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 Mountain winds are the driving force behind snow accumulation patterns in 

mountainous catchments, making accurate wind fields a prerequisite to accurate simulations of 

snow depth for water resource forecasting. Here we evaluate calculated wind fields using a new 

method for inferring the wind direction from snow depth patterns. This method leverages 

established relationships between snow depth and wind direction and provides the dominant 

wind direction at 260 locations in the Tuolumne River Watershed, CA. We compare these 

inferred wind directions to wind fields derived from combinations of coarse data and 

downscaling schemes. Coarse data come from meteorological towers, NLDAS, or HRRR data, 

and downscaling schemes tested include MicroMet, WindNinja, and bilinear interpolation. All 

downscaled wind fields replicate the south-west winds suggested by snow-depth-inferred wind 

directions. We then use these wind fields to force SnowModel, which contains the wind-

transport scheme SnowTran. We find that wind fields derived from meteorological observations 

rarely achieve high wind speeds necessary for wind redistribution of snow. NLDAS data are 

derived from a 32 km DEM which smooths the Sierra Nevada range and results in low wind 



speeds over isolated peaks. Wind fields created by bilinearly interpolating coarse data do not 

contain discontinuities in wind speed necessary for deposition of snow. Two wind fields derived 

from 3 km HRRR data and downscaled with respect to terrain produced snow depth maps that 

best matched observations of snow depth from airborne LiDAR. We recommend 3 km resolution 

gridded wind data downscaled with respect to terrain as input to distributed snow models. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 
 

Snow provides a reliable water supply to much of the world. This snow melts out 
according to the pattern of snow distribution built up over the accumulation season [Anderton et 
al. 2002]. During the accumulation season, winds are the primary driver of snow distribution 
patterns at non-forested sites, or sites in arctic or prairie regions [Winstral et al. 2002; Luce et al. 
1998; Deems et al. 2008; Sturm and Wagner 2010; Pomeroy et al. 1993; Pomeroy et al. 1997]. 
Thus, since melt-timing of spring snow is determined by the existing distribution of snow when 
melt begins [Lundquist and Dettinger 2005; Lundquist et al. 2005], properly modeling wind 
processes is a prerequisite to obtaining accurate late-season water forecasts in snow-dominated 
basins [Luce et al. 1998]. The snow hydrology community has embraced this, embarking on a 
number of studies to properly model wind-transport of snow [Ohara 2014; Liston et al. 2007; 
Liston and Sturm 1998; Lehning et al. 2006]. Other research has focused on what wind fields 
should be used in these snow transport models [Wagenbrenner et al. 2016; Beaucage et al. 2014; 
Musselman et al. 2015]. These studies often use ground-based observations from meteorological 
towers to evaluate different wind fields [Musselman et al. 2015; Gascoin et al. 2013].  

While information about mountain winds can be provided by meteorological stations, 
they come with some important caveats. Due to the cost of the instruments and the difficulty of 
accessing remote sites, wind sensors are only found at 36% of Western US meteorological 
stations that measure snow [Raleigh et al. 2016]. Wind conditions are highly variable across a 
basin, and do not vary according to simple linear relationships. This intense spatial 
heterogeneity, combined with the difficulties in deploying instrumentation, make it difficult to 
fully resolve wind patterns based on meteorological observations alone. This results in either 
under-evaluating wind fields when point observations are used for validation, or under-sampling 
when point observations are used to create forcing data for distributed hydrologic models.  

Observations of environmental processes can either be obtained directly by instrumenting 
the natural world or indirectly by paying attention to existing clues in the landscape. Natural 
processes often leave evidence of their action, and this fact is used extensively in fields such as 
glaciology and geology. Learning to identify patterns in nature can ultimately teach us about the 
environment that shaped them [Sturm and Wagner 2010; Grayson and Blöschl 2001]. As 
mentioned above, winds are the primary control on snow distribution patterns at some sites. 
Thus, we hypothesize that snow depth patterns at the end of the accumulation season contain 
information about the average, snow-transporting winds at a given site.  

Prior studies have established relationships between the properties of a site’s snow depth 
distribution and the dominant wind direction at exposed, non-forested sites [Deems et al. 2006; 
Trujillo et al. 2009; Mott et al. 2011]. These relationships show that snow depth distributions 
entomb information about the winds that shaped them, an idea that is familiar to winter 
recreationalists and naturalists. We believe that these relationships can be used to augment sparse 
meteorological observations and allow for more thorough evaluations of calculated wind fields. 

Due to the variability of wind fields and the complexity inherent to simulating them at 
resolutions typical of distributed snow models (< 1km), wind fields for distributed snowpack 
models are often obtained by downscaling coarse reanalysis data. The snow modeler is then 
faced with a decision of what coarse dataset to use, and what downscaling method to apply. In 
this study we evaluate different combinations of coarse datasets and downscaling schemes to 
determine the tradeoffs of each. Prior studies have shown that evaluating wind fields at points 
can lead to different results than evaluating them based on their ability to drive wind-



redistribution in distributed snowpack models [Musselman et al. 2015]. Thus, in addition to a 
point comparison of wind fields, we evaluate these downscaled wind fields by running a 
distributed snowpack model and comparing output to observations from airborne LiDAR. 

In section 2 we review observations of wind-redistribution of snow and models of wind-
related snow transport to determine what features of wind fields are most important when 
modeling wind-redistribution. In sections 3 and 4 we profile a variety of coarse wind datasets 
and downscaling schemes used to generate wind fields. Then in section 5, we introduce a new 
technique for inferring the dominant, snow-transporting wind direction at sites where wind 
observations do not exist. In sections 6 and 7 we use the inferred wind directions, along with a 
series of snow model runs, to determine how these wind fields differ and what effect these 
differences have on modeling snowpack. We conclude with recommendations in section 8, 
advocating the use of gridded wind data downscaled with respect to terrain. 
 
 
2.0 Background 
 
2.1 Processes of wind-redistribution of snow 
 
 Wind-redistribution of snow occurs when the surface shear velocity exceeds some value 
necessary for wind-redistribution to begin. This value, which must be exceeded for transport, is 
referred to as the threshold shear velocity. Previous studies have observed the threshold shear 
velocity in wet snow environments to be between 0.38 m s-1 and 0.76 m s-1 at the ground surface 
[Li and Pomeroy 1997]. This threshold speed determines both if wind-redistribution can occur, 
and how much snow can be transported when it does [Schmidt 1982]. In the environment, the 
threshold velocity that determines when wind-redistribution occurs is not constant. It will 
increase as the snow surface sinters and bonds between snowfall events, and drop when fresh, 
light snow is deposited on the surface during snowfall.  
 Once redistribution occurs, there are three primary mechanisms by which wind interacts 
with the snowpack. Snow can undergo saltation, where grains are bounced along the snow 
surface within 0.1 m of the surface. Snow can also undergo suspension, where it is entrained in 
the flow by turbulent eddies and carried meters above the surface. Snow transported via 
suspension can travel up to hundreds of meters before being deposited [Mott et al. 2018]. 
Observations of the transport rate of snow via winds agree on an exponential increase in mass 
flux with increasing wind speeds [Nishimura and Nemoto 2005; Schmidt 1982; Pomeroy and 
Male 1992]. Both saltation and suspension cause snow grains to have more contact with the 
atmosphere along their surface. Depending on the temperature and humidity, this can lead to 
enhanced sublimation of the snow grains compared to sublimation of the static snow surface. 
 Different fields of study have different conventions for reporting wind direction. In this 
study we refer to all wind directions as the direction from which the wind originated. For 
example, a wind direction of 0º indicates a wind that is blowing from the north and to the south. 
In this study we use term “wind transport” to refer to any effect that winds have on the 
distribution of snow. Wind-redistribution, however, refers only to wind-transport of snow that 
occurs after the snow has been deposited, such as saltation and suspension [Mott et al. 2018]. 
Because these are the only two processes of wind-transport modeled in SnowTran and examined 
in this study, we use the term wind-redistribution. Lastly, we define the term “snow drift” as any 
snow feature caused by wind-transport of snow. 



