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Abstract 

 

Novel Traffic Sensing Using Multi-Camera Car Tracking and Re-Identification (MCCTRI) 

 

Hao Yang 

 

Chair of the Supervisory Committee: 

Yinhai Wang  

Department of Civil and Environmental Engineering 

 

Traffic sensing devices are the eyes of the Intelligent Transportation Systems (ITS) nowadays. 

Among all the traffic sensors, the surveillance camera system is one of the most widely deployed 

system due to the easy installation, valuable data, and the intuitive information format. However, 

it’s a great pity that these cameras collect data isolated. One camera can only monitor a fixed of 

view and there is no bridge to share the monitoring information with each other. Tremendous labor 

work is necessary if the traffic managers try to find the same target in different cameras. Recently, 

the development of computer vision technology brings light to traffic information extraction based 

on the multi-camera scenario. Different from the previous single-camera based traffic information 

estimation, the multi-camera work is much more challenging. Since in the real-world scenarios, 

different camera views, orientations and lighting conditions make the video features in a huge 

difference. Moreover, the more rigorous thing is that only the top-one candidate can be used in the 

traffic information estimation procedure. Thus, how to link each single camera into a multi-camera 
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system and estimate the traffic information from the whole surveillance system becomes the main 

problem in the research. 

To address the challenges, four kinds of information are designed to capture and integrate, 

including vision information, vehicle attributes information, road network graph information and 

spatial-temporal information. These four kinds of information are summarized and decomposed 

into four levels of features, including frame-level, clip-level, identity-level and network-level of 

features. A cutting-edge multi-camera car tracking and Re-ID framework based on temporal-

attention model and deep neural networks is improved to capture the frame-level, clip-level and 

identity-level of features. A Spatial-temporal Camera Graph Inference Model (StCGIM) are 

designed to integrate the network level of features into the MCCTRI framework. After obtained 

the multi-camera tracking result, the tracking accuracy levels of different cameras are various from 

each other. An Adaptative Accuracy Model (AAM) is designed to eliminate and unify errors and 

prepare the input for the traffic information estimation algorithms. Furthermore, different levels of 

traffic-related information can be estimated properly. 

The author evaluated the framework based on five cameras video data on captured on the 

Interstate 5, including different views, orientations, lighting conditions and color settings in 

various challenging scenarios. Based on MCCTRI, not only including the traffic information value, 

such as link average speed, average travel time and volume, but also a more particular data format 

– the distribution of each parameter can be estimated precisely. All the value information 

estimation error is less than 8% through the dataset evaluation including five camera views. The 

KL distance of the estimated distribution and real distribution is less than 3.42. Based on the 

experiment, the MCCTRI gives the surveillance camera system a brain and more precise and 

valuable information can be extracted through the method. 
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Chapter 1. INTRODUCTION 

1.1 GENERAL BACKGROUND  

Traffic sensing is a crucial part of the Intelligent Transportation Systems (ITS) nowadays. The 

sensing results are the necessary input of various ITS related services, such as travel time 

estimation [1, 2], route guidance and dynamic traffic management [3, 4]. Generally, there are three 

primary sensors and data types for traffic managers to obtain the traffic information: loop detector 

data, vehicle trajectory data and traffic surveillance camera data [5]. 

The loop detector is an electromagnetic device installed under the road surface to detect 

vehicles in the road network. Though the detection result, traffic engineers can estimate the traffic 

parameters such as the traffic flow, speed, occupancy rate and length of the vehicle. However, the 

loop detectors must be installed under the road surface. Traffic engineers need to close the road 

during the installation and maintenance process, which is very inconvenient. In contrast, the 

vehicle trajectory data provided the GPS location records of each single vehicle at every basic time 

slot. Through the continuous records, researchers can extract the vehicle trajectory, and then 

estimate the traffic information. However, the penetration rate of the trajectory data is always 

shallow. At the same time, the accuracy of the trajectory data will be decreased in the urban area 

because of the GPS signal drift.  

With the rapid development of computer vision technology, cameras are widely used in the 

ITS system [6-9]. Cameras are not only used for recording and collecting the traffic data, but also 

for the high-accuracy and real-time traffic information exaction, traffic monitoring and security 

management. Through the surveillance cameras, each single-vehicle information i.e., vehicle type, 
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color, location and time can be captured. By processing the traffic video, the traffic parameters, 

such as traffic flow, density and speed can be estimated precisely. 

Although many video-based methods have been proposed to estimate traffic information, 

they focused on single fixed surveillance camera analyses and cannot be applicable to multi-

camera simultaneously [10, 11]. To extend studies with single fixed cameras and to facilitate cross-

camera information and network-level traffic parameters extraction and estimation, Multi-Target 

Multi-Camera Tracking (MTMCT) and Vehicle Re-identification (Vehicle Re-ID) related research 

have emerged [12, 13]. In MTMCT, the system tracks multiple detected objects across multiple 

cameras of overlapping/non-overlapping views, which has rapidly increased in recent years. In 

general, the MTMCT technology includes the following parts: 1) Multi-Object Detection (MOD) 

and called single-camera tracking (SCT), 2) finding and associating the same objects detected by 

different cameras, also called Vehicle Re-ID, 3) linking all the tracks that belong to the same 

vehicle and restoring the spatial-temporal information of the object. 

With the MTMCT technology, three levels of information can be extracted, including the 

single-vehicle level of information (vehicle type, color, brand etc.), point-based information 

(pointed based traffic volume, speed, and occupancy rate) and network-level of information. The 

network-level of interactive information such as point to point flow distributions, OD distribution, 

network-scale travel time distribution and speed distributions can be obtained based on tracking 

objects through different locations. The MTMCT technology enables the traffic cameras to work 

together based on an interactive and shared platform that each camera is not isolated anymore. It 

will be much more useful for traffic engineers to sense and control the traffic network. 
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Figure 1-1 The illustration for vehicle MTMCT. Given a target vehicle (#21 in the figure), 

the aim of the MTMCT is to search and match the same vehicle from multiple cameras 

1.2 PROBLEM STATEMENT 

In the current surveillance camera system, hundreds of cameras have been installed in the road 

network. However, each of them is isolated. Every single camera extract information by itself. 

After the post possessing, the cross-camera information needs to be calculated and summarized 

and by human, which consumes much workforce. Since people's energy is limited, there will 

inevitably be omissions, especially while matching information through different cameras. 

In this paper, the author aims to build a multi-camera traffic information estimation framework 

based on the cutting-edge single-camera traffic information estimation. Different from the 

traditional single camera-based traffic information estimation in the past two decades [14-19], 

traffic information estimation in a multi-camera system is much more complicated. To address 
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the problems, the author divided the whole multi-camera information estimation framework into 

five sub-tasks in the following: 

1. Single-camera multi-object detection and tracking; 

2. Single-camera traffic information estimation; 

3. Cross-camera multi-object Re-ID; 

4. The multi-camera spatial-temporal graph inference model; 

5. Adaptative accuracy for multi-camera traffic information estimation; 

For a multi-camera system traffic information estimation methodology, the single-camera 

multi-object detection and tracking are the fundamental task of the traffic information estimation. 

The most challenging thing is how to link the detection and tracking results across several 

cameras. Not only a more reliable and accurate single-camera object detection, tracking and 

information estimation methods are necessary, but also a system-level of road network graph 

constraints, objects Re-ID and information estimation need to be set up. 

In order to address the tasks, several problems are targeted to handle in this research. The 

first and foremost one is how to merge and well-use the existing road network features and 

information. Also, a proper way to link all the existing surveillance cameras installed in different 

locations based on a mathematics and computer language format is necessary. Then, a crossing 

camera vehicle Re-ID method is indispensable to link each single camera tracking result into a 

multi-camera system. The task is very challenging since in real-world transportation applications 

scenarios, the different camera orientations and lighting conditions are various in different 

locations. Different from the traditional human and vehicle Re-ID problem with several levels of 

accuracy evaluation, the most regions condition is that only the top-one candidate can be used to 

estimate the cross-camera traffic information automatically. Thus, how to link each single 
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camera into a multi-camera system and even make use of the multi-target multi-camera Re-ID 

and tracking results to establish a novel framework to estimate the network-level traffic 

information becomes the main problem in the research. 

1.3 RESEARCH DESIGN 

Based on the five tasks in chapter 1.2, tasks one and two are single camera-related researches. 

Since the surveillance cameras are always installed at a fixed location with a specific orientation, 

choose a precise and fast a single camera multi-objects detector is the first step. With the detection 

output results, a well-applicable single-camera tracking method needs to be integrated into the 

framework [17]. With the single-camera multi-objects detection and tracking output, the traffic 

information can be estimated in different road network locations. 

For the crossing-camera multi-target Re-ID task, a state-of-the-art image-based vehicle Re-

ID framework [12] is targeted to adopt and improved by the author based on the video to video 

scenario. Since the surveillance cameras are installed in different locations, various orientations 

and diverse lighting conditions, merging the single-camera tracking results into clip level features 

is one of the efficient methods to expand and enlarge the features of the vehicle set. Also, not only 

including the deep CNN features for the vehicle appearance, but also the vehicle structure features, 

the orientation features and the original vehicle features (such as brand, type and model) are also 

needed to make good use in this challenging framework. The intuition and experience make the 

author apply two kinds of loss functions to train the model. The triplet loss is used to teach the 

model to distinguish different vehicle and the cross-entropy loss is trained the model to merge the 

feature belongs to the same vehicle captured by different cameras in various conditions. Finally, 
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the vehicle identity level of features can be applied to re-ranking the results since the customized 

crossing-camera Re-ID method is designed to target the highest top-one accuracy. 

The main challenges are in task four. Given a road network already installed with cameras, 

making good use of existing information is the first step. Node and link relationships, road network 

features and spatial-temporal information are all crucial information of the multi-camera system. 

Given the intuition that vehicles are only passing the cameras one by one in proper order no matter 

how complicated the target network. Thus, through the exhaustion of all potential route options, a 

camera link graph can be set up and summarized into a matrix format based on graph theory. With 

the underlying camera-link graph, many objective constraints can be merged into framework 

effectively, including the spatial-temporal features, road network features and travel time index. 

The searching window time slot and existent Re-ID candidates can be effectively narrow down. 

With these kinds of useful information, the author treated the whole process as a weighted 

optimization procedure and merged the information in a Spatial-temporal Camera Graph Inference 

Model (StCGIM). The model targets to provide with accurate and robust cross camera top1 vehicle 

re-ranking results and provide the input for traffic information estimation. 

           The last but not least part is task five. After obtained the multi-camera tracking and Re-ID 

results, how to calculate the precise traffic information based on different levels of MccTric 

accuracy becomes a challenge. Even the top multi-camera tracking method can only provide 

around 0.6-0.7 IDF1 accuracies [13]. Also, the accuracy levels are various in different camera 

viewpoints at different locations. Here, the author targets a framework to obtain precise traffic 

information based on various accurate levels, which is called Adaptative Accuracy Model (AAM). 
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1.4 RESEARCH OBJECTIVES 

Inspired by the needs in exploring the novel traffic information estimation based on nowadays 

widely used multi-camera surveillance system, the author targets to propose a novel framework 

to achieve network-level traffic information estimation based on multi-camera sensing 

technology. Specifically, the research objectives are summarized in the following: 

1. Detect and track the vehicles based on each surveillance camera; 

2. Adopt and improve a cross-camera multi-object vehicle Re-ID method to find the same 

vehicles driving through different cameras with reliable top-one accuracy; 

3. Propose a method to link the different cameras into a graph and merge other useful 

information, i.e., spatial-temporal information, connectivity information; 

4. Propose a new method to narrow and optimize the vehicle candidates searching process; 

5. Develop a framework for multi-camera traffic information based on various accuracy 

level of multi-camera tracking result; 

6. Achieve a reliable and accurate result for road network traffic information estimation 

based on a multi-camera system. 
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Chapter 2. STATE OF THE ART 

2.1 TRAFFIC SENSING APPROACH SUMMARY 

 

Figure 2-1 The development of different types of traffic sensors 

Sensor-based traffic data collection has always been a hot topic for traffic researchers. The 

earliest traffic vehicle loop detector sensors date back to 60 years [18]. At that time, [18-19] 

proposed to a traffic sensing method by counting the vehicle by the loop detector. While the 

vehicle passing over the loop, it can cause the magnetic change and will trigger the counter. 

Through this method, people can obtain the traffic volume on the road section. After that, traffic 

monitoring cameras [20-21], wireless sensors [22], and other traffic sensors [23] are gradually 

installed on the roads. These sensors are usually installed and managed by the public authority, 

providing data and reference for decision-making by the traffic management department. The 

figure 2-1 listed the development of different types of traffic sensors from the 1960s. 
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           Among all the sensors, the most widely used is the vehicle loop sensing systems and 

traffic surveillance cameras system. Vehicle loop sensor systems usually use magnetic loop 

detectors as the most basic sensing unit. Loop sensing systems can directly collect road data, 

including volume, speed, flow and vehicle type. This type of sensor has been widely used, and 

has formed a mature front-end data collection, back-end data storage and data display platform. 

Also, the traffic monitoring camera system often consists of one or more cameras installed in 

different road sections. The video cameras can provide real-time video at different locations, 

which is more intuitive. Of the two, the vehicle loop sensing system has a wider applicability and 

is less affected by weather factors, but the shortage is also apparent.  The loop detector coverage 

is limited, which can only reach the lane level. 

Furthermore, the installation and maintenance process are complicated. With the 

constraint of the system price, right now, the loop sensing system is often used on the essential 

road sections [24-26]. Compared with the vehicle loop, the cameras can provide more 

information, but it is more affected by the weather. A common disadvantage with both widely 

used sensors is that the data acquisition and processing of each sensor unit is independent and 

rarely to form a system work for users. For example, the information between the camera and the 

camera cannot be shared, not to mention tracking the travelers and vehicles. The loop detectors 

also collect and calculate data isolated based on each installed point. This information sharing 

challenges currently significantly limits the capabilities of the system of such widely deployed 

sensor networks. 

