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The category of equilogical spaces, as well as the exact completions of the category
of T0-spaces and of the category of topological spaces, offers locally cartesian closed
extensions of the category of topological spaces. Hence in any one of such categories,
it is straightforward to consider spaces of continuous functions without bothering about
ensuring that they be topological spaces.
We test this fact with the notion of sober topological space, producing a synthetic
characterization of those topological spaces which are sober in terms of a construction
on equilogical spaces of functions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Natural categories in modeling computation consist of topological spaces obtained from directed-complete partial or-
ders endowed with the topology of directed sups (often called the Scott topology). These are cartesian closed, but need
not be closed under various useful constructions like subspaces or quotients which are otherwise natural in the approach
using (one of the various notions of) filter spaces. In an attempt to reunify the views, Dana Scott proposed the category
Equ of equilogical spaces: An equilogical space is a triple E = (S E , τE ,≡E ) where (S E , τE ) is a topological T0-space and
≡E⊆ S E × S E is an equivalence relation. A map f : E → E ′ between equilogical spaces is a function between the quotient
sets f : S E/≡E → S E ′/≡E ′ which has a continuous choice function g : S E → S E ′ tracking it on the representatives. In other
words, for some appropriate continuous function g

f
([x]≡E

) = [
g(x)

]
≡E′ , all x ∈ S E .

In [1], Dana Scott had already noticed that these data form a cartesian closed category, and that proposal was reaffirmed
in [2].

The construction has been compared to that of the category Mod of the modest sets in the effective topos, see [3,4];
in fact, in both situations, one can explain local cartesian closure based on the same general facts, see [5,6]. And the
crucial construction involved is that of the exact completion of a category with finite limits. In that perspective, a thorough
comparison between various cartesian closed extensions of the category of topological spaces was conducted in [7].

In Section 2 we recall the basic constructions of the various categories starting from that of topological spaces and
explaining the underlying intuition. In Section 3 we recall a synthetic description of sobriety, as proposed in [8,7] and also
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considered for possibly different purposes in [9–11] and state the characterization theorem of sober spaces as topological
spaces satisfying an intrinsic property in Equ. In Section 4 we produce the proof of the characterization theorem.

We would like to thank Enrico Ghiorzi, Paul Taylor and the anonymous referees for useful comments on the first draft
of the paper.

2. Viewing topological spaces as abstract sets

The intuition about expanding the notion of set as a collection of points without any further structure to include objects
where some kind of cohesion among the points is described quite vividly in [12–14]. And the first approximation to such an
intuition that one may take is to consider topological spaces and continuous functions and the category Top that they form.

One immediately notices that, in order to consider topological spaces (and continuous functions) as sets, it is crucial to
have the construction of quotient by an equivalence relation. And the definition of exact category singles out precisely the
properties of the standard construction of a set of equivalence classes, see [15]: given an equivalence relation ∼ on an
object S , the quotient S/∼ is the smallest solution to the problem of defining transformations which preserve the identi-
fication on arguments induced by the equivalence relation. The property (that one then checks in proving the factorization
theorem for set-functions) that

[x]∼ = [
x′]

∼ ⇐⇒ x ∼ x′

can be restated category-theoretically as saying that the kernel equivalence relation induced by the canonical surjection
S S/∼ coincides with the given equivalence relation ∼. This makes a quotient of sets effective. Finally, it is a property
of the logic that gives stability: any renaming of the equivalence classes g : X → S/∼ is (in bijection with) the classes for
an equivalence relation on {(x, s) | g(x) = [s]∼}.

Formally (and in a nutshell), given a category C , an equivalence relation in C is a pair of arrows A1
r1

r2
A0 which is

jointly monic, reflexive, symmetric, and transitive. A quotient of such an equivalence relation is a coequalizer f : A0 A
of the parallel pair. And the quotient is said to be effective if its kernel pair is isomorphic to the given equivalence relation.
Moreover it is stable if any pullback of it is a quotient.

A category C is exact if it has finite limits, quotients of equivalence relations, and these are effective and stable under
pullbacks. We refer the interested reader to [15–17,7] for a thorough discussion of the notions involved and examples.

A weaker notion is that of a regular category which is a category with finite limits and with quotients of kernel pairs
which are effective and stable.

The category of topological spaces and continuous functions has quotients of equivalence relations, but these are not in
general effective or stable. In other words, those quotients are wrong if one wants to think in terms of “spaces as sets”.