 
2.2 Existing methods of calculating wind-redistribution 
 

To examine how the snow modeling community tends to represent these processes, we 
review the equations for wind-redistribution of snow in two well-cited models: SnowTran, which 
is used in SnowModel, and the Prairie Blowing Snow Model (PBSM). Other wind-transport 
models which use more physically explicit, computationally intensive equations of transport are 
excluded from this review since they are not suited to model snow over the large domain used in 
this study. These two models use almost identical equations to calculate the rate of transport via 
saltation. PBSM considers the effects of exposed vegetation in its calculation of saltation 
[Pomeroy et al 1993]. Assuming a snow depth greater than vegetation height, however, these 
two estimates of saltation become identical. The two models also feature identical methods for 
calculating the sublimation of blowing snow, with the authors of SnowTran stating that, “Our 
formulation for the sublimation rate of wind transported snow […] follows that of Schmidt 
(1972, 1991), [and] Pomeroy and others (1993)” [Liston and Sturm 1998].  

The primary difference between these two models comes in their calculation of transport 
via suspension. SnowTran’s suspension equation leads to 1-2x more transport via suspension 
than predicted by the Pomeroy and Male 1991 formulation used in PBSM. Still, both methods 
scale snow transport by suspension exponentially with respect to wind speed, with the PBSM 
model transporting 90% of snow via suspension for surface shear speeds of 0.92 m s-1 [Pomeroy 
and Male 1992]. For the scope of this review, we simply note this agreement on the exponential 
relationship of suspension transport rate to wind speed and continue a more detailed comparison 
of the two suspension schemes in section 7. Due to the exponential nature of this relationship, we 
note that both models are dependent on the distribution of wind speeds, particularly the 
maximum wind speeds and their frequency of occurrence. 

SnowTran was updated in 2007 to include a variable threshold shear speed [Liston et al 
2007]. During precipitation events the threshold shear speed decreases. As a result, any winds 
during precipitation events are more likely to cause snow transport and to cause significant 
amounts of snow transport than a similar wind event not during a precipitation period. This 
means that in SnowTran and models with similar variable threshold shear speeds, the timing of 
wind speeds is important. 

Lastly, both models calculate the change in snow depth over a grid cell by determining 
the change in snow-transport flux for the cell. This follows from requiring a conservation of 
mass for the grid cell. For example, if a significant amount of snow is leaving the cell via 
saltation and none is coming in, the cell will experience a decrease in snow depth. Because these 
flux terms, and particularly suspension flux, are dependent on the wind speed, SnowTran and 
PBSM depend on spatial discontinuities in the wind speed field to allow for the deposition of 
snow. If these changes in transport flux do not occur, the snow will remain in the atmosphere 
longer, where it is more likely to sublimate. 
 
2.3 Desired qualities in wind fields  
  
 The two methods for estimating wind-transport of snow reviewed above share a few key 
similarities: exponential increase in wind-transport of snow with increasing wind speeds, primary 
transport via suspension at high wind speeds, and spatial discontinuities in the wind speed field 
leading to deposition. SnowModel also features a varying threshold shear speed, which adds 



importance to the timing of high-wind events relative to precipitation events. We also find it 
necessary to state the obvious, that in both models the direction of winds is critical to 
determining the pattern of snow caused by wind redistribution. From this review, we arrive at 
four characteristics of wind fields deserving of consideration. These are 1) direction of winds, 2) 
frequency of high wind speeds, 3) spatial heterogeneity of wind speeds, and 4) timing of high 
wind events relative to snowfall. In sections 6 and 7 we will discuss the performance of different 
wind fields in terms of these characteristics. 
 
 
3.0 Location and Data 
 
3.1 Site Description 
 
 This study focuses on the upper Tuolumne watershed in Yosemite National Park, 
California. This region encompasses large, subalpine meadows, peaks nearly 4000 m above 
mean sea level (MSL), and narrow valleys and canyons. Tree-line occurs around roughly 3000 m 
MSL, and much of the domain is comprised of bare expanses of granite. This limited vegetation 
cover makes the domain desirable for modeling both snowpack and winds. Interception of snow 
by vegetation complicates simulations of snowpack evolution, while the interaction of vegetation 
with winds leads to complex, fine-scale structures in the wind field. To evaluate the technique 
for inferring wind direction presented in section 5.1, we chose 9 sites around this domain with 
different site properties. Four of the sites are below tree-line and contain either sparse trees or 
extensive forest cover. Two of the sites are above tree-line and contain deep granitic fissures, 
which are discussed in-depth in section 6.1. The remaining three sites, Kuna_North, 
Meadows_Ridge, and Doghead_Peak, are above tree-line, are identified in Figure 1, and will be 
discussed in sections 6 and 7.  
 
3.2 LiDAR Data 
 

The upper Tuolumne basin was chosen both due to its varied terrain, and the availability 
of distributed snow depth data from NASA’s ASO program [Painter et al. 2016]. ASO snow 
depth data were obtained from LiDAR measurements by differencing a snow-on flight from a 
bare-earth, snow-off flight. Airborne LiDAR data has been found to properly capture the spatial 
variability of snowpack when compared to manual transects at open and forested sites [Currier et 
al. 2019].  

In this study we use 3-m snow depth data from WY2017. To infer the dominant wind 
direction as described in section 5.1, snow depth data from the earliest flight, 3 March 2017 were 
used. This is done in order to minimize melt patterns and maximize accumulation patterns by 
wind redistribution. When comparing SnowModel output with observations of snow depth in 
sections 6 and 7, the 1 April 2017 flight was used.  
 
 
 
 
 
 



3.3 HRRR data 
  
 10 m U- and V-component wind speeds from the High-Resolution Rapid Refresh 
(HRRR) model were used to generate three of the wind fields in this study [Benjamin et al. 
2015]. HRRR was chosen because it provides high-resolution spatial and temporal output for a 
well-studied weather model, WRF [Hovarth et al. 2012]. We used the University of Utah’s 
HRRR archive (http://hrrr.chpc.utah.edu/) [Blaylock et al. 2017]. HRRR runs the Weather 
Research and Forecasting (WRF) model for its physical calculations and assimilates a variety of 
high-resolution hourly observations from radar and satellites. The model provides data at a 3 km 
scale over the continental US at an hourly time step. This model resolution means that HRRR 
uses a 3 km DEM for its domain, which has important implications for modeling winds. We also 
used HRRR temperature, precipitation, and relative humidity variables to force all SnowModel 
runs discussed in section 4.2. The script used to pull and subset HRRR data from the archive can 
be found here: (https://github.com/d-reynolds/HrrrPy). 
 
3.4 NLDAS data 

 The North American Land Data Assimilation System (NLDAS) dataset has been used in 
many prior snow studies (e.g., Margulis et al. 2016), so we also include its wind data in this 
study. Again, 10 m U- and V-component wind speeds from NLDAS are used to generate wind 
fields. The NLDAS dataset obtains its wind data from the North American Regional Reanalysis 
(NARR) model [Xia et al. 2012]. NARR outputs variables at a 32 km grid spacing, meaning that 
it resolves the terrain at this resolution. 32 km NARR wind data are bilinearly interpolated to the 
approximately 12.5 km grid size used by NLDAS. 