In addition to road data, from the beginning of 2000, vehicle-based data and traveler-

based sensors have gradually been adopted by researchers [27-32]. The data of trajectory sensors 

are often in the form of GPS coordinates. Researchers can extract the trajectory of each vehicle 
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based on the data, and then obtain accurate vehicle position, point-to-point travel time, speed, 

acceleration and other information. The advantages of this type of information include 1) the 

road network with a wide range of information coverage; 2) it is not susceptible to external 

factors such as weather; 3) because the data is continuously collected, it has a strong correlation 

in space-time correlation, which can provide a reliable data source for data correlation mining. 

However, the shortcomings of such data are generally more obvious: 1) the penetration rate of 

the data is often shallow (usually less than 5% each road section at a particular time slot); 2) the 

accuracy is inconsistent, and there is a significant GPS position shift phenomenon in urban areas 

and so on. At present, this type of data collection and utilization has been becoming a hot 

research topic for several years.

 

Figure 2-2 Sensor Data Summary and Comparison [5] 
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Based on the research topic, video information is the primary source. The author 

summarizes the advantages and disadvantages of video data according to the current 

development of ITS and the characteristics of the data and showing in table 2-1 current 

surveillance video system advantages and disadvantages. Therefore, because of the problems 

existing in the current traffic monitoring system, the main research focus of this article will be to 

use cross-camera vehicle tracking to solve the problem of data sharing and isolation between 

cameras. 

Table 2-1 Current surveillance video system advantages and disadvantages 

Advantages Disadvantages 

Valuable data – Comparing with other data types, 

the information of the photos/videos are much 

richer. 

Widely deployed – Visible surveillance cameras 

have been already installed in our road network 

since 1970s. 

Ease of use and installation – Cameras only need 

to be installed somewhere over the roads, which is 

easy and reliable. 

Aid commuters – Intuitive, clear and easy-to-

understand video data can be better shared with 

travelers. 

Limited coverage – Each camera can 

only cover part of the road segment. 

Limited data sharing and processing – 

Each camera collects data separately. The 

information processing algorithms are 

still working for each camera 

independently. 

Weather – Traffic cameras are subject to 

damage caused by weather. Heat, wind, 

rain, snow and ice can all damage or ruin 

a traffic security camera. 
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2.2 SINGLE-CAMERA BASED METHODS  

In nowadays traffic information estimation, single-camera information estimation is widely used 

by many traffic managers. The approaches used in the single-camera scenario are generally 

based on the Multi-Object Detection (MOD). 

The multi-object detection in computer vision has always been an important issue. With 

the rapid development of computer vision technology, object detection has been widely used in 

face recognition, pedestrian tracking, license plate recognition, and autonomous driving. 

Compared with image classification, object detection is more complicated. Object detection is to 

combine object localization and object classification and use multi-directional knowledge such 

as image processing and machine learning to locate objects of interest from images (videos). The 

object classification is responsible for judging whether the input image contains the required 

object, and the object localization is responsible for indicating the location of the target object, 

then localization with a bounding-box. The task requires the computer to accurately determine 

the object class while giving the precise relative location of each object. 

Since the concept of object detection was proposed, scholars have made unremitting 

explorations on this issue. Traditional object detection algorithms are mostly based on sliding 

window frames or matching based on feature points [33]. Since 2012, AlexNet [34] was elected 

to the annual ImageNet large-scale visual recognition challenge, and the effect is far superior to 

traditional algorithms, bringing the public's vision back to deep neural networks. The proposal of 

R-CNN [35] in 2014 made the CNN based object detection algorithm gradually become 

mainstream [36]. The application of deep learning has improved detection accuracy and speed. 

Therefore, the author believes that based on whether deep learning is applied, object detection 

algorithms can be divided into traditional algorithms and deep learning-based object detection 
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algorithms. In this chapter, the author will discuss the main algorithms of traditional algorithms 

and deep learning-based object detection algorithms, analyze the advantages and disadvantages 

of related algorithms, and combine existing problems to select the object detection algorithms 

that are suitable for this study. 

2.2.1 Traditional Methods 

Traditional algorithms can be roughly divided into object instance detection and traditional 

object class detection: (1) The object instance detection problem usually uses templates and 

image-stabilized feature points to obtain the correspondence between the template and the 

objects in the scene and detect the object instance. Object instance detection focuses on the 

specific object itself, and the rest of the objects in the image are irrelevant. (2) Traditional object 

class detection uses the AdaBoost [37] algorithm framework, HOG [38] feature and support 

vector machine [39] and other methods to detect a limited number of classes based on selected 

features and classifiers. 

The SIFT [40] algorithm proposed by Lowe, which finds feature points that are not easily 

affected by illumination, noise, and affine transformations to match objects, is a widely used 

keypoint detection and description algorithm. This algorithm uses Gaussian blur to achieve scale 

space, Difference of Gaussian function for extreme value detection, and then determines the edge 

principal curvature, screens out unstable points of edge response, and obtains key points which 

have stable matching and robust noise immunity. Finally, used the direction histogram to 

calculate the gradient and direction of the neighborhood of key points to obtain descriptors. The 

SIFT algorithm guarantees that the extracted features have invariant features such as translation, 

scaling, and rotation through a series of methods. It is also robust to light, noise, and small 

changes in viewing angle. However, the SIFT algorithm has problems such as high complexity, 



25 

 

slow detection speed, and difficult to extract valid feature points for blurred images and smooth 

edges. 

AdaBoost is a machine learning algorithm based on Boosting [40]. Initially, it is assumed 

that n samples in the training set have the same weight. After each training, adjust the weight of 

the data in the training set and increase the weight of the wrong samples, so that the next 

classifier can focus on the wrong samples. After N rounds of training, N weak classifiers are 

integrated, and corresponding weights are assigned according to the performance of each 

classifier to form a strong classifier with high accuracy and low error rate. The Viola-Jones [41-

42] algorithm is the first face detection algorithm that can be processed in real-time and has a 

good effect. The proposal of this algorithm marks that the face detection has entered the actual 

application stage. In a nutshell, the VJ algorithm uses Haar-like features to describe the common 

attributes of the object, and uses the integral graph to achieve fast feature calculation. The 

cascade classifier is used to reduce the amount of AdaBoost calculations and quickly detect the 

object. Rainer Lienhart and Jochen Maydt extended the Viola-Jones detector with diagonal 

features to form the Haar [43] classifier. In addition, other algorithms are proposed like change 

the Stump function to a decision tree or use classifiers such as RealBoost and GentleBoost. 

In general, the purpose of these traditional algorithms is to quickly perform feature 

calculations and predictions on the premise of ensuring the extraction of rich and accurate 

features. However, the features extracted by traditional algorithms are basically low-level, 

artificially selected features. These features are relatively more intuitive, easy to understand, and 

more targeted to specific objects, but they cannot express a large number of multi-class objects 

well. 
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2.2.2 Object Detection Algorithm based on Deep Learning – Two-stage Detectors 

Since AlexNet used convolutional neural networks in the competition to greatly improve the 

accuracy of image classification, some scholars have tried to apply deep learning to object class 

detection. Convolutional neural networks can not only extract higher-level, better-expressing 

features, but also complete feature extraction, selection, and classification in the same model. In 

this regard, there are two main types of algorithms: one is the R-CNN series of object detection 

frameworks (two stages) based on the classification proposal and the CNN network; the other is 

the conversion of object detection into a regression problem Algorithm (single-stage). 

OverFeat [44] is one of the first algorithms to apply deep learning to object detection. Strictly 

speaking, OverFeat does not use a region proposal, but its ideas are followed and improved by 

the subsequent R-CNN series. The algorithm uses multi-scale sliding windows combined with 

AlexNet to extract image features and completes detection. The mean Average Precision (mAP) 

on the ILSVRC 2013 dataset is 24.3%. The detection effect is significantly improved compared 

to the traditional algorithm, but there is still a high error rate. 

Ross Girshick et al. proposed the R-CNN model. R-CNN uses Selective Search to obtain 

candidate regions. The candidate region size is then normalized and used as the standard input 

for the CNN network. Then use AlexNet to obtain the features in the candidate area, and finally 

use multiple SVMs for classification and linear regression to fine-tune the Bounding-box. R-

CNN greatly improved the detection effect to 31.4% (ILSVRC 2013 dataset) and obtained 58.5% 

accuracy on the VOC2007 dataset (unless otherwise specified below, all are the detection results 

on the VOC2007 dataset). However, R-CNN performs feature extraction on nearly 2,000 

candidate regions, and there are many repetitive regions between candidate regions, resulting in 

many repeated operations, running slowly, and the average processing time of each picture is 34 
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s. At the same time, the data of each step is stored, which significantly consumes storage space. 

Besides, normalizing the candidate regions will affect the final result. 

For the shortcomings of R-CNN extracting features for all candidate regions separately, SPP-Net 

[45] performs a convolution operation on the entire picture to extract features at one time. The 

feature extraction has been changed from nearly 2,000 times of R-CNN to extracting the whole 

picture features once, which greatly reduces the workload. SPP-Net adds a spatial pyramid 

pooling layer (SPP layer) after the last convolution layer and before the fully connected layer to 

extract feature vectors of a fixed size to avoid the complex operation of normalizing the 

candidate region size. The above two improvements make SPP-Net's detection speed 38 ~ 102 

times faster than R-CNN, and solve the problem of candidate region normalization. Although 

SPP-Net has replaced the convolutional network, the accuracy is almost the same. At the same 

time, SPPNet still does not solve the problem of R-CNN storage space consumption. The steps 

of determining candidate regions, feature extraction, object classification, and localization 

correction are still separate. 

The Fast R-CNN [46] algorithm is based on the SPP-Net. The SPP layer is reduced to the 

ROI Pooling layer, and the output of the fully connected layer is decomposed by SVD to obtain 

two output vectors: the classification score of the softmax and the Bounding-box regression. This 

improvement merges the classification problem and the border regression problem, replaces the 

SVM with softmax, stores all features in video memory, reduces the occupation of disk space; 

and the SVD decomposition has almost no impact on accuracy, greatly Speed up detection. Fast 

R-CNN uses VGG16 instead of AlexNet. The average accuracy rate is 70.0%, and the training 

speed is 9 times faster than R-CNN. The detection speed reaches 0.3 s per image (excluding the 

region proposal stage). Fast R-CNN still uses the Selective Search method to select candidate 
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regions. This step involves a lot of calculations. When running on the CPU, it takes on average 2 

s to obtain the candidate area for each picture. It can be seen that improving Selective Search is 

the key to the speed improvement of Fast R-CNN. 

From the perspective of feature extraction, SPP-Net and Fast R-CNN reduce the 

workload, but still do not solve the problem of slow selection of candidate regions by Selective 

Search. Faster R-CNN [47] uses RPN networks (Region Proposal Networks) instead of the 

Selective Search algorithm to enable object recognition to achieve exact end-to-end calculations. 

The RPN network performs a windowing operation on the feature map and uses a preset scale 

anchor box to map to the original map to obtain candidate regions. The RPN network input 

feature map shares calculations with the feature map in the fully connected layer. The use of 

RPN enables Faster R-CNN to complete candidate area, feature extraction, classification, and 

localization correction operations within a network framework. RPN makes Faster R-CNN only 

need 10 ms in the region proposal stage, the detection speed reaches 5 fps (including all steps), 

and the detection accuracy is also improved, reaching 73.2%. However, Faster R-CNN still uses 

ROI Pooling, which causes the subsequent network features to lose translation invariance, which 

affects the accuracy of final localization. After ROI Pooling, each region passes multiple fully 

connected layers and there are more repeated calculations. Faster R-CNN Using the anchor box 

on the feature map corresponds to the original image, and the anchor box undergoes multiple 

subsampling operations, corresponding to a large area of the original image, resulting in Faster 

R-CNN's poor detection of small objects. 

Object detection should include two problems: classification problems and detection 

localization problems. The former has translation invariance and the latter has translation 

variance. R-FCN [48] uses full convolutional network ResNet [49] instead of VGG to improve 
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the effect of feature extraction and classification; for the defect that full convolutional network 

does not adapt to translation variance, the algorithm uses specific convolutional layers to 

generate Position Sensitive Score Map which includes object spatial location information; the 

ROI Pooling layer is no longer connected to the fully connected layer to avoid duplicate 

calculations. R-FCN has an accuracy rate of 83.6%, and the average test time per image is 170 

ms, which is 2.5 to 20 times faster than Faster-RCNN. However, R-FCN needs to generate a 

number of channels that increase linearly with the number of classes. This process improves the 

object detection accuracy, but slows down the detection speed, making it difficult to meet the 

real-time requirements. 

Mask R-CNN [50] is an improved algorithm based on Faster R-CNN, increasing the 

focus on instance segmentation. In addition to classification and localization regression, the 

algorithm adds parallel branches on instance segmentation and jointly trains the three losses. 