Again, category theory offers a solution for free: since the notion of exact category is algebraic over categories with
finite limits, there is always the free exact category generated by a category with finite limits. Moreover, as presented in
a well-known paper [18], such a free construction can be obtained in finitary terms over the given category with finite
limits. In the case of the free exact category Top0ex over the category of T0-spaces, one obtains an exact category which is
also locally cartesian closed and extensive (in other words, a locally cartesian closed pretopos), extending the original result
of [1,2], see [7].

Relating the notion of exact category to that of regular category in the sense of [15], Aurelio Carboni also produced a
finitary presentation of the free regular category over a category with finite limits in [16]. And all this provides a square of
product-preserving reflections

Top0




Equ = (Top0)reg
⊥



(Top0)ex

⊥




Top Topreg
⊥ Topex

⊥

The categories in the last column are locally cartesian closed pretoposes, those in the middle column are locally cartesian

closed quasitoposes, see [19]. And the inclusions preserve finite limits and all existing exponentials.
The characterization which follows can be considered in any of the completions in the diagram above. But, since we

are interested in characterizing topological spaces which are T0-spaces using a condition on exponentials, we can restrict
the computation to Equ, the smallest of the cartesian closed categories in the diagram above, but the final result can be
extended to all of the other cartesian closed categories in the diagram above.

3. A characterization of sobriety

Let Σ = ({0,1}, ς) be the Sierpinski topological space with two points: one open, one closed. The space Σ is actually an
algebraic lattice endowed with its Scott topology, see Section 4 for the general definition, but recall that an algebraic lattice
is a complete lattice where every element is the sup of the compact elements below it.
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In the category Top, the space Σ classifies open subsets as the set Top(S,Σ) is in bijection with the set O(S) of open
subsets of S . The exponential Σ S must be computed in Equ, as in general it is not a topological space. As explicitly suggested
by Paul Taylor in a series of papers, the monad on the double exponential

Σ(Σ( )) : Equ Equ

should be considered as enclosing the properties of the spaces which can be expressed in the “logic of Σ”, see [8,20–24].
In particular, a suggestion for abstract sobriety, which had already been considered in similar context, see e.g. [10,7], was
put forward as follows.

Recall that a topological space S is sober when every closed, irreducible subset of S is the closure of a unique point.
Note that the condition of irreducibility for a closed subset C ⊆ S is equivalent to the fact that the map

kC : U �→ {0 | C ∩ U �= ∅} : O(S) → P
({0})

from the complete lattice of open subsets O(S) to the (complete) lattice P({0}) of subsets of the singleton {0} is a frame
homomorphism, i.e. it preserves finite infs and arbitrary sups, see [25].

Replace that by performing the same construction within Equ: say that an object X in Equ is abstractly sober if the
diagram

X
ηX

Σ(Σ X )

η
Σ(Σ X )

Σ(Σ(ηX ))

Σ(Σ(Σ(Σ X )))

induced by the exponential adjunction is an equalizer.
Note that it is immediate that the full subcategory of Equ on abstractly sober objects is reflexive as the equalizer

[Σ Z ,Σ] e
Σ(Σ Z )

η
Σ(Σ Z )

Σ(Σ(ηZ ))

Σ(Σ(Σ(Σ Z )))

of the two maps gives the reflection, see [7].

3.1. Remark. The definition of abstract sobriety and the reflection can be performed, in a general cartesian closed category
with finite limits, with respect to a fixed object A. An interesting instance of this is the case of j-sheaves in an elementary
topos for a Lawvere–Tierney topology j, see [26,27].

We have the following results

3.2. Theorem. Let S be a T0-space.

(i) S is sober if and only if it is abstractly sober in Equ.
(ii) [Σ S ,Σ] is a topological space (and the sober reflection of S in Top0).

From the square of product-preserving reflections, one derives immediately the following.

3.3. Corollary. Let S be a topological space.

(i) S is sober if and only if it is abstractly sober in Topex .
(ii) [Σ S ,Σ] is a topological space (and the sober reflection of S in Top).