3.5 CDEC data 
 
 Another source of wind data were three meteorological stations distributed throughout 
the study domain (Figure 1). Stations included in this study use mechanical anemometers to 
measure 10 m wind speed and direction at their sites. These data were chosen since 
meteorological observations from towers are a common source of forcing data for snow models. 
These data were obtained through the California Data Exchange (CDEC). Wind data at these 
stations are sampled sub-hourly and averaged to hourly observations of wind speed and 
direction. These three stations were chosen because they have records of wind speed and 
direction throughout WY2017. As noted in section 1, meteorological stations are prone to 
damage due to the harsh environment in which they operate, and not all stations in the study 
domain were reporting data during WY2017. If one of the three sensors used reported a lapse in 
observations, no correction was made, and the downscaling scheme applied simply distributed 
observations without this point. We believe that this allows for a fair comparison of the accuracy 
of data and quality of data among the wind fields tested. Approximately 4% of the wind sensor 
record contained gaps in observations. 
 
 
 
 
 



 
4.0 Models 
 
4.1 Downscaling models 
 
 Two wind-downscaling models, MicroMet and WindNinja, were used to downscale the 3 
wind datasets outlined above to a resolution of 150 m. MicroMet (MM) is a meteorological 
interpolation scheme developed as a preprocessing step to the snow model, SnowModel [Liston 
and Elder 2006]. In MicroMet, wind speed and direction are first interpolated to a finer grid from 
the coarse forcing data. Then, wind speed and direction are adjusted depending on the 
topographic slope and curvature at a given grid cell. MicroMet was chosen due to its relative 
simplicity of calculation, and widespread use in the snow modeling community [Pflug et al. 
2019; Bernhardt et al. 2010; Gascoin et al. 2013; Currier and Lundquist 2018]. While 
MicroMet wind speeds have been evaluated over confined areas with dense points of observation 
[Liston and Elder 2006], it has seen fewer evaluations of wind speeds over entire modeling 
domains [Gascoin et al. 2013], or evaluations of wind direction. 

Instead of interpolating using empirically-derived equations as MicroMet does, winds can 
also be downscaled using more physical-based models. We chose WindNinja as a more 
physically based model that is not prohibitively computationally demanding. WindNinja 3.5.0 
(WN) is a wind-downscaling model developed by the US Forest Service to be used operationally 
during forest fire management. It features a mass-conservation solver that modifies the initial 
wind field by minimizing change from the input vectors, while maintaining zero divergence in 
the wind field [Forthofer et al. 2014]. This model is more computationally expensive than 
MicroMet but can still downscale months of coarse wind data in a couple days on a personal 
laptop.  

Lastly, bilinear interpolation alone was used as a downscaling scheme due to its 
simplicity of implementation. These three downscaling methods, when applied to the HRRR, 
NLDAS, and CDEC data, represent a spectrum of wind fields ranging in computationally 
intensity. In this way we hope to demonstrate trade-offs between wind fields and determine if 
more computationally intensive methods are justified by an increase in the accuracy of modeled 
winds. 
 
4.2 Simulations with a distributed snow model 
 
 Point-evaluations and distributed-evaluations of wind fields can yield different 
conclusions about the accuracy of the wind fields tested [Musselman et al. 2015]. To fully vet the 
wind fields, we ran six different simulations of the distributed snow model, SnowModel, for 
WY2017 [Liston and Elder 2006]. The model was run at 150 m resolution over the domain 
shown in Figure 1. The 3-meter snow-off LiDAR data from the ASO campaign was supplied to 
the model as a DEM, while NLCD land cover data was used to determine vegetation type [Yang 
et al. 2018]. The six different simulations and their configurations are shown in Table 1. For all 
simulations, temperature, relative humidity (RH), and precipitation come from the HRRR model. 
In model runs with “HRRR” in the name, the wind direction and wind speed are derived from the 
HRRR model. Model runs named differently have wind data derived from either the NLDAS or 
CDEC datasets.  



The snow depth output from SnowModel on 1 April 2017 was compared with the 1 April 
2017 snow depth observations from NASA’s ASO program [Painter et al. 2016]. It is worth 
noting that SnowModel contains the submodules MicroMet and SnowTran. MicroMet is the 
same downscaling scheme discussed in section 4.1, while SnowTran was covered earlier in 
section 2.2. For a number of the simulations, SnowModel’s MicroMet downscaling scheme was 
not applied to the input wind field, and this is noted in Table 1 when done.  

In the process of modeling snow transport using SnowTran, we discovered an error in its 
calculation of transport near forest edges. For non-forested grid cells downwind of a forested 
grid cell, modeled surface wind shear speeds increase substantially. This results in the initiation 
of wind-redistribution at this cell. Since little or no wind transport of snow occurs in the 
sheltered, forested cells upwind, there is little snow flux into the non-forested grid cell. Thus, 
there is a net loss of snow from these cells downwind of forest stands. This behavior is to be 
expected in reality for some point downwind of forest stands. However, for a simulation using 
discrete grid cells, this point can only be the nearest downwind grid cell, which covers a 150m x 
150m area. Thus, large swaths of the simulation report an erroneously large net scour of snow. 
To compensate for this, we have masked out the first non-forested grid cell immediately 
downwind of forested grid cells in the results presented. Performing this masking may bias our 
simulations towards higher snow depth values, but it allows us to compare the distributions of 
snow depth values from SnowModel output with observations. 
 
 
5.0 Inferring Wind Directions 
 
5.1 Wind direction from correlation analysis 
 
 Spatial autocorrelation is a technique that describes how similar a 2D pattern, or raster, is 
to itself at different displacements. For example, if two identical, standardized rasters are 
overlaid and no displacement is made between their positioning, the two rasters are said to have 
a correlation of 1, the highest possible value. If the pattern contained in the raster is entirely 
random, the correlation of the two rasters should drop off considerably as the displacement, or 
lag-distance, increases, regardless of the direction of displacement. If instead the raster contains 
some features oriented along a particular direction, the correlation will remain high when 
displacement occurs along this direction (Figure 2.1b). Snow drifts which form on the lee side of 
topographic features are an example of patterns which contain directional features. 

Spatial autocorrelation can be applied to patterns of snow depth, with the presence of 
anisotropic structures in the autocorrelation function suggesting the presence of snow drifts at the 
site [Mott et al. 2011]. Trujillo et al. 2009 and Mott et al. 2011 found that when anisotropies are 
present in the snow depth autocorrelation function at a site, the dominant snow-transporting wind 
direction at the site is oriented perpendicular to the anisotropy. 

Over a 500m x 500m site we compute the 2D autocorrelation function of snow depth as 
illustrated in Fig. 2.1a-c. 3m resolution LiDAR data was used for both snow depth and elevation 
data, and each 500m x 500m raster was standardized by subtracting its mean and diving by its 
standard deviation. The Wiener-Khinchin Theorem was used to compute both the cross-
correlation and autocorrelation functions. Taking the directions perpendicular to the anisotropy 
yields two possible candidates for the dominant wind direction, both separated by 180º (Figure 
2.1d). To determine which of the two directions is the actual dominant wind direction, we 



compute the cross-correlation function between 500m x 500m rasters of snow depth and terrain. 
This is done to tease out which side of the terrain the snow drift has formed on. Snow drifts 
appear as local maxima in the snow depth distribution, and drifts formed via advection occur 
downwind from local maxima in the terrain. Thus, in the cross-correlation function between 
snow depth and terrain, displacements of the terrain raster downwind will increase correlation 
until the maxima of both patterns overlap (Figure 2.1f). To find this direction, we first compute 
the gradient of the cross-correlation function between snow depth and terrain (Figure 2.1g).  

 

𝐺𝑟𝑎𝑑%% = 	∇ )𝐶𝑟𝑜𝑠𝑠	𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛2𝐷𝐸𝑀, 𝑆𝑛𝑜𝑤9:;<=>?	 (1) 
 
 

We then sum all of the gradient vectors, finding that the direction of the resultant vector points 
towards the lee-side of terrain features. We refer to this vector as the “lee-side vector”. Finally, 
we identify the true wind direction from the two possible candidates as the direction with the 
larger dot product between itself and the lee-side vector (Figure 2.1h).  

