outflow estimate accuracy of the two inflow methods was smaller 

in the dry season (Winter and Spring), with less than 10% RRMSE differences in the spring. 

However, in the dry season, CN‐driven outflow estimates more closely match outflow estimates 

derived from storage change only, with differences in RRMSE around 5%. This trend can be 

seen in the hydrograph in Figure 2.5. Conversely, wet season CN‐driven outflow estimates 

showed a significant increase in accuracy over estimates excluding the inflow component, as 

shown by decreases in RRMSE between 28.0% and 20.6% during this period. VIC model‐driven 

outflow estimates exhibit even higher accuracy improvements over the CN‐driven estimate in the 

wet season than in the dry season, with RRMSE differences as high as 50.6%. CN‐driven 

outflow estimates exhibited large negative relative biases across all seasons, which is reflected in 

the hydrograph (Figure 2.5). 

Comparison between observed and estimated total outflow using the VIC model at annual 

time scales reveals a shift from underestimation to overestimation of annual outflow between 

2006 and 2007. Pre‐2006 outflow estimates match the wet season peaks, but underestimate dry 

season low flows. In contrast, post‐2006 outflow estimates over predict peak wet season 
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discharge, but better capture dry season low flows. This shift is reflected by the low overall 

relative bias, where the overestimates compensated for the underestimates. The percent 

difference between estimated and observed annual outflow ranged from 13.9% to 28.0% in 

magnitude with no clear trend over time. With an RRMSE of 20.4% and NSE of 0.30, the mass 

balance performed with higher accuracy at the annual time scale than the monthly time scale at 

this reservoir. 

The CN‐driven annual outflow estimates did not follow this pattern and the percent 

difference between observed and estimated outflow remained between −51.2% and −79.1%, with 

no clear trend over time. An RRMSE of 71.1% indicates that the mass balance using CN inflow 

estimated annual outflow with more skill than monthly outflow. However, it performed 

significantly worse than the mass balance using the VIC model inflow as illustrated by the 

drastic difference between RRMSE and NSE of the two annual outflow estimates. 
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Figure 2.5. Hydrographs comparing Kaptai Reservoir discharge observations to discharge 

estimates using different components of the mass balance, changes in storage (S), runoff inflow 

(I), and evaporation (E). The inflow in the top graph uses the CN method while the inflow in the 

bottom graph uses the VIC model. 

 

2.4.2 Hungry Horse Reservoir 

Estimations of outflow from the Hungry Horse Reservoir resulted in instances of outflow 

considerably lower than expected. These instances occurred fewer than once a year on average. It 

is clear that a hydrologic process was not properly represented, even by the VIC model, however 
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the exact reason for these errors is unclear. Given the small number of these errors in estimates 

made using VIC model inflow, a minimum flow threshold was implemented here to correct for 

these errors. This threshold was provided by a State of Montana operation constraints report and 

set at 8.5 m3/s (to meet environmental flow requirements downstream), which corresponds to 

0.026 km3 in a 35 day period. Outflow estimates that violated this limit were instead taken as the 

average of the previous and subsequent outflow estimates. Outflow estimates generated with 

CN‐derived inflow or generated without considering inflow experienced more frequent errors of 

this nature, with multiple erroneous outflow estimates occurring in subsequent time steps. In 

these instances, the averaging correction could not be applied and the discharge values were set 

at 0.25 km3. This corrective approach requires reservoir‐specific and river‐specific data and thus 

might not be applicable to other reservoirs. However, a minimum threshold of no flow can be 

applied to all reservoirs if negative outflow becomes an issue. 

Outflow estimates that used CN‐derived inflow were nearly identical to estimates that 

excluded the inflow component across all seasons. This is reflected by similar error statistics 

between estimates with and without the CN‐derived inflow component, and can be clearly seen 

in Figure 6. From Table 2, the I,E,S estimated outflow with inflow derived from the VIC model 

was most accurate overall with an RRMSE of 62.7%, followed closely by the I,S estimates with 

64.3%. Outflow estimates that utilized CN‐derived inflow and those that excluded inflow were 

less accurate, ranging from 86.0% and 86.8% RRMSE. Estimates that included VIC modeled 

inflow tended to overpredict discharge as shown by positive relative bias. Estimates utilizing 

CN‐derived inflow or lacking the inflow component exhibited negative relative bias with higher 

magnitude. 
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Figure 2.6. Hydrographs comparing Hungry Horse Reservoir discharge observations to discharge 

estimates using different components of the mass balance, changes in storage (S), runoff inflow 

(I), and evaporation (E). The inflow in the top graph uses the CN method while the inflow in the 

bottom graph uses the VIC model. 

 

Winter outflow estimation was considerably more accurate. Outflow estimates using CN‐

derived inflow showed small gains in accuracy over estimates that excluded inflow. Outflow 

estimates utilizing VIC modeled inflow were the most accurate here with RRMSEs of 39.8% and 

39.2% for I,E,S and I,E estimates, respectively. Spring discharge estimates provided RRMSE 
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similar to the overall RRMSE for all mass balance component combinations, but with lower 

relative bias. The lowest relative bias (2.34%) occurred in the summer with VIC providing 

inflow. Summer RRMSE for this estimate was 48.1%. In contrast to the other seasons, fall 

estimates without inflow exhibited higher accuracy than estimates including inflow, with an 

RRMSE of 66.4% for the E,S estimate and a relative bias of 25.25%. Based on the overall NSE, 

the mass balance estimates were not better predictors of monthly discharge than the 2002–2010 

mean flow would be. Seasonally, the mass balance predicted flows more accurately than the 

seasonal mean outflow in the Winter and Spring, and less accurately in the Summer and Fall. 

With an RRMSE of 34.2%, the mass balance including CN inflow estimated annual 

reservoir outflow more skillfully than monthly inflow. Annual outflow estimates that used CN‐

derived inflow consistently underestimated observed annual outflow (represented by negative 

percent difference), with the exception of 2006. In contrast, the mass balance consistently 

overestimated annual outflow (represented by positive percent difference) when utilizing the 

VIC model inflow component, with underprediction only occurring in 2005 and 2007. Percent 

differences between observed and estimated annual outflow utilizing VIC inflow ranged in 

magnitude from 5.2% in 2007 to 48% in 2006. There is no clear trend in the accuracy of the 

discharge estimates over time. An RRMSE of 26.4% suggests that the mass balance estimated 

discharge with higher skill at the annual time scale than the monthly time scale. However, an 

NSE of −1.63 indicates that the mass balance is a worse predictor of annual outflow than the 

2003–2009 average annual outflow. 

2.4.3 Inflow Error Assessment Results 

Table 2.4 shows the RMSE, hit bias, probability of missed precipitation, and probability of false 

precipitation for the comparison between TRMM precipitation and Sheffield precipitation and 
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between TRMM and the rainfall gage station at Kaptai Reservoir. Interested readers are referred 

to (Tian and Peters-Lidard 2010) for more information regarding hit bias, missed precipitation, 

and false precipitation, and to (A. S. Gebregiorgis et al. 2012) for more information on how these 

errors propagate. These statistics are shown for the entire study period as well was for 

consecutive 3 month seasons (i.e., precipitation errors from every December, January, and 

February were considered for the statistics listed under “DJF”). The pattern in RMSE is the same 

for both comparisons, with the lowest occurring in DJF and the highest in JJA. TRMM appears 

negatively biased when compared to the gage, but positively biased when compared to Sheffield. 

Additionally, the season distribution of missed precipitation is different, but the overall missed 

precipitation for both comparisons is similar. The rainfall gage comparison indicates that TRMM 

falsely identifies precipitation over twice as much as the Sheffield comparison. Some differences 

between these two comparisons are expected however, because the comparison with the rainfall 

gage only takes into account one TRMM grid cell, while the Sheffield comparison examines the 

entire domain. 
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Table 2.4. Comparison between TRMM precipitation and the Kaptai Reservoir rainfall gage 

as well as between TRMM and the Sheffield global dataset precipitation. 

TRMM and Kaptai Reservoir Rainfall Gage 

 Overall DJF MAM JJA SON 

RMSE 

[mm/day] 

15.39 1.93 6.65 25.4 15.87 

Hit Bias 

[mm/day] 

-3.39 -0.11 -0.46 -8.55 -4.28 

Missed 

Precipitation 

[%] 

6.87 0.56 1.31 18.3 7.14 

False 

Precipitation 

[%] 

15.94 3.33 22.88 23.08 15.93 

TRMM and Sheffield  

 Overall  DJF MAM JJA SON 

RMSE 

[mm/day] 

9.78 4.26 8.53 13.13 10.87 

Hit Bias 

[mm/day] 

1.86 -0.51 0.70 3.78 0.86 

Missed 

precipitation 

[%] 

6.47 8.43 7.95 3.27 6.26 

False  

precipitation 

[%] 

35.87 12.40 30.41 62.45 37.74 

 

The resulting daily inflow generated from the VIC model forced with TRMM 

precipitation is compared to the inflow generated from the VIC model forced with Sheffield 

precipitation in Figure 2.7. From this graph, it can be seen that inflow produced with TRMM and 

Sheffield precipitation follow similar seasonal patterns with similar magnitude in peak flows. 

However, the timing of these peak flows appears to be different in many cases. This leads to a 

high error between the two inflows, but a low bias. When these daily inflows are aggregated into 

monthly inflows, these timing errors are eliminated and result in an RRMSE between the two 

monthly inflows of less than 10%. 
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Figure 2.7. Comparison between daily Kaptai Reservoir inflow generated by the VIC model 

forced by TRMM and Sheffield precipitation data. 

 

Table 2.5 shows the RMSE, hit bias, probability of missed precipitation, and probability 

of false precipitation for the comparison between TRMM precipitation and PRISM precipitation 

over the Hungry Horse basin. TRMM has the highest RMSE, hit bias, and missed precipitation in 

the DJF when most of the precipitation is snow. TRMM is also negatively biased across all 

seasons, indicating an underrepresentation of precipitation in this basin. Figure 2.8 shows the 

daily basin average snow water equivalent (SWE) in the basin generated using the VIC model 

with both sets of precipitation forcings (TRMM and PRISM). Figure 8 also shows the resulting 

inflow generated by the VIC model using both precipitation forcings. From the SWE 

comparison, it is clear that TRMM precipitation causes consistently lower SWE than PRISM. 

This leads to the consistently lower spring and summer peak inflows shown in the inflow 

comparison graph. 
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Table 2.5. Comparison between daily TRMM and PRISM precipitation from 2002 to 2010 

over the Hungry Horse basin. 

 Overall  DJF MAM JJA SON 

RMSE 

[mm/day] 

4.25 4.67 4.15 3.85 4.30 

Hit Bias 

[mm/day] 

-1.58 -2.17 -1.65 -0.97 -1.55 

Missed 

precipitation 

[%] 

31.2 50.2 27.8 14.8 32.2 

False  

precipitation 

[%] 

11.6 3.0 19.0 16.5 7.8 
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Figure 2.8. Comparison between VIC model outputs generated using TRMM and PRISM 

precipitation as forcings, (top) average snow water equivelent and (bottom) inflow into the 

Hungry Horse Reservoir. 
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2.5 DISCUSSION AND CONCLUSIONS 

The mass balance approach utilizing CN‐derived inflow demonstrated small gains in monthly 

Kaptai Reservoir outflow estimation over mass balance approaches that excluded inflow. 

Conversely, the mass balance approach utilizing VIC modeled inflow yielded fairly accurate 

monthly outflow estimates. The outflow estimation accuracy improvements achieved by utilizing 

the VIC model to derive inflow over the CN method suggest that improved modeling of the 

hydrologic inflow processes led to more accurate outflow estimates. Furthermore, examination 

of the seasonal differences in monthly outflow estimation revealed higher accuracies in the wet 

season than the dry season. This indicates that the mass balance and VIC inflow model better 

represent the hydrological processes during the wet season. A seasonal shift in the relative bias 

from negative (underestimations) in the dry season to positive (overestimation) in the wet season 

is observed for VIC inflow‐based estimations. However, the hydrograph in Figure 2.5 reveals 

that overestimation of wet season outflow only occurred from 2007 to 2010. During 2002–2006, 

wet season outflow estimates appear to match observed outflow. Similarly, dry season 

underestimation occurred primarily in 2002–2006, while dry season estimates in 2007–2010 

match observations more closely. This indicates a shift in the conditions of this basin that caused 

outflow estimates to increase in all seasons. One possible explanation is a change in basin 

characteristics through land cover or land use changes, such as an increase in vegetation, which 

would cause a larger portion of precipitation to be intercepted leading to less runoff flowing into 

the reservoir than predicted. This highlights the vulnerability of this method to changing basin 

conditions, as any changes would have to be accounted for in the runoff model. Estimates that 

utilized CN inflow did not appear to follow this pattern, indicating that the process that caused 

this shift is poorly represented by the curve number method. 
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Comparison between observed outflow and outflow estimated using different components of the 

mass balance showed that the accuracy of the outflow estimate was highly variable and depended 

on which hydrologic controls were considered. For the Kaptai Reservoir, the two most accurate 

combinations of controls were I,E,S (inflow, evaporation, and storage change) and I,S (inflow 

and storage change), when the VIC model was used to provide inflow. The difference in 

accuracy between these two cases was relatively small. This, in conjunction with the high error 

in estimated outflow in both cases where inflow was not included, indicated that precipitation‐

induced inflow is the most important hydrologic control to consider for this reservoir, which is 

consistent with the region's high precipitation. This is reflected by the significant accuracy 

improvements achieved utilizing a more complex, process‐based approach (VIC) over a simpler, 

more empirical approach (CN). This is further supported by the size of the reservoir relative to 

the inflow. The Kaptai Reservoir has the capacity to store only 33% of the average annual runoff 

of this time period. This indicates that inflow and outflow should be considerably larger than 

storage change in this reservoir. However, storage change was also an important control to 

consider, particularly during periods of low precipitation. While including evaporation in the 

mass balance resulted in an overall lower relative bias, the effects on outflow estimation 

accuracy were minimal. At this time, it is unclear if evaporation is an insignificant control for 

this reservoir, or if the climatologic evaporation approach used here is insufficient and a more 

localized, weather‐based approach is needed. 

As a source of error for the Kaptai Reservoir, the precipitation input likely had little 

effect. The error and bias present when comparing TRMM precipitation to Sheffield 

precipitation were reduced when these precipitation data sets were used as forcings in the VIC 
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model, and were further reduced when the resulting runoff (inflow into the reservoir) was 

aggregated over monthly time scales. 

The mass balance approach for the Hungry Horse Reservoir provided less accurate 

monthly outflow overall. However, Winter outflows from Hungry Horse were estimated with a 

significant degree of accuracy and compelling NSE, when the VIC model provided the inflow 

component. Utilizing the CN method to provide inflow did little to improve accuracy over 

simply excluding inflow. This suggests that the VIC model captures one or more hydrological 

processes that control the runoff in this basin that are otherwise poorly represented by the CN 

method. This important process is likely snow accumulation/melt, characteristic of high‐

elevation basins such as the Hungry Horse basin. The VIC model, through energy balance, can 

represent the timing and magnitude of snow accumulation/melt while the CN method has no 

capacity to represent snow processes. Winter is the only season where inflow is typically not 

effected by snowmelt, as a majority of the basin remains below freezing throughout the Winter. 

The relatively lower accuracy during the other seasons could be caused by difficulties in 

estimating the quantity and timing of snow accumulation/melt. This is supported by the findings 

of the inflow error analysis, where differences in Winter SWE (resulting from two different 

precipitation forcings) caused similar differences in spring and summer runoff. Including inflow 

in the mass balance provided an increase in outflow estimation accuracy, indicating that inflow is 

an important hydrologic control in this basin. However, the magnitude of the storage change was 

considerably larger relative to inflow. This is supported by the Hungry Horse Reservoir's size 

relative to annual runoff. The reservoir has the capacity to store 144% of the average annual flow 

during the study period. This suggests storage change is the most important hydrologic control in 

this basin. Representing inflow properly was also important in generating accurate outflow 
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estimates as demonstrated by the differences between the I,E,S (VIC) estimate, the E,S estimate, 

and the I,E,S (CN) estimate. However, excluding inflow improved the accuracy in the fall. A 

possible source of this anomaly is an overestimation of inflow and runoff during this time as 

suggested by the high relative bias associated with the I,E,S (VIC) estimate. The partition 

between the forms of precipitation (rain or snow) into the basin in the fall is highly sensitive to 

the climate. It is possible that the model forcing does not accurately reflect the conditions at the 

higher elevation points in the basin, causing the VIC model to erroneously treat fall snow 

precipitation as rain. Furthermore, slight inaccuracies in the VIC model's partitioning between 

snow accumulation and melt would have high impacts on the resulting inflow. This could lead to 

the overestimated Fall outflows generated with inflow included in the mass balance. 

Unlike the Kaptai Reservoir, outflow estimation for the Hungry Horse Reservoir was 

significantly impacted by errors in the TRMM precipitation input. The negative bias of TRMM 

precipitation compared to PRISM precipitation, particularly in the Winter, propagated through 

the VIC model and resulted in negatively biased inflow. A similar negative bias is seen in spring 

outflow estimation, when runoff is at a peak due to snowmelt. Additionally, groundwater effects 

in the basin, which are not modeled by VIC, could significantly affect inflow. 

Annual outflow totals of both reservoirs were estimated more accurately than monthly 

outflow, indicating that the mass balance approach for annual estimations has more value than 

for monthly estimations. These annual estimates once again illustrate which hydrologic controls 

were important for each basin. The difference in accuracy between Kaptai Reservoir annual 

outflow estimated from VIC inflow and CN inflow was extreme, identifying inflow as a key 

component of outflow estimation in this basin. In contrast, the difference in accuracy between 

Hungry Horse Reservoir annual outflow estimated from VIC inflow and CN inflow was less 
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pronounced. This signifies that while inflow is a significant hydrologic control, it is not the 

dominant control. However, the low NSE for the annual Hungry Horse outflow indicates that 

even at yearly time scales, some source of error is hindering the mass balance's effectiveness. 

This could be errors in TRMM precipitation propagating through the VIC model, or high 

connectivity with the groundwater table. 

 What emerges from this study is that understanding the dominant hydrologic controls 

governing reservoir outflow is key to improving reservoir outflow estimations. The dramatic 

difference in hydrologic controls between the two reservoirs used in this study indicates that the 

results from these reservoirs are not transferable to regions with differing climate and geography. 

For example, evaporation was found to have little effect on the two reservoirs studied here, but 

other regions such as the Middle East or a semiarid region (e.g., Lake Mead in U.S.) would have 

higher evaporation rates and the importance of this hydrologic control would need to be 

reassessed. Furthermore, reservoirs of varying sizes and functions may also behave differently in 

terms of hydrologic controls. As seen here, reservoirs that can store a smaller percentage of their 

annual inflow tend to be more dynamically operated than larger reservoirs. In more extreme 

cases, these reservoir dynamics may occur more often at time scales shorter than monthly. This 

influences which hydrologic controls are important in estimating the reservoir outflow between 

satellite overpasses. Additionally, the purpose of the reservoir might dictate its response to 

different hydrologic controls. Further work needs to be conducted to determine how reservoir 

size and use affects the hydrologic controls of this mass balance. This involves scaling up the 

method used here to multiple reservoirs of varying conditions, regulations and storage capacity. 

Additional studies should also examine reservoirs on a global scale to determine how well this 

method works in a wide variety of climates and geographies. In Chapter 3, this method is 
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adapted to work for reservoirs that do not lie under nadir radar altimeters and then applied to a 

system of reservoirs in the Mekong River Basin.  
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Chapter 3: Inferring reservoir operating patterns across the Mekong 

Basin using only space observations 

Note: This chapter has been published mostly in its current form in Water Resources Research 

(M. Bonnema and Hossain 2017b); Used with permission. 

Abstract: This chapter explores the operating pattern of artificial reservoirs by examining their 

impact on streamflow through two parameters, residence time and flow alteration, using a purely 

satellite-based technique for the Mekong Basin. Overall residence times of individual reservoirs 

ranged from 0.09 to 4.04 years, while streamflow was altered between 11 and 130% of its natural 

variability. The current set of reservoirs appears to have increased the residence time of the entire 

Mekong basin by about 1 month. However, if subbasin variability is considered, the satellite-

based method depicts a different picture. Residence time increases to 4 months when only 

regulated flows are considered. If low residence time reservoirs on major rivers are excluded and 

reservoirs on higher stream-order rivers considered, residence time increases to 1.3 years. 

Predictable strong seasonal patterns emerged in residence time, where reservoirs experience 

higher residence time in the dry season and lower residence time in the wet season and residence 

time varies inversely with precipitation. High variability in reservoir effects on streamflow 

between reservoirs could not be explained by any reservoir properties (e.g., size, use, location, 

etc.), highlighting the variability in the human decisions operating these reservoirs. The take-

home message of this chapter is that satellite observations, in combination with physical models 

forced with satellite data, can elucidate the spatiotemporal variability of reservoir behavior in 

ungauged basins of the developing world. We demonstrate in this study that the requirement for 

ground data to monitor current or historical behavior of dams is not necessary. 
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3.1 INTRODUCTION 

Chapter 2 established a suitable method for satellite-based reservoir outflow estimation, 

laying the groundwork for a deeper understanding of the impacts of reservoirs on the timing and 

magnitude of downstream flows. This chapter applies the mass balance approach to 20 reservoirs 

in the Mekong River Basin, in order to estimate two key measures of reservoir impacts, 

residence time and flow alteration. 

Residence time, as defined in (Monsen et al. 2002), is “how long a parcel, starting from a 

specified location within a waterbody, will remain in the waterbody”. For reservoirs, the 

specified starting location is typically the point in which water enters the reservoir from 

upstream. The residence time of a reservoir is in essence, a measure of the time delay between 

when water enters the reservoir and when it is released by human operating decisions. Residence 

time controls biochemical processes such as nutrient accumulation and eutrophication processes 

(Ambrosetti, Barbanti, and Sala 2002) as well as sedimentation ((M Kummu et al. 2010)) and 

fish population dynamics (Beamesderfer et al. 1990). The residence time of a reservoir can be 

used to obtain first order approximations of these and other complex processes, which dictate 

some impacts the reservoir has on the river system. In short, time varying residence time can be 

considered as an important ‘piece of the puzzle’ when attempting to reveal a reservoir’s multi-

faceted impact on hydrology, geomorphology and ecosystem function. 

Flow alteration refers to the short term effects of reservoir operation on downstream 

streamflow. That is, it is a measure of the instantaneous change in streamflow imposed by a 

reservoir. The degree to which flow is changed dictates the change in water supply the 

downstream population must manage. Altered river flows also impact ecosystem health and 

biodiversity (Bunn and Arthington 2002). While estimating the impact altered streamflows have 
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on specific species is difficult, understanding the extent of reservoir imposed flow alteration is an 

important step in estimating these effects. 