Instance segmentation requires the accuracy of instance localization to be at the pixel level, 

while Faster R-CNN introduces errors in the equal scaling process of the ROI Pooling layer, 

resulting in coarse spatial quantization and inaccurate localization. Mask R-CNN proposes 

bilinear difference RoIAlign to obtain more accurate pixel information, which improves the 

mask accuracy by 10% to 50%; Mask R-CNN also uses the ResNeXt [51] basic network in the 

COCO dataset The detection speed is 5 fps, and the detection accuracy is improved from 19.7% 

to 39.8% of Fast R-CNN. Mask R-CNN has reached the current high level in terms of detection 

accuracy and instance segmentation. Since then, some algorithms have improved in performance, 

but basically maintained at the same level. However, the detection speed of the algorithm is still 

difficult to meet the real-time requirements, and instance segmentation is currently facing the 

problem of too expensive labeling. 
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Starting from R-CNN, researchers focused on the problem of object detection to 

classification, and adopted the idea of "region proposal + CNN feature + SVM", using the CNN 

network to greatly improve the accuracy of detection; later SPP-Net , Fast-RCNN, Faster-

RCNN, etc. basically follow this idea and improve the detection efficiency; but FasterRCNN can 

only reach 5 fps, which is slightly insufficient in terms of real-time performance. Although the 

subsequent R-FCN has improved, the effect is still unsatisfactory. In this regard, the researchers 

proposed another new idea, directly transforming the object detection to regression, and using a 

picture to get the bounding box and class. 

2.2.3 Object Detection Algorithm based on Deep Learning – Single-stage Detectors 

You Only Look Once (YOLO) algorithm is a very famous single-stage detection algorithm. 

From R-CNN to Faster-RCNN, object detection always follows the idea of “region proposal + 

classification”. Training two models will inevitably lead to an increase in parameters and training 

volume, affecting the speed of training and detection. Therefore, YOLO [52] proposed a "single-

stage" idea. YOLO divides the picture into S × S cells. Each cell is only responsible for detecting 

the object whose center falls on the cell. Each cell needs to predict two scales bounding box and 

class information, and predict the bounding box, object confidence, and class probability of the 

objects contained in all regions at one time. YOLO replaces the region proposal with a multi-

scale region centered on the cell, discarding some accuracy in exchange for a significant increase 

in detection speed. The detection speed can reach 45 fps, which is sufficient to meet real-time 

requirements; the detection accuracy is 63.4%, compared with 73.2% of Faster R-CNN, the gap 

is larger. In the case of greatly improving the detection speed, YOLO also has the following 

problems: (1) As each cell only predicts two bounding boxes, and the classes are the same, so the 

detection effect is poor for the objects whose center falls in a cell at the same time and small 
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objects, and there are many missed detections in a multi-object environment; (2) Due to YOLO's 

determination of the localization box is slightly rough, the localization accuracy of object 

location is not as fast as Fast-RCNN; (3) Detection is not good for unconventional objects. 

YOLOv2 by adding batch normalization, multi-scale training, and K-mean dimensional 

clustering after each convolutional layer, the detection speed and accuracy are improved again. 

The algorithm can achieve a detection speed of 67 fps at the same time with a 76.8% accuracy 

rate and 40 fps at a 78.6% accuracy rate. YOLO v2 is faster than other detection systems in a 

variety of monitoring data sets, and can be traded off in speed and accuracy. The performance of 

this algorithm basically represents the current advanced level in the industry. The same article 

also proposed YOLO9000 [53]. This algorithm uses WordTree hierarchical classification, mixes 

detection data and recognition data sets, and trains on both classification and detection data sets 

to achieve 9 418 types of detection. YOLO 9000's network structure allows real-time detection 

of more than 9,000 object classifications, thanks to its ability to optimize detection and 

classification functions simultaneously. Using WordTree to mix training data from different 

resources, and using joint optimization technology to train on ImageNet and COCO datasets at 

the same time, YOLO9000 further reduces the gap between the monitoring dataset and the 

recognition dataset. 

Prior detection system of YOLOv3 [54] reuses the classifier or locator to perform the 

detection task. They applied the model to multiple locations and scales of the image. Those with 

higher scores can be regarded as the test results. In addition, compared with other object 

detection methods, YOLOv3 uses an entirely different method. It applies a single neural network 

to the entire image. The network divides the image into different regions, and thus predicts the 

bounding box and probability of each region. The predicted probability weights these bounding 
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boxes. YOLOv3 has some advantages over classifier-based systems. It looks at the entire image 

during testing, so its predictions take advantage of global information in the image. Unlike R-

CNN, which requires thousands of single object images, it makes predictions through a single 

network evaluation. This makes YOLOv3 very fast. Generally, it is 1000 times faster than R-

CNN and 100 times faster than Fast R-CNN. 

Faster-RCNN detection has high detection accuracy but slow detection speed. YOLO 

detection accuracy is not as fast as Faster-RCNN detection but fast detection speed. Single Shot 

MultiBox Detector (SSD) [55] combines the advantages of the two and borrows the idea of RPN 

on the basis of YOLO, and gives consideration to the detection speed while ensuring high 

precision detection. Because the feature maps of different layers have receptive fields of 

corresponding sizes, the feature maps of a specific layer only need to train object detection at 

corresponding scales. Therefore, SSD uses high-level and bottom-level feature maps to perform 

regression using multi-scale regional features. The mAP of SSD300 can reach 73.2%, which is 

basically the same as Faster R-CNN (VGG16), and the detection speed reaches 59 fps, which is 

6.6 times faster than Faster R-CNN.  

However, SSD has the following problems: (1) small objects correspond to small areas in 

the feature map and cannot be fully trained, so the detection effect of SSDs on small objects is 

still not ideal; (2) when there are no candidate regions, it is more difficult to return to the region. 

It is easy to cause problems such as difficulty in converging. (3) The feature maps of different 

layers of the SSD are used as independent inputs of the classification network, resulting in the 

same object being simultaneously detected by boxes of different sizes and repeated operations. 

The R-SSD [56] algorithm increases the association of feature maps between different layers on 

the basis of SSD to avoid the problem of duplicate boxes of the same object; at the same time, 
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increases the number of feature maps in the feature pyramid to improve the detection effect of 

small objects. The mAP of the algorithm is 80.8%, which is slightly higher than the SSD. 

However, the increase of the feature map leads to an increase in calculation amount and a 

decrease in detection speed, which is only 16.6 fps. 

Whether it is the YOLO series or the SSD algorithm, the R-CNN series algorithm is used 

to perform classification and pre-training on large data sets, and then fine-tune on small data sets. 

The application of deep learning has improved detection accuracy and speed. 

2.3 MULTI-CAMERA BASED METHOD 

In the traffic area, many surveillance cameras have been installed. It would be advantageous to 

use these surveillance cameras for traffic information extraction and estimation comparing with 

other specialized hardware. The data from these cameras have been used extensively to handle 

vehicle detection problems. Right now, if people want to collect information through different 

cameras, a large amount of brute-force human labor work is necessary. However, vehicle Re-ID 

researches have escalated in the past few years and now they are booming. 

The object Re-ID process is to identify a particular object as the same one as the previous 

observations. As for vehicle Re-ID, the process is to identify and match the target vehicle in 

different cameras without overlapping views, as shown in Figure 2-3. When a target vehicle 

appears, vehicle Re-ID will show if the vehicle was obverse by other cameras somewhere else. 

So, the vehicle Re-ID technology breaks the ice that each camera installed at different locations 

works isolated. With the vehicle Re-ID, the surveillance cameras can be used together to detect 

and track the same object at different locations. The emergence and boom of vehicle Re-ID 

technology are because (1) the increasing public safety and video information extraction needs 

and (2) the extensive use of surveillance camera networks in the road network, university 
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campuses, parking garages and streets. With the vehicle Re-ID technology, spot a query vehicle 

or track the vehicle cross multiple cameras in the surveillance networks that can be done 

accurately and efficiently. 

 

Figure 2-3 The vehicle Re-ID methodology summary 

In this paper, the author divided the vehicle Re-ID methods into two big categories: sensor-

based approach and vision-based approach. Vehicle Re-ID research was born based on multiple 

sensor-based approaches by matching the vehicle signatures detected by traffic sensors. The 

solutions are including magnetic sensors, inductive loop detectors, GPS & RFID sensors, Cellular 
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phones, and even sensor fusion and hybrid methods. Except for the sensors-based approach, with 

the development of the hardware computational ability, vision-based methods boom and show a 

lot of potentials. In this paper, the author classified the vison-based approach into two sub-

categories: classic features-based method and deep features based methods. In this research, the 

authors mainly focus on the vision-based approach. 

2.3.1 Sensor-based Approach 

Ten years ago, vehicle Re-ID researches were mainly relied on sensors. The magnetic sensor was 

the first kind of sensors used in the vehicle Re-ID problem in 1990. As we all know that vehicles 

are mainly made of metal. When an object composed of metal moves in the magnetic field, the 

distribution of the magnetic field of generated by the Earth will be interfered. So, researchers try 

to match the interference pattern triggered by different vehicles and aim to find the same one 

passing different sensors installed at various locations. Researchers proposed the magnetic 

sensors-based vehicles Re-ID solutions based on different methodologies, including magneto-

inductive probes, three-axis magnetic sensor and anisotropic magneto-resistive sensor etc. from 

1990s [62-76]. Based on these solutions, researchers tried to estimate the real-time travel time 

information from point to point. However, the accuracy of the approaches is poor since the 

vehicles in the same size are hard to distinguish based on magnetic changes. Also, the 

maintenance of the magnetic sensors is an inconvenience work. Engineers need to close the road 

sections during the installation and maintenance process. 

With the development of wireless communication technology, the Wi-Fi, Bluetooth, 

GPS, RFID and cell phone data are become approaches to distinguish and find vehicles in the 

vehicle Re-ID problem. Since each wireless communication protocols are including the signature 

which use to find and distinguish the target to build communication, the special signature is also 
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use to Re-ID vehicles. Wi-Fi & Bluetooth mac address is a unique signature for every device in 

the protocol and researchers, including [77-80], use it to match the same vehicles in road 

network. At the same time, many researchers use cell phone data to find the same vehicle and try 

to estimate traffic information [81-83]. The Radio-frequency identification (RFID) tag, widely 

used for toll collection, is also used to solve the vehicle reidentification challenge [85]. 

Researchers consider the vehicle which carried the wireless facilities as a moving node in the 

road network and attempt to match the same node when the detectors capture the same one in the 

different locations. However, these methods are born with many inherent limitations such as the 

wireless protocols are opened on the user’s device. If the user closes the Wi-Fi, Bluetooth, or 

RFID functions, the vehicle cannot be detected. Also, the penetration rate of wireless facilities is 

difficult to estimate, and there will be significant differences in different road sections and 

different cities. At the same time, the data privacy issues are becoming a general concern since 

the mac address is unique for each user. With encryption algorithms are becoming more reliable, 

these wireless solutions are powerless. 

People have an intuition that a better result will be achieved if multiple sensors provide 

the detection results. So, some researchers try to combine multi-sensors, including wireless 

sensors, magnetic sensors and even images to get more reliable and comprehensive results [86-

90]. The popular hybrid sensor solution is to try to combine the wireless sensor and magnetic 

sensor for vehicle Re-ID results and proposed the signal processing algorithm to find the same 

object vehicle in different locations. However, the costs of a multi-sensor solution are obvious 

since more sensors need to install in the road network. Also, the complicated algorithm designed 

for hybrid sensor solutions and the high price makes it hard to use in the large-scale road 
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network. With the computer vision technology booming, vision-based methods are recognized 

by more researchers. 

2.3.2 Vision-based Approach 

In the computer vision-based approach, the task of the vehicle Re-ID is to identify and match the 

target vehicle among multiple surveillance cameras installed in different positions with non-

overlapping views. Due to increased demands on traffic sensing and public safety, camera 

networks are installed on many public areas, including roads, parks, communities, universities, 

streets and even communities. In such a complicated environment, it’s a huge challenge for the 

identify target vehicles by laborers. So, to free labor, a vision-based approach in vehicle 

reidentification becomes a hot research topic recently. 

2.3.2.1 Classical features Approach [93-100] 

Vehicle Re-ID algorithms based on classical features are mainly based on traditional empirical 

rules, extracting and identifying differentiated features in different images, and then matching the 

same target object. These traditional special features usually include license plate numbers, 

colors, textures, sizes, the histogram of oriented gradients (HOG) features and so on. Researchers 

have designed corresponding feature extraction algorithms to further match features in images 

cross cameras. The advantage of the classical feature-based method is that the feature capture 

logic is straightforward, and it is easy to interpret and explain the matching results. However, the 

problem is also apparent. The accuracy of classical features approaches is limited since these 

traditional features are not sufficient to Re-ID the vehicles across many cameras. Different kind 

of classical features extraction approach for each camera view is unique, and special algorithms 

need to be designed for extraction. At the same time, a lot of manual work is unavoidable, such 
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as labeling a large number of outline features and key point features. At the same time, the 

matching between different features is not a simple add or linear relationship. When multiple 

features are superimposed and used, sophisticated algorithms are needed to fuse them. At 

present, vehicle re-recognition methods based on traditional features have gradually faded from 

people's research. 

2.3.2.2 Deep features Approach [13] [101-115] 

The rapid development of convolutional neural networks in recent years has dramatically 

promoted research topics related to vehicle recognition, such as vehicle verification, vehicle 

classification and attribute estimation. The task of vehicle Re-ID and retrieval under traffic 

cameras has always been a challenging subject. The focus of the former researchers tried to 

extract the vehicle features based on the whole vehicle image. However, the size of the vehicle in 

the surveillance are generally not large enough to support these methods, which leads to a 

bottleneck for the vehicle Re-ID. Therefore, some researchers have started to pay attention to 

local scales. Commonly used ideas for extracting local features are vehicle key-point localization 

and region segmentation. Based on the key-point localization and alignment results, some 

methods extract the features of the key part of the object and make a detailed comparison to 

achieve good results [101-105]. 

In the vehicle Re-ID work published by ICCV 2017, [104] used the method of key points 

positioning and area segmentation based on key points to label the vehicle image as 20 key 

points. From the image to be identified, multiple regions of the target vehicle were obtained. 