There are a couple important assumptions used in this technique. First, if there is no 
strong anisotropy in the snow depth autocorrelation function, we assume that there are no drifts 
present. Second, we assume that any anisotropy is caused by wind and no other forces, such as 
avalanching or differential shading from solar radiation. For the sites shown in Figure 1, we have 
examined the local topography and determined this to be true. Lastly, we prescribe a single 
dominant wind direction at each site, instead of allowing for multi-modal distributions of snow-
affecting wind directions. 
 The technique described is used with 3 m resolution airborne LiDAR data, and the cross-
correlation is taken between terrain and snow depth. In areas where LiDAR data are unavailable, 
snow depth maps may be derived from satellite data using structure-from-motion [Shean et al. 
2016]. This could allow for the inference of wind direction in places like High-mountain Asia 
where few other observations exist. Finer resolution LiDAR could resolve other patterns of 
wind-redistribution that do not show up in 3-m LiDAR data (sastrugi, barchans, drifting around 
tree trunks, etc.) [Filhol and Sturm 2015]. Additionally, the cross-correlation could be taken 
between snow depth and vegetation height or snow depth scans of two different dates. The 
gradient of these cross-correlation functions would again indicate the direction of wind-drifts 
relative to some obstacle (vegetation, existing snow drifts). We hope that as sub-meter LiDAR 
data becomes more ubiquitous, this technique will find a wider range of applications. 
 
5.2 Thresholds used in correlation analysis 
 

When finding the lee-side vector, we sum the vectors in the gradient of the cross-
correlation function and take the magnitude of the resultant vector. This magnitude of the 
summed vector is then compared to the sum of the magnitudes of each vector in the gradient 
field. 

 
|Σ(𝐺𝑟𝑎𝑑%%)|
Σ(|𝐺𝑟𝑎𝑑%%|)

(2) 

 
 



 If the magnitude of the lee-side vector is greater than 60% of the sum of the magnitude 
of all vectors, we conclude that the gradient of the correlation function does represent the 
direction of drift formation. If the magnitude of the summed vector is not greater than 60% of the 
magnitude of the summed vectors, the gradient of the correlation function does not strongly 
agree on a singular direction. This could be due to snow piling up evenly on both sides of terrain 
features, or snow deposits in granitic ravines that appear as snow drifts in the autocorrelation 
analysis. Such a case involving granitic ravines is shown in Figure 2.2. Here anisotropies are 
found in the autocorrelation function, but the gradient of the cross-correlation function does not 
converge toward a single direction. This suggests that drifts are not forming on a particular side 
of terrain features, and the deduction of a single dominant wind direction is not possible. The 
threshold ratio of 60% was determined by comparing the cross-correlation functions of the nine 
sites tested. This threshold value was chosen conservatively. Sites with prominent wind drifts, 
such as the one shown in Figure 2.1, report ratios ranging from 75-99%, while the site shown in 
Figure 2.3 has a ratio of 11%. 

Figure 2.3 illustrates another case where the technique cannot infer the wind direction. 
Anisotropies in the autocorrelation function are found by taking radial transects of the function. 
If a transect has a mean value greater than 0.4, it is considered to be an anisotropy. The transect 
with the highest mean value at a site is taken to be the dominant anisotropy. This threshold value 
of 0.4 was determined by comparing the autocorrelation functions at nine sites that did or did not 
visually feature anisotropies. This threshold value of 0.4 was chosen conservatively to exclude 
sites without clear drifting. Sites which exhibit large snow drifts, such as the one shown in Figure 
2.1, have anisotropies with mean values ranging from 0.5-0.88, while sites such as the one shown 
in figure 2.3 have no transects with mean values greater than 0.2. Figure 2.3 shows the process 
for a site that does not feature a snow drift. After failing to find a transect of the autocorrelation 
function with a mean value > 0.4, the algorithm stops, concluding that snow drifts do not exist at 
this site. The site shown in figure 2.3 is a forested site, and prior studies found that anisotropies 
in the autocorrelation function due to wind were not found at forested sites [Trujillo et al. 2009]. 
The general pattern of inferred wind directions from the south-west shown in Figure 3 did not 
appear sensitive to small changes (+/- 0.1) of these threshold values. The number of sites at 
which the wind direction can be inferred did change, but the overall distribution did not. Future 
work may wish to investigate a more robust thresholding method. 
  
5.3 Comparing wind fields using inferred wind direction 
 

Using correlation analysis to infer wind direction gives us an estimate of what net wind 
direction shaped the snow depth distribution at a site. This snow pattern has built up over the 
season and is likely not attributable to one hour during the entire season. To overcome this, we 
find the modeled dominant direction (MDD) of winds at each of the 500m x 500m sites over 
which wind direction can be inferred. To find the MDD, we first take all of the modeled winds 
when wind speed is greater than 7 m s-1. This threshold represents the wind speed at which wind-
redistribution of snow is initiated under wet snow conditions [Li and Pomeroy 1997]. We then 
sum all of the hourly wind vectors exceeding this threshold speed, obtaining a resultant vector 
that represents the cumulative effect of winds at a site. The direction of this resultant vector gives 
us the MDD, representing the modeled wind direction most responsible for snow transport at the 
site. 
 



 
 
6.0 Results 
 
6.1 Performance of correlation technique 
 
 To closely evaluate the technique discussed in section 5.1, we first inferred the wind 
direction at 9 sites throughout the upper Tuolumne watershed. Of these sites, the technique 
worked in full at three of the nine, Kuna_North, Meadows_Ridge, and Doghead_Peak. These 
sites are characterized as being high-elevation ridgelines clear of large evergreen trees. They 
feature late-season snow drifts identifiable in satellite imagery in August 2017 (Figure 1). At 
these three sites, we find that the inferred dominant wind direction points in the direction which 
the observed snow drifts suggest. Two of the nine sites tested showed anisotropic features in the 
auto-correlation function of snow depth, but the gradient of the cross-correlation function failed 
to converge on a singular direction. Physically, this means that long, linear, drift-like features are 
present in the snow depth at these sites, but that there is no single directional relationship 
between these features and the surrounding topography. Both of these sites featured long and 
narrow granitic fissures, which are known to occur in the Tuolumne Intrusive Suite [Riley and 
Tikoff 2010; Becker et al. 2014]. These fissures accrue deep deposits of snow from sloughing, 
shading, and preferential deposition, so the resulting snow depth features are not due exclusively 
to wind-redistribution processes. The inferred-direction technique also indicated no drifts at four 
sites below tree-line and featuring extensive vegetation. This result is in line with findings of 
previous studies which applied correlation techniques to snow depth in vegetated areas [Trujillo 
et al. 2009; Deems et al. 2006]. This analysis at the 9 sites demonstrates that the technique works 
where expected (non-vegetated ridgelines) and properly identifies areas where large snow drifts 
are not present (vegetated sites). 
 After inferring the direction at these 9 sites with known characteristics, we ran the 
algorithm across the domain shown in Figure 1 by evenly dividing it up into 500 x 500m scenes. 
The algorithm took 5 minutes to run over a domain of this size, inferring the wind direction at 
260 sites in the basin. This is compared to the 3 wind sensors reporting wind direction in the 
basin during WY2017. The distribution of inferred wind directions shows that most snow-
transporting winds come from the south-west (Figure 3), which corresponds to the dominant 
winter storm-track for the basin [Lundquist et al. 2015]. Table 2 shows the characteristics of sites 
where the wind direction could and could not be inferred. 
 