 Past studies have characterized reservoir residence time as the volume of the reservoir 

divided by the mean annual inflow (Vorosmarty 1997), which is more indicative of the design 

feature of a dam. This method also makes the assumption of steady state conditions within the 

reservoirs, where volume remains constant and inflow is equal to outflow. This may be valid 

when studying long time scales, where annual inflow and outflow are equal. However, residence 

time can fluctuate greatly at shorter time scales due to variations in inflow, outflow, volume 

changes and mixing processes (Rueda et al. 2006). Accounting for this temporal variability in 

reservoirs requires observing these time varying parameters.  

 Understanding the impacts of reservoirs in the Mekong River Basin is critical. The 

Mekong River Basin (Figure 3.1) is currently going through a transformation (Molle, Foran, and 

Käkönen 2009) that is emblematic of dam development in developing regions. Growing demand 

for clean, renewable energy and the economic benefits it brings has driven dramatic hydropower 

development in the MRB over the last 20 years and continues into the coming decades (WLE 

2017). As Laos vies to be the “battery of Asia”, with plans to build an unprecedented nine dams 

on the currently free flowing main stem of the Mekong River, the region is poised to drastically 

increase its ability to produce renewable energy. However, with the economic benefits that 

hydropower provides comes environmental costs (Winemiller et al. 2016). Dams in the MRB 

have already significantly altered sediment transport (Matti Kummu and Varis 2007; Lu and 

Siew 2006; K. D. Fu, He, and Lu 2008), river connectivity (Grill et al. 2014), and streamflow 

(Lu et al. 2014; M. Bonnema and Hossain 2017a). These and other alterations to the natural river 

system threaten downstream fish and rice production, and by extension, the food security of 
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millions of inhabitants of the region (Kondolf, Rubin, and Minear 2014; Lauri et al. 2012; Ziv et 

al. 2012). 

 Understanding how dams in the Mekong River Basin impact residence time and 

streamflow is a key step towards understanding the impacts of future dams. Such a study can 

provide the foundation for studying reservoirs in other developing basins undergoing rapid 

change due to dam construction such as the Irrawaddy, Yangtze, Zambesi, Congo, or Amazon 

(Winemiller et al. 2016). The benefit of a satellite based approach is that it is unhindered by lack 

of availability of in-situ data and has global applicability. Satellite-based reservoir technique can 

therefore be scaled regionally or globally to answer for diverse set of stakeholders and scientific 

communities fundamental questions that have not been answered before. Some of these 

questions are: What are the impacts of dam operations on ecosystem services and flood risk in 

river basins? How are the impacts on regulated river systems likely to change in the future due 

to climate change, increasing development pressures and aggressive dam building plans by the 

developing world? 

 

3.2 STUDY REGION AND DATA 

This study focused on 20 large reservoirs in the Mekong River Basin, identified by the 

Global Reservoir and Dam (GRanD) Database (Lehner et al. 2011). Figure 3.1 shows a map of 

the Mekong Basin with these 20 dams as well as all existing and future (planned or proposed 

dams) as identified in WLE 2017. Table 3.1 lists the dam/reservoir name along with their 

capacity and degree of regulation (capacity volume divided by annual inflow volume), taken 

from the GRanD Database. The capacity of these reservoirs ranges from 22.8 million m3 to 7030 

million m3 with an average of 961 million m3. Degree of regulation (DOR) is the reservoir 
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capacity expressed as a percentage of the mean annual inflow into the reservoir, which can be 

assumed as the ‘design’ residence time of the reservoir.  

For validation of the satellite-based technique, daily time series of in-situ reservoir water 

levels was acquired for specific reservoir sites via our institutional agreement with Vietnam. In 

other cases, daily time series of reservoir volumes of some reservoir sites was acquired from 

publicly available websites (e.g. Thaiwater.net). Further validation was carried out on the 

Oroville Reservoir in California. 
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Figure 3.1. Map of Mekong River Basin with current and future dams (WLE 2017). The 

location of the 20 dams studied in this chapter are highlighted by boxes. 
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Table 3.1. List of dams examined in this study and their capacities and degrees of regulation 

(Lehner et al. 2011) 

Dam/Reservoir 

Name 

Capacity  

[million m3] 

Degree of 

Regulation 

(%) 

Haixihai 61.9 197.7 

Zibihe 93.2 131.6 

Manwan 920 3.2 

Nam Ngum 7030 87.5 

Nam Leuk 185 72.3 

Nam Oun 520 70.4 

 Nong Han Lake 1873.9 155.6 

Nam Pung 165.5 102 

Ubol Ratana 2263 83.2 

Lam Pao 1430 48 

Chulabhorn 188 198.1 

Huai Kum 22.8 15.7 

Lam Chang Han 26 156.4 

Lamtakhong 310 189.8 

Lamphraphloeng 152 86.7 

Lamnangrong 150 161.6 

Pak Mun 229 0.7 

Sirindhorn 1966 142.7 

Houayho 596 395.6 

Yali 1037 17.1 
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3.3 METHODS 

3.3.1 Residence Time 

The key ingredients for estimating residence time are derived from the mass balance equation 

explored in Chapter 2 (Equation 2.1), inflow (I), storage (S), and outflow (O). In Chapter 2, it 

was found that evaporation was several magnitudes smaller than the other terms and played 

relatively little role in the mass balance for a reservoir in a similar, tropical monsoon climate. In 

this chapter, evaporation is excluded, resulting in Equation 3.1, where I is inflow, O is outflow, 

and ΔS is the change in reservoir storage over a duration of time. 

 SIO −=  (3.1) 

With the water in reservoirs obeying mass balance, several basic assumptions can be made in 

order to simplify the calculation of reservoir residence time: 

1. A water parcel which enter the reservoir over a specific duration does not mix with other 

water parcels within the reservoir. 

2. Water parcels exit the reservoir in order from oldest to newest. 

Note that this is equivalent to assuming the reservoirs behave as plug flow reactors. With these 

two assumptions, the length of time a parcel of water spends in the reservoir can be identified. 

Generally speaking, a monthly time step was used, so the residence time of the inflow entering a 

reservoir during one month is the amount of time until all of the water is released that was in the 

reservoir just after the monthly inflow parcel arrived. This is expressed by Equation 2, where t0 

denotes the time step of interest, θ(t0) is the residence time of the water entering the reservoir at 

time t0, and tR is the time step in which the water that entered at time t0 is released from the 

reservoir. This time of release is calculated by summing the amount of water exiting the reservoir 
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in each time step, O(t), beginning at t0 and ending when the sum is equal to the volume of the 

reservoir, V(t0) plus the amount of inflow, I(t0), at the time step of interest, t0. 
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To average residence time of a single reservoir across time, an inflow weighted approach was 

used, as shown in Equation 3.3. 
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Where It,r is the inflow to reservoir r at time t, θt,r is the residence time of reservoir r at time t, and 

θt-avg,r is the time-averaged residence time of reservoir r over T time steps.  

 In order to estimate the collective effects of these reservoirs on the residence time of the 

basin as a whole, a similar averaging technique was used, shown in Equation 3.4. 
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Where θb-avg is the basin-average residence time over R reservoir and all other terms are as 

defined previously.  

3.3.2 Flow Alteration 

Reservoir imposed flow alteration (FA) is defined here as the percent difference between I and 

O. Substituting the mass balance between O, I, and ΔS (Equation 3.1), shows that this is 

equivalent to the ratio between ΔS and I, shown in Equation 3.5. 
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Note that positive FA indicates streamflow was increased by reservoir operations and negative FA 

indicates streamflow was decreased by reservoir operations. When averaging FA across longer 

time scales, the result should be close to 0, due to the principle of mass balance employed here. 

Thus, to derive meaningful information about a reservoir’s overall effect on downstream flow, the 

absolute value of FA is used when averaging. This averaging process is inflow weighted, similarly 

to residence time, shown in Equations 3.6 (time average) and 3.7 (basin average). 
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where FAt-avg,r is the time-averaged flow alteration of reservoir r over T time steps, FAr,t is the flow 

alteration of reservoir r at time t, FAb-avg is the flow alteration, is the basin-average flow alteration 

over R reservoir and all other terms are as defined previously. 

3.3.3 Reservoir Outflow 

To estimate reservoir outflow, the mass balance introduced in Chapter 2 was applied to each of 

the 20 reservoirs. Again, evaporation was excluded here based on the findings of Chapter 2. For 

inflow, a 0.1 degree resolution Variable Infiltration Capacity (VIC) Model of the MRB was 

employed (Liang et al. 1994). The model was constructed using land cover data from the Global 

Land Cover Characterization (GLCC) dataset and soil data prepared by the Harmonized World 

Soil Database (HWSD) (Loveland et al. 2000). Monthly leaf area index and albedo were 

provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) mission and 

topography information was obtained from SRTM. The meteorological forcings such as 

temperature (minimum and maximum), wind speed and precipitation were obtained from 237 
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weather station records archived as Global Summary of the Day (GSOD) by National Climatic 

Data Center (NCDC). This model was calibrated using streamflow observations from 13 in-situ 

gage stations from 2003-2008. Validation of the calibrated model with data from the same gage 

stations from 2009-2013 resulted in model bias ranging from -17.8% to 27.1% (Table 2). Figure 

3.2 shows the fit of the calibration and validation for 4 of these stations, corresponding to the 

error statistics shown in Table 3.2.  

Table 3.2. VIC model calibration error statistics. Base represents the uncalibrated model 

performance for 2003-2008, calibration represents the performance of the calibrated model 

during the calibration period (2003-2008) and validation represents calibrated model 

performance from 2009-2013. 

Basin Category 
Bias      

(%) 

NRMSE 

(%) 
Efficiency Correlation 

Chiang Sean 

Base -52.6 70.6 0.64 0.80 

Calibration -6.3 35.5 0.80 0.90 

Validation 8.6 42.5 0.57 0.87 

Luang 

Prabang 

Base -37.2 63.1 0.69 0.84 

Calibration 6.6 37.5 0.84 0.92 

Validation 27.1 52.8 0.70 0.92 

Vientiane 

Base -42.5 63.3 0.71 0.84 

Calibration -4.8 35.3 0.84 0.92 

Validation 15.3 41.3 0.78 0.92 

Nakhon 

Phanom 

Base -21.1 63.3 0.71 0.84 

Calibration -29.3 52.4 0.78 0.93 

Validation -17.8 36.3 0.88 0.95 

Pakse 

Base -18.6 63.3 0.71 0.84 

Calibration -3.2 38.7 0.86 0.93 

Validation 8.0 34.2 0.89 0.95 

Kampong 

Cham 

Base -12.9 63.3 0.71 0.84 

Calibration -16.7 45.3 0.84 0.93 

Validation -4.3 40.9 0.85 0.92 
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Figure 3.2. Calibration and validation of VIC model at four selected streamflow gaging stations 

on the main stem of the Mekong River. Note: the calibration and validation was carried out at all 

the streamflow locations shown in Figure 3.1, but only a sample of 4 locations are shown herein. 

This model was run at the daily time step from 2002 through 2015 (14 years), providing 

surface water fluxes for each 0.1 degree grid cell. These modeled fluxes were then re-gridded to 
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0.01 degree resolution, because 0.1 degree cells did not properly resolve the correct stream 

channels feeding into the reservoirs. The re-gridding was performed by assigning all 0.01 degree 

cells the value of the 0.1 degree cell containing them. These fluxes were then run through a 

streamflow routing model of the basin to obtain daily inflow into each reservoir (Lohmann et al. 

1996). The re-gridding was necessary to simulate reservoir inflow at the appropriate resolution 

because some of the reservoirs are built on smaller rivers that would not appear in 0.1 degree 

resolution topography. The routing model used estimates of surface runoff from the VIC model 

and routed this water to river channels according to input topographical information. The daily 

flows were then aggregated into average monthly inflow. The upper panel of Figure 3.3 shows 

monthly averaged basin precipitation and basin outflow at the MRB delta (i.e. the basin outlet), 

averaged across the entire 2002 through 2015 time period. Precipitation and outflow are both 

seen to increase from May through September, decrease from September through December, and 

then remain stably low from January through April. This pattern is fairly representative of the 

local inflow behavior at each reservoir, with the exception that lag between precipitation and 

inflow being much shorter than 1-2 months for smaller basins. The lower panel of Figure 3.3 

shows the annual average basin precipitation and basin outflow from 2002 through 2015. A point 

to note is that the VIC model represents natural stream flows and does not take the effects of 

reservoir operations into account. Therefore, the inflow of reservoirs downstream of other 

reservoirs was adjusted according the outflow of each upstream reservoir.  
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Figure 3.3. Monthly averaged basin precipitation and outflow at the MRB delta from VIC model 

(top) and annual average basin precipitation and outflow at delta from 2002 through 2015 from 

VIC model (bottom). 
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3.3.4 Reservoir Storage 

Unlike the reservoirs in Chapter 2, a majority of the 20 reservoirs examined in this chapter do not 

lie under a radar nadir altimeter path. Therefore, the method used in Chapter 2 was adapted to 

work with a different kind of satellite measurement, visible and near infrared imagery. The 

methodology follows a three-step process similar to the approach explored in Chapter 2. First, a 

relationship between reservoir surface area and elevation was established for each reservoir. This 

relationship is derived from SRTM DEM in the exact manner described in Chapter 2. Next, the 

area-elevation curve was used to convert satellite measurements of either water surface elevation 

or surface area into reservoir volume (known as the area-volume curve). Finally, a monthly 

operations curve (i.e. operating policy) was established from a long record of satellite 

observations and used to fill gaps in the satellite record. Each of these processes is described in 

greater detail below. 

 The volume of a reservoir is then computed using either radar altimetry-based water 

surface elevations or spectral (visible) band-based water surface area from Landsat. The 

Sirindhorn Reservoir is the only reservoir of the 20 examined here that is observed by a satellite 

altimeter. For this reservoir, elevations obtained from the Jason-2 satellite altimetry mission were 

used. Using the area-elevation curve, the reservoir surface area corresponding to the observed 

elevation was identified. For all other reservoirs, Landsat images were used to estimate reservoir 

surface area. Specifically, the normalized difference water index (NDWI) was used to classify 

water pixels from 30 m resolution Landsat spectral images (McFeeters 1996). This method 

identifies which pixels of a Landsat image likely contain water by calculating the NDWI for each 

pixel, according to Equation 3.8: 
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Where Xgreen and Xnir are the reflectance values in the green and near infrared wavelengths, 

respectively. The green wavelength corresponds to Band 3 from Landsat 8 and Band 2 from 

Landsat 4,5, and 7. The near infrared wavelength corresponds to Band 5 from Landsat 8 and 

Band 4 from Landsat 4,5, and 7. Pixels with NDWI greater than 0 were classified as water pixels 

and pixels with NDWI less than 0 were assumed to not contain surface water (McFeeters 1996). 

The surface area of the water pixels is then the estimate of the reservoir surface area at the time 

of the Landsat overpass. Again, using the area-elevation curve, the corresponding water surface 

elevation was identified.  

With both water elevation and surface area known, the volume of the reservoir can be 

computed by estimating the volume of water required to fill the reservoir to the storage capacity 

listed in the GRanD Database (Huilin Gao, Birkett, and Lettenmaier 2012). This is done using a 

trapezoidal approximation (Equation 3.9), where V is the volume of the reservoir, A is the 

reservoir surface area, h is the reservoir elevation and the subscript c denotes these quantities at 

reservoir capacity. 

 2/))(( hhAAVV ccc −+−=  (3.9) 

A significant issue with building a time series of reservoir surface areas with Landsat 

images is the potential for unusable images due to cloud cover, which can lead to long temporal 

gaps in data. This was overcome here by employing a method similar to the approach outlined in 

Yoon and Beighley (2015). Here, the assumption is made that reservoirs are operated at a 

relatively stable level on a sub monthly scale and when looked over a long record, variability of 

reservoir operation at sub-monthly scales remains within a narrow range. This is a fairly realistic 
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assumption as most reservoirs strive to follow the rule curve and make release and storage 

decisions according to a pre-defined standard operating procedure (SOP).  

 The reservoir volumes estimated from the entire record of Landsat images were thus 

grouped by month and the average reservoir volume for each month was calculated. This formed 

an approximation of the reservoir operations curve. This process is illustrated by Figure 3.4. The 

utilization of green and NIR Landsat bands to estimate water surface is depicted in the upper 

panels and the derivation of the area-elevation curve is shown in the lower left panel. A single 

water surface area estimate, when paired with the area-elevation curve, led to a single point on 

the operations curve in the lower right panel. With a long record of Landsat images, the average 

reservoir volume for each month can be estimated. This monthly average is the approximation of 

the operations curve, which was then used to fill gaps in the time series of reservoir volume 

generated from Landsat images. For each monthly time step where no cloudless Landsat image 

exists, reservoir volume from the approximated operations curve was used. The operations curve 

was completely disregarded in favor of Landsat based volume estimates, when available. Figure 

3.5 shows the fraction of months without any usable Landsat images from 2002 through 2015, 

averaged across all reservoirs, as well as the range of unobserved months of all reservoirs. 

Unsurprisingly, the months with the least amount of usable Landsat images occur when 

precipitation is the highest (see Figure 3.3). 
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Figure 3.4. Flow chart depicting process of approximating reservoir operations curve. Upper left 

panel shows the green and NIR Landsat bands. Upper right panel shows the Normalized 

Difference Water Index (NDWI) and the classified water pixels. Lower left panel shows an area-

elevation curve and the SRTM 30m DEM it was derived from. Lower right panel shows the 

derived operations curve (monthly averages of reservoir volume). A single point on the curve is 

the result of the combination of one NDWI classified image with the area-elevation curve. 
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Figure 3.5. Average and range of fractions of months with usable Landsat observations, by 

month over the 14 year period. 

 

Reservoir outflow was estimated using the same mass balance described in Chapter 2, 

excluding evaporation (Equation 3.1) As previously stated, these outflows were used to correct 

the inflows of downstream reservoirs. Since the routing model conserves water in the river 

network, the downstream inflows are adjusted by the amount of total storage change in upstream 

reservoirs (Equation 3.10) where Iadj is the adjusted inflow, I is the natural inflow (modeled by 

VIC), and ΔSup is the storage change of upstream reservoirs. 

 −= upadj SII  (3.10) 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Validation of Satellite Based Volume Estimates 

There are several limitations in the satellite based approach employed here, such as long 

sampling frequency (relative to ground based approaches), interference from clouds and other 

atmospheric effects, and uncertainties associated with deriving water surface area from spectral 

data. Thus, validating these methods to ground based measurements is essential. The top panel of 

Figure 3.6 shows reservoir volumes estimated by ground observations (in-situ), altimeter water 

height data, Landsat surface area and derived operations curve for the Sirindorn reservoir. 

Comparison between the altimeter and in-situ volumes and taking the ground observed value as 

the true volume results in a root mean squared error (RMSE) of 0.27 km3, which is 19% of the 

average reservoir volume in this time period. Similarly, comparisons between the Landsat and 

in-situ volumes agree to within 20% of RRMSE. This indicates that the altimetry and Landsat 

based methods of estimating reservoir volume are both successful (within a 20% error range) in 

capturing the month-to-month reservoir volume fluctuations. Furthermore, when the in-situ 

observations were used to estimate residence time, the resulting residence times agreed with 

altimeter and Landsat derived residence times to within 15% and 17% RRMSE, respectively. 
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Figure 3.6. Comparison between ground observed, altimeter derived, Landsat  derived, and 

approximated operating policy estimated reservoir volume for the Sirindhorn Reservoir (top), 

comparison between observed monthly average water height and Landsat derived water height 

for the Yali Reservoir for 8 months in 2016 (bottom left), and comparison between Landsat 

derived operating policy and in-situ monthly average storage of the Oroville Reservoir (bottom 

right). 
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Due to the linear relationship between flow alteration and storage, a 19% RRMSE in 

altimeter based volume results in 19% RRMSE in FA and 20% RRMSE in Landsat volume 

results in 20% RRMSE in FA. Comparison between volumes estimated from the derived 

monthly operations curve and the in-situ resulted in 32% error. While this is substantially worse 

than Landsat or altimeter methods, it is important to note that this method is only employed at 

times when Landsat data is unavailable, primarily occurring during the wet season. Based on the 

results from the Sirindhorn Reservoir, this would result in an overestimation of storage during 

wet seasons. Such overestimations would lead to underestimations of wet season outflows, 

potentially increasing flow alteration and leading to longer residence times. Subsequently, 

overestimations of wet season storage would increase flows during the transition from wet to dry 

season, which would decrease flow alteration and residence time. 

Unfortunately, the Sirindhorn Reservoir is the only reservoir studied here that was 

overpassed by a satellite altimeter to provide skillful height variations. Nevertheless, the close 

agreement between satellite-based volume and the in-situ volume established a good level of 

trustworthiness in our comprehensive satellite-based approach that synthesizes multiple 

platforms for other reservoirs of the MRB.  The lower left panel of Figure 6 compares the actual 

monthly water level elevations of the Yali Reservoir to elevations derived from the visible 

Landsat images. This Landsat derived water surface elevations exhibit an RMSE of 0.57 m, 

which is 8.6% of the range in actual water surface elevations observed during this time period. 

The lower right panel of Figure 6 shows a comparison between a Landsat derived operations 

curve and the average monthly volume of the Oroville reservoir from 2010 to 2016. These two 

monthly averaged volumes agree to within 17% RRMSE and compares well with the well-

known design rule curve of Oroville dam.  Overall, these results signify that both the Landsat 
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based method and the altimeter-based method are certainly capable of accurately estimating 

water surface heights and consequential volume changes. These results also demonstrate the skill 

of average operating policy estimation and its usefulness to estimate volume when no other 

sources of data are available. 

3.4.2 Reservoir Residence Time and Flow Alteration 

Figure 3.7 shows the average and range of the estimated reservoir operations curves, normalized 

by their maximum storage so that comparisons can be made between reservoirs of different 

volumes. While there is variation among the different reservoirs, as evident by the large range, a 

dominant trend can be gleaned, of higher volume at the beginning of the dry season, followed by 

decline into the wet season. At the end of the wet season, the reservoirs fill again. This trend is 

highlighted by the average normalized operations curve which is shown in black. 

 

Figure 3.7. Average and range of derived reservoir operations curves (i.e. ‘effective’) for all 

reservoirs, normalized by reservoir maximum volume. Average shown in black. 
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Figure 3.8 displays how the resulting residence times are distributed throughout the 

MRB. Figure 3.8 also shows the resulting average absolute flow alterations for each reservoir in 

the MRB. These residence time and FA values are also shown in Table 3.3 broken down as a 

function of season: wet season (June through October) and the dry season (November through 

May). Residence times ranged from 0.09 years to 4.04 years and FA ranged from 11% to 131%. 

Note that the overall average FA is the average of the magnitudes of monthly FA, while the wet 

and dry season FA preserved the sign, in an attempt to characterize the nature of the flow 

alterations. FA was largely negative in the wet season and positive in the dry season, reinforcing 

the trend exhibited by the operations curves. Reservoirs with low residence time also exhibited 

low FA. 