Then, use a convolutional neural network to extract regional feature vectors from multiple region 

segmentation results.  After that, fuse the regional feature with global feature vectors to obtain 

the appearance feature vector of the target vehicle. Finally, the fused feature vector instead of the 
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direct comparison of the appearance features is used for vehicle Re-ID, which solves the problem 

that different regions of different vehicle images cannot be compared efficiently. The authors 

considered the impact of orientations in the vehicle Re-ID; however, the result was still limited 

by the diversity of the real situation. Vehicles in a different location always have a different 

orientation, and the feature distribution also varies to each other. Traffic engineers need to mark 

key points for vehicle pictures at different angles, resulting in huge labor work. Therefore, from 

the perspective of feasibility and adaptability, this method is too complicated. 

In the past two years, many vehicle Re-ID methods have used quantitative features and 

attributes of vehicles to detect and retrieve regions of interest in images quantitatively. Liu et al. 

[101] proposed a vehicle Re-ID system to complete coarse-to-fine-grained vehicle retrieval in the 

feature space. At the same time, a vehicle Re-ID data set Veri-776 was proposed. Using this data 

set, combined with the vehicle appearance, spatial-temporal information and license plate 

information are used to learn the similarity between image pairs. Liu and others [102] proposed a 

deep relative distance learning (DRDL) method, which uses two branches of deep convolutional 

neural network. The network transforms the original vehicle image into Euclidean space and can 

directly use the distance to measure the similarity of any two vehicles. Wang et al. [104] 

proposed a framework containing functional modules, which extract local area features in 

different orientations based on the position of 20 key points. Moreover, the extracted local 

features can be well combined with global features by the regularization module.  Shen et al. 

[105] proposed a two-stage framework. A pair of vehicle images and the spatial-temporal 

information of the images need to be used as input of the method. Then, a vehicle candidate 

“visual-spatial-temporal” path is generated by a customized model with deep learning method, 

and then generate the query and gallery similarity scores. Zhou and others [111] proposed to take 
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advantage of CNN and long-term short-term memory (LSTM) neural network to learn the 

transformation of vehicles across different camera views based on different orientations. Then, a 

multi-view vehicle representation information set, in which a fuse of different viewpoints can be 

inferred from a single orientation input. These former methods provide the author with beneficial 

potential ways to merge and to find vehicles in different camera views, which is very helpful to 

the multi-camera vehicle Re-ID process. 

2.3.2.3 Hybrid-features approach [12], [115-116] 

Recently, metric learning becomes more and more popular in vehicle Re-ID. Metric learning 

mainly solves the problems of similarity between classes (inter-class) and intra-class differences 

(intra-class). However, due to subtle inter-class differences and significant intra-class differences 

of vehicles, for example, vehicles belonging to the same ID show differences due to different 

attitudes, backgrounds, and orientations. At the same time, vehicles with different IDs (between 

classes) show a more significant similarity between classes, such as two different vehicles (with 

different IDs) of the same brand and color, the appearance characteristics of are very close under 

the same perspective. Therefore, compared with human Re-ID tasks, vehicle Re-ID is more 

complicated. So, to accurately distinguish two very similar vehicles smoothly, in addition to 

finding a distinguishable area that can distinguish the two vehicles in the image, the more 

important thing is being able to extract better, learn and compare the characteristics of these 

distinguishable areas. In addition to the appearance features representation, spatial-temporal 

information, road information, route information, trajectory information and even vehicle 

attributes information all becomes very important to learn and merge. 

The deep metric learning and hybrid features are introduced to solve the vehicle Re-ID 

problems of feature learning between intra-class similarity and inter-class similarity further. In 
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order to achieve the goal, many cutting-edge methods use deep networks to learn feature 

embedding space to maximize the distance of the feature between different classes, as well as 

minimize the distance in the same classes at the same time. In particular, the triplet constraint 

was introduced to learn feature embedding [12-13] based on the principle that "samples 

belonging to the same vehicle ID are closer than samples belonging to different IDs". This triplet 

constraint has been widely used for pedestrian re-recognition and face recognition tasks. Based 

on triplet loss, [12] customized the temporal-attention model and fuse the inter-class features 

(different models, brands, year of manufacture, etc.) as the ranking module to improve the 

generalization ability of the vehicle representations. Besides, some related work focuses on 

hybrid features and deep features to achieve good results in the recent vehicle Re-ID tasks on the 

public dataset [117]. 

Table 2-2 The vision-based vehicle Re-ID method summary 

Approach Year Model Dataset 
Performance 

measurement 
Reference 

Classical 

features 

2003 3D Color Model Author collected Standard deviation 
Woesler (2003) 

[93] 

2005 Edge based model Author collected Hit rate 
Shan et al. 

(2005) [94] 

2008 
Appearance features 

model 
Author collected Correct probability 

Guo et al. 

(2008) [95] 

2009 
Pose and illumination 

model 
Author collected Hit rate 

Hou et al 

(2009) [96] 

2012 Motion model Author collected 
Hit rate false 

positive 

Feris et al. 

(2015) [97] 

2015 
Individual paintings 

matching 
Author collected 

Cumulative match 

curve 

Zheng ey al. 

(2015) [98] 

2016 
3D color histogram 

model 
Author collected False positive 

Zapletal and 

Herout (2016) 

[99] 

2017 String matching Author collected Hit rate 
Watchar (2017) 

[100] 
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Deep 

features 

2016 CNN SNN 
VeRi-776, Author 

collected 

Mean Average 

Precision (MAP) 

Liu et al. (2016) 

[101] 

2016 
Deep relative distance 

model 

CompCars, 

VehicleID 

Mean Average 

Precision (MAP) 

Liu et al. (2016) 

[102] 

2016 Texture color 
VeRi, Author 

collected 

Mean Average 

Precision (MAP) 

Liu et al. (2016) 

[103] 

2017 
Siamese-CNN+Path-

LSTM network 

VeRi-776, 

CompCars 

Mean Average 

Precision (MAP) 

Wang et al. 

(2017) [104] 

2017 
Siamese-CNN+Path-

LSTM network 
VeRi-776 

Mean Average 

Precision (MAP) 

Shen et al. 

(2017) [105] 

2017 CNN VehicleID 
Mean Average 

Precision (MAP) 

Kanacı, A. et al 

(2017) [106] 

2017 CNN VeRi CMC measure 
Zhang et al. 

(2017) [107] 

2017 CNN VeRi 
Mean Average 

Precision (MAP) 

Tang et al. 

(2017) [108] 

2017 
Deep joint 

discriminative model 
VehicleID 

Mean Average 

Precision (MAP) 

Li et al. (2017) 

[109] 

2018 Deep neural network VeRi 
Mean Average 

Precision (MAP) 

Liu et al. (2018) 

[110] 

2018 CNN-LSTM 
BoxCars, Author 

collected 

Mean Average 

Precision (MAP) 

Zhou et al. 

(2018) [111] 

2018 GSTE 

PKU-Vehicle, 

VehicleID, 

VeRi, CompCars 

Mean Average 

Precision (MAP) 

Bai et al. (2018) 

[112] 

2019 
Deep features and 

attention model 
Cityflow 

Mean Average 

Precision (MAP) 

Lv et al. (2019) 

[113] 

2019 
Deep features and 

metric learning 
Cityflow 

Mean Average 

Precision (MAP) 

Chen et al. 

(2019) [114] 

2019 
Deep features and 

metric learning 
Cityflow 

Mean Average 

Precision (MAP) 

Hsu et al. 

(2019) [13] 

2019 
Deep features and 

metric learning 
Cityflow 

Mean Average 

Precision (MAP) 

Chang et al. 

(2019) [115] 

Hybrid 

Features 

2019 
Hybird features and 

attention model 
Cityflow 

Mean Average 

Precision (MAP) 

Tan et al. 

(2019) [116] 

2019 
Hybird features and 

attention model 
Cityflow 

Mean Average 

Precision (MAP) 

Huang et al. 

(2019) [12] 

2019 
Hybird features and 

deep learning model 
Cityflow 

Mean Average 

Precision (MAP) 

Tan et al. 

(2019) [117] 
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Chapter 3. THE MCCTRI FRAMEWORK 

3.1 OVERALL FRAMEWORK ARCHITECTURE 

 

Figure 3-1 The overall framework of MCCTRI 

The overall framework of MCCTRI is including several parts, which shows in figure 3-1 the 

overall framework of MCCTRI. The first and foremost is two parts of information extraction, 

including the vision information and the graph information extraction. For the vision information, 

the multi-object detection and single-camera tracking are two fundamental procedures, and details 

are in chapter 3.2.1 and 3.2.2. For the graph information, the spatial-temporal camera loop graph 

needs to be extracted and send to the StCGIM. The details are in chapter 3.5. With the graph 

information and the vision information, a cutting-edge vehicle Re-ID method is customized and 
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developed here (chapter 3.3). The vehicle attributes are also integrated into the cross-camera Re-

ID process (chapter 3.3.2). After the first round of Re-ID, the StCGIM will re-rank the candidates 

and select the top1 target as a result (chapter 3.5). Based on the result of StCGIM, an Adaptative 

Accuracy Model (AAM) is built to estimate the traffic parameters and distribution, even the multi-

camera tracking accuracy is different (chapter 3.6). With the help of AAM, the last step is to 

estimate the information and get the results. 

3.2 VISION INFORMATION EXTRACTION 

 

Figure 3-2 The overall structure of the vision information extraction 
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For the vision information, there are two parts: Multi-Object Detection (MOD) and Single-Camera 

Tracking (SCT). Figure 3-2 the overall structure of the vision information extraction shows the 

overall framework of the procedure. 

3.2.1 Single Camera Detection 

For the single-camera detection part, the author chooses YOLOv3 as the detector in this scheme 

[54]. The first procedure of YOLOv3 is to extract features from the input image through the 

feature extraction network to obtain a feature map of a specific size. Then divide the input image 

into multiple grid cells according to the size. If the center coordinates of an object in ground truth 

fall in which grid cell, then the grid cell will use to predict the object. Since each grid cell will 

predict a fixed number of bounding boxes (3 bounding boxes in YOLO v3), the initial sizes of 

these bounding boxes are different. Among these bounding boxes, only the largest bounding box 

with the ground truth Intersection Over Unit (IOU) is used to predict the object. After that, the 

network will further perform category prediction based on the characteristics of the features in 

the grid cell. The YOLO v3 architecture is called Darknet-53, which is shown in figure 3-3, the 

YOLOv3 architecture [54]. This network basically uses 53 convolutional layers with five 

residual blocks. The overall performance with other cutting-edge methods is in figure 3-4, the 

performance comparison of the YOLOv3 with other cutting-edge methods. 

From figure 3-4, it can be seen that the YOLO v3 has a good performance as while as 

maintaining a fast detection speed. If the size of the input image is an image of 320 × 320, which 

can be run in 22ms through Yolo v3, and the mAP reaches 28.2. This record three times faster 

than SSD and the performance is very close. Through the YOLOv3 can largely boost the video 

processing speed as well as maintain an outstanding object detection results in this research.   
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Figure 3-3 The YOLOv3 architecture [54] 

 

Figure 3-4 The performance comparison of the YOLOv3 with other cutting-edge methods 

[54] 
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3.2.2 Single Camera Tracking 

Tracking-by-detection schemes are widely used in nowadays popular Multi-Object Tracking 

(MOT) methodologies, especially in the traffic surveillance camera scenario. Generally, these 

methods aim to associate the detection results across different frames and connect the same 

objects based on the common features, which achieve reliable results even in some occlusions 

scenarios. Graph models are also used to solve MOT problems and improve model efficiency by 

optimizing the frames' connectivity. Two types of graph models are widely used, including 

treating the detected objects as vertices, or building the graph vertices according to the tracklets. 

In common, the tracklet-based graph model can achieve better results in most scenarios since 

these methods not only utilize the information from a single frame, but also use the short time 

period trajectories to capture and measure the connectivity between vertices. 

 

Figure 3-5 The TrackletNet Tracker (TNT) network structure [118] 
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The TrackletNet Tracker (TNT) network is used for SCT part in the MCCTRI framework 

[118]. The TNT network is a tracklet graph-based model, including two key components: 1) 

tracklet generation and 2) graph connectivity calculation and clustering, as shown in the first part 

of figure 3-5, the TrackletNet Tracker (TNT) network structure. With detection results from 

Yolo v3 in each frame, the tracklets are generated based on the intersection-over-union (IOU) 

and the appearance similarity between continuous frames. At the same time, each generated 

tracklet is used as a node in the graph model. The edge weights of the graph are calculated based 

on the connectivity of tracklets and represent the similarity of the two tracklets belong to the 

same vehicle. A classifier based on deep CNN, called TrackletNet is built to calculate the 

connectivity of two tracklets, which measures and quantifies both temporal and spatial features 

in the likelihood estimation. Based on the classifier's results, clustering is used to merge the same 

object in different nodes into a group and minimize the cost of the whole graph. Based on the 

researcher's experiment results, TNT network is robustness, especially in dealing with some 

occlusions scenarios and even congestion scenarios. The convolution kernels of the TNT Net 

have a strong ability to capture the temporal dependency, which significantly reduces the lost 

target of the tracking. Also, the TNT network enlarges and connects the object from one node 

into a group. The comparison of the TNT network with other advanced SCT methods based on 

the MOT16 and MOT17 are summarized in figure 3-6, the TrackletNet Tracker (TNT) network 

performance comparison. No doubt that this method performs the best IDF1 result, which is very 

helpful in this research scenario. 
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Figure 3-6 The TrackletNet Tracker (TNT) network performance comparison [118] 

3.3 MULTI-CAMERA RE-ID & RE-RANKING 

 

Figure 3-7 The vehicle Re-ID method architecture of MCCTRI 
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In MCCTRI, researchers adopted and improved the cutting-edge vehicle-Re-ID method proposed 

by [12]. Not only the frame level of features and clip level of features are integrated into the Re-

ID framework, but also the identity level and the network level of features are combined. Four 

levels of features are included in the Re-ID process: frame-level features, clip-level features, and 

identity-level features, and network-level features are summarized into the cross camera Re-ID 

process, as shown in the figure 3-7 the vehicle Re-ID method architecture of MCCTRI. 