6.2 Evaluation of modeled wind directions  

 
We find that all three of the wind fields which are derived from HRRR winds represent 

the distribution of inferred wind directions across the basin (Figure 3). The downscaled winds 
derived from NLDAS data have a narrower distribution than the inferred wind directions, as can 
be said of the winds derived from CDEC data. We find that wind fields derived from different 
coarse datasets report different distributions of wind direction. Wind fields derived from the 
same coarse dataset but downscaled differently report similar distributions of wind direction. 
This demonstrates that the choice in coarse wind data has a greater impact on wind direction than 
what downscaling scheme is applied. However, it is worth noting that once the MicroMet 



downscaling scheme is applied, both the NLDAS and CDEC wind direction distributions are 
consistent with the distribution of inferred wind directions. 
 
6.3 Spatial differences of modeled wind direction 
 

For every cell in the domain, the dot product between two downscaled wind vectors was 
computed. When wind vectors did not overlap exactly, the dot product was taken between a wind 
vector from one wind field and the closest wind vector in the second wind field. The mean of 
these dot products was then taken for each time step in the WY2017 record to obtain the maps 
displayed in Figure 4. Comparing this map with the topographic information of the domain, we 
see that the WindNinja and MicroMet schemes disagree most in narrow valleys. Comparing 
among wind fields with the same downscaling scheme (MicroMet) and different coarse datasets, 
we find that differences also occur primarily in low-elevation regions. In some areas, wind fields 
showed differences in modeled wind direction greater than 90º. Disagreements between wind 
fields from the same downscaling scheme but different coarse datasets also appear greater than 
disagreements between wind fields from different downscaling schemes but the same coarse 
datasets. This agrees with the results found in section 6.2. 
 
6.4 Distribution of wind speeds in downscaled wind fields 
 
 To compare the distribution of wind speeds generated by different wind fields, we 
examine a point on Kuna Crest and look at the wind speed values reported here by all 
SnowModel simulations during WY2017. This point is chosen because it is at an exposed 
location where wind field differences are exaggerated for demonstration, and where wind-
transport of snow is expected to be significant. The CDEC+MM wind field features a sharp peak 
around 1 m s-1, with only 48% of observations above 1 m s-1 over Kuna Crest (Figure 5a). The 
peak around 1 m s-1 is imposed by MicroMet, which sets a minimum wind speed of 1 m s-1 to 
ensure computational stability. The CDF of CDEC+MM wind speeds shows that besides this low 
peak, the tail of the distribution stretches out to a maximum wind speed of 36 m s-1 (Figure 5a).  

We find that the NLDAS+MM simulation reports higher wind speeds than the 
HRRR+Interp simulation at this point (Figure 5a). These differences in wind speeds arise 
primarily from the downscaling schemes used. Non-downscaled NLDAS data typically reports 
lower wind speeds than non-downscaled HRRR data. This occurs because the NLDAS dataset 
derives its wind speeds from 32km NARR data, which is then interpolated to the 12.5 km 
NLDAS grid. Using a 32 km DEM to represent the complex terrain of the Sierra Nevada results 
in smoothed terrain, over which speed-up of winds is expected to be low. However, applying the 
MicroMet downscaling scheme to NLDAS data allows wind speeds to be increased over terrain 
convexities, somewhat compensating for the low-resolution DEM used by NLDAS. The bilinear 
interpolation scheme used in the HRRR+Interp simulation results in wind speeds between HRRR 
nodes that will never exceed the wind speeds at the HRRR nodes themselves. This is simply a 
function of bi-linear interpolation. This demonstrates how downscaling schemes using only 
interpolation limit wind speeds to the maximum speed reported by the coarse forcing data. In 
short, low-resolution gridded data passed through a terrain-conscious downscaling scheme 
provides better model forcing data than high-resolution gridded data downscaled through 
interpolation alone. 



Lastly, both the HRRR+MM and HRRR+WN wind fields show wind speed distributions 
skewed toward higher speeds compared with the other wind fields. The HRRR+WN wind field 
produced the distribution of wind speeds most skewed toward higher speeds of all of the wind 
fields tested. The HRRR+WN wind field also featured the highest peak speeds of all of the wind 
fields tested, reporting maximum speeds of 54 m s-1 compared to the HRRR+MM wind field’s 
maximum speeds of 34 m s-1. 
 
6.5 SnowModel simulations 
 
6.5.1 SnowModel snow depth patterns 
 
 Running SnowModel under the six different configurations demonstrates the necessity of 
terrain-modified wind data and wind-redistribution processes when modeling snowpack. 
Comparing SnowModel snow depth output to ASO data on 1 April 2017, we find that the 
configuration without wind-redistribution (HRRR+NoTran) fails to capture the scour and 
deposition patterns along the ridgeline of Kuna Crest (Figure 7). We find that the setup forced 
with bilinearly interpolated HRRR data simulates windward regions of scour seen in the ASO 
data. However, the HRRR+Interp simulation does not then create regions of deposition and 
increased snow depths on the leeward side of the ridge. The HRRR+MM and HRRR+WN 
simulations do capture the general pattern of wind redistribution seen in the ASO snow depth 
data. We find that the HRRR+WN-forced simulation transports more snow onto the leeside of 
the ridge than the HRRR+MM -forced simulation, scouring more snow from the windward side 
as well (Figure 7 and 8). The CDEC+MM and NLDAS+MM simulations both feature a positive 
bias in snow depth on the windward side of Kuna Crest, and generally show little signs of wind-
redistribution (Figure 7 and 8).  We observe that the NLDAS+MM, CDEC+MM, HRRR+Interp, 
and HRRR+NoTran configurations are unable to capture the heterogeneity of snow depth over 
Kuna Crest (Figure 8). This is compared to the MM+HRRR and WN runs, both of which better 
reflect the heterogeneity of snow depth seen in the ASO data (Figure 8).  

Examining the biases of these six configurations across the whole basin, we find that the 
HRRR+NoTran simulated snow depth has a positive bias of 19 cm relative to ASO snow depth, 
indicating that the HRRR+NoTran simulation accumulated more snow than observed (Table 3). 
The CDEC+MM and NLDAS+MM simulations had biases in snow depth of 28 cm and 11 cm, 
respectively. The HRRR+Interp SnowModel simulation reported a negative bias of -21 cm, 
while the HRRR+MM and HRRR+WN simulations had negative biases of -16 and -24 cm, 
respectively. When examining the biases across a smaller subset of the domain, Kuna Crest, the 
bias of the NLDAS+MM simulation more than doubles to a bias of 25 cm. For an explanation of 
this apparent change in performance, we refer the reader to section 7.3.3. 

 
6.5.2 SnowModel transport rates 
 

SnowModel initiates saltation and suspension processes once the surface shear velocity 
exceeds the threshold shear velocity [Liston and Sturm 1998]. Thus, differences in wind-
transport of snow can be partly explained by the number of times the surface shear velocity 
exceeds the threshold velocity. We find that the HRRR+WN and HRRR+MM simulations had 
the highest domain-averaged percentage of exceedance for the ensemble (Table 3). The 
CDEC+MM simulation, which had the lowest amount of wind-redistribution of the ensemble, 



has the lowest exceedance percentage. This is due to the CDEC forcing data having mostly low 
values for wind speed (5% exceedance of 2.7 m s-1 over Kuna Crest, Figure 5a). Thus, the 
CDEC+MM simulation failed to resolve the wind-redistribution of snow seen in the HRRR+WN 
and HRRR+MM simulations simply due to biased-low wind speeds. We attribute this bias to the 
CDEC stations being located at lower elevation sites sheltered by terrain and vegetation.  