4. Proof of the characterization theorem

It is useful to recall an equivalent presentation of the category Equ as the category PEqu, see [2]. Before that, recall that
the Scott topology OSc(|A|,�A) on the algebraic lattice (|A|,�A) consists of those subsets U ⊆ |A| which are

upward-closed: for every x ∈ U and every y �A x, also y ∈ U
inaccessible by directed sups: for every directed subset D ⊆ |A| such that

∨
D ∈ U , there is an element x ∈ D such that x ∈ U .

An object in PEqu is a triple A = (|A|,�A,∼A) where (|A|,�A) is an algebraic lattice and ∼A⊆ |A| × |A| is a partial
equivalence relation. In order to avoid confusion, we follow [17] and we say that ∼A is entire if its domain is all of |A|.
A map f : A A′ in PEqu is a function between the quotient sets f : dom(∼A)/∼A dom(∼A′ )/∼ ′ which has
A
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a Scott-continuous function f ′ : (|A|,�A) (|A′|,�A′ ) on the lattices which induces it by its action on the represen-
tatives. The Extension Theorem and the Embedding Theorem which state respectively that algebraic lattices endowed with
the Scott topology are injective in Top0 and that every T0-space is a subspace of an algebraic lattice allow to show that the
categories Equ and PEqu are equivalent, see [2].

Let (T , τ ) be a fixed T0-space for the rest of the section. As an equilogical space, it is the triple (T , τ ,�T ) where �T is
the diagonal relation on the set T . The corresponding object in PEqu is (P(τ ),⊆, δT ) where P(τ ) is the collection of all sets
of open subsets of (T , τ ) and V δT W exactly when V and W are the collection of open neighborhoods of the same point
of T , i.e. writing Nx:= {U ∈ τ | x ∈ U } for the collection of open neighborhoods of x in T ,

V δT W ↔ ∃x∈T [V = W = Nx].
Because of the Extension Theorem, an object A = (|A|,�A,∼A) in PEqu is isomorphic to one of the form (P(τ ),⊆, δT )

if and only if ∼A⊆ |A| × |A| is contained in the diagonal relation. Again we follow [17] and call such a relation coreflexive.
The following elementary result is thus useful for our future purposes.

4.1. Lemma. Suppose A = (|A|,�A,∼A) is an object in PEqu. Then Σ A can be represented by the triple (OSc(|A|,�A),⊆,≈A) where
OSc(|A|,�A) is the Scott topology on the algebraic lattice (|A|,�A) and

M ≈A N ↔ [∀a,b∈|A|
[
a ∼A b → (a ∈ M ↔ b ∈ N)

]]
for M, N ∈ OSc(|A|,�A). Moreover

(i) if ∼A⊆ |A| × |A| is coreflexive, then ≈A⊆OSc(|A|,�A) ×OSc(|A|,�A) is entire,
(ii) if ∼A⊆ |A| × |A| is entire, then ≈A⊆OSc(|A|,�A) ×OSc(|A|,�A) is coreflexive.

The following is a slight generalization of a result in [28].

4.2. Proposition. The exponential Σ(T ,τ ) in PEqu can be chosen as the triple
(
OSc

(
P(τ ),⊆)

,⊆,≡T
)

where OSc(P(τ ),⊆) is the Scott topology on the algebraic lattice (P(τ ),⊆), and M ≡T N exactly when⋃
F∈M

F finite

⋂
U∈F

U =
⋃
G∈N

G finite

⋂
V ∈G

V

Proof. The exponential of (P(τ ),⊆, δT ) and (Σ,�,=) is computed by first taking the exponential algebraic lattice with base
(Σ,�) and exponent (P(τ ),⊆) which is isomorphic to (OSc(P(τ ),⊆),⊆). Next the partial equivalence relation is given by
requiring that, for M, N Scott-open subsets in the algebraic lattice (P(τ ),⊆), it is M ≡T N when

∀x∈T [Nx ∈ M ↔Nx ∈ N].
The conclusion follows since Nx ∈ M if and only if x ∈ ⋃

F∈M
F fin.

⋂
U∈F U . �

This gives immediately the first part 3.2(i) of the main theorem.

4.3. Proposition. The object [Σ(T ,τ ),Σ] in the equalizer

[Σ(T ,τ ),Σ] e
Σ(Σ(T ,τ ))

η
Σ(Σ(T ,τ ))

Σ(Σ
(η(T ,τ )))

Σ(Σ(Σ(Σ(T ,τ ))))

is a sober topological space.

We devote the rest of the paper to complete the proof of 3.2.