3.3.1 Frame-level & Clip-level Feature Extraction 

3.3.1.1 Appearance Feature Extractor 

 

Figure 3-8 The structure of ResNet50 [49] 

To reduce the background noise, all the vehicle images detected by the first step are used to remove 

the background based on a well-trained Mask-RCNN [50]. Then the output will be sent into the 

image quality check process to filter the unsuitable frames. After that, tor the frame-level feature 

extraction, the first step is the appearance feature extraction. In this step, the vehicle image frames 

captured by SCT are passed into a well-trained ResNet50 based on ImageNet [49]. The architecture 

of ResNet50 is showing in figure 3-8. After testing, the researcher using the 2048 dimension fully 
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connected layer vector represent the number of frames) to represent the appearance feature of each 

frame. This layer contains a lot of information about the image and will be used as the input for 

the Temporal-Attention Model. 

3.3.1.2 Vehicle key-point and Orientation Estimation 

In the multi-camera tracking system, the vehicles captured by the same camera are likely to 

driving towards different directions. In order to distinguish the traffic flow in different directions 

and extract the lane-level traffic information, vehicle orientation estimation is an important part 

of this study.  

Orientation estimation can be achieved by pose estimation was first proposed by [120]. 

However, the original target was human. In human pose estimation, the key point detection and 

skeleton graph estimation are two fundamental parts. Through the human skeleton, a graphic 

description of a person's orientation can be estimated. Essentially, a skeleton is a set of 

coordinate points that can be connected to describe the person's pose. Each coordinate point in 

the skeleton is called a "part" (or joint, key point). A valid connection between the two parts is 

called a "pair" (or limb). 
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Figure 3-9 The 36-vehicle key-point estimation and example visualization 

In this study, the estimation of vehicle orientation is also carried out with reference to the 

idea of human pose estimation. There are three steps in total: the first step is to detect the key 

points of the vehicle body, the second step is to locate the key plane, and the third step is to 

estimate the driving direction.  

The first step is vehicle key points estimation. Vehicle key point features can represent 

the structural and appearance characteristics of vehicles, and have been widely used in vehicle 

detection, vehicle features extraction and scene reconstruction. [120] using a comprehensive data 

set constructed from a 3D CAD model of a vehicle, trained a 36-car key point positioning neural 

network based on a stacked hourglass architecture. This method of vehicle key point estimation 
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can provide position information and confidence probability of each key point. After 

experiments, researcher found that the information contains the structural and positional 

relationship of a vehicle and provides a reliable input for us to estimate the orientation of the 

vehicle. The figure 36-vehicle key-point estimation and example visualization shows the 

examples of the procedure. 

After 36 key points have been estimated, the next step is to determine the driving 

orientation of the vehicle. First, due to the different confidence probabilities of vehicle key points 

detection, the researchers chose two planes consisting of eight points as reference planes for 

driving direction determination. These two principal planes are the plane 𝑆1 consisting of points 

#24, #34, #16, #6, and the plane 𝑆2 consisting of points #10, #13, #31, #28. The reason for 

choosing these 8 points is 1) the average accuracy of key-points estimation is high, 2) the 

determination of driving direction is relatively straight forward. After the determination of the 

planes, 𝑆1 and 𝑆2 is completed, starting from the smallest node (point #6 of 𝑆1 and point #10 of 

𝑆2), using the right-hand rule to determine the position of the normal vector of the plane. Then, 

according to the angle between the normal vector and the horizontal vector of the plane 𝑆1 and 

𝑆2, the value of 𝛼 and 𝛽 can be calculated. Then, researchers use the value of 𝛼 and 𝛽 to 

determine the vehicle orientation as the input of next step. Besides, the ranges of 𝛼 and 𝛽 are: 

0° ≤ 𝛼 ≤ 360° and 0° ≤ 𝛽 ≤ 360°. The figure 3-10 vehicle orientation angle estimation 

illustrates the whole process.  



54 

 

 

Figure 3-10 Vehicle orientation angle estimation 
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3.3.1.3 Temporal-attention Model （3） 

 

Figure 3-11 The Temporal-Attention model structure for Clip level of features fusion 

After the frame-level features, including appearance features and structure features, the next step 

is to summarize and fuse the frames from the same clip into the clip level features. Here, a 

temporal-attention model [12] [121] is adopted to carry out the task. 

There are two parts in the temporal-attention model, which used to fuse the appearance 

features and structure features. The whole model architecture shows in figure 3-11. For the 

appearance features part, the 2048 dimension fully-connected layer of the ResNet50 𝑓𝑓𝑐
𝑖  is used 

as vehicle appearance features. A 2-D convolutional neural network is used to capture the spatial 

features (𝑓𝑆𝐶
𝑖 ). In a clip, 𝑇 frames spatial features, from 𝑓𝑆𝐶

1  to 𝑓𝑆𝐶
𝑇  are used as input of a 1-D 

convolutional neural network to extract the temporal information. The two convolution networks 

are trained to get reliable frame attention scores in different video clips. For the structure features 
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set, researchers transfer the 2D image into a 3D format to show the spatial relationship further 

based on the 36 car key points estimation results (𝑓𝑘𝑝
𝑖 ). Researchers use the 36 car key points to 

calculate the area of 18 surface, and then combined with the 𝑓𝑓𝑐
𝑖  to represent the vehicle structure 

features. Finally, the weighted average of frame scores 𝑓𝐶
𝑇𝐴 is used as a main part of the clip-

level feature of a vehicle. 

3.3.1.4 Clip-level Feature Fusion (2) 

 

The output of the temporal-attention model 𝑓𝐶
𝑇𝐴 combined the clip appearance features and 

vehicle structure features. However, for MTMCT problem, the camera information and camera 

orientation is necessary for the vehicle Re-ID process. The orientation features input is the angel 

value of 𝛼 and 𝛽. For a better expression of the angel 𝛼 and 𝛽 in the neural network, researchers 

add an embedding layer to mapping the value of 𝛼 and 𝛽 into a 64-dimension vector. And then 

concatenate the vector with the 𝑓𝐶
𝑇𝐴. Except for the orientation information, the camera 

information is also very important in daily life, including the camera ID, location and installation 

height. In this model, for better use of the camera connectivity information of a road network, the 

camera ID are added into the clip level of features to represent the clip features with the camera 

attributes. Also, for a better understanding the ID features in the neural network, a binary 

embedding was made and expand the whole camera ID domain into a 32-dimension vector. 

Then, this part is concatenated with the orientation vector. The output of the temporal-attention 

model, the orientation information and the camera information consist of the whole clip level of 

features (𝑓𝐶). 
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3.3.1.5 Loss Function Design （2） 

In order to achieve the human face recognition task, the triplet loss was first proposed by Google, 

FaceNet [122]. Google researchers have proposed a new vector representation for training 

human faces through online triplet loss. In the field of supervised machine learning, there are 

usually fixed categories. In that situation, researchers can use the SoftMax-based cross-entropy 

loss function for training. However, sometimes, the category is a flexible domain. The strict 

margin categories is not suitable in that case (such as the same people captured by different 

cameras). At that time, the triplet loss can solve the problem. In face recognition and Quora 

question pair tasks, triplet loss has the advantage of distinguishing details, not only from 

category to category, but also from a domain to another. That is, when two inputs are similar, 

triplet loss can better model the details difference. Generally, triplet loss is widely used in 

training transformations from an input space (such as words, images) to an embedding feature 

space. So, the embedding features measured by the Euclidean distance are optimized based on 

the training process. 

 

Figure 3-12 Illustration of the triplet loss function training process 
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As figure 3-12 shows, assuming the 𝑖 input vehicle as an anchor 𝑎𝑖, the same vehicle 

should by placed at the positive sample features position, using 𝑃𝑚 and 𝑃𝑛. Moreover, the 

negative sample features, which are not the same one, are called 𝑁𝑚 and 𝑁𝑛. Using 𝑚 to 

represent the margin area in the equation. Based on the previous work finished by [12], during 

the training process, the author replaced the batch sample (BS) approach [14] instead of the batch 

hard (BH) approach in triplet generation. During the training process, the anchor-to-sample 

distances of BS data sampling is based on multinomial distribution. The obvious advantage is of 

the replacement can be summarized into two parts 1) speed up the training process; 2) improve 

the robustness of the model. Use 𝜒 to represent a mini-batch sample. Furthermore, the 

mathematical equation can be defined as:  

𝜁𝐵𝑆𝑇𝑟𝑖

𝑖 = ∑    ∑ 𝑙𝑇𝑟𝑖(𝑎𝑖)𝑎𝑖 ∈𝐵𝐵             (1) 

And  

𝑙𝑇𝑟𝑖(𝑎𝑖) = |(∑ 𝑤𝑃𝑚
𝑑𝑎𝑖𝑃𝑚𝑃𝑚∈ 𝑃(𝑎𝑖) − ∑ 𝑤𝑁𝑚

𝑑𝑎𝑖𝑁𝑚𝑁𝑚∈ 𝑁(𝑎𝑖) + 𝑚)|  (2) 

In equation (2), 𝑤𝑃𝑚
 and 𝑤𝑁𝑚

are the weight of the positive sample and negative sample. 

The 𝑑𝑎𝑖𝑃𝑚
 and 𝑑𝑎𝑖𝑁𝑚

 are the distance of the anchor 𝑎𝑖 to the sample position. The weight of 𝑤𝑃𝑚
 

and 𝑤𝑁𝑚
 are defined in the following:  

𝑤𝑃𝑚
= 𝑃 (𝑥𝑝 ==  𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑥∈𝑃(𝑎𝑖){𝐷𝑎𝑖𝑥})          (3) 

𝑤𝑃𝑛
= 𝑃 (𝑥𝑁 ==  𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑥∈𝑁(𝑎𝑖){𝐷𝑎𝑖𝑥})          (4) 

 

In the above equations, the 𝑥𝑝 and 𝑥𝑁 are positive and negative samples.  

 

Except for the triplet loss, the cross-entropy loss is also included into the model. Cross-

entropy loss are always used to measure the performance of a classification model. The equation 

of the loss is in the following: 

𝜁𝑋𝑒𝑛𝑡
𝑖 = − ∑ log(𝑝(𝑖)𝑞(𝑖))𝑝

𝑖=1            (5) 
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In the equation, the 𝑞(𝑖) is the ground truth label, 𝑝(𝑖) is the probability of the probe image 

belongs to vehicle 𝑖. 

Moreover, the overall loss function is: 

𝜁 = 𝜆𝜁𝐵𝑆𝑇𝑟𝑖

𝑖 + (1 − 𝜆)𝜁𝑋𝑒𝑛𝑡
𝑖         (6) 

3.3.2 Identity-level Features Extraction 

After extracting the appearance features of different frames and the structural features of the 

vehicle through a deep neural network, the temporal-attention model was fused to generate clip-

level features. Clip-level features represent the feature set of a car at a particular camera view. In 

other words, this feature set represents s vehicle at a camera (the orientation relationship between 

the camera and the vehicle) and at the light condition (the time passing the camera). However, 

when a vehicle passed through multiple cameras in different orientations and different lighting 

conditions, the clip-level features is not enough to Re-ID the same vehicle. Currently, researchers 

usually complement the clip-level of features with individual-level features. These individual-

level features are usually the inherent attributes of the vehicle and always unchangeable, 

including vehicle category features (for example: SUV, sedan, truck, etc.), color features (black, 

white, silver, etc.), brand features such as (BMW, Audi, Lexus, etc.) and even model features 

(such as Audi A4, A5, A6, etc.) and so on. Based on the identity-level of information, people can 

better integrate vehicle information from different road segments (such as intersections or 

roadsides) and different orientations (such as front and rear perspectives) to better identify 

whether they are the same or different vehicles. 

In the current research, individual-level feature extraction relies heavily on deep learning. 

In this research, the author adopted the method proposed by [123] named Light CNN. Light 

CNN-29 is a CNN-based deep learning architecture. It was mainly proposed for human face 
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recognition. The advantage of the lightweight CNN-29 framework is that it is faster and more 

efficient than other published CNN methods. In this method, the Max-Feature-Map (MFM) 

operation can obtain a compact, low-dimensional and efficient face representation feature set 

quickly. Smaller kernel sizes for convolutional layers, network layers, and remaining blocks in 

the network have been implemented to reduce parameter space and improve performance. Figure 

3-13 illustrates the Light CNN architecture in detail. 

 

  

Figure 3-13 Illustration of the Light CNN architecture [123] 

In this study, the researcher selected 4 characteristics as individual-level characteristics, 

which are 8 vehicle types, 36 brands, 11 color characteristics, and 4 manufacture year 

characteristics. These feature sets and corresponding figures are used to train light CNN-29. 

After obtaining a well-trained Light CNN, a fully connected layer will map the output to 2048 
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dimension. This 2048-dimension vector is used as the identify level feature. The details about the 

dataset will be introduced in Chapter 4.2, data set description. The figure 3-14 illustrates the 

identity-level extraction based on Light-CNN 29 process. 

 

Figure 3-14 Illustration of the identify level of features 

3.4 CANDIDATES SELECTION 

After the identity level of features and clip level of features are obtained from the former 

procedures, the first round of Re-ID candidates is calculated based on the equation (7). Where 

the 𝑑(𝑥, 𝑦) is the cosine similarity of two vector. The 𝐶𝑛 is the categories of the identity-level of 

features. 𝑥𝑖, 𝑦𝑖 are the query and the gallery target. 