As discussed in section 2, SnowTran calculates wind-transport of snow exponentially 
with respect to surface shear speeds (Figure 5b). Thus, small differences in wind speed, 
especially at high values, can result in large differences in wind-transport of snow. Applying this 
to the distribution of wind speeds discussed in section 6.4, we find that simulations with wind 
speed distributions skewed low (NLDAS+MM, CDEC+MM, HRRR+Interp) had low rates of 
wind-redistribution (Table 3). Contrasting this, simulations with higher rates of wind-
redistribution (HRRR+MM, HRRR+WN) had distributions of wind speed skewed towards 
higher values. 

SnowTran also truncates 10-m wind speeds greater than 30 m s-1 to ensure computational 
stability in the calculation of surface roughness. This truncation significantly affects the 
HRRR+WN wind field, which reported winds up to 65 m s-1 over the basin. Since transport is 
computed exponentially with respect to wind speed, the HRRR+WN simulation would have 
resulted in greater rates of wind-redistribution than reported in Table 3 without this truncation of 
speeds greater than 30 m s-1. In Figure 5a, we report the 10-m wind speeds as ingested by 
SnowModel, and in Figure 5c, we report the surface shear velocities used in computation of 
wind-redistribution, which have the 30 m s-1 truncation applied.  
 
 
7.0 Discussion  
 
7.1 Applicability of correlation technique 
 

The technique of inferring wind direction described in section 5.1 was found to work well 
at non-forested sites with median slopes between 20º and 40º. The technique’s poor performance 
at forested sites is expected given the findings of prior studies [Trujillo et al. 2009; Mott et al. 
2011]. The technique depends upon finding an anisotropy in snow depth autocorrelation that 
persists over lag-distances of > 30 m, and these prior studies found that forested sites do not 
exhibit this. The tree-line in this basin is around 3000 m, and the mean elevation of sites where 
the wind direction could be inferred was 3100 m (Table 2). Lastly, we see that the technique 
works best at sites with a median slope between 20-40º, with almost no success at sites with 
median slopes greater than 40º. This is likely because some terrain irregularities are required to 
form snow drifts, but sites with slopes > 40º do not retain enough snow to form a drift downwind 
of terrain. 
 There are a few caveats to the method. First, we assume that any strong gradient in the 
cross-correlation of terrain with snow depth is caused by wind-transport of snow. However, 
avalanches or shading of snow patches on the north side of slopes will also result in some 
dominant direction in the gradient of the cross-correlation function. It is possible that cornice-
triggered avalanches still indicate the local wind direction since they occur on the leeside of a 
corniced ridge, but such an investigation is beyond the scope of this paper. The technique 
described here also assumes that, when a snow drift is detected at a site, the winds causing it are 
perpendicular to the anisotropy in snow depth autocorrelation. In reality, a variety of wind 



directions having components perpendicular to a given terrain feature can result in a lee-side 
snow drift. With the data available in this study, the best estimate that can be made is a direction 
perpendicular to the snow depth anisotropy.  

Lastly, the domain over which the wind direction is inferred needs to be chosen with 
care. One can imagine a snow drift on the leeward side of some ridge, A, with a nearby adjacent 
ridge, B, that did not form this snow drift. Using our 500m x 500m windows, we could include 
the snow drift and ridge A in one window. Here we have appropriately grouped the snow drift 
with its parent terrain feature, and our technique would indicate the correct wind direction. If, 
however, we chose a 500m x 500m window that excluded ridge A and included the snow drift 
and adjacent ridge B, we would group the snow drift with an unrelated terrain feature. However, 
the technique simply looks at the relationship between terrain and snow depth and would falsely 
conclude that the local wind direction acts 180º from the direction that did form the drift.  

We find that our correlation technique can infer the wind direction around exposed, non-
vegetated ridges, and cannot infer the wind direction at sites where other processes such as 
forest-snow interactions dominate. 
 
7.2 Differences in downscaling schemes as explained by model internals 
 
 The HRRR+MM and HRRR+WN wind fields tend to diverge in their predictions of wind 
direction in narrow concavities in the terrain (see white areas in Fig. 5, relative to DEM). To 
explain this result, we look to the internals of the two downscaling methods. While WindNinja 
may freely adjust its wind vectors without having to match forcing data at the location of the 
data, MicroMet is confined to interpolating its wind field between points of forcing data nodes. 
MicroMet then adjusts the interpolated wind direction by computing a scaling factor that 
accounts for local terrain curvature and slope. However, due to constraints placed on this scaling 
factor, the largest modification of interpolated wind direction that MicroMet can make is +/-
14.3º. If MicroMet is asked to simulate wind direction in a narrow valley, and the two closest 
HRRR nodes are on the valley’s ridges where meso-scale wind patterns suggest a homogenous 
wind field, MicroMet will predict wind directions in the valley +/- 14.3º from those found on the 
ridges. This is a specific scenario, but it is the likely explanation for the disparity seen between 
MicroMet and WindNinja in narrow terrain concavities. This also explains differences in wind 
fields derived from different coarse datasets and downscaled using MicroMet.  
 A similar story is true of MicroMet’s modification of wind speeds. Again, MicroMet 
computes a scaling factor that accounts for curvature and slope of the local terrain, then 
multiplies the interpolated wind field by this scaling factor. Due to constraints placed on this 
scaling factor, the largest modification of wind speed that MicroMet can make is 1.5 or 0.5 times 
the interpolated wind field. This limit results in lower wind speeds near ridgelines when 
compared with WindNinja. Despite this restriction on MicroMet, we find that both downscaling 
schemes result in more spatially heterogeneous wind speeds with greater extrema when 
compared to a wind field downscaled using bilinear interpolation alone (Figure 6).  

These results demonstrate that MicroMet is dependent on high-resolution, accurate 
forcing data for computing a wind field. Modelers hoping to use MicroMet to downscale winds 
should ensure that they are using well-vetted weather model data of a relatively high spatial 
resolution, and not coarse or irregularly spaced meteorological station data. 
 
 



 
 
 
7.3 Effect of wind fields on modeling snow depth 
 
7.3.1 Timing of wind speeds with a variable threshold shear velocity scheme 
 

We also investigated the timing of wind events, because our SnowModel setup used a 
variable threshold shear velocity [Liston et al. 2007]. This formulation alters the threshold shear 
velocity depending on time since last snowfall, density of freshly fallen snow, and wind speed. 
During precipitation events, the threshold shear velocity drops significantly, allowing for wind-
redistribution of snow. We would also expect surface shear velocity to increase during these 
precipitation events, since they represent winter storms. We found that for all simulations tested, 
with the exception of CDEC+MM, periods of low threshold shear velocities corresponded to 
periods of high surface shear velocities. In other words, when the snow surface was soft and ripe 
for transport, these simulations had wind speeds capable of transporting it. This relationship 
between timing of surface shear speeds and low threshold shear speeds is expected for all of the 
simulations forced with HRRR winds, since HRRR precipitation is likely to overlap with HRRR 
winds as it models winter storms. It is notable that this overlap holds for the NLDAS+MM 
simulation. This simulation used the HRRR precipitation field, but NLDAS-derived winds. It 
demonstrates that both models predicted similar timing for the precipitation and high-wind 
events, and that the choice in coarse wind data may not impact the timing of surface shear 
exceedance when using gridded meteorological data. These results show that when using gridded 
model data as input to a downscaling scheme, wind-redistribution will occur as expected during 
winter storms. However, using observations from meteorological towers may not allow for 
proper timing of high wind events with precipitation events, due to sheltering of the towers by 
vegetation or topography. 
 