 

Figure 3.8. Map displaying the residence time (left) and flow alteration (right) of reservoirs in 

the Mekong Basin. 
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Table 3.3. Estimated overall and seasonal residence time and flow alteration for each 

reservoir 

Dam Name 

Overall 

Residence 

Time (yr) 

Dry Season 

Residence 

Time (yr) 

Wet 

Season 

Residence 

Time (yr) 

Overall 

Absolute 

FA (%) 

Dry 

Season 

FA 

(%) 

Wet 

Season 

FA 

(%) 

Haixihai 2.07 2.08 2.05 131.0 142.6 -81.1 

Zibihe 1.15 1.15 1.13 72.6 65.9 -26.5 

Manwan 0.12 0.18 0.07 17.2 16.2  

Nam Ngum 1.16 1.18 1.15 108.2 56.3 -36.3 

Nam Leuk 0.58 0.59 0.45 125.4 114.1 -96.1 

Nam Oun 0.61 0.63 0.57 99.2 103.5 -58.0 

Nong Han Lake 2.33 2.35 2.32 118.2 1.6 -31.0 

Nam Pung 0.95 1.05 0.93 106.9 7.5 -31.6 

Ubol Ratana 0.56 0.61 0.50 112.3 25.5 -24.6 

Lam Pao 0.53 0.53 0.43 101.9 47.8 -21.6 

Chulabhorn 2.08 2.09 2.05 26.2 40.1 -4.1 

Huai Kum 0.22 0.30 0.21 11.1 20.6 -.05 

Lam Chang Han 0.89 0.92 0.84 39.3 57.3 -2.1 

Lamtakhong 0.58 0.59 0.49 50.8 24.2 -5.4 

Lamphraphloeng 0.33 0.33 0.33 57.1 3.9 -.05 

Lamnangrong 1.94 1.96 1.93 48.5 21.7 -4.7 

Pak Mun 0.09 0.25 0.06 11.5 12.3 -1.2 

Sirindhorn 0.96 1.04 0.91 58.4 61.7 -15.4 

Houayho 4.04 4.05 3.98 99.7 15.6 -4.6 

Yali 0.44 0.66 0.38 74.6 10.4 -18.5 

 

Figure 3.9 shows a comparison between the residence time estimated in this study and the 

DOR estimated in the GRanD Database. DOR was estimated in Lehner et al. (2011)by dividing 

reservoir capacity by long term average annual inflow. It should be noted that the time frame 

from which this average annual inflow represents is different from the time frame examined in 

this study. DOR is essentially the reservoir capacity expressed as a percentage of the annual 

average inflow, and is similar to residence time, as calculated using a similar method than the 

one employed here. Thus, it is a good point of comparison for the resulting residence times from 

this study. Figure 3.9 presents DOR as the number of years of inflow which can be stored within 
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a reservoir. This figure shows some agreement between the simple to obtain DOR and the 

temporally varying approach employed here, however other reservoirs show significant 

differences. No correlation between the capacity, stream order, or reservoir use could be 

established that would explain this difference, although a larger sample size of reservoirs could 

provide greater clarity.  

 

 

Figure 3.9. Comparison between residence time estimated in this study and degree of regulation 

(DOR) from the GRanD Database. Here, DOR is the reservoir capacity expressed in years of 

average annual inflow. 1:1 line shown in grey. 

As seen in Table 3.3, residence time was typically larger during dry season than wet 

season. This agrees with what is known about seasonal variations in stream flow and reservoir 

operations. Figure 3.7 illustrates the typical seasonal trend observed in reservoir volume, where 
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reservoirs are kept low during the start of the wet season and allowed to fill towards the end of 

the wet season. This is followed by high reservoir volume in the beginning of the dry season, as 

reservoirs are then being used to store water and release it in a controlled fashion throughout the 

wet season. The low inflows in the dry season led to a decrease as water is discharged for 

irrigation, water supply or hydropower generation. It is this long, slow release of water in the dry 

season that causes residence time to increase. Similarly, the rapid outflows and lower volume 

combined in the wet season lead to lower residence time.  Figure 3.10 plots the average monthly 

residence time of all reservoirs, each normalized by the reservoir’s average residence time. This 

plot further elucidates the seasonal trend in residence time.  

 

 

 

Figure 3.10. Average monthly residence time for each reservoir, normalized by each reservoir’s 

average residence time. Reservoirs with residence time less than 1 year are shown in blue. 

Reservoirs with residence time greater than 1 year are shown in red. 
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 It also reveals that reservoirs with higher average residence time exhibit less seasonal 

fluctuation in residence time (reservoirs with residence time greater than 1 year are shown in red 

in Figure 3.10).  Similarly, reservoirs with lower average residence time have more pronounced 

seasonal variations than reservoirs with higher residence time. A likely explanation for this 

pattern is that these reservoirs in the MRB with higher average residence time tend to have 

higher storage capacity relative to their inflow. This indicates that such reservoirs would be 

inherently less sensitive to fluctuations in inflow, resulting in a more consistent residence time. 

For example, water entering the Houayho Reservoir is estimated to stay within the reservoir for 

approximately 4 years before being released. This water resides in the reservoir over the course 

of multiple wet and dry seasons, dampening the seasonal trend described earlier. In contrast, 

water entering the Sirindhorn Reservoir is only estimated to stay in the reservoir just under 1 

year, resulting in single seasons or months have more of an effect on residence time. 

Figure 3.11 shows the yearly average residence time for each reservoir from 2002 

through 2015, grouped by average residence time. Note that since the method employed here 

estimates residence time by following a parcel of water from reservoir entry to exit, it is 

incapable of estimating residence time of parcels which do not exit reservoirs within the time 

period. For this reason, reservoirs with higher residence time do not have residence time 

estimates for the entire time period. While there are some variations among the reservoirs, there 

are also clear trends. Most reservoirs experience rises in residence time in 2009, 2012, and 2014. 

Normalizing theses residence times by reservoir averages, averaging across all reservoirs, and 

plotting with precipitation reveals a possible source of these yearly fluctuations. Figure 3.11 also 

shows basin averaged precipitation, revealing a negative relationship between average annual 

precipitation and basin averaged residence time, where residence time increases when 
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precipitation decreases. Similarly, residence time decreases when precipitation increases. This 

trend is made evident by a correlation coefficient of -0.65 between annual average precipitation 

and annual basin averaged residence time. Logically, when there is more water in the river 

system, reservoirs typically have higher releases, which lead to lower residence times. 

Conversely, when there is less water in the river system, inflows and outflows are lower, leading 

to higher residence time. Additionally, in drier time periods, reservoirs may be operated in such a 

way to withhold more water than usual to provide additional security in water supply for the 

uncertain future.  

 

 

Figure 3.11. Average annual residence time, grouped by residence time ranges and plotted with 

basin averaged annual precipitation. Each colored line represents the average annual residence 

time of all reservoirs with average overall residence time within the listed range. 
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Figure 3.12 shows the monthly average variation of flow alteration and the range of 

monthly averages across all reservoirs. This plot highlights the high variability in FA among the 

reservoirs in the MRB, particularly in transitional months between dry and wet seasons. In 

November for example, nearly half the reservoirs exhibit high positive FA and the other half 

exhibit high negative FA. These patterns do not correlate with size, location or reservoir 

function, indicating that accurately predicting these alterations is difficult without direct 

observations of storage change. Figure 3.13, showing the yearly average FA grouped by overall 

average FA, exhibits similar variability. While year to year variations largely remain consistent 

for low FA reservoirs, a sharp decrease in FA of all reservoirs with average FA greater than 80% 

during 2008. The exact cause of this is unknown. Examination of reservoir volume reveals that 

reservoirs delayed in filling slightly longer in the 2008 wet season than in other years, resulting 

in part of the wet season flows to release more freely. It is unclear at this time why this trend is 

only present in the more impactful reservoirs. 
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Figure 3.12. Average monthly flow alteration across basin and range of values from individual 

reservoirs. 
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Figure 3.13. Annual average flow alteration, grouped by flow alteration ranges. Each line 

represents the average annual FA of all reservoirs with overall average FA within the specified 

range. 

One issue associated with the method of filling data gaps using the derived operations 

curve is that the temporal trends in reservoir storage may be dampened by the temporal trends 

exhibited by the reservoir operations curve. During larger temporal gaps in useable Landsat 

images, this would result in the operating policy prescribing its own temporal variability to a 

time period where the temporal variability is unknown. This is most concerning in the wet 

season, when the number of useable Landsat images is significantly lower (Figure 3.5). 

However, based on the results of the Sirindhorn Reservoir (Figure 3.6), it is only the magnitude 

of storage that appears erroneous, and not timing, resulting in preserved monthly trends. This 

mechanism would seek to dampen annual variability, particularly in wet season storage. 

However, the fact that such drastic annual variability is present in flow alteration and that 
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patterns emerge which appear independent from inflow variations (such as the decrease in annual 

FA in 2008), suggests that a fair amount of the temporal patterns in storage fluctuation are 

captured in spite of potential temporal dampening. 

Figure 3.8 qualitatively suggests that reservoir residence time is equally distributed across 

the basin and there appears to be no correlation between reservoir location and residence time. 

While this may be the case, the location of the reservoir within the river network plays an 

important role in the overall effect of the reservoir on basin residence time. Considering the 

Mekong basin as a whole, the reservoirs studied here caused an average increase in the length of 

time water spends in the river network by only 3 weeks (0.059 years). When considering only the 

portion of the overall flow that is regulated by these reservoirs (totaling 17% of basin runoff), the 

average increase in residence time rises to just over 4 months (0.35 years). Most of the regulated 

discharge passes through two reservoirs, the Manwan Reservoir on the main stem of the Mekong 

in China and the Pak Mun Reservoir on the Mun River, a major tributary of the Mekong in 

Thailand. While neither of these reservoirs are particularly small, they both experience 

significantly large flows, leading to the extremely short residence times observed in this study. 

Because of their low residence times, their impact on the overall residence time of the basin is 

limited. If these dams are excluded, and only regulated discharge from higher order rivers is 

considered, the average increase in residence of this discharge becomes 1.3 years. This flow only 

makes up 3.5% of the total basin discharge, so while these reservoirs have little impact on the 

basin as a whole, they do have significant impact on local hydrology, specifically, on lower order 

streams within the river network. These results are similar to the conclusions drawn by Grill et 

al. (2014), in which the most severe reservoir impacts on streamflow occur in higher tributaries. 
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These impacted waters are diluted as they join flow from unregulated streams, resulting in little 

impact on the main stem.  

 Similarly, examining the reservoir’s collective impact on MRB outflows at the delta 

revealed that they have little effect on river basin flow, with an average flow alteration of just 

5%. Reducing the scope to only rivers regulated by these reservoirs, the average flow alteration 

increases to 23%. Removing the Manwan and Pak Mun Reservoirs, which also have the lowest 

flow alteration, results in an average flow alteration of 89% across the remaining regulated 

rivers. 

 The role of stream order is further explored in Figure 3.14, where residence time is 

plotted against stream order for the Mekong reservoirs studied here, as well as for all reservoirs 

in the GRanD Database and the average of each stream order. GRanD Database reservoir 

residence time was taken as their DOR expressed in years. Note that there are some reservoirs in 

the GranD database with residence times higher than 5 years. These were excluded from the plot 

so that the Mekong reservoirs could be compared with the global situation in better detail. The 

averages shown include reservoirs beyond the extent of the plot, but exclude database entries 

labeled as fair or poor quality. There is a clear negative trend between residence time and stream 

order in the global set of reservoirs from GranD, which appears to be mirrored in the Mekong 

reservoirs. This trend suggests that the most impactful reservoirs in terms of residence time 

increase tend to be built on lower order rivers. However, higher order reservoirs impact a larger 

amount of flow. As stream order increases, so does river flow and it becomes increasingly 

difficult or infeasible to build a reservoir that retains water for long periods of time under such 

high flows. Greater control of smaller flows in lower order streams can be imposed by smaller 

reservoirs that can be more feasible to build.  
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Figure 3.14. Stream order versus residence time for the MRB reservoirs as well as all GRanD 

Database reservoirs and their averages by stream order. GRanD Database residence time taken as 

the DOR expressed in years. The red numbers signify the number of MRB reservoirs in each 

stream order. 

3.5 CONCLUSIONS 

This chapter utilized an array of remote sensing data to observe the operations of reservoirs in 

the MRB. These reservoir operations were then paired with a hydrologic model and used to 

derive the impacts these reservoirs have on the streamflow. These impacts were characterized by 

two parameters: residence time as a measure of how long reservoirs store water, and flow 

alteration as a measure of the near instantaneous impact on streamflow. Examination of these 
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parameters revealed insightful temporal and spatial patterns. Some patterns are self-evident, such 

as reservoirs experiencing higher residence time in the dry season than the wet season.  

 The presence of such an intuitive trend expected of river basins dominated by monsoonal 

hydrology, adds credibility to the satellite based method. The fact that satellite observations and 

physical hydrological model alone are able to elucidate such a trend without any help from in-

situ observations is notable for ungauged river basins in the developing world. Other less 

obvious trends provide insights into reservoir operations in the MRB. One such trend is the 

pattern of highly impactful small reservoirs on smaller tributaries and lower impact larger 

reservoirs on larger tributaries. Current reservoirs collectively have insignificant impact on the 

overall MRB system if the MRB is assumed as one single control volume. However, there are 

two caveats to this ‘systems’ approach. First – the systems approach of a single residence time 

for the entire basin is valuable for water balance studies only when all riparian nations are 

working together on a shared vision for integrated water resources management. Second – the 

single basin-wide metric does not paint the real picture of spatially and temporally diverse 

human impacts of reservoirs within a basin to identify appropriate and local water management 

strategies. For example, many reservoirs on lower stream-order rivers have significant impact on 

the localized streamflow.  

 Future plans for MRB development involve tripling the number of dams currently in the 

basin. Basin-wide reservoir impacts on residence time and flow alteration will no longer remain 

insignificant (Grill et al. 2014; 2015). Another interesting point that emerged is the complete lack 

of trend in monthly reservoir imposed flow alteration. The fact that no reservoir properties (e.g. 

size, location, use, etc.) can be used to characterize monthly flow alteration highlights the 
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importance of satellite based observations to understand how humans operate the reservoirs to 

maximize benefit.  

 The key take home message of this chapter is that satellites can indeed pick out the 

diverse variability of reservoir operations in ungauged and international river basins that is 

otherwise intractable. As satellite observations of the water cycle (surface water inundation, 

height; (Biancamaria, Lettenmaier, and Pavelsky 2016)), precipitation, soil moisture become 

increasingly more widespread in the near future, it appears that the scientific community will be 

able to rely on space observations to understand the potential impact of reservoir development 

planned by each riparian nation that lacks ground-based observations or data sharing 

mechanisms. The hope is that the availability of such understanding across a basin will counter 

the secrecy or the lack of capacity that is typically common among riparian nations of 

international river basins, and result in a more cooperative environment for the benefit of all the 

stakeholders of the basin. 

 With the upcoming launch of the Surface Water and Ocean Topography (SWOT) 

Mission, our ability to monitor surface water remotely is expected to greatly improve. Chapter 4 

seeks to quantify this improvement by simulating SWOT observations of the same 20 Mekong 

reservoirs studied in Chapter 3 and comparing the accuracy of these synthetic observations to 

real observations made by past and current satellite sensors.  
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Chapter 4: Assessing the Potential of the Surface Water and Ocean 

Topography Mission for Reservoir Monitoring in the Mekong River 

Basin 

Note: This chapter has been published mostly in its current form in Water Resources Research 

(M. Bonnema and Hossain 2019); Used with permission. 

Abstract: The planned Surface Water and Ocean Topography (SWOT) mission, scheduled to 

launch in 2021, is designed to significantly improve on current lake and reservoir remote 

monitoring capacity. These improvements are especially important for the Mekong River Basin 

(MRB), where rapid dam construction puts downstream food security at risk and upstream dam 

operations are largely unknown to downstream water managers due to lack of upstream 

hydrologic information. This study aims to answer: How accurately will SWOT estimate 

reservoir storage change in the MRB? A physically based simulation tool developed by NASA 

Jet Propulsion Laboratory to mimic SWOT‐like observations of water bodies was applied to 20 

reservoirs in the MRB and for 17 of those reservoirs, synthetic SWOT‐based storage change 

estimates demonstrated high skill, with errors typically less than8%. The remaining three 

reservoirs showed higher errors due to complex neighboring topography or long narrow reservoir 

shape. In comparison with current satellite observations of six reservoirs in the MRB, the 

synthetic SWOT observations showed between 4% and 10% lower storage change normalized 

root‐mean‐square error. Finally, the simulated elevation and surface area was successfully used 

to estimate the area‐elevation relationships for each reservoir, with a median percent difference 

of 6.9%. These relationships are a potential avenue for multisensor cooperation toward improved 

understanding of reservoir dynamics. Such cooperation, where observations from many 

difference remote sensors are synthesized to provide a more complete view of human 
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interactions on the river system, is vital for the MRB as more dams as human influence over the 

system increases. 

4.1 INTRODUCTION 

The Surface Water and Ocean Topography (SWOT) Mission, planned to launch in 2021, 

shows promise to improve satellite based reservoir monitoring (Biancamaria, Lettenmaier, and 

Pavelsky 2016). SWOT will use interferometric synthetic aperture radar (InSAR) to provide 

estimates of reservoir water surface area and elevation simultaneously in wide swaths with 

global coverage (L.-L. Fu et al. 2012). This will allow for the estimation of reservoir storage 

directly from SWOT observations. SWOT has a return period of 20.9 days, with many locations 

observed more than once within this time period, meaning storage changes can potential be 

resolved at sub-monthly time scales (Solander, Reager, and Famiglietti 2016). Additionally, 

repeat SWOT observations of reservoir surface area and elevation could be used to estimate 

reservoir area-elevation relationships, which may help improve current reservoir monitoring 

techniques.  

Given the great potential of SWOT for reservoir monitoring and the innovativeness of the 

Ka band radar interferometer SWOT will employ (Fjørtoft et al. 2014), it is critical to make 

efforts before SWOT launches to understand how skillfully SWOT will observe reservoirs. 

There are no current satellites equipped with similar sensors and while AirSWOT (a SWOT like 

instrument mounted on an aircraft) has provided valuable insight into the expected performance 

of SWOT (Moller et al., n.d.; Altenau et al. 2017), it is only applicable to the limited locations it 

has operated in. In order to elucidate the applicability of SWOT in data limited regions like 

MRB, simulation of SWOT observations is the only feasible option. Lee et al. (2010) used a 

combination of satellite altimetry, satellite imagery, and lake gauges to simulate realistic water 



98 

 

elevation changes and corrupted them with random errors, which represented conservative 

estimates of expected SWOT instrument errors. They found that lakes larger than 1 km2 typically 

exhibited relative storage change errors less than 5% and one-hectare lakes have relative storage 

change errors around 20%. NASA Jet Propulsion Laboratory (JPL) developed a SWOT 

simulation tool, here after referred to as the SWOT Hydrology Simulator, which generates 

realistic SWOT observations based on the planned orbit and expected performance of SWOT 

(Rodriguez and Moller 2004). Solander, Reager, and Famiglietti (2016) applied the SWOT 

Hydrology Simulator to reservoirs in California and they found that surface area and height 

errors were typically minimal for reservoirs larger than 1 km2, with <5% area error and <15 cm 

height error. However, reservoirs in mountainous terrain or with strong elliptical shape were 

found to have higher errors. 

This chapter aims to build on the work of these past studies by applying the SWOT 

Hydrology Simulator to a set of reservoirs in the MRB. Because of the potential usefulness of 

SWOT observations in the MRB, where data is limited and hydrologic changes due to dam 

development are rapid, it is imperative that SWOT’s potential capabilities be analyzed in this 

region. Such a study demonstrates SWOT’s usefulness and applicability to potential end users, 

and creates realistic expectations of SWOT’s performance, both of which are important for the 

adoption of SWOT observations into scientific and water management communities that stand to 

benefit from them. This study assesses the skillfulness of SWOT reservoir observations and 

seeks to answer the following research questions: 1) How accurately will SWOT estimate 

reservoir storage change in the MRB and 2) will the accuracy of SWOT observations be 

sufficient for estimating reservoir area-elevation relationships and for reservoir outflow 

modelling? By comparing simulated SWOT observations with reservoir observations from 
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currently operating satellite missions such as Landsat and Sentinel, this study provides a valuable 

first step towards creating a multi-sensor reservoir monitoring approach. Leveraging 

observations from different sensors can mitigate deficiencies in accuracy, sampling frequency, or 

coverage of a single sensor and improve overall reservoir monitoring capacity. For example, 

Sentinel-1, Sentinel-2, Sentinel-3, Landsat-8, AltiKa, and Jason-3 all take observations of 

reservoir water levels or extent. By taking observations from all of these sensors along with 

SWOT into account, a more complete view of upstream reservoir operations could be provided 

to a downstream water management decision maker. This study also explores multi-sensor 

synergy with SWOT observations in providing bathymetric information (area-elevation 

relationship), which could be used to improve traditional satellite based reservoir monitoring 

techniques. Finally, this chapter investigates the applicability of SWOT storage change estimates 

as inputs into a simple reservoir model to estimate reservoir outflow, which is key for 

understanding reservoir interactions with the river system and a largely unknown quantity of 

importance to those living downstream. 

 

4.2 STUDY REGION AND DATA 

This study focuses on the same set of 20 MRB reservoirs studied in Chapter 3. A list of the 

reservoirs along with information about the country location, average surface area, capacity, and 

primary use (if available) is shown in Table 3.1, all taken from the GRanD Database (Lehner et 

al. 2011). Figure 4.1 shows the locations of these reservoirs in the MRB, along with the planned 

observational swaths of SWOT Mission. These 20 reservoirs are fairly representative of the 

variety of reservoirs found in the basin. They range in capacity from 22.8 million m3 to 7030 

million m3, while the average capacity of current reservoirs in the basin is 1116 million m3 
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(WLE 2017). The distribution of country location among the set of 20 reservoirs is also similar 

to the distribution of all reservoirs throughout the basin, with Thailand slightly over represented 

here and Vietnam slightly under represented. This distribution of location means that geographic 

variabilities that could affect SWOT observations such as terrain type, reservoir shape, or 

sampling frequency are represented by the set of study reservoirs. Six reservoirs (Sirindhorn, 

Yali, Chulabhorn, Lam Pao, Nam Oun, and Ubol Ratana) have daily in-situ storage change data 

available for 2016. These six reservoirs are highlighted in Figure 4.1. This allows for the 

investigation of how well SWOT sampling frequency captures daily reservoir operations. For the 

other reservoirs, the only available data are surface area estimates based on satellite observations. 
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Figure 4.1. Map of Mekong River Basin showing study reservoirs and SWOT observational 

swaths. Dam locations taken from GRanD Database [Lehner et al., 2012]. The six reservoirs with 

in-situ observations are highlighted. 