𝑑𝐼𝐶(𝑥𝑖,𝑦𝑖) = ∑ 𝐶𝑛𝑛 𝑑𝑓𝐼
(𝑥𝑖,𝑦𝑖) + 𝛼𝑑𝑓𝐶

 (𝑥𝑖,𝑦𝑖)   (7) 

3.5 SPATIAL-TEMPORAL CAMERA GRAPH INFERENCE MODEL (STCGIM) 

The focus of this research is how to Re-ID vehicles across multiple cameras installed in the road 

network at different locations. Therefore, in addition to the frame-level features, clip-level 

features and identity-level features mentioned in the previous section, the spatio-temporal 
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information and connectivity information contained in the camera network and road network are 

also essential information sources that can effectively assist cross-camera vehicle Re-ID. The 

road network composed of roads and the network of cameras installed on the road forms two 

highly overlapping networks. In these two networks, vehicles are photographed by different 

cameras at different locations and at a time point. In this section, the researcher discussed in 

detail how to construct a road network connectivity map that includes both road network 

relationship and camera network relationship and serves the vehicle Re-ID neural network.  

3.5.1 Network Graph Extraction 

In this research, there are two major networks, one is the road network 𝐺(𝑅), and another is 

camera network 𝐺(𝐶). The 𝐺(𝑅) represents the road network, which includes the road 

connectivity information, consists of intersections and road sections. At the same time, the 

cameras are installed at different locations in the road network. In this task, using the 𝐺(𝑇) to 

represent our target research network.  

The next step is to fuse the camera surveillance area and the road segment into the whole 

research graph 𝐺(𝑇). Each camera 𝐶𝑖 is installed at a road section 𝑅𝑖. To better extract the lane-

level of microscope information from the video, the author added a new zone called camera loop 

𝐿𝑖𝑗 (𝑖 represent the camera loop belongs to the camera 𝐶𝑖, and 𝑗 is the index number of camera 

𝐶𝑖). Inspired by the traditional loop detector algorithms, the camera loop is a small rectangular 

area on each lane.  

After the vehicle detected by the detector, each vehicle is bounded by a bounding box. 

This bounding box will coincide with the area of the camera loop and the overlapping area is a 

function of time, using 𝐹𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑓(𝑡). Based on the change of this overlapping part area, 

research can extract the camera loop that each car passes in each camera, and then further extract 
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the lane level spatial information. With the information, the attributes can be added to each 

passing vehicle, such as straight, left-turn and right-turn, driving direction, and lane conditions. 

Also, a more detailed graph based on traffic lane-level can be established based on the real road 

network constraint.   

 

 

Figure 3-15 Adjacent camera graph and adjacent camera loop graph establishment 

Five steps are necessary to build a camera graph inference model in the following, and the 

illustration of the steps shows in figure 3-15:  

1. Select the research target graph  𝐺(𝑇). 

2. Divided the 𝐺(𝑇) into multiple road sections from 𝑅𝑖 to 𝑅𝑖+𝑘, each road section is 

covered by one or more cameras 𝐶𝑖𝑗 to 𝐶(𝑖+𝑘)𝑗. 

𝐺(𝑇) = {𝑅𝑖 … 𝑅𝑖+𝑘} ∪ {𝐶𝑖𝑗 … 𝐶(𝑖+𝑘)𝑗}    (8) 

3. According to the perspective view of each camera from 𝐶𝑖 to 𝐶𝑖+𝑘, determine the camera 

loop for each camera. For each camera 𝐶𝑖, 
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𝐶𝑖 = {𝐿𝑖1 … 𝐿𝑖𝑗}     (9) 

4. Select the neighbor camera and then build the adjacent camera graph. The adjacent 

camera means that the vehicles are possible to be driven from a camera directly to 

another without passing the third one. If there are multiple routes, choose the shortest 

route or analysis case by case. 

5. Based on the adjacent camera graph, build the adjacent camera loop graph. Then select 

the adjacent camera loop pairs as the cross-camera search index graph. 

3.5.2 Trajectories Extraction 

In the same camera view, especially in the area near the intersection, there are often many 

vehicles moving towards different directions. In order to better assist the camera loops to 

distinguish trajectory and match the vehicle across cameras, the author uses the camera loop 

sequence to distinguish trajectories in the same camera further. With a sequence of camera loop 

overlapping factor 𝐹𝑜𝑙, the researcher can determine the trajectory of each vehicle and distinguish 

different directions.  

The calculation process of the camera loop overlapping factor 𝐹𝑜𝑙 is as follows. After 

each vehicle has passed its own camera, the bounding box of the vehicle will have a specific 

overlapping area with the camera loop area defined by the researcher. The size of this 

overlapping area is a function related to time t. Moreover, the characteristic of this function is to 

increase first and then decrease. Therefore, when calculating the overlapping factor 𝐹𝑜𝑙 for each 

camera loop area, the researchers take the maximum value of 𝐹𝑜𝑙𝐿𝑖𝑗
 as the value of this function, 

which is used to distinguish the size of the overlapping area of the vehicle from different camera 

loops, and then to distinguish different trajectory features. 
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𝐹𝑜𝑙𝐿𝑖𝑗
= 𝑀𝑎𝑥(𝑅𝑜𝑙𝐿𝑖𝑗

(𝑡))      (10) 

𝑅𝑜𝑙𝐿𝑖𝑗
(𝑡) = |

𝐴𝐿𝑖𝑗
∩𝐴𝑉𝑏(𝑡)

𝐴𝐿𝑖𝑗

|     (11) 

Furthermore, the 𝑅𝑜𝑙𝐿𝑖𝑗
(𝑡) is the ration of overlapping area, which equals to the 

overlapping area of the camera loop (𝐴𝐿𝑖𝑗
) and the vehicle bounding box (𝐴𝑉𝑏) over the camera 

loop (𝐴𝐿𝑖𝑗
) area. The illustration figure of the trajectory extraction of camera #1 shows in figure 

3-16. 

 

Figure 3-16 Vehicle trajectory extraction based on camera loop graph 

With the camera loop sequence, the trajectory of each vehicle can be separated and 

distinguished. After that, through the cross-camera graph model matching, the researcher can get 
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the trajectory matching relationship between different cameras, and then perform more accurate 

cross-camera Re-ID candidates. 

3.5.3 Camera Loop Link Model Establishment 

Since today's traffic monitoring systems often need to cover multiple areas with large 

sections and many roads, the accuracy required for information is high, and a single camera is 

difficult to handle. A single-camera is often limited by the Field Of View (FOV) and can only 

cover a limited range, so the current monitoring system often uses multiple fixed FOV cameras 

to complete the monitoring and information extraction work. Based on this assumption, how to 

obtain a reliable camera feature link model from a large number of training videos has become a 

vital issue.   

Therefore, in this study, the researcher designed a unique framework to unify, transfer, 

and link features among different cameras. These characteristic parameters include travel time, 

and vehicle direction and trajectory matching across cameras. Here, the researcher combines 

each feature with the graph architecture of the specific network being studied and targets the 

overall goal as a weighted optimization problem. Here, the author uses 𝑋 and 𝑌 to represent the 

vehicle passing two different cameras 𝐶𝑖 and 𝐶𝑗. And then optimize the weight based on the 

training set and the tuning results. 

3.5.3.1 Travel Time Estimation (TTE) Constraint  

Cross-camera vehicle travel time is a key factor for Re-ID vehicles. Combining the length of the 

specific road section and the speed limit, the approximate travel time can be estimated, and 

possible vehicles are filtered within the time period and then further compared. This step can 
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greatly reduce the number of candidate vehicles. In this research, the travel time distribution 

𝑓𝑇𝑇𝐸(𝑡) is built based on the Gaussian kernel estimation: 

𝐹𝑇𝑇𝐸(𝑡) =
1

𝜎𝑖𝑗√2𝜋
∑ exp (−

(𝑡−𝑡𝑖𝑗)

2𝜎𝑖𝑗
2

)𝑁
𝑖=1      (12) 

In the above formula (12), the 𝜎𝑖𝑗 is the variance of the travel time from camera 𝐶𝑖 to 

camera 𝐶𝑗. The 𝑡𝑖𝑗 is the average travel time from camera 𝐶𝑖 to camera 𝐶𝑗. And the constraint of 

camera pair 𝐶𝑖 and 𝐶𝑗 is evaluated by the KL distance 𝐷𝑣𝑖𝑖𝑗. In the equation (13), the 𝐹𝑇𝑇𝐸(𝑣𝑖) is 

the travel time distribution of vehicle 𝑖 and the 𝐹𝑇𝑇𝐸(𝑡)𝑖𝑗 is the overall estimated travel time 

distribution of camera pair 𝐶𝑖 and 𝐶𝑗. The 𝐹𝑇𝑇𝐸(𝑣𝑖) is obtained using the vehicle 𝑖’s travel time 

as the mean value with the same 𝜎𝑖𝑗 of the 𝐹𝑇𝑇𝐸(𝑡)𝑖𝑗. 

𝐷𝑣𝑖𝑖𝑗(𝐹𝑇𝑇𝐸(𝑣𝑖) ∥ 𝐹𝑇𝑇𝐸(𝑡)𝑖𝑗) = ∑ 𝐹𝑇𝑇𝐸(𝑣𝑖)𝑙𝑛
𝐹𝑇𝑇𝐸(𝑣𝑖)

𝐹𝑇𝑇𝐸(𝑡)𝑖𝑗
𝑖        (13) 

3.5.3.2 Trajectory Sequence Constraint (TSC) 

After constructing the adjacency graph of adjacent cameras, the adjacency map and the trajectory 

characteristics obtained based on the camera loop sequence can be used for further filtering 

different vehicle trajectories and reduce the number of candidate vehicles. Here, the trajectory 

sequence constraint can be evaluated by the following method: 

𝐹𝑇𝑆𝐶 = ∑ (|𝑥𝐿𝑖𝑛
− 𝑦𝐿𝑖𝑛

| + |𝑥𝐿𝑗𝑛
− 𝑦𝐿𝑗𝑛

|𝑘
𝑛=1 )    (14) 

Where the 𝑥𝐿𝑖𝑛
 is the value of the camera loop sequence during the vehicle 𝑥 passing 

camera 𝐶𝑖 and the 𝑦𝐿𝑖𝑛
 value of the camera loop sequence during the vehicle 𝑦 passing camera 

𝐶𝑖. Also, 𝑥𝐿𝑗𝑛
 and 𝑦𝐿𝑗𝑛

 are the same meaning as the former. Moreover, the 𝐹𝑇𝑆𝐶 is used to 

evaluate the overlapping trajectory situation of two vehicles when try to filter the Re-ID 

candidates.  
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3.5.3.3 Overall Objective Function 

With the value of the former two constraints extracted from the 𝐺(𝑇), the overall target function 

for the optimization used for the camera graph inference model is in the following: 

𝑇(𝑥, 𝑦) = 𝑤𝑡𝑡𝑒 ∗ 𝐷𝑣𝑖𝑖𝑗 + 𝑤𝑡𝑠𝑐 ∗ 𝐹𝑇𝑆𝐶      (15) 

And the value of 𝑤𝑡𝑡𝑒, and 𝑤𝑡𝑠𝑐 is the optimization target during the training process to 

fuse two constraints together. 

 

3.6 TRAFFIC INFORMATION ESTIMATION 

After obtaining the cross-camera vehicle tracking result, the next step is to make good use of the 

information. In this chapter, based on the results obtained in the previous steps, the author 

performed not only link travel time, speed and volume estimation, but also the detailly 

distribution estimation. Different from previous traditional methods, based on the results of 

cross-camera tracking and Re-ID with different levels of accuracy, the Accuracy Adaptive 

Model (AAM) has been used in this research.  

3.6.1 Accuracy Adaptive Model (AAM) 

Before the process of estimating traffic parameters, the solid use of the cross-camera tracking 

results is a prerequisite. For each camera and each surveillance scenario, the accuracy of detection 

and tracking are different. However, the traffic information estimation is based on the result 

generated by the multi-camera tracking result. Based on the scenario, the author mainly uses the 

measurement of IDs to evaluate the tracking performance. With the tracking accuracy, the author 

proposed a system methodology to obtain the traffic information for considering the measurement 
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of tracking results, which are integrated of the IDF1 (ID corresponding F1), IDP (IDentification 

Precision), and IDR (IDentification Recall) of each camera scenario. 

The IDP, which called Identification precision is the fraction of computed detections that 

are correctly identified. The mathematical formula is in the following: 

𝐼𝐷𝑃 =
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃+𝐼𝐷𝐹𝑃
          (16) 

The IDTP is the true positive value of the IDs tracking result, which means the correct 

tracking result. The IDFP means the false positive results of IDs. Except, the IDR is also 

evaluated for each camera. The mathematical formula of IDR is: 

𝐼𝐷𝑅 =
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃+𝐼𝐷𝐹𝑁
          (17) 

Where the IDFN is the false negative of IDs is the evaluation set. Moreover, the IDF1 is: 

𝐼𝐷𝐹1 =
2𝐼𝐷𝑇𝑃

2𝐼𝐷𝑇𝑃+𝐼𝐷𝐹𝑁+𝐼𝐷𝐹𝑃
     (18) 

Here, the IDF1 means the ratio of correctly identified detections results above the average 

of ground-truth value and computed detections for each camera scenario. For every camera view 

and every link, the value of 𝐼𝐷𝑃, 𝐼𝐷𝑅 and 𝐼𝐷𝐹1 is different. 