7.3.2 Effect of spatial heterogeneity of wind speeds on wind-redistribution 
 

To explain differences in wind-redistribution of snow between the simulations, we look 
to the spatial distribution of wind speeds in the forcing data. 4 of the 5 downscaled wind fields 
show some reflection of the local topography in the wind speed fields (Figure 6). However, the 
HRRR+Interp wind field, because it has not been adjusted for local topography, varies smoothly. 
This is significant for modeling deposition of snow via transport processes. While the 
HRRR+Interp simulation deposited 27% of wind-scoured snow, the average for the other 4 
simulations was 87% of scoured snow being re-deposited. This is because deposition via snow 
transport occurs in SnowModel only when a difference in transport flux occurs. These 
differences in transport flux primarily occur when there are changes in wind speed, and any 
sharp changes in wind speed are smoothed out through the bilinear interpolation applied. Thus, 
in the simulations forced with wind fields downscaled with respect to terrain, snow which is 
scoured is typically deposited elsewhere. In the HRRR+Interp simulation, it is scoured but not 
deposited. Instead it remains in the atmosphere for longer and is eventually sublimated. Indeed, 
the HRRR+Interp simulation sees 118% of its scoured snow sublimated, while the HRRR+MM 
simulation sees only 38% of its scoured snow sublimated. These results demonstrate that when 



modeling wind-redistribution of snow, one should apply a terrain-conscious downscaling 
scheme, and not simple bilinear or nearest-neighbor interpolation, to wind data. 

As noted above, the NLDAS dataset draws its winds from a 32 km resolution model 
(NARR), and then interpolates them to the 12.5 km NLDAS grid. Since NARR runs at a 32 km 
resolution, it views the terrain at a coarse scale and produces a smoothed DEM. As a result, 
regions with tightly clustered peaks will be assigned a high mean elevation, while generally flat 
regions with a solitary ridge will have a mean elevation more reflective of the flats. When wind 
speed is calculated over these two regions, speeds will be calculated as if there are some 
obstacles for the clustered peaks and calculated as if there is virtually no obstacle for the lone 
ridge. As a result of this, the NLDAS+MM simulation achieves wind-redistribution in some 
mountainous areas of the modeling domain, and nearly no wind-redistribution in other sparsely 
mountainous areas (Figure 9). This further demonstrates that MicroMet is dependent on high-
resolution, accurate forcing data.  
 
7.4 Deposition patterns  
 

The presence of large positive and negative biases of snow depth on the leeside of Kuna 
Crest seen in the HRRR+MM and HRRR+WN simulations also suggest that transported snow is 
being deposited in the wrong locations. Since the deposition of blowing snow occurs when there 
are changes in wind speed, these large biases are evidence of neither wind field capturing the 
true leeside wind field. The leeside wind field is characterized by large, complex eddies, which 
we do not expect either the HRRR+MM or HRRR+WN wind fields to resolve, especially at 150 
m resolution. In fact, fully modeling leeside flow remains a challenge for even advanced CFD 
models [Gerber et al. 2017]. Prior studies have shown that model resolutions < 10 m are 
necessary to resolve small-scale snow features caused by wind transport, but this resolution is 
currently not feasible for basin-wide modeling efforts [Mott and Lehning 2010]. Future studies 
may wish to examine changes in wind speed heterogeneity, and thus deposition patterns, as 
model resolutions are increased from 150 m to higher resolutions. This may yield some sweet-
spot in modeling resolution where the location of lee-side snow drifts is resolved without a 
prohibitively high model resolution. 
 
7.5 Formulation of suspension in SnowTran 

 
In reviewing the equations comprising SnowTran and the Prairie Blowing Snow Model’s 

snow-redistribution schemes, we found that the primary difference between these two models 
comes in their calculation of transport via suspension. While they agree on the overall form of 
the equation, an integral of the concentration of snow in the atmosphere over the suspension 
layer, they disagree in their estimates of the concentration within this layer.  

The method laid out in SnowModel follows a theoretical model developed for general 
aeolian transport of particles which considers the concentration to be determined by particle 
settling velocity, uplift from turbulent eddies, and the net vertical transport of particles [Kind 
1992]. This relationship is then used to estimate the concentration at a given height, using the 
concentration calculated at the top of the saltation layer. The concentration equation developed 
for PBSM starts with the same principles governing the concentration of particles in the 
suspension layer [Pomeroy and Male 1992]. Pomeroy and Male 1992 then introduce empirical 
constants derived from observations of mass concentrations throughout this layer. We found that 



despite these similarities, SnowTran predicted 1-2x more transport via suspension than PBSM. 
Additionally, the transport rates reported by SnowModel, especially at high wind speeds, appear 
greater than those reported in observations [Nishimura and Nemoto 2005; Schmidt 1982; 
Pomeroy and Male 1992]. 

We attribute these differences to SnowTran’s treatment of snow settling velocity. In their 
implementation of Kind 1992’s methodology in SnowTran, the developers of SnowTran assign a 
constant settling velocity for snow of 0.3 m s-1, coming from Schmidt 1982. In Pomeroy and 
Male’s formulation of the suspension equation, snow settling velocity is allowed to vary with 
particle radius. Sensitivity testing found that doubling SnowTran’s settling velocity to 0.6 m s-1 
brings its estimates of transport via suspension into agreement with PBSM and published 
observations [Nishimura and Nemoto 2005; Schmidt 1982; Pomeroy and Male 1992]. Variations 
of settling velocity by this amount are reported in the literature, including in the study that Liston 
and Sturm 1998 cite for their 0.3 m s-1 estimate [Schmidt 1982; Schmidt 1982]. In Schmidt 1982, 
calculated snow settling velocity ranged from 0.26 to 1.05 m s-1 for the distribution of particle 
sizes observed. It is possible that the original 0.3 m s-1 value in SnowTran is appropriate for the 
colder environments that these researchers tend to study, but that this subtlety was not 
communicated. 

While the current formulation of suspension allows for rates of transport larger than those 
published in observations, it is likely that SnowTran’s limit on 10-m wind speeds to 30 m s-1 
partly controls for excessive transport. However, this compensatory effect is an unsatisfying 
solution. The WindNinja downscaling scheme was found in this study to produce high winds and 
transport the most snow of all simulations tested, but this result may change if different settling 
velocities or blowing snow models are used. A full analysis of the settling velocity of snow and a 
comparison of different blowing snow models is beyond the scope of this study. Yet, considering 
that suspension comprises the bulk of wind-redistribution of snow (Table 3), we believe this to 
be worthy of future study. 
 
 
8.0 Conclusion  
 

In this study we evaluated a range of combinations of wind data and downscaling 
schemes for use in modeling the wind-redistribution of snow. We also introduced a new 
technique for inferring the wind direction at sites from the local snow depth distribution. This 
technique tends to be applicable at non-forested sites with median slopes between 20º and 40º. 
Using these inferred wind directions, we find that coarse wind data has a greater effect on wind 
direction than the downscaling scheme used. However, differences among downscaled wind 
directions tested were minor, and modeled wind direction is likely not a major source of error for 
modeling wind-redistribution of snow at 150 m resolutions.  
 We then compared downscaled wind fields directly, finding that they differ in their 
predictions of wind direction in narrow terrain features where the data used to force them does 
not provide information. This motivates the usage of relatively high-resolution (3 km) wind data 
for downscaling. In the narrow, forested valleys, wind speeds are usually too low for wind-
transport of snow, so differences in wind direction are not important for modeling snow depth. It 
is possible that wind direction could be important for modeling canopy interception and 
unloading, but SnowModel does not include wind data in canopy processes [Liston and Elder 
2006], and such analysis is beyond the scope of this study. The downscaling methods also 



differed in their predictions of wind speed over exposed ridges. WindNinja-downscaled HRRR 
data reported the highest speeds over ridges, while MicroMet-downscaled HRRR data reported 
lower wind speeds. Implicitly, the bilinearly interpolated HRRR field did not show any speedup 
over ridges. These differences between WindNinja and MicroMet are explained by the internals 
of MicroMet, which limit how much MicroMet’s predictions can deviate from the forcing data.  