 

4.3 METHODS 

The general methodology of this study involves a hypothetical scenario where SWOT was 

operational for the year 2016. First, a reference dataset representative of the real conditions of 

the 20 Mekong reservoirs during 2016 is created. This dataset is then run through the SWOT 

Hydrology Simulator and the output is used to derive reservoir water surface elevation and water 
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surface area. These quantities are then used to estimate reservoir storage change. Finally, the 

storage change is input into a simple mass balance model and the impacts of SWOT storage 

change errors on reservoir outflow estimation are analyzed. The following subsections describe 

these processes in greater detail. 

4.3.1 SWOT Hydrology Simulator 

The SWOT Hydrology Simulator developed by NASA JPL is a tool that attempts to mimic the 

characteristics of SWOT’s Ka band interferometry instrument over surface water features such as 

lakes and rivers (Rodriguez and Moller 2004). The tool takes a digital elevation model (DEM) of 

a water feature and the surrounding topography as input and simulates a SWOT observation of 

the water feature (Peral et al. 2014). The simulator does this by first converting the geographic 

coordinates of the DEM into radar coordinates, and assigns radar reflectiveness properties to the 

DEM depending on land type (water or land) and water surface roughness, which is 

approximated by the simulator using a wind field, another simulator input. The simulator then 

approximates the radar signals returned to SWOT based on the planned orbit relative to the 

location of the water feature, and based on the expected characteristics of the radar 

interferometry instrument. The simulator then processes these synthetic radar returns and 

generates a pixel cloud of water heights as output. From the pixel cloud, reservoir water surface 

elevation, reservoir surface area, and storage change are calculated. Figure 4.2 shows a flowchart 

illustrating the simulation process from simulator inputs to reservoir storage change estimation. 

Each step of this process is described in greater detail in the following sections. 
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Figure 4.2. Flow chart illustrating the SWOT simulation process, from the inputs (reference 

water surface, water probability map, wind data) to the simulator output (pixel cloud) which is 

then used to estimate surface area and water surface elevation. 

Two important sources of error included in the simulator are dark water and layover. 

Dark water occurs when a pixel containing water becomes misclassified as land, due to dark 

radar returns and its occurrence depends on the roughness of the water surface and incidence 

angle between the interferometer and the water surface. Smooth water surfaces can cause the 

radar signal to be reflected away from the satellite, instead of scattered back towards it, resulting 

in water that appears to be of similar brightness to land. Layover occurs when a location on land 

and a location in the water surface have the same range from the SAR instrument, resulting in 

signals returning from both locations at the same time. When the contrast between the land and 

water radar return is low, it becomes difficult to distinguish which signal came from which 
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location, resulting in elevation errors. The simulator also accounts for thermal noise, instrument 

height error, and classification error. Wet tropospheric errors are also simulated, but in a 

simplistic manner that does not take into account any atmospheric information. The simulator 

merely applies spatially correlated errors such that the tropospheric error equals 4.0 cm when 

averaged over a 1 km2 area, which coincides with the wet tropospheric error budget in the 

SWOT Project and Mission Performance and Error Budget (Esteban-Fernandez, 2017). 

 

4.3.2 SWOT Hydrology Simulator Input Preparation 

The simulator requires a 3-dimensional model of the water surface to be simulated and of the 

surrounding topography, a water probability map, and surface level wind fields. The water 

probability map is used by the simulator to flag areas where dark water effects are present. For 

example, if a pixel in the pixel cloud is classified as land, but is located in a pixel of the water 

probability map that likely contains water, it is flagged as dark water. The water probability map 

used here was taken from the Global Surface Water Explorer, which was generated using 32 

years of Landsat imagery (Pekel et al. 2016). Wind fields are used by the simulator to simulate 

roughness characteristics of the water surface. The wind fields used here were taken from the 10 

m wind speed components from the ERA-Interim global atmospheric 80 km reanalysis data 

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). Note that 

the actual water surface roughness, which controls dark water occurrence, is dependent on the 

localized surface wind field and the 10 m wind field is a crude approximation of this, however, it 

is the best option available for simulations in this region.   

 The water surface models for each reservoir were created by pairing water classified 

satellite imagery with a Digital Elevation Model (DEM) generated by the Shuttle Radar and 
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Topography Mission (SRTM). Figure 4.3 shows a flowchart illustrating the process of creating 

the reference dataset of true water surfaces. First, Landsat and Sentinel-2 visible and infrared 

images are cropped first by the reservoir extent (provided by the GRanD Database) with a 1 km 

buffer, and then by the reservoir watershed (delineated using the SRTM DEM). This cropped 

region is then checked for clouds using the quality control flags of the satellite products. Images 

with greater than 5% clouds within the vicinity of the reservoir were removed. The remaining 

images were  classified for water by calculating the Normalized Difference Water Index (NDWI) 

and identifying pixels with NDWI greater than 0 as containing water (McFeeters 1996). Sentinel-

1 Synthetic Aperture Radar (SAR) radar backscatter images were also classified for water by 

identifying pixels with VV polarization backscatter less than -14 decibels (dB) as containing 

water. Note that Pham-Duc, Prigent, and Aires (2017) found that -15 dB was suitable for 

Sentinel-1 VV polarization water classification in the Mekong Delta. This threshold was adjusted 

to -14 dB because it resulted in water surface areas similar to the Landsat-8 and Sentinel-2 water 

classifications. The reservoir surface area was calculated for each classified image by 

multiplying the number of water pixels by the pixel size, 30 m for Landsat, 15 m for Sentinel-2, 

and 10 m for Sentinel-1. Each image was then assigned an elevation based on the relationship 

between surface area and water surface elevation, derived for each reservoir from neighboring 

topography provided by the SRTM DEM, the same method developed in Chapter 2. 
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Figure 4.3. Flow chart illustrating the reference water surface creation process, which involves 

using satellite imagery to estimate reservoir bathymetry and then filling that bathymetry to a 

desired water level. 

 These water surfaces are then merged together based on their elevation, so that minimum 

elevation water pixels take precedence. This results in an approximation of the reservoir 

bathymetry above the minimum water elevation observed. This bathymetry is merged with the 

SRTM DEM. The resulting DEM was resampled to 10 m using bilinear interpolation. This was 
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done to avoid any false layover that may occur from the coarsely spaced 30 m pixels. Note that 

this results in a land surface that is smoother than the real land surface, which may cause lower 

layover errors than would be expected. The reservoirs are then filled to certain elevations based 

on in-situ water level or storage data for the six  reservoirs with in-situ data available and 

satellite based monthly surface area and storage estimates for the rest, calculated from Landsat 

images in the same manner as in Chapter 3. Water surfaces are only generated for days which 

correspond to hypothetical SWOT observation days, based on SWOT’s 20.9-day return time, 

assuming a start time of 12:00am local time January 1st, 2016. The result is a 3-dimensional 

water surface, representative of the true water surface during each hypothetical SWOT overpass 

for all 20 reservoirs. These water surfaces are treated as reference, by which the accuracy of 

SWOT observations are assessed.  

4.3.3 SWOT Hydrology Simulator Output Processing and Storage Change Calculation 

Each water surface is individually run through the SWOT Hydrology Simulator. Within the 

simulator, radar returns from the land and water surface are generated based on expected 

instrument performance. These synthetic radar observations are then processed to generate a 

pixel cloud, containing latitude, longitude, elevation, and surface area of water pixels. Also 

contained in the pixel cloud is a flag for the presence of dark water. The simulator flags dark 

water that occurs in locations likely to contain water based on the water probability map and 

places these pixels in their own dark water classification. Another flag present in the pixel cloud 

identified pixels impacted by layover, typically caused by complex nearby topography, which 

can result in high elevation errors.  

 Water surface elevation for each reservoir for each synthetic SWOT observation is 

derived from the pixel cloud by first filtering pixels classified as water from those classified as 
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land. Then, pixels flagged with layover or dark water are also filtered out. Only pixels in or 

within 1km of the original water surface are considered, with the rest filtered. Water surface 

elevation is then calculated by taking the median elevation of all remaining pixels. Similarly, 

land classified pixels and pixels greater than 1 km outside the original water surface are filtered 

for the water surface area calculation, but dark water and layover pixels are not removed. The 

water surface area is then calculated as the sum of the surface area of all remaining pixels. 

Storage change between subsequent synthetic SWOT observations is calculated using the 

trapezoidal approximation used in Chapter 2 (Equation 2.3). For the set of six reservoirs with 

available daily in-situ storage change data, daily in-situ storage changes are estimated by evenly 

distributing the storage change between two subsequent SWOT observations across each day 

between the observations. 

 Some SWOT passes only partially observe reservoirs. In these cases, surface area 

accuracy is evaluated by comparison with the region of the reference water mask that lies within 

the swath of the particular SWOT pass. Storage change for these partial passes is calculated by 

using the relationship between surface area and elevation derived from one or more passes when 

the reservoirs is completely observed to estimate total surface area based on observed elevation. 

For the Manwan Reservoir, a significant portion of its surface area lies in a region of no SWOT 

observations. For this reservoir, partial storage change was computed from the reference water 

surface for the regions of the reservoir lying within the SWOT swath and this was used to 

evaluate storage change.  

The calculated storage change estimates are then input into the mass balance model 

employed in Chapter 3 (Equation 3.1). The synthetic SWOT storage change estimates along with 
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the reference dataset storage changes are input into the same outflow model to determine the 

effects of SWOT storage change errors on the efficacy of reservoir outflow estimation.  

4.3.4 Storage Change Estimation from Current Satellite Sensors 

In order to assess the performance of the synthetic SWOT reservoir observations in the context 

of traditional satellite based reservoir monitoring techniques, observations from four currently 

operating satellite missions are used to estimate the storage change of the six reservoirs with in-

situ data available for 2016. Visible and infrared images from Landsat-8 and Sentinel-2 are cloud 

filtered and classified using NDWI, as described previously, to estimate water surface area. 

Sentinel-1 SAR radar backscatter images are also classified as previously described, using a -14 

dB threshold. Landsat-8, Sentinel-2, and Sentinel-1 observations are applied to all six reservoirs. 

Jason-3 altimeter observations are only available for the Sirindhorn Reservoir and water surface 

anomalies provided by the altimeter observations are taken from USDA’s Global Reservoir and 

Lake Monitor (G-REALM) (C. Birkett et al. 2011). Area-elevation relationships for each of the 

six reservoirs are derived from the SRTM DEM, as described in Chapter 2. Observed surface 

areas are then matched with their corresponding elevations based on the area-elevation 

relationship, and vice versa for elevation observations. Storage change between each observation 

of each sensor is then computed using Equation 2.3. 
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4.4 RESULTS 

4.4.1 Reservoir Water Surface Elevation and Surface Area Accuracy 

Overall, synthetic SWOT observations of reservoir water surface elevation exhibited high 

accuracy, with most reservoirs showing root mean squared errors (RMSE) lower than 0.1 m 

(Table 4.1). The primary factor determining the accuracy of SWOT based water surface 

elevation observations was reservoir size, with larger reservoirs exhibiting lower elevation 

RMSE (Figure 4.4). All four reservoirs with average surface area greater than 200 km2 had 

elevation RMSE lower than 0.04 m. Smaller reservoirs showed a wider range of elevation 

accuracy, with RMSE typically between 0.1 m and 0.008 m. 

Table 4.1. Simulated SWOT elevation, surface area, and storage change errors. 

Dam Name 

Elevation 

RMSE 

[m] 

Area 

Error 

[km^2] 

Area 

Error 

[%] 

Storage 

change 

RMSE 

[km^3] 

Storage 

Change 

NRMSE [%] 

Haixihai 0.090 0.16 3.94 0.0040 6.46 

Zibihe 0.087 0.25 3.16 0.0022 2.36 

Manwan 0.722 2.82 7.63 1.0330 112.28 

Nam Ngum 0.020 2.25 0.51 0.2490 3.54 

Nam Leuk 0.075 0.38 4.13 0.0285 15.41 

Nam Oun 0.021 1.20 3.13 0.0252 4.85 

Nong Han Lake 0.043 3.10 4.23 0.1333 7.11 

Nam Pung 0.065 0.20 1.27 0.0130 7.85 

Ubol Ratana 0.013 19.60 6.26 0.1048 4.63 

Lam Pao 0.028 7.80 3.85 0.0180 1.26 

Chulabhorn 0.008 0.99 14.20 0.0080 4.26 

Huai Kum 0.095 0.14 7.78 0.0014 6.32 

Lam Chang Han 0.008 0.20 4.17 0.0016 6.08 

Lamtakhong 0.078 1.87 6.95 0.0146 4.71 

Lamphraphloeng 0.098 0.20 2.08 0.0196 12.89 

Lamnangrong 0.055 0.17 1.47 0.0094 6.23 

Pak Mun 0.484 9.00 10.36 0.2178 95.11 

Sirindhorn 0.003 2.17 0.92 0.0009 0.45 

Houayho 0.530 2.80 9.03 0.2742 42.25 

Yali 0.012 1.50 3.30 0.0180 1.74 

 



111 

 

 

Figure 4.4. Plots showing the inverse relationships between average reservoir surface area and 

simulated SWOT (a) water surface elevation errors, (b) water surface area errors, and (c) storage 

change errors. Y-axis limits have been set to exclude the 3 reservoirs with the largest elevation 

and surface area errors. 

Three reservoirs, Manwan, Pak Mun, and Houayho, all showed significantly higher 

elevation errors, with elevation RMSE between 0.484 m and 0.722 m. All three of these 

reservoirs experienced significant layover effects. Most reservoirs experienced some layover, but 

these effects were typically limited to reservoir edges and effected relatively few pixels. Manwan 

and Pak Mun are long, narrow reservoirs (as low as 100 m wide in some locations), and the 

layover effects typically occurring near the water edge made up a much more significant area of 

these reservoirs. Manwan is also located in an approximately 2 km wide valley, surrounded by 
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mountains that rise up to 1900 m above the water surface. Such mountainous terrain exacerbates 

layover. The Houayho Reservoir, is made up of multiple long, narrow channels (typically 0.5 km 

wide), and also located in mountainous terrain, with a 1000 m high ridge located 0.5 km to the 

east, the likely primary source of the high layover effects  Because all three reservoirs were 

heavily impacted by layover, filtering layover pixels was infeasible and that step of the elevation 

estimation calculation was skipped. 

Reservoir surface area was also estimated from the synthetic SWOT observations with 

high skill overall, with normalized root mean squared error (NRMSE) ranging from 0.5% to 

14.2%, expressed as a percentage of total surface area (Table 4.1). The accuracy of reservoir 

surface area also followed a pattern with reservoir size (Figure 4.4). Larger reservoirs showed 

lower surface area NRMSE than smaller reservoirs. It should be noted that the surface area 

RMSE increases for larger reservoirs, but when the errors are expressed as a percentage of 

surface area, errors for larger reservoirs are significantly lower. 

  Dark water that occurred in the interior of the reservoirs had little impact on reservoir 

surface area estimates because it was properly identified by the water probability map and 

reclassified as water. However, dark water near the reservoir’s edge was a larger source of error. 

Any dark water that occurred in areas that the water probability map did not identify as likely 

containing water, was misclassified as land. This causes an underestimate of surface area. In 

other cases, such as the Lamphraphloeng Reservoir, lower water levels caused false positive 

identification of dark water. Because the actual water level receded beyond regions that the water 

probability map identified as likely to contain water, some land pixels were miss-classified as 

dark water. This causes an overestimate in surface area.  
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By plotting SWOT estimated water surface area against water surface elevation, approximations 

of each reservoir’s area-elevation relationship were created. When compared to the area-

elevation relationships of the reference dataset, it is found that one year of SWOT data can 

relatively accurately reproduce a reservoir’s area-elevation relationship. With the highly seasonal 

rainfall in the MRB, reservoirs experience seasonal emptying and filling. This means that over 

the course of a typical year, reservoirs will be observed by SWOT at a wide range of water 

levels. For reservoirs observed only once per SWOT cycle, this amounts to 17-18 observations 

per year. For the 6 reservoirs with in-situ observations, the simulated SWOT observations 

captured between 80% and 94% of the range of elevations the reservoirs experienced between 

2012 and 2017.This results in a wide variety of area-elevation observations, which completes a 

significant portion of the area-elevation relationships. Table 4.2 shows the accuracy of the area-

elevation relationships, derived by linearly interpolating between synthetic SWOT area-elevation 

pairs, as percent difference from the reference area-elevation relationship. Errors ranged from 

1.42% to 17.34%, excluding the three reservoir affected by layover. Figure 4.5 shows an 

example of the Sirindhorn Reservoir, which has an area-elevation percent difference of 5.12%. 

Unsurprisingly, the three reservoirs impacted by layover experience significantly higher errors 

than all other reservoirs. 
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Table 4.2. The errors of the estimated area-elevation relationships and outflow estimated from 

mass balance outflow model. 

Dam Name 

Area-Elevation 

Relationship Percent 

difference [%] 

Outflow 

Percent 

Difference [%] 

Haixihai 7.27 4.03 

Zibihe 2.66 0.98 

Manwan 126.40 1.13 

Nam Ngum 3.99 0.98 

Nam Leuk 17.34 3.51 

Nam Oun 5.46 1.08 

Nong Han Lake 8.01 3.49 

Nam Pung 8.84 2.53 

Ubol Ratana 5.21 1.21 

Lam Pao 1.42 0.19 

Chulabhorn 4.79 2.66 

Huai Kum 7.11 0.31 

Lam Chang Han 6.84 3.00 

Lamtakhong 5.30 2.82 

Lamphraphloeng 14.52 3.53 

Lamnangrong 7.02 3.18 

Pak Mun 107.07 0.20 

Sirindhorn 5.12 0.02 

Houayho 47.56 52.71 

Yali 1.95 0.09 
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Figure 4.5. Example of surface area-elevation relationship estimation from the simulated SWOT 

observations along with the area-elevation relationship used to create the reference dataset. 

 

4.4.2 Storage Change Accuracy 

The synthetic SWOT observations estimate storage change with high skill, with NRMSE 

lower than 8% (Table 4.1), with the exception of the three layover impacted reservoirs. Figure 

4.6 displays the reservoir storage change NRMSE [%] and how they are distributed throughout 

the basin. Again, accuracy appears interrelated with reservoir size, with larger reservoirs 

showing more accuracy storage change observations (Figure 4.4). This is consistent with the 

patterns seen in the components of storage change, surface area and elevation. In general, higher 

elevation errors and higher surface errors both tended to increase storage change error, but 

surface area errors tended to have higher correlation with storage change errors. This 

phenomenon occurs because storage change is calculated using surface area directly, but does 
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not rely on elevation, only elevation changes. This means that errors in elevation do not 

necessarily cause errors in storage change. As long as the elevation change between two 

observations is correct, storage change remains unaffected. This trend is made clear by 

examining how the accuracy of elevation, surface area, and storage change vary temporally. 

Figure 4.7 shows box plots of monthly elevation, surface area, and storage change errors across 

17 reservoirs (with the 3 layover impacted reservoirs removed), averaged by month for reservoirs 

observed multiple times per month. The simulated water surface elevations tended to 

overestimate when reservoirs were at higher levels (October-March) and underestimate when 

reservoir levels were lower (April-September). This seasonality is not present in the monthly 

average surface area error, which remained fairly constant throughout the year. This seasonality 

is also mostly absent from the monthly average storage change error, with only slight increases 

between March and April, and September and October. These are the times when elevation 

errors typically switched between under and over estimating, resulting in larger elevation change 

errors. Except for those specific transitions, surface area errors represent a larger portion of the 

storage change errors than do elevation errors. 
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Figure 4.6. Map showing the SWOT storage change NRMSE [%] of each reservoir and their 

location within the MRB. 
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Figure 4.7. Boxplots showing the monthly variation of synthetic SWOT (a) elevation errors, (b) 

surface area errors, and (c) storage change errors. 

For the six reservoirs with daily in-situ storage change observations available, the 

synthetic SWOT storage change estimates were extrapolated to daily storage change by evenly 

distributing them across all days between observations. These synthetic daily storage change 

values were compared to daily in-situ storage change observations, shown in Table 4.3. In terms 

of NRMSE, the Sirindhorn reservoir performed the worst, with 44.3%. This is likely a result of 

the Sirindhorn reservoir only having one SWOT observation per cycle where the other reservoirs 

have two, effectively decreasing the temporal resolution by half compared to the other reservoirs. 

Figure 4.8 (upper panel) compares the estimated and in-situ storage change of the Sirindhorn 

reservoir to illustrate that the temporal spacing of SWOT observations cannot capture daily 

peaks in reservoir storage change. Of particular note is the 62 million m3 storage change 
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occurring on June 28, where interpolated SWOT observations only suggest a storage change of 6 

million m3. However, within the three weeks prior to this extreme storage change event, 

interpolated SWOT storage vastly over predicts storage change. These effects counteract each 

other as shown by the low storage change error when only considering storage change between 

subsequent SWOT observations. This is further illustrated by Figure 4.8 (lower panel), which 

shows the storage of the Sirindhorn reservoir, demonstrating how these temporal sampling errors 

manifest in overall reservoir storage. Since SWOT would have no prior knowledge of an 

anonymous reservoir’s total storage, the synthetic SWOT storage simply starts at the in-situ 

storage on January 13 (the first SWOT overpass of the reservoir) and then uses the daily storage 

change to estimate the next day’s storage change. Ultimately, while SWOT fails to capture the 

exact timing of rapid storage changes, its temporal resolution is sufficient for capturing overall 

reservoir dynamics. 

 

Table 4.3. Results of daily storage change interpolation for the six reservoirs with in-situ 

observations. 

Dam Name 

Number of SWOT 

Observations per 

Cycle 

Daily Storage 

Change RMSE 

[million m^3/day] 

Daily Storage 

Change NRMSE 

[%] 

Sirindhorn 1 6.91 44.3 

Yali 2 4.82 27.6 

Chulabhorn 2 0.48 37.2 

Ubol Ratana 2 5.96 34.8 

Nam Oun 2 0.94 33.7 

Lam Pao 2 4.31 22.8 
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Figure 4.8. Results of the daily storage change interpolation from simulated SWOT observations 

for the Sirindhorn Reservoir (upper panel) and plot showing how those errors manifest when 

considering total storage (lower panel) 
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4.4.3 Comparison with Current Satellite Sensors 

In comparison with the accuracy of traditional satellite based monitoring methods, the 

synthetic SWOT observations performed favorably. Table 4.4 summarizes the accuracy of each 

method across all 6 reservoirs when compared to in-situ data, as well as showing the average 

number of observations per reservoir for each of the sensors. Jason-3 only crosses the Sirindhorn 

reservoir, so the statistics presented are only representative of observations of that reservoir. 