Assume, there are 𝑁𝑖 vehicles (SCT results) passing through camera 𝑖. And now, the 

MCCTRI tracks 𝑛 vehicles from the camera 𝑖 to camera 𝑗. Based on the evaluation sets, the SCT 

𝐼𝐷𝑅 for the camera 𝑖 is 𝑅𝐼𝐷𝑅𝑖
. The value of 𝐼𝐷𝐹1 from camera 𝑖 to camera 𝑗 is 𝛼𝑖𝑗  (0 < 𝛼𝑖 < 1), 

and the 𝐼𝐷𝑅 from camera 𝑖 to camera 𝑗 is 𝛽𝑖𝑗 (0 < 𝛽𝑖 < 1). Then, the traffic information can be 

obtained based on the obtained information. 

3.6.2 Link Average Travel Time and Distribution Estimation 

With the cross-camera tracking ID set and the accuracy, the traffic link average travel time 

distribution 𝑇(𝑡)𝑖𝑗 can be estimated based on the following math equation: 
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𝑇(𝑡)𝑖𝑗 =
1

𝜎𝑖𝑗𝑡
𝐼𝐷𝑅𝑖𝑗

∗√2𝜋
∑ 𝑒𝑥𝑝 (−

(𝑡𝑛𝑖𝑗−𝑡𝑖𝑗̅̅ ̅̅ )

2𝜎𝑖𝑗
2

𝑡

)𝑁
𝑖=1             (19) 

In the formula (19), the 𝜎𝑖𝑗𝑡
 is the variance of the obtained tracking results from camera 𝑖 

to camera 𝑗. The 𝐼𝐷𝑅𝑖𝑗 is the ID recall accuracy of camera pair of 𝑖 and 𝑗. And the average travel 

time results from camera 𝑖 to camera 𝑗 𝑡𝑖𝑗̅̅ ̅ is: 

𝑡𝑖𝑗̅̅ ̅= 
∑ 𝑡𝑛𝑖𝑗𝑛

𝑛
      (20) 

 

3.6.3 Link Speed and Distribution Estimation 

With the MCCTRI cross-camera tracking result from camera 𝑖 to camera 𝑗, the speed of each 

vehicle can be obtained by: 

𝑆𝑛𝑖𝑗 =  
𝐷𝑖𝑠𝑖𝑗

𝑡𝑖𝑗
      (21) 

 

Moreover, the speed distribution 𝑆(𝑡)𝑖𝑗 can be obtained based on:  

𝑆(𝑡)𝑖𝑗 =
1

𝜎𝑖𝑗𝑠
𝐼𝐷𝑅𝑖𝑗

∗√2𝜋
∑ 𝑒𝑥𝑝 (−

(𝑆𝑛𝑖𝑗−𝑆𝑖𝑗̅̅ ̅̅ )

2𝜎𝑖𝑗
2

𝑠

)𝑁
𝑖=1           (22) 

In the formula (22), the 𝜎𝑖𝑗𝑡
 is the speed variance of the obtained tracking results from 

camera 𝑖 to camera 𝑗. The 𝐼𝐷𝑅𝑖𝑗 is the ID recall accuracy of camera pair of 𝑖 and 𝑗. And the 

average speed results from camera 𝑖 to camera 𝑗 𝑠𝑖𝑗̅̅ ̅ is: 

𝑆𝑖𝑗
̅̅̅̅  = 

∑ 𝑆𝑛𝑖𝑗𝑛

𝑛
                (23) 

3.6.4 Traffic Volume and Distribution Estimation 
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The MCCTRI result can also estimate the link traffic volume 𝑉𝑖𝑗. After the testing set to evaluate 

each camera link, the 𝐼𝐷𝐹1 from camera 𝑖 to camera 𝑗 is 𝛼𝑖𝑗  (0 < 𝛼𝑖 < 1), and the 𝐼𝐷𝑅 from 

camera 𝑖 to camera 𝑗 is 𝛽𝑖𝑗 (0 < 𝛽𝑖 < 1) can be obtained. Then, the link volume can be 

estimated by the following equation: 

𝑉𝑖𝑗 = (
𝛼𝑖𝑗∗𝛽𝑖𝑗∗𝑛

(2𝛽𝑖𝑗−𝛼𝑖𝑗)𝑅𝐼𝐷𝑅𝑖

)         (24) 

Where 𝑛 is MCCTRI track the number of vehicles from the camera 𝑖 to camera 𝑗. And 

the SCT result of 𝐼𝐷𝑅 for the camera 𝑖 is 𝑅𝐼𝐷𝑅𝑖
. The Volume distribution can be estimated by: 

𝐷𝑣𝑖𝑗
= (

𝑉𝑖𝑗

𝑁𝑖
)      (25) 

Where 𝑁𝑖 is the number of detected vehicles passing the camera 𝑖. 
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Chapter 4. EXPERIMENT AND RESULT DISCUSSION 

4.1 OVERALL DESIGN 

In this research, the whole system is built based on the Linux system (Ubuntu 18.04.2), with a 

Core-i7 CPU and an NVIDIA TITAN Xp GPU. All the system settings and useful packages are 

open-source online, including TensorFlow, CUDA, cuDNN, OpenCV etc. Moreover, the 

experiment process is divided into two parts: MCCTRI model evaluation and traffic information 

estimation evaluation. Large-scale High-resolution Traffic Video (LHTV) Dataset are used to 

evaluate the framework. The dataset details are in the chapter 4.2 data description.  

4.2 DATASET DESCRIPTION 

4.2.1 Large-scale High-resolution Traffic Video (LHTV) Dataset 

High-quality open-source datasets are invaluable resources for a research field. However, large-

scale high-definition traffic surveillance video datasets are quite limited, especially for the multi-

camera scenarios. There are several open-source videos or image-based datasets, such as City-

flow [124], VeRi-776 [101]. However, these datasets are designed for computer science 

problems, such as vehicle detection, vehicle Re-ID and tracking, with some inevitable questions 

and unnecessary challenges to do the transportation-based video analysis. A high-quality dataset 

that enables MTMC related transportation research is needed. 
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Figure 4-1 Illustration of the LHTV Dataset 

LHTV dataset includes 1012.25 minutes video and includes 16 different cameras in 

Seattle, with the quality of 1080p resolution with 30fps. Details information is in the figure 4-1 

illustration of the LHTV Dataset. Researchers labeled 76.78 min video of 6 different cameras. 

All the video includes time and location information. The longest distance between two cameras 

is 3.2 km, and the shortest one is 7.6 m.  In this research, the author used the six labeled videos 

from no #9, #10, #12, #13, #14, #16 to train, evaluate and test the MCCTRI. 36.75 min video is 

used to train the model, and 20.01 min video, including five cameras (#9, #10, #12, #13, #14) are 

used to evaluate and 20.03 min video are used to test the MCCTRI for multi-camera tracking and 

traffic information estimation. For each evaluation and testing, five cameras are video are spited 
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into multiple 1-min video clips, including 1800 frames and then finish the multi-camera tracking 

task. Besides, the author also used the Cityflow dataset [124] to train the model. 

 

Figure 4-2 Visualization of six cameras used in the training and evaluation 

In this study, the researcher selected four characteristics as vehicle individual-level 

characteristics, which are eight vehicle types (including SUV, sedan, minivan, hatchback, pickup 

truck, truck, bus and others), and 36 brand types. (Acura, Audi, BMW, Buick, Cadillac, 

Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hyundai, Infiniti, Jaguar, Jeep, Kia, Land 

Rover, Lexus, Lincoln, Mazda, Mercedes-Benz, Mercury, Mini, Nissan, Pontiac, Porsche, Ram, 

Saab, Saturn, Scion, Subaru, Suzuki, Toyota, Volkswagen, Volvo and other), 11 color features 

(red, blue, yellow, gray, silver, black, green, dark green, white, gold and other), four year 

characteristics (before 2000, 2000-2010, 2010-2015, after 2015). The author used the vehicle 
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cropped images from the LHTV dataset and Cityflow dataset [124] to train and evaluate the 

Light-CNN and then integrated into the MCCTRI framework. 

 

4.3 MOD & SCT RESULTS SUMMARY 

4.3.1 MOD Result Summary and Visualization 

Here, the author used a well-trained YOLOv3 based on the COCO dataset and finetuned on the 

LHTV and Cityflow dataset. In order to avoid interference caused by unnecessary categories, 

three categories are the detection target: car, bus, and truck. The author filters the detection result 

by setting a confidence probability greater than 0.5. Since the MOD result is served for the SCT 

process, the connectivity of the object detection among different frames is essential. Considering 

the overall detection performance, the researcher sets a detection zone for each camera. In each 

zone, the object size, features, and frame connectivity are reliable to use as the SCT input. 

Visualization examples can be found in figure 4-3 MOD result examples visualization. 

The multi-object detection results are summarized in table 4-1 MOD result summary. The 

YOLOv3 multi-object detection performs well on the LHTV dataset. Achieved an average 

accuracy of precision 0.94 and recall 0.91 in the five evaluated cameras. The camera with the 

maximum detection recall is 0.93, and the minimum is 0.90. 
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Figure 4-3 MOD result examples visualization 
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Table 4-1 MOD result summary 

Dataset Cameras used Precision Recall Max Recall Min Recall 

LHTV 6  0.9379 0.9112 0.9277% 0.8998% 

 

4.3.2 SCT Result Summary and Visualization 

For the SCT process, firstly, the author set the target tracking area in each scene based on the 

detection zone for each camera view based on chapter 4.3.1. The objects in each area usually has 

the appropriate object size, less occlusion, and relatively stable detection results. According to 

the bounding box of the image detection and the delineated single target tracking area, the 

researcher deleted the bounding box with the area overlapping area ratio less than 𝜌 (𝜌 = 0.5). 

Secondly, the researcher adjusted the parameters of each scene according to the model 

parameters of TNT to ensure the accuracy of the single-camera tracking results. The single-target 

camera tracking results are summarized in the following. The IDF1 accuracy of 83.35% was 

obtained. Among them, camera #9 has the highest IDF1 accuracy of 86.55%, and camera #14 has 

the lowest IDF1 of 79.21%. The average IDR of the eight cameras is 85.12%, and the IDP is 

82.35%. Table 4-2 shows the SCT result summary, and figure 4-4, 4-5 shows the visualize the 

frames examples of SCT on camera #14, #13, #12 and #10. 

Table 4-2 SCT result summary 

Dataset Cameras used IDF1 IDR IDP Max IDF1 Min IDF1 

LHTV 6 83.35% 85.12% 82.35% 86.55% 79.21% 
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Figure 4-4 MOD result examples visualization (Camera #13, #14) 
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Figure 4-5 MOD result examples visualization (Camera #12, #10) 
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4.4 MCCTRI EXPERIMENT SUMMARY 

4.4.1 Camera Loop Determination 

 

Figure 4-6 Camera loop location visualization 

For each camera view, the author set the camera loop for each lane and visualize in the figure 4-6 

camera loop location visualization. Based on the camera loop location and the camera graph, the 

whole inference graph can be built based on the connectivity relationship of each camera loop. 

The node is each camera loop and the edge are the loop relationship. The whole graph is used as 

the StCGIM link graph for re-ranking the candidates. 
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4.4.2 Parameters Setting 

In the MCCTRI, the parameters setting is summarized in the following: 

• For the clip-level of features extraction, the author sets 𝑇=5 (in the figure 3-11). 

• For the Temporal-attention model, set the 𝜆 = 0.5 in overall loss fiction (in the equation 

(6)). 

• For the searching time of 𝑇𝑠𝑒𝑎𝑟𝑐ℎ, set the 𝜇 = 0.7 (in the equation (6)). 

• For the candidates selection, the 𝛼 = 1 in the distance calculation equation (in the 

equation (7)). 

• Based on the tuning results of the overall StCGIM target function, set the 𝑤𝑡𝑡𝑒 = 0.5 and 

𝑤𝑡𝑠𝑐 = 0.5.  

4.4.3 Result Summary and Comparison 

To further highlight the performance of MCCTRI, the author selected several current top-level 

methods to compare with MCCTRI. The evaluation results are summarized in table 4-3 

MCCTRI multi-camera tracking result summary. The entire comparison method is divided into 

two categories, one is image-based vehicle Re-ID [12] [125], which mainly uses the 

characteristics of an image or multiple images to find and match with candidates, without the 

camera information. Another type is video-based vehicle Re-ID [13] [110] [115]. The video-

based method generally incorporates more information, such as the spatial-temporal constraints, 

the camera information etc. These methods are:  
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Figure 4-7 MCCTRI multi-camera tracking result example visualization 

• The baseline method is proposed in the 2018 AI-city challenge by Zheng Tang etc. [125]; 

the author used the image-based Re-ID component in the method based on the inter-

camera tracking on fusing visual and semantic features (FVS).  
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• AICUW_T2 [12], proposed by the UW image processing lab at 2019 CVPR AI city 

challenge track 2. Target at an image-based Re-ID solution, which ranked no.2 at the 

competition based on the temporal-attention model and metadata re-ranking.  

• NCCU [115], proposed by the team at the University at Albany – SUNY at 2019. The 

authors proposed this method at the 2019 AI-city challenge at CVPR conference. 

• PROVID [110], proposed by Xinchen Liu et al. at 2018. Since in the LHTV dataset, the 

plate number information is not allowed to use, so the author using the vehicle filtering 

by appearance part and the spatiotemporal relation model (STR) in the comparison. 

• AICUW_T1 [13], proposed by the UW image processing lab at 2019 CVPR AI city 

challenge track 1. Target at a multi-camera tracking method, which ranked no.1 at the 

competition. This method integrated part of the AICUW_T2 [12] vehicle-based Re-ID 

method and add a spatial-temporal filter in the framework.  

The overall comparison results are shown in table 4-3 MCCTRI multi-camera tracking 

result summary and the visualization example are in the figure 4-7 MCCTRI multi-camera 

tracking result example visualization. First of all, it can be seen that on the LHTV dataset, except 

for NCCU, video-based cross-camera vehicle Re-ID is always better than picture-based methods. 