4.4. Remark. Note that the relation ≡T in 4.2 is entire.
Moreover, given M in OSc(P(τ ),⊆), one has that

M ≡T

( ⋃
F∈M

⋂
U∈F

U

)∈
F finite
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where B∈ is the collection of all sets in P(T ) to which B belongs. It follows that the set OSc(P(τ ),⊆)/≡T is in bijection
with the set τ .

4.5. Proposition. The exponential Σ(Σ(T ,τ )) in PEqu can be chosen as the triple(
P(τ ),⊆,�

P(τ )

)

and the map η : (P(τ ),⊆, δT ) (P(τ ),⊆,�
P(τ )

) is tracked by the identity function on P(τ ).

Proof. Like before, the exponential of (OSc(P(τ ),⊆),⊆,≡T ) and (Σ,�,=) is computed by taking the exponential algebraic
lattice with base (Σ,�) and exponent (OSc(P(τ ),⊆),⊆) which is (isomorphic to) a certain algebraic lattice of Scott-opens.
Since in every equivalence class of the partial equivalence relation there is a unique representative of the form U∈ for some
U ∈ τ , the conclusion follows. �
4.6. Proposition. The structure map

Ση(T ,τ ) : Σ(Σ(Σ(T ,τ ))) Σ(T ,τ )

in PEqu is tracked by the continuous function

(P(OSc(P(τ ),⊆)),⊆) (OSc(P(τ ),⊆),⊆)

M
⋃

M∈M

( ⋃
F∈M

F finite

⋂
U∈F

U

)∈

Proof. It is immediate from 4.5 and 4.4. �
The crucial step in the proof of 3.2 is to show that a homomorphism of Σ(Σ( ))-algebras from Σ(T ,τ ) to Σ de-

termines a frame homomorphism from τ to {0,1}. Since τ appears as a quotient set from the equivalence relation
in (OSc(P(τ ),⊆),⊆,≡T ), it is useful to introduce the “global section” functor Γ : PEqu Set which sends an ob-
ject A = (|A|,�A,∼A) to the quotient set dom(∼A)/∼A and a map f : A A′ in PEqu to itself seen as a function
f : dom(∼A)/∼A dom(∼A′ )/∼A′ .

4.7. Proposition. Let f : Σ(T ,τ ) Σ be any homomorphism of Σ(Σ( ))-algebras in PEqu and write g : τ {0,1} the func-
tion obtained by composing f with the bijection from τ to OSc(P(τ ),⊆)/≡T . The function g is a frame-homomorphism.

Proof. Since f is continuous with respect to the Scott topology, it preserves directed sups. Since the equivalence relation
≡T is closed under directed sups, it follows that g preserves directed sups. To see that it preserves finite infs and sups,
consider the commutative diagram

Γ (Σ(T ,τ ))

Γ ( f )

Γ (η(T ,τ ))

id

Γ (Σ(Σ(Σ(T ,τ ))))

Γ (Σ(Σ f ))

Γ (Σ
η(T ,τ ) )

Γ (Σ(T ,τ ))

Γ ( f )

q τ

g

Γ (Σ)
Γ (ηΣ)

id

Γ (Σ(ΣΣ))
Γ (ΣηΣ )

Γ (Σ)
p {0,1}

Given U , V ∈ τ , the sets {U } and {V } are elements in P(τ ); let N{U } and N{V } be the respective collections of Scott-open

neighborhoods in the algebraic lattice (P(τ ),⊆) which are elements of P(OSc(P(τ ),⊆)) = Γ (Σ(Σ(Σ(T ,τ )))). The function

Γ (Σ(Σ(Σ(T ,τ ))))
Γ (Σ

η(T ,τ ) )
Γ (Σ(T ,τ )) q τ

takes N{U } ∩N{V } to U ∩ V and N{U } ∪N{V } to U ∪ V . The similar result for the function

Γ (Σ(ΣΣ))
Γ (ΣηΣ )

Γ (Σ)
p {0,1}

and the commutativity of the diagram yield the conclusion. �
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To complete the proof of 3.2, one notices that the factoring map j in the commutative diagram

(T , τ )

j
η(T ,τ )

[Σ(T ,τ ),Σ] e
Σ(Σ(T ,τ ))

is a subspace inclusion since so is η(T ,τ ) , and 4.7 ensures that j is a bijection.
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