Figure 4.9 shows a comparison of the storage change errors from different satellites for each of 

the six reservoirs. While Jason-3 provides higher accuracy, its observational capacity is limited 

to only 1 out of the 20 reservoirs studied, hindering its usefulness. The surface area based 

methods (Sentinel-1, Sentinel-2, and Landsat-8) all performed similarly.  The simulated SWOT 

observations consistently outperform current capabilities, with synthetic SWOT errors typically 

less than half of the errors of current methods.  Landsat-8 and Sentinel-2 are visible sensors and 

are completely blocked by cloud cover, which is the reason for their low average number of 

observations. Sentinel-1 and Jason-3 penetrate clouds (as does SWOT) and result in more 

frequent useable observations. In fact, Sentinel-1 observed these reservoirs almost as frequently 

as SWOT will and in the case of Sirindhorn, more frequently than SWOT will.  The errors in 

reservoir storage of the current methods range from 6.48% to 12.34%, with the synthetic SWOT 

observations achieving average error across the six reservoirs of 2.86%. It should be noted that 

the errors observed are also related to the accuracy of the area-elevation curve derived from the 

SRTM DEM and a better approximation of this relationship (such as from SWOT observations 

as demonstrated in Figure earlier) could improve the accuracy of these methods. 
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Table 4.4. Summary of current satellite sensors and their reservoir monitoring capabilities over 

the six reservoirs with available in-situ data. Note that Jason-3 statistics are only calculated for 

the Sirindhorn Reservoir because that is the only reservoir of the six that it observes. 

Satellite Mission 

Reservoir Observations 

Provided 

Average Number of 

Useable Observations in 

2016 

Average 

Storage 

NRMSE [%] 

Landsat-8 Surface Area 6.3 12.34 

Sentinel-1 Surface Area 27.1 9.35 

Sentinel-2 Surface Area 7.7 10.64 

Jason-3 Elevation 35 6.48 

Simulated SWOT Elevation and Surface Area 31.4 2.86 

 

 

 

 

Figure 4.9. Comparison of satellite based reservoir storage change accuracy between synthetic 

SWOT observations and observations from Landsat-8, Sentinel-2, Sentinel-1, and Jason-3. 
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4.4.4 Outflow Accuracy 

Table 4.2 shows the accuracy of reservoir outflow estimated from the simple mass balance 

model using synthetic SWOT storage changes compared to outflow estimated using the reference 

storage changes. Except for a single outlier, the Houayho Reservoir, the impacts of SWOT 

storage change errors on mass balance based outflow estimation were minimal, less than 4.1% 

difference. Manwan and Pak Mun showed low percent difference here (1.13% and 0.20%, 

respectively) despite their poor storage change accuracy because the volume of water flowing 

through these two reservoirs is magnitudes higher than their storage changes. Due to the linear 

nature of the mass balance model, this effect dampens the impacts of SWOT errors for all 20 

reservoirs, but is most prominent on Manwan and Pak Mun because those reservoirs experience 

the largest inflows relative to their capacity. 

4.5 DISCUSSION AND CONCLUSIONS 

The SWOT based elevation, surface area, and storage change accuracy results are consistent with 

those of past studies of lakes and reservoirs larger than 1 km2, with typical surface area errors 

around 5% and typical elevation errors <0.01 m. Furthermore, the characteristics of the three 

problematic reservoirs (narrow, in mountainous terrain) match those of reservoirs with high 

errors studied in Solander, Reager, and Famiglietti (2016). The result that SWOT is predicted to 

accurately capture storage change dynamics of 17 of the 20 reservoirs is promising for the 

application of SWOT on reservoirs in the MRB. Further supporting the applicational usefulness 

of SWOT storage change observations is their successful use in the mass balance outflow model. 

The low outflow errors due to errors in simulated SWOT storage change provides a real world 

proof of concept for using SWOT observations to drive a reservoir model. 
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 The accurate estimation of reservoir area-elevation relationships from one year of SWOT 

observations highlights the potential of SWOT observations to improve the reservoir monitoring 

capacity of current satellite based reservoir monitoring techniques. Building these relationships 

from direct, simultaneous observations of reservoir surface area and water surface elevation 

could allow for the application of other satellite remote sensors to reservoirs in the MRB 

otherwise infeasible for remote monitoring. The accuracy of the relationships found here are 

suitable for this purpose, except when high layover effects are present. While the accuracy of the 

existing sensors is suitable for many applications, there is room for improvement and increasing 

the accuracy of the area-elevation relationship is one potential avenue for improvement. The 

merits of a multi-sensor approach is further reinforced when comparing existing satellite 

missions to the synthetic SWOT observations generated here. Because the synthetic SWOT 

storage change observations consistently outperformed current sensors, there is potential for 

SWOT observations to be used to correct errors in other sensors. Still, the advantages of current 

satellite sensors cannot be overlooked. While SWOT will observe the set of six reservoirs more 

frequently than Landsat-8, Sentinel-1, and Sentinel-2, if all four sensors are used cooperatively, 

the average number of observations per year would be double what SWOT alone can provide. 

Such cooperation has the potential to mitigate the issues with SWOT temporal sampling over 

reservoirs such as the Sirindhorn and better capture rapid storage change events, seen in Figure 

4.8. 

 There are several limitations of this study that must be taken into account when 

extrapolating from the results. First, the synthetic SWOT observations were created using a 

software tool and not a real world instrument. While great effort has been made by JPL to create 

a tool that best mimics the expected performance of SWOT, it cannot account for all real world 
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conditions. The SWOT Hydrology Simulator is in ongoing development to make it more realistic 

and more reservoir simulations should be done as improvements to the simulator are made. 

Second, the resolution (30 m) of the SRTM DEM used to provide the simulator with topography 

information may be too coarse to simulate all influences of topography on SWOT observations. 

The SRTM DEM is however, the most precise openly available DEM of the region and thus 

represents the most realistic option for simulating SWOT in the MRB. Finally, the influence of 

rain on SWOT observations is not taken into account here. High rain rates are expected to 

interfere with SWOT’s wide swath altimetry, but the degree of this influence has not been 

quantified. The MRB experiences extensive rainfall during the wet season (roughly between 

May and October), which could increase SWOT observation errors during a period when most 

reservoirs in the lower basin undergo rapid filling. Even with these limitations, this study 

represents a useful prediction of the expected performance of SWOT reservoir storage change 

estimation. 

 SWOT represents a potential significant step forward for satellite based reservoir 

monitoring capabilities and hydrologic prediction in ungauged river basins. This study uses the 

most realistic SWOT simulation tool available to quantify this potential on reservoirs in the 

Mekong River Basin. It was found that storage change can be accurately estimated from SWOT 

observations for all reservoirs tested except those with long narrow shapes or those set in 

mountainous terrain. The accuracy of these storage changes was sufficient for use in a simple 

reservoir outflow model, providing an early look at a potential application of SWOT 

observations to sub-basin scale hydrologic modeling. The ability to monitor not just reservoir 

storage change, but reservoir outflow, has many applications in water management in the 

transboundary, data limited Mekong River Basin.  
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Looking beyond what SWOT observations can achieve alone, this study also showed that 

reservoir surface area-elevation relationship estimation from SWOT observations is feasible after 

only a single year of SWOT orbits. Simulated SWOT storage changes performed with higher 

accuracy than current satellite sensors, indicating that these area-elevation relationships could 

improve the skill of current satellite based reservoir monitoring techniques. When SWOT 

launches in 2021, it will join an already impressive constellation of earth observing sensors. By 

leveraging observations from a suite of satellite missions (such as Landsat, Sentinel, and Jason) 

with observations from SWOT, there is potential to improve worldwide reservoir monitoring 

capabilities beyond what SWOT is capable of alone.  

Observations of reservoir storage change are not the only surface water measurement 

relevant to understanding reservoir impacts on river systems that SWOT will make. SWOT will 

also measure river width, water surface elevation, and slope. From these observations, 

instantaneous river discharge can be estimated, providing valuable information from which the 

hydrologic changes imposed by reservoirs can be assessed. Chapter 5 examines this aspect of 

SWOT observations by making an assessment of the accuracy of three different methods for 

estimating river discharge from SWOT observables in a tropical monsoonal river basin. 
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Chapter 5: Benchmarking wide swath altimetry‐based river discharge 

estimation algorithms for the Ganges river system 

Note: This chapter has been published mostly in its current form in Water Resources Research 

(M. G. Bonnema et al. 2016); Used with permission. 

Abstract: The objective of this chapter is to compare the effectiveness of three algorithms that 

estimate discharge from remotely sensed observables (river width, water surface height, and 

water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean 

Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, 

and the river discharge algorithms included here are designed to work with these data. Two 

algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, 

and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic 

geometry to estimate discharge, the at‐many‐stations hydraulic geometry (AMHG) method. A 

well‐calibrated and ground‐truthed hydrodynamic model of the Ganges river system (HEC‐RAS) 

was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the 

Arial‐Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the 

Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light 

of typical monsoon regime rivers. It was found that the MFG method provides the most accurate 

discharge estimations in most cases, with an average relative root‐mean‐squared error (RRMSE) 

across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, 

with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior 

river discharge limits its application on ungauged rivers. In terms of input data requirement at 

ungauged regions with no prior records, the Metropolis Manning algorithm provides a more 

practical alternative over a region that is lacking in historical observations as the algorithm 
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requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, 

provided the least accurate discharge measurements with an average wet and dry season RRMSE 

of 79.8% and 119.1%, respectively, across all rivers studied. This poor performance is directly 

traced to poor estimation of AMHG via a remotely sensed proxy, and results improve 

commensurate with MFG and MetroMan when prior AMHG information is given to the method. 

Therefore, we cannot recommend use of AMHG without inclusion of this prior information, at 

least for the studied rivers. The dry season discharge (within‐bank flow) was captured well by all 

methods, while the wet season (floodplain flow) appeared more challenging. The picture that 

emerges from this study is that a multialgorithm approach may be appropriate during flood 

inundation periods in Ganges Delta. 

 

5.1 INTRODUCTION 

Chapter 4 showed that SWOT is expected to provide useful estimates of reservoir storage 

change and that these storage change estimates can be paired with a hydrologic model to 

accurately estimate reservoir outflow. However, a key innovation of SWOT is that it will provide 

discharge estimates of large rivers. This will provide and independent assessment of the 

influence of reservoir operations on downstream streamflow. The discharge estimation process 

involves utilizing river width, water surface elevation, and water surface slope observed by 

SWOT and the application of discharge algorithms that are tailored for such inputs (D. E. 

Alsdorf, Rodríguez, and Lettenmaier 2007). 

Three such algorithms, with global applicability are the at-many-stations hydraulic 

geometry (AMHG) algorithm, the mean flow and geomorphology (MFG) algorithm, and the 

Metropolis Manning (MetroMan) algorithm. The mechanics of each algorithm are presented in 
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Section 3. Gleason, Smith, and Lee (2014) recently tested the AMHG algorithm on 34 rivers 

around the world. They found that under most circumstances, the algorithm discharges had 26% 

to 41% relative root mean squared error (RRMSE) agreement with gauged flow rates. However, 

for braided river conditions and situations where changes in river discharge have a very small 

effect on river width the algorithm performs considerably less skillfully with median RRMSE 

greater than 70% (Gleason, Smith, and Lee 2014). Gleason and Hamdan (2017) applied AMHG 

to the Ganges using Landsat images, and found a dry-season RRMSE of 28%, suggesting that 

the AMHG method could be well-suited to the river. Durand et al. (2014) has reported 19% 

RRMSE from the MetroMan algorithm on the River Severn in the UK. Another study found that 

the Metropolis Manning algorithm overestimates the discharge of the Garonne River (Berthon et 

al. 2014). There has been no formal test of the MFG algorithm at the time of writing.  

The discharge of rivers with high seasonal variability, meandering and braided nature and 

a tendency to change course, may be more difficult to extract than more stable rivers seen in 

most places. Such challenging set of river characteristics are often seen in deltas located at the 

downstream end of large river systems, such as Ganges-Brahmaputra, Nile, Zambesi, Niger, 

Indus, Salween and Mekong rivers. Given the economic and societal importance of most deltas 

for supporting the food and water needs of large populations, it is important to assess discharge 

estimation approaches in these locations (C. J. Vörösmarty et al. 2009). 

Assessment of different discharge estimation methods takes particular importance in this 

decade as satellite observations on river width and heights are expected to become more widely 

available. There are currently several concurrently flying nadir altimeters that can measure river 

heights, such as JASON-1, JASON-2, ENVISAT (this mission ended in May 2012), CryoSat-2 

and SARAL/AltiKa. With JASON-2 nearing its phasing out, JASON-3 was launched January 
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2016. In addition, the first satellite in European Space Agency (ESA)’s Sentinel-3 2-satellite 

constellation launched in February 2016 (Sentinel-3A) and Sentinel-3B will be launched in 2017. 

The planned Surface Water and Ocean Topography (SWOT) wide-swath radar interferometric 

altimetry mission (D. Alsdorf and Mognard 2011; Pavelsky and Durand 2012; L.-L. Fu et al. 

2012) is scheduled for launch in 2021. Of these planned missions, JASON-3 and Sentinel-3 are 

actually designated operational missions, dedicated to providing near-real time data to the 

general public. Thus, there is an anticipated abundance of satellite water missions that measure 

height well into the foreseeable future. With such data continuity and declining latency, it is 

worthwhile to assess discharge algorithms that are amenable to handling remotely-sensed inputs 

of heights, widths and slope. The first step to this assessment, which is the primary motivation of 

this study, is to assess the algorithmic (or model-based) uncertainty of each approach. Such a 

study allows us to understand the various error interactions and provide further guidance on 

development of discharge estimation methods in preparation of future satellite missions.  

 

5.2 STUDY REGION AND DATA 

5.2.1 Ganges River Delta 

The region of interest for this chapter is the Ganges River delta. The massive difference 

in river flow rates between the wet (Monsoon) and dry seasons makes this region unique for 

testing the ability of the algorithms to handle large seasonal variability. It is also a water-

sensitive delta hosting two mega cities (Kolkata and Dhaka) and the water and food needs of 

over 200 million people in a changing climate. A majority of the non-Monsoonal flow originates 

from the Himalayan glaciers and snowpack that sustains the dry season (base) flow and 

groundwater stocks for water supply and crop production (Dyurgerov and Meier 2005) 
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Three rivers from the delta region were selected for the study, the Arial-Khan River, 

Mohananda River, and main stem of the Ganges River. Figure 5.1 shows the locations of these 

three rivers within the river system of Bangladesh. The Ganges River was selected for study 

because it is the major river in this system. The Mohananda and Arial Khan Rivers were selected 

because they are a tributary and distributary of the Ganges, respectively, and are representative 

of the many smaller rivers in the delta. These reaches of the Arial Khan and the Mohananda 

Rivers are single channel, while the Ganges River reach has a few braided sections.  
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Figure 5.1. The Ganges Delta showing the selected river reaches that were studied. 

There are some significant differences in the hydraulic characteristics of the selected river 

reaches. The Ganges River is an order of magnitude wider than the other two rivers studied here. 

The Arial-Khan River experiences tidal effects which, during the dry season causes the river 

flow direction to reverse during high tides. This behavior is characteristic of delta rivers 

emptying into an ocean. In spite of their differences, all three rivers experience the sharp change 
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in river flow characteristics during the Monsoon season which is characteristic of most rivers of 

humid deltas. 

5.2.2 Hydrodynamic Model 

Because the SWOT mission will not fly until 2020, a hydrodynamic model of the Ganges 

delta created with the Hydrologic Engineering Center River Analysis Software (HEC-RAS) was 

used to simulate the three rivers studied here and to provide the proxy remote sensing variables. 

This model has been previously calibrated and used for studying satellite river observations of 

the Ganges delta system (Sikder and Hossain 2015; Siddique-E-Akbor et al. 2014; Maswood and 

Hossain 2016). The Manning’s roughness parameter at each cross section in the HEC-RAS 

model (located approximately every 10 km) was previously calibrated based on direct 

measurements of river height from gauge stations within the delta with boundary conditions 

specified by upstream gauged discharge and downstream water level. River bathymetry at each 

cross section was obtained from surveys of the river bed. All modeled cross sections of the 

Ganges are in locations where the river is single channel. Because of this, the model treats the 

entire river as single channel. The gauging stations along the selected river reaches are shown as 

red squares in Figure 5.2, while the performance of the HEC RAS model on each of these rivers 

is shown in Figure 5.3.  
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Figure 5.2. HEC-RAS river hydrodynamic model setup on the Ganges Delta and the calibration 

station locations within the selected study reaches. The highlighted rivers are study reaches used 

to delineate reach segments and the box in the left figure indicates the boundaries of the right 

figure. 
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Figure 5.3. Time-series of observed and HEC-RAS simulated water level at gauging stations. 

Herein RMSE is Root Mean Squared Error while RRMSE is the RMSE relative to the average 

water level and expressed as a %. 

 

Each study reach was subdivided into two or more reaches due to changes in river 

conditions resulting in significant differences in river hydrodynamics or discharge marked by 

specific locations. This was done so that the discharge algorithms could be applied to reaches 

with consistent discharge (i.e. reaches without abrupt changes in discharge or hydrodynamics). 

For the Ganges and Arial-Khan Rivers, this subdivision was determined using the location of 
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tributaries and distributaries along the channel. A sharp change in the slope of the Mohananda 

River marks the location of its subdivision. These subdivision locations are shown in Figure 5.4. 

The length of the resulting reaches ranges from 10 km to 100 km. Slope was calculated for each 

reach segment using the least-squares method. These calculated slopes are also depicted in 

Figure 5.4. 
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Figure 5.4. Water level of the Study Reaches on August 15, 2001. This illustrates the 

slope of each reach and the locations of the reach boundaries. 

5.3 METHODS 

The general methodology behind this study was to first generate river width and water 

surface elevation data as well as discharge for the three study rivers using the HEC-RAS model 

of the Ganges delta. Then, use this river width and water surface elevation data as input into each 



138 

 

algorithm in a consistent framework and compare the estimated daily discharges with the 

discharges generated by HEC-RAS model. The 5th, 15th, and 25th of each month from the year 

2001 for a total of 36 days were used to assess the performance of each algorithm. This is similar 

to the sampling frequency expected from the SWOT mission. Daily river data of the entire year 

2000 were treated as a priori knowledge and used to calibrate the MFG algorithm parameters 

and provide the prior parameter estimates for the Metropolis Manning algorithm. 

 Next, SWOT mission observations were simulated by passing the HEC-RAS model 

output through the SWOT simulator and use these river observations as inputs into the 

algorithms to understand how SWOT uncertainties affect discharge estimation. To help 

understand how each algorithm works, Figure 5 shows a depiction of an arbitrary river cross 

section (left) and profile (right) with remote sensing observables of width, depth (above a 

minimum or reference water depth), and slope.  

 

Figure 5.5. Representation of remote sensing observables of hydraulic features: width, 

depth, cross sectional area, and reach-averaged slope on a generic cross section. 

 

5.3.1 Data Processing 

In order to derive the river width, water surface elevation and water slope for use in each 

algorithm, 10 m resolution water depth rasters were created for the 2000-2001 period using 

HEC-Geo-RAS (Ackerman 2009). To generate these rasters, first the HEC-RAS model was used 
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to produce river cross sections at 100 m increments using a built in HEC-RAS interpolation tool. 

These cross sections were imported into GIS from HEC-RAS with the help of HEC-GeoRAS, 

resulting in 10 m resolution river bathymetry rasters. The generated river bathymetry was 

merged with 300 m resolution dry land DEMs of the study reaches provided by the Bangladesh 

Water Development Board (BWDB) and resampled to 10 m. These dry land DEMs were used 

because their elevations are based off the same local datum, mPWD (meter Public Work Datum), 

as the HEC-RAS model. Figure 5.6 shows the 300 m BWDB DEM and the HEC-RAS generated 

bathymetry (left), as well as the resulting 10 m merged DEM with river bathymetry (right) for 

the Mohananda River. Next, river depth data output taken from the HEC-RAS model of the 

study reaches were imported into GIS using HEC-Geo-RAS, resulting in 10 m resolution water 

depth rasters. These water depth rasters were then merged with the dry land DEMs with river 

bathymetry to convert them into water surface elevation layers.   
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Figure 5.6. 300 m dry land DEM from the Bangladesh Water Development Board and river 

bathymetry from HEC-RAS model before merging (left) and 10 m merged dry land DEM with 

river bathymetry (right). 

River width and height were extracted from the water surface raster by first dividing the 

raster into 100 m lengths (along river centerline) according to each cells proximity to points on 

the river centerline corresponding to 100 m increments (i.e. pixels were grouped with their 

nearest centerline point). River height in each 100 m increment was taken as the average height 

of all pixels within the 100 m length. River width in each 100 m increment was calculated by 

dividing the surface area of each increment (number of pixels multiplied by pixel area) by 100 m 

(the length of the increment). Figure 5.7 illustrates this data extraction process, from the 

combination of dry land DEMs with water surface DEMs, to averaging in 100 m increments to 

generate width, elevation, and slope along the entire reach. River heights and widths were 
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averaged across each increment for each of the selected 36 days of the study period in 2001 for 

the comparison between algorithms. These reach averaged observations are shown in Figure 5.8. 

In this study, it was assumed that the water slope, width and height data extracted from the water 

surface DEMs are a perfect representation of actual river conditions. 

 

Figure 5.7. Data processing technique to determine slope of a reach and river width. The ‘DEM’ 

in the upper right panel represents the dry land (without water) elevation model. This DEM was 

merged with the water depth layer (upper left) to generate the water elevation layer (middle). 

From the water surface elevation layer, width, elevation and slope were extracted (bottom). The 
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black vertical lines in the bottom figure show the location along the reach of the data shown in 

the top and middle figures. Elevation of water surface is relative to a local datum called meter 

Public Water Datum (mPWD) which is about 0.45 m above local mean sea level. 

 

Figure 5.8. Reach averaged water surface height, width and slope (slope is positive at downward 

direction) of study reaches for 36 days of the independent validation period in 2001. 
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Preliminary tests of the AMHG method showed that it exhibited inadequate skill when 

applied over the entire year of the study period in 2001. Because of the high variability of both 

river width and discharge between the dry and wet seasons and a change in flow regime (within-

bank flow versus floodplain flow), we separated the test into two periods: dry season and wet 

season. To properly compare the performance of the AMHG method to the other two 

approaches, similar time-period specific error statistics for the MFG and Metropolis Manning 

algorithm were calculated. The dry season of 2001 was defined as January 5th through May 15th 

and the wet season was defined as May 25th through December 25th. May 15th was chosen 

because in all three rivers, it marks the beginning of sharp increases in flow rate as well as height 

and width. Shifting this date earlier or later by a few days did not have a significant impact on 

the results. 