Since the picture-based method does not include information such as the camera ID, the target 

matching procedure is much more complicated. Also, MCCTRI achieve a highest result for the 

evaluation of IDF1 and IDR. The MCCTRI good performance are mainly due to 1) the four level 

of vehicle features integration, including frame-level, clip-level, identity-level and network-level 

of features; 2) the StCGIM method is useful for distinguishing and amplifying the better and 

worse candidates distance, which is helpful for the best candidate selection; 3) the camera loop 

graph narrow down the target searching range for the Re-ID for the cross camera targets.  
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Table 4-3 MCCTRI multi-camera tracking result summary 

Method Types Methods 

LHTV (6 cameras used) 

IDF1 IDR IDP 
Max 

IDF1 

Min 

IDF1 

Image-based 

Re-ID 

Baseline (2017) [125] 0.4032 0.4105 0.4320 0.4279 0.4721 

AICUW_T2 (2019) [12] 0.5094 0.5211 0.5012 0.5421 0.5731 

Video-based 

Re-ID 

NCCU (2019) [115] 0.3403 0.3421 0.3031 0.3522 0.2998 

PROVID (2017) [110] 0.5312 0.5403 0.5377 0.5479 0.5235 

AICUW_T1(2019) [13] 0.7221 0.7272 0.7289 0.7492 0.6759 

MCCTRI 0.7479 0.7395 0.7254 0.7543 0.6799 

 

For the adjacent link evaluation, the author summarized four adjacent link result in table 

4-4 Adjacent link cross camera tracking result summary among the testing set. The distance is 

showing the adjacent camera location distance obtained based on the real route from google map. 

The orientation of the vehicle corresponding to the camera view, that is, which part of the vehicle 

captured by the camera. H represent the head, and T is the tail. Also, the ground truth means how 

many different IDs in each link video based on the real label. TP is the true positive value of IDs. 

FP is false positive value and FN is the false negative value. From the table, the results show that 

the orientation is an important factor to cross camera tracking result since the H2H accuracy 

(link 12-10) is the highest. Even the distance of two cameras is very close, the vehicle orientation 

still highly impacts the cross-camera Re-ID accuracy. Even the distance is only 8 meters, the 

camera link #14 - #13 is as good as the link #12 - #10 there are more false negative IDs. The 
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same situation happened in camera #13 and camera #14. The best performance of adjacent link is 

the camera link #12 - #10, with the highest IDF1 of 0.7543.  

Table 4-4 Adjacent link cross camera tracking result summary 

Link Distance 

LHTV (5 cameras used, adjacent link) 

Orientation 
Ground 

Truth 
TP FP FN IDF1 

14-13  8m H2T 324 246 133 78 0.6998 

13-12  2250m T2H 342 252 135 90 0.6913 

12-10  356m H2H 359 281 105 78 0.7543 

10-9  10m H2T 329 258 125 71 0.7247 

 

 

4.5 TRAFFIC INFORMATION ESTIMATION 

4.5.1 Evaluation Criteria 

For the traffic information estimation, there is a total of 20.03 min video from five different 

cameras used to evaluate the MCCTRI for traffic information estimation. For each evaluation, the 

five cameras video is split into 1 min video clip, each of them including 1800 frames, and then 

finish the multi-camera tracking task. Based on each clip tracking results and the parameters 

obtained from the evaluation process, the traffic information estimation is being evaluated by the 

following measurement: 

For the traffic parameters value estimation, the error is using the difference of the value 

compared with the ground truth, then over the ground-truth value. The accuracy is one minus the 

error. 
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𝐸𝑟𝑟 =  
𝑋𝑡𝑒𝑠𝑡𝑖𝑛𝑔−𝑋𝑡𝑟𝑢𝑡ℎ

𝑋𝑡𝑟𝑢𝑡ℎ
       (26) 

𝐴𝑐𝑐 = 1 − 𝐸𝑟𝑟            (27) 

 Except the value estimation, the distribution accuracy estimation is using the KL distance 

of the distribution value, which measures of how the probability distribution differs from the 

testing and ground truth. 

𝐸𝑟𝑟_𝐷𝑖𝑠 = 𝐷𝑖𝑠𝐾𝐿(𝑃(𝑋𝑡𝑒𝑠𝑡𝑖𝑛𝑔) ∥ 𝑃(𝑋𝑡𝑟𝑢𝑡ℎ))              (28) 

4.5.2 Performance Summary 

4.5.2.1 Travel Time and Distribution & Speed and Distribution Estimation 

Table 4-5 Link average travel time and speed value estimation result summary 

Variable Type 

LHTV (5 cameras used, all 10 links) 

Ave_Acc Max_E Min_E Max_Elink Min_Elink 

Travel 

time 

Average TT 

Value 
94.89% 8.72% 1.21% #14 - #9 #12 - #10 

Speed 
Average 

Speed Value 
93.79% 10.98% 2.75% #14 - #9 #12 - #10 

 

The estimated results of average travel time and speed are summarized in table 4-5 link 

average travel time and speed value estimation result summary. Ave_Acc in the table means the 

average accuracy of the value. Max_E represents the maximum error of the camera link, and 

Min_E represents the minimum error. Max_Elink indicates which camera link has the largest 

error, which is helpful for researchers to analyze the specific cause of the error and possible 

improvements in the future. Min_Elink indicates the camera link where the smallest error is 

located. It can be seen that, regardless of the average travel time or speed, the average error is 

within 8%. MCCTRI can accurately extract point-to-point traffic value information. Among 
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them, the most accurate of the traffic information estimation is camera link #12 - #10. The error 

of average travel time estimation error is only 1.21% and the speed error is only 2.75%. The link 

with the largest error is camera #14 - #9. The reasons for the larger error may be as follows: 1) 

The cross camera vehicle Re-ID results are not very accurate since the variety of the vehicle 

orientation and camera view. 2) The traffic flow is scattered, and the search window for travel 

time is hard to determined. 

Table 4-6 Link average travel time and speed distribution estimation result summary 

Variable Type 

LHTV (5 cameras used, all links) 

Avg 
|𝐷𝑖𝑠KL| 

Max 
|𝐷𝑖𝑠KL| 

Min 
|𝐷𝑖𝑠KL| 

Max_Elink Min_Elink 

Travel 

time 

TT 

Distribution 
0.36 2.15 0.19 #14 - #9 #12 - #10 

Speed 
Speed 

Distribution 
1.23 3.42 0.56 #14 - #9 #12 - #10 

 

In this study, since there is an absolute error in vehicle multi-cameras tracking, it is not 

feasible to use only numerical results to estimate the distribution of traffic parameters. Therefore, 

the author estimated the distribution based on Gaussian distribution. In the parameters 

estimating, he has considered the different correlations between the accuracy of cross-camera 

tracking and the estimation of traffic parameters, and then estimated the traffic distribution of 

travel time and speed. As can be seen from table 4-6 link average travel time and speed 

distribution estimation result summary, the link with the largest travel time distribution KL 

distance error is from camera #14 - #9, and the smallest is camera #12 - #10. The average travel 

time distribution KL distance is 0.36. The speed error with the largest link is still from camera 

#14- #9, and the smallest is camera #12- #10. 
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The author also gives detailed statistics of the actual and estimated travel time and speed 

distribution of camera #12 - #10. The travel time information is shown in figure 4-8, and the 

speed information is shown in figure 4-9. Further analysis shows that the frequency distribution 

of the estimation is very close to the true distribution of travel time and speed distribution 

obtained by MCCTRI. The difference is that the distribution of real values is more gradual, not 

as concentrated as estimated. Since the StCGIM filters the extreme travel time to limit the 

number of candidates matching cross cameras, there is an error in the edge portion of the 

distribution. However, the true travel time distribution is very close to the estimated. The result 

shows that absed on MCCTRI, the dsitribution of traffic parameters can be estuimated in a high 

precision level. 

 

Figure 4-8 MCCTRI camera link (#12-#10) travel time distribution estimation compared 

with ground truth data visualization 
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Figure 4-9 MCCTRI camera link (#12-#10) speed distribution estimation compared with 

ground truth data visualization 

4.5.2.2 Volume and Distribution Estimation 

Traffic volume estimation and the volume distribution estimation are unique advantages of the 

MCCTRI system. Through MCCTRI, not only can the user obtain a more accurate link volume, 

but also the corresponding multi-link volume distribution. This distribution information can 

greatly help planners and traffic operators to obtain the travel demand of different road sections. 

It can be seen from the table 4-7 link volume and distribution estimation result from the 

summary that in the volume and distribution estimation of all links, the average accuracy of the 

volume estimation reached 95.56%, and the overall accuracy of the traffic distribution reached 

95.37%. Among them, the link with the largest error is camera #13 - #10. The difference 
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between the actual value and the estimated value is 29 vehicles, and the maximum difference in 

flow distribution is 92.04%. The camera link with the smallest error is #10 - #9, the number is 

estimated to differ by only seven vehicles, and the traffic distribution is only 2.26% different. 

Table 4-7 Link volume and distribution estimation result summary 

Variable 

LHTV (5 minutes, all links) 

Ave_Acc Max_Er Min_Er Max_Elink Min_Elink 

Link Volume 95.56% 29 7 #13 - #10 #10 - #9 

Link Volume 

Distribution 
95.37% 7.96% 2.26% #13 - #10 #10 - #9 

 

The author selected camera # 14 as an example to further analyze the performance 

estimates of MCCTRI's volume and volume distribution. As can be seen in figure Figure 4-10 

link volume distribution estimation accuracy comparison (camera #14), the estimation result is 

accurate enough to obtain the cross camera volume distribution. The most significant error exists 

in camera #14 - #9, which is 5.54%. The estimated errors of the remaining camera links are less 

than 5%, and remain highly similar. Based on this experiment, it can be seen that the volume 

estimation based on MCCTRI is reliable and reasonable. 
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Figure 4-10 Link volume distribution estimation accuracy comparison (camera #14) 

Similarly, the author uses camera #14 as an example to make a traffic distribution 

visualization combined with the spatial-temporal constraint based on I5 freeway in figure 4-11 

link volume distribution visualization (camera #14). Of the vehicles passing camera #14, 97.65% 

passing camera #13, 87.37% passing camera #12, and 10.28% exit through the exits 169 and 170 

between camera #13 - #12 to the local street. Of the remaining vehicles, 79.56% of the vehicles 

pass through camera #10, and 7.81% will leave from exit 171 at the camera #10. In the end, 

75.02% of vehicles will pass through camera #9. From this traffic distribution map, MCCTRI 

can help researchers obtain accurate OD information and volume distribution across different 

camera regions. 
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Figure 4-11 Link volume distribution visualization (camera #14) 
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Chapter 5. CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

In this research, the author proposed a novel framework for network-level traffic information 

estimation based on MCCTRI. The framework not only can enable each single camera to 

estimate traffic information precisely but also link each isolated camera into a graph and extract 

network level of traffic information based on MTMCT. Based on this framework, the author 

claims the following five main contributions: 

1. A large-scale high-resolution (with 1080p quality) traffic video dataset is collected, 

which including 16 different cameras' videos. The total length of the videos is 1012.25 

minutes. The dataset includes different road types (freeways and urban roads) and 

different traffic conditions (free flow, peak hour, congestion, and night traffic).  

2. A cutting-edge image-based multi-camera tracking framework is improved and 

customized for the network-scale video-based traffic information extraction by integrated 

a new camera link graph model – Spatial-temporal Camera Graph Inference Model 

(StCGIM) based on the state-of-art MTMCT framework. Four levels of features, 

including frame-level, clip level, identity level, and network-level of features, are 

integrated into the MCCTRI. With efficient and effective information integration, the 

MCCTRI achieves 0.7479 of IDF1 and 0.7395 IDR on the LHTV dataset. 

3. An Adaptative Accuracy Method (AAM) for traffic information estimation based on a 

different level of multi-camera tracking accuracy is proposed. Even the IDF1 of the multi-

camera tracking result is not precise enough to estimated directly, through the model, the 

traffic information can be estimated precisely.  
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4. Through the whole framework, not only including the traffic information value, such as 

link average speed, average travel time and volume, but also the distribution of each 

parameter can be estimated precisely. All the value information estimation error is less 

than 8% through the testing dataset, including five evaluation cameras. The KL distance 

of the estimated distribution and real distribution is less than 3.42.  

The main originality and advantages of the framework are summarized in the following 

items. Firstly, it is the first method possible to obtain accurate traffic distribution information in a 

high penetration rate, which is very useful in traffic management and prediction. With the 

distribution information, the traffic signal timing can be optimized based on a different volume 

of directions. Also, the congestions can be predicted by merge the volume from different road 

sections. The volume distribution can also be used to estimate the network scale OD information. 

Secondly, in addition to obtaining necessary macroscopic information, it is also possible to 

obtain microscopic information based on different road service levels. For example, based on 

95%, 70%, 50%, and other reliability levels of link travel time, link speed, and other information 

extraction. The information can better serve the roadway services nowadays. Thirdly, in addition 

to providing new information sources and new information scope, the method can also link the 

traffic information to each single target vehicle to obtain the identity-level of information of each 

tracking target. The information will be very helpful for the police officers to track an object and 

manage the roadway safety. 

5.2 FUTURE WORK 

The future works are towards two directions. For the computer vision oriented research, the 

author plans integrated more cameras, including different views, such as UAV camera and 

vehicle cameras, to challenge more complicated and useful Re-ID and tracking algorithms. Also, 
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further explore the spatial-temporal information and find some way to draw the camera loop 

based on the algorithms autonomically is very necessary. Another direction is transportation-

related research. Change the SCT module into an online tracking algorithm and boost the whole 

algorithm is a future research target. Also, it is a potential aim to use the valid traffic parameter 

distribution information and build new traffic forecasting model and congestion prediction model 

in the future. 
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