Results from running SnowModel with these different forcing datasets showed that wind 
speed distributions and spatial heterogeneity of wind speeds are the most important factors in 
wind forcing data. Due to the placement of the wind sensors, CDEC+MM simulations did not 
achieve high enough wind speeds to allow for wind-redistribution of snow. NLDAS+MM 
simulations had inconsistent performance across the basin, since NLDAS wind data come from a 
model which views the terrain at a 32 km resolution. The MM-downscaled and bilinearly 
interpolated HRRR data had similar distributions of wind speed, but the homogeneity of the 
interpolated HRRR data resulted in decreased deposition of transported snow and thus increased 
sublimation. Lastly, the HRRR+WN simulation predicted wind speeds greater than 60 m s-1 at 
10-m height over exposed ridges, leading to the most wind-redistribution of snow of all of the 
simulations run.  

These results lead us to conclude that, in order to model wind-redistribution of snow, 
snow modelers should downscale wind data from weather models. These weather models should 
be of a reasonably high-resolution 3 km and the downscaling scheme should account for local 
topography. We find that downscaling 3 km HRRR data with the MicroMet scheme achieves 
this. 

In the process of this work, we also discovered two components of the SnowTran model 
worthy of further review. The first being its treatment of transport flux out of areas downwind of 
forested grid cells, and the second being its treatment of snow settling velocity as a constant 
when calculating transport via suspension. Improvements should be made to the suspension 
scheme in SnowTran so that it considers the settling velocity of snow grains as variable. 
Regardless of these issues, SnowTran has proven to be a useful tool for recreating snow depth 
distribution patterns when compared to simulations without it. 

Future studies using correlation analysis to infer wind direction should test it in on high-
resolution LiDAR data to investigate whether this technique works across different length scales. 
As regular LiDAR scans of snow depth increase in resolution into the sub-meter domain, fine-
scale patterns of wind and snow interaction such as sastrugi and barchans can be used to infer 
wind direction. Additionally, taking the cross-correlation of snow depth with vegetation height as 
well as snow depth with terrain may increase the range of sites at which this technique is 
applicable. Future studies should also look at whether snow depth output from snow models 
forced with empirically- or physically-based downscaling schemes diverge at higher modeling 
resolutions. This would determine at what modeling resolution it is necessary to use more 
physically explicit downscaling schemes of winds. 
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Figure 1: Map of study area in Tuolumne Meadows, CA. The red perimeter shows the area over 
which wind fields were calculated and compared with inferred wind directions. The blue 
perimeter shows the area over which SnowModel was run. The orange perimeter shows the area 
referred to as Kuna Crest in sections 6 and 7. Note that the legend and scale bar indicate the scale 
of the domain shown in the upper left and is not representative of the scale at the three sites 
shown on the right. The blue arrows show the locations of CDEC meteorological towers, labeled 
by their reference names on CDEC. The green arrows indicate the locations of the three sites 
shown on the right, where snow drifts were identified from late-lying snow near ridgelines. 
 



 
Figure 2: The process used to infer the wind direction at a 500 x 500m site. Warmer colors on the 
contour plots indicate contours of high correlation values. 2.1 shows a successful inference at 
Kuna_North. 2.2 shows an unsuccessful inference due to disagreement in the gradient of the 
cross-correlation. 2.3 shows an unsuccessful inference due to a lack of an anisotropy in the 
autocorrelation function. 
 



 
Figure 3: Comparison of coarse and downscaled wind direction distributions compared to the 
distribution of inferred wind directions. The distributions shown are normalized PDFs of the 
wind direction. This means that the area of each distribution is not indicative of the total number 
of data points that it contains. This is done so that all distributions, including the narrowly 
distributed coarse CDEC data, are visible here. Windrose titles refer to the wind field used, in the 
format “Coarse_Data+Downscaling_Method”. 



 
Figure 4: Spatial comparison of the mean dot-products between wind vectors of different wind 
fields for WY2017. Wind field vectors are normalized before the dot-product is taken so that 
only the modeled wind directions are compared. Regions of value 1 indicate agreement between 
the wind fields on the wind direction, whereas regions of value -1 indicate disagreement. 
 
 
 
 



 
Figure 5: Wind speeds and net snow transport fluxes for a SnowModel grid cell on Kuna Crest 
for Oct 2016 – April 2017. Panel a) shows cumulative distribution functions (CDFs) of 10-m 
wind speeds as ingested by SnowModel. Panel b) shows SnowTran’s calculated transport rate as 
a function of surface shear velocity. Panel c) shows CDFs for the surface shear speeds modeled 
by SnowModel. Panel d) shows a CDF of net transport fluxes. Negative fluxes indicate net 
scouring of snow from the grid cell, positive fluxes indicate net deposition of snow to the grid 
cell. 
 
 



 

 
Figure 6: Spatial comparison of wind speeds over Kuna Crest. The time shown was selected as it 
was a high-wind event where spatial differences between the wind fields are most apparent for 
demonstrative purposes. The abrupt change in speeds in the MicroMet downscaled wind fields 
corresponds to a transition from forested to non-forested grid cells. 
 
 
 
 
 
 
 
 



 
Figure 7: Map of the spatial distributions of modeled snow depth across Kuna Crest for all 
SnowModel simulations. The area shown spans 5.25 km x 5.25 km. ASO data comes from the 
04/01/2017 flight. Imagery comes from the NAIP program. The arrow labeled “WD” shows the 
dominant wind direction across this ridge, and the arrow labeled “N” indicates the direction of 
North. Note the presence of deep snow drifts in the HRRR+WN and HRRR+MM simulation that 
are also observed in ASO data. The black pixels correspond to non-forested grid cells downwind 
of forested grid cells, which were masked out as discussed in Section 4.2.  
 
 
 
 
 



 

Figure 8: PDFs of the snow depth distributions across Kuna Crest for each SnowModel 
configuration shown in figure 7. The SnowModel simulations which use the CDEC+MM and 
NLDAS+MM wind fields to calculate wind transport of snow result in distributions similar to 
the simulation run without wind transport of snow. The simulation forced with the HRRR+Interp 
wind field produced a distribution with more low snow depth values and fewer high snow depth 
values when compared to observations from ASO. The SnowModel simulations which used the 
HRRR+WN and HRRR+MM wind fields best matched the distribution of snow depth values 
captured by observations. 
 



 
Figure 9: Spatial distribution of modeled net wind-transport of snow at two different sites. Map 
of accumulated snow transported in three simulations due to saltation and suspension. The top 
row shows net wind-transport over Kuna Crest, while the bottom row shows net wind-transport 
over Sawtooth Range. Net wind-transport is calculated as the sum of saltation and suspension. At 
both locations, the SnowModel simulation forced with the HRRR+WN wind field produces the 
most wind-transport of snow compared to the NLDAS+MM and HRRR+MM forced 
simulations. Over Kuna Crest, a ridgeline with local prominence, The NLDAS+MM forced 
simulation produced less net wind-transport than the HRRR+MM and HRRR+WN simulations. 
Over the Sawtooth Range, which is in a more mountainous region, the NLDAS+MM forced 
simulation produced net wind-transport totals more similar to those in the HRRR+MM and 
HRRR+WN simulations 
 
 
 
 
 
 



 
Table 1. Configurations of the six SnowModel Simulations 
 
 

 
Table 2. Characteristics of sites where inferences of wind direction were attempted. Vegetation 
type of a site is determined by the mode of the vegetation type over the site. Elevation and Snow 
Depth for a site are calculated as the mean over the site. Slope is the median slope calculated 
from the 3m DEM over the site. 
 
 
 
 
 
 



 

Table 3. Statistics from the SnowModel simulations. All values reported in cm of SWE. Biases 
are computed relative to ASO data. "Cell-mean" refers to the total quantities averaged across all 
grid cells in the domain  
 
 
 