5.3.2 Application of the SWOT Simulator 

In order to better understand how the algorithms will perform with real observations, the 

SWOT simulator (introduced in Chapter 4) was applied in a manner that allowed the exploration 

of SWOT uncertainty on discharge estimation for Mohananda River. Here, river elevation 

measurements were simulated for each of the 36 days from 2001 using the HEC-RAS generated 

water depth files. These water heights were averaged within each 100 m long increment and used 

to determine the slope. The width was taken from the raster file generated from HEC-RAS 

output, because at the time of writing, estimating river width amongst SWOT location error had 

not been well established. No uncertainty was considered for width observations in this study. 

The 10 m dry land DEMs with river bathymetry described earlier provided the floodplain 

topography and river bathymetry needed for the simulator. Additionally, the water surface 

elevation layers generated from HEC-GeoRAS were used as inputs in to the simulator. The 



144 

 

simulator applied random and topographical errors to these water surface elevation layers and 

created new water surface layers representative of expected SWOT measurements (Figure 5.9). 

Since river surface extent could not be extracted from the simulator output, only height errors 

occurring within the original water surface were considered. Simulated elevation measurements 

with high vertical error also exhibit high geolocation error, causing them to be located outside 

the water surface mask. Thus, excluding these points lead to an underestimation of the overall 

SWOT error. Additionally, it was assumed that no rainfall occurred during SWOT observations 

and tropospheric errors were neglected. 

 

Figure 5.9. Application of the SWOT simulator. Water surface elevation raster generated by the 

SWOT simulator (Left); Averaged SWOT simulator WL at each 100 m increment of the 

Mohananda river (Right) on 15th April, 2001 (Orbit-0261). 
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The SWOT simulator typically runs for a complete cycle of 21 days (i.e. the simulated 

satellite flies over the same location on the earth every 21 days). Within this cycle, a river reach 

is expected to be covered at least once by the wide swath of the SWOT orbit. In higher latitudes 

the frequency of the coverage will be higher. The Mohananda river reach is entirely covered 

twice within a cycle by two orbits, once by the right swath of orbit-0261 and again by the left 

swath of orbit-0498 (Figure 5.10). The reach is passed by the orbit-0261 and orbit-0498 9.3 days 

and 17.8 days respectively from the cycle’s starting date. Note that these different orbits result in 

slightly different simulated water surfaces due to differences in the location of the reach relative 

to the satellite (e.g. errors at the outer edges of the swath are different than errors at the inner 

edges of the swath). Here, discharge was estimated for both overpasses and averaged. 
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Figure 5.10. SWOT orbital pass and coverage over the Mohananda river reach. The lower right 

panel in the inset shows the SWOT coverage with a 21 day repeat cycle at 77.6 degree 

inclination. 

5.3.3 At-Many-Stations Hydraulic Geometry (AMHG) 

The AMHG algorithm proposed by Gleason, Smith, and Lee (2014) and Gleason and 

Wang (2015)is based on the hydraulic geometry relationship between river width (w) and flow 

rate (Q) given by Equation 5.1, or at-a-station hydraulic geometry (AHG) (Leopold and 

Maddock 1953). Gleason and Hamdan (2017) have also previously applied this method to the 

Ganges river using Landsat imagery in a proof-of-concept experiment, finding 28% RRMSE 

between estimated and observed dry-season flows.  

 
baQw =  (5.1) 
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Where w is the width of river surface at any cross section at any point in time, Q is the river 

discharge, and a and b are the hydraulic geometry parameters, which are unique to each cross 

section along a river. Gleason, Smith, and Lee (2014) first showed that a previously unknown 

relationship between a and b parameters existed, and termed this relationship as AMHG, given 

by Equation 5.2. 

 )log()log( globwAMHGaAMHGb +−=  (5.2) 

Where, wglob is the mean of all observed widths in a study reach over space and time, AMHG is 

the slope of the b – log(a) relationship, and a and b are the hydraulic geometry parameters. 

AMHG thus relates cross sectional AHG parameters in space. A proxy for the slope of a river’s 

AMHG which only requires repeated width measurements of the river reach, given by Equation 

5.3, has been used to determine AMHG in the past. 
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Where, AMHG is slope of the b – log(a) relationship, wx1,x2,…xn is the width of river 

corresponding to each cross section of the reach and p is an empirical regression parameter. This 

relationship is not guaranteed to perfectly predict a river’s AMHG. Gleason and Wang (2015) 

found this relationship to be unreliable, however it is assumed to apply to the rivers studied here. 

An exploration of the impact of using this proxy on discharge estimation is presented in Section 

5.4.4.  

Using Equation 5.3, the AMHG can be calculated for a given reach via linear regression, 

allowing the relationship between a cross section’s a and b to be known. The p term represents 

the intercept of the linear regression and is not used in determining the AMHG. Next, an 

optimization routine (in this case a genetic algorithm (Gleason, Smith, and Lee 2014)is used to 
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determine the a and b parameters for each cross section in the river reach by minimizing the 

difference in flow rates between each cross section. The optimization routine is constrained in its 

search by AMHG and by discharge constraints proposed by Gleason, Smith, and Lee (2014). The 

genetic algorithm is here run 50 times for 50 generations each, with random start points and an 

average of all the resulting flow rates is output as the river reach’s discharge. The results were 

insensitive to the number of genetic algorithm runs (this is consistent with the sensitivity analysis 

performed in Gleason and Wang (2015)) and 50 runs of 50 generations were used, because this 

matched the procedure used in Gleason, Smith, and Lee (2014). Figure 5.11 shows a flow chart 

breakdown of the implementation of the AMHG algorithm. 
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Figure 5.11. Flow chart of steps to calculate discharge using the AMHG algorithm (top), the 

MFG algorithm (middle) and the Metropolis Manning algorithm (bottom). 

A brief sensitivity analysis was performed to determine the sensitivity of the AMHG 

method to the number of cross sections used to calculate discharge. It was found that the method 

was insensitive to this parameter as long as more than 15 cross sections were used. In this study, 

we used 25 equally spaced cross sections for each reach to balance the 15 cross section limit 

found in the sensitivity analysis while maintaining fewer cross sections to achieve reasonable 



150 

 

computation speed. The water surface widths at these cross sections were taken from the 10 m 

water surface DEM generated from HEC-GeoRAS. 

5.3.4 Mean Flow and Geomorphology Algorithm 

The MFG algorithm is developed from conceptual approaches discussed in Bjerklie et al. 

(2003; 2005). The algorithm assumes a mean value for the Manning friction coefficient that is 

modified based on the change in cross-sectional flow area, assumes a regular geometric shape for 

the cross-section such that the change in maximum depth measured by change in stage can be 

translated into the change in the mean flow depth of the cross-section, and assumes a minimum 

or zero flow stage.  The general relation is given in Equation 5.4. 

 

 𝑄 =  
1

𝑛
([𝐻 − 𝐻𝑜]𝑌∗)

5

3𝑊𝑆
1

2 (5.4) 

Where, 𝑛 is the estimated Manning’s resistance coefficient, 𝑊 is the observed width, 𝐻 is the 

observed height, 𝑆 is the mean slope of the river (water surface assuming equivalent to energy 

slope), 𝑌∗is the fraction to derive mean cross section depth, equal to  1 −
1

1+𝐵
 , where B is the 

shape factor (2 for parabolic cross section and 10 for Rectangular cross section) and 𝐻𝑜 is the 

zero flow depth, which is individually calibrated with mean annual flow. 

The mean water surface slope was derived from the HEC-RAS model output for the year 

2000.  A rectangular cross section was assumed in calculating Y* (with B equal to 10). The 

Manning n value is assumed to be associated with the mean value of channel width and stage. 

This Manning n value is varied according to the change in channel cross-section as indexed by 

Equation 5.5.   

 𝑛 =   𝑐1 (
𝑊𝐻

𝑊𝑎𝐻𝑎
)

𝑥1

𝑛𝑎 (5.5) 
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Where 𝑊𝑎 is the long term average of observed width, 𝐻𝑎 is the long term average of observed 

height and 𝑛𝑎 is the input average Manning’s n 

The long term width and height observations were taken from the daily output from the 

HEC-RAS model for the year 2000. The input average Manning’s n used here was 0.025. 

Section 5.4.5 shows that this method is relatively insensitive to the Manning roughness input. 

The coefficients, 𝑐1 and 𝑥1, remain constant through time and were calibrated based on daily 

water surface elevation and mean annual discharge from the same HEC-RAS model output for 

the year 2000.  While an entire year of daily data was used here, the calibration of these 

coefficients can proceed using limited time series of stage or general relationships developed on 

rivers in a similar setting and then further calibration can be performed as more satellite 

observations become available. For the three rivers studied here, the difference between annual 

average height, width, slope, and discharge calculated from daily values and calculated from a 

more limited time series (the 5th, 15th, and 25th of each month) were less than 0.1%, ultimately 

leading to no difference in discharge estimation. It is anticipated that initial empirically derived 

default values for B, na, 𝑐1 and 𝑥1 can be optimized over time based on validation time series, 

and improved understanding of the relation between the coefficient values and river 

characteristics.  

The value for the minimum flow depth H0 is optimized by calibrating the time series of 

observed width, stage and slope to the mean discharge for the river, and as such is dependent on 

knowledge of the mean discharge. It is assumed that the mean discharge is available from 

various global data bases, or from global circulation and hydrologic models, or from other 

sources. The parameterization of Manning n cannot address tidal flux, because in these 

environments the relation between change in Manning n and change in cross-section does not 
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necessarily have any validity. This is because the flow resistance is dominated by backwater 

effects and varies substantially during periods of adverse (upstream) slope (incoming flood tide) 

and downstream slope (outgoing ebb tide). However, a modified relation between cross-sectional 

change and slope could be developed to account for this deficiency. 

The MFG algorithm relies on the prior estimation of average Manning’s n (𝑛𝑎) and mean 

annual flow to calibrate the 𝐻𝑜. The sensitivity of the algorithm to prior estimations of these 

parameters is explored in Section 5.4.5. This discharge estimation algorithm can be applied to 

calculate cross sectional discharge as well as reach averaged discharge. In this study, reach 

averaged observations were used for this method resulting in reach averaged discharge. Figure 

5.11 shows the algorithm structure for calibrating 𝑐1, 𝑥1 and H0 and estimating discharge.  

5.3.5 Metropolis-Manning Algorithm 

The Metropolis Manning algorithm also uses a form of Manning’s equation paired with 

mass conservation as a basis for determining discharge (Durand et al. 2014). Equation 5.6 shows 

Manning’s equation as used by this algorithm. Note that the bar signifies reach averaged 

quantities. 
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Where, r denotes reach, t denotes time step, n is Manning’s n, A0 is the base flow area, δA is the 

deviation in flow area from base flow area, w is the river top width, S is the river slope, and Q is 

the river discharge. Equation 5.7 gives the mass conservation of the river. 
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Where, 
x

Q




 is the partial derivative of flow rate with respect to the downstream direction, 

t

A




 is 

the partial derivative of flow area with respect to time and q is the reach averaged lateral 

inflows. Discretizing Equation 5.7 between two remote sensing overpasses gives Equation 5.8. 

By minimizing Equation 5.8, the optimal Manning’s n and base flow area can be obtained. 
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Where, Θ(r,t) is the error for reach r at time t and δr,t is a constant dependent on length of reach, 

see Durand et al. (2014)for more details 

The error term in Equation 5.8 is minimized using a stochastic sampling algorithm known 

as the Metropolis algorithm that uses a Bayesian probability updating scheme to create a Markov 

chain of the unknown parameters, n and A0. The Markov chain is run for 100,000 iterations and 

the end result is likely values for the Manning’s n and base flow area. With these parameters 

known, Equation 5.6 is solved to provide discharge. 

In this study, lateral inflow (q) was assumed to be 0. This is valid for the synthetic 

experiment in this study , because the HEC-RAS model does not take into account smaller 

tributaries, distributaries or groundwater effects. In application, this assumption would likely 

decrease the accuracy of this method. The prior base flow area (A0) was estimated using 

minimum river width and discharge from the year 2000 calibration data set and assuming a water 

depth of 1m. The standard deviation of this base flow area estimate was set as 20% of the base 

flow area estimate. The initial estimate of Manning’s n was taken as 0.025 with a standard 

deviation of 0.01. The standard deviation of slope, height and width for all reaches were defined 

as 0.5 cm/km, 1 cm and 1 m, respectively. These values represent the uncertainty in the 

observations. To test the algorithmic uncertainty of the Metropolis Manning algorithm, the 
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observations are assumed to be perfect. However, this algorithm requires these values to be non-

zero. For this reason, relatively small standard deviations of the observations were selected. 

This algorithm was designed to operate using more than three river reaches. Here, the 

study reaches were discretized further, similar to the manner Durand et al. (2014) further 

discretized their study reach of the River Severn. In this past study, river sub-reaches ranged 

from 6.7 km to 8.2 km. Here, we partitioned each study reach in an attempt to match the reach 

length used in Durand et al. (2014). However, this was balanced against the increasing 

computational expense caused by increasing the number of reaches. The Ganges was split into 

nine sub-reaches (each approximately 20 km in length), the Mohananda was split into six sub- 

reaches (each approximately 10 km in length) and the Arial-Khan was split into five sub-reaches 

(each approximately 20 km in length). All sub-reaches maintained the 100 m spacing between 

width and height observations described in Section 5.3.2. Since this algorithm provides reach 

averaged discharge, length weighted average discharges were calculated which correspond to the 

original study reaches defined in Section 5.2 for comparison to the other two algorithms.  
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5.4 RESULTS 

5.4.1 Ganges River Results 

Figure 5.12 shows the reach averaged discharge estimated by the discharge algorithms on 

the two sub reaches of the Ganges River and Table 5.1 provides root mean squared error 

(RMSE), relative root mean squared error (RRMSE), bias, and percentage of error that is bias for 

each algorithm. The RRMSE is the RMSE relative to the average observed discharge (from 

HEC-RAS model) and expressed as a %. All three algorithms provided satisfactory results 

during the dry season (48% to 54% RRMSE) for the first reach (0.4km to 122.5km). The 

Metropolis Manning algorithm showed much greater accuracy on the dry season of the second 

reach (17.9% RRMSE) with the other two algorithms showing performance similar to their first 

reach performance.  The AMHG algorithm significantly reduces in skill during the wet season 

when compared to the other two algorithms. This is in contrast to previous application of AMHG 

in the basin, as Gleason and Hamdan (2017) used Landsat imagery to demonstrate AMHG for 

the Ganges near Hardinge Bridge, and they found an RRMSE of 28% for dry season flows when 

compared to discharge measured on the same day as the Landsat images. However, a difference 

is expected because Gleason and Hamdan (2017) used real observations and assumed an AMHG 

parameter that matched with observations. The Metropolis Manning algorithm also showed a 

decrease in accuracy during the wet season on both reaches which corresponds to an increase in 

error associated with bias. The MFG algorithm performed better in the wet season than the dry 

season with 10% to 15% lower RRMSE. This increase in performance is accompanied by a large 

decrease in the error associated with bias. Overall, the MFG algorithm outperforms the 

Metropolis Manning and AMHG algorithms in the wet season, while each algorithm appears to 

perform well in the dry season. 
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Figure 5.12. Comparison of performance of each algorithm on the Ganges, Mohananda, 

and Arial-Khan Rivers during the independent validation period of 2001. 
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Table 5.1. Error statistics of the discharge algorithms for Ganges River during the study period 

of 2001. 

Ganges 0.4km - 122.5km     

 MFG Metropolis-Manning AMHG 

 Dry Wet Dry Wet Dry Wet 

RMSE 

[m3/s] 1592 5741 1745 13159 1779 20530 

RRMSE 

[%] 48.4 34.4 53.1 78.8 54.1 122.9 

Bias [m3/s] 1542 2191 1110 9387 812 15244 

% of Error 

from Bias 96.8 38.2 63.6 71.3 45.6 74.3 

Ganges 122.6km - 186.8km     

RMSE 

[m3/s] 1574 5384 589 6998 1310 21217 

RRMSE 

[%] 47.8 32.2 17.9 42.0 39.8 126.8 

Bias [m3/s] 1594 1961 137 4890 1307 15566 

% of Error 

from Bias 97.7 36.6 23.2 69.9 96.2 73.5 

 

5.4.2 Mohananda River Results 

Figure 5.12 shows the results of the discharge algorithms on the two sub-reaches of the 

Mohananda River and Table 5.2 provides RMSE and RRMSE for each algorithm. The MFG 

algorithm showed skill in both seasons, with better performance in the wet season than the dry 

season. The Manning Metropolis algorithm also performed better in the wet season than the dry 

season, but the extracted discharge estimates were much worse than those of the MFG algorithm. 

A large percentage of the Metropolis Manning’s error during the dry season was associated with 

bias. The AMHG was unable to extract skillful discharge estimates during both dry and wet 

seasons for both river segments. A possible cause of this is the inability of the width proxy to 

accurately estimate the Mohananda River’s AMHG parameter for both dry and wet seasons. This 
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idea is explored further later in this section. The MFG algorithm shows a clear performance 

advantage over the other two algorithms on the Mohananda River. 

Table 5.2. Error statistics of the discharge algorithms for Mohananda River during the study 

period of 2001 

Mohananda 0.1km – 38.0km     

 MFG Metropolis-Manning AMHG 

 Dry Wet Dry Wet Dry Wet 

RMSE 

[m3/s] 29 197 66 1049 90 2412 

RRMSE 

[%] 35.9 10.5 81.7 55.9 110.8 128.5 

Bias [m3/s] 19 6 58 644 80 1702 

% of Error 

from Bias 66.5 3.1 88.2 61.4 89.2 74.0 

Mohananda 38.1km – 63.7km     

RMSE 

[m3/s] 47 480 119 1034.7 90 2406 

RRMSE 

[%] 58.0 25.6 146.0 55.2 109.7 128.4 

Bias [m3/s] 19 192 116 570 80 1697 

% of Error 

from Bias 39.7 39.9 97.0 55.1 89.6 74.0 

 

5.4.3 Arial Khan River Results 

Figure 5.12 shows the results of the discharge algorithms on the three sub reaches of the 

Arial Khan River and Table 5.3 provides RMSE and RRMSE for each algorithm. It is important 

to note that the AMHG and MFG algorithms are unable to vectorize flow as Metropolis Manning 

algorithm (positive flow is flow along the downstream direction; negative flow is flow in the 

upstream direction), but should still properly capture the magnitude of the flow when a river 

switches flow direction. The output of these two algorithms were therefore compared with the 

absolute value of the observed discharge for a more accurate error analysis during the dry season 

with heavy tidal effects (i.e., during high tide). This is realistic because while the algorithms 
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themselves have no method of determining flow direction, it can easily be determined form 

SWOT observations of river slope. Figure 5.12 shows the absolute value of the observed 

discharge and the absolute value of the Manning Metropolis estimated discharge to show a fairer 

comparison between each algorithm output.  

Table 5.3. Error statistics of the discharge algorithms for Arial Khan River during the validation 

period of 2001. 

Arial-Khan 0.0km – 38.4km     

 MFG Metropolis-Manning AMHG 

 Dry Wet Dry Wet Dry Wet 

RMSE 

[m3/s] 64 64 75 408 187 957 

RRMSE 

[%] 29.7 6.9 35.0 43.9 86.8 102.8 

Bias [m3/s] 7 18 57 288 170 639 

% of Error 

from Bias 10.4 27.8 75.2 70.7 90.7 66.8 

Arial-Khan 38.51km – 48.9km     

RMSE 

[m3/s] 86 68 60 54 168 1072 

RRMSE 

[%] 42.2 7.3 29.4 5.8 82.1 115.0 

Bias [m3/s] 23 24 49 22 74 700 

% of Error 

from Bias 26.1 35.4 81.1 41.2 43.8 68.5 

Arial-Khan 49.0km – 105.7km 

RMSE 

[m3/s] 182 215 114 163 146 1023 

RRMSE 

[%] 94.5 23.0 58.9 17.5 75.7 109.6 

Bias [m3/s] 125 37 80 144 46 610 

% of Error 

from Bias 68.4 17.2 70.6 88.3 31.6 62.5 

 

For all three reaches of the Arial-Khan River, both the MFG and Metropolis Manning 

algorithms showed high skill during the wet season (6.9% to 23.0% RRMSE). Dry season 

discharge estimation was more challenging for all three approaches than wet season, possibly 
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due to the high tidal effects on the river causing diurnal change in flow regime from within-bank 

to floodplain flow quite frequently. The Metropolis Manning algorithm was the only one to 

consistently provide accurate discharge estimations during the dry season. The Metropolis 

Manning algorithm showed high error associated with bias while the MFG algorithm’s error 

showed less bias. Once again, the AMHG algorithm failed to produce skillful discharge 

estimates, possibly caused by the method’s width proxy inaccurately estimating the AMHG 

parameter.  

5.4.4 Improving the AMHG Algorithm 

To better understand where the large errors from the AMHG may be originating from, 

estimation of the AMHG slope was examined via the width proxy. The AMHG for each river for 

the year 2001 for both dry and wet seasons were obtained from the river width proxy (Equation 

5.3) and compared to the AMHG calculated directly from the HEC-RAS model widths and 

discharge that represent the river’s true AMHG. Table 5.4 shows these AMHG parameters, as 

well as the R2 statistic of the directly calculated AMHG as a measure for how tight the a-b 

relationship for the river is. The table also shows the percent difference between the proxy 

estimated AMHG and the directly calculated AMHG. 
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Table 5.4. Comparison between proxy AMHG and Observed ‘true’ AMHG. 

River Reach Directly 

Calculated 

AMHG  

Direct 

AMHG 

R2 

Proxy 

Estimated 

AMHG 

% Difference 

between 

Proxy and 

Direct 

Ganges  Dry 0.4km – 122.5km -0.1189 0.99 -0.0901 27.6 

122.6km – 

186.8km 

-0.1208 0.97 -0.4502 

115.4 

Ganges  Wet 0.4km – 122.5km -0.0965 0.99 -0.4157 124.6 

122.6km – 

186.8km 

-0.1052 0.93 -0.2725 

88.6 

Arial-Khan Dry 0.0km – 38.4km -0.1095 0.88 -0.2793 87.3 

38.5km – 48.9km -0.0244 0.04 -0.3141 171.2 

48.9km – 105.7km -0.0108 0.04 -0.2377 182.6 

Arial-Khan Wet 0.0km – 38.4km -0.1540 0.96 -0.3712 82.7 

38.5km – 48.9km -0.0449 0.30 -0.0484 7.5 

48.9km – 105.7km -0.0665 0.56 -0.2708 121.1 

Mohananda Dry 0.1km – 38.0km -0.0883 0.71 -0.4958 139.5 

38.1km – 63.7km -0.1207 0.68 -0.3741 102.4 

Mohananda 

Wet 

0.1km – 38.0km -0.1048 0.83 -0.4134 119.1 

38.1km – 63.7km -0.1302 0.89 -0.4081 103.3 

 

As can be seen in Table 5.4, the proxy incorrectly estimated the actual river AMHG for 

almost all of the river reaches. Furthermore, one of the only AMHG slopes estimated correctly, 

that of the Arial-Khan Wet 38.5 km – 48.9 km, exhibited a very loose AMHG (R2 = 0.3), which 

is indicative that the AMHG method may not perform well. The other fairly closely estimated 

proxy, Ganges Dry 0.4 km – 122.5 km, resulted in more skillful results (54% RRMSE). 

However, the inaccurately estimated proxy for Ganges Dry 122.6 km -186.8 km resulted in 

lower uncertainties (39.8% RRMSE), the cause of which is unclear at this time. Nevertheless, the 

fact that the only reasonably accurate proxy estimate of AMHG resulted in one instance of the 

AMHG method accurately estimating discharge indicate that more accurate estimations of 

AMHG could lead to more successful applications of the AMHG method.  
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Thus, we tested a ‘corrective’ approach on the Ganges River data. The Ganges River 

daily discharge and river width data from HEC-RAS for the year 2000 was used to obtain 

estimates of the AMHG parameters. This width and discharge data was the same data provided 

to the MFG algorithm for calibration and the Metropolis Manning algorithm for prior parameter 

estimation. These were fed into the AMHG method with the same width data from the study 

period of 2001. Figure 5.13 shows the results of this approach of relying on a priori model based 

hydraulic parameters. 

 

Figure 5.13. The AMHG algorithm performance using a priori AMHG knowledge from 

HEC RAS Model. 

It is clear from Figure 5.13 that the AMHG discharge estimation accuracy is greatly 

improved for the Ganges River by using prior knowledge of the river’s discharge. Table 5.5 

shows the Ganges River error statistics using the corrective approach on AMHG values. This 

shows that the AMHG method can provide skillful discharge estimates with accuracies 

comparable to the MFG and Metropolis Manning algorithms, even during the wet season. The 

dependence on the proxy is further confirmed with the good AMHG performance found by 
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Gleason and Hamdan [2015] for the Ganges, where in their case they did not rely on the proxy 

but instead assumed an AMHG slope of -0.30, which agrees with observed data. Improving the 

performance of AMHG without use of a priori knowledge is a key challenge to the AMHG 

method and an area of active research: the AMHG method has limited utility for the rivers 

studied here without further refinement. 

Table 5.5. Ganges River Error Statistics with corrected AHMG approach relying on a priori 

information 

Ganges 0.4km - 122.5km     

 MFG Metropolis-Manning AMHG 

 Dry Wet Dry Wet Dry Wet 

RMSE 

[m3/s] 1592 5741 1361 6724 1703 6776 

RRMSE 

[%] 48.4 34.4 41.4 40.3 51.8 40.5 

Ganges 122.6km - 186.8km     

RMSE 

[m3/s] 1574 5384 1703 7082 1310 7869 

RRMSE 

[%] 47.8 32.2 51.7 42.3 39.8 47.0 

 

5.4.5 Sensitivity to Algorithm Parameters 

The Metropolis Manning and MFG methods both require a priori information in order to 

estimate discharge. The Metropolis Manning method requires estimates for the Manning’s 

roughness parameter as well as an estimate of cross sectional area under minimum flow 

conditions. The MFG method also requires an estimate of Manning’s roughness as well as the 

average discharge of the river. Here, we tested the sensitivity of the estimated discharge from 

both algorithms to these input parameters. Each algorithm was run multiple times while varying 

these input parameters by modifying the original value (i.e. the parameter values used to generate 

the results in sections 4.1, 4.2, and 4.3) by ±5%, ±10%, ±25%, and ±50%. Only one parameter 
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was modified at a time and the sensitivities of the methods to changing more than one parameter 

at one time were not evaluated. The results of the sensitivity analysis are shown in Figure 5.14. 

For clarity, only the results from the Ganges reach 0.4 km – 122.5 km are shown. The trends 

shown here are representative of the algorithm sensitivities on all reaches. Figure 5.14 shows that 

the MFG method is not sensitive to changes in the input Manning’s roughness parameter, with 

RRMSE remaining at a constant 40% for all tested values. The MFG method was sensitive to the 

input mean discharge, with RRMSE ranging from 39% at -10% of the original input value to 

79% at +50% of the original input value. The Metropolis Manning method was also insensitive 

to changes in the input Manning’s roughness parameter, with RRMSE remaining constant at 

66% for all tested parameter values. The Metropolis Manning was sensitive to changes in the 

minimum flow area input, with RRMSE ranging from 62% at -10% of the original input value to 

85% at +50% of the original value. For this reach, both methods appear to have a minimum error 

around -10% of the input parameters. On other reaches, this minimum error occurred at different 

changes in parameter values ranging from -25% to +10% and were not always in the same 

location for both algorithms (e.g. the minimum error for the second Ganges reach occurred at -

25% for the MFG method, and at -10% for the Metropolis Manning method).  
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Figure 5.14. Algorithm sensitivities to change in input parameters for the Ganges reach 0.4 km - 

122.5 km of the MFG method (Left) and the Metropolis Manning method (Right). 

The sensitivity of both algorithms appears to be similar in magnitude. Both algorithms 

require a record of river observations in order to estimate the necessary input parameters. 

Repeated measurements of river cross sectional area during a river’s dry season are needed to 

estimate minimum flow for the Metropolis Manning method. At least a one-year record of 

discharge estimates is required to accurately estimate a river’s average discharge for the MFG 

method. This sensitivity analysis highlights the reliance of these two methods on good estimates 

for their input parameters, minimum flow area for the Metropolis Manning method and mean 

discharge for the MFG method.  

5.4.6 Implication for the Planned SWOT Mission 

To gain a basic understanding of the implications of the above results for the SWOT 

mission, SWOT simulated river height observations of the 36 days in 2001 for the Mohananda 

River were run through the MFG and Metropolis Manning algorithms along with river widths 

obtained from the HEC-RAS model.  As we had only considered the simulated height from the 
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SWOT simulator (and not SWOT river widths) along with the true width (from HEC-RAS) of 

the river, the AMHG method’s response to SWOT observables could not be tested. 

The MFG and Metropolis Manning algorithms were applied using the river height and slope 

derived from SWOT simulator water level and the width data from the HEC-RAS simulation 

(the same data used in the previous section to test the algorithmic uncertainty) to calculate the 

discharge. Two sets of discharge were generated for each date, one by orbit-0261 output and 

another by orbit-0498 output. The average of these two sets is considered here as the discharge 

estimated from the SWOT simulator output. Figure 5.15 shows the observed and SWOT 

simulated algorithm discharge for the MFG and Metropolis Manning algorithms and Table 5.6 

shows the corresponding error statistics.  

 

Figure 5.15. Algorithm sensitivities to change in input parameters for the Ganges reach 0.4 km - 

122.5 km of the MFG method (Left) and the Metropolis Manning method (Right). 
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Table 5.6. Comparison of algorithm performance between discharge estimations using reference 

river observations and discharge estimations using SWOT simulated river observations 

  RMSE [m3/s] RRMSE [%] 

  

Reference 

Observations 

SWOT 

Simulated 

Observations 

Reference 

Observations 

SWOT 

Simulated 

Observations 

0.1km - 38.0km     

MFG 
Dry 29 25 35.9 31.4 

Wet 197 205 10.5 10.9 

Metro-

Man 

Dry 66 51 81.7 62.3 

Wet 1049 1186 55.9 63.2 

38.1km - 63.7km     

MFG 
Dry 47 60 58 73.3 

Wet 480 487 25.6 26 

Metro-

Man 

Dry 119 52 146.3 63.1 

Wet 1035 1036 55.2 55.3 

 

 

Propagating remote sensing errors through the algorithms had two significant effects on 

discharge estimation accuracy. The MFG method in the second reach performed considerable 

less skillfully during the dry season (RRMSE increased by 15.3%).  In contrast, the Metropolis 

Manning algorithm experienced a large increase in dry season accuracy in both reaches (RRMSE 

decreased by 19.4% and 83.2%). These accuracy increases could be the result of the SWOT 

simulated observations forcing the algorithm to search a wider range of parameter values to find 

the minimum error than the reference data. With the reference data, the Metropolis Manning 

algorithm could have converged to a local minimum and the introduction of SWOT errors could 

cause the algorithm to converge to a more optimal minimum. In all other cases, both algorithms 

performed only slightly worse than with reference observations. These results indicate that the 

Metropolis Manning algorithm may be more sensitive to uncertainty in remotely sensed river 

surface elevation. This is most likely due to the unrealistic assumption of no observational 
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uncertainty in river width, which at the time of writing this manuscript, a proper procedure to 

rationalize extraction of SWOT-river widths from the simulator was absent.  

It should be noted that the minimum or zero flow stage in the MFG algorithm is 

analogous to the minimum flow area in the Metropolis Manning algorithm. Thus, the 

convergence of the MFG and Metropolis algorithms might be used as an additional objective 

function for optimizing the discharge estimation. Additionally, the AMHG could be used to 

derive a mean discharge as a function of width based on general regime theory [Leopold and 

Wolman, 1964] and used to calibrate the MFG zero flow depth and the Metropolis Manning 

minimum cross-section area. These considerations point to the advantage for synergistic 

application of multiple algorithms as a ‘team’. 

An important consideration for application of the algorithms is the reach length over 

which the slope should be derived, and which average values of width and stage should be 

assessed.  In most cases, this length may be determined from observational data limitations, but 

in a best case scenario, should be related to a reach length that encompasses repeating 

geomorphic channel features such as a meander length, or a repeating braiding or multi-channel 

pattern, or riffle pool sequence. 

5.5 CONCLUSIONS 

This first tier of assessment of three discharge algorithms designed to work with data 

from the upcoming SWOT mission, showed that the MFG and Metropolis Manning algorithms 

generally outperformed the AMHG algorithm. Both the MFG and Metropolis Manning 

algorithms provided the better performance on different reaches and seasons, with at least one of 

the two typically producing discharge estimates with less than 50% RRMSE. Furthermore, the 

study found that the AMHG method can be improved during the wet season using a priori 
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information of discharge, and such improvement is needed for operational application of AMHG. 

The impact of SWOT estimation uncertainty of river height on discharge accuracy appeared 

insignificant. In general, the MFG method was found to remain relatively more accurate while 

the Metropolis Manning algorithm appeared more sensitive to SWOT height observation errors. 

However, the SWOT elevation errors estimated here were limited by excluding errors occurring 

outside the true water extent. Thus, the error simulated here is an underrepresentation of the 

overall errors expected from the SWOT mission. Future studies should further explore the effects 

of SWOT error on discharge estimation as more complete SWOT simulator packages become 

available.   

Overall, the MFG algorithm appeared to be the most stable of the three discharge 

algorithms in the Ganges river system. However, its dependence on knowledge of prior mean 

river discharge and various hydraulic flow parameters (width and height etc.) suggests that it is 

not suited for a completely ungauged river system lacking in historical records. For the vast 

majority of cases in the developing world, the Metropolis Manning or AMHG method may be 

the more practical alternative for using satellite water elevation data to estimate discharge. 

Furthermore, the fact that the Metropolis Manning algorithm and the MFG algorithm seemed to 

excel in different cases and the region-specific correction improved AMHG performance, a 

multi-algorithm ensemble approach of algorithms working as a ‘team’ may be the future of 

space-borne discharge estimation. Ultimately, this chapter shows that SWOT is expected to 

provide skillful discharge estimates in tropical monsoonal rivers. 

Chapters 4 and 5 have framed our current and near future ability to assess the volumetric 

impacts of reservoirs on river systems. Chapter 6 examines a different dimension of reservoir 

impacts, water quality, from a remote sensing perspective. 



170 

 

Chapter 6: Understanding Hydropower’s Impact on River Temperature 

in the 3S River Basin 

Note, this chapter has been adapted from a paper submitted to Geophysical Research Letters. At 

the time of writing, this paper is currently in review. 

Abstract: Extensive hydropower dam development in the Mekong River Basin (MRB) is rapidly 

altering the natural state of the region’s surface water. Despite efforts to understand these 

changes, one impact has gone unnoticed, the impact of hydropower dams on downstream river 

temperatures. This chapter uses thermal infrared observations from 30 years of Landsat satellite 

imagery and identifies a relationship between dry season water temperature cooling trends and 

dam development in the 3S Basin, a major tributary of the Mekong River. Rapid decreases in 

annual average dry season river temperature ranging between 0.7° C and 2° C occurred within a 

year of major dams beginning operations on the three major rivers in the 3S basin. Furthermore, 

in-situ water temperature observations confirmed decreasing river temperature for two major 

dam development events and showed that the temperature impacts of those dams could be as 

significant as 6° C reduction in some months. Other possible sources of the temperature 

anomalies investigated were precipitation, air temperature trends and deforestation, but all were 

are ruled out as potential drivers of the observed river cooling. Finally, this cooling effect was 

tracked downstream to the Mekong River, again utilizing the long record of Landsat thermal 

infrared observations. Evidence was found that the 3S outflow has been cooling the Mekong 

river downstream of the confluence, by as much as 0.8° C in recent years. Our study presents a 

very clear pattern between dam development in the 3S and cooling river temperatures. Given the 

cooling effects discovered here, understanding the thermal impacts of reservoirs in the MRB is 

critically important for understanding how fish and aquatic ecosystems will behave in the future. 
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In the face of continued widespread dam development plans in the MRB, uncovering the 

transformation by hydropower dams on the thermal regime of the river system should now be a 

top priority for sustainable water resources development. 

 

6.1 INTRODUCTION 

The previous chapters all focused on the impacts of reservoirs on water quantity (timing and 

magnitude of streamflows). However, reservoirs also have direct impacts on several aspects of 

water quality. One critical element of the impact of dams on water quality that has gone 

undetected is the aggregate effects of dams on downstream water temperature. 

Hydropower dams tend to cool the downstream water temperature by releasing water 

from the penstock located at deeper levels of thermally stratified reservoirs (Sherman et al. 2007; 

Niemeyer et al. 2018). Changes in the thermal regime of rivers in the MRB threaten fish 

production downstream, a source of food and livelihood for millions (Mekong River 

Commission 2003; Ahmed et al. 1998). The Tonle Sap Lake, connected to the Mekong River, is 

home to one of largest inland fisheries in the world (Baran and Myschowoda 2009). 

Perturbations in the thermal regime of Tonle Sap Lake would have significant impacts on the 

health of the fish population (Ficke, Myrick, and Hansen 2007) and regional biodiversity 

(Liermann et al. 2012). The MRB severely lacks in-situ temperature monitoring stations, 

allowing dam driven temperature change to remain hidden and unexplored. Satellite remote 

sensing is a powerful and underutilized tool that can be harnessed to illuminate the potential 

thermal impacts of dams. The Landsat Mission thermal infrared (TIR) sensors are a promising 

option due to high revisit time (16 days), high spatial resolution (60m-90m), and a long historical 

record. Landsat TIR data has been used before to monitor river temperatures (Tavares et al. 
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2019; Dugdale 2016; Ling et al. 2017), but never in the context of the dam development in the 

MRB.  Applying TIR observations to the MRB allows for the monitoring of river temperature in 

locations that were previously un-monitored, which is key for understanding the thermal impacts 

of current dams and predicting the impacts of dams that have yet to be built. 

This study presents the results of the application of Landsat 5, 7, and 8 TIR observations 

towards monitoring changes in river temperature in the 3S Basin in an attempt to answer: Are 

dams in the 3S Basin causing changes in stream temperature and if so, what are the impacts on 

the temperature of the Mekong River? 

 

6.2 STUDY REGION  

The 3S Basin, the largest tributary to the Mekong River (Adamson et al. 2009), is a prime 

location to reveal the hidden thermal impacts of dams. The basin consists of three major rivers 

(Sekong, Sesan, and Srepok), draining from southern Lao PDR, western Vietnam, and eastern 

Cambodia before emptying into the Mekong River Figure 6.1. The 3S Basin is a microcosm of 

dam development in the MRB, with many small, upper tributary dams already built and 

progressively larger dams planned or under construction on the main rivers. In other words, what 

is now happening to the lower Mekong River in general has already happened to the 3S Basin 

since the 2000s and the two basins have strikingly similar hydro-climatic properties. While all 

three sub-basins are undergoing hydropower development, they are being developed at different 

rates2. Major dams on the Sesan River were constructed in 2001, 2008, and 2009, while major 

dams on the Sekong River were not installed until 2015 (WLE 2017). Direct comparisons of 

stream temperature trends between three basins at different stages of development allow for the 

identification of dam driven temperature changes. Beyond being an ideal testbed, the 3S Basin is 
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also critically important for the health of the greater MRB ((ADB)(Manila) 2006). The 3S Basin 

contributes 17-20% of the total MRB discharge (Adamson et al. 2009). In relatively close 

proximity to Tonle Sap Lake and the Mekong Delta with high hydrologic connectivity, the 3S 

basin is linked to crucial fish and rice production downstream. Understanding how river 

temperature is changing in the 3S Basin and the source of those changes is critical for better 

managing rice and fish production downstream (Matti Kummu and Sarkkula 2008; Arias et al. 

2014). This is especially true in the coming decades, with more major dams planned for all three 

rivers. 
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Figure 6.1. Map of 3S Basin showing existing and future (under construction, planned, and 

proposed) dams as of 2017 as well as the locations of three water quality monitoring stations. A 

distinction has been made between major and minor dams based on their expected thermal 

impact. Major dams were defined as dams located on a major river or a tributary with a 

significant impounded reservoir (>25 km2 surface area). Minor dams consisted of dams on 

smaller tributaries, and run-of-the-river style dams on major rivers with no impounded reservoir 

and unlikely thermal stratification. 
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6.3 METHODS 

6.3.1 Landsat-Based Water Surface Temperature Estimation 

Water surface temperatures of the Sekong, Sesan, and Srepok Rivers were derived from 

Landsat 4,5, 7, and 8 thermal infrared (TIR) data. A flowchart of the temperature estimation 

process is shown in Figure 7. All computations were performed in Google Earth Engine. Before 

temperature estimation, several data screening processes were applied to ensure high quality 

temperature observations. Only images from January through April (corresponding with the late 

dry season) were considered because the presence of clouds in the other months resulted in very 

few useable images. First, visible, near infrared, and TIR images were cropped according to 

domains consisting of approximately 50 km reaches of each river. These domains were selected 

by locating the portions of the river wide enough to be reliably observed by Landsat TIR (with at 

least 3 pixels wide with resolutions ranging from 60 m to 100 m) and then taking the most 

upstream 50 km. These reaches all encompassed the in-situ water temperature monitoring 

stations so that Landsat based water temperature estimates could be validated. Water surface 

temperature estimates were relatively invariant down and up stream of these locations. After the 

Landsat images were cropped, a simple cloud filter was applied. For every cropped image, the 

cloud mask was extracted from the quality assessment data. If any pixels within the cropped 

region were flagged as containing clouds, the entire image was discarded and not used for 

temperature estimation. Next, the water areas within the image were classified using the 

Dynamic Surface Water Extent (DSWE) tests for open water body classification (Jones 2015). 

Pixels classified as open water with high confidence were retained and all other pixels removed. 
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Figure 6.2. Flowchart of water surface temperature from Landsat thermal infrared (TIR) data, 

using Landsat visible and near infrared (NIR) to inform on the presence of clouds and location of 

water, and using NCEP/NCAR reanalysis water vapor data to estimate temperature corrections 

due to atmospheric effects. 

Finally, the kinetic temperature of each pixel was estimated from the TIR brightness 

temperature using a single channel algorithm described in (Jimenez-Munoz et al. 2009). This 

algorithm applies a correction for atmospheric effects and takes into account the emissivity of 

water (here assumed to be 0.98) to estimate the kinetic temperature of the water surface. This 

process is described by Equation 6.1(Jimenez-Munoz et al. 2009): 

 𝑇𝑆 = 𝛾 (
1

𝜀
(𝜑1𝐿𝑠𝑒𝑛 + 𝜑2) + 𝜑3) + 𝛿 (6.1) 

Where TS is the kinetic surface temperature, ε is the emissivity of water, Lsen is the thermal 

radiance measured at the satellite sensor, φi are atmospheric functions, estimated from 
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polynomial relationships with atmospheric water vapor content derived in (Jimenez-Munoz et al. 

2009), and γ and δ are parameters dependent on Plank’s function, described in greater detail in 

(Jimenez-Munoz et al. 2009).  

Here, atmospheric vapor content for calculation of the atmospheric functions was derived 

from National Centers for Environmental Prediction (NCEP) and the National Center for 

Atmospheric Research (NCAR) Reanalysis data for days corresponding with sensing data of 

each Landsat image (Kalnay et al. 1996). The calculation of the atmospheric functions is 

described in Equation 6.2. 

 [

𝜑1

𝜑2

𝜑3

] = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] [
𝑤2

𝑤
1

] (6.2) 

Where cij are coefficients empirically derived from atmospheric simulations, taken from 

(Jimenez-Munoz et al. 2009), and w is the atmospheric water vapor content, taken from the 

NCEP/NCAR reanalysis dataset.  

The calculated temperatures are then averaged across the domain to provide a single 

average temperature estimate for each cloud free image. Images with unrealistically high and low 

temperatures (greater than 40 C and less than 0 C) were automatically removed. Images with 

anomalously high or low temperatures were manually inspected for the influence of undetected 

clouds and other anomalies and removed if deemed inaccurate. The remaining temperatures were 

then aggregated across the entire dry season to provide the annual average dry season 

temperatures. This same process was applied to the main 3S outflow channel, just upstream of 

where it merges with the Mekong River, as well as on the Mekong River itself, both upstream 

and downstream of the 3S confluence. For the Mekong River observations, the difference in 
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kinetic temperature between upstream and downstream was also calculated for each image and 

then the differences averaged on an annual basis.  

The Landsat based temperature estimates were validated for each of the three rivers at the 

in-situ temperature monitoring stations Figure 6.1, which operated monthly from 2004-2011. 

These monthly in-situ observations were matched with the most recent Landsat temperature 

observation (within +/- 10 days). This validation is shown in Figure 6.3. We see good correlation 

(0.86 correlation coefficient), but with an overall negative bias of around 2° C. These 

temperatures should be slightly different, because the temperature estimated from the satellite 

data is actually water surface temperature and the in-situ temperature were estimated from 0.5 m 

below the water surface. For the applications used here, to observe long term temperature trends, 

this level of error is acceptable. 

 

Figure 6.3. Comparison between Landsat based water surface estimates and in-situ water 

temperature observations at the water quality monitoring stations on each of the major 3S rivers. 
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6.3.2 Reservoir Operating Pattern Estimation 

The operating patterns of the major 3S dams were determined using the method employed in 

Chapter 3. Here, Sentinel-1 SAR data was used to estimate surface area instead of Landsat 

imagery so that wet season reservoir surface area could be easily observed, even in the presence 

of cloud cover. This is important for the newer reservoirs, as they have a much shorter record of 

Landsat images from which to find cloud free images. Sentinel 1 SAR images of each reservoir 

were classified by first applying a speckle filter to reduce random noise and then applying a 

simple threshold. Pixels with backscatter coefficients lower than -14 dB were classified as water 

and all other pixels were classified as non-water. Domains around each reservoir were visually 

defined based on perceived maximum reservoir surface area extent and a 250 m buffer area 

beyond that maximum. For each classified SAR image, reservoir surface area was estimated by 

summing the number of water pixels within the reservoir domains and multiplying by the SAR 

image pixel size (10 m).  

These surface areas were then linked to water surface elevations using an area-elevation 

relationship derived from the SRTM DEM. All reservoirs except the Yali Reservoir, were 

constructed and filled after SRTM operated in 2000 (Yali Dam began operating in 2001, but 

filled between 1999 and 2000). This means that the topography beneath the current water surface 

was observed by SRTM and is present in the resulting 30 m digital elevation model (DEM). The 

area-elevation relationships of these reservoirs were estimated by extracting the DEM in the 

domain around each reservoir, and calculating the cumulative surface area of pixels that would 

be inundated by increasing water levels. Since the Yali Reservoir was already partially full when 

SRTM observed it, all topographical information beneath the water surface at that time is lost. In 

this case, we followed the same procedure as the other reservoirs to derive the water surface 
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elevation curve above the water level at the time of SRTM observation. This curve was then fit 

with a best-fit power curve to estimate surface area of water surface elevations below the SRTM 

water surface. The derived area-elevation relationships are shown in Figure 6.4. 

 

Figure 6.4. Reservoir area-elevation relationships derived from SRTM DEM. Yali Reservoir was 

already partially filled when observed by SRTM and the bathymetric information at lower 

elevations is not present in the DEM. The relationship at these lower elevations was estimated by 

linear interpolating the relationship derived at higher elevations. 

These relationships were then used to estimate the water surface elevations of the water 

surface areas observed in each Sentinel-1 SAR image. With estimates of both water surface area 
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and water surface elevation, the storage change between subsequent SAR images was calculated 

for the entire Setninel-1 time series using the trapezoidal approximation, as described in Chapter 

2. These storage change estimates were then converted to total storage by assuming the 

maximum reservoir extent observed corresponded with documented maximum reservoir 

capacity. Given that Sentinel-1 has only been operating since 2013, this assumption may not hold 

and lead to inaccuracies in total storage estimation, but it is sufficient for estimating the shape 

and timing of the reservoir operating patter. Finally, the reservoir storage estimates were 

averaged by month and normalized by their maximum storage. 

6.3.3 Sub-Basin Precipitation, Land Cover, and Air Temperature Averaging 

All three variables were aggregated using Google Earth Engine. Precipitation data was 

taken from the Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks-Climate Data Record (PERSIANN-CDR), a global retrospective satellite 

remote sensing-based precipitation dataset (Ashouri et al. 2015). Annual precipitation was 

calculated by averaging daily precipitation across each sub-basin and then summing by year. Air 

temperature was extracted from reanalysis surface air temperature data from NCEP/NCAR. The 

air temperature data was averaged by year for each pixel (or partial pixel) within each sub-basin, 

then spatially for each year to arrive at average annual temperatures. Deforestation areas were 

estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) annual land cover 

product (MCD12Q1.006) (Friedl et al. 2010). Pixels classified as any kind of forest were 

grouped and the total number of forest pixels in each sub-basin was summed for each year and 

the total area was calculated using the pixel size (500m). The total forested areas were then 

normalized by the total surface area of each sub-basin. 
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6.4 RESULTS 

6.4.1 Landsat-Based River Temperature 

By leveraging thermal infrared data from 1,364 satellite images from Landsat 4, 5, 7, and 8, we 

constructed annual timeseries of average late dry season (January-April) water surface 

temperature of the three major 3S rivers, aggregated from the entire river reach downstream of 

all current dams Figure 6.1, from 1988 through 2018 Figure 6.5. From these timeseries, a 

dramatic relationship emerges between the construction and operation of major dams (dams on 

major rivers with >25 km2 surface area) and downstream river temperature. Major dams, 

impounding large, deep reservoirs were distinguished from minor dams based on their predicted 

thermal impact potential. On all three rivers, significant temperature decreases were observed 

within one year of the beginning of operations of a major dam. These temperature changes were 

most clearly observed on the Sesan River, which experienced the construction of three major 

dams. In 2001, the Sesan River dry season water temperature experienced a 1° C decrease, 

corresponding with the commissioning of the Yali Dam, first major dam on the river (Figure 2, 

middle panel). The water temperature dropped again between 2008 and 2009, by around 2° C 

and again, this temperature change corresponds with the timing of two major dams, Sesan 4, and 

Plie Krong, starting operations (Figure 6.5, middle panel). The Srepok River also experienced 

dam development in 2009, with a network of 4 dams coming online in 2009. Once again, a sharp 

decrease in temperature was observed. Between 2007 and 2009, the water temperature dropped 

by 1.4° C (Figure 6.5, lower panel). The Sekong River experienced a temperature decrease 

corresponding with the commissioning of the Xe Kaman Dam in 2015, but with less severity 

than the other two rivers, only dropping by 0.7° C over the course of three years (Figure 6.5, 

upper panel). This can be attributed to the fact that the Xe Kaman Dam impounds a major 
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tributary of the Sekong River, and not Sekong River itself, meaning that it only influenced the 

temperature of a portion of the water observed by the satellite data. Unfortunately, the tributary 

is not wide enough in the dry season to be accurately resolved by the thermal Landsat data, so 

the thermal impacts of this dam can only be deduced downstream after the impacted water has 

mixed with relatively free flowing water.  

 

Figure 6.5. Timeline of dam development in each sub-basin and corresponding average annual 

Landsat based dry season river temperature downstream of dam development. Error bars 

represent 95 percentile bounds. 
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Another characteristic of the Landsat temperature time series is that the river surface 

temperature appears unaffected by the influence of minor dams. Here, dams were classified as 

minor for one of two reasons. Several of the dams on the main stems of the major rivers are run-

of-the-river style impoundments and do not create a sizeable reservoir. This means the water 

behind the dam does not thermally stratify, resulting in little thermal change to the downstream 

river. Most of the minor dams however, are located on smaller tributaries and impound only a 

fraction of the total basin discharge. Despite the presence of numerous minor tributary dams in 

the Sesan and Srepok Basins, no clear relationship between the timing of minor dam construction 

and downstream river temperature can be seen. This does not mean that these dams have no 

thermal impacts on the tributaries they impound, only that any potential impacts do not appear to 

manifest downstream in the main river channel in a significant way. 

 A third feature of the satellite-based temperature timeseries is that all three rivers 

experience temperature changes unrelated from dam development. Each river goes through 

periods of warming. For the Sekong, and Srepok Rivers, these warming periods last greater than 

10 years and overall equal or exceed the temperature decreases apparently caused by reservoirs, 

resulting in river temperatures ending around the same as they were in 1988, at the beginning of 

the time series. The Sesan River however goes through shorter periods of warming, which are 

not enough to offset the temperature drops. Clearly, there are other factors influencing river 

temperature and some possible sources of warming are explored in following sections. 

6.4.2 River Temperature from Limited Ground Observations 

Fortunately, there are in-situ water temperature observations from water quality monitoring 

stations on each of the major rivers (see Figure 6.1 for location of in-situ temperature monitoring 

stations). These stations provided monthly temperature observations but were only in operation 
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from 2004 through 2011. While this time period misses the commissioning of the Xe Kaman 

Dam in the Sekong River Basin (which occurred in 2015), it does capture the construction of 

major dams on both the Sesan and Srepok Rivers in 2008 and 2009. Since the monitoring 

stations were in operation year-round, the observations also provide valuable insight into the 

seasonality of perceived thermal influence exerted by hydropower dams on the downstream 

reaches. To that end, we separated the datasets into pre- and post- dam time periods. The Sekong 

in-situ temperature was also split at 2008 to serve as a reference. From these datasets, we 

constructed a monthly average water temperature profile for each river during pre- and post- dam 

construction periods (Figure 6.6).  
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Figure 6.6. Average monthly river temperature from in-situ monitoring stations, separated into 

pre- and post- dam construction periods. The Sekong River experienced no major development 

within this time period and the separated time periods are shown as a reference. 

The pre- and post- dam differences in monthly water temperature for Srepok and Sesan 

Rivers are striking, with both experiencing drastic cooling in the late dry season after dam 

construction. More importantly, these cooling effects linger into the first half of the wet season 

(May, June, and July), when streamflow significantly increases. This is critical because it 

represents a stabilization of seasonal water temperature, the elimination of seasonal water 

temperature variance. These stark post-dam temperature changes are contrasted by an absence of 

change in water temperature seasonality in the free flowing Sekong River over the same time 
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period. Sesan River temperature post-dam construction was colder throughout the late dry season 

(February through May and into the beginning of the wet season (June and July), with the 

difference growing to approximately 4° C in June (Figure 6.6, upper left panel). However, from 

August through January, there was little change after dam construction. The Srepok River 

experienced a similar pattern, but peak temperature difference of 6° C occurred earlier in the 

season in April (Figure 6.6, upper right panel). One explanation for the slight difference in 

seasonality between the Sesan and Srepok is that the Sesan already had one major dam present 

during the pre-dam period while the Srepok was relatively free flowing until 2009. This means 

there was already thermal influence on the Sesan River temperature during the pre-dam time 

period. 

To help explain the seasonality of the temperature effects, we need to look at patterns in 

the way reservoirs store and release water, otherwise known as operating patterns. Most reservoir 

operations follow patterns based on seasonally dependent hydrologic conditions (i.e. upstream 

precipitation and runoff) and objectives (i.e. hydropower production, flood control, water supply, 

etc.).  Since the governing rules that the dam operators in the 3S Basin follow are unknown to us 

and in-situ reservoir observations of storage or outflow are limited, we used remote sensing 

observations to derive average monthly storage patterns using a proven approach developed in 

Chapter 3 (Figure 6.7). This was done using Sentinel-1 satellite mission’s Synthetic Aperture 

Radar (SAR) data to estimate changes in reservoir surface area, and linking these surface area 

changes to storage estimates using topographical information from the Shuttle Radar and 

Topography Mission (SRTM). On the Sesan River, the three major rivers all follow the same 

general pattern, starting relatively full in January and draining throughout the dry season to 

minimum storage, then filling back up in the early to mid-wet season, with filling beginning 
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between May and July. During the low inflow dry season months, the reservoirs have the most 

control over downstream streamflow. Only one reservoir on the Srepok River follows this 

pattern, with the remaining dams operate at a relatively static level throughout the year. 

However, this dynamic reservoir is considerably larger than the other Srepok River reservoirs. 

When inflow increases in the wet season, two things happen. First, reservoir outflow 

dramatically increases in order to deal with the increased inflow and to maintain low water levels 

in order to provide flood control if needed. Second, the temperature of the water flowing into the 

reservoir likely decreases due simply to the abundance of fresh runoff. This is consistent with the 

cooling observed at the in-situ temperature monitoring stations in the beginning of the wet 

season (May through July) because during this time, the reservoirs are more rapidly discharging 

water from the cooler layers, while upstream inflow remains warmer. As the wet season 

continues into August, the natural streamflow becomes colder, to the point where the reservoir 

stratification no longer exerts a cooling effect on the river downstream. In other words, the river 

naturally cools down to the temperature of the stratified reservoir outflow and no temperature 

change occurs. 
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Figure 6.7. Remote sensing derived operating patterns of major dams in Sesan and Srepok 

Basins. 

6.4.3 Other Potential Drivers of River Temperature Change 

It is clear that there may be other drivers, both natural and artificial, besides dam development 

that can alter river temperature. Here, we take a closer look at three of these drivers, precipitation 

and air temperature trends, as well as land cover change, to determine if any of these could have 

played a role in the cooling effects we observed (Figure 6.8). Annual precipitation for all three 
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basins remained relatively constant throughout the 30-year period, except for 1999 and 2000, 

which were anomalously wet years. This roughly corresponds with the sharp cooling seen in the 

Sesan Basin, and an excess in runoff could cause water temperatures to decrease. However, the 

Sekong or Srepok River Basins experienced the same high precipitation and neither showed any 

signs of river temperature cooling around 2000. Annual average air temperature showed a mild 

warming trend which is similar for all three basins. Interannual air temperature anomalies are 

small and appear to have little effect on the annual river temperature anomalies. For example, 

1998 was a warm year, yet this is not reflected in the river temperature observations. However, 

the slightly warming air temperature trend could contribute to the long periods of river warming 

observed. Land cover data was derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), which has been in operation since 2000.  The dominant land cover 

change in the 3S basin over the last 20 years has been deforestation. The forests of all three 

basins have been rapidly converted to agricultural lands. Deforestation of this scale is often 

linked with increasing stream temperatures (Nelson and Palmer 2007; Macedo et al. 2013). 

Given the extent of deforestation occurring in the 3S Basin, it is likely a major driver of stream 

temperature warming. However, deforestation has been occurring at a fairly steady rate over the 

past 30 years and is unlikely to be the cause the sharp river temperature declines observed in our 

study. 
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Figure 6.8. Annual average air temperature, annual total precipitation, and annual forested area 

loss for each of the major sub-basins. 

 

6.4.4 Impact on the Greater Mekong Basin 

Given that the rivers in the 3S basin are cooling and hydropower dam development is the most 

plausible driver, a follow up question emerges: How far downstream does this effect propagate? 

To help answer this, we applied the same Landsat monitoring technique to three more locations, 

the 3S outlet just upstream of where it meets the Mekong River, and the Mekong River just 

upstream and just downstream of the 3S confluence (Figure 6.9). At the 3S outlet, we see signs 

of cooling, but rather than the sharp, discrete decreases observed on the individual rivers, the 

temperature here slowly decreases over the course of the 30-year period. It is difficult to attribute 

this cooling to any particular dam development episode. However, given that hydropower dams 

appear to be the primary source of cooling in the major rivers, it is highly likely that this slow, 
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steady temperature decline represents a cumulative of the cooling effects experienced by the 

major rivers upstream of the Mekong river confluence (Figure 6.9). While this cooling trend is 

fairly prominent at the 3S confluence, it becomes more ambiguous after mixing with the Mekong 

River. The Mekong River generally experienced warming at this location within the 30-year 

period, and none of the thermal characteristics appear to correspond clearly with hydropower 

dam development in the 3S. However, comparing the temperature of the Mekong River before 

and after it has mixed with the 3S, reveals the influence of the 3S on Mekong River temperature 

(Figure 6.9). Before 2000, the 3S generally had a warming effect on the Mekong River when the 

two rivers mixed, with the downstream 0.2-0.4° C warmer than the upstream. After 2000, this 

trend shifts with the 3S appearing to cool the Mekong River, by as much as 0.8° C downstream 

of the confluence. The timing of this shift roughly corresponds with the beginning of operations 

of the Yali Dam on the Sesan River in 2001. This is where signs of cooling end for now. The 

cooling signal disappears by the time the water reaches an in-situ temperature monitoring station 

approximately 100 km downstream of the 3S confluence (see Figure 6.1). This does not mean 

that the cooling effect has not propagated that far downstream, only that the magnitude of the 

effect gets lost among other and more localized river temperature effects.  
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Figure 6.9. Landsat based dry season temperature trends of the 3S Basin outflow, and the 

Mekong River upstream and downstream of the 3S-Mekong confluence. The difference between 

the upstream and downstream Mekong River temperature is also shown. 

6.5 CONCLUSIONS 

By leveraging a long record of Landsat satellite’s thermal observations, we deciphered a river 

temperature cooling trend in the 3S River Basin that was previously undiscovered due to limited 

in-situ data. We linked these trends with upstream development of major dams by using the 

varying rates of dam development among the three major sub-basins. The limited in-situ data 

available suggests that this cooling is not limited to the low streamflow of the dry season, but 

rather extends several months into the wet season, when streamflow dramatically increases (by at 

least one order of magnitude), further highlighting the magnitude of the cooling. A consequence 

of this cooling is the stabilization of the seasonal thermal regime, which has immense 

implications for ecological health downstream (Olden and Naiman 2010).  Other possible 
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sources of river temperature change were investigated but ruled out as a driver of these cooling 

trends. Finally, this cooling effect was tracked downstream and a noticeable impact on Mekong 

River water temperature was established. While the impact on the greater Mekong Basin is 

relatively small for now, this could rapidly change as larger and more numerous dams are 

planned in the 3S Basin, much further downstream than current hydropower dams. Furthermore, 

major dams planned on the main stem of the Mekong River in Laos and Cambodia also pose 

major changes to river temperature (WLE 2017). Understanding and preparing for these changes 

will be critical in the coming decades for downstream fisheries, which currently provides the 

protein source for millions of people. Unless in-situ temperature monitoring efforts dramatically 

increase, the only way to monitor these changes towards sustainable water resources 

development will be through the use of satellite remote sensing data, like those used here. Even 

in the face of overwhelming evidence of the negative environmental impacts that dam 

development has caused and will cause, there are no signs of slowing dam development in the 

MRB (Orr et al. 2012; Grumbine and Xu 2011; Dugan et al. 2010; Hecht et al. 2019; Y. Pokhrel 

et al. 2018).  

 This chapter highlights yet another facet of the environment that will be significantly 

altered by continued hydropower dam construction. However, in the context of river 

temperature, the seemingly unstoppable force of dam development in the MRB could be seen as 

an opportunity, rather than a threat. Many surface waters around the world are warming in step 

with the global climate(Adrian et al. 2009; Schneider and Hook 2010) and new evidence shows 

that the MRB’s Tonle Sap Lake is no exception (Daly et al. 2019). If more research and careful 

consideration is given to impacts of future dams on river temperature, their cooling effects could 

be leveraged to offset the warming effects of global climate change and other human impacts. It 
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may even be possible to tailor the design and operations of future dams towards targeting certain 

thermal effects, though more research is needed to determine if this is feasible. Ultimately, it is 

clear that hydropower dams have altered and will continue to alter the temperature of rivers in 

the MRB, and these impacts need to be carefully considered going forward to minimize the 

negative livelihood effects on the millions of people downstream who depend on the river 

ecosystem. Sustainable water resources development for the Mekong nations will have to 

embrace freely available satellite observations as a practical way forward. 
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Chapter 7: Conclusion 

The main findings of this dissertation are as follows: 

• Monthly outflow of reservoirs in humid tropical regions can be reasonably estimated 

using a satellite data driven mass balance model. 

• The mass balance model can be used to evaluate the flow alteration and residence time of 

reservoirs and systems of reservoirs. This method was applied to reservoirs in the 

Mekong River Basin and a wide range of flow alteration and residence time impacts were 

found. 

• SWOT is expected to accurately observe reservoir storage change in most cases and that 

the largest errors are expected to occur for reservoirs set in complex terrain. 

• SWOT discharge algorithms can accurately capture river discharge in monsoonal 

climates, but more work is needed to understand the optimal method of selecting which 

algorithm(s) to use in such regions. 

• Hydropower development in the 3S Basin, a major tributary to the Mekong Basin, has 

had a cooling effect on downstream river temperature, and this effect was observed using 

satellite based thermal infrared data. 

Developing river basins around the world are going through a transformation due to rapid 

dam construction. The work presented in this dissertation provides valuable steps towards 

understanding this transformation. By establishing purely remote sensing based methods for 

estimating storage change, outflow, flow alteration, and residence time of reservoirs, this work 

aims to advance our ability to understand anthropogenic alterations to the world’s rivers in an 

age where humans are imposing increasing control over once natural river systems. In the 

coming decades, dam construction in developing regions will only increase, and the impacts of 
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reservoirs will only intensify. Fortunately, our ability to observe reservoirs and their impacts 

remotely will improve. Several recently launched and soon to launch satellite platforms will 

provide valuable hydrologic information, chief among them the SWOT mission. This work 

demonstrated the usefulness of the SWOT mission for observing both reservoirs and rivers. 

Other missions such as GRACE-FO (launched in 2018), NISAR (launching 2021), and 

continuations of the Landsat and JASON missions will all provide useful hydrologic 

information. 

 No single satellite will provide all information needed for a clear understanding of 

reservoir impacts. This is evident by the cooperative, multi-sensor approaches demonstrated by 

this work. Reservoir storage changes could only be estimated by combining observations of 

water surface area or elevation with remotely sensed topographical information. When SWOT 

launches, it will be able to estimate reservoir storage changes on its own. However, it will be 

joining an already impressive array of satellites, capable of providing the information needed to 

accurately estimate storage change (see Figure 4.9). Thus, there is likely an optimal method of 

estimating the most accurate storage changes at the highest frequency based on cooperatively 

incorporating information from all sensors. This multi-sensor concept also extends to 

understanding water quality parameters. In Chapter 6, the downstream river temperature patterns 

observed by Landsat thermal imagery could not be fully understood without understanding the 

operating patterns of the upstream reservoirs, derived from Sentinel-1 SAR data. Ultimately, the 

only way to begin to understand the full extent of dam development impacts is through multi-

sensor approaches.  

 The benefits of the remote sensing approaches presented here extend beyond the 

hydrologic remote sensing community. All satellite data utilized in this work is freely available. 
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With the advent of cloud computing platforms, remote sensing data and the computing power 

needed to process it are more accessible than ever. The methods applied here can be adopted by 

water management agencies and stakeholders around the world, providing them with 

observations of hydrologic variables that would be otherwise unknowable. These methods are 

particularly applicable in transboundary developing regions like the MRB, where upstream dam 

development makes downstream decision making increasingly difficult for water managers and 

policy makers. In such regions, satellite observations allow all nations and agencies access to the 

same hydrologic information, leading to increased democratization of water management 

decisions. 

 While this dissertation provides valuable steps towards understanding the impacts of dam 

development around the world, there is still much work to be done. Future research needs to be 

done to determine optimal methods for cooperative utilization of observations from multiple 

sensors of reservoir surface area and surface elevation, in order to provide the more accurate and 

more frequent estimates of reservoir storage change and outflow. Such methods should be 

designed to incorporate data from upcoming missions such as SWOT. Furthermore, additional 

work must be done to test and apply these methods in regions with different climates. Many 

developing basins are in tropical monsoon climates like the MRB, but some climates are 

drastically different (like the Nile River Basin) and the same assumptions used here may not hold 

everywhere. In order to understand reservoir impacts in these differing regions, region specific 

alterations to the methods may need to be applied. Finally, satellite based observations of 

reservoir impacts on river temperature is still in its infancy. At the time of writing, this is the 

only known study to show the large scale impact of a network of hydropower reservoirs on river 

temperature using satellite remote sensing. Future research should apply this technique to other 
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sub basins of the MRB and other developing basins around the world as well as incorporate 

thermal infrared observations from other satellite platforms. In fact, the over 30 year record of 

thermal infrared imagery from the Landsat mission represents a stockpile of untapped potential 

for global scale water quality analysis. It is the responsibility of the hydrologic remote sensing to 

community to leverage our wealth of remote sensing observations to better understand the 

hydrologic cycle and humanities role in altering it. 
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